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Gap distributions of Fourier quasicrystals with integer
weights via Lee–Yang polynomials

Lior Alon and Cynthia Vinzant

Abstract. Recent work of Kurasov and Sarnak provides a method for construct-
ing one-dimensional Fourier quasicrystals (FQ) from the torus zero sets of a special
class of multivariate polynomials called Lee–Yang polynomials. In particular, they
provided a non-periodic FQ with unit coefficients and uniformly discrete support,
answering an open question posed by Meyer. Their method was later shown to gen-
erate all one-dimensional Fourier quasicrystals with N-valued coefficients (N-FQ).

In this paper, we characterize which Lee–Yang polynomials give rise to non-
periodic N-FQs with unit coefficients and uniformly discrete support, and show that
this property is generic among Lee–Yang polynomials. We also show that the infinite
sequence of gaps between consecutive atoms of any N-FQ has a well-defined dis-
tribution, which, under mild conditions, is absolutely continuous. This generalizes
previously known results for the spectra of quantum graphs to arbitrary N-FQs. Two
extreme examples are presented: first, a sequence of N-FQs whose gap distributions
converge to a Poisson distribution. Second, a sequence of random Lee–Yang poly-
nomials that results in random N-FQs whose empirical gap distributions converge to
that of a random unitary matrix (CUE).

1. Introduction

An N-FQ is an N-valued measure supported on a discrete set whose Fourier transform is
also supported on a discrete set and has moderate growth (see Definition 2.1). A recent
sequence of works [3, 14, 19] established that all one-dimensional N-FQs arise from the
torus zero sets of a special class of multivariate polynomials, called Lee–Yang poly-
nomials.

Given a discrete periodic set ƒ � R with period � > 0, the Poisson summation for-
mula states that X

x2ƒ

f .x/ D
2�

�

X
k2ƒ�

yf .k/; for all f 2 �.R/;

where ƒ� D ¹k 2 R W 8x 2 ƒ; eikx D 1º and �.R/ is the space of Schwartz functions:
smooth functions on R that rapidly decay to zero at˙1 (properly defined in Section 2).
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Fourier quasicrystals are generalizations of the Poisson summation formula to sets which
are not periodic but exhibit similar features.

1.1. Fourier quasicrystals

Elements in the dual space � 0.R/ are called tempered distributions, and the Fourier trans-
form of � 2 � 0.R/ is the tempered distribution y� defined by duality,

R
f d y� WD

R
yf d�.

For example, if ƒ is periodic as above, then � D
P
x2ƒ ıx is tempered and its Fourier

transform is y� D 2�
�

P
k2ƒ ık , by the Poisson summation formula. However, in gen-

eral, if a tempered distribution � is supported on a non-periodic discrete set ƒ, i.e.,
� D

P
x2ƒ axıx for some complex coefficients .ax/x2ƒ, it is unlikely that y� will also be

supported on a discrete set.
If � 2 � 0.R/ satisfies the condition that both � and y� are supported on discrete

(locally finite) sets, then � is called a crystalline measure [17]. A crystalline measure
�D

P
x2ƒ axıx with Fourier transform y�D

P
k2S ckık (so that S � R is some discrete

set) is called a Fourier quasicrystal if

j�j D
X
x2ƒ

jaxjıx and jy�j D
X
k2S

jckjık

are tempered as well, [15]. We say that � is N-valued if ax 2 N for all x 2 ƒ, and we
abbreviate N-valued Fourier quasicrystals as N-FQs.

1.2. Lee–Yang polynomials

Following [21], we call a polynomial p 2 CŒz1; : : : ; zn� a Lee–Yang polynomial if it has
no zeros in the product Dn of the open unit disk, DD ¹z 2C W jzj< 1º, and it has no zeros
in the product of the outer disk .C nD/n. One fundamental example is a determinant:

p.z1; z2; : : : ; zn/ D det.diag.z1; : : : ; zn/C U/;

where U is an n � n unitary matrix. The name Lee–Yang polynomials refers to the ele-
gant proof of the Lee–Yang circle theorem [9, 10] by Brändén and Borcea. Lee–Yang
polynomials are intimately related, by Möbius transformations, to the class of real stable
polynomials, i.e., p 2 CŒz1; z2; : : : ; zn� with the property that p.a/ is nonzero whenever
aD .a1; : : : ;an/2Cn has imaginary part Im.aj / > 0 for all j D 1; : : : ;n or Im.aj / < 0 for
all j D 1; : : : ; n. Brändén and Borcea developed a classification of linear operations pre-
serving stability and used this to prove the Lee–Yang circle theorem [9, 10], among many
other things. See [22] for a survey of these techniques. Many properties of determinants,
especially those involving eigenvalues, also hold and have elegant proofs for general real
stable polynomials. See, for example, [5].

1.3. N-FQs and Lee–Yang polynomials

Meyer posed an intriguing question: Are there any non-periodic crystalline measures �DP
x2ƒ ıx , with unit coefficients (ax � 1) and uniformly discrete1 support ƒ?

1A setƒ�R is said to be uniformly discrete if 9 r > 0 such that jx � x0j � r > 0 for any distinct x;x0 2ƒ.
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In their notable work [14], Kurasov and Sarnak presented a general construction of
N-FQs. Using this construction, they answered Meyer’s question by providing an explicit
example of a non-periodic FQ � with unit coefficients and a uniformly discrete support.
A question addressed in this paper is whether these properties are common among all
the N-FQs.

To describe the Kurasov–Sarnak construction, suppose p.z1; z2; : : : ; zn/ D
P
˛ c˛ z˛

is a Lee–Yang polynomial (we use here the multi-index notation z˛ D
Qn
jD1 z

j̨

j ), and let
` D .`1; : : : ; `n/ 2 RnC. Then, the univariate exponential polynomial

f .x/ D p.exp.ix`// D p.eix`1 ; : : : ; eix`n/ D
X
˛

c˛ e
ixh˛;`i

is real-rooted, namely f .x/ D 0) Im.x/ D 0, since exp.ix`/ 2 Dn [ .C n D/n when
Im.x/ ¤ 0. If f .x/ D 0, let m.x/ denote the multiplicity2 of x as a zero of f .

Theorem 1.1 (Kurasov–Sarnak construction [14]). Given a positive vector ` 2 RnC and a
Lee–Yang polynomial p.z1; z2; : : : ; zn/, let ƒ denote the zero set of f .x/ D p.exp.ix`//
and let m.x/ be the multiplicity of x 2 ƒ. Then, the measure

�p;` WD
X
x2ƒ

m.x/ıx ;

is an N-FQ.

Example 1.2. The polynomial

p.z1; z2/ D 16.1C z
2
1 z

2
2/ � 8.z1 C z2 C z

2
1 z2 C z1 z

2
2/C .z1 � z2/

2

is Lee–Yang, and the vector ` D .5�=22; 1/ has Q-linearly independent entries. Let ƒ D
¹t 2 R W p.exp.i t`// D 0º be the support of �p;`. Figure 1 (top) shows the points of ƒ
in the interval Œ0; 10��. The bottom left picture shows the zero set of p.eix ; eiy/ and line
.x; y/D t` for 0� t�10� ; the bottom right image represents these sets in R2=.2�Z/2.

Olevskyii and Ulanovskii [19] proved that any one-dimensional N-FQ has the form
� D

P
x2ƒ m.x/ıx , where ƒ and .m.x//x2ƒ are the zero set and multiplicities for some

real-rooted exponential polynomial f . Together with Cohen [3], the authors showed that
every real-rooted exponential polynomial f is of the form3 f .x/D p.exp.ix`//, for some
Lee–Yang polynomial p and some positive vector ` 2RnC that has Q-linearly independent
entries. All together, this gives the following.

Theorem 1.3 (Inverse result, [3,19]). Let� 2 � 0.R/ be an N-FQ. Then,� is equal to�p;`
as in the Kurasov–Sarnak construction, for some n 2 N, a Lee–Yang polynomial p 2
CŒz1; z2; : : : ; zn� and a positive vector ` 2 RnC whose entries are Q-linearly independent.

Given a set A � R, let dimQ.A/ denote the dimension (as a Q-vector space) of the
Q-linear span of the elements of A. For a vector ` 2 Rn, dimQ.`/ D n means that its
entries are Q-linearly independent.

2The multiplicity of a zero x of an analytic function f is the minimal n 2 N for which the n-th derivative
is non-zero, f .n/.x/ ¤ 0.

3Up to a non-vanishing factor.
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Figure 1. The Kurasov–Sarnak construction of an N-FQ from the zero-set of a Lee–Yang polyno-
mial in the torus T2. See Example 1.2.

Theorem 1.4 (Theorem 3 in [14]). Any N-FQ, say � D
P
x2ƒ m.x/ıx , has uniformly

bounded weights m.x/ and has two integers r; c � 0 such that its supportƒD L1 [L2 [
� � � [ Lr [ N is the union of r infinite arithmetic progressions and a set N which, if not
empty, has dimQ.N / D1 and jN \ Lj � c for any arithmetic progression L.

We elaborate on Theorem 3 in [14] and the relation between the decomposition of
the measure and the decomposition of the polynomial into irreducible factors (a proof
provided in Section 7). A polynomial is said to be binomial if it has only two monomials.

Theorem 1.5 (Decomposition and non-periodicity). Given an N-FQ�, there are an n2N,
a Lee–Yang polynomial p in n variables, and a Q-linearly independent vector ` 2 RnC
such that � D �p;`. The polynomial p decomposes into distinct irreducible Lee–Yang
polynomials p D

QN
jD1 q

cj
j , where each factor qj appears with a power cj 2 N. Letƒ be

the support of �, and let ƒj be the support of �qj ;` for each qj . Then,

�p;` D

NX
jD1

cj �qj ;` and ƒ D

N[
jD1

ƒj :

If qj is binomial, then �qj ;` has unit coefficients and ƒj is an infinite arithmetic
progression.

If qj is non-binomial, let D denote its total degree and let �qj ;` D
P
x2ƒj

mj .x/ıx .
Then we have the following:
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(1) (Almost all unit coefficients) The coefficients are bounded bymj .x/�D, andmj .x/
D 1 for almost every x 2 ƒj :

lim
R!1

j¹jxj < R W x 2 ƒj ; mj .x/ D 1ºj

j¹jxj < R W x 2 ƒj ºj
D 1:

(2) (Dimension over Q/ The support has dimQ.ƒj / D 1, with uniform bounds jƒj \
Aj � c D c.m;D/ for any set A � R with dimQ.A/ D m.

Remark 1.6 (Quasicrystals and cut-and-project sets). The mathematical definition of a
quasicrystal (not to be confused with a Fourier quasicrystal) is a set ƒ � Rn which is
uniformly discrete, relatively dense4, and its set of differencesƒ�ƒD ¹x � y W x;y 2ƒº
is contained in finitely many translates of ƒ, see Definition 6 in [16]. A model set (also
known as cut-and-project set) ƒ � Rn is the projection of a set .B � Rn/ \ L, where
L � Rm � Rn is a lattice in generic location5 and B � Rm is bounded with non-empty
interior. Meyer showed that any model set is a quasicrystal, and any quasicrystal lies in
finitely many translates of model sets, see Theorem 1 in [16]. In particular, in such case,
dimQ.ƒ/ � nCm.

Corollary 1.7. If p is an irreducible non-binomial Lee–Yang polynomial, then the sup-
port of �p;`, for any Q-linearly independent ` 2 RnC, intersects any quasicrystal and any
model set in at most finitely many points.

Proof. According to Remark 1.6, if A is the support of a quasicrystal or a model set, then
dimQ.A/ <1, and now the corollary follows from Theorem 1.5 (2).

Remark 1.8 (Non-uniqueness of the decomposition). Even though multivariate polyno-
mials p factor uniquely into irreducibles, the measure �p;` depends only on the exponen-
tial polynomial f .x/D p.exp.ix`//. The ring of exponential polynomials is not a unique
factorization domain and, as a result, the decomposition of the measures in Theorem 1.5
is not unique. As a simple example, consider

1� exp.ix/D .1� exp.ix=2//.1C exp.ix=2//D .1� exp.ix=2k//
k�1Y
jD1

.1C exp.ix=2j //

for any k � 1. The corresponding measure is
P
x2Z ıx . The first factorization gives this

measure as
�P

x22Z ıx
�
C
�P

x22ZC1 ıx
�
. The subsequent factorizations decompose the

measure further. For n > 1, this decomposition can also fail to be unique in non-trivial
ways. The Lee–Yang polynomial p.z1; z2/ in Example 1.2 is irreducible, but p.z21 ; z

2
2/

factors as the product of four Lee–Yang polynomials q� D 2C �1z1C �2z2C 2�1�2z1z2
for .�1; �2/ 2 ¹˙1º2. Therefore, for any ` 2 R2C,

�p;` D
X

�2¹˙1º2

�q� ; `=2:

4Relatively dense means that there exists R > 0 such that ƒ intersects any ball of radius R.
5Lattice in Rm �Rn such that the projection to Rm is dense and the projection to Rn is injective
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1.4. Main results

To set up notations, let LYd.n/ denote the set of Lee–Yang polynomials p 2 CŒz1; : : : ; zn�
of degrees d D .d1; : : : ; dn/, i.e., p that has degree dj in every zj . Let jdj D d1 C d2 C
� � � C dn denote the total degree. Let

Tn
D ¹z 2 Cn

W jzj j D 1;8j º:

Theorem 1.9 (Density and maximal gap). Let p 2 LYd.n/ and ` 2 RnC. Then,

(1) �p;` has density hd; `i=2� with uniformly bounded error term:

�p;`.Œx; x C T �/ D
hd; `i
2�

T C err.x; T /; with jerr.x; T /j � jdj;

for all x 2 R; T > 0.

(2) The gap between any pair of consecutive atoms in �p;` is at most 2�jdj=hd; `i.

Remark 1.10. The bounds in Theorem 1.9 are tight: for any choice of n 2N and d 2Nn,
we can construct �p;` with error term that gets arbitrarily close to jdj and gaps that get
arbitrarily close to 2�jdj=hd; `i. Let p.z/ D

Qn
jD1.1 � zj /

dj 2 LYd.n/, and let �j be
the sum of delta masses at 2�

j̀
Z, so that �p;` D

Pn
jD1 dj�j . In particular, there is an

atom at 0 with coefficient jdj, so �p;`.Œ�"; "�/ D jdj for sufficiently small " > 0, and
therefore err.�"; 2"/ D jdj � hd; `i"=� ! 0 as " ! 0. Moreover, the gap to the next
atom is min 2�= j̀ � 2�jdj=hd; `i, and if ` is arbitrary close to .2�; 2�; : : : ; 2�/, then
2�jdj=hd; `i �min 2�= j̀ is arbitrary close to zero.

The next theorem shows that, generically, an N-FQ enjoys the desired properties of
having uniformly discrete support and having all unit coefficients. For this end, we define
the following.

Definition 1.11. We define mingap.p/ 2 Œ0; 2�/ for p 2 LYd.n/ as follows. When n D 1,
if p has multiple root, we set mingap.p/D 0; otherwise, we let mingap.p/ be the minimal
angle between different roots of p.6 When n > 1, we set mingap.p/ to be the minimum of
mingap.pz/ over all z 2Tn, where pz.s/ WD p.sz1; sz2; : : : ; szn/ is a univariate Lee–Yang
polynomial for any fixed z 2 Tn.

Theorem 1.12 (Minimal gap for generic FQ). Let n � 2 be an integer and let d 2 Zn>0.

(1) (Characterization) For any Q-linearly independent ` 2 RnC and p 2 LYd.n/, the
measure �p;` is non-periodic with unit coefficients and uniformly discrete support if
and only if p satisfies

(i) rp.z/ ¤ 0 whenever z 2 Tn such that p.z/ D 0, and

(ii) p has a non-binomial factor.

(2) (Explicit lower estimate) The polynomial p has mingap.p/ > 0 if and only if p
satisfies (i). Denote the ordered atoms of �p;` by .xj /j2Z. Then

mingap.p/
`max

� inf
j2Z

.xjC1 � xj / �
mingap.p/
`min

�

6The roots of a univariate Lee–Yang polynomial lie on the unit circle.
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The lower bound holds for any ` 2 RnC, the upper bound holds for any Q-linearly
independent ` 2RnC, and `max (respectively, `min/ stands for the largest (respectively,
smallest) entry of `.

(3) (Genericity) The set of Lee–Yang polynomials in LYd.n/ that satisfy both (i) and (ii)
is a semialgebraic open dense subset of LYd.n/.

Furthermore, we provide explicit perturbation taking any p 2 LYd.n/ to a one
parameter family polynomials p� D p C

Pjdj�1
jD1 �

j qj , such that p0 D p and p�
satisfies (i) for any � > 0.

The polynomial p from Example 1.2 has mingap.p/ D 0, because p.1; 1/ D 0 and
rp.1; 1/ D 0. The measure �p;` then fails to have uniformly discrete support. Figure 2
shows the effect of the perturbation p 7! p�. For � > 0, mingap.p�/ > 0 and �p�;` is
uniformly discrete.

Remark 1.13. There is no loss of generality by considering only Q-linearly indepen-
dent `’s, due to [3]. Nevertheless, we point out that if p satisfies (i), then �p;` will have
unit coefficients and uniformly discrete support for any ` 2 RnC.
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0

2π

4π

6π
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Figure 2. (Left) The singular zero set of p and the line in direction `, as in Figure 1. (Right) The
regular zero set of the perturbed polynomial p� for � D 0:2 and the same line in direction `.

Given p 2 LYd.n/ and ` 2 RnC, let .xj /j2Z be the zeros of p.exp.ix`//, numbered
increasingly with multiplicities (so that a zero of order m appears m times). Then �p;` DP
j2Z ıxj . A random measure of the form

P
j2Z ıxj , for random xj ’s, is called a point

process, and it can be defined in terms of the gaps�j D xjC1 � xj , which are often taken
to be i.i.d. �j samples from some probability distribution. Next theorem shows that the
gaps between atoms in �p;` obey a well-defined “gap-distribution” �p;`, by which we
mean that

1

N

NX
jD1

ı.xjC1�xj /
D
! �p;`;

where
D
! stands for convergence in distribution. Equivalently, for any continuous f ,

(1.1) lim
N!1

1

N

NX
jD1

f .xjC1 � xj / D

Z
f d�p;`:
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Theorem 1.14 (Existence of gap distribution). Every N-valued FQ � has a well-defined
gap distribution � with the following properties:

(1) It has finitely many atoms, say .rj /MjD1, such that �D �acC
PM
jD1 �.¹rj º/ırj , and �ac

is absolutely continuous with respect to the Lebesgue measure on R.

(2) �ac D 0 if and only if � is periodic.

(3) If � � 0 is any gap between consecutive atoms of �, then �.I / > 0 for any open
neighborhood I � R of �.

(4) The average gap E.�/ is the reciprocal of its density.

When � D �p;` we denote the resulting gap distribution �p;`. Together with Theo-
rem 1.9, part (4) implies that the average gap of �p;` is given by E.�p;`/ D 2�=hd; `i.

As discussed above, every N-valued FQ � can be written as �p;` for some Lee–Yang
polynomial p and some vector ` 2 RnC, where ` has linearly independent entries over Q.
We explore the dependence of the gap distribution �p;` on both the polynomial p and the
vector `. First we note that the gap distribution is independent of torus actions on p, and
give conditions on the factorization of p under which the �p;` has atoms.

Theorem 1.15 (p-dependence of the gap distribution). Suppose p2LYd.n/ and let `2RnC
with Q-linearly independent entries. Then

(1) for any fixed x 2 Rn, the polynomial q.z/ D p.exp.ix/z/ D p.eix1z1; : : : ; eixnzn/
is in LYd.n/, and �q;` D �p;`.

(2) The distribution �p;` has an atom at � � 0 if and only if there are two irreducible
factors of p, say qi and qj , such that qj .z/ D qi .exp.i�`/z/. Moreover,

(3) if � > 0 and qi D qj , namely qi .z/ D qi .exp.i�`/z/, then qi is binomial.

Corollary 1.16. Suppose p 2 LYd.n/ and let `2RnC with Q-linearly independent entries.

(1) If p is irreducible and not binomial, then �p;` is absolutely continuous.

(2) If p is binomial, then �p;` is the atomic measure at 2�=hd; `i.
(3) �p;` has an atom at 0 if and only if p has a square factor.

(4) Suppose that p has N CM distinct irreducible factors, M which are binomial
and N non-binomial. Then, �p;` has at most

�
N
2

�
CM C 1 atoms.

Next we show that the gap distribution �p;` varies continuously in ` when we restrict
to vectors ` with Q-linearly independent entries. For arbitrary ` 2 RnC, this gives rise
to a well-defined limiting distribution �p;` that agrees when �p;` when ` has Q-linearly
independent entries. The limiting measure �p;` is defined explicitly in Definition 9.1.

Theorem 1.17 (`-dependence of the gap distribution). Let p 2 LYd.n/ and ` 2 RnC. Then
the gap distribution �p;` is supported inside Œ0; 2�jdj=hd; `i�. There is a distribution �p;`
such that, for any converging sequence `.j / ! ` in which each `.j / has Q-linearly inde-
pendent entries,

�p;`.j /
D
! �p;`:

In particular, �p;` D �p;` whenever ` has Q-linearly independent entries.
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Figure 3. Example of �p;`
D
! �p;1. The gap distributions for p as in Figure 1, and ` D .L1; 1/ with

L1 converging to 1. (Left) The probability distribution function of �p;1. (Right) The cumulative
distribution functions of �p;1 (dashed) and of �p;` for three different values of L1. Each �p;` was
computed from the gaps in the interval Œ0; 104�, while �p;` was computed as in Theorem 1.19, by
sampling 104 random points on the torus.

A particularly interesting case is the limit �p;1 for `D 1 WD .1; 1; : : : ; 1/, which can be
calculated explicitly, as follows. Figure 4 displays the distributions �p;1 for two important
examples of Lee–Yang polynomials p.

Definition 1.18. Let p 2 LYN .1/ be a univariate Lee–Yang polynomial of degree N , and
denote its roots by ¹ei�j ºNjD1, with 0 � �1 � � � � � �N < 2� . By convention, �NC1 D
�1 C 2� . Then the gap distribution of p is a probability measure on Œ0; 2�� given by

gaps.p/ D
1

N

NX
jD1

ı�jC1��j :

If U is a unitary matrix, then p.s/ D det.s � U/ and q.s/ D det.1 � sU / have the same
gap distribution, and we denote it by gaps.U /.

For a fixed p 2 LYd.n/ and a fixed point x 2 Œ0; 2��n, define the univariate polynomial
px.s/ WD p.se

ix1 ; seix2 ; : : : ; seixn/ so that px 2 LYN .1/withN D jdj. We may then take x
uniformly at random.

Theorem 1.19 (`! 1). Let p 2 LYd.n/. Let x be a uniformly random point in Œ0; 2��n.
Then �p;1, for ` D 1, is given by

�p;1 D EŒgaps.px/�:

Namely, for any sequence `.j /! 1 such that each `.j / has Q-linearly independent entries,

lim
j!1

Z
f d�p;`.j / D

1

.2�/n

Z
x2Œ0;2��n

h 1
jdj

jdjX
jD1

f .�jC1.x/ � �j .x//
i
dx; 8f 2 C.R/;

where ¹ei�j .x/ºjdjjD1 are the ordered roots of px for every x, and �jdjC1.x/ WD �1.x/C 2� .
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Figure 4. (Left) �p;1 for p.z/ D
Q5
jD1.zj � 1/. (Right) �p;1 for p.z/ D det.1 � diag.z/U / for a

fixed 5 � 5 unitary matrix U , chosen at random (Haar uniformly). Both calculated with 104 random
points from the torus.

Using Theorem 1.19, we can provide examples of limiting gap distributions that cor-
respond to the following special distributions.

Example 1.20 (Poisson). If

p.z1; : : : ; zn/ D

nY
jD1

.1 � zj / and ` D
2�

n
1;

then �p;` is the distribution of gaps between n random points in a circle of circumfer-
ence n=.2�/, chosen uniformly and independently. It is well known that this distribution
converges to the gap distribution of a Poisson process, in the limit n!1.

Example 1.21 (CUE). Given a fixed unitary n� nmatrix u, let pu.z1; : : : ; zn/ WD det.1�
diag.z1; : : : ; zn/u/. Then,

�pu;1 D E Œgaps.diag.exp.ix//u/� ; x � U.Œ0; 2��n/:

For a random u, Haar uniformly from U.n/, the empirical gap distribution is

E.�pu;1/ D E Œgaps.diag.exp.ix//u/� D E Œgaps.u/� ; u � Haar.U.n//:

The distribution E Œgaps.u/� for u � Haar.U.n// is well known, and when scaled to have
average 1, by taking E.�pu;`/ with ` D 2�

n
1, it converges to the CUE (circular unitary

ensemble) gap distribution as n!1.

The paper is organized as follows. The first two sections provide background and pre-
liminary results, Section 2 on crystalline measures and FQ’s, and Section 3 on Lee–Yang
polynomials and real stable polynomials. The torus zero sets of Lee–Yang polynomials
are analyzed in Section 4. Theorem 1.9, the growth rate and upper bound on the gaps, is
proved in Section 5. In Section 6, an ergodic dynamical system is defined on the torus zero
set, which is being used in the subsequent sections. Theorem 1.5, decomposition and non-
periodicity, is proven in Section 7. Theorem 1.12, minimal gap and genericity, is proved
in Section 8. Section 9 focus on gap distributions, in which Theorems 1.14, 1.15, 1.17,
and 1.19 are proved.
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2. Preliminaries on crystalline measures and FQ

A Schwartz function on R is a smooth function f 2 C1.R;C/ that decays, as jxj ! 1,
faster than any polynomial in jxj, and so does any of its derivatives. The Schwartz space
�.R/ is the infinite dimensional vector space of Schwartz functions. It can be defined in
terms of the seminorms kf kn;m WD supx2R jx

n.d=dx/mf .x/j:

�.R/ WD ¹f 2 C1.R;C/ W kf kn;m <1 for all m; n 2 Z�0º;

and it is a complete metric space with respect to the metric

d.f; g/ WD

1X
n;mD0

kf kn;m

2nCm .1C kf kn;m/
�

A (C-valued) Borel measure � on R is tempered if hf; �i WD
R
f d� is finite for all f 2

�.R/. The vector space of tempered measures is the dual of �.R/ and is denoted by � 0.R/.
The Fourier transform

F .f / WD yf ; with yf .k/ WD

Z 1
�1

f .x/ e�ikx dx;

is a linear automorphism of �.R/, and it defines an automorphism on the dual space.
Given a measure � 2 � 0.R/, its Fourier transform is the measure y� 2 � 0.R/ defined by
hf; y�i WD h yf ;�i for all f 2 �.R/. Let ıx 2 � 0.R/ denote the atom at x 2 R (also known
as a Dirac delta at x), which is defined by hf; ıxi WD f .x/. We say that a measure � is
discrete if it is supported on a discrete (locally finite) set, in which case it can be written
as

(2.1) � D
X
x2ƒ

ax ıx WD lim
T!1

X
x2ƒ\Œ�T;T �

ax ıx ;

with complex coefficients ax 2C and discrete supportƒ�R. Whenever we write an infi-
nite sum as in (2.1), it should be understood as the T !1 limit of the Œ�T; T � truncated
sum. One can check that a discrete measure � is tempered, i.e., � 2 � 0.R/ , if and only if
�.Œ�T; T �/ is bounded by some polynomial in T , namely if there exist C > 0 andm 2 N
such that ˇ̌̌ X

x2ƒ\Œ�T;T �

ax

ˇ̌̌
� C.1C Tm/; 8T > 0:

If � is a complex valued measure given by (2.1), then j�j WD
P
x2ƒ jaxjıx .

Definition 2.1 (FQ and N-FQ, [15, 17]). A crystalline measure is a discrete measure that
is a tempered distribution and whose Fourier transform is also discrete7. A Fourier qua-
sicrystal (FQ) is a crystalline measure � with the further restriction that j�j and jy�j are
also tempered. To write it explicitly, � is an FQ if there exist discrete (locally finite) setsƒ

7The Fourier transform is tempered by definition.
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and S , and complex coefficients .ax/x2ƒ and .ck/k2S , such that

(2.2)

� D
X
x2ƒ

ax ıx ; y� D
X
k2S

ckık ; andX
x2ƒ\Œ�T;T �

jaxj C
X

k2S\Œ�T;T �

jckj � C.1CT
m/;

for some C > 0;m 2 N, for all T > 0. When ax 2 N for all x 2 ƒ, we call � an N-FQ.

For example, the measure�D
P
x2ƒ ıx for any periodicƒ is an FQ due to the Poisson

summation formula.

3. Preliminaries on Lee–Yang polynomials

Let CŒz� denote the space CŒz1; : : : ; zn� of polynomials in indeterminates zD .z1; : : : ; zn/.
For a nonnegative integer vector ˛D .˛1; : : : ;˛n/2Zn�, we use z˛ to denote the monomialQn
jD1 z

j̨

j . The degree of a polynomial p D
P
˛ a˛ z˛ in CŒz� in the variable zj , denoted

degj .p/, is the maximum value of j̨ appearing in a monomial with nonzero coefficient
a˛ ¤ 0. For dD .d1; : : : ; dn/ 2Nn, let CŒz��d denote the C-vector space of polynomials
with degj .p/ � dj in each variable zj , i.e.,

CŒz��d D
° X
0�˛�d

a˛ z˛ W a˛ 2 C
±
;

where ˛ � d is taken coordinate-wise.
Given a circular region in the complex plane C � C, we say that p is stable with

respect to C if p has no zeros in C n. For us, the circular regions of interest will be the
upper half plane HCD¹z2C W Im.z/>0º, the lower half plane H� D ¹z2C W Im.z/<0º,
and the open unit disk D D ¹z 2 C W jzj < 1º. Stability with respect to D is often known
as Schur stability. We use T to denote the unit circle ¹z 2 C W jzj D 1º in C, and D for the
closed unit disk D [ T . Of particular interest are polynomials stable with respect D and
its inverse C nD.

Definition 3.1. We say that p 2 CŒz� is a Lee–Yang polynomial if it is stable with respect
to both D and C nD, and use LYd to denote the set of Lee–Yang polynomials in CŒz��d
of multidegree equal to d. That is, LYd is the set of polynomials p D

P
0�˛�d a˛ z˛ so

that degj .p/ D dj for all j with the property that p.z1; : : : ; zn/ ¤ 0 whenever jzj j < 1
for all j or jzj j > 1 for all j . When n is not clear from the context, we will write LYd.n/.

One property of stability that we will often use is that the set of multivariate polynomi-
als that is stable with respect to either an open disk or halfplane is closed in the Euclidean
topology on CŒz��d. This follows immediately from Hurwitz’s theorem.

Theorem (Hurwitz’s theorem, see Theorem 1.3.8 of [20]). Let � � Cm be a connected
open set, and let .fn/n2N be a sequence of functions, each analytic and nonvanishing
on �, that converges to a limit f uniformly on compact subsets of �. Then f is either
nonvanishing on � or identically zero.
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Möbius transformations map between circular regions in C. Given a tuple of Möbius
transformations � D .�j .zj //j , where �j .z/ D

aj zCbj
cj zCdj

, and a polynomial p 2 CŒz��d,
define

� � p D

nY
jD1

.cj zj C dj /
degj .p/ � p.�1.z1/; : : : ; �n.zn// 2 CŒz��d:

We will sometimes abuse notation and, for a single Möbius transformations �.z/D azCb
czCd

,
use � � p to denote .�; : : : ; �/ � p. Then p is stable with respect to a region C if and only if
� �p is stable with respect to ��1.C /. See Lemma 1.8 in [10]. We will often fix � to be a
Möbius transformation taking HC to D. Explicitly, for fixed � 2 Œ0; 2�/, consider the pair

(3.1)
�.z/ D

ei� .z � i/

z C i
and ��1.z/ D

�i.z C ei� /

z � ei�
;

with �.x/ D ��1.eix/ D cot
�� � x

2

�
:

The derivative of �, �0.x/D 1
2

csc2..� � x/=2/, is strictly positive everywhere it is defined,
which is for x 62 � C 2�Z. In particular, we can always choose � so that � and its derivative
are defined at any finite set a1; : : : ; an 2 R.

The following are straightforward from the definitions of stability.

Proposition 3.2. For p 2 CŒz��d, the following are equivalent:
(a) p is a Lee–Yang polynomial,

(b) for every ` D .`1; : : : ; `n/ 2 RnC and x 2 C, p.exp.ix`// D 0 implies x 2 R,

(c) for � as in (3.1), � � p is stable with respect to HC and H�.

In order to understand polynomials stable with respect to D and C nD, we first recall
some useful facts about real polynomials stable with respect to HC.

We define the support of a polynomial q D
P
˛ a˛ z˛ to be the collection of expo-

nents of monomials appearing in q, i.e., supp.q/ D ¹˛ 2 Zn�0 W a˛ ¤ 0º. For any vector
w D .w1; : : : ; wn/ 2 Rn, define the w-initial form of q to be the sum over all terms in q
maximizing hw;˛i. That is, we can define

degw.q/ D max
˛2supp.q/

hw;˛i;

inw.q/ D .t
degw.q/ q.t�w1z1; : : : ; t

�wnzn//jtD0 D
X
˛2A

a˛ z˛;

where A is the subset of ˛ 2 supp.p/ maximizing hw;˛i.

Proposition 3.3. Let q D
P
˛ a˛ z˛ 2 CŒz1; : : : ; zn� be stable with respect to HC. Then

(a) for any w 2 Rn, inw.q/ is stable with respect to HC,

(b) for any a1; : : : ;am 2Rn�0 and b 2Rn, the polynomial q.bC y1a1C � � � C ym am/ 2
CŒy1; : : : ; ym� is stable with respect to HC,

(c) if q is homogeneous, then all its coefficients have the same phase, and

(d) if b 2 Rn is a real zero of q of multiplicity m, namely q.b/ D 0 and @˛q.b/ D 0 for
all j˛j < m, then the nonzero entries of ¹@˛q.b/ W j˛j D mº all have the same phase.
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Proof. (a) Note that for any t 2 R>0, the polynomial tdegw.q/q.t�w1z1; : : : ; t
�wnzn/ is

stable with respect to HC. By Hurwitz’s theorem, the set of stable polynomials is closed
in the Euclidean topology on CŒz��d, and taking the limit as t ! 0 shows that inw.q/ is
stable with respect to HC.

(b) First, suppose a1; : : : ;am 2 RnC. If Im.yj / > 0 for all j , then the imaginary part of
bC

Pm
iD1 yi ai belongs to RnC, and so, q.bC

Pm
iD1 yi ai / ¤ 0. Hurwitz’s theorem then

shows that the polynomial q.bC
Pm
iD1 yi ai / ¤ 0 is stable for any a1; : : : ; am 2 Rn�0.

(c) This is the content of Theorem 6.1 in [11].
(d) Let m denote the multiplicity of q at z D b. Note that by replacing q.z/ with

q.z C b/, it suffices to address the case b D .0; : : : ; 0/. The notation ˛Š D
Qn
jD1 j̨ Š

allows to write @˛q.0/ D ˛Š � a˛, and so it is enough to prove that all nonzero a˛, with
j˛j D m, share the same phase. Fix wD .�1; : : : ;�1/. Because ˛Š � a˛ D @˛q.0/D 0 for
all j˛j < m, then the ˛ 2 supp.p/ that maximize hw;˛i D �j˛j are those with j˛j D m,
and in particular, inw.q/ D

P
j˛jDm a˛ z˛. By parts (a) and (b), this polynomial is stable

and so all of its nonzero coefficients have the same phase, which proves the claim.

We translate this statement for derivatives of trigonometric polynomials of the form
F.x/ D p.exp .ix//, where p 2 LYd.

First, we need a technical lemma on derivatives of compositions.

Proposition 3.4 (Multivariate chain rule). Let 'WC!C be a meromorphic function such
that '0.x/ is nonzero wherever defined. Consider f .x/ D g.'.x//, where ' is applied
coordinate-wise. For any a 2 Cn at which ' is defined, the multiplicitym of f at a equals
the multiplicity of g at b D '.a/, and for any ˛ 2 Nn with j˛j D m,

@˛f .a/ D @˛g.b/ �
nY

jD1

'0.aj / j̨ :

Proof. The symbolic expansion of @˛g.'.a// using the chain rule will be a sum of prod-
ucts of factors @ˇg.b/ and �.k/.aj / for some jˇj � j˛j and k � j̨ . The unique such
term involving @˛g is @˛g.b/

Qn
jD1 '

0.aj / j̨ , and all others have a factor of @ˇg.b/ with
jˇj< j˛j. Ifm is the multiplicity of g at b, then @ˇg.b/D 0 for all jˇj<m and @˛g.b/¤ 0
for some j˛j D m. The calculation above shows that @ˇf .a/ D 0 for all jˇj < m and
@˛f .a/ ¤ 0.

Proposition 3.5. Let p 2 LYd and define F WCn ! C by F.x/ D p.exp .ix//. If a 2 Rn

is a zero of F of multiplicity m, then nonzero elements of ¹@˛F.a/ W j˛j D mº have the
same phase.

Proof. Let � be a Möbius transformation taking HC to D, as in (3.1), with � such that
ei� ¤ eiaj for all the coordinates eia1 ; : : : ; eian of exp.ia/. By Proposition 3.2, q.z/ D
� � p.z/ is stable with respect to HC and H�. Then

p.z/D ��1 � q.z/D r.z/ � q.��1.z// and F.x/D p.exp.ix//D r.exp.ix// � q.�.x//;

where �.x/ D .cot.a1�x1
2
/; : : : ; cot.an�xn

2
// and r.exp.ix// D

Qn
jD1.e

ixj � eiaj /dj . In
particular, r.exp.ia// ¤ 0, so q.�.a// D 0, hence �.a/ is a zero of q. An induction argu-
ment shows that a must be a zero of q.�.x// of multiplicity m. That is, @˛q.�.x// is
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zero at x D a for all j˛j < m and nonzero for some j˛j D m. To do so, suppose that
@˛q.�.x//jxDa D 0 for all j˛j �m0 � 1 form0 <m. Then, for any ˛ 2 Zn�0 with j˛j Dm0,

(3.2) @˛F.x/ D
X

ˇC
D˛

@ˇr.exp.ix// @
q.�.x//;

so
0 D @˛F.x/jxDa D r.exp.ia//@˛q.�.x//jxDa:

Since r.exp.ia// ¤ 0, then @˛q.�.x//jxDa D 0 for every j˛j D m0, and by induction for
any j˛j < m. Together with Proposition 3.4, this gives that

@˛F.a/ D r.exp.ia// @˛q.�.x//jxDa D r.exp.ia//.@˛q/jzD�.a/ �
nY

jD1

�0.aj / j̨ :

The phase of the non-zero factor r.exp.ia//
Qn
jD1 �

0.aj / j̨ is independent of ˛, since
�0.aj / is positive for all j , so the nonzero elements of ¹@˛F.a/ W j˛j D mº have the same
phase because the nonzero elements of ¹@˛qjzD�.a/ W j˛j D mº have the same phase, by
Proposition 3.3(d).

Lemma 3.6. For t 2 R, ` 2 Rn�0 and p 2 LYd.n/, the following coincide:
(a) the multiplicity of t 2 R as a zero of the function f .t/ D p.exp.i t`//,
(b) the multiplicity of x D t` as a zero of F.x/ D p.exp.ix//,
(c) the multiplicity of z D exp .i t`/ 2 Tn as a zero of p.z/, and

(d) the multiplicity of 1 as a root of the univariate polynomial q.s/ D p.s exp.i t`//.

Proof. Note that by replacing p.z/ with p.eit`1z1; : : : ; eit`nzn/, it suffices to consider
t D 0 for this equivalence.

(a)D (b) Let D` denote the differential operator
Pn
jD1 j̀

@
@xj

. Then for any m 2 N,

Dm
` D

X
j˛jDm

�
m

˛

�
`˛@˛; where

�
m

˛

�
D

mŠ

˛1Š � � �˛nŠ
;

and

f .m/.0/ D Dm
` F jxD.0;:::;0/ D

X
j˛jDm

�
m

˛

�
`˛@˛F.0/:

We see that the multiplicity of .0; : : : ; 0/ as a zero of F.x/D p.exp.ix// lower bounds on
the multiplicity of 0 as a zero of the function f . Moreover, by Proposition 3.5, when m is
the multiplicity of .0; : : : ; 0/ as a zero of F.x/, the nonzero values of ¹@˛F.0/ W j˛j D mº
have the same phase. By assumption, at least one of these is nonzero, ensuring that their
sum, f .m/.0/, is non-zero and that f has multiplicity m at t D 0.

(b)D (c) Follows from Proposition 3.4 with '.x/ D eix .
(b)D (d) Consider

q.s/ D p.s; s; : : : ; s/ and h.t/ D q.eit / D p.eit ; : : : ; eit / D F.t; t; : : : ; t /:

By Proposition 3.4, the multiplicity of q at s D 1 equals the multiplicity of h at t D 0. By
the equivalence (a)D (b) with ` D 1, this equals the multiplicity of F.x/ at x D 0.
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3.1. Connectivity of LYd and perturbations

One of the early results on real hyperbolic polynomials is Nuij’s result that the space of
hyperbolic polynomials of a given degree is simply connected [18]. Here we adapt these
techniques to better understand LYd.

Nuij’s proof relies on the following operators on univariate polynomial that preserve
real rootedness. For � 2 R>0, define D�WCŒz�! CŒz� by D�.q/ D q C �q

0. Nuij shows
that if q is real rooted, then D�.q/ is real rooted, D� decreases the multiplicity of roots
of q by 1 for � ¤ 0, and all new roots of D�.q/ are simple. In particular, for any real
rooted polynomial q 2RŒz� of degree d , the multiplicity of any root of q is at most d , and
so applying D� d times to q results in a real rooted univariate polynomial with d simple
roots. The roots of D�.q/ interlace those of q in the following sense: if a1; : : : ; ad are the
roots of q and b1; : : : ; bd are the roots of D�.q/, then bj � aj � bjC1 for all j .

Let CŒy; z�d denote the set of polynomials in y1; : : : ; yn and z1; : : : ; zn that are homo-
geneous of degree dj in each set of variables .yj ; zj /. The zero-set of such polynomials
are well-defined subsets of .P1.C//n. Here we use P1.K/ to denote the projective line
over a fieldK, which isK2 n ¹.0; 0/ºmodulo the equivalence .a; b/� .�a;�b/ for �¤ 0.
For any polynomial p 2 CŒy; z�d and � 2 .C�/n, p.�1y1; : : : ; �nyn; �1z1; : : : ; �nzn/ D
�dp.y1; : : : ; yn; z1; : : : ; zn/. In a slight abuse of notation, we will use Œa W b� to denote a
point .Œai W bi �/i2Œn� 2 .P1.K//n, where aD .a1; : : : ; an/ and bD .b1; : : : ; bn/. Similarly,
for a subset I � Œn�, we use ŒaI W bI � to denote the point .Œai W bi �/i2I 2 .P1.K//I .

To understand the zero set of p on .P1.K//n, we restrict to various affine charts. We
can partition points Œa W b� 2 .P1.K//n by the set I D ¹i 2 Œn� W ai ¤ 0º. The affine chart
of points Œa W b� 2 .P1.K//n with ai ¤ 0 for all i is isomorphic to Kn via the coordinate-
wise correspondence Œai W bi �$ bi=ai . For i 2 I , bi ¤ 0 and for j 62 I , aj ¤ 0, and so
after rescaling we may take bi D 1 and aj D 1.

On this vector space of polynomials, define the linear operator

D� W CŒy; z�d ! CŒy; z�d by D�.q/ D q C �

nX
jD1

yj @zj q:

Let D
jdj
�

denote the operator obtained from D� by applying it jdj D
Pn
jD1 dj times.

For each d 2 Zn�0, consider the following sets of polynomials:

Sd D ¹q 2CŒy; z�d W coeff.q; zd/ D 1 and q.1; z/ is stable with respect to HC and H�º;

Sıd D ¹q 2Sd W q and rq have no common zeros in .P1.R//nº:

Proposition 3.7. We have Sd � RŒy; z�d.

Proof. One can check directly from the definition that the stability of q.1; z/ implies
that for all a 2 Rn, the polynomial q.1; a C t1/ 2 CŒt � has real roots, say rj 2 R, for
j D 1; : : : ; jdj. By assumption, the coefficient of zd in q is 1, which implies that the coef-
ficient of t jdj in q.1; aC t1/ is 1, so q.1; aC t1/ D

Qjdj
jD1.t � rj /, and therefore all of its

coefficients must be real. If q D g C ih, where g; h 2 RŒy; z�d, then we have shown that
h.1; aC t1/ 2 RŒt � is the zero polynomial for all a 2 Rn. In particular, h.1; a/ D 0 for all
a 2 Rn, which implies that h is identically zero.
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Proposition 3.8. If q 2CŒz1; : : : ; zn��d is stable with respect to HC and H�, then so is
the polynomial q C znC1

Pn
jD1 @zj q in CŒz1; : : : ; znC1�. Moreover, for any a 2 Rn and

b 2 Rn�0, the roots of q C
Pn
jD1 @zj q interlace those of q when restricted to z D aC tb.

That is, �1 � �1 � �2 � � � � � �jdj � �jdj, where ¹�j ºj and ¹�j ºj are the roots of the
restrictions of q C

Pn
jD1 @zj q and q, respectively.

Proof. We use the theory of stability preservers by Borcea and Brändén, see Theorem 1.3
in [9]. The symbol of the operator D.q/ D q C znC1

Pn
jD1 @zj q is

D..zC w/d/ D .zC w/d
�
1C znC1

nX
jD1

dj .zj C wj /
�1
�
:

We can see by inspection that this polynomial is stable. If Im.zj / > 0 and Im.wj / > 0

for all j , then we have that Im.�.znC1/�1/ > 0 and Im..zj C wj /�1/ < 0 for all j , soPn
jD1 dj .zj Cwj /

�1 ¤�.znC1/
�1, and therefore D..zCw/d/¤ 0. This shows that the

symbol D..zCw/d/ 2 RŒz1; : : : ; zn; znC1;w1; : : : ;wn� is stable with respect to HC, and
by the same argument, it is also stable with respect to H�. Then, by Theorem 1.3 in [9],
the linear operation D preserves stability.

The statement of interlacing then follows from Lemma 1.8 in [9].

Lemma 3.9. Let q 2Sd, I � Œn�, and let qI denote restriction of q to yj D 0 and zj D 1
for all j 62 I . Then qI 2 SdI , i.e., qI is nonzero and qI .1I ; zI / is stable with respect
to HC and H�. If additionally q 2Sıd, then qI 2 SıdI , i.e., qI and rqI have no common
zeros in .P1.R//I .

Proof. Note that 1D coeff.q; zd/D q.0; 1/D qI .0I ; 1I /, showing that qI is nonzero and
has 1 D coeff.qI ;

Q
i2I z

di
i /. Note that

Q
j 62I z

dj
j � qI .1I ; zI / is the initial form of q.1; z/

with respect to the vector .0I ; 1Œn� n I /, and so qI .1I ; zI / is stable by Proposition 3.3 (a).
Suppose that qI is zero at a point ŒaI W bI � 2 .P1.R//I . We will show that for some

i 2 I , @yi q or @zi qI is nonzero at this point. Note that if ak D 0 for some k 2 I , then
we can replace I with I 0 D ¹i 2 I W ai ¤ 0º, which is non-empty by assumption. If there
is some i 2 I 0 for which @yi qI 0 or @zi qI 0 is non-zero at ŒaI 0 W bI 0 �, this proves the claim.
Therefore we may assume that for all i 2 I , ai ¤ 0 and take ai D 1. Moreover, by replacing
q.y; z/ with its substitution of zi 7! zi C biyi for all i 2 I , we can assume that bi D 0 for
all i 2 I .

Since q 2Sıd, there is some derivative @yj q or @zj q that is nonzero at Œa W b�, where
aD .1I ;0Œn� n I / and bD .0I ;1Œn� n I /. If j 2 I , we are done, so take j 62 I and assume by
contradiction that all derivatives with respect to variables labeled by I are zero. Since q is
homogeneous of degree dj in .yj ; zj /, then yj @yj q C zj @zj q D dj q. Since q and yj both
vanish at this point and zj does not, we see that it must be @yj q that is nonzero at Œa W b�.

Consider the polynomial

Qq.s; t/ D q.a � tej ;bC s1I / 2 RŒs; t �:

We claim that this polynomial is stable. To see this, note the upper halfplane is invariant
under '.z/D �1=z. Let 'I .z/ be the vector with i -th entry '.zi / if i … I or zi otherwise,
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so that
Q
j 62I z

dj
j �p.'I .z// is stable with respect to upper and lower halfplanes if and only

if p.z/ is. The polynomialY
j 62I

.�zj /
dj � q.1; 'I .z// D q..1I ;�zŒn� n I /; .zI ; 1Œn� n I // 2 RŒz�

is stable. We then obtain the polynomial Qq as a further restriction of zj D t , zk D 0 for
k 2 Œn�n .I [ ¹j º/ and zi D s for all i 2 I . It follows that Qq is stable by Proposition 3.3 (b).

Note that Qq.0; 0/ D q.a;b/ D 0. Moreover, we have that

@s Qqj.s;t/D.0;0/ D
�X
i2I

@zi q
�ˇ̌
.y;z/D.a;b/ D 0; and

@t Qqj.s;t/D.0;0/ D .�@yj q/j.y;z/D.a;b/ ¤ 0:

The polynomial Qq.s; 0/ D q.a;bC s1I / has leading term s
P
i2I di , since q.0; 1/ D 1, and

so is nonzero. Let k be the smallest integer for which @ks Qqj.s;t/D.0;0/ is nonzero. By the
arguments above, k exists and k � 2. This means that all monomials s˛tˇ appearing in Qq
with non-zero coefficients either have ˇ � 1 or ˛ � k � 2. In particular, we have that
h.�1;�k/; .˛; ˇ/i � �k, with equality if and only if .˛; ˇ/ D .k; 0/ or .˛; ˇ/ D .0; 1/.
We conclude that the initial form in.�1;�k/ Qq D ask C bt for some non-zero coefficients
a; b 2 R�. By Proposition 3.3 (a), it is stable with respect to both upper and lower half-
planes. However, since k � 2, there is some c 2 HC such that ck D � b

a
i , and so .s; t/ D

.c; i/ 2 H2
C is a root, contradicting stability.

Proposition 3.10. For any q 2 Sd and � > 0, D�.q/ 2 Sd and D
jdj
�
.q/ 2 Sıd.

Proof. By Proposition 3.8, the operation q 7! q C �
Pn
iD1 @zi q preserves stability of

polynomials in RŒz�. We need to show that D
jdj
�
q has no common zeros with its gradient

on .P1.R//n. By the univariate case discussed above, D
jdj
�
q.1;bC t1/ 2 RŒt � has simple

roots for all b 2Rn. It follows that if D
jdj
�
q.1; z/ vanishes at z 2Rn, then its gradient does

not. This shows that D
jdj
�
q.1; z/ and its gradient have no common zeros of the form Œa W b�

where aj ¤ 0 for all j . Assume by contradiction that D
jdj
�
q.1; z/ and its gradient have

some common zero Œa W b� 2 .P1.R//n, and let I D ¹i W ai ¤ 0º, so I ¤ Œn�. Note that we
can assume bj D 1 for all j 62 I . If I D ;, then Œa W b� D Œ0 W 1�, at which D

jdj
�
q.0; 1/ D

coeff.D jdj
�
q; zd/ ¤ 0. Therefore, ; ¨ I ¨ Œn�.

Let qI 2 RŒyi ; zi W i 2 I � denote the restriction of q to yj D 0 and zj D 1 for j 62 I .
Note that the operator D� commutes with the restriction to yj D 0 and zj D 1. That is,

.D�q/j¹yjD0;zjD1Wj…I º D
�
q C �

nX
iD1

yi@zi q
�ˇ̌̌
¹yjD0;zjD1Wj…I º

D qI C �
X
i2I

yi@zi qI D D�qI :

In particular, D�qI .aI ;1I /DD�qI .1I ;a�1I /D 0. Since qI 2SdI , by Lemma 3.9, and it
has total degree jdI j � jdj, then the argument above shows that D�qI 2 SdI and that the
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gradient of D
jdj
�
.qI /.1; zI / cannot vanish at the zero .1I ;a�1I /. Hence, there must be some

nonzero derivative of D
jdj
�
.qI / at Œ1I W a�1I � D ŒaI W bI �, which gives a nonzero derivative

of D
jdj
�
.q/ at Œa W b�.

Proposition 3.11. Both Sd and Sıd are contractible, and Sd equals the closure (in the
Euclidean topology on RŒy; z�d/ of Sıd.R/.

Proof. The proof follows the proof of the main theorem in [18]. For � 2 R, consider the
linear operatorG� on RŒy; z�d defined byG�.q/D q.�y; z/. This operator preserves both
stability and the coefficient of zd.

For � 2 Œ0; 1�, consider the map D
jdj
1��

G�. This map preserves stability and, for � ¤ 1,
the image of Sd under this map belongs to Sıd. For � D 1, we get the identity map
D
jdj
0 G1.q/ D q, and for � D 0 we get D

jdj
1 .z

d/ 2 Sıd.R/. Therefore, this gives a defor-
mation retraction of both Sd and Sıd onto the point D

jdj
1 .z

d/.

Proposition 3.12. The interior of Sd in ¹q 2RŒy; z�d W coeff.q; zd/ D 1º is not empty,
and in particular, it contains Sıd.

Proof. Suppose that q2Sıd, so that q and its gradient have no common zeros in .P1.R//n.
Let .S1/nD ¹.y;z/ 2R2n W y2j C z

2
j D 18j º and let V D ¹.y;z/ 2 .S1/n WD1q.y;z/D 0º,

where D1q is D�q at � D 1. Consider the set of polynomials

U D ¹g 2 RŒy; z�d W coeff.g; zd/ D 1; g.y; z/q.y; z/ > 0 for all .y; z/ 2 V º:

The set V is compact, since .S1/n is compact, and so min.y;z/2V g.y; z/q.y; z/ is continu-
ous in the coefficients of g, which means thatU is open in ¹g 2RŒy;z�d W coeff.g;zd/D 1º.
We claim that q 2U and U � Sıd.

To see that q 2 U , it suffices to show that q and D1q have no common zeros in
.P1.R//n. We first check this for the points in the affine chart y D 1. Suppose that
q.1;b/D 0 for Œ1 W b� 2 .P1.R//n, so by assumption, there is some j for which @zj q.1;b/
is nonzero. By Proposition 3.3, all of the the nonzero entries of ¹@zi q.1;b/ W i D 1; : : : ; nº
have the same phase, which implies that

Pn
iD1 @zi q.1; b/ is nonzero. Since q.1; b/ D 0,

it follows that D1q D q C
Pn
iD1 @zi q is nonzero at Œ1 W b�.

For any arbitrary point Œa W b� 2 .P1.R//n, let I D ¹i 2 Œn� W ai ¤ 0º, which by
assumption is non-empty. By Lemma 3.9, qI is stable and has no common zeros with
its gradient on .P1.R//I . The argument above shows that qI and D1qI cannot both be
zero at ŒaI W bI �, and so q and D1q cannot both be zero at Œa W b�.

To see that U � Sıd, consider a 2 Rn and b 2 RnC, let ¹�j ºj denote the roots of
D1q.1; aC bt /, and let ¹sj ºj denote the roots of q.1; aC bt /. These roots are distinct by
the argument above.

By Proposition 3.8, �1 < �1 < �2 < � � � < �jdj < �jdj. In particular, q must alternate
signs on the roots of D1q.1; aC bt /. If g 2 U , then g.1; aC bt / 2 RŒt � has degree jdj
with positive leading coefficient bd, and it alternates signs on the roots of D1q.1;aC bt /.
Hence it has jdj distinct real roots. As this holds for any a 2Rn and b 2RnC, then g 2Sıd.
See, for example, Section 2.3 and 2.4 in [22].
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We can modify this using the Möbius transformations � from (3.1) to translate these
results to LYd. For any x 2 Œ0; 2�/n, define

LYd.x/ D ¹p 2 LYd W p.exp.ix// ¤ 0º; and
LYıd.x/ D ¹p 2 LYd.x/ W p and rp have no common zeros in Tn

º:

One can check that q2CŒy;z�d belongs to Sd (respectively, Sıd) if and only if ��1 � q.1;z/
belongs to LYd.x/ (respectively, LYıd.x/) for � defined using the angles eix1 ; : : : ; eixn .

Definition 3.13. Define an involution of polynomials in CŒz��d by

p.z1; : : : ; zn/ 7!p
�.z1; : : : ; zn/ D zd p.z1�1; : : : ; zn�1/; namelyX

˛

a˛ z˛ 7!
X
˛

a˛ zd�˛
D

X
˛

ad�˛ z˛;

and define the set of polynomials in CŒz��d that are invariant under the involution

CŒz�in�d WD ¹p 2 CŒz��d W p D p
�
º D

°X
˛�d

a˛ z˛ W a˛ D ad�˛ for all ˛
±
;

and the set of polynomials for which p� is a scalar multiple of p by

C �CŒz�in�d WD
®
cp W c 2 C; p 2 CŒz�in�d

¯
D
®
p 2 CŒz��d W p

�
D cp for some c with jcj D 1

¯
:

The next lemma is straightforward.

Lemma 3.14. The set CŒz�in
�d is a real vector space of dimension

Qn
jD1.dj C 1/, spanned

by .z˛ C zd�˛/ and i.z˛ � zd�˛/ for ˛ � d. The set C � CŒz�in
�d is a semialgebraic set

of dimension 1 C dim.CŒz�in
�d/ in the .2

Qn
jD1.dj C 1//-dimensional real vector space

CŒz��d, from which it inherits the Euclidean topology.

Remark 3.15. Note that from the polynomial q D eixp with x 2 Œ0; �/ and p 2 CŒz�in
�d,

we can uniquely determine x and p. Namely, eix D .eix=e�ix/1=2 D .q.z/=q�.z//1=2 and
p D e�ixq.

The image of C �RŒy; z�d under the map q 7! ��1 � q.1; z/ coincides with C �CŒz�in
�d:

C �CŒz�in�d D
°
c
X
˛�d

a˛.�i/
j˛j .zC exp.ix//˛.z � exp.ix//d�˛ W a˛ 2 R; c 2 C

±
:

Note that for p.z/D
P
˛�d a˛.�i/

j˛j.zC exp.ix//˛.z� exp.ix//d�˛ with a˛ 2R, using
the notation z�1 D .1=z1; : : : ; 1=zn/, we have

p�.z/ D zd
X
˛�d

a˛.i/
j˛j .z�1 C exp.�ix//˛ .z�1 � exp.�ix//d�˛

D .exp.�ix//d
X
˛�d

a˛.i/
j˛j.exp.ix/Cz/˛.exp.ix/ � z/d�˛D.� exp.�ix//dp.z/;

and so cp 2 CŒz�in
�d for c D .i exp.�ix=2//d.
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Definition 3.16. Let D�;xWCŒz�d!CŒz�d denote the linear operator corresponding to D�,
and fix a tuple of Möbius transformations � D .�1; : : : ; �n/where �j is defined as in (3.1),
with � D xj for x D .x1; : : : ; xn/ 2 Rn. Namely, p 7! .��1 ıD� ı � � p

hom/jyD1, where
phom D ydp.z1=y1; : : : ; zn=yn/. Explicitly, for

p.z/ D
X
˛�d

a˛.�i/
j˛j.zC exp.ix//˛.z � exp.ix//d�˛;

we have

D�;xp.z/ D p.z/C �
nX

jD1

X
˛�d

j̨ a˛.�i/
j˛j .zC exp.ix//˛�ej .z � exp.ix//d�˛:

Corollary 3.17. For any p 2 LYd.x/ and � > 0 and � defined as above, D�;x.p/ 2

LYd.x/ and .D�;x/
jdj.p/ 2 LYıd.x/. The interior of LYd.x/ in the Euclidean topology

on C � CŒz�in
�d is nonempty and contains LYıd.x/. Moreover, LYd.x/ is contained in the

closure of LYıd.x/.

Proof. Note that p 2 LYd.x/ (respectively, LYıd.x/) if and only if the homogenization of
� � p belongs to C�Sd (respectively, C�Sıd.x/). The result then follows from Proposi-
tions 3.10, 3.11, and 3.12.

Remark 3.18. The set of Lee–Yang polynomials is connected but not contractible, even
in P .CŒz�in

�d/. For example, the set of univariate Lee–Yang polynomials p of degree-one,
modulo global scaling, is parametrized by z � ei� , for � 2 Œ0; 2��, showing this set to be
a circle.

Remark 3.19. The proof of Proposition 3.11 gives an explicit contraction of LYd.x/
(modulo scaling) to a polynomial p� 2 LYıd.x/, namely ��1 ı D

jdj
1 zd, which we can

explicitly compute. The space of real stable polynomials is contracted to

D
jdj
1 zd

D

�
1C

nX
jD1

yj @zj

�jdj
� zd
D

X
˛

�
jdj
˛

�
y˛ @˛z zd

D

X
˛�d

�
jdj
˛

�
dŠ
˛Š

y˛ zd�˛;

where the sum in the third term is taken over all ˛ 2 Zn�0 with j˛j � jdj, and where�
jdj
˛

�
D

jdjŠ
.jdj � j˛j/Š ˛1Š � � �˛nŠ

and
dŠ
˛Š
D

nY
jD1

�dj Š
j̨ Š

�
:

Taking � as in (3.1), we find that P .LYd.x// is contracted to

p�.z/ D ��1 �D jdj1 zd
D

X
˛�d

�
jdj
˛

�
dŠ
˛Š
.z � exp.ix//˛ .�i.zC exp.ix///d�˛:

As above, let CŒz�in
�d denote the real vector space of polynomials in CŒz��d that are

invariant under the involution
P
˛ a˛ z˛ 7!

P
˛ ad�˛ z˛.
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Figure 5. (Left) The zero set of p.eix ; eiy/ (in red) and the line .x;y/D t` (in black) as in Figure 1.
(Right) †p , the zero set modulo 2� , and the line .x; y/ D t` mod 2� .

Theorem 3.20. For any d 2 Zn�0, the set of Lee–Yang polynomials LYd is a full-dimen-
sional semialgebraic subset of C � CŒz�in

�d. That is, dim.LYd/ D
Qn
jD1.dj C 1/C 1. Its

interior in C �CŒz�in
�d is nonempty, and contains

LYıd D ¹p 2 LYd W p and rp have no common zeros in Tn
º;

and LYd is contained in the closure of LYıd.

Proof. Note that the set

¹.p; a;b/ 2 C �CŒz�in�d �Rn �Rn W p.aC ib/ D 0

and ..a2j C b
2
j < 18j / or .a2j C b

2
j > 18j //º

is semialgebraic. By the Tarski–Seidenberg theorem, its projection on to C �CŒz�in
�d is also

semialgebraic, as is the complement of the image of this projection, LYd.
Suppose that p 2 LYd and fix x 2 Œ0; 2�/n with p.exp.ix// ¤ 0. Then p 2 LYd.x/

and we invoke Corollary 3.17. If p and rp have no common zeros in Tn, then p belongs
to LYıd.x/, which is contained in the interior of LYd.x/� LYd in C �CŒz�in

�d. Otherwise, p
is contained in the closure of LYıd.x/ � LYıd.

4. The torus zero set †p

It is a simple, yet fruitful, observation that the zeros of x 7! p.exp.ix`// correspond to
intersection points of the line ¹x` mod 2� W x 2 Rº � Rn=2�Zn with the zero set

†p WD ¹x 2 Rn=2�Zn W p.exp.ix// D 0º:

See Figure 5. In particular, certain properties of�p;` are determined by the structure of†p ,
regardless of the choice of ` 2 RnC with Q-independent entries.
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Lemma 4.1 (Dimension and singularity). Given p 2 LYd.n/, its torus zero set †p �
Rn=2�Zn is a real analytic variety of dimension n � 1, and the following hold.

(1) The set of singular points, sing.†p/, is a subvariety of dimension at most n� 2. If p
has no square factors (i.e., if it is square free), then x 2 †p is singular if and only if
rpjzDexp.ix/ D 0, or equivalently, its multiplicity is m.x/ > 1.

(2) Every irreducible factor of p is a Lee–Yang polynomial. If p is irreducible, then†p
is irreducible in the following sense: the zero set of q.exp.ix// in †p , for any
polynomial q 2 CŒz1; : : : ; zn�, is a subvariety of smaller dimension (at most n � 2
dimensional), unless p is a factor of q, in which case q.exp.ix// vanishes on †p .

Proof. Since the real and imaginary parts of F.x/D p.exp.ix// are real analytic, then†p
is a real analytic variety. As such, its singular set sing.†p/ is subvariety of lower dimen-
sion. To see why †p is n � 1 dimensional, let p 2 LYd.n/ and let Zp denote its zero set
in Cn. As seen in [1], if p is Lee–Yang, then Zp \ Tn has real dimension n � 1 and
therefore dim.†p/ D n � 1 by the homeomorphism x 7! exp.ix/ between them. More-
over, Zp \ Tn is Zariski dense in Zp , according to [1], which proves part (2).

For part (1), suppose that p is square free, so that the singular points of Zp are exactly
the points in Zp where rp D 0 (if p has square factors, this criterion fails at zeros of
any multiple factor), or equivalently with multiplicity > 1. Due to Proposition 3.4 with
'.x/ D eix , x 2 sing.†p/ if and only if z D exp.ix/ 2 sing.Zp/.

4.1. The layers structure of †p

It was shown in Lemma 4.14 of [2] that, for Lee–Yang polynomials arising from quantum
graphs, †p is the union of 2n layers, each homeomorphic to .0; 2��n�1. These special
polynomials are square free and have d D .2; 2; : : : ; 2/, so 2n D jdj. In this section, it
is shown that for any p 2 LYd, †p is the union of jdj such layers, and in the case of
polynomials with square factors, multiplicities should be taken into account.

Proposition 4.2 (Layers structure). Given p 2 LYd.n/, †p is the union of jdj layers,

†p D

jdj[
jD1

†p;j :

Each layer is homeomorphic to .0;2��n�1 through the parameterization 'j W .0;2��n�1!
†p;j given by

'j .y/ WD .y; 0/C �j .y; 0/1 mod 2�;

where 1D .1; 1; : : : ; 1/ and �j WRn! R is a continuous function. Each 'j is real analytic
on the open set '�1j .reg.†p// � .0; 2��n�1, which has full Lebesgue measure. The multi-
plicity of x as a zero of p.exp.ix// is equal to the number of layers †p;j containing x. In
particular, if p is square free, then

sing.†p/ D
[

1�i<j�jdj

†p;i \†p;j :

See Figure 6 for example of the layers structure of †p for p from Example 1.2.
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Remark 4.3 (Square factors, overlaps, and multiplicities). Suppose that p D
QN
jD1 q

cj
j ,

where .qj /NjD1 are the distinct irreducible factors, each raised to the power cj 2N. Define

the reduced polynomial pred WD
QN
jD1 qj , so that it is square free and has the same zero set

as p, so†pred D†p , but the total degree of pred may be smaller, in which case†pred would
have fewer layers than†p . This means that the layers coming from p must overlap, result-
ing in multiplicity. Note that a given layer †p;j might comprise of pieces of the varieties
of several different irreducible factors of p, each coming with their own multiplicities,
which can differ.

To prove Proposition 4.2, we introduce the continuous phase functions �j WRn ! R,
for j D 1; : : : ; jdj, in Proposition 4.5 below.
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Figure 6. (Right) The four layers of†p , presented in the tilted fundamental domain, for p 2 LY.2;2/
given in Example 1.2. (Left) The graphs of �j .y; 0/ for y 2 .0; 2��.

Definition 4.4. Given p D
P
˛ a˛ z˛ 2 LYd.n/ and x 2 Rn, define the univariate poly-

nomial px.s/ 2 CŒs� by

(4.1) px.s/ D p.se
ix1 ; : : : ; seixn/ D

jdjX
jD0

� X
j˛jDj

a˛ e
ihx;˛i

�
sj :

The polynomial px has degree jdj, with leading term ad e
ihx;disjdj, and all roots on the unit

circle, say .ei�j .x//jdjjD1. Let m.�j ;x/ denote the multiplicity of ei�j .x/ as a root of px, which
agrees with the multiplicity of x as a zero of p.exp.ix// when ei�j .x/ D 1, by Lemma 3.6.

Proposition 4.5 (Phase functions). Given p 2 LYd.n/, its phase functions are jdj contin-
uous functions �j WRn! R, such that .ei�1.x/; : : : ; ei�jdj.x// are the roots of px, ordered as
follows: �1.x/ � � � � � �jdj.x/ � �1.x/C 2� , for all x 2 Rn. Let b†p denote the lift of †p
to Rn, so that

(4.2) p.exp.ix// D ad e
ihd;xi

jdjY
jD1

.1 � ei�j .x// and b†p D jdj[
jD1

��1j .2�Z/:

The phase functions enjoy the following properties:
(1) Each �j satisfies �j .xC t1/D �j .x/� t , for all x2Rn and t 2R. More generally, �j

is monotonically decreasing when restricted to lines in any non-negative direction
` 2 Rn�0, with upper and lower bounds on the slope �t`max � �j .xC t`/� �j .x/ �
�t`min, where `min and `max are the minimal and maximal entries of `.
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(2) Each �j is real analytic on reg.b†p/. It is also real analytic around any x 2Rn which
is not a discontinuity point of m.�j ; x/, the multiplicity of ei�.x/ as a root of px. The
discontinuity set of x 7!m.�j ;x/, denoted byMj �Rn, is a closed set of dimension
dim.Mj / � n � 1, and sing.b†p/ DSjdjjD1.��1j .2�Z/ \Mj /.

(3) The sum of the phase functions is linear in x 2 Rn :

jdjX
jD1

�j .x/ D hd; xi C
jdjX
jD1

�j .0/:

(4) Translations by the lattice 2�Zn act on the ordered tuple .�1; : : : ; �jdj/ by

�.xC 2�n/ � � hd;ni�.x/ mod 2�;

for all n 2 Zn, where � is the permutation .1; 2; : : : ; jdj/ 7! .jdj; 1; 2; : : : ; jdj � 1/.

Remark 4.6. The choice of such phase functions is not unique. However, given any x0 2
Rn which is a zero of p.exp.ix// of multiplicitym< jdj, there is a unique choice of phase
functions as in Proposition 4.5, such that

0 D �1.x0/ D � � � D �m.x0/ < �mC1.x0/ � � � � � �jdj.x0/ < 2�:

The proof of Proposition 4.5 includes a proof of Remark 4.6.

Proof of Proposition 4.5. Fix an arbitrary x0 2 Rn such that p.exp.ix0// D 0 with mul-
tiplicity m < jdj, so that s D 1 is a root of px0.s/ of multiplicity m, by Lemma 3.6. Let
.sj .x0//jdjjD1 denote the roots of px0 , so we can write sj .x0/ D ei�j .x0/ such that

0 D �1.x0/ D � � � D �m.x0/ < �mC1.x0/ � � � � � �jdj.x0/ < 2�:

The roots of a univariate polynomial changes continuously with its coefficients, as a result
of Rouché’s theorem. The coefficients of px are analytic in x 2 Rn, so the roots of px0
can extend continuously to the roots .sj .x//jdjjD1 of px for any x 2 Rn, since Rn is simply
connected, and we may do it while maintaining their counter-clockwise ordering. Each
sj WRn ! S1 can be lifted to a (unique) continuous function �j WRn ! R with �j .x0/ as
prescribed above. Since the roots were kept in a counterclockwise order throughout Rn,
the relation �1 � � � � � �jdj � �1C 2� holds everywhere. Since the leading coefficient of px

is ad e
ihd;xi, as stated in Definition 4.4, we may write px.s/ D ad e

ihd;xiQjdj
jD1.s � e

i�j .x//.
In particular,

p.exp.ix// D px.1/ D ad e
ihd;xi

jdjY
jD1

.1 � ei�j .x//:

Since b†p is the zero set of p.exp.ix// in Rn, then it is the union of ��1j .2�Z/.
The univariate polynomial changes along the line ¹xC t1 W t 2 Rº, for x 2 Rn, by

pxCt1.s/ WD p.se
i.tCx1/; : : : ; sei.tCxn// D px.se

it /:
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Together with the continuity and ordering of the phase functions, this gives

(4.3) �j .xC t1/ D �j .x/ � t:

Proof of (2). The function x 7! m.�j ; x/ is integer valued, so it is continuous at a
point if it is constant in a neighborhood of that point. Therefore Mj , its set of discon-
tinuity points, is closed. Let p.k/x .s/ denote the k-th derivative (in s) of px.s/. Given a
point x 2 Rn nMj withm D m.�j ; x/, every x0 in some small neighborhood of x satisfies
p
.k/
x0 .sj .x

0//D 0 for all k < m and p.m/x0 .sj .x
0//¤ 0. Then, sj is analytic around x, by the

implicit function theorem for analytic functions, as the s.x0/ solution of p.m�1/x0 .s/ D 0

around the point .s; x0/ D .sj .x/; x/. We conclude that sj is analytic on Rn nMj , and
therefore �j is real analytic on the same domain. Since �j .xC t1/ D �j .x/ � t holds for
all j simultaneously, then m.�j ;xC t1/Dm.�j ;x/ for all x 2Rn and t 2R. In particular,
m.�j ; x0/ is locally constant around a point x 2 ��1j .2�k/ � b†p , namely x … Mj , if and
only if it is constant in some neighborhood of x in the level set ��1j .2�k/. Since the mul-
tiplicity m.x/ of x as a zero of p.exp.ix// agrees with m.�j ; x/ for x 2 ��1j .2�Z/ � †p ,

by Lemma 3.6, and the discontinuity set of m.x/ overb†p is exactly sing.b†p/, we conclude
that sing.b†p/ DSjdjjD1.��1j .2�Z/ \Mj /. Next we show that

Sjdj
jD1Mj is the projection

of an analytic variety of dimension n� 1, from which it follows that dim.Mj / � n� 1 for
each Mj . By (4.3), as discussed above, each Mj is invariant under translations in direc-
tion 1. In particular, using (4.3) again, x 2

Sjdj
jD1Mj if and only if x C t1 2 sing.b†p/

for some t 2 R. According to Lemma 4.1, sing.b†p/ is an analytic variety of dimension
at most n � 2, so ¹.x; t / 2 Rn � R W xC t1 2 sing.b†p/º is an analytic variety of dimen-
sion at most n � 1, and

Sjdj
jD1Mj is the projection of this variety to Rn and it is closed

since each Mj is. We conclude that
Sjdj
jD1Mj is a closed subanalytic set with dimension

at most n � 1 (locally around any point), see [8] for the definitions.

Proof of (1). We claim that r�j .x/ 2 Rn�0 for all j and all x 2 Rn n
Sjdj
jD1Mj . To see

this, let x 2 Rn n
Sjdj
jD1Mj , and since r�j jx D r�j jxCt1 by (4.3), we may assume that

�j .x/ D 0. In particular, x 2 reg.b†p/. Note that b†p can also be written as the zero set of
F red.x/ D pred.exp.ix// for the reduced polynomial pred of p. Since x 2 reg.b†p/, then it
has multiplicity one as a zero of F red.x/, and there is a well defined normal vector to b†p
at x, which is proportional to both r�j .x/ and rF red.x/. According to Proposition 3.5,
the nonzero coordinates of rF red.x/ have the same phase, and therefore the nonzero coor-
dinates of r�j .x/ 2 Rn all have the same sign. Since (4.3) gives r�j .x/ � 1D�1, we find
that r�j .x/ 2 Rn�0.

It follows that �j .x1/� �j .x2/whenever x2 � x1 2Rn�0. To see why, we may use con-

tinuity to assume that both x1 and x2 lie in the open dense set Rn nX for X D
Sjdj
jD1Mj .

Consider all possible smooth curves 'W Œ1; 2�!Rn with '.1/D x1; '.2/D x2 and '0.t/ 2
Rn�0 for all t . For such ', the composition �j ı ' is continuous for all t , and smooth with
non-positive derivative as long as '.t/ … X . Since X is a closed subanalytic set of dimen-
sion at most n � 1, there exists such ' that either intersects X transversely in a discrete
set of points, or does not intersect X at all, by Theorem 1.2 in [8] and dimension count.
For such ', �.'.2// � �.'.1//.
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Now let x 2 Rn; t 2 R, and ` 2 Rn�0. Consider the three points x1 D xC t`min1; x2 D
xC t`; and x3 D xC t`max1, so x3 � x2 2 Rn�0 and x2 � x1 2 Rn�0, which gives

�j .xC t`max1/ � �j .xC t`/ � �j .xC t`min1/;

and therefore, using (4.3),

�j .x/ � t`max � �j .xC t`/ � �j .x/ � t`min:

Proof of (3). Recall that px.s/D ad e
ihd;xiQjdj

jD1.s � e
i�j .x//, and by substituting sD 0

we get

p.0/ D px.0/ D ad.�1/
jdj ei.hd;xiC

Pjdj
jD1 �j .x// ¤ 0; for all x 2 Rn.

Since hd;xi C
Pjdj
jD1 �j .x/ is continuous and ei.hd;xiC

Pjdj
jD1 �j .x// D .�1/jdj p.0/

ad
is constant,

then

hd; xi C
jdjX
jD1

�j .x/ D
jdjX
jD1

�j .0/; for all x 2 Rn:

Proof of (4). To prove that �.xC 2�n/ � � hd;ni�.x/ mod 2� holds for all x 2 Rn

and n 2 Zn, where � is the permutation .1; 2; : : : ; jdj/ 7! .jdj; 1; 2; : : : ; jdj � 1/ and
�.x/D .�1.x/; : : : ; �jdj.x//, it is enough to consider standard basis vectors, namely n D ei .
We only consider n D e1, but the proof holds for every ei . For every x 2 Rn, the poly-
nomials px and pxC2�e1 are equal by Definition 4.4, so their roots are equal as a set
but may have different counterclockwise numbering, which means that �.x C 2�e1/ D
� r�.x/C 2�k for some integer 0 � r � jdj and k 2 Zn, that may a-priori depend on x.
Notice that if the roots of px are all simple, then r and k are uniquely determined; how-
ever, if all the roots have multiplicity two, for example, then there can be two choice r and
r C 1. Nevertheless, as of px and pxC2�e1 change continuously in x in the same manner,
then there is a continuous (hence constant) choice of r and k. It is therefore enough to
show that r D d1 for some point x0 that minimise minj�jdjm.�j ; x/, and as this quantity
is invariant to translations in direction 1, then we may take x0 2 b†p . LetmDm.x0/ < jdj,
and by Remark 4.6, we may assume that

0 D �1.x0/ D � � � D �m.x0/ < �jC1.x0/ � � � � � �jdj.x0/ < 2�:

Let r and kD .k1; : : : ; kn/ be such that �.x0 C e1/D � r�.x0/C 2�k. Using part (3) and
the fact that the sum of � r�.x0/ and �.x0/ is the same, we get

dX
jD1

kj D

dX
jD1

�.x0 C e1/ �
dX

jD1

�.x0/ D �2�d1:

By part (1), �j .x0 C e1/ � �j .x0/ 2 Œ0; 2��. Since 2�kj D �j .x0 C e1/ � �j 0.x0/ for
some j 0, and j�j 0.x0/ � �j .x0/j < 2� , then kj 2 ¹0;�1º for all j . The equation for the
sum above implies that k has exactly d1 entries equal to �1, and the rest are zero.
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Denote v WD � r�.x0/ so that

v D .�jdj�rC1.x0/; �jdj�rC2.x0/; : : : ; �jdj.x0/; �1.x0/; : : : ; �jdj�r .x0//:

Then v1 � � � � � vr and vrC1 � � � � � vjdj, with vrC1 D 0 < vr < 2� , while v C 2�k is
ordered increasingly. We conclude that kj D �1 for j � r and kj D 0 for j > r , which
means that r D d1. This proves part (4).

We are now in position to prove Proposition 4.2 using Proposition 4.5.

Proof of Proposition 4.2. Consider the linear transformation T .y; t / D .y; 0/C t1, and
the quotient map � WRn! Rn=2�Zn. Consider� WD T ..0; 2��n/, which is a fundamen-
tal domain of 2�Zn, so � W�! Rn=2�Zn is bijective. The map y 7! T .y; �j .y; 0// is
continuous with a continuous inverse x 7! .x1 � xn; : : : ; xn�1 � xn/, since �j is contin-
uous by Proposition 4.5, and therefore 'j .y/ D �.T .y; �j .y; 0/// is a homeomorphism
between .0; 2��n�1 and its image, which we denote by †p;j .

Notice that �j .T .y; t // D �j .y; 0/ � t by part (1) of Proposition 4.5, so

(4.4) �j .T .y; t // 2 2�Z ” 'j .y/ D �.T .y; t //:

(†p;j � †p) Given y 2 .0; 2��n�1, let t D �j .y; 0/, so that �j .T .y; t //D �j .y; 0/� t
D 0. Therefore, T .y; t / 2 b†p which means that �.T .y; t // D '.y/ 2 †p by (4.4).

(†p �
Sjdj
jD1 †p;j ) Consider � WD T ..0; 2��n/, which is a fundamental domain of

2�Zn, so � W�! Rn=2�Zn is bijective, and therefore any x 2 †p � Rn=2�Zn has a
unique point .y; t /2 .0;2��n�1 � .0;2�� for which �.T .y; t //D x. In such case, T .y; t /2b†p so �j .T .y; t // 2 2�Z for some j , and 'j .y/ D �.T .y; t // D x by (4.4).

(Multiplicity and singularity) Let xD �.T .y; t // 2†p as above. The number of layers
containing x is the number of j ’s for which 'j .y/ D x, which are those j ’s for which
ei�j .T .y;t// D 1. This is exactly m.x/, the multiplicity of x as a zero of p.exp.ix//, by
Lemma 3.6. If p is square free, then x 2 sing.†p/ ” m.x/ > 1 ” x 2†p;i \†p;j
for some i ¤ j , by Lemma 4.1.

(Real analyticity) Suppose that 'j .y0/ D �.T .y0; t // 2 reg.†p/. Then T .y0; t / 2
reg.b†p/, which means that �j is real analytic around T .y0; t /D .y0; 0/C t1, according to
Proposition 4.5. Therefore, �j is real analytic around .y0; 0/, due to the shift �j ..y; 0/C v/
D �j .T .y; t /C v/C t for all v 2 Rn; y 2 Rn. It follows that y 7! T .y; �j .y; 0// is real
analytic around y0, and therefore so is 'j .

We may now relate the mingap.p/ given in Definition 1.11 to the phase functions
.�j /

jdj
jD1 defined in Proposition 4.5.

Lemma 4.7. Let p 2 LYd.n/ and let .�j /
jdj
jD1 be its phase functions. Then

mingap.p/ D minŒ�jC1.x/ � �j .x/� over 1 � j � jdj and x 2 Œ0; 2��n;

where we set �jdjC1 D �1 C 2� by convention. In particular, mingap.p/ > 0 if and only
if p has no square factors and sing.†p/ D ; (equivalently, rp.z/ ¤ 0 for any z 2 Tn

with p.z/ D 0/.
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Proof. By definition, if z D exp.ix/ 2 Tn, then .ei�j .x//jdjjD1 are the roots of pz, ordered
cyclically with multiplicity, and so mingap.pz/ is the minimum of �jC1.x/ � �j .x/ over
1 � j � jdj. Since this difference is invariant to x 7! xC t1, we see that mingap.pz/ D 0

if and only if �jC1.x C t1/ D �j .x C t1/ D 0 for some t , which means that eit z D
exp.x C t1/ is a multiple zero of p (multiplicity two or higher) by Lemma 3.6. Since
mingap.p/ is the minimum of mingap.pz/ over x 2 Œ0; 2��n, then mingap.p/ > 0 if and
only if mingap.pz/ > 0 for all z 2 Tn which happens if and only if p has no multiple
zeros in Tn, which happens if and only if p has no square factors and sing.†p/ D ;.

5. Zeros density. Proof of Theorem 1.9

When the polynomial p arises from a quantum graph, then Theorem 1.9 holds by the proof
of Weyl’s law for quantum graphs in Lemma 3.7.4 of [6]. In such case, p.z/ D det.1 �
D.z/S/, where S is some orthogonal matrix and D.z/ D diag.z1; : : : ; zn; z1; : : : ; zn/.
The proof for a general Lee–Yang polynomial p is similar. The roots .ei�j .x//jdjjD1 of the
univariate polynomial px.s/ replace the eigenvalues of D.exp.ix//S .

Proof of Theorem 1.9. Let p 2 LYd, and consider the phase functions .�j /
jdj
jD1 described

in Proposition 4.5. Given ` 2 RnC, a point x 2 R is a zero of f .x/ D p.exp.ix`// of
multiplicity m if and only if exactly m of the phase functions satisfy �j .x`/ 2 2�Z, by
Lemma 3.6 and Proposition 4.5. The number of zeros of p.exp .ix`//, counted with mul-
tiplicities, in an interval Œa; b� � R is therefore

�p;`.Œa; b�/ D

jdjX
jD1

j¹x 2 Œa; b� W �j .x`/ 2 2�Zºj:

According to part (1) of Proposition 4.5, �j .a`/ > �j .b`/ for each j , and the map x 7!
�j .x`/ is a bijection between Œa;b� and the interval Œ�j .b`/; �j .a`/��R, which has length
�j .a`/ � �j .b`/. Therefore,

j¹x 2 Œa; b� W �j .x`/ 2 2�Zºj D
ˇ̌
Œ�j .b`/; �j .a`/� \ 2�Z

ˇ̌
D
�j .a`/ � �j .b`/

2�
C errj ;

with jerrj j � 1. Let err WD
Pjdj
jD1 errj . Then jerrj � jdj and

�p;`.Œa; b�/ D

jdjX
jD1

�j .a`/ � �j .b`/

2�
C err D

hd; `i
2�
jb � aj C err:

In the last equality, we used part (3) of Proposition 4.5. This proves part (1) of the theorem,
by substituting Œa; b� D Œx; x C T � and err.x; T / D err.

For part (2) of the theorem, let xjC1 > xj be consecutive zeros of f .x/, and consider
an arbitrary interval I � .xj ; xjC1/, so

0 D �p;`.I / �
hd; `i
2�
jI j C err ) jI j � 2�

jerrj
hd; `i

� 2�
jdj
hd; `i

;

and jI j can get arbitrarily close to xjC1 � xj .
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6. Ergodic dynamics on †p

To prove the existence of a gap distribution for the eigenvalues of a quantum graph, Barra
and Gaspard introduced an `-dependent “first return” dynamical system on †p , for the
associated Lee–Yang polynomial p, which is uniquely ergodic when ` is Q-linearly inde-
pendent [4]. The same holds for any Lee–Yang p, as shown in this section.

Given ` 2 RnC, consider the linear flow on Rn=2�Zn induced by the constant vector
field `. That is, the flow at time t is a map x 7! xC t`mod 2� from Rn=2�Zn to itself. The
minimal t > 0 for which a point x 2†p gets back to†p is called the first return time �`.x/,
and x 7! xC �`.x/` mod 2� is a map from †p to itself that defines a dynamical system.

Remark 6.1. Throughout this subsection, we omit the “mod 2�” when it is clear from
the context.

τℓ (x) Tℓ (x)

x

A
mℓ (A)

Figure 7. Illustration of T`; �`, and the measure m`, as in Definition 6.2, for the Lee–Yang poly-
nomial p from Example 1.2 and ` D .�; 1/. In the background, the line .x; y/ D t` mod 2� for
t 2 Œ0; 44�.

Definition 6.2 (Dynamical system on †p). Let p 2 LYd.n/ and ` 2 RnC. The first-return
time �`W†p ! RC and the first-return map T`W†p ! †p are defined by

�`.x/ WD min¹t > 0 W xC t` 2 †pº and T`.x/ WD xC �`.x/`:

The measure m` is a Borel measure on †p defined for any Borel subset A � †p by

m`.A/ WD lim
"!0

voln.A"`/
2"

; with A"` WD ¹xC t` W x 2 A; jt j < "º;

where voln is n-dimensional volume (Lebesgue measure) in Rn=2�Zn.

Definition 6.3. A bounded function hW†p ! C is called Riemann integrable if its dis-
continuity set has zero volume in †p , with respect to the n � 1 dimensional volume form
induced by the n-dimensional volume form on Rn=2�Zn.

Recall that if p has a decomposition into distinct irreducible factors p D
QM
jD1 q

cj
j ,

then the reduced polynomial is pred WD
QM
jD1 qj and its multi-degree is denoted by dred.

Let m.x/ denote the multiplicity of exp.ix/ as a zero of p.
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Theorem 6.4 (Unique ergodicity). Let p 2 LYd.n/, let ` 2 RnC with Q-linearly indepen-
dent entries, and fix an arbitrary point x0 2 †p . Let .xj /j2Z denote the zeros of f .x/ D
p.exp.i.x0 C x`///, ordered increasingly with multiplicities, and consider .T j

`
.x0//j2Z,

the T` orbit of x0. Then the averages of any bounded Riemann integrable hW†p!C over
the orbit .T j

`
.x0//j2N , and over the sequence .x0 C xj `/j2N , are independent of x0 and

are given by

lim
N!1

1

N

NX
jD1

h.T
j

`
.x0// D

1

.2�/n�1hdred; `i

Z
†p

h.x/ dm`.x/(6.1)

lim
N!1

1

N

NX
jD1

h.x0 C xj `/ D
1

.2�/n�1hd; `i

Z
†p

m.x/h.x/ dm`.x/;(6.2)

where m`.†p/ D .2�/
n�1hdred; `i and

R
†p

m.x/dm`.x/ D .2�/n�1hd; `i.

For Lee–Yang polynomials associated to quantum graphs, this is shown in [4, 7, 12].
A proof for any Lee–Yang polynomial is provided for completeness.

Proof. Let ¹xiºi2N denote the positive zeros of f .x/D p.exp.i.x0 C x`/// ordered with
multiplicity, and let x0 D 0, since x0 2 †p . Let ¹kiºi2N denote the distinct zeros of f ,
ordered without multiplicity, with k0 D 0, so that T i

`
.x0/ D x0 C ki` and m.T i

`
.x0// is

the multiplicity of ki as a zero of f for all i 2 N. The first step of the proof is showing
that for any bounded Riemann integrable hW†p ! C,

(6.3) lim
R!1

1

R

X
ki�R

h.T i` .x0// D
1

.2�/n

Z
†p

hdm`:

Consider a layer †p;j as in Proposition 4.2, and let h D �A be the indicator function of a
Borel set A � †p;j with boundary of zero volume in†p . The set A"` D ¹xC t` W .x; t / 2
A � Œ�"; "�º is then a Borel set with boundary of zero volume in Rn=2�Zn. Since ` has
Q-linearly independent entries, the Kronecker–Weyl theorem gives

(6.4)
voln.A"`/
.2�/n

D lim
R!1

length.¹t 2 Œ0; R� W x0 C t` 2 A"`º/
R

�

Let AD¹ki W T
i
`
.x0/2Aº �R, so that �j .x0C ki`/2 2�Z for all ki 2A sinceA�†p;j .

The function t 7! �j .x0 C t`/ is strictly monotone with uniform upper and lower bounds
on its slope, by Proposition 4.5 part (1), so A is uniformly discrete, and therefore, for
small enough " > 0, the 2"-intervals Œki � "; ki C "� for ki 2A are mutually disjoint. The
set ¹t 2 Œ0;R� W x0C t` 2 A"`º is the intersection of these disjoint 2"-intervals with Œ0;R�,
so up to an error of 2", its lengths is 2" jA \ Œ0; R�j D 2"

P
ki�R

h.T i
`
.x0//. Substituting

this estimate into (6.4) gives

(6.5)
voln.A"`/
.2�/n

D lim
R!1

�
2"
1

R

X
ki�R

h.T i` .x0//C
1

R
O."/

�
D 2" lim

R!1

1

R

X
ki�R

h.T i` .x0//:
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Dividing both sides by 2" and taking "! 0 proves (6.3) for the indicator function hD �A.
Both sides of (6.3) are linear in h, so it holds for any step function

PN
jD1 cj�Aj such that

the sets Aj � †p are Borel with boundary of zero volume in †p . Such functions can
approximate (in the sup-norm) any non-negative bounded Riemann integrable function
from below and above to any given precision, by taking the upper and lower Darboux
sums, as they converge to the Riemann integral of h. We conclude that (6.3) holds for any
bounded Riemann integrable function hW†p ! C, as it can be written as h D h1 � h2 C
i.h3 � h4/ so that each hj is real non-negative, bounded, and Riemann integrable, and
hence can be approximated by step functions, for which (6.3) holds.

The second step is calculating m`.†p/ and
R
†p

m.x/ dm`.x/. The sum of multiplici-
ties of distinct zeros up to T is the number of repeated zeros up toR,

P
ki�R

m.T i
`
.x0//D

j¹xi <Rºj, which is equal to hd;`i
2�
RCO.1/, by Theorem 1.9, and applying (6.3) to hDm

gives

1

.2�/n

Z
†p

m.x/ dm`.x/ D lim
R!1

1

R

X
ki�T

m.T i` .x0// D lim
R!1

j¹xi < Rºj

R
D
hd; `i
2�
�

It follows that
R
†p

m.x/dm`.x/D .2�/n�1hd; `i, and by replacing p with pred we get that
m`.†p/ D

R
†p
dm` D .2�/

n�1hdred; `i. To see why, notice that the torus zero set of pred

is equal to †p , with the same measure m`, but with multiplicity function which is one for
every x 2 reg.†p/. The complement has m`.sing.†p// D 0, since dim.A/ � n � 2 for
A D sing.†p/, which means that dim.A"`/ � n � 1 and so voln.A"`/ D 0.

To prove (6.1), apply (6.3) twice and divide the two limits:R
†p
hdm`

m`.†p/
D lim
R!1

P
ki�R

h.T i
`
.x0//

j¹ki � Rºj
D lim
N!1

PN
iD1 h.T

i
`
.x0//

N
�

Since X
xi�R

h.x0 C xi`/ D
X
ki�R

m.T i` .x0// h.T
i
` .x0//;

the same argument givesR
†p

m.x/h.x/dm`.x/R
†p

m.x/dm`.x/
D lim
R!1

P
xi�R

h.x0 C xi`/
j¹xi � Rºj

D lim
N!1

PN
iD1 h.x0 C xi`/

N
�

6.1. Properties of �` and m`

The gap distributions in Section 9 are defined in terms of �` and m`. The needed properties
of �` and m` are stated in the next two lemmas.

In what follows, consider reg.†p/ as a smooth Riemannian manifold with volume
form d� , induced by dvoln in Rn=2�Zn, and the normal vector field On with On.x/ 2 Rn�0
for all x 2 reg.†p/, as guaranteed by Proposition 3.5. The n � 1 form with dxj missing
is denoted by dx1 ^ dx2 ^ � � � ^cdxj ^ � � � ^ dxn.
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Lemma 6.5. The measure m` is absolutely continuous with respect to d� , the volume
form on reg.†p/, with a strictly positive distribution

(6.6) dm` D hOn; `id� D
nX

jD1

j̀ .�1/
jC1dx1 ^ dx2 ^ � � � ^cdxj ^ � � � ^ dxn:

For each layer †p;j , with parameterization 'j W .0; 2��n�1 ! †p;j as in Proposition 4.2,
and for every measurable hW†p;j ! C,

(6.7)
Z
†p;j

h.x/ dm`.x/ D �
Z
.0;2��n�1

h.'j .y//hr�j .y; 0/; `i dy;

and in particular, for ` D 1,

(6.8)
Z
†p;j

h.x/ dm1.x/ D
Z
.0;2��n�1

h.'j .y// dy:

Proof of Lemma 6.5. It was shown in the proof of Theorem 6.4 that m`.sing.†p// D 0,
so m` is supported on reg.†p/. To show (6.6), it is enough to consider a small open set
A � reg.†p/. If A is sufficiently small, for " > 0 sufficiently small, we can choose local
coordinates � D .�1; : : : ; �n�1/ such that d� D d� , which extend to local coordinates in a
neighborhood of A"` by adding a coordinate t in the normal direction On. The fact that d�
is induced from dvoln means that dvoln D d�dt . Therefore, d� D 2"

R
A
h On.�/; `id� > 0,

using that ` 2 RnC and On.�/ 2 Rn�0 for all � 2 A. We conclude that On.�/ 2 Rn�0 for all
� 2 A. We conclude that

m`.A/ WD lim
"!0

voln.A"`/
2"

D

Z
A

h On; `i d�:

By definition, the form h On; `id� agrees with the n � 1 form

! D

nX
jD1

j̀ .�1/
jC1 dx1 ^ dx2 ^ � � � ^cdxj ^ � � � ^ dxn

when restricted to reg.†p/.
We are left with deducing (6.7) from (6.6) by simple change of variables. Let y 2

.0; 2��n�1 be such that 'j .y/ 2 reg.†p/, and letD DD'j jy be the n � .n� 1/ matrix of
derivatives whose .s; i/th entry is @.'j /s=@yi jy. Then the change of variables formula for
x D 'j .y/ is

nX
kD1

`k.�1/
kC1 dx1 ^ dx2 ^ � � � ^cdxk ^ � � � ^ dxn D nX

jDk

`k.�1/
kC1Dkdy;

where Dj denotes the .n � 1/ � .n � 1/ minor of D obtained by removing the j -th row.
Adding ` as a column vector gives an n � n matrix M D .D `/, whose determinant is
exactly det.M/ D

Pn
kD1 `k.�1/

kC1Dk , by expanding according to the column `. We
need to show that det.M/D�hr�j .y;0/;`i. Let vD.@�j .y; 0/=@y1; : : : ;@�j .y; 0/=@yn�1/
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2 Rn�1, so that the entries ofD areDs;i D vi if i ¤ s, andDi;i D vi C 1, since 'j .y/ D
.y; 0/C �j .y; 0/1. Subtracting the last row of M from all other gives the matrix

QM D

�
idn�1 Q̀

v `n

�
; with Q̀ D .`1 � `n; `2 � `n; : : : ; `n�1 � `n/;

so that det.M/ D det. QM/ D `n � hv; Q̀i; using the Schur complement in the last equality.
Notice that hv; Q̀i D hr�j .y; 0/; ` � `n1i D hr�j .y; 0/; `i � `n since hr�j .y; 0/; 1i D
�1 by part (1) of Proposition 4.5 . We conclude that det.M/ D �hr�j .y; 0/; `i, which
proves (6.7), and (6.8) follows from hr�j .y; 0/; 1i D �1 again.

For the next lemma, let p 2 LYd.n/ and, for any ` 2RnC, consider the first-return-time
�`W†p ! RC introduced in Definition 6.2.

Lemma 6.6. For any fixed ` 2 RnC, the map �`W†p ! RC is bounded by 2�jdj=hd; `i
and satisfies the following.

(1) Given any pair of distinct consecutive zeros of f .x/D p.exp.ix`//, say xjC1 > xj ,

�`.x/ D xjC1 � xj for x D xj ` mod 2�:

If xjC1 D xj , then x 2 sing.†p/, and

(2) for any x 2 sing.†p/ and any U � †p neighborhood of x,

¹0; �`.x/º � ¹�`.x/ W x 2 reg.†p/ \ U º:

In particular, the infimum of �`.x/ over x 2 reg.†p/ is 0 if and only if sing.†p/D ;.
(3) Assume p is square free (otherwise, replace p with pred/. Then the infimum of �` is

bounded by
mingap.p/
`max

� inf �` �
mingap.p/
`min

;

where `max and `min denote, respectively, the largest and smallest entry of `, and
mingap was defined in Definition 1.11 (see also Lemma 4.7).

Moreover, if we let ` vary in RnC,

(4) the map �.x; `/ WD �`.x/ is continuous on reg.†p/ �RnC and is real analytic on the
open subset ¹.x; `/ 2 reg.†p/ �RnC W T`.x/ 2 reg.†p/º.

Proof. Since p and the reduced polynomial pred share the same torus zeros set, then they
share the same �`, and so we may assume that p is square free. We work with the lift of �`
from †p to c†p . Abusing notation, we write �`.x/ D �`.x mod 2�/ when x 2 c†p � Rn,
and similarly � lifts to c†p �RnC. This means that

�.x; `/ D �`.x/ D min¹t > 0 W p.exp.i.xC t`/// D 0º:

In particular, �`.xj `/D xjC1 � xj when xjC1 > xj are consecutive zeros of p.exp.ix`//,
which proves (1).

For the bound �`.x/ � 2�jdj=hd; `i, by replacing p.z/ with p.e�ix1z1; : : : ; e�ixnzn/
if needed, it is enough to consider �`.0/ when p.exp.0// D 0, and to number the zeros
of f .x/ D p.exp.ix`// such that 0 D x0 < x1. Then �`.0/ D x1 � x0 � 2�jdj=hd; `i by
Theorem 1.9.
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For (2) and (4), the same argument allows us to assume that p.exp.0// D 0, namely
0 2 c†p , and focus on a small neighborhood of 0. The two cases of 0 being a regular or a
singular point of c†p are treated separately.

Case 0 2 reg.c†p/. If 0 is a regular point of c†p , then it is a zero of p.exp.ix// of
multiplicity one, since p is square free. The phase functions (defined in Proposition 4.5)
can be chosen, according to Remark 4.6, such that

0 D �1.0/ < �2.0/ � � � � � �jdj.0/ < 2�;

Taking U � b†p a small enough neighborhood of 0, we can ensure that �1.x/ D 0 and
�j .x/ 2 .0; 2�/ for all x 2 U and j � 2. In particular, the minimal t > 0 for which
p.exp.i.xC t`//D 0must satisfy �2.xC t`/D 0, for any .x; `/ 2 U �RnC, by the order-
ing and strict monotonicity of the phase functions as shown in Proposition 4.5. In such
case, � D �.x; `/ is the unique solution to �2.xC �`/ D 0 and is therefore continuous in
.x; `/, by the continuity of .x; `; t/ 7! �2.xC t`/ and the implicit function theorem for
monotone continuous functions. As a result, .x; `/ 7! T`.x/ D xC �.x; `/` is also con-
tinuous in U �RnC, and therefore the set� WD ¹.x; `/ 2 U �RnC W T`.x/ 2 reg.b†p/º is an
open subset of U �RnC. If .x0; `0/ 2 �, then �2.xC t`/ is real analytic in .x; `; t/ around
.x0; `0; �.x0; `0//, by Proposition 4.5, and so �.x; `/ is real analytic around .x0; `0/ by the
implicit function theorem for real analytic functions, which proves (4).

Case 0 2 sing.c†p/. If 0 is a singular point of b†p , then it has multiplicity m D m.0/
as a zero of p.exp.ix//. Choose the phase functions, according to Remark 4.6, such that

0 D �1.0/ D � � � D �m.0/ < �mC1.0/ � � � � � �jdj.0/ < 2�:

If U � c†p is a small enough neighborhood of 0, then it has the form

U D

m[
jD1

Uj ; with Uj WD ¹x 2 U W �j .x/ D 0º;

since b†p D Sjdj
jD1 �

�1
j .2�Z/ and the phase function are continuous. Define tj .x; `/ as

the unique t -solution to �j .x C t`/ D 0. As before, tj is continuous on U � RnC, and
�.0; `/ D tmC1.0; `/ (where �jdjC1 D �1 C 2� if m D jdj). Furthermore, for any j � m
and x 2 Uj \ reg.b†p/, �jC1.x/ > 0, and so �.x; `/ D tjC1.x; `/. Consider a converging
sequence xn! 0, with xn 2 reg.b†p/ for all n, and by taking a subsequence if needed, we
may assume xn 2 reg.b†p/ \ Uj for all n, for some specific j . So �.xn; `/ D tjC1.xn; `/
for all n, and

lim
n!1

�.xn; `/ D tjC1.0; `/ D

´
�.0; `/ if j D m;
0 if 1 � j < m � 1;

by continuity of tjC1, using that �jC1.0/ D 0 when j C 1 � m. This proves the first part
of (2), and the fact that if sing.†p/ ¤ ;, then the infimum of �` over reg.†p/ is zero. On
the other hand, if sing.†p/D ;, then �` is continuous on†p D reg.†p/ and positive, and
by compactness it has a positive minimum. This proves (2).
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For (3), define �`;j .x/ as the t solution to �jC1.xC t`/D �j .x/, which is well defined
an positive since the phase functions are ordered, continuous and monotone in positive
directions. Then �jC1.x/� �jC1.xC �`;j .x/`/ D �jC1.x/� �j .x/ and part (1) of Propo-
sition 4.5 gives

�jC1.x/ � �j .x/
`max

� �`;j .x/ �
�jC1.x/ � �j .x/

`min
;

and by taking the minimum over all x 2 Rn and 1 � j � jdj, we get

mingap.p/
`max

� min
x;j

�`;j .x/ �
mingap.p/
`min

;

using Lemma 4.7. Now, on the one hand, for any x 2 c†p , there is some j such that
�j�1.x/ D 0 mod 2� and �j .x/ > �j�1.x/, and so �`.x/ D �`;j .x/, which means that
minx;j �`;j .x/ � inf �`. If inf �` D 0, then we are done. If inf �` > 0, then sing.†p/ D ;,
and therefore �`;j .x/ > 0 for all x and j . By Proposition 4.5 (1), �`;j .xC t1/ D �`;j .x/
and we can choose t so that �j�1.xC t1/D 0mod 2� , in which case �`.xC t1/D �`;j .x/.
Therefore, inf �` D minx;j �`;j .x/, which finishes the proof.

7. Proof of Theorem 1.5

Let p 2 LYd.n/ with decomposition p D
QN
jD1 q

cj
j into distinct irreducible polynomi-

als, and let ` 2 RnC with Q-linearly independent entries. Each factor qj is a Lee–Yang
polynomial by definition. Let mp.x/ denote the multiplicity of x as a zero of fp.x/ D
p.exp.ix`//, withmp.x/D 0 if fp.x/¤ 0, and similarly, letmj .x/ denote the multiplic-
ity with respect to fj .x/ D qj .exp.ix`//. Since f .x/ D

QN
jD1.fj .x//

cj and multiplicity
of zeros is additive under multiplication of functions, then m.x/ D

PN
jD1 cjmj .x/. As a

result,

�p;` D
X
x2ƒ

mp.x/ıx D

NX
jD1

cj
X
x2ƒj

mj .x/ıx D

NX
jD1

cj �qj ;`;

whereƒ denotes the zero set of f andƒj the zero set of fj . Clearly, ƒ D
SN
jD1ƒj . The

proof of Theorem 1.5 follows from the next lemma and proposition, considering the case
of p being irreducible and either binomial or not.

Lemma 7.1 (Binomial). If the polynomial p 2LYd.n/ is binomial, normalized such that
p.0/ D 1, then p.z/ D 1 � e�i' zd for some ' 2 R. In such case, for any ` 2 RnC, the
zeros of f .x/ D p.exp.ix`// are simple and form an infinite arithmetic progression
¹'C2�k=hd; `i W k2Zº.

Proof. If p 2 LYd.n/, then p.0/ ¤ 0 and the coefficient of zd is non-zero. If it has only
two monomials and p.0/D 1, then p.z/D 1C azd. Assume by contradiction that jaj ¤ 1;
then for any jdj-th root ! 2 C of a, the point z D .!; : : : ; !/ will be a root of p in Dn

or in .C nD/n, in contradiction to p 2 LYd.n/. Therefore p.z/ D 1 � e�i'zd, and so
f .x/ D 1 � ei.hd;`ix�'/, for some ' 2 R. Hence, f .x/ D 0 ” x � ' 2 2�

hd;`iZ, in
which case f 0.x/ ¤ 0.
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Proposition 7.2 (Non-binomial). Let p 2 LYd.n/ be irreducible and non-binomial, let
` 2 RnC be Q-linearly independent, and let f .x/ D p.exp.ix`// have zero set ƒ and
multiplicities .m.x//x2ƒ. Then,

(1) m.x/ � jdj for all x 2 ƒ and limR!1
j¹jxj<R Wx2ƒ; m.x/D1ºj
j¹jxj<R Wx2ƒºj

D 1.

(2) For any N 2 N and any set � 2 R with dimQ.�/ D N , jƒ \ �j � c, with uniform
bound c D c.jdj; N / that only depends on jdj and N . In particular, dimQ.ƒ/ D1.

Proof of Proposition 7.2, part (1). The bound m.x/ � jdj follows from part (1) of Theo-
rem 1.9. Number the distinct zeros of f .x/ by .kj /j2Z, with kj > 0 for j > 0 and kj < 0
for j < 0. We need to show that

lim
N!1

j¹�N � j � N W m.kj / > 1ºj
2N

D 0:

Let p� 2 LYd as in Definition 3.13, so that p� is also irreducible, non-binomial, and has
p�.exp.ix`// D 0 ” p.exp.�ix`// D 0 with the same multiplicities, so it is enough
to prove the one sided limit

lim
N!1

j¹1 � j � N W m.kj / > 1ºj
N

D 0:

By Lemma 3.6 and since p is irreducible, m.kj / > 1 if and only if kj ` 2 sing.†p/. Notice
that kj `D T

j

`
.k0`/, using the fact that the kj ’s are the distinct zeros. Let h be the indicator

function of sing.†p/, so that j¹1 � j � N W m.kj / > 1ºj D
PN
jD1 h.T

j

`
.k0`//. Then, h

is bounded Riemann integrable, and Theorem 6.4 gives

lim
N!1

1

N

NX
jD1

h.T
j

`
.k0`// /

Z
h.x/ dm`.x/ D m`.sing.†p// D 0:

The proof of part (2) in of Proposition 7.2 is a consequence of Theorem 1.2 in [13],
often known as Lang’s GM theorem. To state it, we consider .C�/n as multiplicative
group, and it will be convenient to define the notions of rank, division group, and algebraic
torus cosets in terms of the exponent map expWCn ! .C�/n.

Definition 7.3. A subgroup G � .C�/n has rank N ifN is the minimal integer for which
G D ¹exp.Ak/ W k 2 ZN º for some matrix A 2 Cn�N . Its division group is defined by
G D ¹exp.Ak/ W k 2 QN º for the same A. An algebraic torus of dimension d in .C�/n

has the formH D ¹exp .By/ W y 2 Cd º for some integer matrix B 2 Zn�d of rank d . The
algebraic torus coset zH for zD exp.x/ is the set zH D ¹exp .xC Ay/ j y 2 Cd º, for the
same matrix B . It also has dimension d .

Theorem (Theorem 1.2 in [13]). Let V � .C�/n be an algebraic variety of dimension N
and degreeD, and let G be a subgroup of .C�/n, of rank N , with division group G. Then
G \ V is contained in a union of at most r algebraic torus cosets zjHj � V for

r � e.NC1/.6D.
nCD
D //

�
5D.nCDD /

�
:
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Lemma 7.4. Suppose that zH � .C�/n is an algebraic torus coset of dimension d �
n � 2, and that ` 2 Rn has Q-linearly independent entries. Then there is at most one
k 2 R such that exp .ik`/ 2 zH .

Proof. LetB 2Zn�d of rank d such thatH D ¹exp .By/ W y 2Cd º, and suppose that both
exp .ik`/ and exp .ik0`/ lie in zH . Then, exp .i.k � k0/`/ 2H and therefore .k � k0/`D
By C 2�k for some k 2 Zn; y 2 Cd . The left kernel of B in Cn contains an .n � d/-
dimensional Q-linear vector space of vectors orthogonal to By, so dimQ.By/ � d , and
therefore,

dimQ..k � k
0/`/ D dimQ.ByC 2�k/ � d C 1 < n:

However, if k � k0 ¤ 0, then dimQ..k � k
0/`/ D dimQ.`/ D n, a contradiction.

Proposition 7.2, part (2). Let p, ` andƒ as in Proposition 7.2. Let V � .C�/n be the zero
set of p in .C�/n. The degree of V is finite and only depends on jdj. Given N 2 N, let
� � R of dimQ.�/ D N , so � D ¹ha;ki W k 2 QN º for some a 2 RN . Define the matrix
A 2 Cn�N whose j -th row is the vector i j̀ a 2 CN , and let G D ¹exp.Ak/ W k 2 ZN º so
that its division group is the set G D ¹exp.Ak/ W k 2 QN º D ¹exp.i t`/ W t 2 �º. So

x 2 ƒ \ � ” exp.ix`/ 2 G \ V:

SinceG has rank at mostN , Lang’s GM theorem says that there are at most r D r.jdj;N /
algebraic torus cosets ziHi � V such thatG \ V � z1H1 [ � � � [ zrHr . In particular, any
x 2 ƒ \ � satisfies exp.ix`/ 2 ziHi for some i . An algebraic torus coset of dimension
n� 1 is the zero set of a binomial polynomial, and since p is irreducible and not binomial,
then dim.ziHi / � dim.V /� 1D n� 2 for every i D 1; : : : ; r . By Lemma 7.4, each ziHi
contains at most one point exp.ix`/ for x 2R. We conclude thatƒ\ � contains at most r
points.

8. Proof of Theorem 1.12

Proof of Theorem 1.12. Suppose that n � 2. Say that p 2 LYd.n/ satisfies (i) if p and rp
have no common zeros in Tn, and satisfies (ii) if p has a non-binomial factor. Say that�p;`
satisfies .?/ if it is non-periodic, with unit coefficients and has a uniformly discrete sup-
port. The proof of Theorem 1.12 consists of three parts.

Proof of the characterization.
((i)C(ii)).?// It follows from Theorem 1.5 that �p;` is non-periodic when ` is Q-

linearly independent and p satisfies (ii). It is left to show that if p satisfies (i), then �p;`
has unit coefficients and uniformly discrete support for any ` 2 RnC. Assume that p
satisfies (i) and ` 2 RnC. Property (i) is equivalent to sing.†p/ D ; and m.x/ � 1 for
all x 2 †p . According to Lemma 3.6, this means that the multiplicities of the zeros of
f .x/D p.exp.ix`//, which are the coefficients in �p;`, are all equal to one. According to
Lemma 6.6, sing.†p/ D ; implies that r D inf¹�`.x/ W x 2 †pº > 0. The zeros of f are
distinct, so their gaps are given by �`, as seen in Lemma 6.6, providing the uniform lower
bound xjC1 � xj D �`.xj `/ � r > 0.
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(.?/) (i)C(ii)) Let p 2 LYd.n/ with Q-linearly independent ` 2 RnC, and assume
that �p;` satisfies .?/. Let ƒ be the support of �p;`, so it is non-periodic and uniformly
discrete. If p had only binomial factors, thenƒwould be a union of infinite arithmetic pro-
gressions, by Theorem 1.5, and such a union is either periodic or it has gaps as small as we
wish. We conclude that p satisfies (ii), and it is left to show (i), namely that sing.†p/ D ;
and m.x/ � 1. Let .xj /j2Z be the zeros of f .x/ D p.exp.ix`//, ordered increasingly, so
by .?/ they are all simple and �`.xj `/ D xjC1 � xj � r > 0 uniformly for some given
r > 0. Note that xj `2 reg.†p/with m.xj `/D 1 for all j 2Z, since every xj has multiplic-
ity one. The sequence ¹xj `ºj2Z is dense in reg.†p/ since ` is Q-linearly independent, so
m.x/D 1 for all x 2 reg.†p/ and inf¹�`.x/ W x 2 reg.†p/º D inf¹�`.xj `/ W j 2Zº � r > 0,
by continuity of �` and m on reg.†p/. Then sing.†p/ D ;, by Lemma 6.6, which means
that m.x/ � 1.

Proof of the explicit lower estimate.
Lemma 4.7 states that mingap > 0 if and only if p satisfies (i). If mingap D 0, the de-

sired lower bound holds. If mingap > 0, then the desired inequality follows from parts (1)
and (3) of Lemma 6.6.

Proof of the genericity.
By Theorem 3.20, For any d 2 Zn>0, the subset LYıd � LYd of p 2 LYd.n/ that sat-

isfy (i), is a semialgebraic open, dense subset of LYd.n/. Furthermore, for any nonzero
p 2 LYd.n/, we can chose x 2 Œ0; 2�/n for which p.exp.ix// ¤ 0. By Corollary 3.17,
for any � > 0, the polynomial .D�;x/

jdjp satisfies (i). As seen in Definition 3.16, every
application of D�;x contributes one to the degree of � and so the result, .D�;x/

jdjp can be
expressed as a polynomial of degree jdj in �.

For (ii), consider the set B˛ of polynomials p 2 LYd.n/ that has a binomial factor of
multi-degree ˛ � d;˛ ¤ d. We will see that B˛ is a semialgebraic subset of LYd.n/ of
positive codimension. By Lemma 7.1, the binomial factor of p has the form .1C az˛/
for some a 2 C� with jaj D 1. Therefore B˛ D ¹.1C az˛/q.z/ W jaj D 1; q 2LYd�˛º:

From this and Theorem 3.20, we see that B˛ is semialgebraic of dimension

dim.B˛/ D 1C dim.LYd�˛/ D 2C

nY
jD1

.dj � j̨ C 1/:

Since ˛ ¤ 0, there is some ˛i � 1. We then calculate that

nY
jD1

.dj � j̨ C 1/ � .di � ˛i C 1/
Y
j¤i

.dj C 1/

D

nY
jD1

.dj C 1/ � ˛i
Y
j¤i

.dj C 1/ <

nY
jD1

.dj C 1/ � 1;

using that ˛i
Q
j¤i .dj C 1/ � 2

n�1 > 1 since n � 2 and dj C 1 � 2 for all j . This shows
that dim.B˛/ < dim.LYd/ for any 0 Œ ˛ � d.

Together, these show that the set of polynomials in LYd.n/ satisfying (i) and (ii) is a
semialgebraic, open dense subset of LYd.n/.
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9. Gap distributions

The existence of a gap distribution �p;` was previously known for specific type of Lee–
Yang polynomials, those for which the zeros of p.exp.ix`// are the square-root eigen-
values of a quantum graph that has n edges of lengths ` D .`1; : : : ; `n/, assuming these
lengths are Q-linearly independent [4, 7, 12]. The existence of a gap distribution of �p;`
for any choice of Lee–Yang p and positive ` is proven in this section. In particular,
this includes the case of quantum graphs with edge lengths not Q-linearly independent.

Recall that if p has multi-degree d and it decomposes as p D
QN
jD1 q

cj
j into distinct

irreducible qj ’s, then pred D
QN
jD1 qj is the reduced square-free polynomial; we denote

its multi-degree by dred. In particular, dred � d element-wise, with equality if and only
if p is square free. As seen in Lemma 6.6, if we number the zeros of f .x/D p.exp.ix`//
increasingly with multiplicity, then the positive gaps are described by �`W†p ! RC,

(9.1) xjC1 � xj D �`.xj `/ whenever xjC1 ¤ xj ;

as can be seen in Figure 5. To prove Theorem 1.14, let us define the measure �p;`.

Definition 9.1. Let p 2 LYd.n/, ` 2 RnC, and let .�`/�m` denote the push-forward of m`

by �`. Define the measure �p;` on R�0 by

(9.2) �p;` WD c0 ı0C c� .�`/�m`; with c0 WD
hd � dred; `i

hd; `i
and c� WD

1

.2�/n�1hd; `i
�

That is, for any continuous f WR�0 ! C,

(9.3)
Z
f d�p;` WD c0f .0/C c�

Z
†p

f .�`.x// dm`.x/:

Remark 9.2. The measure �p;` is normalized,
R
d�p;` D 1, since

R
d.�`/�m` Dm`.†p/,

c� D
1R

†p
m.x/ dm`.x/

and c0 D

R
†p
.m.x/ � 1/ dm`.x/R
†p

m.x/ dm`.x/
D 1 � c� m`.†p/:

Proof of Theorem 1.14 and Theorem 1.15. Fix �, an N-FQ, and let n 2 N; p 2 LYd.n/;

and ` 2RnC with Q-linearly independent entries, such that �D �p;`, as guaranteed by [3].
Consider the decomposition p D

QN
jD1 q

cj
j into distinct irreducible Lee–Yang polynomi-

als. Let .xj /j2Z be the zeros of p.exp.ix`//, numbered increasingly with multiplicity.
The proofs of Theorem 1.14 and Theorem 1.15 interlace according to the following

sequence of lemmas, which will be proven afterwards. For each, we take the assumptions
listed above.

Lemma 9.3. The gap distribution � D �p;` exists and is equal to �p;`. That is, for any
continuous function f WR! C,

lim
N!1

1

N

NX
nD1

f .xjC1 � xj / D

Z
f �p;`:

Moreover, �p;` D �q;` when q.z/ WD p.exp.ix0/z/ for any fixed x0 2 Rn (part (1) of
Theorem 1.15).
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For the average gap, Theorem 1.9 provides two estimates:

�p;`.Œx1; xNC1�/ D N CO.1/; and

�p;`.Œx1; xNC11�/ D
hd; `i
2�

.xNC1 � x1/CO.1/;

and their ratio as N !1 gives the following.

Corollary 9.4 (Theorem 1.14, part (4)). The average gap is the density inverse

E.�/ WD lim
N!1

PN
nD1 xjC1 � xj

N
D lim
N!1

xNC1 � xj

N
D

2�

hd; `i
�

Lemma 9.5 (Theorem 1.15, parts (2) and (3)). The measure �p;` has an atom at � D 0
if and only if p is not square free. It has an atom at � > 0 if and only if some (not
necessarily distinct) pair of factors, qi and qj , are related by qj .z/ D qi .exp.i�`/z/ for
all z. Moreover, if this holds and qi D qj , then qi is binomial.

Lemma 9.6. The measure �p;` has no singular continuous part.

Lemma 9.5 and Lemma 9.6 then give the following.

Corollary 9.7 (Theorem 1.14, part (1)). The measure �p;` has finitely many atoms and no
singular continuous part.

Lemma 9.8 (Theorem 1.14, part (3)). For any � D xjC1 � xj and any open interval I
that contains �, �p;`.I / > 0.

Together with Theorem 1.5, this gives the following.

Corollary 9.9 (Theorem 1.14, part (2)). If �p;` is periodic, then �p;` is purely atomic.
Conversely, if�p;` is not periodic, with supportƒ, then at least one of the following holds:

(1) ƒ contains two arithmetic progressions with periods �1;�2 such that �1=�2 … Q.

(2) dimQ.ƒ/ D1.

Each one of these ensures that there are infinitely many gap values, hence the support
of �p;` is not finite. In particular, �p;` must have an absolutely continuous part.

Once proven, these statements complete the proof of Theorems 1.14 and 1.15.

Proof of Lemma 9.3. Let f WR! C be continuous, so the composition f ı �` is bounded
and Riemann integrable, since �` is bounded and continuous on an open full measure set
reg.†p/, see Lemma 6.6. Therefore, the function

h.x/ WD
m.x/ � 1

m.x/
f .0/C

1

m.x/
f .�`.x//

is bounded and Riemann integrable. By Theorem 6.4, we get

lim
N!1

1

N

NX
jD1

h.xj `/ D
hd � dred; `i

hd; `i
f .0/C

1

.2�/n�1hd; `i

Z
†p

f .�`.x// dm`.x/

D

Z
f d�p;`:
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Whenever xj�1 < xj D xjC1 D � � � D xjC.m�1/ < xjCm, we have �`.xi`/ D xjCm �

xjC.m�1/ and m.xi`/ D m for all i 2 ¹j; : : : ; j Cm � 1º, so

jCm�1X
iDj

h.xi`/ D .m � 1/f .0/C f .xjCm � xjC.m�1// D

jCm�1X
iDj

f .xiC1 � xi /:

Therefore, given any N 2 N such that xN < xNC1,

(9.4)
1

N

NX
jD1

h.xj `/ D
1

N

NX
jD1

f .xjC1 � xj /:

The left-hand-side of (9.4) converges to
R
f d�p;` as N !1. The equality in (9.4) holds

for infinitely many N values (those for which xN < xNC1) whose spacing is bounded by
the maximum multiplicity jdj, so according to Lemma A.1,

lim
N!1

1

N

NX
jD1

f .xjC1 � xj / D

Z
f d�p;`:

Given any fixed x0 2 Rn=2�Zn, let q.z/ WD p.exp.ix0/z/, and let .tj /j2Z denote the
repeated ordered zeros of t 7! q.exp.i t`// D p.exp.i.x0 C t`///. Then, according to
Theorem 6.4,

lim
N!1

1

N

NX
jD1

f .xjC1 � xj / D lim
N!1

1

N

NX
jD1

f .tjC1 � tj /;

namely �p;` D �q;`.

Proof of Lemma 9.5. By Definition 9.1, �p;` has an atom at � D 0 if and only if the mul-
tidegrees of p and pred differ, which occurs if and only if p is not square free.

Suppose that �p;` has an atom at � > 0. Then, .�`/�m` has an atom at �, which
means that the level set ��1

`
.�/ has positive measure m`.�

�1
`
.�// > 0. The set A WD

reg.†p/ \ T �1` .reg.†p// is an open subset of reg.†p/ of full m` measure and �` is
real analytic on A by Lemma 6.6. Since m` is absolutely continuous with respect to the
volume measure on A, then A \ ��1

`
.�/ has positive volume, and therefore �` is iden-

tically � on some open set U � A. By taking U sufficiently small, there are two (not
necessarily distinct) irreducible factors of p, say q1 and q2, such that q1.exp.ix// D 0

and q2.exp.i.xC�`/// D 0 for all x 2 U . It follows that q1.z/ D q2.exp.i�`/z/ for all
z 2 Cn by part (3) of Lemma 4.1, since q1 and q2 are irreducible Lee–Yang polynomials.

Now, suppose that q1 D q2, so q1.z/ D q1.exp.i�`/z/ for all z 2 Cn. In particular,
if ƒ is the zero set of x 7! q1.exp.ix`//, then for any x 2 ƒ we have x C � 2 ƒ, and
as a result, x C j� 2 ƒ for any j 2 N. Since q1 is irreducible Lee–Yang polynomial and
` 2RnC has Q-linearly independent entries, then q1 must be binomial, by Theorem 1.5.

Proof of Lemma 9.6. It follows from Lemma 9.5 that �p;` has finitely many atoms, say
.ti /

N
iD1, so that �p;` D

Pn
jD1 cj ıtj C �ac, with �ac being a continuous measure (no atoms).

We now show that �ac is absolutely continuous with respect to Lebesgue measure. Let

A WD reg.†p/ \ T �1` .reg.†p//:
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We use Anc to denote the union of the connected components of A on which �` is not
constant. Then �ac is (c� times) the push-forward of m` by the restriction of �` to Anc,
using thatA has full measure. It is left to show that for any setE �R of Lebesgue measure
zero, the set Anc \ �

�1
`
.E/ has zero m` measure, or equivalently, due to Lemma 6.5, zero

volume in reg.†p/.
Since �` is real analytic on A and is not constant on any open set in Anc, then the set

� D ¹x 2 Anc W r�`.x/ ¤ 0º is open in Anc and its complement in Anc has zero volume.
By the definition of �, �` has no critical points in �, which means that for any compact
connectedK ��, the image of �` overK is an interval Œa;b� and the level setsK \ ��1

`
.t/

for t 2 Œa; b� are homotopic to one another. In particular, if we let area.K; t/D �n�2.K \
��1
`
.t// denote the .n � 2/-dimensional volume of the level set, induced by the volume

form d� on reg.†p/, then t 7! area.K; t/ is continuous in t 2 Œa; b�, and so it is bounded
by some constant. Let C be the maximum of area.K; t/ for t 2 Œa; b�, and jr�`.x/j�1 for
x 2 K. Then,Z
K\��1

`
.E/

d� �C

Z
K\��1

`
.E/

kr�`.x/kd�.x/DM
Z
t2E

area.K; t/dt �C 2
Z
t2E

dt D 0;

using the co-area formula (or disintegration theorem) in the middle equality. It follows
that m`.K \ �

�1
`
.E// D 0 for any compact connected K � �, hence

�ac.E/ / m`.� \ �
�1
` .E// D 0:

As this holds for any E of zero Lebesgue measure, �ac is absolutely continuous.

Proof of Lemma 9.8. Let � D xjC1 � xj for some arbitrary fixed choice of j , let I � R
be any open interval with� 2 I , and consider the open setU WD ¹x 2 reg.†p/ W �`.x/ 2 I º.
It is enough to show that U ¤ ; to conclude that m`.U / > 0, by Lemma 6.5, and so

�p;`.I / � c� m`.U / > 0:

Consider two cases, according to whether � > 0 or � D 0.
Case � > 0. Suppose xjC1 > xj and let x D xj ` mod 2� , so �`.x/ D �. If x 2

reg.†p/, then x 2 U . Otherwise, if x 2 sing.†p/, then � 2 ¹�`.x/ W x 2 reg.†p/º, by
Lemma 6.6, which means that U ¤ ;.

Case � D 0. Suppose xjC1 D xj . If sing.†p/ ¤ ;, then � D infx2reg.†p/ �`.x/ by
Lemma 6.6, and so U ¤ ;. Otherwise, if sing.†p/ D ;, having xjC1 D xj means that p
has a square factor, and so

�p;`.Œ� � ";�C "�/ � �p;`.¹0º/ D c0 > 0:

Proof of Corollary 1.16. Items (2) and (3) were already discussed in Theorem 1.5 and
Lemma 9.5, respectively. For (1), if p is irreducible and not binomial, then its gap distri-
bution cannot have any atoms by Theorem 1.15 part (3), and so it is absolutely continuous
by Theorem 1.14 part (1).

Part (4) is a counting argument. Suppose that p has N CM distinct irreducible fac-
tors,M of which are binomial. There can be three types of atoms according to Lemma 9.5:
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(a) an atom at zero,
(b) an atom at positive�> 0 coming from a pair of distinct non-binomial factors related

by qi .z/ D qj .exp.i�`/z/,
(c) an atom at a positive�> 0, coming from a pair of (not necessarily distinct) binomial

factors related by qi .z/ D qj .exp.i�`/z/.
Notice that if qi is binomial and qj is non-binomial, then they cannot satisfy a relation

of the form qi .z/ D qj .exp.i�`/z/, as such a relation means that the torus zero set †qi ,
which is a torus, is a translation of the torus zero set †qj , which is not a torus. It is left to
bound the number of atoms of each type. There can be at most one (a) atom.

For atoms of type (b), notice that a pair of non-binomial factors cannot satisfy the
relation qi .z/ D qj .exp.i�`/z/ for two different values of � > 0, say �1 ¤ �2. Other-
wise, we get qj .z/ D qj .exp.i.�1 ��2/`/z/ in contradiction to qj being non-binomial.
Therefore, there are at most

�
N
2

�
atoms of type (b), one for each possible pair.

To bound the number of type (c) atoms, consider a pair of (not necessarily distinct)
binomial factors related by qi .z/D qj .exp.i�`/z/. In particular, qi and qj share the same
multi-degree, say ˛. According to Lemma 7.1, the zero sets of fi .x/ D qi .exp.ix`// and
fj .x/ D qj .exp.ix`// are arithmetic progressions of the same step size, say ƒi D ¹a C
2�k=h˛; `iºk2Z and ƒj D ¹a C �C 2�k=h˛; `iºk2Z for some a 2 R. Suppose that p
has exactlyM˛ binomial factors with multi-degree ˛, and letƒ˛ denote the union of their
arithmetic progressions defined above. Thenƒ˛ is 2�=h˛; `i periodic withM˛ points in a
period, and therefore at most M˛ gap values between consecutive points. By partitioning
the M binomial factors according to their multi-degrees, we see that there are at most M
atoms of type (c). We conclude that there are at most

�
N
2

�
CM C 1 atoms

Proof of Theorem 1.17. By Lemma 9.3, if p 2 LYd.n/ and ` 2 RnC has Q-linearly inde-
pendent entries, then �p;` D �p;`. It is left to show that �p;` is weakly continuous in `,
namely, that for any fixed continuous f WR! C, the following integral is continuous in
` 2 RnC: Z

f d�p;` WD c0f .0/C c�

Z
†p

f .�`.x// dm`.x/:

The weights c0 and c� , given in Definition 9.1, are continuous in ` 2 RnC, and the remain-
ing integral can be written asZ
†p

f .�`.x// dm`.x/ D
Z

reg.†p/
f .�`.x// dm`.x/ D

nX
jD1

j̀

Z
reg.†p/

f .�`.x// dmej .x/;

using that m`.sing.†p//D 0 in the first equality, and the linearity of m` in ` (Lemma 6.5)
in the second one. The integral

R
reg.†p/

f .�`.x//dmej .x/ is continuous in ` because
.x; `/ 7!f .�`.x// is continuous over reg.†p/�RnC by continuity of f and Lemma 6.6.

Let us now prove Theorem 1.19.

Proof of Theorem 1.19. Fix p 2 LYd.n/, and for any x 2 Rn let px 2 LYjdj.1/ be the uni-
variate polynomial px.s/ D p.seix1 ; seix2 ; : : : ; seixn/ whose degree is jdj and its roots
lie on the unit circle. Let �j WRn ! R, for j D 1; 2; : : : ; jdj, be the continuous phase
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functions given in Proposition 4.5, so that .ei�j .x//jdjjD1 are the roots of px numbered
(counter-clockwise) increasingly including multiplicity, and let �jdjC1 D �1 C 2� . We
need to prove that for any continuous f WR! C,Z

f d�p;1 D
1

.2�/n

Z
x2Œ0;2��n

h 1
jdj

jdjX
jD1

f .�jC1.x/ � �j .x//
i
dx;

where 1 D .1; 1; : : : ; 1/. Fix a continuous f WR! C and define

h.x/ WD
m.x/ � 1

m.x/
f .0/C

1

m.x/
f .�`.x//:

Consider the layers †p;j and their parameterizations 'j as defined in Proposition 4.2, so
that the multiplicity m.x/ counts the number of layers containing x, so thatZ

†p

m.x/h.x/ dm1.x/ D
jdjX
jD1

Z
†p;j

m.x/h.x/ dm1.x/ D
jdjX
jD1

Z
.0;2��n�1

h.'j .y// dy;

using (6.8) from Lemma 6.5 in the last equality. As in the proof of Lemma 9.3, this givesZ
f d�p;1D

1

.2�/n�1jdj

Z
†p

m.x/h.x/ dm1.x/D
1

.2�/n�1jdj

jdjX
jD1

Z
.0;2��n�1

h.'j .y//dy:

As seen in the proof of Lemma 6.6, if �jC1.'j .y// > �j .'j .y//, then �1.'j .y// is equal
to the unique t 2 R such that

�jC1.'j .y/C t1/ D �j .'j .y//:

In such case, using part (1) of Proposition 4.5 and the definition of 'j , we get

�1.'j .y// D �jC1.y; 0/ � �j .y; 0/:

The number of j ’s for which �jC1.y; 0/ D �j .y; 0/ is exactly
Pjdj
jD1.m.'j .y// � 1/, so

jdjX
jD1

h.�`.'j .y/// D
jdjX
jD1

f .�jC1.y; 0/ � �j .y; 0//;

for every y, and integrating gives

(9.5)
Z
f d�p;1 D

1

.2�/n�1jdj

Z
.0;2��n�1

h jdjX
jD1

f .�jC1.y; 0/ � �j .y; 0// dy
i
:

Let

g.x/ WD
jdjX
jD1

f .�jC1.x/ � �j .x//;



L. Alon and C. Vinzant 46

and notice that g is continuous, satisfies g..y; 0/C t1/ D g.y; 0/ by part (1) of Proposi-
tion 4.5, and is 2� periodic by part (4) of Proposition 4.5, soZ

y2.0;2��n�1
g.y; 0/ dyD

1

2�

Z 2�

tD0

Z
y2.0;2��n�1

g..y; 0/C t1/ dydt D
Z

x2.0;2��n
g.x/ dx:

The needed result follows:Z
f d�p;1 D

1

.2�/n�1jdj

Z
x2.0;2��n

h jdjX
jD1

f
�
�jC1.x/ � �j .x/

�
dx
i

A. Appendix

The next lemma is being used throughout the paper.

Lemma A.1. Let .an/n2N be a bounded sequence janj < M and let .sn/n2N be the
sequence of partial averages,

sN WD
1

N

NX
nD1

an:

Suppose that there exists a converging subsequence limj!1 snj D L, with a uniform
spacing bound njC1 � nj < M 0. Then, limn!1 sn D L.

Proof. Given any nj � n0 � njC1, the uniform spacing bound gives nj =n0! 0 as j !1,
and we have

jsn0 �
nj

n0
snj j D

janjC1 C anjC2 C : : :C an0 j

n0
�
M 0M

nj
! 0 as j !1:
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