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Nonlinear enhanced dissipation
in viscous Burgers-type equations

Tej-Eddine Ghoul, Nader Masmoudi, and Eliot Pacherie

Abstract. We construct a class of infinite mass functions for which solutions of the viscous Burgers
equation decay at a better rate than the solution of the heat equation for the same initial data in this
class. In other words, we show an enhanced dissipation coming from a nonlinear transport term. We
compute the asymptotic profile in this class for both equations. For the viscous Burgers equation, the
main novelty is the construction and description of a time-dependent profile with a boundary layer,
which enhances the dissipation. This profile will be stable up to a computable nonlinear correction
depending on the perturbation. We also extend our results to other convection–diffusion equations.

1. Introduction and presentation of the results

We are interested in this paper in the long-time behavior of solutions to a generalized
viscous Burgers equation on the real line,8̂̂<̂
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(1.1)

for ˛ 2 �0; 1Œ , �C; �� > 0 and J a smooth function satisfying jJ.u/j 6 C juj3. Note that
ujtD0 is not integrable, and J D 0 corresponds to the classical viscous Burgers equation.

It is well known that for the heat equation @tu � @2xu D 0, for an initial datum u0 2

L1.R/ we have the asymptotic profile
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when t!C1, uniformly in z 2R. A similar result holds for the viscous Burgers equation
@tu � @

2
xuC u@xu D 0 for initial data u0 2 L1.R/ (see [12, 20, 22]), as we have
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when t ! C1, uniformly in z 2 R, where M D
R

R u0. The same result holds with the
term J.u/ in equation (1.1).

Although the limit profile is changed by the Burgers term u@xu, the decay rate and the
scaling in time are still the same as for the heat equation. In both cases, the L1 norm of
the solution decays like t�

1
2 .

Other asymptotic behavior results have been established in other convection–diffusion
equations for initial data in L1.R/; we refer to [23] and references therein, as well as
[7, 9, 10, 18, 21]. See also [14] for some results on nonintegrable initial data.

Going back to our problem (1.1), as a comparison, we look first at the heat equation
for this type of infinite mass initial data. There, up to a rescaling, we can show that the
solution converges to a global attractor.

Proposition 1.1. For � > 0, ˛ 2 �0; 1Œ , consider f the solution of the heat equation @tf �
@2xf D 0 for an initial condition f0 2 C 0.R/ that satisfies

f0.x/ D
�.1C ojxj!C1.1//

.1C jxj/˛
:

Then, uniformly in z 2 R, we have the convergence

t
˛
2 f .
p
tz; t/!

�
p
4�

Z
R

1

jyj˛
e�.z�y/

2=4 dy

when t !C1.

This result is first proven in [16] and the proof is redone in Appendix A to make this
paper self-contained. Note that the decay in time of f is slower than if f0 were in L1.R/;

in fact, t�
˛
2 is the size of t�

1
2

Rpt
�
p
t
f0. Furthermore, the asymptotic profile is smooth, and

behaves like �jzj�˛ at infinity, connecting back to the initial data.
In this paper, we will construct a stable solution of (1.1) that converges, up to a re-

scaling, to an asymptotic profile. However, it will have two main differences compared to
the result of Proposition 1.1. First, the rescaling will not be the same, and surprisingly, the
solution will decay in time like t�

˛
1C˛ , which is faster than the heat equation for the same

initial data. The scales of the rescaling are thus dictated by the nonlinear term, which hap-
pens also in the nonlinear heat equation with a pure power term; see for instance [16, 19].
Second, the asymptotic profile will be, in the rescaling where it is of size 1, discontinu-
ous at one point. This discontinuity can be seen as a sort of boundary layer as in [8, 15]
(although there are no boundaries in this problem) that helps the dissipation. Regarding
this enhanced dissipation, we can state the following result.

Theorem 1.2. Given ˛ 2 �1
4
; 1Œ , �C; �� > 0, there exists an initial datum ujtD0 with

ujtD0.x/D
�˙
jxj˛

.1C ox!˙1.1// such that the solution of @tu� @2xuC u@xuD 0 for this
initial datum satisfies

t
˛
1C˛ ku.�; t /kL1.R/ 6 c0;

where c0 > 0 is a constant independent of time. Furthermore, this solution is stable in
some sense.
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See Theorem 1.4 for a more precise statement and the shape of the asymptotic profile,
and Proposition 1.5 for a statement in the case J ¤ 0. By Proposition 1.1, for the initial
data of Theorem 1.2, if it was instead evolving following the heat equation, we would
have t

˛
1C˛ ku.�; t /kL1.R/!C1when t!C1. This means that the additional nonlinear

transport term improved the dissipation. Enhanced dissipation results are well known for
the heat equation with an additional linear transport term (see for instance [1, 2, 4, 5, 11]
and references therein) or for Navier–Stokes on T � R (see [3, 6, 13, 17]). We require
�C; �� > 0 in Theorem 1.2, and although we can require less, we do not know how to
show that this enhancement is true in general for any �C; �� 2 R�.

1.1. Profile for the viscous Burgers equation

We focus first on the case J D 0 of equation (1.1). There, the Hopf–Cole formula gives
us an explicit formulation of the solution of the equation. However, since our goal is to be
able to generalize it for any J , we will not use it here. The results we can obtain with the
Hopf–Cole formula will be the subject of a companion paper.

Here, we want to construct an approximate solution of the viscous Burgers equation
in the right scaling.

1.1.1. The rescaled problem and the underlying ODE. We consider the viscous Burg-
ers equation

@tu � @
2
xuC u@xu D 0

and ˛ 2 �0; 1Œ . We want to make a change of variable such that the terms @tu and u@xu
are the dominant ones. We define ".t/ WD t

˛�1
˛C1 and

h.z; ".t// D t
˛
1C˛ u.zt

1
1C˛ ; t /;

leading to the equivalent equation

1 � ˛

˛ C 1
"@"hC

˛

1C ˛
hC

z@zh

1C ˛
� h@zhC "@

2
zh D 0: (1.2)

Note that the term coming from the Laplacian, "@2zh, is small when "! 0 (that is, t !
C1). This means that at this scale, the nonlinear effect dominates the dynamic. Interest-
ingly, if we simply remove the Laplacian, we get the Burgers equation @tuC u@xu D 0,
for which the L1 norm is conserved before the formation of shocks. Since we will show
some decay stronger than the heat equation, this means that although the Laplacian is
fading out, it still has a major effect on the dynamic.

We want to construct, for " > 0 small, a solution to the ODE problem8̂̂<̂
:̂

˛

1C ˛
hC

� z

1C ˛
� h

�
@zhC "@

2
zh D 0;

h.z/ D �Cjzj
�˛.1C oz!C1.1//;

h.z/ D ��jzj
�˛.1C oz!�1.1//;

(1.3)
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for �C; �� 2 R�. This will give us an approximate solution of (1.1). Note that the problem
(1.3) is doubly degenerate when "! 0: the coefficient in front of the term with two deriva-
tives goes to 0, but also, the limit problem when " D 0 is ill defined when h.z/ D z

1C˛
,

since then the coefficient in front of the term with one derivative cancels out.

1.1.2. The case " D 0. We consider in this section the ODE8<:
˛

1C ˛
hC

z@zh

1C ˛
� h@zh D 0;

h.z0/ D b;

for some given .z0; b/ 2 R2 and ˛ 2 �0; 1Œ . This is the equation of (1.3) with " D 0. We
summarize here the properties of the solutions.

Figure 1

First, remark that h.z/ D z and h.z/ D 0 are solutions of this equation (they are the
two black lines in Figure 1). Furthermore, we can write the equation as

@zh
� z

1C ˛
� h

�
C

˛

1C ˛
h D 0;

which is ill defined if h.z/ D z
1C˛

at some point. This is the red line in Figure 1. The blue
curves are the solution of the equation. In particular, we have to take .z0; b/ 2 R2 with
b ¤ z0

1C˛
for the equation to make sense.

Now we divide the set°
.z0; b/ 2 R2; b ¤

z0

1C ˛

±
D A [ B [ C [ D [ E [ F;
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with

A WD
®
.z0; b/ 2 R2; b > max.0; z0/

¯
;

B WD
°
.z0; b/ 2 R2; 0 > b >

z0

1C ˛

±
;

C WD
°
.z0; b/ 2 R2;

z0

1C ˛
> b > z0

±
;

D WD
®
.z0; b/ 2 R2; b < min.0; z0/

¯
;

E WD
°
.z0; b/ 2 R2; z0 > b >

z0

1C ˛

±
;

F WD
°
.z0; b/ 2 R2;

z0

1C ˛
> b > 0

±
:

In Figure 1, the separations between these sets are the red and black lines (the role of
the dotted green lines will be explained later).

The equation has a symmetry: if z ! h.z/ is a solution then so is z ! �h.�z/. Note
also that since this is a first-order ODE, solutions cannot cross the axes 0, Id and Id

1C˛
.

In particular, if a solution has a point in a bold set J 2 ¹A;B;C;D;E;Fº, then it is fully
included in J.

If .z0; b/ 2 A, then the solution h is global, and

lim
z!C1

h.z/ � z D 0; h.z/ � �jzj�˛ when z ! �1;

for some � > 0 determined by .z0; b/.
If .z0; b/ 2 B, then the solution is defined on ��1; zbŒ for some zb > z0 determined

by .z0; b/, and

lim
z!zb

h.z/ D
zb

1C ˛
; lim

z!zb
h0.z/ D �1; h.z/ � ��jzj�˛ when z ! �1;

for some � > 0 determined by .z0; b/.
In both cases, .z0; b/! � is surjective in R�C.
If .z0; b/ 2 C, then the solution is defined on ��1; zbŒ for some zb > z0 determined

by .z0; b/, and

lim
z!zb

h.z/ D
zb

1C ˛
; lim

z!zb
h0.z/ D C1; lim

z!�1
h.z/ � z D 0:

By symmetry, we similarly describe the domains and limits if .z0; b/ 2 D [ E [ F.
In particular, remark that there are no continuous solutions to the problem8̂̂̂<̂

ˆ̂:
˛

1C ˛
hC

z@zh

1C ˛
� h@zh D 0;

h.z/ D �Cjzj
�˛.1C oz!C1.1//;

h.z/ D ��jzj
�˛.1C oz!�1.1//;

for �C; �� 2 R�. Therefore, we expect the solution of (1.3) to have jumps in the limit
"! 0.
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In the next subsection, we will give some conditions to describe what jumps are pos-
sible in the limit " ! 0. We will show that for �C; �� > 0, at most one is a viscosity
solution.

1.1.3. Viscosity solutions. First, if h is a solution of (1.3) with " D 0 in the distribution
sense, then it must satisfy the Rankine–Hugoniot conditions. Here, it states that at any
discontinuity zc 2 R, we must have

1

2
.h.zCc /C h.z

�
c // D

zc

1C ˛
:

In Figure 1, this means that the middle point of any jump must be on the red line. This
prevents, for instance, jumps from one bold set to itself, but also, for instance, from F to D.

The dotted green lines 2
1C˛

Id and 1�˛
1C˛

Id are those such that the red line is in the
middle between 0 and 2

1C˛
Id, and in the middle between Id and 1�˛

1C˛
Id. Note that for any

˛ 2 �0; 1Œ , we have the order 0 < 1�˛
1C˛

< 1
1C˛

< 1 < 2
1C˛

.
To continue, note that if

˛

1C ˛
h" C

z@zh"

1C ˛
� h"@zh" C "@

2
zh" D 0

and @zh".z/ D 0 for some z 2 R, then

@2zh".z/ D
�˛

.1C ˛/"
h".z/:

This is represented by the two orange cups in Figure 1: if h".z/ > 0; h0".z/ D 0, then
h00" .z/ < 0, so near z the function h looks like the cup.

This means that, if we expect h, a solution of (1.3) with " D 0 with some discon-
tinuities, to be the limit when "! 0 of a sequence of functions h" solving (1.3), since
the h" are smooth, then some jumps cannot happen. For instance, although the Rankine–
Hugoniot condition allows jumps from F to E, they are not viscous (this would require the
existence of z such that h".z/ > 0, h0".z/ D 0 and h00" .z/ > 0).

Continuing, we infer that it is not possible to have two jumps that cross the axis ¹z D
0º. Indeed, otherwise we denote by za < zb two consecutive values such that h".za/ D
h".zb/ D 0, and integrating the equation between za and zb leads to

˛ � 1

˛ C 1

Z zb

za

h".s/ ds C ".h
0
".zb/ � h

0
".za// D 0;

but this is impossible since either h0".zb/� h
0
".za/ > 0 and h" > 0 on Œza; zb�, or h0".zb/�

h0".za/ < 0 and h" < 0 on Œza; zb�.
Finally, suppose that a solution has a point za < 0, where h.za/ D 2

1C˛
za, h0.za/ > 0

and a point zb > za such that h.zb/ D 0. Then, integrating the equation between za and
zb leads to

˛ � 1

˛ C 1

Z zb

za

h".s/ ds C ".h
0
".zb/ � h

0
".za// D 0:
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Figure 2

When "! 0, this also leads to a contradiction. This prevents the possibility of solutions
having jumps between B and D followed by a jump from D to A.

We summarize these conditions in Figure 2.
Jumps are not possible from a bold set to itself. Two bold sets are connected by a black

line if there is a possible jump between them satisfying the Rankine–Hugoniot condition.
Crossed red arrows are jumps that are forbidden by the viscosity conditions. The jump
between A and D can only be done once.

These viscosity conditions severely limit what jumps are allowed. We are looking for
solutions starting from A or B and ending at D or F. These conditions impose that, for the
cases A! F, A! D and B! D, only a single jump is possible. Furthermore, in these
cases (that is, �C, �� having the same sign or �� > 0, �C < 0), the position of the jump
is fully determined by �C and ��. For instance if �C; �� > 0, these two values determine
on which blue curves in A and F the solution is, and we can check that there is only one
value zc for which the red line is the middle point of these two blue curves.

For the last case B! F, where it seems that no connection is possible, we omitted
the case where the jump does not finish in a bold set, but finishes on the identity line. It
therefore may be possible to go from B to F with two jumps, both connecting to ¹.z; z/;
z 2 Rº. It is however difficult to prove or disprove that such a thing might happen. It
might also be possible that the solution of the viscous Burgers equation with such an
initial datum simply does not converge with this rescaling.

The results of the three subsections above are shown in Sections 2.1 to 2.3.

1.1.4. Construction of the profile for small " > 0. In this section, given �C; �� > 0,
˛ 2 �0; 1Œ and " > 0 small enough, we want to construct a solution of the ODE problem8<:

˛

1C ˛
h" C

z@zh"
1C ˛

� h"@zh" C "@
2
zh" D 0;

h".z/ D �˙jzj
�˛.1C oz!˙1.1//:

(1.4)
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But first, we define the function h0 by the unique solution to the problem8<:
˛

1C ˛
h0 C

z@zh0

1C ˛
� h0@zh0 D 0;

h0.z/ D �Cjzj
�˛.1C oz!C1.1//;

(1.5)

if z > zc , and the unique viscous solution to8<:
˛

1C ˛
h0 C

z@zh0

1C ˛
� h0@zh0 D 0;

h0.z/ D ��jzj
�˛.1C oz!�1.1//;

(1.6)

if z < zc , where zc 2 R is the position of the jump given by the conditions described
above, uniquely determined by �C, ��, ˛. We will show in Section 2.3 the existence and
uniqueness of the solution of these problems.

We define
h0.z

˙
c / WD lim

�!0
h0.zc ˙ �/;

as the function h0 is discontinuous at zc .
We construct a solution of (1.4) using a shooting method, and this solution will be

close to h0 far from zc ; see the following result.

Proposition 1.3. For any � > 0, ˛ 2 �0; 1Œ , there exist zc 2 R, "0 > 0 such that, for
"0 > " > 0, there exist two C 1 functions "! zc."/; a."/ with

zc."/! zc ; a."/!
h0.z

�
c / � h0.z

C
c /

2

when "! 0, such that the solution of the ODE problem8̂̂<̂
:̂

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0;

h".zc."// D
zc."/

1C ˛
; h0".zc."// D

�a."/2

2"
;

satisfies
h".z/ D �˙jzj

�˛.1C oz!˙1.1//:

Furthermore, there exists w0 > 0 depending only on ˛ and �, such that


h".z/ � h0.z
C
c / �

2a."/e�a."/.
z�zc ."/

" /

1C e�a."/.
z�zc ."/

" /





L1. Œzc."/�w0" ln 1" ;zc."/Cw0" ln 1" � /

! 0

and
k.1C jzj/˛.h" � h0/.z/kL1.RnŒzc."/�w0" ln 1" ;zc."/Cw0" ln 1" � /

! 0

when "! 0. Finally, we have j@"zc."/j C j@"a."/j 6 K.ln 1
"
/2.
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Section 2 is devoted to the proof of this result. For " ¤ 0 and a D h0.z
�
c /�h0.z

C
c /

2
, the

solution to 8̂̂<̂
:̂

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0;

h".zc/ D
zc

1C ˛
; h0".zc."// D

�a2

2"
;

does not satisfy h".z/ D �˙jzj�˛.1C oz!˙1.1//, but

h".z/ D .�˙ C o"!0.1//jzj
�˛.1C oz!˙1.1//:

This is why, to get the exact same equivalent at C1, we need to slightly change zc."/
and a."/. We use the notation h" for solutions of problem (1.4) (that is, depending on the
behavior at˙1) and h" for solutions depending on its value at zc .

The function h" in Proposition 1.3 is close to the discontinuous function h0 except
in the vicinity of zc , the discontinuity point. The solution h" solves (1.3) but not (1.2)
because of the term 1�˛

1C˛
"@"h"; however, this term is small compared to the others. We

will show the stability of h" in a space that in particular contains this error term in the next
subsection.

To construct h", we found the right scale around zc to now have a continuous function
(it is z�zc."/

"
' 1 rather than z ' 1). The proof of Proposition 1.3 is done in two parts.

First, we compute the first order in " of the solution in Œzc."/�w0" ln 1
"
; zc."/Cw0" ln 1

"
�

for some w0 > 0 large but independent of ", and we show that at the boundaries of this
interval, it becomes close to the value of h0 at the same point. Then, outside this interval,
h0 and h" verify a similar equation for small ", and start with similar values. We thus show
that they stay close.

1.1.5. Stability of the profile. We recall that ".t/D t
˛�1
˛C1 and h" is the solution described

in Proposition 1.3. We want to show that if at a time T > 0 large, we solve the viscous
Burgers equation with the initial data h".T / C f0 at time T in the rescaled variables, then
for all times t > T we stay close to h".t/. Interestingly, h".t/ will not be first order; we
need to modify it nonlinearly, depending on f0. It turns out that the mass of f0 will change
the profile near zc , in a nonnegligible way. The stability result is as follows.

Theorem 1.4. Given ˛ 2 �1
4
; 1Œ , �C; �� > 0, there exists T0 > 0 such that, for any T > T0,

there exists � > 0 depending on T such that, considering h".t/, zc.t/, a.t/ defined in
Proposition 1.3, the solution u to the problem´

@tu � @
2
xuC u@xu D 0;

ujtDT .x/ D T
� ˛
1C˛ h".T /.T

� 1
1C˛ x/C f0.x/;

with f0 2 H 2.R/ and

k.1C jxj/3f0.x/kL1.R/ C k@xf0kH1.R/ C

ˇ̌̌̌Z
R
f0

ˇ̌̌̌
6 �
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satisfies for any t > T that

t ˛
1C˛ u.x; t/ � h".t/.t

� 1
1C˛ x/ � u

�
t
1�˛
1C˛ .xt�

1
1C˛ � zc.t//

�


L1.R/

D ot!C1.1/;

where u is the unique solution to the problem8̂̂<̂
:̂
�@xuC

�a.t/.e�a.t/x � 1/
1C e�a.t/x

�
uC

u2

2
D 0;Z

R
u D

Z
R
f0:

Section 3 is devoted to the proof of this result. Let us make some remarks about it:

• This result implies Theorem 1.2 and gives us the asymptotic profile

t
˛
1C˛ u.zt

1
1C˛ ; t /! h0.z/

when t ! C1 for any z ¤ zc . The convergence is uniform on R if we remove any
open set containing zc . In the vicinity of zc we still have convergence to some limit,
and there this limit depends on u, that is, f0. Note that u depends nonlinearly on f0,
and thus the correction coming from u is not simply a modulation on the parameters
of h".t/ (that is, ".t/, a.t/ or zc.t/), even if for small values of

R
R f0, we have u '

@zch".t/.

• With the conditions on f0, we check that our initial data

T �
˛
1C˛ h".T /.T

� 1
1C˛ x/C f0.x/

decays like �˙jxj�˛ when x ! ˙1, and f0 is small when compared to the main
profile, since � depends on T . Also, the condition ˛ > 1

4
is a technical one; we expect

the result to hold for any ˛ 2 �0; 1Œ . This condition will be used to show that @"h" has
enough decay at˙1 to estimate it in H 1.R/; see Section 3.4.

The core idea of the proof is to write the solution for t > T as

u.x; t/ D t�
˛
1C˛
�
h".t/.t

� 1
1C˛ x/C u

�
t
1�˛
1C˛ .xt�

1
1C˛ � zc.t//

�
C f .x; t/

�
;

and now the error f is massless (that is,
R

R f D 0). We write it as f D @xg, and it turns
out that we can integrate the equation to have a new equation on g. We show there some
coercivity on the linear part on g inH 2.R/, and we control the nonlinear part, from which
we deduce that kgkH2.R/ ! 0 when t !C1.

1.2. Generalization to equation (1.1)

Our approach also works for the equation @tu� @2xuC @x.
u2

2
C J.u// D 0, if J satisfies

jJ.x/j C jxJ 0.x/j C jx2J 00.x/j 6 C0jxj
3

for some C0 > 0.
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Proposition 1.5. For ˛ 2 �2
3
; 1Œ and T0, � depending on C0, the result of Theorem 1.4 also

holds for the problem8̂<̂
:@tu � @

2
xuC @x

�u2
2
C J.u/

�
D 0;

ujtDT .x/ D T
� ˛
1C˛ h".T /.T

� 1
1C˛ x/C f0.x/:

Section 3.6 is devoted to the proof of this result. It is done simply by checking that the
term @x.J.u// can be considered as an error term in the proof of the stability of Theorem
1.4. This is true because at the scale where we see the profile h", this term is small com-
pared to the others. As before, the condition ˛ > 2

3
is a technical one, and is here to make

sure that J.u/ has enough decay at˙1 to estimate it in H 1.R/.

1.3. Some related open problems

Our results should extend easily for values of �C; �� 2 R� except in the case �C < 0,
�C > 0. There, it may be possible to construct a specific solution, but it is likely that it is
an unstable one. If we generalize to the equation @tu � @2xuC u

k@xu D 0 for k 2 N�, it
is likely that a similar result can be shown with some improvements in the proofs.

For now, it seems difficult to generalize this result to higher dimensions, but it would
be of interest, in particular if similar profiles can be constructed for the two-dimensional
Euler or Navier–Stokes equation.

2. Construction of the profile h"

This section is devoted to the proofs of Proposition 1.3 and the viscosity properties
described in the introduction. First, in Section 2.1 we set the change of scaling and com-
pute the Rankine–Hugoniot condition for the viscous Burgers equation. Section 2.2 is
devoted to the case " D 0. Section 2.3 is about the construction of h0 (which will be the
limit of h" when "! 0), as well as the study of its properties. Sections 2.4 and 2.5 are
the study of the shooting problem at the heart of Proposition 1.3, respectively close and
far from the shooting point zc . Section 2.6 regroups all these elements and concludes the
proof of Proposition 1.3.

2.1. Change of variable and viscosity conditions

In this subsection, our goal is to prove some results of Sections 1.1.1 to 1.1.3.

2.1.1. Computation of the underlying ODE problem. We consider here the equation

@tu � @
2
xuC u@xu D 0:

We define
g.z; t/ D t

˛
1C˛ u.zt

1
1C˛ ; t /;
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and we have
t@tg D

˛

1C ˛
g C

z

1C ˛
t

˛
1C˛C

1
1C˛ @xuC t

˛
1C˛C1@tu

and
@zg D t@xu; @2zg D t

1C 1
1C˛ @2xu:

Therefore,

t@tg D
˛

1C ˛
g C

z

1C ˛
t

˛
1C˛C

1
1C˛�1@zg C t

˛
1C˛C1.t�1�

1
1C˛ @2zg � t

�1� ˛
1C˛ g@zg/;

that is,

t@tg D
˛

1C ˛
g C

z@zg

1C ˛
� g@zg C t

˛�1
1C˛ @2zg:

We define ".t/ D t
˛�1
˛C1 and we make the change of variable

h.z; "/ D g.z; t/:

Since

t@t" D
˛ � 1

˛ C 1
"

we have
1 � ˛

1C ˛
"@"hC

˛

1C ˛
hC

z@zh

1C ˛
� h@zhC "@

2
zh D 0: (2.1)

By Proposition 1.1, this scaling is not adapted to the heat equation with the same initial
condition. Note that if we tried to use this scale anyway, we would get the same equation
(2.1) but without the term �h@zh. When "! 0, the limit problem will be ˛

1C˛
hC z@zh

1C˛
D

0, which only has the solution h D Cz�˛ for some C > 0, which is unbounded at z D 0.

2.1.2. Rankine–Hugoniot condition. For the equation ˛
1C˛

hC z@zh
1C˛
� h@zh D 0, inte-

grating it between zc � � and zc C � leads, after some computations, to

˛ � 1

1C ˛

Z zcC�

zc��

hC
1

1C ˛
..zc C �/h.zc C �/ � .zc � �/h.zc � �//

�
1

2
.h2.zc C �/ � h

2.zc � �//

D 0:

Therefore, letting � ! 0 leads to

zc

1C ˛
.h.zCc / � h.z

�
c // �

1

2
.h2.zCc / � h

2.z�c // D 0;

which we factorize as

.h.zCc / � h.z
�
c //

� zc

1C ˛
�
1

2
.h.zCc /C h.z

�
c //

�
D 0;

which is the Rankine–Hugoniot condition stated in the introduction.
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2.2. Some properties of solutions of ˛
1C˛

hC . Id
1C˛
� h/h0 D 0

Take .z0; b/ 2 R2 with b ¤ z0
1C˛

, and we consider here the problem8<:
˛

1C ˛
hC

� z

1C ˛
� h

�
@zh D 0;

h.z0/ D b;

(2.2)

which is the problem described in Section 1.1.2. The fact that if .z0; b/ 2 J 2 ¹A;B;C;D;
E; Fº implies that .z; h.z// 2 J for all values of z on which the solution h of (2.2) is
well defined is a consequence of standard Cauchy theory arguments, since the boundary
between two bold sets is either a solution of (2.2), or the set ¹.z0; b/ 2 R2; b D z0

1C˛
º, on

which @zh explode.

2.2.1. The case .z0; b/ 2 A.

Lemma 2.1. The solution h of (2.2) with .z0; b/ 2 A is defined on R and satisfies

lim
z!C1

h.z/ � z D 0:

We leave the study of the behavior when z ! �1 for Section 2.3.

Proof. We consider .z0; b/ 2 A D ¹.z0; b/ 2 R2; b > max.0; z0/º. As long as the solu-
tion h of (2.2) for this initial condition exists, we have .z; h.z// 2 A, therefore h.z/ >
max.0; z/. We denote by �z�; zCŒ the maximum domain of existence of h with z�; zC 2
R [ ¹˙1º (by definition we have z0 2 �z�; zCŒ ).

Suppose that zC ¤ C1. There exists C0 > 0 depending on z0 and b such that, for
z 2 Œz0; zCŒ we have j z

1C˛
� h.z/j > C0.1C jzj/. Indeed, we have h.z/ > max.0; z/ and

1
1C˛

< 1. In particular, z
1C˛
� h.z/ ¤ 0 on Œz0; zCŒ and since h.z/ > 0 we haveˇ̌̌@zh

h

ˇ̌̌
6

K

.1C jzj/

on Œz0; zCŒ . With zC < C1, we deduce that h and @zh are bounded near zC, which is a
contradiction, therefore zCDC1. We define for z > z0 the function u.z/D h.z/� z > 0.
It satisfies the equation� ˛

1C ˛
� @zh.z/

�
uC

� z

1C ˛
� h.z/

�
@zu D 0 (2.3)

on Œz0;C1Œ . Now we compute, using the equation satisfied by h, that� ˛

1C ˛
� @zh.z/

�� z

1C ˛
� h.z/

�
D

˛

1C ˛

� z

1C ˛
� h.z/

�
C

˛

1C ˛
h.z/D

˛z

.1C ˛/2
;

hence
˛

1C ˛
� @zh.z/ D

˛z

.1C ˛/2. z
1C˛
� h.z//

;
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and we can write equation (2.3) as

˛z

.1C ˛/2
uC

� z

1C ˛
� h.z/

�2
@zu D 0:

Using j z
1C˛
� h.z/j > C0.1C jzj/, we deduce that for z > max.1; z0/ we have

@zu

u
6
�C1

z

for some C1 > 0, therefore u.z/ 6 Kz�C1 for z > max.1; z0/ for some constant K > 0,
hence u.z/! 0 when z !C1, leading to h.z/ � z ! 0 when z !C1.

On �z�; z0�, by similar arguments to previously, we have h > 0 and z
1C˛
� h.z/ < 0.

Therefore, on �z�; z0� we have @zh.z/ > 0, h.z/ > 0, hence z� D �1.

2.2.2. The case .z0; b/ 2 F.

Lemma 2.2. The solution h of (2.2) with .z0; b/ 2 F is defined on �z�;C1Œ for some
z� > 0.

We also leave the study of the behavior when z !C1 for Section 2.3.

Proof. We consider here .z0; b/ 2 F D ¹.z0; b/ 2 R2; z0
1C˛

> b > 0º in problem (2.2).
As in the previous subsection, we consider the largest interval on which the solution is
defined, which we write as �z�; zCŒ . We have z0 2 �z�; zCŒ and for z 2 �z�; zCŒ , we have

z

1C ˛
> h.z/ > 0:

A consequence of this and the equation ˛
1C˛

hC . z
1C˛
� h/@zh D 0 is that @zh < 0 on

�z�; zCŒ , and with h > 0, we deduce that zC DC1. We also see that z� > 0 because the
condition z

1C˛
> h.z/ > 0 can no longer hold at z D 0.

2.2.3. The remaining cases. For .z0; b/ 2 E, we can deal with the limit for large z as in
the case of A, and we can show that z� > 0 as in the case of F. By symmetry, we show
similar properties in B, C and D.

2.3. Definition and properties of the profile h0

The goal of this subsection is to show that, given ˛ 2 �0; 1Œ and �C; �� > 0, there exist a
unique value of zc and a unique viscous solution of (1.5)–(1.6) in the sense of the intro-
duction. We will also study its properties.

2.3.1. A connected implicit problem. We look for an implicit solution of ˛
1C˛

h C

. z
1C˛
� h/@zh D 0 of the form z D g.h/. Differentiating with respect to z, we have

1 D @zhg
0.h/ and replacing, we deduce that

g0.h/ D
�g.h/

˛h
C
1C ˛

˛
:

The solution of this equation is of the form g.h/ D hC �
jhj˛

.
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This is why we define for ˛ 2 �0; 1Œ and � > 0 the function

g�.y/ WD y C
�

jyj˛
:

We are interested in the solutions of the implicit problem z D g�.y.z//. First, remark
that g�.y/! C1 when y ! 0˙; g�.y/! ˙1 when y ! ˙1 and g0�.y/! 1 when
y !˙1. We compute for y ¤ 0 that

g0�.y/ D 1 �
�˛

yjyj˛
:

In particular, g0� > 0 on ��1; 0Œ . We have g0�.y/ D 0 if and only if y D y� D .�˛/
1
1C˛ .

This implies that on Œy0;C1Œ , we have g0�.y/ > 0. We compute easily that

g�.y�/ D �
1
1C˛ .˛

1
1C˛ C ˛�

˛
1C˛ / > 0:

By the implicit function theorem, given �C; �� > 0 we construct two particular branches
of functions. First, a smooth function y��WR! ��1; 0Œ , a solution of z D g��.y

�
�.z// for

any z 2R, defined as the inverse of the invertible function g�� W ��1; 0Œ!R, and another
smooth function

y�CW �g�C.y�C/;C1Œ! �y�C ;C1Œ ;

a solution of z D g�C.y
�
C.z//, defined as the inverse of

g�C W �y�C ;C1Œ! �g�C.y�C/;C1Œ :

We define here h˙.z/ WD �˙
jy�
˙
.z/j˛
D z � y�

˙
.z/. Since g0�.y/! 1 when jyj ! C1, we

have that y�
˙
.z/! z when z ! ˙1 and therefore h˙.z/ � �˙

jzj˛
when jzj ! C1. Let

us show that these functions are solutions of
˛

1C ˛
hC

� z

1C ˛
� h

�
@zh D 0:

Lemma 2.3. The functions h˙ satisfy, on their domains of definition, the equation

˛

1C ˛
h˙ C

� z

1C ˛
� h˙

�
@zh˙ D 0:

Proof. We first check that g0�.y/D 1�
�˛
yjyj˛

D .1C ˛/y � ˛g�.y/, and since g�˙.y
�
˙
.z//

D z, we have
y�˙.z/g

0
�˙
.y�˙.z// D .1C ˛/y

�
˙.z/ � ˛z:

Furthermore, differentiating the equation z D g�.y.z// with respect to z leads to

@zy
�
˙.z/g

0
�˙
.y�˙.z// D 1;

therefore

@zy
�
˙.z/

�
y�˙.z/ �

˛

1C ˛
z
�
D
y�
˙
.z/

1C ˛
:
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Since h˙.z/ D z � y�˙.z/, we have� z

1C ˛
� h˙

�
@zh˙ D

� z

1C ˛
� h˙

�
.1 � @zy

�
˙/

D
z

1C ˛
� h˙ � @zy

�
˙

�
y�˙.z/ �

˛

1C ˛
z
�

and thus � z

1C ˛
� h˙

�
@zh˙ D

z

1C ˛
� h˙ �

y�
˙
.z/

1C ˛
D
�˛

1C ˛
h˙:

This result allows us to complete the study of problem (2.2) for .z0; b/ 2 A and
.z0; b/ 2 F.

Lemma 2.4. Given .z0; b/ 2 A, the solution of problem (2.2) is h� defined above for the
value �� D bjb � z0j˛ . It satisfies in particular

lim
z!�1

jzj˛h�.z/ D bjb � z0j
˛:

Furthermore, for z 6 z0, n 2 N, there exists Cn > 0 depending on n, z0, ˛ such that

j@nzh�.z/j 6
Cn

.1C jzj/˛Cn
:

Similarly, for .z0; b/ 2 F, the solution of problem (2.2) is hC defined above for the value
�C D bjb � z0j

˛ . It satisfies

lim
z!C1

jzj˛hC.z/ D bjb � z0j
˛

and for z > z0,

j@nzhC.z/j 6
Cn

.1C jzj/˛Cn
:

Proof. Given .z0; b/ 2 A, we look for a value � such that

z0 D g�.z0 � b/

with g�.z/D z C �
jzj˛

. We check that then � D bjb � z0j˛ . Defining h� as above, remark
that h�.z0/ D b and h� satisfies

˛

1C ˛
h� C .

z

1C ˛
� h�/@zh� D 0:

It is therefore the solution of (2.2) for this choice of .z0; b/ 2 A. The proof is identical if
.z0; b/ 2 F with �C D bjb � z0j˛ , the only difference being that we have to check that
z0 � b D y

�.z0/ 2 �y�C ;C1Œ , that is,

z0 � b > .�˛/
1
1C˛ D jz0 � bj

˛
1C˛ b

1
1C˛ ˛

1
1C˛ :

This inequality is a consequence of the fact that .z0; b/ 2 F, which implies that z0
1C˛

>

b > 0, and thus z0 � b > ˛b.



Nonlinear enhanced dissipation in viscous Burgers-type equations 17

Now, concerning the computations of @nzh˙, we have

@zh˙ D

�˛
1C˛

h˙
z
1C˛
� h˙

;

hence
j@zh˙.z/j 6

C1

.1C jzj/˛C1

and we can conclude by induction.

We complete this subsection with a technical lemma on the dependency on b and z0
of h˙.

Lemma 2.5. The function .b; z0/! h˙ is differentiable, and there exists K > 0 depend-
ing on b, z0 such that ˇ̌̌

h˙.z/ �
bjb � z0j

˛

jzj˛

ˇ̌̌
6

K

.1C jzj/1C2˛
;

as well as ˇ̌̌
@bh˙.z/ �

@b.bjb � z0j
˛/

jzj˛

ˇ̌̌
6

K

.1C jzj/1C2˛

on the domain of definition of h˙.

Proof. Take y.z/ a function solution of the implicit problem

y.z/C
�

jy.z/j˛
D z

defined on some interval Œz0;C1Œ . By the remarks above Lemma 2.3 we have y.z/ � z
when z !C1. Writing y D z C Ny.z/, we check that

jzj˛ Ny.z/
ˇ̌̌
1C

Ny.z/

z

ˇ̌̌˛
D ��;

hence
Ny.z/ �

��

jzj˛

when z !C1. We deduce that h.z/ D �
jy.z/j˛

satisfies

h.z/ �
�

jzj˛
�

˛�2

jzj1C2˛

when z !C1. We then check easily that we have, similarly,

@�h.z/ �
1

jzj˛
�

2˛�

jzj1C2˛

when z !C1, which implies the result of the lemma for hC, and a similar proof works
for h�.



T. E. Ghoul, N. Masmoudi, and E. Pacherie 18

2.3.2. Connection between the jump and the limits at˙1. We recall the notation

h.z˙c / D lim
�!0

h.zc ˙ �/:

Lemma 2.6. Take ˛ 2 �0; 1Œ , zc > 0 and zc
1C˛

> a > ˛
1C˛

zc . Then there exists a unique
function h 2 C1.Rn¹zcº; �0;C1Œ / a solution to the problem8̂̂̂̂

<̂̂
ˆ̂̂̂:

˛

1C ˛
hC

� z

1C ˛
� h

�
@zh D 0;

h.zCc / D
zc

1C ˛
� a;

h.z�c / D
zc

1C ˛
C a:

Furthermore, there exists �˙.zc ; a/ > 0 such that

h.z/ D
�˙.zc ; a/

jzj˛
.1C oz!˙1.1//;

and
.zc ; a/! .�C.zc ; a/; ��.zc ; a//

is a smooth function and a bijection from ¹.zc ; a/ 2 �0;C1Œ 2; zc
1C˛

> a > ˛
1C˛

zcº to
�0;C1Œ 2.

Proof. By Lemma 2.1, the solution of8̂<̂
:

˛

1C ˛
hC

� z

1C ˛
� h

�
@zh D 0;

h.zc/ D
zc

1C ˛
� a;

with zc > 0 and 0 < h.zc/ < zc
1C˛

(that is, zc
1C˛

> a > 0) is well defined for all z > zc ,
and we have g�C.zc ;a/.z � h.z// D z for

�C.zc ; a/ WD h.zc/jzc � h.zc/j
˛
D

� zc

1C ˛
� a

�ˇ̌̌ ˛

1C ˛
zc C a

ˇ̌̌˛
:

Similarly, the solution of 8̂<̂
:

˛

1C ˛
hC

� z

1C ˛
� h

�
@zh D 0;

h.zc/ D
zc

1C ˛
C a;

with h.zc/>zc (that is, a> ˛
1C˛

zc) is well defined for all z6zc , and we have g��.zc ;a/.z �
h.z// D z for

��.zc ; a/ WD h.zc/jzc � h.zc/j
˛
D

� zc

1C ˛
C a

�ˇ̌̌ ˛

1C ˛
zc � a

ˇ̌̌˛
:



Nonlinear enhanced dissipation in viscous Burgers-type equations 19

We deduce that
.zc ; a/! .�C.zc ; a/; ��.zc ; a//

is a smooth function from ¹.zc ; a/ 2 R; zc > 0; a 2 �
˛
1C˛

zc ;
1
1C˛

zc Œ º to �0;C1Œ 2. Let
us show that it is a bijection. Writing a D zcb with b 2 � ˛

1C˛
; 1
1C˛

Œ , we have

�C D z
1C˛
c

� 1

1C ˛
� b

�ˇ̌̌ ˛

1C ˛
C b

ˇ̌̌˛
and

�� D z
1C˛
c

� 1

1C ˛
C b

�ˇ̌̌
b �

˛

1C ˛

ˇ̌̌˛
;

hence
�C

��
D �.b/ WD

. 1
1C˛
� b/jb C ˛

1C˛
j˛

. 1
1C˛
C b/jb � ˛

1C˛
j˛
:

The variable � is a smooth function of b in � ˛
1C˛

; 1
1C˛

Œ , and

lim
b!. ˛

1C˛ /
C
�.b/ D C1; lim

b!. 1
1C˛ /

�

�.b/ D 0:

We check that

�0.b/ D
�2bjb C ˛

1C˛
j˛�1jb � ˛

1C˛
j˛�1

.. 1
1C˛
C b/jb � ˛

1C˛
j˛/2

< 0;

hence � is a bijection from � ˛
1C˛

; 1
1C˛

Œ to RC�. This completes the proof of the lemma.

We now can construct the function h0: for �C; �� > 0, take .zc.�C; ��/; a.�C; ��// 2
�0;C1Œ 2 such that �C.zc.�C; ��/; a.�C; ��// D �C, ��.zc.�C; ��/; a.�C; ��// D ��,
then h0 is the solution of Lemma 2.6 for these values. It is almost a solution of (1.3), but
it is discontinuous at zc . It satisfies the Rankine–Hugoniot condition, and by Lemma 2.6
it is the only solution among the ones behaving like �˙jzj�˛ at˙1 doing so.

Our goal in the next subsection is to construct a better approximation h", that will be
continuous at zc , and be close to h0 away from it when " is small.

2.4. Shooting from zc and shape of the profile near it

We want to understand the solution to the problem8̂̂<̂
:̂

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0;

h".zc/ D
zc

1C ˛
; h0".zc/ D

�a2

2"
;

(2.4)

for some given parameters zc ; a > 0 with zc
1C˛

> a > ˛
1C˛

zc that for now are independent
of ". In this subsection we take h to be the solution of Lemma 2.6 associated to the values
of zc and a. The function h is discontinuous at zc . We want to show that for the right
choice of zc and a, h" is close to h far from zc , and we want to compute the shape of h"
near zc .
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2.4.1. Estimates in �zc; zc Cw0" ln 1
"
�.

Lemma 2.7. There exists w0 > 0 depending only on ˛, zc , a such that h", the solution of
(2.4), is well defined on �zc ; zc C w0" ln 1

"
� and satisfies



h".z/ � h.z/ � 2ae�a.
z�zc
" /

1C e�a.
z�zc
" /






L1. �zc ;zcCw0" ln 1" � /

! 0;

as well as 



h0".z/C 2a2e�a.
z�zc
" /

".1C e�a.
z�zc
" //2






L1. �zc ;zcCw0" ln 1" � /

6 C

for some constant C > 0 depending only on ˛, zc , a when "! 0, and alsoˇ̌̌
h"

�
zc C w0" ln

1

"

�
� h.zCc /

ˇ̌̌
C

ˇ̌̌
h0"

�
zc C w0" ln

1

"

�
� h0.zCc /

ˇ̌̌
6 K" ln

1

"

This lemma implies that, when we are at distance w0" ln 1
"

to the right of zc for some
constant w0 > 0 independent of ", the functions h" and h and their derivatives are close.
In particular, h0".zc/ D

�a2

2"
is large when " is small, but h0".zc Cw0" ln 1

"
/ is of size 1. In

other words, at zc Cw0" ln 1
"

the jump has ended, and h", h0" from now on will be bounded
uniformly in ". The choice of w0" ln 1

"
is not necessarily optimal – it might be improved

– but it is enough here. We also compute the first-order correction in C 1 between h" and
h to the right of zc .

Proof of Lemma 2.7. We decompose, for z > zc , Z D z�zc
"

> 0, the solution of (2.4) as

h".z/ D h.z/C .F.Z/C a/C "G.Z/;

and we recall that ˛
1C˛

h.z/C . z
1C˛
� h.z//h0.z/ D 0. The function h is discontinuous at

z D zc , but we focus here only on z 2 �zc ; zc C w0" ln 1
"
�. We choose F the solution of8<:F

00.Z/ � F.Z/F 0.Z/ D 0;

F.0/ D 0; F 0.0/ D
�a2

2
;

that is,

F.Z/ D
a.e�aZ � 1/

1C e�aZ
:

Note that

F.C1/ D �a; a D
h.z�c / � h.z

C
c /

2
and

zc

1C ˛
D
h.z�c /C h.z

C
c /

2

by Lemma 2.6. We also check that G.0/ D 0, G0.0/ D �h0.zCc /. Indeed,

h".z
C
c / D h.z

C
c /C .F.0/C a/ D

zc

1C ˛
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and

h0".z
C
c / D h

0.zCc /C
1

"
F 0.0/CG0.0/ D

�a2

2"
:

Let us compute the equation satisfied by G. We have

˛

1C ˛
h" D

˛

1C ˛
.h.z/C .F.Z/C a/C "G.Z//;� z

1C ˛
� h"

�
D

� z

1C ˛
� h.z/

�
� .F.Z/C a/ � "G.Z/;

@zh" D h
0.z/C

1

"
F 0.Z/CG0.Z/;

so � z

1C ˛
� h"

�
@zh" D �

1

"
F 0.Z/F.Z/C

� z

1C ˛
� h.z/

�
h0.z/

C
1

"
F 0.Z/

� z

1C ˛
� h.z/ � a

�
C

� z

1C ˛
� h.z/

�
G0.Z/

� .F.Z/C a/.h0.z/CG0.Z// �G.Z/F 0.Z/

� "G.Z/.h0.z/CG0.Z//:

Finally,

"@2zh" D "h
00.z/C

1

"
F 00.Z/CG00.Z/:

Using F 00.Z/ � F.Z/F 0.Z/ D 0 and ˛
1C˛

h.z/C . z
1C˛
� h.z//h0.z/ D 0 we infer that

on Z > 0, G satisfies

G00.Z/C
� z

1C ˛
� h.z/ � .F.Z/C a/

�
G0.Z/

C

�
�F 0.Z/C "

� ˛

1C ˛
� h0.z/

��
G.Z/ � "G.Z/G0.Z/

C
1

"
F 0.Z/

� z

1C ˛
� h.z/ � a

�
C

� ˛

1C ˛
� h0.z/

�
.F.Z/C a/

C "h00.z/

D 0:

We define the source part as

S WD
1

"
F 0.Z/

� z

1C ˛
� h.z/ � a

�
C

� ˛

1C ˛
� h0.z/

�
.F.Z/C a/

C "h00.z/

and the operator on G as

O.G/ WD G00.Z/C
� z

1C ˛
� h.z/ � .F.Z/C a/

�
G0.Z/

C

�
�F 0.Z/C "

� ˛

1C ˛
� h0.z/

��
G.Z/ � "G.Z/G0.Z/;
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leading to the equation
O.G/C S D 0:

Let us estimate S.Z/ for Z > 0. We have

zc

1C ˛
� h.zCc / � a D 0;

therefore

S.Z/ D F 0.Z/
� Z

1C ˛
�
h.zc C "Z/ � h.zc/

"

�
C

� ˛

1C ˛
� h0.zc C "Z/

�
.F.Z/C a/C "h00.zc C "Z/:

For now, take any w0 > 0, independent of ". Then, since

jF.Z/C aj C jF 0.Z/j C jF 00.Z/j 6 Ke�aZ ;

we deduce that
jS.Z/j 6 K."C e�

a
2Z/

for Z 2 �0; w0" ln 1
"
� for a constant K > 0 depending only on w0, ˛, a.

Let us now look at the coefficient in the operator O.G/. We write it

O.G/ D G00.Z/C A1.Z/G
0.Z/C A2.Z/G.Z/ � "G.Z/G

0.Z/

with
A1.Z/ WD

zc C "Z

1C ˛
� h.zc C "Z/ � .F.Z/C a/

and
A2.Z/ WD �F

0.Z/C "
� ˛

1C ˛
� h0.zc C "Z/

�
:

In particular, A1 and A2 are bounded by constants independent of " if " < 1. By the
estimates on S , for any Z0 > 0, if " > 0 is small enough depending on Z0 (so that the
nonlinear term "G.Z/G0.Z/ can be neglected), there exists K.Z0/ > 0 such that

jG.Z/j C jG0.Z/j 6 K.Z0/ (2.5)

forZ 2 Œ0;Z0�. This is because the equation satisfied byG is, except for the term�"GG0,
linear with a bounded source term. Without this nonlinear term the solution would then be
global, and taking " > 0 small enough depending on Z0, since G.0/, G0.0/, A1 and A2
are bounded uniformly in ", the solution exists at least on Œ0; Z0� with a uniform estimate
depending on Z0.

Now, remark that A1.Z/! zc
1C˛
� h.zCc / and

A2.Z/

"
!

� ˛

1C ˛
� h0.zCc /

�
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if Z > w0 ln 1
"

with w0 large (such that F 0.w0 ln 1
"
/ 6 "2 for instance) when "! 0. We

therefore write the equation on G as

G00.Z/C
� zc

1C ˛
� h.zCc /

�
G0.Z/C "

� ˛

1C ˛
� h0.zCc /

�
G.Z/ D S CR.G/

with

R.G/ WD G0.Z/
� zc

1C ˛
� h.zCc / �

� z

1C ˛
� h.zC/ � .F.Z/C a/

��
CG.Z/

�
"
� ˛

1C ˛
� h0.zCc /

�
�

�
�F 0.Z/C "

� ˛

1C ˛
� h0.z/

���
C "G.Z/G0.Z/:

We simplify:

R.G/ D G0.Z/
�
�"Z

1C ˛
C h.zc C "Z/ � h.z

C
c /C F.Z/C a

�
CG.Z/

�
F 0.Z/C ".h0.z/ � h0.zCc //

�
C "G.Z/G0.Z/:

To simplify the notation we define � WD zc
1C˛
� h.zCc / > 0, � WD ˛

1C˛
� h0.zCc / > 0 (since

h0.zCc / < 0) so that the equation on G can be written as

G00.Z/C �G0.Z/C "�G.Z/ D S CR.G/:

For " > 0 small enough we have �2 � 4"� > 0, and then we can write, with

�˙ WD
��˙

p
�2 � 4"�

2
< 0;

satisfying �CC��D��, �C��
"�
�

, �����when "! 0, that (we recall thatG.0/D 0,
G0.0/ D �h0.zCc /)

G.Z/ D
�h0.zCc /p
�2 � 4"�

.e�CZ � e��Z/

C e�CZ
Z Z

0

e��u
�Z u

0

e�v.S.v/CR.G/.v// dv

�
du: (2.6)

Let us show that for C0 > 0 large enough (independently of ") and " small enough, we
have

jG.Z/j C jG0.Z/j 6 C0

�
" ln

1

"
C e�

a
2Z
�

(2.7)

for Z 2 Œ0;w0 ln 1
"
�. This is true on Œ0;Z0� for some Z0 > 0 by (2.5). Now, if the result is

not true, we denote by w0 ln 1
"

> Zc > Z0 the first value such that this estimate becomes
an equality. Then, on Œ0; Zc � we have

jS CR.G/j 6 K.1C C0/
�
" ln

1

"
C e�

a
2Z
�
;
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and plotting this estimate in (2.6) leads to

jG.Zc/j 6 K.1C C0e
�C"Zc /

�
" ln

1

"
C e�

a
2Zc

�
;

for some constants K; C > 0 independent of " and C0. We can easily show a similar
estimate on G0.Zc/, up to an increase on K0. We deduce that if Z0, C0 are large enough
and " small enough, then

C0

2

�
" ln

1

"
C e�

a
2Zc

�
> jG.Zc/j C jG

0.Zc/j D C0

�
" ln

1

"
C e�

a
2Zc

�
;

which is a contradiction.
This completes the proof of (2.7). Going back to h".z/ D h.z/ C .F.Z/ C a/ C

"G.Z/, we deduce that

kh".z/ � h.z/ � .F.Z/C a/kL1. �zc ;zcCw0" ln 1" � /
! 0

when "! 0, and taking w0 large enough, by Lemma 2.4,ˇ̌̌
h"

�
zc C w0" ln

1

"

�
� h.zCc /

ˇ̌̌
6
ˇ̌̌
h
�
zc C w0" ln

1

"

�
� h.zCc /

ˇ̌̌
CK"2 ln

1

"
6 K" ln

1

"
:

Finally,

h0".z/ D h
0.z/C

1

"
F 0.Z/CG0.Z/;

leading to jh0".z/ �
1
"
F 0.Z/j 6 C a constant independent of ", and since if w0 is large

enough jG0.w0 ln 1
"
/j 6 K"1=2 and 1

"
jF 0.w0 ln 1

"
/j 6 K

"
"aw0 , we conclude the proof of

this lemma by ˇ̌̌
h0"

�
zc C w0" ln

1

"

�
� h0.zCc /

ˇ̌̌
6 K" ln

1

"
:

By standard Cauchy theory, at fixed zc and a, "! h" is a smooth function. We con-
clude this subsection with some estimates on @"h".

Lemma 2.8. For ˛ 2 �0; 1Œ , zc > 0, zc
1C˛

> a > ˛
1C˛

zc , there exist "0; C > 0 depend-
ing only on ˛, zc , w0 such that, if "0 > " > 0 and h" is the solution of (2.4) for these
parameters, then

"!
�
h"

�
zc C w0" ln

1

"

�
; @zh"

�
zc C w0" ln

1

"

��
2 C 1. �0; "0Œ ;R

2/;

with ˇ̌̌
@"

�
h"

�
zc C w0" ln

1

"

��ˇ̌̌
C

ˇ̌̌
@"

�
@zh"

�
zc C w0" ln

1

"

��ˇ̌̌
6 C

�
ln
1

"

�2
:

Furthermore, for z 2 �zc ; zc C w0" ln 1
"
� we have

j"@"h".z/j C
j"@z@"h".z/j

ln 1
"

6 Ce�
a
2 j
z�zc
" j:
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Proof. We recall that with Z D z�zc
"

, we have

h".z/ D h.z/C F.Z/C aC "G.Z; "/:

In the previous lemma, we did not write the dependency of G in " since we did not differ-
entiate with respect to it, but we do so here. We deduce that

"@"h" D �ZF
0.Z/C ".G �Z@ZG/C "

2@"G:

With the explicit formula for F and (2.7) we check that for z 2 �zc ; zc C w0" ln 1
"
� we

have
j�ZF 0.Z/C ".G �Z@ZG/j 6 Ke�

a
2 jZj;

where K > 0 depends only on ˛, zc , w0. Furthermore, from the proof of Lemma 2.7 we
know that G satisfies the equation

@2ZG C �@ZG C "�G D S CR.G/;

with � D zc
1C˛
� h.zCc / > 0, � D ˛

1C˛
� h0.zCc / > 0, hence

@2Z@"G C �@Z@"G C "�@"G D @"S C @".R.G// � �G:

We check that
j"@"S.Z/ � �Gj 6 K."C e�

a
2Z/

and by similar arguments to the proof of Lemma 2.7, we conclude that

j"@"G.Z/j 6 K."C e�
a
2Z/;

for some constant C > 0 depending only on ˛, zc , w0. Finally, we have

@"

�
h"

�
zc C w0" ln

1

"

��
D @"h"

�
zc C w0" ln

1

"

�
C w0@"

�
" ln

1

"

�
@zh"

�
zc C w0" ln

1

"

�
;

leading to ˇ̌̌
@"

�
h"

�
zc C w0" ln

1

"

��ˇ̌̌
6 K ln

1

"
:

Similarly,

@"

�
@zh"

�
zc C w0" ln

1

"

��
D @"@zh"

�
zc C w0" ln

1

"

�
C w0@"

�
" ln

1

"

�
@2zh"

�
zc C w0" ln

1

"

�
;

and since ˛
1C˛

h" C .
z
1C˛
� h"/@zh" C "@

2
zh" D 0, we have

@2zh"

�
zc C w0" ln

1

"

�
D
�1

"

� ˛

1C ˛
.h" � h/

�
zc C w0" ln

1

"

��
�
1

"

�zc C w0" ln 1
"

1C ˛
� h

�
zc C w0" ln

1

"

��
.@zh" � @zh/

�
zc C w0" ln

1

"

�
�
1

"
@zh"

�
zc C w0" ln

1

"

�
.h � h"/

�
zc C w0" ln

1

"

�
;
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hence, by Lemma 2.7, ˇ̌̌
@2zh"

�
zc C w0" ln

1

"

�ˇ̌̌
6 K ln

1

"
:

This concludes the proof of this lemma.

2.4.2. Estimates in Œzc �w0" ln 1
"
; zcŒ .

Lemma 2.9. For ˛ 2 �0; 1Œ , zc > 0, zc
1C˛

> a > ˛
1C˛

zc , there exists w0 > 0 depending on
˛; zc ; a such that h", the solution of (2.4), is well defined on Œzc � w0" ln 1

"
; zc Œ , satisfies


h".z/ � h.z/C 2a

1C e�a.
z�zc
" /





L1. Œzc�w0" ln 1" ;zc Œ /

! 0

and 


h0".z/C 2a2e�a.
z�zc
" /

".1C e�a.
z�zc
" //2





L1. Œzc�w0" ln 1" ;zc Œ /

6 C

for some constant C > 0 depending only on ˛, zc , a when "! 0, and alsoˇ̌̌
h"

�
zc � w0" ln

1

"

�
� h.z�c /

ˇ̌̌
C

ˇ̌̌
h0"

�
zc � w0" ln

1

"

�
� h0.z�c /

ˇ̌̌
6 C" ln

1

"
:

Proof. For z < zc , keeping the notation Z D z�zc
"

< 0, we decompose h", a solution of
(2.4) as

h".z/ D h.z/C .F.Z/ � a/C "G.Z/;

for the same function F as in the proof of Lemma 2.7, but another function G. We recall
that the function h is not continuous at zc , and since we consider here z < zc , it will
have a different limit for z � zc < 0 close to 0. We take G.0/ D 0 and G0.0/ D �h0.z�c /
so that we match the conditions at zc of h": h".zc/ D h.z�c / C F.0/ � a D

zc
1C˛

and

h0".zc/ D h
0.z�c /C

1
"
F 0.0/CG0.0/ D �a

2

2"
. As in the proof of Lemma 2.7, we check that

G satisfies the equation
O.G/C S D 0;

with

S.Z/ WD
1

"
F 0.Z/

� z

1C ˛
� h.z/C a

�
C

� ˛

1C ˛
� h0.z/

�
.F.Z/ � a/

C "h00.z/

and
O.G/ D G00.Z/C A1.Z/G

0.Z/C A2.Z/G.Z/ � "G.Z/G
0.Z/;

with
A1.Z/ WD

zc C "Z

1C ˛
� h.zc C "Z/ � .F.Z/ � a/

and
A2.Z/ WD �F

0.Z/C "
� ˛

1C ˛
� h0.zc C "Z/

�
:



Nonlinear enhanced dissipation in viscous Burgers-type equations 27

We now define
zG.Z/ D G.�Z/

satisfying the equation

zG00.Z/ � A1.�Z/ zG
0.Z/C A2.�Z/ zG.Z/C " zG.Z/ zG

0.Z/ D S.�Z/:

We therefore consider Z > 0 in the rest of the proof. Now, remark that

�A1.�Z/! �
� zc

1C ˛
� h.z�c /

�
> 0

and
A2.�Z/

"
!

� ˛

1C ˛
� h0.z�c /

�
> 0

if Z > w0 ln 1
"

for w0 large when "! 0. We therefore define � WD �. zc
1C˛
� h.z�c // > 0

and �D ˛
1C˛
� h0.z�c / > 0, and we can complete the proof in a similar fashion to Lemma

2.7.

Lemma 2.10. For ˛ 2 �0; 1Œ , zc > 0, zc
1C˛

> a > ˛
1C˛

zc , there exist "0; C > 0 depend-
ing only on a, zc , w0 such that, if "0 > " > 0 and h" is the solution of (2.4) for these
parameters, then

"!
�
h"

�
zc � w0" ln

1

"

�
; h0"

�
zc � w0" ln

1

"

��
2 C 1. �0; "0Œ ;R

2/

with ˇ̌̌
@"

�
h"

�
zc � w0" ln

1

"

��ˇ̌̌
C

ˇ̌̌
@"

�
h0"

�
zc � w0" ln

1

"

��ˇ̌̌
6 C

�
ln
1

"

�2
when "! 0. Furthermore, for z 2 Œzc � w0" ln 1

"
; zc Œ we have

j"@"h".z/j C
j"@"h".z/j

ln 1
"

6 Ce�
a
2 j
z�zc
" j:

The proof of this result is similar to the proof of Lemma 2.8 and we omit it.

2.5. Profile far from zc

2.5.1. Profile on the right of zc . We start with an a priori estimate on solutions to the
ODE problem.

Lemma 2.11. For any zd > 0, there exists K > 0 such that the solution to the problem8̂<̂
:

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0;

zd

1C ˛
> h".zd / > 0; h0".zd / < 0;
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for " > 0 small enough (depending on zd ; h".zd /; h0".zd /) is well defined on Œzd ;C1Œ
and satisfies

jh".z/j C zjh
0
".z/j 6

K

z˛

for any z > zd .

Proof. Define

u D
h0"
h"

so that h
00
"

h"
D u0 C u2 and h".z/ D h".zd /e

R z
zd
u.s/ ds . Then u.zd / D

h0".zd /

h".zd /
< 0 and

".u0 C u2/C
� z

1C ˛
� h"

�
uC

˛

1C ˛
D 0:

We write it as
u0 D �u2 �

1

"

�� z

1C ˛
� h"

�
uC

˛

1C ˛

�
:

First, we have u.zd / < 0, and we show that as long as u exists, we have

u.z/ < 0:

Indeed, if u.z/D 0 for the first time at some point z > zd , then u0.z/D �˛
.1C˛/"

< 0, which
is impossible. Using h".z/ D h".zd /e

R z
zd
u.s/ ds , this implies that h" is decreasing, and in

particular z
1C˛
� h".z/ > 0 for z > zd .

Also, for " > 0 small enough, if u.zd / > �1

2
p
"

say, then we always have u.z/ > �1

2
p
"
.

This is because if at some point u.z/ D �1

2
p
"
, then u0.z/ > 0, which is impossible. We

deduce that u is bounded, and therefore global.
Using the same idea, we can show that u.z/ 6 ��

z
for some small (but independent

of " if " is small enough) constant � > 0. In particular, h".z/z�=2 ! 0 when z ! C1.
Similarly, we can check that u.z/ > �1

�z
if � is small enough.

Now define
v.z/ D u.z/C

˛

z
I

then
v0.z/C

z

.1C ˛/"
v.z/ D

˛

z2
� u2 C

1

"
h".z/u.z/:

We have that ˇ̌̌ ˛
z2
� u2 C

1

"
h".z/u.z/

ˇ̌̌
6

K

"z1C
�
2

and therefore, by a comparison principle, on z > zd we have

jv.z/j 6
K

z2C
�
2

:

Using these estimates in the equation h0" D uh" completes the proof of the lemma.
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We recall that h is a solution of8<:
˛

1C ˛
hC

� z

1C ˛
� h

�
@zh D 0;

h0.z/ D �˙.zc ; a/jzj
�˛.1C oz!˙1.1//;

(2.8)

and is discontinuous at zc .

Lemma 2.12. The function h", the solution of (2.4), satisfies

k.1C jzj˛/.h".z/ � h.z//kL1. ŒzcCw0" ln 1" ;C1Œ /
! 0

when "! 0. Furthermore,

lim
z!C1

z˛h".z/ DW �";C.zc ; a/ > 0

is well defined, and
j�";C.zc ; a/ � �C.zc ; a/j ! 0

when "! 0. Finally, for fixed values of zc and a, the function "! �";C.zc ; a/ is smooth,
and

j@".�";C.zc ; a//j 6 K
�

ln
1

"

�2
for some constant K independent of " if " is small enough. Furthermore,ˇ̌̌

@"h".z/ �
@".�";C.zc ; a//

jzj˛

ˇ̌̌
6

K.ln 1
"
/2

.1C jzj/1C2˛

for jzj large enough (uniformly in ").

Note that this does not imply that limz˛h".z/D �C.zc ; a/when z!C1, but simply
that their difference goes to 0 when "! 0.

Proof of Lemma 2.12. We introduce first a generic problem that we will use to estimate
both h" and @"h".

We consider for now the problem

J1v C J2@zv C "@
2
zv D S (2.9)

for given functions J1, J2, S of z, and initial values of v at some point zd , and with J2
that does not cancel. We introduce the function A defined by A.zd / D 1 and

J1AC J2A
0
D 0;

that is,

A.z/ D exp
�
�

Z z

zd

J1

J2

�
> 0:
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Then, writing v D Au, we have

"@2zuC J2@zuC "
�
2
A0

A
@zuC

A00

A
u
�
D
S

A
:

To continue, we introduce B with B.zd / D 1 and

"B 0 D J2B;

that is,

B.z/ D exp
�
1

"

Z z

zd

J2

�
> 0:

We introduce for 
 > 0 the quantity

B
 .z/ WD
1

B.z/

Z z

zd

B.s/

s

ds;

a solution to the equation B0
 .z/ C
J2
"

B
 .z/ D
1
z


with B
 .zd / D 0. If there exists a
constant C0 > 0 independent of " such that 1

C0
> J2.z/

z
> C0, then by comparison there

exists K > 0 (depending only on C0 and 
 ) such that

B
 .z/ 6
K"

z
C1
: (2.10)

Continuing, we have

"@2zuC J2@zu D
"@z.@zuB/

B

and therefore

@z.@zuB/ D B
� S
"A
� 2@zu

A0

A
C
A00

A
u
�
:

Integrating between zd and z leads to

@zu D
@zu.zd /

B.z/
C

1

B.z/

Z z

zd

B
� S
"A
� 2@zu

A0

A
C
A00

A
u
�
: (2.11)

Step 1. Existence and properties of �";C.zc ; a/. We take zd D zc Cw0" ln 1
"

, and we recall
that, for " > 0 small enough, h" satisfies the equation

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0

and we have zd
1C˛

> h".zd / > 0, h0".zd / < 0 since h" solved (2.4). We decompose h" D
hC g with h a solution of (2.8), so that the equation satisfied by g is

"g00 C g0
� z

1C ˛
� h"

�
C g

� ˛

1C ˛
� h0

�
C "h00 D 0:
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This is equation (2.9) with J1 D ˛
1C˛
� h0, J2 D z

1C˛
� h" and S

"
D �h00. Note that for

z > zd , we have J2.z/ > 0. Now we have

J1

J2
D
˛ � .1C ˛/h0

z � .1C ˛/h"
D
˛

z
�
.1C ˛/.zh0 � h"/

z.z � .1C ˛/h"/
;

hence

A.z/ D exp
�
�

Z z

zd

J1

J2

�
D

� z
zd

��˛
exp

�
�

Z z

zd

.1C ˛/.sh0 � h"/

s.s � .1C ˛/h"/
ds

�
;

and with ˇ̌̌ .1C ˛/.sh0 � h"/
s.s � .1C ˛/h"/

ˇ̌̌
6
K

s2

for s > zd , we deduce that there exists K > 0 depending on zd , ˛ such that

1

K
6 z˛.jA.z/j C jzA0.z/j C jz2A00.z/j/ 6 K

for z > zd , and z˛A.z/ converges when z!C1 to a finite constant bounded uniformly
in ". With g D Au, we define N.z/ WD kukL1.Œzd ;z�/ C kzu

0kL1.Œzd ;z�/. We have, for
zd 6 s 6 z, ˇ̌̌

B
� S
"A
� 2@zu

A0

A
C
A00

A
u
�ˇ̌̌
.s/ 6

B.s/.1CN.z//

s2
;

and by (2.10) we deduce thatˇ̌̌̌
1

B.z/

Z z

zd

B
� S
"A
� 2@zu

A0

A
C
A00

A
u
�ˇ̌̌̌

6
K".1CN.z//

z3
:

Now we have

1

B.z/
D exp

�
�1

"

Z z

zd

� s

1C ˛
� h".s/

�
ds

�
6 exp

�
�K.z � zd /

2

"

�
:

Combining these estimates in (2.11) and the integral of (2.11), we deduce that

N.z/ 6 C."CN.zd //

for some constant C > 0 independent of " and for all z > zd . Furthermore,

u.C1/ D u.zd /C

Z C1
zd

@zu.zd /

B.s/
ds C

Z C1
zd

1

B.s/

Z s

zd

B
� S
"A
� 2@zu

A0

A
C
A00

A
u
�

is a finite quantity that satisfies ju.C1/j 6 K.ju.zd /j C j@zu.zd /j C "/, and

ju.z/ � u.C1/j 6
K"

z2
(2.12)
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for z > zd . By Lemma 2.7, we have jg.zd /j C jg0.zd /j 6 K" ln 1
"

and thus ju.zd /j C
j@zu.zd /j 6 K" ln 1

"
. Defining

�";C.zc ; a/ D �C.zc ; a/C u.C1/ lim
z!C1

.z˛A.z//;

we deduce that
lim

z!C1
z˛h".z/ D �";C.zc ; a/:

More precisely,

h".z/ D h.z/C A.z/u.z/

D
�";C.zc ; a/

z˛
C

�z˛A.z/ � limx!C1.x
˛A.x//

z˛

�
u.C1/

C

�
h.z/ �

�C.zc ; a/

z˛

�
C A.z/.u.z/ � u.C1//;

and with the explicit definition of A, we haveˇ̌̌z˛A.z/ � limx!C1.x
˛A.x//

z˛

ˇ̌̌
6

K

z1C2˛
;

and by Lemma 2.5 we have ˇ̌̌
h.z/ �

�C.zc ; a/

z˛

ˇ̌̌
6

K

z1C2˛
:

With (2.12), we conclude that for z > zd ,

jz˛h".z/ � �";C.zc ; a/j 6
K

z1C˛

and
j�";C.zc ; a/ � �C.zc ; a/j ! 0

when "! 0. Lemmas 2.5, 2.7 and

N.z/ 6 C."CN.zd // 6 K" ln
1

"

also imply that for z > zd ,

j@zh".z/j 6
K

z1C˛
;

as well as

j@2zh".z/j 6
K ln 1

"

z2C˛
:

This last estimate can be improved (we can remove the ln 1
"

) but it is not needed here; we
will only need "@"h" to be small and not @"h" itself.
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Step 2. Differentiation with respect to " at fixed zd . We consider here h" the solution to
the problem

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0

with h".zd /, @zh".zd / given satisfying zd
1C˛

> h".zd / > 0, h0".zd / < 0, and they are, with
zd , independent of ". We have as previously that for z > zd ,

jh".z/j C zj@zh".z/j 6
K

z˛
; j@2zh".z/j 6

K ln 1
"

z2C˛
: (2.13)

We introduce this new notation since we want to differentiate h" with respect to ", but its
dependency on " comes from the " in the equation but also from zc and the value of h"
here. For h", the dependency on " comes only from the " in front of @2zh" in the equation.
By standard

Cauchy theory. , "! h" is differentiable, and v D @"h" satisfies the problem8<:
� ˛

1C ˛
� @zh"

�
v C

� z

1C ˛
� h"

�
@zv C "@

2
zv D �@

2
zh";

v.zd / D v
0.zd / D 0:

This is equation (2.9) with J1 D ˛
1C˛
� @zh", J2 D z

1C˛
� h" and S

"
D
�1
"
@2zh". Following

a similar proof to Step 1, we check that, with h" D Au, we have that u.z/ converges to a
finite limit u.C1/, with ju.C1/j 6 K ln 1

"
, and that

ju.z/ � u.C1/j 6
K ln 1

"

z2

for z > zd . We also check, as in Step 1, that

jz˛v.z/ � k0j 6
K ln 1

"

z1C˛

and

j@zvj 6
K ln 1

"

z1C˛

for some k0 depending on " and K > 0.

Step 3. Differentiation with respect to zd . We consider here h" the solution to the problem

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0;

with h".zd / D a, @zh".zd / D b, where zd
1C˛

> a > 0, b < 0 are independent of zd and
verify j ˛

1C˛
aC .

zd
1C˛
� a/bj 6 K" ln 1

"
for some K > 0 independent of ". As previously,

estimate (2.13) holds. We want to compute v D @zd h". It is a solution of8<:
� ˛

1C ˛
� @zh"

�
v C

� z

1C ˛
� h"

�
@zv C "@

2
zv D 0;

v.zd / D �@zh".zd /; v0.zd / D �@
2
zh".zd /:
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We have �@zh".zd / D �b and since . ˛
1C˛

h" C .
z
1C˛
� h"/@zh" C "@

2
zh"/.zd / D 0, we

have
�@2zh".zd / D

1

"

� ˛

1C ˛
aC

� zd

1C ˛
� a

�
b
�
;

which is bounded by K ln 1
"

with K > 0 independent of ". As in the previous case, we
check that

jz˛v.z/ � k0j 6
K ln 1

"

z1C˛

for some k0; K > 0 and

j@zvj 6
K ln 1

"

z1C˛
:

Step 4. Differentiation with respect to h".zd / and @zh".zd /. We consider here h" the
solution to the problem

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0;

with h".zd / D a, @zh".zd / D b, where zd
1C˛

> a > 0, b < 0. Then, v D @ah" satisfies8<:
� ˛

1C ˛
� @zh"

�
v C

� z

1C ˛
� h"

�
@zv C "@

2
zv D 0;

v.zd / D 1; v0.zd / D 0:

This is similar to the previous steps, and we also check that @bh" can be estimated simi-
larly.

Step 5. Conclusion. The function h" is a solution to

˛

1C ˛
h" C

� z

1C ˛
� h"

�
@zh" C "@

2
zh" D 0;

with the initial condition at zd D zc C w0" ln 1
"

satisfying (by Lemmas 2.7 and 2.8)

jh".zd / � h.z
C
c /j C jh

0
".zd / � h

0.zCc /j 6 K" ln
1

"

and
j@"h".zd /j C j@"h

0
".zd /j 6 K

�
ln
1

"

�2
:

Therefore, @"h" can be written as the sum of the functions v of Steps 2 to 4, and since
j@"zd j 6 w0 ln 1

"
, this concludes the proof of this lemma.

2.5.2. Profile on the left of zc .

Lemma 2.13. The function h", the solution of (2.4), is well defined on ��1; zc �

w0"ln 1
"
� and satisfies

k.1C jzj˛/.h".z/ � h.z//kL1. ��1;zc�w0" ln 1" � /
! 0
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when "! 0. Furthermore,

lim
z!�1

z˛h".z/ DW �";�.zc ; a/ > 0

is well defined, and
j�";�.zc ; a/ � ��.zc ; a/j ! 0

when "! 0. Finally, for fixed values of zc and a, the function "! �";�.zc ; a/ is smooth,
and

j@".�";�.zc ; a//j 6 K
�

ln
1

"

�2
for a constant K > 0 independent of " if " is small enough. Furthermore,ˇ̌̌

@"h".z/ �
@".�";�.zc ; a//

jzj˛

ˇ̌̌
6

K.ln 1
"
/2

.1C jzj/1C2˛

for jzj large enough.

The proof is similar to that of Lemma 2.12 and we omit it.

2.6. End of the proof of Proposition 1.3

Take �C; �� > 0, ˛ 2 �0; 1Œ . By Lemma 2.6, we choose zc ; a > 0 such that

�C.zc ; a/ D �C; ��.zc ; a/ D ��:

We infer that for " small enough, we can take zc."/; a."/ > 0 such that

�";C.zc."/; a."// D �C; �";�.zc."/; a."// D ��;

with
jzc."/ � z� j C ja."/ � a� j ! 0

when "! 0, and that this choice is unique, and determines h". This is a consequence of
the implicit function theorem on the function

K."; zc ; a/ WD .�C;".zc ; a/ � �C; ��;".zc ; a/ � ��/:

Indeed, by Lemmas 2.6, 2.12 and 2.13, we have K.0; zc ; a/D 0 and the Jacobian at "D 0
is invertible. By Lemma 2.12 and 2.13 we have the estimates

j@"zc."/j C j@"a."/j 6 K
�

ln
1

"

�2
(2.14)

The other properties in Proposition 1.3 are a consequence of Lemmas 2.7, 2.9, 2.12 and
2.13.
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2.7. Properties of @"h"

We recall that the function h" is a solution h" of the previous subsection, with a particular
choice of zc."/, a."/ such that the limits at ˙1 of jzj˛h".z/ are �˙ respectively, quanti-
ties independent of ". The function h" depends on " by h" as above, but also through zc."/
and a."/.

Lemma 2.14. The function @"h" satisfies

j@"h".z/j 6
K.ln 1

"
/2

.1C jzj/1C2˛

for jz � zc."/j > 1 and a constant K independent of ". For z 2 Œzc."/ � 1; zc."/C 1� we
have

j"@"h".z/j 6 Ke�
a
2 j
z�zc ."/

" j:

Finally, @"h" 2 L1.R/ and Z
R
@"h" D 0:

Proof. By Lemma 2.12, we check that for z > zc."/C 1, we haveˇ̌̌
@"h".z/ �

@".�C;".zc."/; a."///

jzj˛

ˇ̌̌
6

K.ln 1
"
/2

.1C jzj/1C2˛

and

j@"@zh".z/j 6
K.ln 1

"
/2

.1C jzj/1C˛
;

but �C;".zc."/; a."// D �C, which is independent of ", hence @".�C;".zc."/; a."/// D 0.
Now, on Œzc."/; zc."/C 1�, the estimate is a consequence of Lemma 2.8. For z 6 zc."/

the proof is similar. The decay at infinity of @"h" implies in particular that it is in L1.R/.
Now, h" satisfies

˛

1C ˛
h" C

z

1C ˛
@zh" � h"@zh" C "@

2
zh" D 0;

and integrating between �x and x for some large x > 0 leads to

˛ � 1

1C ˛

Z x

�x

h" C
h z

1C ˛
h" �

1

2
h2" C @zh"

ix
�x
D 0:

Differentiating with respect to " leads to

˛ � 1

1C ˛

Z x

�x

@"h" C
h z

1C ˛
@"h" � @"h"h" C @z@"h"

ix
�x
D 0;

and going to the limit x !C1, we check with j@"h".z/j 6
K.ln 1" /

2

.1Cjzj/1C2˛
that

˛ � 1

1C ˛

Z
R
@"h" D 0:
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3. Stability of h"

This section is devoted to the proof of Theorem 1.4. For the viscous Burgers equation
@tu � @

2
xuC u@xu D 0 and ".t/ D t

˛�1
˛C1 , we introduce now the rescaling

y D
x � t

1
1C˛ zc

"
D t

2�˛
1C˛ .z � zc/

and the rescaled function

H.y; t/ D t
˛
1C˛ u

�
.zc C ".t/y/t

1
1C˛ ; t

�
:

This scale is the right one to understand the profile near the discontinuity point zc (y D 0
corresponds to z D zc). The previous scaling (in z), where the profile h" was constructed,
was

h.z; ".t// D t
˛
1C˛ u.zt

1
1C˛ ; t /;

and they are connected by

H.y; t/ D h.zc.t/C ".t/y; ".t//:

In particular, we define
H".y; t/ WD h".zc.t/C ".t/y/:

We recall that h" satisfies

˛

1C ˛
h" C

z

1C ˛
@zh" � h"@zh" C "@

2
zh" D 0;

therefore H" satisfies

˛

1C ˛
H" C

t
1�˛
1C˛ zc.t/C y

1C ˛
@yH" � t

1�˛
1C˛H"@yH" C t

1�˛
1C˛ @2yH" D 0;

that is,

t�
2˛
1C˛ .�@2yH" CH"@yH"/ �

˛

1C ˛
t�1H" � t

�1 .t
1�˛
1C˛ zc.t/C y/

1C ˛
@yH" D 0:

Now we have
@yH D t

2˛
1C˛ @xu; @2yH D t

3˛
1C˛ @2xu

and

@tH D t
˛
1C˛ @tuC

˛

1C ˛
t�1H C

t�1.˛y C t
1�˛
1C˛ zc/

1C ˛
@yH C @tzct

1�˛
1C˛ @yH I
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therefore, the equation on H (that is, the rescaled viscous Burgers equation in this new
scaling) is

@tH �
˛

1C ˛
t�1@y.yH/ �

t�1C
1�˛
1C˛ zc

1C ˛
@yH

� @tzct
1�˛
1C˛ @yH C t

� 2˛
1C˛ .�@2yH CH@yH/

D 0:

We now decompose H D H" C f . Then f satisfies the equation

@tf �
˛

1C ˛
t�1@y.yf /

C t�
2˛
1C˛

�
�@2yf C f @yH" C

�
H" �

zc

1C ˛

�
@yf C f @yf

�
� @tzct

1�˛
1C˛ @yf

C @tH" � @tzct
1�˛
1C˛ @yH" C

1 � ˛

1C ˛
t�1y@yH"

D 0:

We check that

S WD @tH" � @tzct
1�˛
1C˛ @yH" C

1 � ˛

1C ˛
t�1y@yH" D @t"@"h".zc C "y/:

Note that the problem takes the form

t
2˛
1C˛ @tf C @y

�
�@yf C

�˛"

1C ˛
yf C

�
H" �

zc

1C ˛

�
f C

f 2

2
� t@tzcf

�
C S D 0: (3.1)

From Lemma 2.14, S 2 L1.R/ and
R

R S D 0. We therefore write S D @y zS with

zS WD

Z y

�1

S:

However, the perturbation f can have a mass. To deal with it, we introduce an additional
term uM in the profile, and we will decompose f D uM C @xg, where all the mass is
in uM .

3.1. Definition and properties of uM

This subsection is devoted to the proof of the following result.

Lemma 3.1. Given M 2 R, a > 0, the problem8̂̂<̂
:̂
�@xuC FuC

u2

2
D 0;Z

R
u DM;
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with F.Z/ D a.e�aZ�1/

1Ce�aZ
admits a unique solution denoted uM , which satisfies for jM j

small enough (depending on a),

@x.F C uM / < 0:

Proof. We look at the equation8<:�@xuC FuC
u2

2
D 0;

u.0/ 2 R;

(3.2)

where F D a.e�aZ�1/

1Ce�aZ
was introduced in the proof of Lemma 2.7 (recall that a depends on

time). A classical computation shows that

u.x/ D
exp.

R x
0
F /

1
u.0/
�
1
2

R x
0

exp.
R y
0
F / dy

(with u.x/ D 0 if u.0/ D 0). If u.0/ ¤ 0, then u has the same sign as u.0/. Denoting
F D exp.

R x
0
F /, remark that F .0/ D 1, F is positive, even, because F is odd, andZ

R
F < C1:

In particular, Z
R

u D �2

Z
R
@x

�
ln
�

1

u.0/
�
1

2

Z x

0

F .y/ dy

��
D 2 ln

�
1C u.0/

4

R
R F

1 � u.0/
4

R
R F

�
:

This means that u.0/!
R

R u is a bijection from � �4R
R F

; 4R
R F

Œ to R. Given M 2 R, we

then define uM to be the solution of (3.2) with
R

R uM DM .
We haveF 0C a2

2
D

1
2
F 2 andF.0/D 0, hence by (3.2) we check thatF CuM satisfies

the equation

@x.F C uM / D
1

2
.F C uM /

2
�
a2

2
;

which implies that
.F C uM /.x/ D a tanh.cM � ax/

with cM defined by uM .0/ D a tanh.cM / (for jM j small enough, uM .0/ is small, hence
cM is well defined by this equation). We deduce that

@x.F C uM / D
�a2

cosh2.cM � ax/
< 0: (3.3)
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3.2. Decomposition of f and equation on the norm

We denote M D
R

R f and we decompose

f D uM C @yg;

with

g.y/ D

Z y

�1

f � uM :

First, remark that M is independent of time. This is because @th" D @t"@"h" and
by Lemma 2.14,

R
R @"h" D 0. Furthermore, uM depends on time but only through a.t/.

However, since
R

R uM DM , we deduce that
R

R @tuM D 0. We therefore write

@tuM D @ta@auM D @ta@yvM ;

where

vM D

Z y

�1

@auM :

We check easily, with the explicit dependency on a of uM , that vM also decays exponen-
tially fast at˙1 with similar bounds to uM .

To continue, take some �0 > 0 small and assume that at time T ,

k.1C jyj/3f .y; T /kL1.R/ C k@yf .�; T /kH1.R/ C

ˇ̌̌̌Z
R
f .y; T /

ˇ̌̌̌
6 �0:

Then, using the results of Section 3.1 to estimate uM , we have

jg.y/j 6
K�0

.1C jyj/2
;

hence kgkL2.R/.T /6K�0. Furthermore, @ygD f �uM and @2ygD @yf � @yuM , hence

kgkH2.R/.T / 6 K�0:

That is, taking �0 small enough, we can make g as small as we want in H 2.R/ at the
initial time T .

Now, replacing it in (3.1) and integrating the equation between �1 and y implies that

t
2˛
1C˛ @tg � @

2
yg �

˛"

1C ˛
y@yg C

�
H" �

zc

1C ˛
C uM

�
@yg

C
.@yg/

2

2
� t@tzc@yg

C zS �
˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

D 0: (3.4)
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We recall that ".t/ D t�
1�˛
1C˛ . We now take a weight W 2 C 2.R;RC�/ that we will make

precise later on. Taking the scalar product of the equation with gW leads to

t
2˛
1C˛ @t .kgk

2
L2.W /

/C 2k@ygk
2
L2.W /

C

Z
R
g2W

� ˛"

.1C ˛/
� @y.H" C uM / �

@yW

W

�
H" �

zc C ˛"y

1C ˛
C uM

��
C

Z
R
g2W

�
�t

2˛
1C˛

@tW

W
�
@2yW

W
C t@tzc

@yW

W

�
C

Z
R
gW

�
.@yg/

2
C 2

�
zS �

˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

��
D 0: (3.5)

Differentiating equation (3.4) leads to

t
2˛
1C˛ @t@yg � @

3
yg �

˛"

1C ˛
@yg �

˛"

1C ˛
y@2yg C

�
H" �

zc

1C ˛
C uM

�
@2yg

C @y.H" C uM /@yg C @y

� .@yg/2
2

�
C @y

�
zS �

˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

�
D 0:

Its scalar product with @ygW gives us the equality

t
2˛
1C˛ @t .k@ygk

2
L2.W /

/C 2k@2ygk
2
L2.W /

D

Z
R
.@yg/

2W
�
�˛"

.1C ˛/
C @y.H" C uM / �

@yW

W

�
H" �

zc C ˛"y

1C ˛
C uM

��
C

Z
R
.@yg/

2W
�
�t

2˛
1C˛

@tW

W
�
@2yW

W
C t@tzc

@yW

W

�
C

Z
R
W @y..@yg/

2/@yg

C

Z
R
2@ygW @y

�
zS �

˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

�
: (3.6)

We compute, supposing that W is constant outside a compact set, thatZ
R
W @y..@yg/

2/@yg D
�1

3

Z
R
@yW.@yg/

3:

Summing (3.5) and � times (3.6) for some � > 0 to be determined later reads

t
2˛
1C˛ @t .kgk

2
L2.W /

C �k@ygk
2
L2.W /

/

C

Z
R
g2WD1 C �

Z
R
.@yg/

2WD2

� k@ygk
2
L2.W /

kgkL1
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C 2

Z
R
gW

�
zS �

˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

�
C 2�

Z
R
@ygW @y

�
zS �

˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

�
C 2�k@2ygk

2
L2.W /

�
1

3

Z
R
@yW.@yg/

3

6 0; (3.7)

with

D1 WD
˛"

.1C ˛/
� @y.H" C uM / �

@yW

W

�
H" �

zc C ˛"y

1C ˛
C uM

�
� t

2˛
1C˛

@tW

W
�
@2yW

W
C t@tzc

@yW

W

and

D2 WD
2

�
C
�˛"

.1C ˛/
C @y.H" C uM / �

@yW

W

�
H" �

zc C ˛"y

1C ˛
C uM

�
� t

2˛
1C˛

@tW

W
�
@2yW

W
C t@tzc

@yW

W
:

3.3. Estimates ofD1 andD2 and choice ofW

In this subsection we choose the values of � andW so thatD1 andD2 are strictly positive,
and satisfy some good estimates.

3.3.1. Estimates for y > 0. The goal of this subsection is to show that for y > 0 we have

D1.y/ >
"˛

1C ˛
C Ce�

a
2 jyj and D2.y/ > 1

for some constant C > 0 independent of ". We recall that for y > 0,

H".y/ D h".zc C "y/ D h0.zc C "y/C F.y/C aC "G.y/;

hence

D1 D "
� ˛

.1C ˛/
� h00.zc C "y/

�
� @y.F C uM / � "@yG

�
@yW

W

�
h0.zc C "y/ �

zc

1C ˛
C F.y/C a �

˛"y

1C ˛
C uM

�
� t

2˛
1C˛

@tW

W
�
@2yW

W
C t@tzc

@yW

W
:

In this region, we choose W D 1. Then

D1 D "
� ˛

.1C ˛/
� h00.zc C "y/

�
� @y.F C uM / � "@yG:
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We recall that �h00.zc C "y/ > 0, and from (3.3) we have

�@y.F C uM / D
a2

cosh2.cM � ax/
:

Finally, from (2.7) we have

"j@yGj 6 C0

�
"2 ln

1

"
C "e�

a
2Z
�
;

which implies that, for t > T with T > 0 large enough and jM j small enough (so that cM
is close to 0), we have �@y.F C uM / > Ce�

a
2 jyj for some C > 0 and thus

D1.y/ >
"˛

1C ˛
C Ce�

a
2 jyj:

Now we have
D2.y/ D

2

�
C
�˛"

.1C ˛/
C @y.H" C uM /;

and since j@y.H" C uM /j 6 a2, taking � small enough (depending only on a) and t > T

with T large enough leads to
D2.y/ > 1:

3.3.2. Estimates for y < 0. The goal of this subsection is to show that for y < 0 and
fixing a well-chosen weight W we have

D1.y/ >
˛"

4.1C ˛/
and D2.y/ > 1:

For y < 0, we recall that

H".y/ D h".zc C "y/ D h0.zc C "y/C F.y/ � aC "G.y/;

hence

D1 D "
� ˛

.1C ˛/
� h00.zc C "y/

�
� @y.F C uM / � "@yG

�
@yW

W

�
h0.zc C "y/ �

zc

1C ˛
C F.y/ � a �

˛"y

1C ˛
C uM

�
� t

2˛
1C˛

@tW

W
�
@2yW

W
C t@tzc

@yW

W
:

Let us estimate the coefficient in the factor of @yW
W

in the second line. For y < 0, we have
�
˛"y
1C˛

> 0, h0.zc C "y/ � zc
1C˛

> C0 a universal constant and

jF.y/ � aC uM j 6 Ke�
a
2 jyj

if jM j is small enough. Therefore, there exists y0 independent of time such that

h0.zc C "y/ �
zc

1C ˛
C F.y/ � a �

˛"y

1C ˛
C uM >

C0

2
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for y 6 y0, and we choose y0 to be the largest value in R� such that this holds. We then
define W 2 C 2 by W.y/ D 1 for y 2 Œy0; 0� and on ��1; y0� ,

@yW

W
D �w.y/";

where w is a C 2 function that satisfies w.y/ D C > 0 if y 2 Œ�
"�1; y0 � 1� for some
C; 
 > 0 that will be determined later on, and w.y/ D 0 if y 6 �.
 C 1/"�1, with jwj C
jw0j 6 2C everywhere, and jw0j 6 2C" if y 6 y0 � 1. Note in particular that W is then
constant for y 6 �.
 C 1/"�1, and that this constant is uniform in time (but depends on
C and 
 ). Indeed, for y 6 y0 we have

W.y/ D exp
�
�"

Z y

y0

w

�
:

This also shows that for y 6 y0 � 1, we haveˇ̌̌
�t

2˛
1C˛

@tW

W
�
@2yW

W
C t@tzc

@yW

W

ˇ̌̌
6 K"2:

We choose 
 such that for y 6 �
"�1 we have

˛

.1C ˛/
� h00.zc C "y/ >

˛

2.1C ˛/
:

This is possible thanks to Lemma 2.5. For y 6 �
"�1, we have

�
@yW

W

�
h0.zc C "y/ �

zc

1C ˛
C F.y/ � a �

˛"y

1C ˛
C uM

�
> 0;

and therefore

D1 >
"˛

2.1C ˛/
� @y.F C uM / � "@yG >

˛"

4.1C ˛/

if 
 is taken large enough (depending only on ˛, �). Now, for y 2 Œ�
"�1; y0 � 1�, we
have

�
@yW

W

�
h0.zc C "y/ �

zc

1C ˛
C F.y/ � a �

˛"y

1C ˛
C uM

�
>
CC0

2
"I

therefore, if we take C large enough we check that

D1 >
˛"

4.1C ˛/

there as well. Now, for y 2 Œy0 � 1; 0�, we have

D1 > �@y.F C uM / �K" > Ke�ajyj > 0

if T is large enough.
For D2, since j @yW

W
j 6 2C", we check that taking � large enough and t > T with T

large enough, we have D2.y/ > 1.



Nonlinear enhanced dissipation in viscous Burgers-type equations 45

3.3.3. Summary. With the above choices for W and �, we have

D1 >
˛"

4.1C ˛/
CKe�

a
2 jyj

for some K > 0 independent of " and

D2 > 1:

Note that in the case y > 0, we could not have chosen a similar weight W , because D1
contains a term y

@yW

W
. For y < 0, @yW

W
< 0, this is a positive quantity, but for y > 0, this

would pose an issue.

3.4. Estimates on the source terms

We focus here on estimates on

zS �
˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

with zS D
R y
�1

@t"@"h".zc C "x/ dx. We have

t@tzc D t@t"@"zc D
�1C ˛

1C ˛
"@"zc

and @ta D �1C˛1C˛
t�1"@"a, and we recall from (2.14) that j@"zc j C j@"aj 6 K.ln 1

"
/2. By

the estimates on uM from Section 3.1, we deduce easily thatˇ̌̌
�

˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

ˇ̌̌
C

ˇ̌̌
@y

�
�

˛"

1C ˛
yuM � t@tzcuM C t

2˛
1C˛ @tavM

�ˇ̌̌
6 K"

�
ln
1

"

�2
e�

a
2 jyj

if jM j is small enough. Concerning zS , we have j@t"j 6 Kt�1", and using Lemma 2.14,
we check that ˇ̌̌̌Z y

�1

"@"h".zc C "x/ dx

ˇ̌̌̌
6

K".ln 1
"
/2

.1C jyj/2˛
CKe�2ajyj;

and if ˛ > 1
4

(which is needed to get enough decay in y), zS 2 L2.R/ with

k zSkL2.R/ 6
K

t
:

We check also, with similar arguments, that @y zS 2 L2.R/ and

k@y zSkL2.R/ 6
K

t
:



T. E. Ghoul, N. Masmoudi, and E. Pacherie 46

3.5. End of the proof of Theorem 1.4

3.5.1. Estimates on kgk2
L2.W /

C �k@ygk
2

L2.W /
. By Cauchy–Schwarz and the esti-

mates on D1 and D2 from Section 3.3, for t large enough, equation (3.7) implies the
inequality

t
2˛
1C˛ @t .kgk

2
L2.W /

C �k@ygk
2
L2.W /

/

C

Z
R
g2W

� ˛"

4.1C ˛/
CKe�2ajyj

�
C .� � kgkL1/k@ygk

2
L2.W /

C 2

Z
R
gW

�
zS �

˛"

1C ˛
yuM � t@tzcuM

�
� 2�k@ygkL2.W /




@y� zS � ˛"

1C ˛
yuM � t@tzcuM

�



L2.W /

C 2�k@2ygk
2
L2.W /

�
1

3

Z
R
@yW.@yg/

3

6 0:

By the computations of Section 3.4, we have by Cauchy–Schwarz that, for ˛ > 1
4

,ˇ̌̌̌Z
R
gW

�
zS �

˛"

1C ˛
yuM � t@tzcuM

�ˇ̌̌̌
6 K

Z
R
jgjW

�
"
�

ln
1

"

�2
e�

a
2 jyj C

t�1

.1C jyj/2˛

�
6 K"

�
ln
1

"

�2sZ
R
g2We�

a
2 jyj C t�1kgkL2.W /:

This implies thatZ
R
g2W

� ˛"

4.1C ˛/
CKe�2ajyj

�
�

ˇ̌̌̌Z
R
gW

�
zS �

˛"

1C ˛
yuM � t@tzcuM

�ˇ̌̌̌
>

˛"

8.1C ˛/
kgk2

L2.W /
�Kt�2"�1

if ".t/ is small enough. We also check that


@y� zS � ˛"

1C ˛
yuM � t@tzcuM

�



L2.W /

6 K"
�

ln
1

"

�2
;

hence

�k@ygk
2
L2.W /

� 2�k@ygkL2.W /




@y� zS � ˛"

1C ˛
yuM � t@tzcuM

�



L2.W /

>
�

2
k@ygk

2
L2.W /

�K"2
�

ln
1

"

�4
:
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Furthermore, by the Gagliardo-Nirenberg inequality, sinceW is bounded above and below
by constants independent of time, we have

kgkL1 6 zKkgk1=2
L2.R/

k@ygk
1=2

L2.R/
6 Kkgk

1=2

L2.W /
k@ygk

1=2

L2.W /
:

To continue,ˇ̌̌̌Z
R
@yW.@yg/

3

ˇ̌̌̌
6 2C"

Z
R
W.@yg/

3 6 2C"k@ygk
2
L2.W /

k@ygkL1.R/

and
k@ygkL1.R/ 6 Kk@ygk

1=2

L2.W /
k@2ygk

1=2

L2.W /
:

We deduce that

2�k@2ygk
2
L2.W /

�
1

3

ˇ̌̌̌Z
R
@yW.@yg/

3

ˇ̌̌̌
> 2�k@2ygk

2
L2.W /

� C"k@ygk
5=2

L2.W /
k@2ygk

1=2

L2.W /

> �K"4=3k@ygk10=3L2.W /
:

Combining these estimates leads to

t
2˛
1C˛ @t .kgk

2
L2.W /

C �k@ygk
2
L2.W /

/

C
˛"

8.1C ˛/
.kgk2

L2.W /
C �k@ygk

2
L2.W /

/ �Kk@ygk
5=2

L2.W /
kgk

1=2

L2.W /

�K"2
�

ln
1

"

�4
�K"4=3k@ygk

10=3

L2.W /

6 0:

With ".t/ D t�
1�˛
1C˛ , dividing by t

2˛
1C˛ gives us the estimate

@t .kgk
2
L2.W /

C �k@ygk
2
L2.W /

/

C
˛t�1

8.1C ˛/
.kgk2

L2.W /
C �k@ygk

2
L2.W /

/

�Kt�
2˛
1C˛ k@ygk

5=2

L2.W /
kgk

1=2

L2.W /
�Kt

�4�2˛
3.1C˛/ k@ygk

10=3

L2.W /

�Kt�
2
1C˛ .ln t /4

6 0;

and since �4�2˛
3.1C˛/

< �1 and � 2
1C˛

< �1, we deduce that

@t
�
t
� ˛
8.1C˛/ .kgk2

L2.W /
C �k@ygk

2
L2.W /

/
�

6 0:

Therefore, if at time T large enough we take �0 small enough (depending on T ), then for
t > T ,

kgk2
L2.W /

C �k@ygk
2
L2.W /

6 Kt
� ˛
8.1C˛/
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for some K > 0 large. We check also, with similar computations, that for some � > 0 we
have

kgk2
L2.W /

C �k@ygk
2
L2.W /

C �k@2ygk
2
L2.W /

6 Kt
� ˛
8.1C˛/ :

This can be done by differentiating equation (3.4) twice and taking its scalar product with
@2ygW , and adding it to (3.7).

3.5.2. Returning to the original scaling. Since g D f � uM , we have with ı D ˛
8.1C˛/

that
kf � uMk

2
L2.R/ 6 Kk@ygk

2
L2.W /

6 Kt�ı

and
kf � uMk

2
L1.R/ 6 Kk@ygk

2
H1.W /

6 Kt�ı :

We recall that with u solving the viscous Burgers equation, we wrote

H.y; t/ D t
˛
1C˛ u..zc C ".t/y/t

1
1C˛ ; t /

and
H.y; t/ D H".t/.y/C uM .y/C .f � uM /.y/:

Therefore,

t ˛
1C˛ u.x; t/ � .H".t/ C uM /

�
t
1�˛
1C˛ .xt�

1
1C˛ � zc.t//

�


L1.R/

D ot!C1.1/;

and
H".t/

�
t
1�˛
1C˛ .xt�

1
1C˛ � zc.t//

�
D h".t/.t

� 1
1C˛ x/:

This completes the proof of Theorem 1.4.

3.6. Proof of Proposition 1.5.

We consider here the equation

@tu � @
2
xuC @x

�u2
2
C J.u/

�
D 0:

Making the same change of variable as for the proof of Theorem 1.4, the only change in
equation (3.4) is that we add the term

EJ WD t
2˛
1C˛ J.t�

˛
1C˛ .H" C uM C @yg//:

We recall that jJ.u/j 6 Kjuj3. The scalar product of EJ with gW can be controlled byˇ̌̌̌Z
R
EJgW

ˇ̌̌̌
6 Kt�

˛
1C˛

Z
R
jH" C uM C @ygj

3
jgjW

6 Kt�
˛
1C˛ kgkL1.1C k@ygkL1/

�
k@ygk

2
L2.W /

C

Z
R
W.H" C uM /

2

�
:
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Since H".y/ D h".zc C "y/, we check that if ˛ > 1
2

we haveZ
R
W.H" C uM /

2 6 K".t/�1;

hence ˇ̌̌̌Z
R
EJgW

ˇ̌̌̌
6 Kt�

˛
1C˛ kgkL1.1C k@ygkL1/.k@ygk

2
L2.W /

CKt
1�˛
1C˛ /;

and to consider it as an error term to conclude as in Section 3.5, we need t�
2˛
1C˛

R
REJgW

to decay in time strictly faster than t�1�ı for ı > 0 small provided that kgk2
H2.R/

6Kt�ı .
This is the case if 1�4˛

1C˛
< �1, that is, ˛ > 2

3
.

We can check similarly that we can treat
R

R @yEJ @ygW and
R

R @
2
yEJ @

2
ygW similarly.

For the latter, we use the fact that we also control �k@3ygk
2
L2.W /

.

A. Proof of Proposition 1.1

Proof. We recall that the solution of the heat equation is

f .x; t/ D
1
p
4�t

Z
R
f0.y/e

�
.x�y/2

4t dy:

We compute

t˛=2f .
p
tz; t/ D

t˛=2
p
4�

Z
R
f0.y
p
t /e�.y�z/

2=4 dy:

Take any ˇ 2 �˛
2
; 1
2
Œ . Then

t˛=2
ˇ̌̌̌Z
jyj6t�ˇ

f0.y
p
t /e�.y�z/

2=4 dy

ˇ̌̌̌
6 Kt

˛
2�ˇ ! 0

when t ! C1. Furthermore, for jyj > t�ˇ , we have jyj
p
t > t

1
2�ˇ ! C1 when t !

C1, hence
t˛=2f0.y

p
t /!

��

jyj˛

when t !C1. We deduce thatˇ̌̌̌
t˛=2f .

p
tz; t/C

�
p
4�

Z
jyj>t�ˇ

1

jyj˛
e�.y�z/

2=4 dy

ˇ̌̌̌
D ot!C1.1/

and since ˛ < 1, jyj�˛ is integrable near 0, which concludes the proof.
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