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Polynomial growth and property RDp for étale groupoids
with applications to K -theory

Are Austad, Eduard Ortega, and Mathias Palmstrøm

Abstract. We investigate property RDp for étale groupoids and apply it to the computation of
the K-theory of reduced groupoid Lp-operator algebras. In particular, under the assumption of
polynomial growth, we show that the K-theory groups for a reduced groupoid Lp-operator algebra
are independent of p 2 .1;1/. We apply the results to coarse groupoids and graph groupoids.

1. Introduction

Computing K-theory is a central problem in the study of operator algebras. For C �-
algebras one of the most powerful tools is the Baum–Connes assembly map

�2WK
top.�/! K�.C

�
r .�//;

where K top.�/ is the K-theory of the classifying space for proper actions of � and
K�.C

�
r .�// is the K-theory of the reduced group C �-algebra. Groups for which the map

�2 is an isomorphism are said to satisfy the Baum–Connes conjecture, of which groups
with the Haagerup property and Gromov hyperbolic groups are among the most impor-
tant examples. See [18] and references therein for a nice survey on the Baum–Connes
conjecture. The assembly map has been extended from groups to actions of groups on
C �-algebras (Baum–Connes assembly map with coefficients) [3], to groupoids [47] and
for metric embeddings into Hilbert spaces [51]. But while the Baum–Connes conjecture
for groups is still open, there are known counterexamples in the groupoid case [20]. For
Banach algebras there exists also a Baum–Connes assembly map due to Lafforgue

�AWK
top.�/! K�.A.�//;

where A.�/ is any Banach algebra that is an unconditional completion of Cc.�/, for
example, L1.�/ [30]. This map was shown to be an isomorphism when the group �
belongs to a large class C 0, called the Lafforgue class, which includes hyperbolic groups
and semi-simple real Lie groups. The assembly map for unconditional completions of
groupoids has been also studied by Paravicini [37]. There is then the question of when the
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K-groups of C �r .�/ and A.�/ are isomorphic. Lafforgue proved in [29] that for discrete
groups satisfying the property of rapid decay, which we will denote by property RD, there
exists an unconditional completion of Cc.�/ that is contained in C �r .�/ and stable under
holomorphic functional calculus. Then, the result of Connes [12, Appendix C, Proposi-
tion 3] shows that their K-theories are isomorphic. Property RD for discrete groups was
first established for free groups by Haagerup in [19] and properly introduced and studied
by Jolissaint in [27], who verified it for groups with polynomial growth and hyperbolic
groups. See [5] for a nice exposition about the RD property for discrete groups. The rapid
decay property for actions of locally compact groups acting on Lp-spaces was introduced
by Liao and Yu in [31] and for étale groupoids by Hou in [22]. Properties similar to RD has
also been studied in the case of reduced crossed products of discrete groups by Christensen
in [10], Chen and Wei in [8], and Ji and Schweitzer in [24].

Recently, the class of Banach algebras of Lp-operator algebras has attracted a lot of
attention [9, 11, 16, 40, 52]. These are Banach algebras which admit an isometric repre-
sentation on an Lp-space, and therefore generalize C �-algebras to non-selfadjoint closed
subalgebras of bounded operators on Lp-spaces. Analogously to C �r .�/ one can define
the reduced group Lp-operator algebra F p

�
.�/ for a discrete group � , as the Banach sub-

algebra of B.`p.�// generated by the image of the left regular representation of � , so in
particular, C �r .�/ D F

2
�
.�/.

In order to compute the K-groups of F p
�
.�/, in [31] it was announced that Kasparov

and Yu had defined the Lp version of the Baum–Connes assembly map, for p 2 Œ1;1/,
and it was proved that for groups in the Lafforgue class satisfying property RDp , it holds
that K�.F

p

�
.�// is independent of p 2 Œ1;1/. In particular, they are all isomorphic to

K�.C
�
r .�// and consequently isomorphic to K top.�/. The results of Liao and Yu hinted

at the possibility that the K-theory of Lp-operator algebras is independent of p. This was
previously pointed out by Phillips when he computed theK-theory of the Lp-analogue of
the Cuntz algebras and the UHF algebras [40]. In this paper, we aim to prove an analogous
result of Liao and Yu [31, Theorem 1.5] but for theLp-operator algebra F p

�
.G / associated

to an étale groupoid G . That is, we will show that for certain classes of étale groupoids the
groups K�.F

p

�
.G // are independent of p.

The added complexity of multiple units and general lack of symmetry in the groupoid
setting forces us to attack the problem differently from Liao and Yu. Our strategy is to
consider property RD for étale groupoids, with respect to a length function l , defined by
Hou [22, Definition 3.2] and extend it to Lp-operator algebras by defining property RDp .
For p; q 2 .1;1/ such that 1

p
C

1
q
D 1, we show that whenever a groupoid G satisfies

properties RDp and RDq we can construct a Fréchet subalgebra S lp.G / of both F p
�
.G / and

F
q

�
.G / which is stable under holomorphic functional calculus. This allows us to prove our

first main result.
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Theorem A (cf. Theorem 4.6). Let G be an étale groupoid endowed with a continuous
length function for which it has property RDp and RDq , where p; q 2 .1;1/ are Hölder
conjugate. Then

K�.F
p

�
.G // Š K�.S

l
p.G // Š K�.F

q

�
.G //:

Of special interest when studying property RDp are groupoids of polynomial growth,
which we treat in Section 3. It turns out that groupoids of polynomial growth have property
RDp for all p 2 Œ1;1/, which leads us to our second main result of the paper.

Theorem B (cf. Theorem 4.7). Let G be an étale groupoid endowed with a continuous
length function for which it has polynomial growth. Then the groups K�.F

p

�
.G //, for

p 2 .1;1/, are all isomorphic.

Polynomial growth of an étale groupoid can sometimes be read off from an analo-
gous property in the setting the groupoid arises. This is in particular the case for a coarse
groupoid associated to a uniformly locally finite extended metric space .X; d/. In this
case, polynomial growth of the extended metric space will imply polynomial growth of
the coarse groupoid. Applying Theorem 4.7 in this case, we prove the following.

Theorem C (cf. Corollary 5.9). Let .X; d/ be a uniformly locally finite extended metric
space. Denote by B.x; r/ the closed r-ball with center x, and let Bpu .X; d/ denote the
uniform Lp-Roe algebra of .X; d/. If there is a polynomial f such that jB.x; r/j � f .r/
for all x 2 X and all r � 0, then the K-theory groups K�.B

p
u .X; d//, for � D 0; 1 are

independent of p 2 .1;1/.

Another relevant example of étale groupoids are those arising from directed graphs
[28]. Graph groupoids produce nice classes of algebras which includes the Toeplitz alge-
bra, Cuntz–Krieger algebras and the algebra of continuous functions on the quantum lens
space [21]. We give a combinatorial condition on the graph that exactly determines when
the graph groupoid has polynomial growth (Proposition 5.12).

The paper is structured as follows. In Section 2, we recall basic results on K-theory
for Fréchet algebras, étale groupoids, and reduced groupoid Lp-operator algebras. We
then define property RDp and polynomial growth for étale groupoids and derive some
basic results and permanence properties concerning these in Section 3. In Section 4, we
apply property RDp and polynomial growth to derive K-theoretic results. This is done
by constructing spectral invariant dense Fréchet subalgebras of the reduced groupoid Lp-
operator algebras. In Section 5, we apply the results of Section 4 to specific examples.
Of note are the reduced Lp-operator algebras associated to coarse groupoids of uniformly
locally finite coarse spaces and to groupoids associated to finite directed graphs. Lastly, in
Appendix A, we indicate how to extend the main results to the setting of 2-cocycle twisted
reduced groupoid Lp-operator algebras.
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2. Preliminaries

2.1. K -theory for Fréchet algebras

A Fréchet space is a locally convex space which satisfies the following three conditions:

• it is a Hausdorff space;

• its topology is induced by a countable family of semi-norms ¹k�kkºk2N0
, where N0 D

¹0º [N;

• it is complete with respect to the family of semi-norms ¹k�kkºk2N0
.

In a Fréchet space, a sequence ¹fnºn2N converges to f if and only if fn converges to f
with respect to each semi-norm k�kk , k 2 N0. We can, and will, always assume that the
countable family of semi-norms is increasing. Moreover, we shall only consider Fréchet
spaces arising from a countable collection of norms.

By a Fréchet algebra, we mean an associative C-algebra which is also a Fréchet space
and such that the multiplication is jointly continuous. Since we are assuming that the
countable family of norms ¹k�knºn2N0 is an increasing family, the multiplication is jointly
continuous if and only if for each n 2N0 there exist Cn > 0 andm� n, such that kabkn �
Cnkakmkbkm, for all a; b 2 A. In what follows, we shall define the K-groups associated
to Fréchet algebras whose underlying Fréchet space arises from a countable family of
norms. The definition we shall employ is [39, Definition 7.1], wherein Phillips defines
the K-groups for Fréchet algebras arising from a countable family of sub-multiplicative
semi-norms. However, [39, Definition 7.1] makes sense in our case as well.

To be able to state this definition, we need some preparations. Let A be a Fréchet alge-
bra whose Fréchet topology is induced by a countable family of norms ¹k�kkºk2N . If A is
not unital, one may adjoin a unit in the same manner as one does for a Banach algebra to
obtain a unital Fréchet algebra zA D C ˚A, whose topology is induced by the count-
able family of norms ¹k�kk;�ºn2N , where k.�; a/kk;� WD j�j C kakk , for .�; a/ 2 zA.
Also, for any n 2 N, the matrix algebra Mn.A/ is naturally a Fréchet algebra via the
countable family of norms ¹k�kk;nºk2N0

, given by kakk;n WD
Pn
i;jD1kai;j kk . Using the

embeddings a 7! diag.a; 0/, we define M1.A/ as the algebraic direct limit of the matrix
algebras Mn.A/.

Definition 2.1. Let A be a unital Fréchet algebra. We define K0.A/ as the Grothendieck
group of the semigroup of algebraic equivalence classes of idempotents inM1.A/. Using
the embeddings u 7! diag.u; 1/, we define K1.A/ D lim

�!
GLn.A/=GLn.A/0, where the

GLn.A/ are the invertible matrices in the Fréchet algebra Mn.A/ endowed with the
induced topology, and GLn.A/0 is the normal subgroup given by the path component of
the identity. If A is not unital, K�.A/ is defined to be the kernel of the naturally induced
map from K�. zA/ to K�.C/.

When A is a Banach algebra, the above defines its usual K-groups. The following
lemma is a special case of [44, Lemma 1.2]. Recall that a Fréchet subalgebra A of a
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Banach algebra A is spectral invariant if the invertible elements of zA are precisely those
elements of zA which are invertible in zA.

Lemma 2.2. Suppose that A is a subalgebra of a Banach algebra A, and that under a
possibly finer topology than the one inherited by A, A is a Fréchet algebra. Then A is
closed under holomorphic functional calculus in A if and only if A is spectral invariant
in A.

The proof of [39, Corollary 7.9] together with Lemma 2.2 and [12, Chapter 3, Appen-
dix C, Proposition 2 and 3] give the next lemma.

Lemma 2.3. Let A be a subalgebra of a Banach algebra A, and suppose A is a Fréchet
algebra under a topology � which is finer than the one inherited from A. If A is dense and
spectral invariant in A, then the inclusion .A; �/ ,! A induces isomorphisms inK-theory
K�.A/ Š K�.A/, � D 0; 1.

Proof. For K0, since A is a dense spectral invariant subalgebra of A, Lemma 2.2 and
[12, Chapter 3, Appendix C, Proposition 3 a)] imply together that K0.A/ Š K0.A/.

Lemma 2.2 together with [12, Chapter 3, Appendix C, Proposition 2] gives thatMn.A/

is spectral invariant in Mn.A/, for every n 2 N. Thus, GLn. zA/ D GLn. zA/\Mn. zA/. By
GLn. zA/, we shall mean the subgroup GLn. zA/ � GLn. zA/ with the induced topology,
whilst by GLn. zA; �/, we shall mean the same group but with the topology induced from
Mn. zA; �/. To see the isomorphism for K1, we shall show that GLn. zA; �/0 D GLn. zA/0,
for each n 2 N. We shall argue similarly to the proof of [39, Corollary 7.9]. Any path
of invertibles in Mn. zA/ that is continuous in the Fréchet topology is also a continuous
path of invertibles in the induced topology. Thus, GLn. zA; �/0 � GLn. zA/0. Conversely,
assume we are given a path of invertibles that is continuous in the induced topology.
By compactness, we may cover the path by a finite number of balls whose radius is so
small that the elements on any straight line segment joining two of its points are all in
GLn. zA/. Since the path is contained in GLn. QA/DMn. zA/\GLn. zA/, we may find piece-
wise linear paths gluing together to give a path in GLn. zA/, continuous in the Fréchet
topology, with same end and start point as the original path. This means that GLn. zA/0 �
GLn. zA; �/0, and so GLn. zA; �/0 D GLn. zA/. Thus, for each n 2 N,

GLn. zA/=GLn. zA/0 D GLn. zA; �/=GLn. zA; �/0:

This, together with [12, Chapter 3, Appendix C, Proposition 3 b)], gives us that

K1. zA/ D lim
�!

GLn. zA; �/=GLn. zA; �/0 D lim
�!

GLn. zA/=GLn. zA/0 Š K1. zA/;

and so by definition, K1.A/ Š K1.A/.

For information regardingK-theory for Banach algebras, we refer the reader to Black-
adar’s book [4]. See also [39] for the so called representable K-theory defined for locally
multiplicatively convex Fréchet algebras.
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2.2. Étale groupoids

A groupoid is a set G equipped with a partially defined multiplication (composition)
G .2/ ! G , .x; y/ 7! xy, where G .2/ � G � G is the set of composable pairs, and with an
inverse map G ! G , x 7! x�1, such that the following three axioms are satisfied:

(1) if .x; y/; .y; z/ 2 G .2/, then .xy; z/; .x; yz/ 2 G .2/ and .xy/z D x.yz/;

(2) .x�1/�1 D x, for all x 2 G ;

(3) .x; x�1/ 2 G .2/, for all x 2 G , and when .x; y/ 2 G .2/, we have x�1.xy/D y and
.xy/y�1 D x.

The set G .0/ WD ¹xx�1 W x 2 G º is called the unit space of the groupoid G , and the
maps r WG ! G , r.x/ D xx�1 and sWG ! G , x 7! x�1x are called the range and source
maps respectively. We have that .x; y/ 2 G .2/ if and only if s.x/ D r.y/.

A groupoid endowed with a topology such that the operations of multiplication and
inversion are continuous is called a topological groupoid. Moreover, if the topology is
locally compact Hausdorff such that the range map, and therefore also the source map, is
a local homeomorphism, the groupoid is said to be étale. The open sets U � G for which
both sjU and r jU are homeomorphisms are called bisections. Thus, an étale groupoid is
one whose topology has a basis of open bisections. An étale groupoid is said to be ample
if its topology admits a basis of compact open bisections.

For anyX � G .0/, we denote GX D ¹x 2 G W s.x/ 2Xº and GX D ¹x 2 G W r.x/ 2Xº.
We shall write Gu and G u instead of G¹uº and G ¹uº whenever u 2 G .0/ is a unit. The set
G jX D GX \ GX D ¹x 2 G W r.x/; s.x/ 2 Xº is a subgroupoid of G , with unit space X ,
called the restriction of G to X . The isotropy group at a unit u 2 G .0/ is the group G uu WD

Gu \ G u and the isotropy bundle is

Iso.G / WD ¹x 2 G W s.x/ D r.x/º D
G
u2G .0/

G uu :

A groupoid G is said to be principal if its isotropy bundle coincides with its unit space
and is called effective if the interior of its isotropy bundle coincides with its unit space.

The orbit of a unit u 2 G .0/ is the set r.Gu/ D ¹r.x/ W s.x/ D uº D s.G u/. A subset
F � G .0/ is said to be full if it meets every orbit, that is, F \ r.Gu/ ¤ ;, for each unit
u 2 G .0/. Given two setsU;V 2 G , we defineUV D ¹xy W s.x/D r.y/ and x 2U; y 2 V º
and U�1 D ¹x�1 W x 2 U º.

A groupoid homomorphism between two étale groupoids G and H is a map �WG !H

such that if .x; y/ 2 G .2/, then .�.x/; �.y// 2H .2/, and in this case �.xy/D �.x/�.y/.
Two étale groupoids are said to be isomorphic if there is a bijective groupoid homomor-
phism that is also a homeomorphism.

We say that two étale groupoids G and H are Kakutani equivalent if there are full
clopen subsets U � G .0/ and V � H .0/ such that G jU Š H jV , as étale groupoids. In
the setting of ample groupoids with � -compact unit spaces, this notion of equivalence
of groupoids is equivalent to, among other things, Morita equivalence of groupoids and
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equivalence of groupoids in the sense of Renault (see [15]). For more background mate-
rial on étale groupoids, we refer the reader to the books of Jean Renault [41], Alan
Paterson [38] and Aidan Sims [45].

2.3. Reduced groupoid Lp-operator algebras

For an étale groupoid G and p 2 Œ1;1/, one can construct an Lp-operator algebra sim-
ilarly to how one constructs its reduced C �-algebra. We recall this construction in what
follows.

Since G is étale, the fibers Gu, for u 2 G .0/, are discrete. Let Cc.G / denote the space of
continuous compactly supported functions on G . We endow Cc.G / with the convolution
product, which for f; g 2 Cc.G / is given by

f � g.x/ D
X

y2Gs.x/

f .xy�1/g.y/;

for x 2 G . Under the convolution product, Cc.G / is an associative C-algebra. Moreover,
under the I -norm given by

kf kI D max
°

sup
u2G .0/

X
x2Gu

jf .x/j; sup
u2G .0/

X
x2Gu

jf .x/j
±
;

Cc.G / becomes a normed algebra. Fix any unit u 2 G .0/. The operator �u.f / associated
to f 2 Cc.G /, is the operator given by

�u.f /.�/.x/ D
X
y2Gu

f .xy�1/�.y/;

for x 2 Gu and � 2 Cc.Gu/. The map �uWCc.G /! B.`p.Gu// is a contractive representa-
tion of Cc.G /, and is called the left regular representation at u. The reduced Lp-operator
algebra associated to G is denoted F p

�
.G / and is the completion of Cc.G / under the

norm kf kF p
�
.G / WD supu2G .0/k�u.f /k. Since

L
u2G .0/ �u is an isometric representation

of F p
�
.G / on an Lp-space, F p

�
.G / is indeed an Lp-operator algebra. F p

�
.G / is unital

if and only if G.0/ is compact, in which case the indicator function of the unit space is
the unit.

As in the C �-algebraic case, we have the following result.

Lemma 2.4 ([9, Lemma 4.5]). For any f 2 Cc.G /, we have

kf k1 � kf kF p
�
.G / � kf kI :

Moreover, for f 2 Cc.G .0//, we have kf k1 D kf kF p
�
.G / D kf kI .

Let u 2 G .0/ and q 2 .1;1� be the Hölder conjugate to p, so that 1
p
C

1
q
D 1. We

identify the dual of `p.Gu/ with `q.Gu/, where the dual pairing is given by

h; �i D
X
x2Gu

.x/�.x/;
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for  2 `p.Gu/ and � 2 `q.Gu/. In the next proposition, by ıx we mean the standard basis
element in `p.Gs.x// corresponding to x 2 Gs.x/. The space of continuous functions on G

vanishing at infinity will be written as C0.G /.

Proposition 2.5 ([9, Proposition 4.7 and 4.9]). The map jpWF
p

�
.G /! C0.G / given by

jp.a/.x/ D h�s.x/.a/.ıs.x//; ıxi;

for a 2 F p
�
.G / and x 2 G , is contractive, linear, injective and extends the identity on

Cc.G /. Moreover, given a; b 2 F p
�
.G / and x 2 G , we have that jp.ab/.x/ D jp.a/ �

jp.b/.x/, where the sum defining jp.a/ � jp.b/.x/ is absolutely convergent.

Thus, under the identification provided by the map jp , the algebraic operations on
F
p

�
.G / may be expressed in the same way as the algebraic operations on Cc.G /. In the

C �-algebraic case one also defines the involution on Cc.G / as f �.x/ WD f .x�1/, and this
extends to an involution on C �r .G /. In our more general case, it extends to an isometric
anti-isomorphism between F p

�
.G / and F q

�
.G /, as the next lemma shows.

Lemma 2.6. Assume p 2 .1;1/. For f 2 Cc.G /, we have that kf kF p
�
.G / D kf

�kF
q
�
.G /,

and the assignment f 7! f � extends to an isometric anti-isomorphism �W F
p

�
.G / !

F
q

�
.G /. Moreover, for any a 2 F p

�
.G /, jq.a�/ D jp.a/� as elements in C0.G /.

Proof. The first statement can be proved as in [2, Lemma 3.5]. If fn ! a in F p
�
.G /, also

f �n ! a� in F q
�
.G /. Since jp.f / D f D jq.f /, for all f 2 Cc.G /, and � is continuous

on C0.G /, we obtain

jq.a
�/ D lim

n!1
jq.f

�
n / D lim

n!1
f �n D lim

n!1
jp.fn/

�
D . lim

n!1
jp.fn//

�
D jp.a/

�:

The next lemma roughly states that, under the identification provided by the map jp ,
we may view elements in F p

�
.G / as convolution operators induced from the corresponding

C0.G / functions.

Lemma 2.7. Let a 2 F p
�
.G / be arbitrary and fix any unit u 2 G .0/. We have that

�u.a/.�/ D jp.a/ � �;

for any � 2 Cc.Gu/.

Proof. Let u 2 G .0/ be any unit and suppose fn! a in F p
�
.G /. Then by Proposition 2.5,

fn ! jp.a/ in C0.G / and �u.fn/! �u.a/, as n!1. Let � 2 Cc.Gu/ be given. Then,
since � has finite support, we have

�u.a/.�/.x/ D lim
n!1

�u.fn/.�/.x/ D lim
n!1

fn � �.x/ D jp.a/ � �.x/;

for any x 2 Gu.

For an overview of the theory of Lp-operator algebras, we refer the reader to [16].
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3. Rapid decay and polynomial growth

This section deals with length functions on groupoids, and from these the notions of rapid
decay and polynomial growth of groupoids, which have been extensively studied in the
group case. In the case of a group � , a length function on � is a map l W� ! RC such that
l.e/ D 0, where e is the identity element, l.xy/ � l.x/C l.y/ and l.x�1/ D l.x/. The
natural generalization of this to groupoids is to change the first condition to l.u/ D 0, for
all u 2 G .0/, and the second condition to l.xy/ � l.x/C l.y/, for all .x; y/ 2 G .2/ (see
Definition 3.2).

Length functions on groupoids have already been studied by several different authors.
For instance, they appear in the study of amenability of measured groupoids in the book
of Renault and Anantharaman-Delaroche [1]; there, the length function is used to show
that if certain growth conditions with respect to the length function are satisfied, the mea-
sured groupoid is amenable. Ma and Wu in [32, 33] show that length functions with the
additional requirement that they are zero only on units, are in one-to-one correspondence
with extended metrics on the groupoids. These metrics are then related to properties such
as almost elementariness, fiberwise amenability and soficity of the topological full groups
associated with groupoids. Some of these length functions studied by Ma and Wu were
also used by Jiang, Zhang and Zhang in [25] to prove that for amenable � -compact étale
groupoids G , the reduced groupoid C �-algebra agrees with certain C �-algebras consist-
ing of G -equivariant adjointable operators on a Hilbert C �-module naturally associated
with G . In [22], Hou uses length functions as a tool to prove the existence of dense spec-
tral invariant Fréchet algebras, which is one of the main motivations for their study in the
group case.

Like Hou, we shall primarily be interested in using length functions on groupoids
to create dense spectral invariant Fréchet algebras in the reduced Lp-operator algebras
F
p

�
.G /. In particular, we will in the next section investigate the following question.

Question 3.1. For which types of étale groupoids G do we have isomorphisms in K-
theory K�.F

p

�
.G // Š K�.F

q

�
.G //, for some (or all) p; q 2 Œ1;1/?

Throughout the rest of the text, we shall always assume that G is an étale groupoid
and that p 2 Œ1;1/.

Definition 3.2. A length function on an étale groupoid G is a map l WG ! RC, satisfying

(1) l.u/ D 0, for all u 2 G .0/;

(2) l.xy/ � l.x/C l.y/, for all .x; y/ 2 G .2/;

(3) l.x�1/ D l.x/, for all x 2 G .

A length function is said to be locally bounded if it is bounded on compact subsets.
The analogue to the `1-norm of an element in the group ring is the I -norm of a con-

tinuous compactly supported function on an étale groupoid, defined in Section 2.3. The
natural analogue then for the `p-norm is the Ip-norm.



A. Austad, E. Ortega, and M. Palmstrøm 10

Definition 3.3. Let G be an étale groupoid and let p 2 Œ1;1/. For f 2 Cc.G /, we define
the Ip-norm to be

kf kIp WD max
²

sup
u2G .0/

� X
x2Gu

ˇ̌̌
f .x/

ˇ̌̌p�1=p
; sup
u2G .0/

� X
x2Gu

jf .x/jp
�1=p³

:

Assuming G is endowed with a locally bounded length function l , we define

kf kp;k WD
f .1C l/k

Ip
;

for f 2 Cc.G / and k 2 N0.

It is clear that kf k1 � kf kIp D kf kp;0 � kf kp;k , for all f 2 Cc.G / and all k 2N0.
Thus, k�kIp is a norm on Cc.G /, and when G has a locally bounded length function, so is
k�kp;k , for each k 2 N0.

Lemma 3.4. Let p 2 Œ1;1/ and k 2 N0. Assume G is an étale groupoid endowed with a
locally bounded length function l . Let Lp;k.G / be the subspace consisting of f 2 C0.G /
such that kf kp;k <1. Then Lp;k.G / is a Banach space.

Proof. First of all, we clearly also have that kf k1 � kf kp;k for all f 2 Lp;k.G /. Let
¹fnºn � Lp;k.G / be a Cauchy sequence under the norm k�kp;k . In particular, ¹fnºn is a
Cauchy sequence in C0.G /, and so there exists f 2 C0.G / such that limn!1 fn D f in
C0.G /. For any u 2 G .0/ and finite subsets Fu � Gu and F u � G u, we have thatX
x2Fu

jf .x/jp.1C l.x//pk D lim
n!1

X
x2Fu

jfn.x/j
p.1C l.x//pk � sup

n
kfnkp;k <1;

and similarly, X
x2F u

jf .x/jp.1C l.x//pk � sup
n
kfnkp;k <1;

for any k 2 N0. Therefore, kf kp;k � supnkfnkp;k <1, and so f 2 Lp;k.G /. A priori,
it is not immediately clear that fn ! f in Lp;k.G /, but we will show in the sequel that
this is indeed the case. Notice that for any u 2 G .0/, we have that

max
®
kfn.1C l/

k
� fm.1C l/

k
k`p.Gu/; kfn.1C l/

k
� fm.1C l/

k
k`p.Gu/

¯
� kfn � fmkp;k ! 0;

as m; n ! 1, independently of u 2 G .0/. Thus, for each u 2 G .0/ there exist gu 2
`p.Gu/ and gu 2 `p.G u/ such that .1 C l/kfn ! gu in `p.Gu/ and .1 C l/kfn ! gu

in `p.G u/. It follows that there exists a subsequence nj such that .1 C l/kfnj ! gu
and .1C l/kfnj ! gu pointwise in respectively Gu and G u. But we know that .1 C
l/kfnj ! .1C l/kf pointwise, so gu D .1C l/kf

ˇ̌
Gu

and gu D .1C l/kf
ˇ̌
Gu

. In partic-
ular, .1C l/kfn! .1C l/kf in both `p.Gu/ and `p.G u/. Now, given " > 0, there exists
N 2 N such that whenever n;m � N , we have

max
®
kfn.1C l/

k
� fm.1C l/

k
k`p.Gu/; kfn.1C l/

k
� fm.1C l/

k
k`p.Gu/

¯
� ";
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for all u 2 G .0/. Thus,

max
®
kf .1C l/k � fm.1C l/

k
k`p.Gu/; kf .1C l/

k
� fm.1C l/

k
k`p.Gu/

¯
D lim
n!1

max
®
kfn.1C l/

k
� fm.1C l/

k
k`p.Gu/;

kfn.1C l/
k
� fm.1C l/

k
k`p.Gu/

¯
� ";

whenm � N , for any u 2 G .0/. That is, kf � fmkp;k � ", whenm � N . This means that
fn ! f in Lp;k.G /.

If G is an étale groupoid endowed with a locally bounded length function, then we
clearly have that

Cc.G / � Lp;kC1.G / � Lp;k.G / � C0.G /;

for all k 2 N0. Let

S lp.G / WD

1\
kD0

Lp;k.G /:

Then S lp.G / � C0.G / and is a Fréchet space under the locally convex topology deter-
mined by the increasing family of norms ¹k�kp;kºk2N0

. Adopting the usual terminology
from the group case, we call S lp.G / the space of rapidly decreasing functions on G with
respect to the locally bounded length function l .

Definition 3.5. Let p 2 Œ1;1/. An étale groupoid G is said to have property RDp with
respect to a locally bounded length function l if there exist a positive constant C > 0 and
k 2 N0 such that for all f 2 Cc.G /, we have kf kF p

�
.G / � Ckf kp;k D Ckf .1C l/

kkIp .
We shall say that an étale groupoid has property RDp if it has property RDp with

respect to some locally bounded length function.

As explained in [22, Section 3], if a length function l1 polynomially dominates another
length function l2, in the sense that there is c > 0 and k 2 N such that l2.x/ �
c.1C l1.x//

k for all x 2 G , then G has property RDp with respect to l1 if it has prop-
erty RDp with respect to l2. Moreover, if G is a compactly generated groupoid, meaning
that G D

S1
nD1K

n for some symmetric compact setK � G , then the canonically associ-
ated word length function given by lK.x/ WD min¹n W x 2

Sn
iD1K

iº when x … G .0/ and
lK.u/ WD 0 for u 2 G .0/, is easily seen to dominate any locally bounded length function
on G . In particular, if G is compactly generated and has property RDp , then G has property
RDp with respect to any locally bounded word length function.

When p D 2, Definition 3.5 is the same as [22, Definition 3.2], and it naturally gen-
eralizes the well-known property RD for discrete groups. We refer the reader to [5–7, 26,
27, 31] for information and examples of such groups.

Like in the group case, there are several equivalent definitions one can give for prop-
erty RDp . First of all, the argument in [22, Lemma 3.3] generalizes immediately to the
statement that when G has property RDp , there exist for each f 2 S lp.G / an element
a 2 F

p

�
.G / such that jp.a/ D f , and thus S lp.G / is included in F p

�
.G / via � D j�1p .
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Conversely, when � D j�1p is an inclusion, it is a closed map and this ensures that G has
property RDp . We record this in the next proposition, giving the first equivalent definition
of RDp .

Proposition 3.6. Let G be an étale groupoid and let p 2 Œ1;1/. Then G has property
RDp if and only if S lp.G / is contained in F p

�
.G /.

There is yet another characterization, at least when the length function is continuous.
Given a length function l on a groupoid G , we define for R > 0, the balls Bl .R/ WD ¹x 2
G W l.x/ � Rº.

Proposition 3.7. Let G be an étale groupoid endowed with a locally bounded length
function l and let p 2 Œ1;1/. If G has property RDp , then there exist positive constants
C;D > 0 such that for all f 2 Cc.G/ with support contained in Bl .R/, where R � 1, we
have

kf kF p
�
.G / � CR

D
kf kIp :

The converse holds if l is continuous.

Proof. Assume first that G has property RDp , for constants C > 0 and k 2 N0 as in
Definition 3.5. Let f 2 Cc.G / be supported in Bl .R/, for some R � 1. We have that
kf kF p

�
.G / � Ckf kp;k . Fix any unit u 2 G .0/; then

C
� X
x2Gu

jf .x/jp.l.x/C 1/pk
�1=p

� C
� X
x2Gu

jf .x/jp.RC 1/pk
�1=p

� 2kRkC
� X
x2Gu

jf .x/jp
�1=p

:

The same estimate holds when summing over G u. Thus, after taking the supremum over
all u 2 G .0/, we obtain

kf kF p
�
.G / � Ckf kp;k � 2

kRkCkf kIp :

If the length function is continuous, the sets Un D l�1.n; nC 2/, for n � 1, and U0 D
l�1.Œ0;2//, are open sets such that G D

S1
nD0 Un. Assume that C;D > 0 are the constants

for which
kf kF p

�
.G / � CR

D
kf kIp ;

for all f 2 Cc.G / supported in Bl .R/, with R � 1. Let f 2 Cc.G / be arbitrary. There
exists N 2 N such that supp.f / �

SN
nD0 Un, and f vanishes on l�1.N C 1;1/. Let

¹�nº
N
nD0 [ ¹�º be a partition of unity subordinate to the finite open cover ¹UnºNnD0 [

¹l�1..N C 1;1//º of G . Thus, �C
PN
nD0 �nD 1, supp.�n/�Un, supp.�/� l�1..N C 1;

1//, and the functions � and �n are continuous, for 0 � n � N . We may write

f D f �
�
� C

NX
nD0

�n

�
D

NX
nD0

f�n;
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and f�n is supported in Bl .nC 2/, for 0 � n � N ; thus

kf kF p
�
.G / �

NX
nD0

kf�nkF p
�
.G / � C

NX
nD0

.nC 2/Dkf�nkIp � 2
DC

NX
nD0

.nC 1/Dkf�nkIp

D 2DC

NX
nD0

.nC 1/�2
f�n.nC 1/DC2Ip

� 2DC

NX
nD0

.nC 1/�2
f�n.1C l/DC2Ip

� 2DC

NX
nD0

.nC 1/�2
f .1C l/DC2

Ip
� 2DC

� 1X
nD0

.nC 1/�2
�f 

p;DC2
:

In the estimate above, we used in the fifth step that n � l on the support of f�n and in the
sixth that �n � 1, for 0 � n � N .

In the case of discrete groups, the equivalent statement in Proposition 3.7 is the defi-
nition of RDp used in [31]. An interesting observation is that property RDp is automatic
if RDd holds for some d � p. This is shown in the next proposition, whose argument is a
generalization of [31, Theorem 4.4].

Proposition 3.8. If an étale groupoid G has property RDd , for some d 2 Œ1;1/, then G

has property RDp , for all 1 � p � d .

Proof. Put ˛ D p=d . For any f 2 Cc.G /, we define f˛.x/ D jf .x/ j˛ . Then for any u 2
G .0/ and any f 2Cc.G /, we have kf˛kd`d .Gu/ D kf k

p

`p.Gu/
, and kf˛kd`d .Gu/Dkf k

p

`p.Gu/
.

Since ˛ � 1, we have for any finite collection ai � 0 that

.a1 C � � � C an/
˛
� a˛1 C � � � C a

˛
n ;

and so for � 2 Cc.Gu/, we have the inequality

.jf j � j�j/˛.x/ D .jf j � j�j.x//
˛
D

� X
y2Gu

jf j.xy�1/j�j.y/
�˛

�

X
y2Gu

jf j˛.xy�1/j�j˛.y/ D f˛ � �˛.x/:

Using the above and the fact that G has RDd , we obtain for any � 2 Cc.Gu/ that

kf � � k
p

`p.Gu/
� kjf j � j�jk

p

`p.Gu/
D k.jf j � j�j/˛k

d
`d .Gu/

� kf˛ � �˛k
d
`d .Gu/

� kf˛k
d
B.`d .Gu//

k�˛k
d
`d .Gu/

� C dkf˛.1C l/
k
k
d
Id
k�˛k

d
`d .Gu/

D C dkf˛.1C l/
k
k
d
Id
k�k

p

`p.Gu/
;
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where C > 0 and k 2 N0 are the constants from G having RDd . From this we get that
kf k

p

F
p
�
.G /
� C dkf˛.1C l/

kkdId
. If we let n 2 N be such that np � d , then it is easy

to see that kf˛.1C l/kkdId � kf .1C l/
nkk

p
Ip , and thus we get

kf kF p
�
.G / � C

d=p
kf .1C l/nkkIp ;

showing that G has property RDp .

With respect to natural length functions, property RDp for transformation groupoids
formed from the data of compact Hausdorff spaces and discrete groups, implies property
RDp for the associated discrete groups. This was also proved independently in [50, Propo-
sition 5.3] when p D 2. Let us first recall the definition of a transformation groupoid.

Definition 3.9. Let X be a compact Hausdorff space and � a discrete group. Suppose
there is an action ofG onX . We write  � x for the action at .;x/, where  2� and x 2X .
The transformation groupoid is denoted by X Ì � . As a topological space, X Ì � is just
X �� , and the groupoid operations are given by . � x;�/.x;/D .x; �/, and .x;/�1D
. � x; �1/. Thus, the unit space is X � ¹eº, where e is the identity element of � , and
the source and range maps become respectively s.x; / D .x; e/, r.x; / D . � x; e/. In
this way, X Ì � becomes an étale groupoid, and its unit space is identified with X in the
obvious way. Notice that the source fiber at x 2X is given by .X Ì�/x D ¹.x;/ W  2�º.

Proposition 3.10. Let p 2 Œ1;1/, X a compact Hausdorff space and let � be a discrete
group acting on X . Assume that � is endowed with a locally bounded length function
l W� ! RC. The transformation groupoid G D X Ì � then has a natural length function
.x; / 7! l./ which we still denote by l . With respect to l , if the transformation groupoid
G has RDp , then � has property RDp .

Proof. Suppose that the transformation groupoid G has property RDp with constants C >

0 and k 2 N0 as in Definition 3.5. Fix any positive f 2 C� , and define zf .x; / D f ./.
Since X is compact, zf is continuous compactly supported on G , and so

k zf kF p
�
.G / � Ck

zf .1C l/kkIp D Ckf .1C l/
k
k`p.�/:

Fixing x 2 X , if gx 2 `p.Gx/ is identified with g 2 `p.�/, we have that

�x. zf /.gx/.x; / D
X
�2�

zf ..x; /.x; �/�1/gx.x; �/

D

X
�2�

zf ..x; /.� � x; ��1//gx.x; �/

D

X
�2�

zf ..� � x; ��1//gx.x; �/

D

X
�2�

f .��1/g.�/ D �.f /.g/./;
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where � is the usual left regular representation of the group � . Since for any such gx 2 Gx ,
we have that kgxk`p.Gx/ D kgk`p.�/, we see that

k�x. zf /k D sup
kgxk`p.Gx/�1

k�x. zf /.gx/k`p.Gx/ D sup
kgk`p.�/�1

k�.f /.g/k`p.�/ D k �.f /k;

and so

kf kF p
�
.�/ D k�.f /kB.`p.�// D sup

x2X

k�x. zf /kB.`p.Gx//

D k zf kF p
�
.G / � C

f .1C l/k
`p.�/

;

showing that � has property RDp .

Next, we shall define what it means for an étale groupoid to have polynomial growth
with respect to a length function. The definition we employ naturally generalizes the same
notion for groups, and is taken from [22] (see also [35]).

Fix a unit u 2 G .0/, let m � 0, and define the sets

BGu.m/ D ¹x 2 G u W l.x/ � mº and BGu.m/ D ¹x 2 Gu W l.x/ � mº:

Denoting by jAj the cardinality of a set A, notice that since l.x�1/ D l.x/, for all x 2 G ,
we have jBGu.m/j D jBGu.m/j.

Definition 3.11. [22, Definition 3.1] We say that an étale groupoid G is of polynomial
growth with respect to a length function l if there are constants c � 1 and r � 1 such that
for each m � 0, we have

sup
u2G .0/

jBGu.m/j D sup
u2G .0/

jBGu.m/j � c.1Cm/
r :

An étale groupoid G is said to be of polynomial growth if it is of polynomial growth with
respect to some length function.

Étale groupoids of polynomial growth enjoy the following permanence properties out-
lined in the next lemma. We omit the proofs, since they are straightforward.

Lemma 3.12. (1) The étale groupoids G1 and G2 have polynomial growth with re-
spect to length functions l1 and l2 respectively if and only if the groupoid G1 t G2
has polynomial growth with respect to the length function l.g/ D l1.g/ if g 2 G1
and l.g/ D l2.g/ if g 2 G2.

(2) If H � G is a subgroupoid of an étale groupoid G which has polynomial growth
with respect to l , then H , with the restriction of l as length function, has polyno-
mial growth.

(3) The étale groupoids G1 and G2 have polynomial growth with respect to length
functions l1 and l2 respectively if and only if the étale groupoid G1 � G2 has poly-
nomial growth with respect to the length function l.g; h/ D l1.g/C l2.h/.
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(4) If �W G ! H is a bijective groupoid homomorphism between étale groupoids,
and H has polynomial growth with respect to a length function l , then G has
polynomial growth with respect to the length function l ı �WG ! RC.

That polynomial growth is stable under Kakutani equivalence is a little less straight-
forward, so we include an argument for this.

Lemma 3.13. For ample groupoids with � -compact unit spaces, polynomial growth is
stable under Kakutani equivalence.

Proof. Assume that G is of polynomial growth, that G is Kakutani equivalent to H , and
that both are ample groupoids with � -compact unit spaces. By [15, Theorem 3.12],

G �R Š H �R;

as étale groupoids. Here R is the full equivalence relation on N. With the length function
.n; m/ 7! jn � mj, R has polynomial growth. By Lemma 3.12, G �R has polynomial
growth, and then by the same lemma, so does H �R. Since H can be identified as a
subgroupoid of H �R, Lemma 3.12 applies once more to give that H has polynomial
growth.

Polynomial growth can in fact be seen as a strong form of rapid decay, as is shown in
the next proposition. This is [22, Proposition 3.5] adapted to our more general case.

Proposition 3.14. If G is an étale groupoid which has polynomial growth with respect to
a locally bounded length function l , then G has property RDp with respect to l , for every
p 2 Œ1;1/.

Proof. Let f 2 Cc.G /, c � 1 and let r � 1 be an integer such that supu2G .0/ jBGu.m/j �

c.1Cm/r . Any étale groupoid has RD1. Let p 2 .1;1/ and let q be the conjugate expo-
nent. Put k WD 2C r and fix any unit u 2 G .0/. We have that

X
x2Gu

.1C l.x//�qk �

1X
nD0

X
x2Gu

n�l.x/�nC1

.1C l.x//�qk �

1X
nD0

jBGu.nC 1/j.1C n/
�qk

� c

1X
nD0

.2C n/r .1C n/�qk � 2rc

1X
nD0

.1C n/�2q DW zc:

By Hölder’s inequality,X
x2Gu

jf .x/j D
X
x2Gu

jf .x/j.1C l.x//k.1C l.x//�k

�

� X
x2Gu

jf .x/jp.1C l.x//pk
�1=p� X

x2Gu

.1C l.x//�qk
�1=q
� zc1=qkf kp;k :
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Moreover, we haveX
x2Gu

jf .x/j D
X
x2Gu

jf �.x/j � zc1=qkf �kp;k D zc
1=q
kf kp;k :

Since u 2 G .0/ was arbitrary, using Lemma 2.4, we obtain

kf kF p
�
.G / � kf kI � zc

1=q
kf kp;k ;

and this shows that G has property RDp .

Some straightforward examples of étale groupoids which have polynomial growth are
collected in the next example.

Example 3.15. (1) Any compact étale groupoid has polynomial growth.

(2) A locally compact Hausdorff space, seen as a trivial groupoid, has polynomial
growth.

(3) Any discrete group of polynomial growth is of polynomial growth when consid-
ered as a groupoid.

(4) Suppose � is a discrete group equipped with a length function l W � ! RC, and
suppose X is a locally compact Hausdorff space on which � acts via homeomor-
phisms. The length function may be extended to the transformation groupoid via
the map .x; / 2 X Ì � 7! l./. With respect to this length function, the trans-
formation groupoid X Ì � has polynomial growth if and only if the group � has
polynomial growth with respect to l .

Example 3.16 (Topological full groups of polynomial growth). Let G be an effective étale
groupoid with compact unit space. A bisectionU �G is called full if r.U /D s.U /DG .0/.
The topological full group of G is the group of all full bisections, and it is denoted by ŒŒG ��.

Suppose that ŒŒG �� has polynomial growth. Then for every finite setX D ¹U1; : : : ;Umº
� ŒŒG �� that contains the identity and generates ŒŒG ��, there existR;C > 0 such that jXnj �
C.1C n/R. Assume that jr.Gu/j � 2, for every u 2 G .0/. Then by [36, Lemma 3.9], we
have that S D

Sm
iD1 Ui is a compact generating set of G . Given u 2 G .0/, we have that

jBGu.n/j D jS
nuj � jXnj � C.1C n/R. Thus, G has polynomial growth.

A more involved example is that of AF-groupoids. Recall that an AF-groupoid G is
an ample second-countable groupoid, such that G .0/ is a locally compact Cantor space,
G D

S1
nD1Kn, where each Kn is a principal clopen subgroupoid for which K

.0/
n D G .0/,

Kn n G .0/ is compact and Kn � KnC1. When the AF-groupoid G has compact unit
space, each Kn is compact. By [17, Theorem 3.9], any AF-groupoid can, up to isomor-
phism, be constructed from a Bratteli diagram as described in [36, Section 11.5]. For the
convenience of the reader, we shall recall this construction in what comes next (see also
[17, Theorem 3.6] and [34, Example 2.2]): A Bratteli diagram B D .V; E/ consists of
a disjoint union of finite sets of vertices V D

F1
nD0 Vn, a disjoint union of finite sets of
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edges E D
F1
nD1En, and maps i WEn ! Vn�1 and t WEn ! Vn, for n � 1. Recall also

that a source is a vertex v 2 V for which there is no edge with v as target; that is, there
is no e 2 E for which t .e/ D v. Let S.B/ denote the set of all sources. The Bratteli dia-
gram B is called standard if V0 D ¹v0º D S.B/. Suppose we are given a Bratteli diagram
B D .V; E/, with set of sources S.B/. We can then construct its associated infinite path
space. First of all, for any source on the nth level v 2 S.B/ \ Vn, the set of infinite paths
starting at v is the set

Xv WD ¹enC1enC2 � � � W ei 2 Ei ; i.enC1/ D v and i.enCkC1/ D t .enCk/8k � 1º:

For x 2 Xv , we shall write x D xnC1xnC2 � � � , where xi 2 Ei . The infinite path space
associated to B is then

XB WD
G

v2S.B/

Xv:

Its topology has as basis the cylinder sets given for a finite path � with i.�/ 2 S.B/\ Vn
as

Z.�/ WD ¹enC1enC2 � � � 2 Xi.�/ W enC1 : : : enCj�j D �º;

where j�j denotes the number of edges comprising the path �. These cylinder sets are
compact open. Define, for each N � 1, the set

PN WD ¹.x;y/2X
2
B W i.x/2Vm \S.B/; i.y/2Vn \S.B/; m;n�N; xk D yk ;8k >N º:

Equipped with the relative topology, PN is a compact principal ample Hausdorff groupoid
whose unit space is identified with

NG
nD0

G
v2S.B/\Vn

Z.v/:

We define the groupoid associated with the Bratteli diagram B as the increasing union

GB WD

1[
ND1

PN ;

equipped with the inductive limit topology. A compact open basis for this topology is
given by the cylinder sets Z.�; �/ corresponding to finite paths � and � such that i.�/ 2
S.B/ \ Vn, i.�/ 2 S.B/ \ Vm, for some m; n 2 N0, and t .�/ D t .�/. They are defined
as

Z.�; �/ WD ¹.x; y/ 2 Z.�/ �Z.�/ W xŒnCj�jC1;1/ D yŒmCj�jC1;1/º;

where, for example, xŒnCj�jC1;1/ D xnCj�jC1xnCj�jC2 � � �, for the xk 2 Ek comprising
the infinite path x. The unit space of GB is identified with XB . Setting Kn D Pn [ G

.0/
B ,

we see that GB becomes an AF-groupoid as defined in the beginning of this paragraph.

Proposition 3.17. Any AF-groupoid can be equipped with a continuous length function
for which it has polynomial growth.
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Proof. Let G be an AF-groupoid. By [17, Theorem 3.9], there is a Bratteli diagram B D

.V;E/ such that G Š GB . Thus, by Lemma 3.12, it suffices to show that GB has polynomial
growth with respect to a continuous length function. We may write GB D

F1
nD1 Kn, for

clopen principal subgroupoids Kn D Pn [ G
.0/
B such that Kn � KnC1, K

.0/
n D G

.0/
B

and Kn n G
.0/
B is compact, defined as in the preceding paragraph. For A; A0 � V two

finite subsets, we let jAEA0j denote the total number of paths from the vertices in A
to the ones in A0. Recall that GB consists of pairs .x; y/ such that i.x/ 2 Vn \ S.B/,
i.y/ 2 Vm \ S.B/, and there is some N 2 N0 such that m; n � N and xŒNC1;1/ D
yŒNC1;1/. For such x D xnC1xnC2 � � � and y D ymC1ymC2 � � � , it will be convenient
to write x D xe1 � � � xenxnC1xnC2 � � � and y D xe1 � � � xemymC1ymC2 � � � where the xei are
objects different from any edge in the Bratteli diagram. For any pair .e; f / consisting
of edges and/or objects as above, we set "e;f WD 0, if e D f and "e;f WD 1, if e ¤ f .
Also, for m � 1, S�m.B/ will denote the set of all sources in

Fm
nD0 Vn. We may suppose

without loss of generality that there is a strictly increasing sequence ¹kiºi2N such that
jS�ki .B/EVki j < jS�kiC1.B/EVkiC1 j, for each i 2 N. Otherwise, G

.0/
B is finite, and so

the length function defined as x 7! 0, for all x 2 G
.0/
B and g 7! 1, for all g 2 GB n G

.0/
B ,

will do. Assume, therefore, that there exists such a subsequence. The map

l.x; y/ D

1X
kD1

jS�k.B/EVkj"xk ;yk ;

where, for example, xk D xek or xk 2 Ek , is a length function on GB . This is in fact a
continuous length function. Indeed, let gn!g in GB . There exist two finite paths�;�with
t .�/D t .�/ such that g 2 Z.�;�/. It follows that there exists N 2 N such that when n �
N , gn 2Z.�;�/. Thus, l.gn/D l.g/, for all n�N . To see why it has polynomial growth,
letR� 1 be given. Letm2N0 be the largest integer for which jS�m.B/EVmj � R. Given
y 2 G

.0/
B , if x 2 G

.0/
B is such that l.x;y/�R, then xk D yk , for all k >m, and for k �m,

we might have that xk ¤ yk . Thus,

jB.GB /y .R/j � jS�m.B/Et.ym/j � jS�m.B/EVmj � R;

showing that GB has polynomial growth with respect to l .

4. Applications

In this section, we will investigate some consequences of polynomial growth and property
RDp . There are two main results. The first being that for an étale groupoid G endowed
with a continuous length function for which it has property RDp and RDq , where p; q 2
.1;1/ are Hölder conjugate, the Fréchet space S lp.G / becomes a Fréchet algebra under
convolution, and we have isomorphisms in K-theory

K�.F
p

�
.G // Š K�.S

l
p.G // Š K�.F

q

�
.G //;
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for � D 0; 1. The second is that when the étale groupoid has polynomial growth, the
K-groups of F p

�
.G / are independent of the exponent p 2 .1;1/. Similar results were

obtained in [31] for locally compact groups. Therein, the analogous result to the sec-
ond was obtained for a fairly large class of groups which includes groups of polynomial
growth. To obtain the analogous result to our first, it was only required that the locally
compact groups have property RDp , in which case they found a dense spectral invariant
Banach algebra of the reduced group Lp-operator algebra. The added complexity of mul-
tiple units and general lack of symmetry adds difficulties not present in the group case. We
are therefore forced to assume both property RDp and RDq (or equivalently, by Proposi-
tion 3.8, the one corresponding to the larger exponent of the two) and to look for dense
spectral invariant Fréchet algebras instead of Banach algebras.

Recall that for an étale groupoid G endowed with a locally bounded length function l ,
the space of rapidly decreasing functions is

S lp.G / D

1\
kD0

Lp;k.G /;

and that under the locally convex topology induced by the norms ¹k�kp;kºk2N0
, this is a

Fréchet space. Elements in S lp.G / are continuous functions f on G such that kf kp;k<1,
for all k 2 N0. Recall also that when the étale groupoid G has property RDp , we can con-
tinuously include S lp.G / into F p

�
.G / via j�1p . In fact, using Lemma 2.6, we can also, with

an analogous argument as in [22, Lemma 3.3], continuously include S lp.G / into F q
�
.G /

via j�1q . Moreover, for f 2 S lp.G /, u 2 G .0/ and � 2 Cc.Gu/, we have �u.f /.�/D f � �.

Proposition 4.1. Let G be an étale groupoid which has property RDp , for some p 2
.1;1/, with respect to a continuous length function l W G ! RC. Then there exist c > 0
and k 2 N0 such that for all a 2 S lp.G /, we have

kakF i
�
.G / � ckakp;k ;

for i D p;q. Also, S lp.G / is a Fréchet �-algebra with respect to convolution and involution
given respectively by

f � g.x/ D
X

y2Gs.x/

f .xy�1/g.y/;

and f �.x/ D f .x�1/. Setting Ap WD j
�1
p .S lp.G //, Aq WD j

�1
q .S lp.G // and endowing

these with the locally convex topology generated by the norms ¹k�kkºk2N0
given by

kakk WD kjp.a/kp;k if a 2 Ap and kakk WD kjq.a/kp;k if a 2 Aq , both Ap � F
p

�
.G /

and Aq � F
q

�
.G / are dense Fréchet subalgebras which are isomorphic to S lp.G /. More-

over, for a 2 F p
�
.G /, a 2 Ap if and only if jp.a/ 2 S lp.G /, and similarly, for a 2 F q

�
.G /,

a 2 Aq if and only if jq.a/ 2 S lp.G /.
If p D 1, then with respect to the same convolution and involution, S l1.G / is also a

Fréchet �-algebra, which may be identified with a Fréchet subalgebra of F 1
�
.G /.
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Proof. Assume p 2 .1;1/. As already mentioned in the previous paragraph, we know
that when G has property RDp , S lp.G / is continuously included in F i

�
.G /, for i D q;p. So

the first statement regarding the inequality of the norms then follows, say with constants
k 2 N0 and c > 0. We will show that S lp.G / is a Fréchet �-algebra under the above stated
convolution and involution. Note first that kf �kp;n D kf kp;n, for all n 2 N0 and all f 2
S lp.G /. Thus, the involution is well defined and continuous. To see that the convolution
product is continuous, assume first that f; g 2 S lp.G / are positive functions. Fix n 2 N0.
It is easy to see that

.f � g/.x/.1C l.x//n � .f .1C l/n/ � .g.1C l/n/.x/;

for any x 2 G . So, for any u 2 G .0/,

k.f � g/.1C l/nk`p.Gu/ � k.f .1C l/
n/ � .g.1C l/n/k`p.Gu/

� kf .1C l/nkF p
�
.G / kg.1C l/

n
k`p.Gu/ � ckf kp;nCkkgkp;n:

Also, we have

k.f � g/.1C l/nk`p.Gu/ � k.f .1C l/
n/ � .g.1C l/n/k`p.Gu/

D k.g�.1C l/n/ � .f �.1C l/n/k`p.Gu/

� k.g.1C l/n/�kF p
�
.G /kf kp;n

D kg.1C l/nkF q
�
.G /kf kp;n

� ckg.1C l/nkp;kkf kp;n D ckgkp;nCkkf kp;k :

Taking suprema over all u 2 G .0/ and noting that k�kp;t � k�kp;t 0 , when t � t 0, we obtain

kf � gkp;n � ckf kp;nCkkgkp;nCk :

By the triangle inequality, a similar estimate holds for general f; g 2 S lp.G /. This shows
that the product is jointly continuous, and hence S lp.G / is a Fréchet �-algebra. By Propo-
sition 2.5, jp.ab/ D jp.a/ � jp.b/ for all a; b 2 F p

�
.G /, from which it follows that

j�1p .f � g/ D j�1p .f /j�1p .g/, for all f; g 2 S lp.G /. Thus, j�1p is an injective algebra
homomorphism and so we may endow its image Ap with a Fréchet algebra structure for
which the statements in the proposition follows. The analogous reasoning shows the same
for Aq .

We record the following lemma for future applications. The proof is straightforward,
so we omit it.

Lemma 4.2. Let G be an étale groupoid endowed with a locally bounded length func-
tion l . If 1 � q � p <1, then k�kp;k � k�kq;k , for all k 2N0, and consequently S lq.G / �
S lp.G / continuously. If l is continuous and G has property RDp , for p > 2, with respect
to l , then S lq.G / D S

l
p.G / as Fréchet algebras, where q is the Hölder exponent of p.
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In proving our main results, we shall make use of the following series of lemmas.
The first one is the Banach algebra version of [23, Theorem 1.2]. While this is stated in a
C �-algebraic setting, the proof carries over directly to Banach algebras.

Lemma 4.3 ([23, Theorem 1.2]). Let B be a Banach algebra, let A be a Banach subal-
gebra, and suppose that ıWDom.ı/! B is a closed unbounded derivation. Let

A0 WD
� 1\
kD0

Dom.ık/
�
\ A:

Then A0 is a Fréchet algebra under the locally convex topology generated by the semi-
norms ¹k�kkºk2N0

, where kakk WD kık.a/k, for a 2 A0 and k 2 N0. If A0 is dense in A,
then it is a spectral invariant subalgebra of A.

If an étale groupoid G is equipped with a locally bounded length function, we can
define, for each u 2 G .0/, the set CpŒGu� consisting of T 2 B.`p.Gu// which satisfy the
following three conditions. Firstly, T has finite propagation; that is,

Prop.T / WD sup¹l.xy�1/ W Txy ¤ 0º <1;

where, denoting by "y the basis vectors corresponding to y 2 Gu, Txy D T ."y/.x/, for
x 2 Gu. We put Prop.0/ WD 0. Secondly, T is a translation operator; that is, for each
y 2 Gu,

T ."y/ D
X
z2Fy;T

˛z"z D
X
z2Fy;T

Tzy"z ;

where Fy;T � Gu is a finite subset depending on y and T . Thirdly, the absolute value jT j,
defined on the basis vectors by

jT j."y/ D
X
z2Fy;T

j˛zj"z ;

is again in B.`p.Gu//.

Lemma 4.4. Suppose G is an étale groupoid endowed with a locally bounded length
function l , and let p 2 Œ1;1/. The set CpŒGu� contains �u.Cc.G //, and is a subalgebra
of B.`p.Gu//.

Proof. We first prove the inclusion �u.Cc.G // � CpŒGu�. Let f 2 Cc.G / be given. It is
easy to see that �u.f /."y/ D

P
z2Gr.y/

f .z/"zy , where the sum is finite because f has
compact support. It also follows from this that �u.jf j/D j�u.f /j, hence j�u.f /j is again
a bounded linear operator on `p.Gu/. Moreover, since l is locally bounded,

sup¹l.xy�1/ W .�u.f //xy D f .xy�1/¤ 0 and x;y 2 Guº � sup¹l.z/ W z 2 supp.f /º<1:

Thus, �u.Cc.G // � CpŒGu�.
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Next, we show that CpŒGu� is a linear subspace. Fix any T; S 2 CpŒGu� and � 2 C.
We have that �T ."y/ D

P
z2Fy;T

�˛z"z , Prop.�T / � Prop.T / (equality if � ¤ 0) and
j�T j D j�jjT j 2 B.`p.Gu//, showing that �T 2 CpŒGu� again. It follows from the inclu-
sions of sets

¹.x; y/ 2 G 2u W .T C S/xy ¤ 0º � ¹.x; y/ 2 G 2u W Txy ¤ 0 or Sxy ¤ 0º

D ¹.x; y/ 2 G 2u W Txy ¤ 0º [ ¹.x; y/ 2 G 2u W Sxy ¤ 0º;

that Prop.T C S/ � Prop.T /C Prop.S/. Moreover, we have that

.T C S/."y/D T ."y/C S."y/D
X
z2Fy;T

˛z"z C
X

w2Fy;S

ˇw"w D
X

x2Fy;T[Fy;S

.˛x C ˇx/"x ;

where, for example, ˛x is zero if x … Fy;T . In particular,

jT C S j."y/ D
X

x2Fy;T[Fy;S

j˛x C ˇxj"x �
X
z2Fy;T

j˛zj"z C
X

w2Fy;S

jˇw j"w

D .jT j C jS j/."y/:

Thus, for any positive � 2 `p.Gu/,

kjT C S j.�/k`p.Gu/ � k.jT j C jS j/.�/k`p.Gu/;

from which it follows that jT C S j is also a bounded linear operator. All of this gives us
that T C S 2 CpŒGu� again, showing that CpŒGu� is a linear subspace of B.`p.Gu//.

To see that it is a subalgebra, fix any T; S 2 CpŒGu�. If T ."y/ D
P
z2Fy;T

˛z"z and
S."z/ D

P
w2Fz;S

ˇw"w , then

ST ."y/ D
X
z2Fy;T

X
w2Fz;S

ˇw˛z"w D
X

z2Fy;ST

�z"z :

It follows that

jST j."y/ D
X

z2Fy;ST

j�zj"z �
X
z2Fy;T

X
w2Fz;S

jˇw jj˛zj"w D jS jjT j."y/;

and so again, given a positive � 2 `p.Gu/,

kjST j.�/k`p.Gu/ � kjS jjT j.�/k`p.Gu/;

so that jST j 2 B.`p.Gu//. Finally, we claim that Prop.ST /�Prop.S/CProp.T /. Indeed,
notice that

.ST /xy D S.T ."y//.x/ D S
� X
z2Fy;T

˛z"z

�
.x/ D

X
z2Fy;T

˛zS."z/.x/:
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Since S."z/.x/ D Sxz and ˛z D T ."y/.z/ D Tzy , it follows that

.ST /xy D
X
z2Fy;T

SxzTzy ;

so if .ST /xy ¤ 0, we must have that Tzy ¤ 0 and Sxz ¤ 0, for some z 2 Fy;T . Since
l.xy�1/ � l.xz�1/C l.zy�1/ and

¹.x; y/ 2 G 2u W STxy ¤ 0º

� ¹.x; y/ 2 G 2u W there exists z 2 Gu for which Sxz ¤ 0 and Tzy ¤ 0º;

we have

Prop.ST / D sup¹l.xy�1/ W STxy ¤ 0º

� sup¹l.xy�1/ W there exists z 2 Gu for which Sxz ¤ 0 and Tzy ¤ 0º

� sup¹l.xz�1/C l.zy�1/ W for z 2 Gu such that Sxz ¤ 0 and Tzy ¤ 0º

� sup¹l.xz�1/ W Sxz ¤ 0º C sup¹l.zy�1/ W Tzy ¤ 0º D Prop.S/C Prop.T /:

This shows that ST 2 CpŒGu� again, and so CpŒGu� is a subalgebra of B.`p.Gu//.

The last lemma we shall need is one inspired by [31, Proposition 4.7]. We will denote
by BpŒGu� the closure of CpŒGu� in B.`p.Gu//. Given a continuous length function l , by
Ml we shall mean the closed densely defined multiplication operator corresponding to l ;
that is, Ml .�/.x/ D l.x/�.x/, for � 2 Dom.Ml / � `

p.Gu/.

Lemma 4.5. Let G be an étale groupoid equipped with a continuous length function l , fix
p 2 Œ1;1/ and u 2 G .0/. The derivation

ıuWDom.ıu/! BpŒGu�; b 7! ŒMl ; b� DMlb � bMl ;

is a closed unbounded derivation.

Proof. Like in [31, Proposition 4.7], we shall show that ıu may be realized as the infinites-
imal generator corresponding to a strongly continuous one parameter group of automor-
phisms on BpŒGu�. Notice that for any t 2 R, the multiplication operator eitl is an iso-
metric isomorphism. Since eitl ."y/ D eitl.y/"y , Prop.eitl / D 0 and jeitl j D I , we can
conclude that eitl 2 CpŒGu�. Thus, the one-parameter group of automorphisms

at WB
pŒGu�! BpŒGu�; b 7! eitlbe�itl ;

is well defined. If the map t 7! at is strongly continuous on BpŒGu�, then the correspond-
ing infinitesimal generator, given by

ıa.b/ D lim
t!0

at .b/ � b

t
;
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is a closed unbounded derivation. Moreover, in this case, adjusting the set-up in [48,
Proposition 2.2], the same proof goes through to the effect that ıa D iıu, and consequently
ıu is closed. So we only need to show that at is strongly continuous. By density, it suffices
to show that given T 2 CpŒGu�, the map t 7! at .T / is continuous. Moreover, it suffices to
show continuity at zero. To this end, fix any � 2 `p.Gu/. We may write � D

P
y2Gu

˛y"y ,
where ˛y 2 C. Using that jeit � 1j � jt j, for any t 2 R, we see that

kat .T /.�/ � T .�/k
p

`p.Gu/
D

X
x2Gu

ˇ̌̌
eitl.x/

X
y2Gu

e�itl.y/˛yT ."y/.x/ �
X
y2Gu

˛yT ."y/.x/
ˇ̌̌p

D

X
x2Gu

ˇ̌̌ X
y2Gu

.eit.l.x/�l.y// � 1/Txy˛y

ˇ̌̌p
�

X
x2Gu

� X
y2Gu

jt jjl.x/ � l.y/jjTxy jj˛y j
�p

�

X
x2Gu

� X
y2Gu

jt jl.xy�1/jTxy jj˛y j
�p

� Prop.T /pjt jp
X
x2Gu

� X
y2Gu

jTxy jj˛y j
�p

D Prop.T /pjt jpkjT j.j�j/kp
`p.Gu/

� Prop.T /pjt jpkjT jkp
B.`p.Gu//

k�k
p

`p.Gu/
:

This means that

kat .T / � T kB.`p.Gu// � jt jProp.T /kjT jkB.`p.Gu//;

from which continuity at zero follows.

Inspired by the approach in [22, Theorem 4.2] and [23], we have the following result.

Theorem 4.6. Let G be an étale groupoid which has property RDp and RDq , for p; q 2
.1;1/ Hölder conjugate, with respect to some continuous length function l . We may then
identify S lp.G / as a Fréchet subalgebra of F p

�
.G / and F q

�
.G /. Under these identifications,

S lp.G / is a spectral invariant Fréchet subalgebra of F p
�
.G / and F q

�
.G /, and the inclusions

induce isomorphisms on their K-theories. In particular,

K�.F
p

�
.G // Š K�.S

l
p.G // Š K�.F

q

�
.G //:

Proof. For the sake of exposition, we shall only do the argument in the unital case. As-
sume without loss of generality that p � q. Let u 2 G .0/ be given, and let �u;pWF

p

�
.G /!

B.`p.Gu// be the corresponding left regular representation, which for f 2 S lp.G / is given
by �u;p.f /.�/.x/ D f � �.x/, for x 2 Gu and � 2 Cc.Gu/. Let Au;p denote the Banach
algebra given by the closure of �u;p.Cc.Gu// in B.`p.Gu//, and let ıu;p be the closed
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derivation on BpŒGu� from Lemma 4.5. Notice that �u;p.F
p

�
.G // � Au;p � B

pŒGu�. For
f 2 Cc.G / and � 2 `p.Gu/, we have that

ıu;p.�u;p.f //.�/.x/ D
X
y2Gu

f .xy�1/�.y/.l.x/ � l.y//;

and one can show by induction that

ıku;p.�u;p.f //.�/.x/ D
X
y2Gu

f .xy�1/�.y/.l.x/ � l.y//k ;

for k 2 N0. This implies that

kıku;p.�u;p.f //�k
p

`p.Gu/
D

X
x2Gu

jıku.�u;p.f //.�/.x/j
p

D

X
x2Gu

ˇ̌̌ X
y2Gu

f .xy�1/�.y/.l.x/ � l.y//k
ˇ̌̌p

�

X
x2Gu

� X
y2Gu

jf .xy�1/jl.xy�1/kj�.y/j
�p

�

X
x2Gu

� X
y2Gu

f .k/.xy�1/j�.y/j
�p

� k�u;p.f
.k//.j�j/k

p

`p.Gu/
� k�u;p.f

.k//k
p

B.`p.Gu//
k�k

p

`p.Gu/
;

where f .k/.x/ D jf .x/j.1C l.x//k . Clearly f .k/ 2 Cc.G /, and so

kıku;p.�u;p.f //kB.`p.Gu// �k�u;p.f
.k//kB.`p.Gu// �kf

.k/
kF

p
�
.G / � ckf kp;kCk0 ; (4.1)

where k0 2 N0 and c > 0 are the constants given by property RDp . Given f 2 S lp.G /,
there exists a sequence fn 2 Cc.G / such that fn ! f under the norm k�kp;kCk0 . Then
fn ! f in F p

�
.G /, so that �u;p.fn/! �u;p.f /. Also, (4.1) shows that

kıku;p.�u;p.fn// � ı
k
u;p.�u;p.fm//kB.`p.Gu// � ckfn � fmkp;kCk0 ;

so there exists a 2 BpŒGu� such that ıku;p.�u;p.fn//! a. Since ıku;p is closed, �u;p.f / 2
Dom.ıku;p/ and ıku;p.�u;p.f // D a. Putting

Su;p.G / D
� 1\
kD0

Dom.ıku;p/
�
\ Au;p;

the above shows that Su;p.G / contains �u;p.S lp.G //, and so by Lemma 4.3, it is dense
and hence spectral invariant in Au;p . We define Su;q.G / similarly to Su;p.G / with the
derivation ıu;q having the same definition on BqŒGu� as ıu;p had on BpŒGu�. By an anal-
ogous argument as above, one also obtains that �u;q.S lp.G // � Su;q.G /, and so again by
Lemma 4.3, Su;q.G / is spectral invariant in Au;q .
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We know that for a 2 F p
�
.G /, a� 2 F q

�
.G /. By Lemma 2.6, using the identification

provided by the contractive injections jpWF
p

�
.G /! C0.G / and jq WF

q

�
.G /! C0.G / from

Proposition 2.5, a� is the function on G given by a�.x/ D a.x�1/. If a 2 F p
�
.G / is such

that �u;p.a/ 2 Su;p.G / and �u;q.a�/ 2 Su;q.G /, then �u;p.a/ 2 Dom.ıku;p/� B.`
p.Gu//

and �u;q.a�/ 2 Dom.ıku;q/ � B.`
q.Gu//, for all k � 0. If "u denotes the basis vector

corresponding to the unit u, thenX
x2Gu

ja.x/jpl.x/pk D kıku;p.�u;p.a//"uk
p

`p.Gu/
� kıku;p.�u;p.a//k

p

B.`p.Gu//
<1;

andX
x2Gu

ja.x/jql.x/qk D kıku;q.�u;q.a
�//"uk

q

`q.Gu/
� kıku;q.�u;q.a

�//k
q

B.`q.Gu//
<1:

Let a 2 S lp.G / and assume that b 2 F p
�
.G / is the inverse of a in F p

�
.G /. Then for each

u 2 G .0/, �u;p.b/ is the inverse of �u;p.a/ in Au;p . Since �u;p.a/ 2 Su;p.G / and Su;p.G /
is spectral invariant, �u;p.b/ 2 Su;p.G /. Thus, for each k 2 N0, we haveX

x2Gu

jb.x/jpl.x/pk D kıku;p.�u;p.b//"uk
p

`p.Gu/
� kıku;p.�u;p.b//k

p

B.`p.Gu//
<1:

Also, b� is the inverse of a� in F q
�
.G /, and so for each u 2 G .0/, �u;q.b�/ is the inverse

of �u;q.a�/ in Au;q . Since a� 2 S lp.G /, we have that �u;q.a�/ 2 Su;q.G /. Since Su;q.G /
is spectral invariant in Au;q , we have that �u;q.b�/ 2 Su;q.G /; hence for each k 2 N0, we
haveX

x2Gu

jb.x/jql.x/qk D kıku;q.�u;q.b
�//"uk

q

`q.Gu/
� kıku;q.�u;q.b

�//k
q

B.`q.Gu//
<1:

Let F u � G u be any finite subset. Since p � q, we have that� X
x2F u

jb.x/jpl.x/pk
�q=p

�

X
x2F u

jb.x/jql.x/qk �
X
x2Gu

jb.x/jql.x/qk <1:

This means in particular that for any k 2 N0, we haveX
x2Gu

jb.x/jpl.x/pk <1:

This is not yet enough to conclude that b 2 S lp.G /, since we need

max
°

sup
u2G .0/

X
x2Gu

jb.x/jpl.x/pk ; sup
u2G .0/

X
x2Gu

jb.x/jpl.x/pk
±
<1;

for all k 2 N0. The binomial theorem together with the inequality .1 C l.x//pk �

2pk�1.1 C l.x/pk/ then implies the k�kp;k-norm estimate we really need. But this is
indeed the case, because it can be shown by induction that

sup
u2G .0/

kıku;p.�u;p.b//kB.`p.Gu// <1;
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and
sup
u2G .0/

kıku;q.�u;q.b
�//kB.`q.Gu// <1;

for all k 2N0. The induction argument uses that ıu;p and ıu;q are derivations, that �u;p.a/
is the inverse of �u;p.b/ and �u;q.a�/ is the inverse of �u;q.b�/, for all u 2 G .0/, that

ıku;p.�u;p.a/�u;p.b// D 0 and ıku;q.�u;q.a
�/�u;q.b

�// D 0;

for all k � 1, and the base cases are valid because we know that

sup
u2G .0/

k�u;p.b/kB.`p.Gu// D kbkF p
�
.G / <1;

and that
sup
u2G .0/

k�u;q.b
�/kB.`q.Gu// D kb

�
kF

q
�
.G / <1:

Now, if a 2 S lp.G / with inverse b 2 F q
�
.G / in F q

�
.G /, then a� 2 S lp.G / with inverse

b� 2 F
p

�
.G / in F p

�
.G /. By what we have done above, b� 2 S lp.G /, but then b 2 S lp.G /.

It follows by Lemma 2.3 that

K�.F
p

�
.G // Š K�.S

l
p.G // Š K�.F

q

�
.G //:

When the groupoid has polynomial growth, we can say even more about theK-theory
of the reduced Lp-operator algebras associated to it.

Theorem 4.7. Let G be an étale groupoid endowed with a continuous length function for
which it has polynomial growth. Then the groups K�.F

p

�
.G //, for p 2 .1;1/, are all

isomorphic.

Proof. By Proposition 3.14, G has property RDp for all p 2 Œ1;1/; hence we may apply
Theorem 4.6 to conclude that for all p 2 .1;1/,

K�.F
p

�
.G // Š K�.S

l
p.G //:

So if we can show that for all p 2 .1;1/, we have S lp.G / D S
l
1.G / as Fréchet algebras,

then the result would follow. First of all, one can apply Hölder’s inequality together with
the fact that G has polynomial growth to get the continuous inclusion S lp.G / � S

l
1.G /; to

see this, let c > 0 and k 2 N0 be the constant from Proposition 3.14 such that

sup
u2G .0/

X
x2Gu

.1C l.x//�qk � c:

Then for any f 2 S lp.G /, n 2 N0 and u 2 G .0/, we haveX
x2Gu

jf .x/j.1C l.x//n D
X
x2Gu

jf .x/j.1C l.x//kCn.1C l.x//�k � c1=qkf kp;kCn:

Similarly, X
x2Gu

jf .x/j.1C l.x//n � c1=qkf kp;kCn;

so that kf k1;n � c1=qkf kp;kCn. The other inclusion follows by Lemma 4.2.
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5. Examples

5.1. Coarse groupoids

In this section, we apply the results on polynomial growth and property RDp from Sec-
tion 3 and Section 4 to groupoids arising from bounded geometry coarse structures. Since
the graph decomposition result Proposition 5.2 could be of more general interest, we con-
sider bounded geometry coarse spaces before specializing to the extended metric space
setting where we can naturally apply the main results of the paper. We refer the reader
to [43] for material on coarse spaces.

Let X be a set with coarse structure E . For any controlled set E 2 E , we will denote
by

Ex D ¹y 2 X W .y; x/ 2 Eº and Ex D ¹y 2 X W .x; y/ 2 Eº;

for x 2 X . Moreover, for E;F 2 E , we will denote

E ı F D ¹.x; z/ 2 X �X W 9y 2 X such that .x; y/ 2 E and .y; z/ 2 F º:

By En we will understand the n-iterated product E ı � � � ıE.
As in [43, Definition 3.25] and [46], we will say that the coarse space .X;E/ is uni-

formly locally finite if
sup
x2X

max¹jExj; jExjº <1;

for every E 2 E . We define the growth of E 2 E in the point x 2 X to be the function
grE;x WN ! N given by

grE;x Wn 7! j.E
n/xj:

Note that this is the growth function of [43, p. 42] using the diagonal gauge � D ¹.x; x/ W
x 2 Xº. For two functions f; gWN ! N we write f � g if there exist a; b > 0 such that
f .n/ � ag.bn/ for all sufficiently large n. We write f � g if f � g and g � f . We may
then make sense of the growth type of a coarse space X . We say X has the growth type of
f WN ! N if for every E 2 E and every x 2 X , grE;x � f , and for at least one E and
one x, f � grE;x . In particular,X has polynomial growth if this is true for a polynomial f .

We proceed to cover the graph decomposition lemma [43, Lemma 4.10]. A partial
bijection of a coarse space .X; E/ is a triple .D; R; �/ consisting of two subsets D and
R of X together with a bijection � WD ! R. If the graph �� WD ¹.�.x/; x/ W x 2 Dº 2 E ,
we say .D; R; �/ is a partial translation. We say that a collection ¹�1; : : : ; �nº of partial
bijections of X are orthogonal if ��i \ .Dj �Rj / D ; whenever i ¤ j . Note that this is
strictly stronger than the graphs being disjoint. The following lemma contains the parts of
[43, Lemma 4.10] we need for our purposes.

Lemma 5.1 ([43, Lemma 4.10]). Let X be a set and let E � X � X . The following
conditions are equivalent:

(a) E is the union of the graphs of a finite orthogonal set of partial bijections;
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(b) E is controlled for the universal bounded geometry coarse structure (on X ); that
is, supx2X max¹jExj; jExjº <1.

We proceed to explain how one goes from (b) to (a) in Lemma 5.1, that is how one
constructs the finite number of orthogonal graphs of partial bijections whose (disjoint)
union make up E. This follows the construction in the proof of [43, Lemma 4.10].

So let E be a controlled set for the universal bounded geometry coarse structure onX ,
meaning N.E/ WD supx2X max¹jExj; jExjº <1. Define a graph � whose vertices are
the points of E and such that .x; y/ and .x0; y0/ are linked by an edge if and only if either
.x; y0/ 2 E or .x0; y/ 2 E. One may then use a greedy algorithm for vertex coloring
of this graph to decompose E into orthogonal graphs of partial bijections. In short, we
may decompose E into at most n C 1 orthogonal graphs of partial bijections provided
the maximal vertex degree of � is n. Next, we show how to bound the vertex degree n in
terms of N.E/.

Proposition 5.2. Let .X;E/ be a coarse space and let E 2 E be so that

N WD sup
x2X

max¹jExj; jExjº <1:

The vertex degree of the graph � defined above is bounded by 2N.N � 1/. Thus, at most
2N.N � 1/C 1 orthogonal graphs of partial bijections are needed in the decomposition
of E in Lemma 5.1.

Proof. Let .x0; y0/ be an arbitrary vertex in � (that is an arbitrary point in E). We wish
to bound its vertex degree. By assumption on E, jEx0 j � N and jEy0 j � N .

Other than .x0; y0/, there are at most N � 1 points in E with first coordinate x0. Say
there are Kx0 of them, and label them .x0; y1/; : : : ; .x0; yKx0 /.

Likewise, other than .x0; y0/, there are at most N � 1 points in E with second coor-
dinate y0. Say there are Ky0 of them, and label them .x1; y0/; : : : ; .xKy0 ; y0/.

If .x; y/ ¤ .x0; y0/ connects to .x0; y0/, then either

• .x; y0/ 2 E, which implies x 2 ¹x1; : : : ; xKy0 º. For each such choice of x, the point
.x; z/ connects to .x0; y0/ as .x; y0/ 2 E. By assumption of uniform local finiteness,
there are at most N choices for z; or

• .x0; y/ 2 E, which implies y 2 ¹y1; : : : ; yKx0 º. For each such choice of y, the point
.z; y/ connects to .x0; y0/ as .x0; y/ 2 E. Again by uniform local finiteness, there are
at most N choices for z.

In total, the vertex degree of .x0; y0/ is bounded by

Kx0 �N CKy0 �N � .N � 1/N C .N � 1/N D 2N.N � 1/:

Thus, by a greedy vertex coloring algorithm, the number of orthogonal graphs needed to
decompose � is bounded by 2N.N � 1/C 1.
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Remark 5.3. With the given graph coloring algorithm used, we cannot hope to get the
bound sub-quadratic. Indeed, it is not hard to see that for the bounded coarse structure
on Z induced by the usual metric, we have a quadratic lower bound on the number of
orthogonal graphs used in the decomposition of Ek WD ¹.m; n/ 2 Z � Z W jm � nj � kº
around .0; 0/, say.

For a discrete coarse space X , denote by ˇX the Stone–Čech compactification of X .

Definition 5.4. Let X be a uniformly locally finite coarse space, and denote the coarse
structure by E . The coarse groupoid of X (with respect to the coarse structure E) is the
subset G .X/ � ˇ.X �X/ defined by

G .X/ WD
[
E2E

E

where the closures are taken in ˇ.X �X/.

By [43, Corollary 10.18], we may view closures of controlled sets E as being in either
ˇ.X � X/ or in ˇX � ˇX depending on what best fits our purposes. Then [46, Proposi-
tion 3.2] (or [43, Proposition 10.20]) tells us that G .X/ indeed becomes a groupoid. The
source, target, inverse and multiplication maps on the pair groupoid X � X have unique
continuous extensions to G .X/. With respect to these extensions, G .X/ becomes a prin-
cipal, étale, locally compact and Hausdorff groupoid with unit space ˇX .

By [43, Example 10.25] we obtain that for x 2 X , the fiber G .X/x equals the coarse
connected component (see [43, Remark 2.20]) of x in X . Thus, the growth properties of
G .X/x , for x 2 X , are entirely determined by the growth properties of the original coarse
space .X;E/. The key to understanding the growth of the groupoid G .X/ therefore lies in
understanding G .X/! for ! 2 ˇX nX .

Proposition 5.5. Let X be a set equipped with a uniformly locally finite coarse struc-
ture E , that is, supx2X max¹jExj; jExjº <1, for all E 2 E . Suppose X has growth type
bounded by f WN ! N. Then for any E 2 E and � 2 ˇX , we have

Œn 7! j.E
n
/�j� �

´
f 2 if � 2 ˇX nX;

f if � 2 X:

Proof. First suppose � 2 X . Since G .X/� equals the coarse connected component of �
in X , we get .E

n
/� D .E

n/�, from which Œn 7! j.E
n
/�j� � f follows by assumption.

So let � 2 ˇX n X , let E 2 E , and let n 2 N. First note that by continuity of multi-
plication in G .X/, we have E

n
� En. So it suffices to show that Œn 7! j.En/�j� � f 2.

If .!; �/ 2 En, then .!; �/ 2 �� for some graph �� of a partial translation � . In other
words, .!; �/ D limi .�.xi /; xi / for .xi /i � En converging to �. But Proposition 5.2 tells
us that the number of orthogonal graphs needed to decompose En is at most of the order
of f .n/2. It follows that Œn 7! j.E

n
/�j� � f

2 for � 2 ˇX nX .
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We now specialize to the case of an extended metric space, where there is a natural
length function appearing. The bounded coarse structure on an extended metric space
.X; d/ is the coarse structure whose controlled subsets are subsets of Er D ¹.x; y/ 2
X �X W d.x; y/ � rº. Recall that an extended metric space .X; d/ is said to be uniformly
locally finite if for any R > 0 there is a uniform finite upper bound on the cardinalities of
all closed balls with radius R, that is

sup
x2X

jB.x;R/j <1

where B.x;R/ denotes the closed R-ball around x 2 X . This is exactly the condition
on the extended metric space that will make the associated bounded coarse structure be
uniformly locally bounded. Associated to .X; d/ is the coarse groupoid G.X;d/ which is
defined as follows:

• for any r � 0, define the controlled set Er WD ¹.x; y/ 2 X �X W d.x; y/ � rº;

• as a topological space, we have G.X;d/ WD
S
r�0Er inside ˇ.X �X/, the Stone–Čech

compactification of X �X ;

• we have G
.0/

.X;d/
D E0 Š ˇX ;

• the range and source maps are the unique extensions of the first and second factor
maps X �X ! X , respectively;

• the multiplication is inherited from the pair groupoid multiplication on ˇX � ˇX .

In [33, Remark 5.17], Ma and Wu make several claims regarding the length function
on G.X;d/, the induced extended metric, and the structure of the source fibers .G.X;d//x ,
for x 2 X . We collect the observations in the following lemma.

Lemma 5.6. Let G.X;d/ be a coarse groupoid of a uniformly locally finite extended metric
space .X; d/. Then:

(1) the extended metric d extends to an extended metric ˇd which takes finite values
on G.X;d/;

(2) the induced length function `ˇd is continuous and proper;

(3) for any x 2 X , the source fiber .G.X;d//x equipped with the fiberwise invari-
ant metric induced by `ˇd is isometrically isomorphic to .connx.X/; d jconnx.X//,
where connx.X/ is the (metric space) connected component of x in X , and
d jconnx.X/ is d restricted to this connected component.

Proof. (1) follows easily by viewing the metric as taking values in Œ0;1� with the topol-
ogy of the Alexandroff compactification of Œ0;1/. Moreover, (2) is written out in [33,
Remark 5.17].

To prove (3), note that the length function `ˇd yields an extended metric �`ˇd on
G.X;d/ by defining

�`ˇd ..x; y/; .u; v// WD

´
`ˇd .x; u/ if y D v;

0 otherwise;
D

´
ˇd.x; u/ if y D v;

0 otherwise:
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We note that for x 2 X , the source fiber .G.X;d//x will (as a set) equal connx.X/ by
[43, Example 10.25]. It is then clear that ..G.X;d//x ; �`ˇd / is isometrically isomorphic to
.connx.X/; d jconnx.X//.

We make the following observations. Let .X;d/ be a uniformly locally finite extended
metric space, and let Er 2 E be a controlled set for the associated bounded coarse struc-
ture, as in the definition of the associated coarse groupoid above. Suppose there is a
function f WR�0 ! R such that

jB.x; r/j � f .r/;

for all x 2X and all r 2N, that is, a growth condition on the cardinalities of r-balls in our
extended metric space. We see that this implies the bounded coarse structure associated
with .X; d/ has growth type bounded by that of f .

Estimating the growth of .G.X;d//� we get, for �2 ˇX and a sufficiently large constant
M > 0,

jB.G.X;d//�.r/j D j¹� 2 ˇX W .�; �/ 2 Erºj

�

´
f .r/ if � 2 X;

Mf .r/2 if � 2 ˇX nX:

This follows from applying Proposition 5.5 with n D 1. Thus, we obtain the following
proposition.

Proposition 5.7. Let .X; d/ be a uniformly locally finite extended metric space, and sup-
pose there is a function f WR�0 ! R for which jB.x; r/j � f .r/ for all x 2 X . Then,

jB.G.X;d//�.r/j �

´
f .r/ � 2 X;

Mf .r/2 � 2 ˇX nX;

for a sufficiently large constant M . That is, the growth of the groupoid G.X;d/ is bounded
above by the growth type of f 2. In particular, if f is a polynomial, then G.X;d/ has poly-
nomial growth.

Combining Proposition 5.7 with Proposition 3.14 and Theorem 4.7 immediately yields
the following proposition.

Proposition 5.8. Let .X; d/ be a uniformly locally finite extended metric space for which
there is a polynomial f such that jB.x; r/j � f .r/ for all x 2 X and all r � 0. Denote
by G.X;d/ the associated coarse groupoid. Then

(1) G.X;d/ has property RDp for all p 2 .1;1/;

(2) The K-theory groups K�.F
p

�
.G.X;d///, for � D 0; 1, are independent of p 2

.1;1/.
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The result [43, Proposition 10.28] together with the analogous proof as the one of
[43, Proposition 10.29] for p 2 .1;1/ rather than just the case p D 2, establishes a con-
tractive bijective homomorphism from F

p

�
.G.X;d// to Bpu .X; d/. Here, Bpu .X; d/ denotes

the uniform Lp-Roe algebra, that is, the operator norm closure in B.`p.X// of the alge-
bra of all bounded operators of finite propagation. It follows that for any p 2 .1;1/ and
� D 0; 1, K�.F

p

�
.G.X;d/// Š K�.B

p
u .X; d//. The following is then immediate by Propo-

sition 5.8.

Corollary 5.9. Let .X; d/ be a uniformly locally finite extended metric space for which
there is a polynomial f such that jB.x; r/j � f .r/ for all x 2 X and all r � 0. Then the
K-theory groups K�.B

p
u .X; d//, for � D 0; 1 are independent of p 2 .1;1/.

Though they consider a different algebra, similar results were obtained in [52, Theo-
rem 5.22], where they prove that the K-theory groups of the Roe algebras Bp.X; d/ are
independent of p 2 .1;1/ ifX is a proper metric space with finite asymptotic dimension.
Note that unlike the results of this paper, they do not require uniform local finiteness.
They ask in [52, Question 6.2] if it is possible to show such independence of p without
using Baum–Connes. Corollary 5.9 shows that under restrictions on .X; d/ of polynomial
growth and uniform local finiteness, one can prove the K-theory of the uniform Lp-Roe
algebras is independent of the value of p 2 .1;1/ by comparatively simple means.

5.2. Point set groupoids

In this section, we will show that groupoids arising from point sets as in, for example, [14]
have polynomial growth under natural assumptions on the locally compact group and the
point set. As such, they also lend themselves to applications of the results from Section 3
and Section 4.

Let G be a locally compact second-countable group equipped with a continuous and
proper length function l under which G has polynomial growth. Denote the Haar measure
on G by m. Assume further that ƒ � G is a separated point set, that is, there exists a
unit-neighborhood U � G such that the cardinality jƒ \ xU j � 1 for all x 2 G, where
xU is the translation of U by x.

Denote by C.G/ the set of closed subsets of G, and equip it with the Chabauty–Fell
topology. It is known that C.G/ is compact with this topology. There is a continuous left
G-action on C.G/ given by

xC D ¹xy W y 2 C º;

for x 2G and C 2C . The closure of the orbit ofƒ under this action is called the hull ofƒ,
and we denote it by �.ƒ/. The punctured hull of ƒ is defined as ��.ƒ/ D �.ƒ/ n ;.
One then further defines the transversal of ƒ to be

�0.ƒ/ WD ¹P 2 �.ƒ/ W e 2 P º � �
�.ƒ/;

where e is the identity of G. We remark that �0.ƒ/ is compact as it is closed in �.ƒ/.
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We then consider the transformation groupoid G Ë ��.ƒ/. The point set groupoid
ofƒ, denoted by G .ƒ/, is the restriction of this transformation groupoid to the transversal
�0.ƒ/ of ƒ, that is

G .ƒ/ D ¹.x; P / 2 G ���.ƒ/ W P; xP 2 �0.ƒ/º

D ¹.x; P / 2 G ��0.ƒ/ W x
�1
2 P º: (5.1)

The operations are the ones inherited from the transformation groupoid. It is shown in
[14, Proposition 3.11] that when ƒ is separated, G .ƒ/ is étale.

Proposition 5.10. Let G be a locally compact group endowed with a length function
l WG ! R�0 with respect to which G has polynomial growth. Suppose ƒ � G is a sepa-
rated point set, and let G .ƒ/ be the groupoid described in (5.1). Then the mapLWG .ƒ/!
R�0 given by L.x; P / D l.x/ defines a length function on G .ƒ/, under which G .ƒ/ has
polynomial growth.

Proof. We first verify that L defines a length function on G .ƒ/. If L.x; P / D 0, then
l.x/ D 0, meaning x D e. Thus, .x; P / D .e; P / 2 G .ƒ/.0/. It is also sub-multiplicative,
as

L..y; xP /.x; P // D L.yx; P / D l.yx/ � l.y/C l.x/ D L.y; xP /C L.x; P /;

and it is invariant under inversion since

L..x; P /�1/ D L.x�1; xP / D l.x�1/ D l.x/ D L.x; P /:

We conclude that L is a length function on G .ƒ/.
To see that G .ƒ/ has polynomial growth, let P 2 �0.ƒ/ D G .ƒ/.0/. We will use in

the sequel that if .x; P / 2 G .ƒ/P , then x�1 2 P , as described in (5.1). Let B
l

r .e/ denote
the closed l-ball of radius r in G around the unit. Then, using that l.x�1/ D l.x/ for all
x 2 G, we get

jBG .ƒ/P .r/j D j¹.x; P / W l.x/ � rºj D jP \ B
l

r .e/j:

Using [14, Corollary 3.4], we see that

jP \ B
l

r .e/j �
m.B

l

r .e/V /

m.V /
;

for any symmetric unit-neighborhood V of G. Choosing V to be an l-ball in G of some
finite radius, we see that the denominator is just some constant, while the numerator grows
polynomially by assumption of polynomial growth of the groupG. Since P 2�0.ƒ/ was
arbitrary and this estimate is independent of P , we conclude that G .ƒ/ has polynomial
growth.
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5.3. Graph groupoids

In this subsection, we shall characterize the groupoids arising from finite directed graphs
that have polynomial growth. A specific instance of such groupoids has as its reduced Lp-
operator algebra the Lp-Toeplitz algebras (see Example 5.13), and so Theorem 4.7 will
apply to give the same result as [49, Theorem 4.3]. Let us start by defining finite directed
graphs and their associated groupoids.

By a directed graph, we mean a quadruple E D .E0; E1; s; r/, where E0 and E1

are non-empty sets called the sets of vertices and edges, respectively, and r; sWE1 ! E0

are maps called the range and source maps. We view e 2 E as an arrow from s.e/ to
r.e/. The directed graph E is said to be finite if both E0 and E1 are finite. A vertex
v 2 E0 such that s�1.v/D ; is called a sink. We denote by E0sink the subset of all sinks. A
path of length n 2 N is an n-tuple ˛ D .˛1; : : : ; ˛n/ 2 .E1/n with r.˛i / D s.˛iC1/, for
i D 1; : : : ; n � 1. We will denote by En all the paths of length n, and write ˛ D ˛1 � � �˛n
instead of .˛1; : : : ; ˛n/. The vertices are by convention paths of length zero. Then E� WDS1
nD0 E

n is the set of all finite paths. Given ˛ 2 E� we denote by j˛j its length, and we
define s.˛/ WD s.˛1/ and r.˛/ WD r.˛j˛j/ when ˛ 2 En with n � 1. For v 2 E0 we put
r.v/ D s.v/ D v. The infinite path space of E is the set of all sequences x D .xn/1nD1,
where xi 2 E1 and r.xi / D s.xiC1/, for every i 2 N, and it will be denoted by E1. The
boundary path space of E is the set

@E WD E1 [ ¹˛ 2 E� W r.˛/ 2 E0sinkº:

With the topology generated by the sets of the form

Z.v/ WD ¹x 2 @E W s.x/ D s.x1/ D vº;

and
Z.˛/ WD ¹x 2 @E W xi D ˛i for 1 � i � j˛jº;

for ˛ 2 E� with j˛j � 1, we have that @E is a totally disconnected space. Given ˛ 2
E� nE0 and x 2 @E with s.x/D r.˛/, we define the concatenated path ˛x by .˛x/i D ˛i
for 1 � i � j˛j and .˛x/i D xi�j˛j for i � j˛j C 1. The graph groupoid of E is defined
as

GE WD ¹.˛x; j˛j � jˇj; ˇx/ W ˛; ˇ 2 E
�; x 2 @E with r.˛/ D r.ˇ/ D s.x/º;

where ..˛x; j˛j � jˇj; ˇx/; .ıx0; jıj � j j; x0// 2 G
.2/
E if and only if ˇx D ıx0, and in

this case,

.˛x; j˛j � jˇj; ˇx/ � .ıx0; jıj � j j; x0/ D .˛x; j˛j � jˇj C jıj � j j; x0/:

Moreover, we have that .˛x; j˛j � jˇj; ˇx/�1 D .ˇx; jˇj � j˛j; ˛x/. With the topology
given by the sets

Z.˛; ˇ/ D ¹.˛x; j˛j � jˇj; ˇx/ W x 2 @E with r.˛/ D r.ˇ/ D s.x/º;
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for ˛; ˇ 2 E� with r.˛/ D r.ˇ/, GE is an ample second countable groupoid. The unit
space is G

.0/
E D ¹.x; 0; x/ W x 2 @Eº, and is identified with @E. Given x 2 E1, we define

�.x/ as the infinite path with �.x/i D xiC1, for every i 2N. Given ˛ 2 E�, with j˛j � 2,
say ˛ D ˛1 � � � ˛j ˛j, we define �.˛/ to be the path ˛2 � � � ˛j˛j, and if j˛j D 1, we define
�.˛/ D r.˛/. With the above notation introduced, we can describe

.GE /x D ¹.˛�
n.x/; j˛j � n; x/ W n 2 N0; ˛ 2 E

� with r.˛/ D s.x1Cn/º: (5.2)

Let E be a finite directed graph, with associated graph groupoid GE . The set

S D
[
˛2E1

.Z.˛; r.˛// [Z.r.˛/; ˛//;

is compact open, and is a generating set for GE , meaning that S�1 D S , and for any
g 2 GE , there exists N 2 N such that

SN
kD1 S

k is a neighborhood of g in GE . Such a
compact open generating set induces a continuous length function, given by lS .u/ D 0,
for each u 2 G

.0/
E , and for g … G

.0/
E by

lS .g/ D inf
°
n 2 N W g 2

n[
kD1

Sk
±
:

In what follows, we shall refer to lS as the canonical length function of GE .
Note that, given g D .˛�n.x/; j˛j � n; x/ 2 .GE /x , we have

g 2 Z.˛1; r.˛1// � � �Z.˛j˛j; r.˛j˛j//Z.r.xn/; xn/ � � �Z.r.x1/; x1/; (5.3)

and in this case lS .g/ � j˛j C n. Now, given v 2 E0, we define the function 'Ev .n/ D
jE�nvj, where E�nv consists of the paths ˛ 2 E� with j˛j � n and r.˛/ D v. Using
(5.2) and (5.3), one can find injective maps E�.n�j /

s.xjC1/
,! B.GE /x .n/, for any 0 � j � n,

and B.GE /x .n/ ,!
Fn
iD0E

�.n�i/

s.xiC1/
, where the latter is a union of disjoint copies of the sets

E
�.n�i/

s.xiC1/
. It follows that

'Es.xjC1/.n � j / � jB.GE /x .n/j �

nX
iD0

'Es.xiC1/.n � i/;

for any 0 � j � n.
A cycle with center v is a path ˛ of length at least 1 such that s.˛/ D r.˛/ D v. A

cycle ˛ with center v is called simple if r.˛i / ¤ v, for every 1 � i < j˛j. Let ˛ and ˇ
be two different simple cycles with center v. Then there exist two different cycles x̨ and
x̌with center v and with length K WD j˛jjˇj. Then observe that 'Ev .nK/ � 2

n, and thus,
with x D x̨1, we have that jB.GE /x .nK/j � 2

n, so GE does not have polynomial growth.

Lemma 5.11. Let E be a finite directed graph such that every vertex has at most one
simple cycle, and that each such simple cycle has length 1. Then GE has polynomial
growth with respect to its canonical length function.
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Proof. Let E be such a finite directed graph. Let F be the graph such that E0 D F 0, and
F 1 consists of E1, but we also add a simple cycle of length 1 to those vertices that are
not already a center of a simple cycle. Then 'Ev .n/ � '

F
v .n/, so we can assume without

loss of generality that every vertex in E is a center for a simple cycle of length 1. Let yE
be the sub-graph of E with yE0 WD E0 and yE1 WD E1 n ¹˛ 2 E1 W r.˛/ D s.˛/º. Thus, yE
is an acyclic graph. Given v 2 E0, let�v be the set of all the maximal paths  2 yE� such
that r./ D v, and letmv be the maximal length of all the paths in�v . Then we have that
jEnvj � cv.nC 1/

mvC3, where cv D j�vj, and hence 'Ev .n/D jE
�nvj � cv.nC 1/

mvC4.
Thus, if we define c WD max¹cv W v 2 E0º and m WD max¹mv W v 2 E0º, we have that
'Ev .n/ � c.nC 1/

mC4, for every n 2 N and v 2 E0, and so

jB.GE /x .n/j �

nX
iD0

'Es.xiC1/.n � i/ � c.nC 1/
mC5;

for every x 2 G
.0/
E . Therefore, GE has polynomial growth.

Proposition 5.12. Let GE be the graph groupoid associated to a finite graph E. Then GE
has polynomial growth with respect to its canonical length function if and only if every
vertex of E has at most one simple cycle.

Proof. We have seen that if there exists a vertex v with at least two different simple cycles,
then jB.GE /x .n/j has exponential growth for some x 2 G

.0/
E . Now, let us suppose that every

vertex of E has at most one simple cycle. Let U be a maximal subset of vertices of E0

such that two vertices of U do not belong to the same cycle. Put X WD
S
v2U Z.v/. Then

.GE /jX is isomorphic to GF , where F is a finite graph such that every vertex of F has at
most one simple cycle and every simple cycle has length 1 (see [13, Proposition 5.4 (3)]).
By Lemma 5.11, GF has polynomial growth. Since GE is Kakutani equivalent to GF , and
both are ample groupoids with � -compact unit spaces, it follows by Lemma 3.13 that GE
has polynomial growth.

Example 5.13. Let E be the following graph:

v

w

e f

and let GE the associated graph groupoid, which by Proposition 5.12 has polynomial
growth. Let p 2 .1;1/ and let S 2 B.`p.N// be the operator such that S.ei / D eiC1
for every i 2 N. Let Tp be the Lp-operator algebra generated by S and its revert opera-
tor T . We claim that F p

�
.GE / is isometrically isomorphic to Tp . Indeed, let aD �Z.e;w/C

�Z.f;v/ and b D �Z.w;e/ C �Z.v;f / be two functions in Cc.GE /. It is straightforward to
check that a and b generate Cc.GE /. Now, the map ƒ W Cc.GE /! Tp given by ƒ.a/ D
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S and ƒ.b/ D T is an algebra homomorphism. Let �x W Cc.GE / ! B.`p..GE /x// be
the left regular representation restricted to x 2 G

.0/
E , and let x D f 1 2 G

.0/
E . Observe

that .GE /x D ¹.f 1; n; f 1/ W n 2 Zº and that �x.a/.e.f1;n;f1// D e.f1;nC1;f1/ and
�x.b/.e.f1;n;f1// D e.f1;n�1;f1/. Now let x 2 G

.0/
E n ¹f

1º D ¹w; e; fe; f 2e; : : :º.
Then we have that .GE /x D ¹.˛; j˛j � jxj; x/ W ˛ 2 E� such that r.˛/ D wº. Identifying
.GE /x with N via the map .˛; j˛j � jxj; x/ 7! j˛j C 1, `p..GE /x/ is isometrically iso-
morphic to `p.N/, and with this identification we have that �x.a/ D S and �x.b/ D T .
But then given � 2 Cc.GE /, we have that

k�kF p
�
.GE /
D sup¹k�x.�/k W x 2 G

.0/
E º D max¹k�f1.�/k; k�w.�/kº:

But k�w.�/k D kƒ.�/kTp . Now, by [49, Theorem 3.7], we have that

k�f1.�/k D inf¹kƒ.�/ �RkTp W R 2 K.`
p.N//º;

but then k�f1.�/k � kƒ.�/kTp . Therefore, k�kF p
�
.GE /
D kƒ.�/kTp . Thus, ƒ extends to

an isometric isomorphism ƒWF
p

�
.GE /! Tp , as desired.

By Theorem 4.7 we have that the groups K�.Tp/ are independent of p 2 .1;1/,
for � D 0; 1. Since we know already that K0.T2/ Š Z and K1.T2/ D 0, we must have
K0.Tp/ Š Z and K1.Tp/ D 0, for all p 2 .1;1/. Therefore, the above provides an alter-
native way to prove [49, Theorem 4.3].

A. The twisted case

In this section, we introduce reduced twisted groupoid Lp-operator algebras associated to
normalized continuous 2-cocycles and briefly outline how the main results of this article
carry over to this more general setting. Note, however, that a 2-cocycle twist is not the
most general notion of a twist over a groupoid; see, for example, [45, Chapter 11.1] for
details.

Definition A.1. A normalized continuous 2-cocycle on an étale groupoid G is a continu-
ous map � WG .2/ ! T satisfying

(1) �.r.x/; x/ D �.x; s.x// D 1, for all x 2 G ;

(2) �.x; y/�.xy; z/ D �.x; yz/�.y; z/, for all .x; y/; .y; z/ 2 G .2/.

Definition A.2. Two normalized continuous 2-cocycles ! and � are said to be cohomol-
ogous if there is a continuous map  WG ! T , such that for all .x; y/ 2 G .2/, we have

�.x; y/!.x; y/ D .x/.y/.xy/:

Given a normalized continuous 2-cocycle � on an étale groupoid G , we define the
� -twisted convolution algebra Cc.G ; �/ as the associative C-algebra which as a set is just
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Cc.G /, but with � -twisted multiplication given by

f �� g.x/ D
X

y2Gs.x/

f .xy�1/g.y/�.xy�1; y/ D
X

y2G r.x/

f .y/g.y�1x/�.y; y�1x/:

Under the I -norm, Cc.G ; �/ is a normed algebra. Given u 2 G .0/, the � -twisted left
regular representation at u is denoted ��u and is the contractive algebra homomorphism
��u WCc.G ; �/! B.`p.Gu//, given by

��u.f /.�/.x/ D
X
y2Gu

f .xy�1/�.y/�.xy�1; y/;

for � 2 `p.Gu/ and x 2 Gu. The reduced � -twisted groupoid Lp-operator algebra asso-
ciated to G is denoted F p

�
.G ; �/ and is by definition the closure of Cc.G ; �/ under the

norm
kf kF p

�
.G ;�/ WD sup

u2G .0/
k��u.f /kB.`p.Gu//:

Since
L
u2G .0/ �

�
u is an isometric representation of F p

�
.G ; �/ on the Lp-spaceL

u2G .0/ `
p.Gu/, F

p

�
.G ; �/ is an Lp-operator algebra. It is unital if and only if G .0/

is compact, in which case the indicator function of the unit space is the identity ele-
ment. When � is the trivial 2-cocycle, that is, the 2-cocycle such that �.x; y/ D 1 for all
.x; y/ 2 G .2/, twisted convolution is just the usual convolution, and F p

�
.G ; �/ D F

p

�
.G /.

It is straightforward to show that kf k1 � kf kF p
�
.G ;�/, for all f 2 Cc.G ; �/, and so

the identity on Cc.G ; �/ extends to a contractive linear map j �p WF
p

�
.G ; �/! C0.G /. In

fact, the map j �p , like in the case of the trivial twist, takes the form

j �p .a/.x/ D h�
�
s.x/.a/.ıs.x//; ıxi;

for any a 2 F p
�
.G ; �/ and x 2 G , where h�; �i is the usual duality product defined in Sec-

tion 2. The statements in [9, Proposition 4.7 and Proposition 4.9] generalize readily to
give the analogous ones in the twisted case; that is, the map j �p is injective, and moreover,

j �p .ab/.x/ D j
�
p .a/ �� j

�
p .b/.x/;

for all a; b 2 F p
�
.G ; �/ and x 2 G . Also, Lemma 2.6 generalizes to the statement that

the twisted involution �, given by f �.x/ D f .x�1/�.x�1; x/ for f 2 Cc.G /, extends to
an isometric anti-isomorphism �WF p

�
.G ; �/! F

q

�
.G ; �/, and j �q .a

�/ D j �p .a/
�, for any

a 2 F
p

�
.G ; �/.

Definition A.3. Let � be a normalized continuous 2-cocycle on an étale groupoid G , let
l be a locally bounded length function on G , and let p 2 Œ1;1/. We say G has � -twisted
property RDp with respect to l if there exist c > 0 and k 2 N0 such that

kf kF p
�
.G ;�/ � ckf kp;k ;

for all f 2 Cc.G ; �/. We say G has � -twisted property RDp if it has � -twisted property
RDp with respect to some locally bounded length function.
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It is straightforward to show the inequality kf kF p
�
.G ;�/ � kjf jkF p

�
.G /, so that prop-

erty RDp implies � -twisted property RDp for any normalized continuous 2-cocycle � .
Also, it follows readily from the definitions that if ! and � are cohomologous 2-cocycles,
then G has � -twisted property RDp if and only if G has !-twisted property RDp . Thus, if
� is a continuous 2-cocycle that is cohomologous to the trivial one, then � -twisted prop-
erty RDp implies !-twisted property RDp for all continuous 2-cocycles !. It is not known
to the authors whether � -twisted property RDp for a continuous 2-cocycle � that is not in
the cohomology class of the trivial one implies property RDp .

Supposing an étale groupoid G is equipped with a locally bounded length function l
and � is a continuous 2-cocycle, one can show in a completely analogous manner as in
[22, Lemma 3.3] that G has � -twisted property RDp if and only if S lp.G / is continuously
included in F p

�
.G ; �/ via j �p

�1. Moreover, endowing S lp.G / with � -twisted convolution,
S lp.G / becomes a Fréchet algebra if G has property RDp , and, like in Proposition 4.1, it
may be identified as a Fréchet subalgebra of F p

�
.G ; �/ and F q

�
.G ; �/ via j �p

�1 and j �q
�1

respectively. It is not clear to the authors that S lp.G / is a Fréchet algebra under twisted
convolution if G has twisted property RDp; the proof in Proposition 4.1 does not work in
the twisted case, because it relies on an inequality of positive functions under the usual
convolution product. In Lemma 4.4, the algebra CpŒGu� clearly contains ��u.Cc.G ; �//,
and Lemma 4.3 and Lemma 4.5 remain the same in the twisted case. The arguments in
Theorem 4.6 and Theorem 4.7 extend in the natural manner to give the next two results.
By S lp.G ; �/ we mean S lp.G / endowed with the twisted convolution product.

Proposition A.4. Let G be an étale groupoid which has property RDp and RDq , for
p; q 2 .1;1/ Hölder conjugate, with respect to some continuous length function l , and
let � be a continuous 2-cocycle on G . We may identify S lp.G ; �/ as a Fréchet subalgebra
of F p

�
.G ; �/ and F q

�
.G ; �/. Under these identifications, S lp.G ; �/ is a spectral invariant

Fréchet subalgebra of F p
�
.G ; �/ and F q

�
.G ; �/, and the inclusions induce isomorphisms

on their K-theories; in particular,

K�.F
p

�
.G ; �// Š K�.S

l
p.G ; �// Š K�.F

q

�
.G ; �//:

Proposition A.5. Let G be an étale groupoid and let � be a continuous 2-cocycle on G .
If G has polynomial growth with respect to a continuous length function, then the groups
K�.F

p

�
.G ; �// are independent of p 2 .1;1/.

Example A.6 (Lp-noncommutative Torus). Fix a real skew-symmetric n � n matrix ‚,
and set

� WZn � Zn ! T ;

.v; w/ 7! e�iv�‚w

for all v; w 2 Zn. Then � is a (continuous) 2-cocycle on the group Zn. Due to amenabil-
ity of Zn, the noncommutative n-torus determined by ‚ can be realized as C �r .Z

n; �/.
We may then define the Lp-noncommutative n-torus determined by ‚ as F p

�
.Zn; �/. It
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is well known that K0.C �r .Z
n; �// Š Z2

n�1
Š K1.C

�
r .Z

n; �//, see [42]. Since Zn has
polynomial growth, it follows from Proposition A.5 that

K0.F
p

�
.Zn; �// Š K0.C

�
r .Z

n; �// Š Z2
n�1

and

K1.F
p

�
.Zn; �// Š K1.C

�
r .Z

n; �// Š Z2
n�1

for all p 2 .1;1/. Note that we are not claiming that the isomorphism for K0 is order-
preserving.
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