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Gap distributions of Fourier quasicrystals with integer
weights via Lee-Yang polynomials

Lior Alon and Cynthia Vinzant

Abstract. Recent work of Kurasov and Sarnak provides a method for construct-
ing one-dimensional Fourier quasicrystals (FQ) from the torus zero sets of a special
class of multivariate polynomials called Lee—Yang polynomials. In particular, they
provided a non-periodic FQ with unit coefficients and uniformly discrete support,
answering an open question posed by Meyer. Their method was later shown to gen-
erate all one-dimensional Fourier quasicrystals with N-valued coefficients (N-FQ).

In this paper, we characterize which Lee—Yang polynomials give rise to non-
periodic N-FQs with unit coefficients and uniformly discrete support, and show that
this property is generic among Lee—Yang polynomials. We also show that the infinite
sequence of gaps between consecutive atoms of any N-FQ has a well-defined dis-
tribution, which, under mild conditions, is absolutely continuous. This generalizes
previously known results for the spectra of quantum graphs to arbitrary N-FQs. Two
extreme examples are presented: first, a sequence of N-FQs whose gap distributions
converge to a Poisson distribution. Second, a sequence of random Lee—Yang poly-
nomials that results in random N-FQs whose empirical gap distributions converge to
that of a random unitary matrix (CUE).

1. Introduction

An N-FQ is an N-valued measure supported on a discrete set whose Fourier transform is
also supported on a discrete set and has moderate growth (see Definition 2.1). A recent
sequence of works [3, 14, 19] established that all one-dimensional N-FQs arise from the
torus zero sets of a special class of multivariate polynomials, called Lee—Yang poly-
nomials.

Given a discrete periodic set A C R with period A > 0, the Poisson summation for-
mula states that

Y S = ZK” Y f(k). forall feS(R),
xeA keA*

where A* = {k € R : Vx € A, e?** = 1} and S(R) is the space of Schwartz functions:
smooth functions on R that rapidly decay to zero at 200 (properly defined in Section 2).
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Fourier quasicrystals are generalizations of the Poisson summation formula to sets which
are not periodic but exhibit similar features.

1.1. Fourier quasicrystals

Elements in the dual space $’(R) are called tempered distributions, and the Fourier trans-
form of 1 € §'(R) is the tempered distribution i defined by duality, [ fdi := [ Ffdu.
For example, if A is periodic as above, then jt = )", o 6x is tempered and its Fourier
transform is i = ZT” > ken Ok, by the Poisson summation formula. However, in gen-
eral, if a tempered distribution p is supported on a non-periodic discrete set A, i.e.,
W =) ,ca dxbx for some complex coefficients (ax)xea, it is unlikely that jz will also be
supported on a discrete set.

If u € §'(R) satisfies the condition that both u and ji are supported on discrete
(locally finite) sets, then u is called a crystalline measure [17]. A crystalline measure
U=, ca axbx with Fourier transform i = ) ; .5 cx 8k (so that S C R is some discrete
set) is called a Fourier quasicrystal if

lul =) lax|8x and |A] =" |ex|6k
x€A keS

are tempered as well, [15]. We say that i is N-valued if a, € N for all x € A, and we
abbreviate N-valued Fourier quasicrystals as N-FQs.

1.2. Lee-Yang polynomials

Following [21], we call a polynomial p € C|zy, ..., z,] a Lee~Yang polynomial if it has
no zeros in the product D" of the open unitdisk, D = {z € C : |z| < 1}, and it has no zeros
in the product of the outer disk (C \ D)”. One fundamental example is a determinant:

p(z1,22,...,2y) = det(diag(zy,...,z,) + U),

where U is an n x n unitary matrix. The name Lee—Yang polynomials refers to the ele-
gant proof of the Lee—Yang circle theorem [9, 10] by Brindén and Borcea. Lee—Yang
polynomials are intimately related, by Mobius transformations, to the class of real stable

polynomials, i.e., p € C[zy, 23, ..., z,] With the property that p(a) is nonzero whenever
a=(ai,...,ap) € C" hasimaginary part Im(a;) > Oforall j =1,...,n orIm(a;) <0 for
all j = 1,...,n. Brindén and Borcea developed a classification of linear operations pre-

serving stability and used this to prove the Lee—Yang circle theorem [9, 10], among many
other things. See [22] for a survey of these techniques. Many properties of determinants,
especially those involving eigenvalues, also hold and have elegant proofs for general real
stable polynomials. See, for example, [5].

1.3. N-FQs and Lee-Yang polynomials

Meyer posed an intriguing question: Are there any non-periodic crystalline measures (1 =
> cen Ox, with unit coefficients (ay = 1) and uniformly discrete' support A?

TA set A C R is said to be uniformly discrete if 3r > 0 such that |x — x’| > r > 0 for any distinct x, x" € A.
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In their notable work [14], Kurasov and Sarnak presented a general construction of
N-FQs. Using this construction, they answered Meyer’s question by providing an explicit
example of a non-periodic FQ p with unit coefficients and a uniformly discrete support.
A question addressed in this paper is whether these properties are common among all
the N-FQs.

To describe the Kurasov—Sarnak construction, suppose p(z1,22,...,2y) = Za Ca I
is a Lee—Yang polynomial (we use here the multi-index notation z* = ]—[7 -1 z;.xj ), and let
€= ({y,...,4y) € R%.. Then, the univariate exponential polynomial

() = plexp(ixt) = p(e™.....e™n) = Y cq 0
o

is real-rooted, namely f(x) = 0 = Im(x) = 0, since exp(ixf) € D" U (C \ D)” when
Im(x) # 0.If f(x) = 0, let m(x) denote the multiplicity” of x as a zero of f.

Theorem 1.1 (Kurasov—Sarnak construction [14]). Given a positive vector £ € R, and a
Lee—Yang polynomial p(z1,z2,...,zn), let A denote the zero set of f(x) = p(exp(ixt))
and let m(x) be the multiplicity of x € A. Then, the measure

Upe = Z m(x) O

x€A
is an N-FQ.
Example 1.2. The polynomial
p(z1.22) = 16(1 +2723) = 8(z1 + 22 + 25 22 + 2123) + (21 — 22)°

is Lee—Yang, and the vector £ = (57/22, 1) has Q-linearly independent entries. Let A =
{t e R: p(exp(itf)) = 0} be the support of i, ¢. Figure 1 (top) shows the points of A
in the interval [0, 107]. The bottom left picture shows the zero set of p(e'~,e™) and line
(x,y)=tL for 0 <t <10, the bottom right image represents these sets in R? /(27 Z)?.

Olevskyii and Ulanovskii [19] proved that any one-dimensional N-FQ has the form
W= .cpm(x)dy, where A and (m(x))xea are the zero set and multiplicities for some
real-rooted exponential polynomial f. Together with Cohen [3], the authors showed that
every real-rooted exponential polynomial f is of the form® f(x) = p(exp(ix{)), for some
Lee—Yang polynomial p and some positive vector £ € R” that has Q-linearly independent
entries. All together, this gives the following.

Theorem 1.3 (Inverse result, [3,19]). Let u € §'(R) be an N-FQ. Then, (v is equal to i, ¢
as in the Kurasov-Sarnak construction, for some n € N, a Lee—Yang polynomial p €
Clz1.22,...,zx] and a positive vector £ € R", whose entries are Q-linearly independent.

Given a set A C R, let dimg(A4) denote the dimension (as a Q-vector space) of the
Q-linear span of the elements of A. For a vector £ € R”, dimg({) = n means that its
entries are Q-linearly independent.

2The multiplicity of a zero x of an analytic function f is the minimal n € N for which the n-th derivative
is non-zero, £ (x) # 0.
3Up to a non-vanishing factor.



L. Alon and C. Vinzant 4

1 2 3 4 5 6 7 8 9 10 11 12 1314 15

Figure 1. The Kurasov—Sarnak construction of an N-FQ from the zero-set of a Lee—Yang polyno-
mial in the torus T2. See Example 1.2.

Theorem 1.4 (Theorem 3 in [14]). Any N-FQ, say o = ) .o m(x) 8y, has uniformly
bounded weights m(x) and has two integers r,c > 0 such that its support A = L1 U L, U
---U L, U N is the union of r infinite arithmetic progressions and a set N which, if not
empty, has dimg(N) = oo and |[N N L| < c for any arithmetic progression L.

We elaborate on Theorem 3 in [14] and the relation between the decomposition of
the measure and the decomposition of the polynomial into irreducible factors (a proof
provided in Section 7). A polynomial is said to be binomial if it has only two monomials.

Theorem 1.5 (Decomposition and non-periodicity). Given an N-FQ ., there are an neN,
a Lee—Yang polynomial p in n variables, and a Q-linearly independent vector £ € R’}
such that |1 = [ip¢. The polynomial p decomposes into distinct irreducible Lee—Yang
polynomials p = ]_[jl-vzl q;j, where each factor q; appears with a power cj € N. Let A be
the support of w, and let A be the support of iq; ¢ for each qj. Then,

N N
Mpt = Zc}- Hgje and A= U Aj.
j=1 j=1

If qj is binomial, then pg; ¢ has unit coefficients and Aj is an infinite arithmetic
progression.

If q; is non-binomial, let D denote its total degree and let jiq; o = erA, m;(x)0x.
Then we have the following:
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(1) (Almost all unit coefficients) The coefficients are bounded by mj(x) < D, and m;(x)
=1 for almost every x € A;:

{xl < R:xeAjomx) =1} _

lim

R0 HIx|<R:x e A}

(2) (Dimension over Q) The support has dimg (A ;) = oo, with uniform bounds |A; N
Al < ¢ =c(m, D) forany set A C R with dimg(A4) = m.

Remark 1.6 (Quasicrystals and cut-and-project sets). The mathematical definition of a
quasicrystal (not to be confused with a Fourier quasicrystal) is a set A C R” which is
uniformly discrete, relatively dense?, and its set of differences A — A = {x —y : x,y € A}
is contained in finitely many translates of A, see Definition 6 in [16]. A model set (also
known as cut-and-project set) A C R” is the projection of a set (B x R") N L, where
L C R™ x R" is a lattice in generic location’ and B C R™ is bounded with non-empty
interior. Meyer showed that any model set is a quasicrystal, and any quasicrystal lies in
finitely many translates of model sets, see Theorem 1 in [16]. In particular, in such case,
dimg(A) <n + m.

Corollary 1.7. If p is an irreducible non-binomial Lee—Yang polynomial, then the sup-
port of p.g, for any Q-linearly independent £ € R” , intersects any quasicrystal and any
model set in at most finitely many points.

Proof. According to Remark 1.6, if A is the support of a quasicrystal or a model set, then
dimg(A) < oo, and now the corollary follows from Theorem 1.5 (2). |

Remark 1.8 (Non-uniqueness of the decomposition). Even though multivariate polyno-
mials p factor uniquely into irreducibles, the measure p,, ¢ depends only on the exponen-
tial polynomial f(x) = p(exp(ix£)). The ring of exponential polynomials is not a unique
factorization domain and, as a result, the decomposition of the measures in Theorem 1.5
is not unique. As a simple example, consider

k—1

1 —exp(ix) = (1—exp(ix/2))(1 +exp(ix/2)) = (1 —exp(ix/2%)) [ (1 + exp(ix/27))
Jj=1

for any k > 1. The corresponding measure is ) .., 8x. The first factorization gives this
measure as () e,z 8x) + (X xeaz+1 0x). The subsequent factorizations decompose the
measure further. For n > 1, this decomposition can also fail to be unique in non-trivial
ways. The Lee-Yang polynomial p(zy, z2) in Example 1.2 is irreducible, but p(z?, z3)
factors as the product of four Lee—Yang polynomials g, =2 + 0121 + 0222 + 201022122
for (01, 0,) € {#1}2. Therefore, for any ¢ € RZ,

Hpe = Z Hgg,t/2-
oe{+1}?

“4Relatively dense means that there exists R > 0 such that A intersects any ball of radius R.
SLattice in R” x R” such that the projection to R” is dense and the projection to R” is injective
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1.4. Main results

To set up notations, let LY 4() denote the set of Lee—Yang polynomials p € Cl[zy, ..., z,]
of degrees d = (d1,...,dy), i.e., p that has degree d; in every z;. Let |d| = dy + d> +
-+ 4 d, denote the total degree. Let

T" ={zeC":|zj| =1,Vj}.
Theorem 1.9 (Density and maximal gap). Let p € LYq(n) and £ € R’,.. Then,
(1) pp¢ has density (d, L) /2m with uniformly bounded error term:

d, /¢
Mpe([x,x +T]) = —(2 ) T +err(x,T), with |err(x,T)| <|d|,
b4

forallx e R, T > 0.
(2) The gap between any pair of consecutive atoms in [ip, ¢ is at most 2w |d|/(d, £).

Remark 1.10. The bounds in Theorem 1.9 are tight: for any choice of n € N and d € N”,
we can construct i, ¢ with error term that gets arbitrarily close to |d| and gaps that get
arbitrarily close to 2|d|/(d, {). Let p(z) = ]_[7=1(1 — Zj)dj € LYq4(n), and let p; be
the sum of delta masses at 2l—7Z, so that up, ¢ = Z?:l d; ;. In particular, there is an
atom at 0 with coefficient |d|, so pp ¢([—€, €]) = |d| for sufficiently small & > 0, and
therefore err(—e¢, 2¢e) = |d| — (d,£)e/r — 0 as ¢ — 0. Moreover, the gap to the next
atom is min 27 /¢; < 2m|d|/(d, £), and if £ is arbitrary close to (2r, 27, ..., 2m), then
2n|d|/{d,£) — min 27w /{; is arbitrary close to zero.

The next theorem shows that, generically, an N-FQ enjoys the desired properties of
having uniformly discrete support and having all unit coefficients. For this end, we define
the following.

Definition 1.11. We define mingap(p) € [0,27) for p € LYq4(n) as follows. Whenn = 1,
if p has multiple root, we set mingap(p) = 0; otherwise, we let mingap(p) be the minimal
angle between different roots of p.® When n > 1, we set mingap(p) to be the minimum of
mingap(p,) overallz € T", where p,(s) := p(sz1,5z2,...,52,) is a univariate Lee—Yang
polynomial for any fixed z € T".

Theorem 1.12 (Minimal gap for generic FQ). Let n > 2 be an integer and letd € ZZ,.

(1) (Characterization) For any Q-linearly independent £ € R’ and p € LYq(n), the
measure [Lp, ¢ is non-periodic with unit coefficients and uniformly discrete support if
and only if p satisfies
(1) Vp(z) # 0 whenever z. € T" such that p(z) = 0, and
(i1) p has a non-binomial factor.

(2) (Explicit lower estimate) The polynomial p has mingap(p) > 0 if and only if p
satisfies (i). Denote the ordered atoms of iy ¢ by (xj)jez. Then
mingap(p) < .ing(xj+l _x) < mingap(p)
je

Zmax gmin

The roots of a univariate Lee—Yang polynomial lie on the unit circle.
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The lower bound holds for any £ € R”., the upper bound holds for any Q-linearly
independent £ € R”, and ..« (respectively, {yn) stands for the largest (respectively,
smallest) entry of L.

(3) (Genericity) The set of Lee—Yang polynomials in LY q(n) that satisfy both (i) and (ii)
is a semialgebraic open dense subset of LY q(n).
Furthermore, we provide explicit perturbation taking any p € LYq4(n) to a one
parameter family polynomials p) = p + Z}d:ll A/ qj, such that po = p and p,
satisfies (i) for any A > 0.

The polynomial p from Example 1.2 has mingap(p) = 0, because p(1,1) = 0 and
Vp(1,1) = 0. The measure ji,, ¢ then fails to have uniformly discrete support. Figure 2
shows the effect of the perturbation p + p;. For A > 0, mingap(p;) > 0 and pp, ¢ is
uniformly discrete.

Remark 1.13. There is no loss of generality by considering only Q-linearly indepen-
dent {’s, due to [3]. Nevertheless, we point out that if p satisfies (i), then w, ¢ will have

unit coefficients and uniformly discrete support for any £ € R’} .

107 , ‘ 10
8 8

0 2n am 6 8 10n 0 2m an 6 8 10

Figure 2. (Left) The singular zero set of p and the line in direction ¢, as in Figure 1. (Right) The
regular zero set of the perturbed polynomial pj for A = 0.2 and the same line in direction £.

Given p € LYq(n) and £ € R’} let (x;);ez be the zeros of p(exp(ix{)), numbered
increasingly with multiplicities (so that a zero of order m appears m times). Then p, ¢ =
>_jez 0Ox;- A random measure of the form } ;.7 8x;, for random x;’s, is called a point
process, and it can be defined in terms of the gaps A; = x;+1 — x;, which are often taken
to be i.i.d. A; samples from some probability distribution. Next theorem shows that the
gaps between atoms in i, ¢ obey a well-defined “gap-distribution” p, ¢, by which we
mean that

1 D
N Z 8(x.,'+1—x1') g Pp,Z,

Jj=1
D C e . . .
where — stands for convergence in distribution. Equivalently, for any continuous f,

N
. 1
(1) Jim 5y 2 e =) = [ 7oy
]=
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Theorem 1.14 (Existence of gap distribution). Every N-valued FQ [ has a well-defined
gap distribution p with the following properties:
(1) It has finitely many atoms, say (r; )jle, suchthat p = Py + Zf‘il p({r;})8r;, and pyc
is absolutely continuous with respect to the Lebesgue measure on R.
(2) pac = 0 ifand only if w is periodic.
(3) If A = 0 is any gap between consecutive atoms of |, then p(1) > 0 for any open
neighborhood I C R of A.

(4) The average gap E(p) is the reciprocal of its density.

When u = p, ¢ we denote the resulting gap distribution p, ¢. Together with Theo-
rem 1.9, part (4) implies that the average gap of ¢ is given by E(up¢) = 27 /{d, £).

As discussed above, every N-valued FQ p can be written as i, ¢ for some Lee—Yang
polynomial p and some vector £ € R” , where £ has linearly independent entries over Q.
We explore the dependence of the gap distribution pj, ¢ on both the polynomial p and the
vector £. First we note that the gap distribution is independent of torus actions on p, and
give conditions on the factorization of p under which the p, ¢ has atoms.

Theorem 1.15 (p-dependence of the gap distribution). Suppose p €LYq(n) and let £ € R”,
with Q-linearly independent entries. Then
(1) for any fixed x € R, the polynomial q(z) = p(exp(ix)z) = p(e'*'zy,...,e"¥nz,)
is in LYq(n), and pge = pp -
(2) The distribution pp ¢ has an atom at A > 0 if and only if there are two irreducible
factors of p, say q; and q;, such that q;(z) = q;(exp(i Al)z). Moreover,
(3) if A > 0andq; = q;, namely q;(z) = q;(exp(i Al)z), then q; is binomial.
Corollary 1.16. Suppose p € LYq(n) and let £ € R”, with Q-linearly independent entries.
(1) If p isirreducible and not binomial, then py, ¢ is absolutely continuous.
(2) If pis binomial, then py, 4 is the atomic measure at 2m /(d, £).
(3) pp,¢ has an atom at 0 if and only if p has a square factor.
(4) Suppose that p has N + M distinct irreducible factors, M which are binomial
and N non-binomial. Then, p, ¢ has at most (2’) + M + 1 atoms.

Next we show that the gap distribution p, ¢ varies continuously in £ when we restrict
to vectors £ with Q-linearly independent entries. For arbitrary £ € R” , this gives rise
to a well-defined limiting distribution v, , that agrees when p, ; when £ has Q-linearly
independent entries. The limiting measure v, ¢ is defined explicitly in Definition 9.1.

Theorem 1.17 ({-dependence of the gap distribution). Let p € LYq(n) and { € R’}.. Then
the gap distribution pp, ¢ is supported inside [0, 27 |d|/{d, £)]. There is a distribution v, ¢
such that, for any converging sequence £9) — € in which each £ has Q-linearly inde-

pendent entries,
D
Pp ) = Vpi-

In particular, vy, o = pp ¢ whenever L has Q-linearly independent entries.
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Gap distribution v

o1 Convergence of CDF of v

p.L

0.06

' —L_=19/667 ~ 0.9
=10/33% =~ 0.95
=722 ~0.999

08—

wr-- L

-
RoR e e

D
Figure 3. Example of p,, y — vp,1. The gap distributions for p as in Figure 1, and £ = (L1, 1) with
Ly converging to 1. (Left) The probability distribution function of v 1. (Right) The cumulative
distribution functions of vp 1 (dashed) and of p, ¢ for three different values of Lj. Each pj, ¢ was

computed from the gaps in the interval [0, 10*], while vp,¢ Was computed as in Theorem 1.19, by
sampling 10* random points on the torus.

A particularly interesting case is the limit v, ; for £ =1:= (1,1,...,1), which can be
calculated explicitly, as follows. Figure 4 displays the distributions v, ; for two important
examples of Lee—Yang polynomials p.

Definition 1.18. Let p € LY (1) be a univariate Lee—Yang polynomial of degree N, and
denote its roots by {e’91' }]1_\/:1’ with 0 < 0; <--- < 6y < 2m. By convention, Oy41 =
01 + 2m. Then the gap distribution of p is a probability measure on [0, 277] given by

N
1
gaps(p) = > 86,16,
j=1

If U is a unitary matrix, then p(s) = det(s — U) and ¢g(s) = det(l — sU) have the same
gap distribution, and we denote it by gaps(U).

For a fixed p € LYq(n) and a fixed point x € [0,27]", define the univariate polynomial
Px(8) := p(se**t, se'*2, ... se'*n) sothat py € LY y (1) with N = |d|. We may then take x
uniformly at random.

Theorem 1.19 ({ — 1). Let p € LYq4(n). Let X be a uniformly random point in [0, 27]".
Then vy, for £ =1, is given by

vp.1 = E[gaps(py)].
Namely, for any sequence £ — 1 such that each £ has Q-linearly independent entries,

. 1 | ld|
jll)n;o/ S dpp,z(j) = W ./y;e[(),zn]n [WJZI f(Bi41(x)—06; (X)):I dx, VfeCR),

where {e'%® }L.dil are the ordered roots of px for every X, and 0)g+1(X) := 01 (x) + 2.
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0.004 -
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Figure 4. (Left) v, 1 for p(z) = l_[js-zl(zj- —1). (Right) vp 1 for p(z) = det(l — diag(z)U) for a
fixed 5 x 5 unitary matrix U, chosen at random (Haar uniformly). Both calculated with 10* random
points from the torus.

Using Theorem 1.19, we can provide examples of limiting gap distributions that cor-
respond to the following special distributions.

Example 1.20 (Poisson). If

n
2
p(Zl,...,Zn)z 1_[(1—21) and @:_nl,
' n
J=1

then v, ¢ is the distribution of gaps between n random points in a circle of circumfer-
ence n/(27m), chosen uniformly and independently. It is well known that this distribution
converges to the gap distribution of a Poisson process, in the limit n — oc.

Example 1.21 (CUE). Given a fixed unitary n x n matrix u, let p,,(z1,...,z,) :=det(1 —
diag(zy, ..., zn)u). Then,

Vp,1 = E [gaps(diag(exp(ix))u)], x~ U([0,2x]").
For a random u, Haar uniformly from U(n), the empirical gap distribution is
E(vp,,1) = E [gaps(diag(exp(ix))u)] = E [gaps(u)], u ~ Haar(U(n)).

The distribution E [gaps(u)] for u ~ Haar(U(n)) is well known, and when scaled to have
average 1, by taking E(vp, ¢) with { = 27”1, it converges to the CUE (circular unitary
ensemble) gap distribution as n — oo.

The paper is organized as follows. The first two sections provide background and pre-
liminary results, Section 2 on crystalline measures and FQ’s, and Section 3 on Lee—Yang
polynomials and real stable polynomials. The torus zero sets of Lee—Yang polynomials
are analyzed in Section 4. Theorem 1.9, the growth rate and upper bound on the gaps, is
proved in Section 5. In Section 6, an ergodic dynamical system is defined on the torus zero
set, which is being used in the subsequent sections. Theorem 1.5, decomposition and non-
periodicity, is proven in Section 7. Theorem 1.12, minimal gap and genericity, is proved
in Section 8. Section 9 focus on gap distributions, in which Theorems 1.14, 1.15, 1.17,
and 1.19 are proved.
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2. Preliminaries on crystalline measures and FQ

A Schwartz function on R is a smooth function f € C*°(R, C) that decays, as |x| — oo,
faster than any polynomial in |x|, and so does any of its derivatives. The Schwartz space
S (R) is the infinite dimensional vector space of Schwartz functions. It can be defined in
terms of the seminorms || f ||n,m := sup,eg |X*(d/dx)™ f(x)|:

SMR):={feC®R,C): | fllnm < oo forallm,n € Zso},

and it is a complete metric space with respect to the metric

= If
A= D Zmm (i i T

n.m=0

A (C-valued) Borel measure j on R is tempered if ( f, 1) := [ f dp is finite for all f €
S (R). The vector space of tempered measures is the dual of § (R) and is denoted by §’(R).
The Fourier transform

"'F(f) = f, with f(k) = /_00 f(x) e*ikx dx.

is a linear automorphism of §(R), and it defines an automorphism on the dual space.
Given a measure i € 8'(R), its Fourier transform is the measure i € $’(R) defined by
(i) := (f wu) forall f € S(R). Let §x € $'(R) denote the atom at x € R (also known
as a Dirac delta at x), which is defined by ( f, §x) := f(x). We say that a measure pu is
discrete if it is supported on a discrete (locally finite) set, in which case it can be written
as

2.1 w= Zax&c = Tlgllm Z Ay by,

xX€A xeAN[-T,T]

with complex coefficients a, € C and discrete support A C R. Whenever we write an infi-
nite sum as in (2.1), it should be understood as the 7 — oo limit of the [T, T'] truncated
sum. One can check that a discrete measure p is tempered, i.e., u € $’(R) , if and only if
w([—T, T]) is bounded by some polynomial in 7', namely if there exist C > 0 and m € N

such that
Y @
xeAN[-T,T]

<C(1+T™), VT>0.

If 11 is a complex valued measure given by (2.1), then |u| := > cp |@x|6x.

Definition 2.1 (FQ and N-FQ, [15, 17]). A crystalline measure is a discrete measure that
is a tempered distribution and whose Fourier transform is also discrete’. A Fourier qua-
sicrystal (FQ) is a crystalline measure p with the further restriction that |u| and |ft| are
also tempered. To write it explicitly, u is an FQ if there exist discrete (locally finite) sets A

"The Fourier transform is tempered by definition.
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and S, and complex coefficients (ax)xea and (cg)xes, such that

M:Zax&c, ﬁ:ch(Sk, and

(2.2) xeA keS
Yo dad+ Y. lal=Cca+T™),
xXeAN[-T,T] keSN[-T,T]

for some C > 0,m € N, forall T > 0. When a, € N forall x € A, we call u an N-FQ.

For example, the measure jt = ) » x for any periodic A is an FQ due to the Poisson
summation formula.

3. Preliminaries on Lee-—Yang polynomials

Let C[z] denote the space C|zy,. .., z,] of polynomials in indeterminates z = (z1, . . ., Z,).
For a nonnegative integer vector @ = (@1, . .., &) € Z% , we use z* to denote the monomial

]_[;’:1 Zf’ . The degree of a polynomial p = )", aqz* in C|[z] in the variable z;, denoted
deg;(p), is the maximum value of «; appearing in a monomial with nonzero coefficient
ayq #0.Ford = (dy,...,d,) € N", let C[z]<q denote the C-vector space of polynomials

with deg; (p) < d; in each variable z;, i.e.,

Clz]<qa = { Z an® a4 € (C},

0<a=<d

where a < d is taken coordinate-wise.

Given a circular region in the complex plane C C C, we say that p is stable with
respect to C if p has no zeros in C”. For us, the circular regions of interest will be the
upper half plane # = {z € C : Im(z) > 0}, the lower half plane #_ = {z € C : Im(z) <0},
and the open unit disk D = {z € C : |z|] < 1}. Stability with respect to D is often known
as Schur stability. We use T to denote the unit circle {z € C : |z| = 1} in C, and D for the
closed unit disk D U T. Of particular interest are polynomials stable with respect D and
its inverse C \ D.

Definition 3.1. We say that p € C[z] is a Lee—Yang polynomial if it is stable with respect
to both D and C \ D, and use LYy to denote the set of Lee—Yang polynomials in C[z]<q
of multidegree equal to d. That is, LY is the set of polynomials p = > (_, 4 deZ% 50O
that deg; (p) = d; for all j with the property that p(z1,...,z,) % 0 whenever |z;| < 1
forall j or |z;| > 1 for all j. When # is not clear from the context, we will write LY 4(1).

One property of stability that we will often use is that the set of multivariate polynomi-
als that is stable with respect to either an open disk or halfplane is closed in the Euclidean
topology on C[z]<4. This follows immediately from Hurwitz’s theorem.

Theorem (Hurwitz’s theorem, see Theorem 1.3.8 of [20]). Let Q C C™ be a connected
open set, and let (fy)neN be a sequence of functions, each analytic and nonvanishing
on 2, that converges to a limit f uniformly on compact subsets of Q2. Then f is either
nonvanishing on 2 or identically zero.
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Mobius transformations map between circular regions in C. Given a tuple of Mobius
: ajz+b;
transformations ¢ = (¢;(z;));, where ¢;(z) = C; p dj- ,
define

and a polynomial p € C[z]q,

¢-p=[](c;z +d)*¥P - p@i(21).....¢u(zn)) € Cla)<a.
j=1

We will sometimes abuse notation and, for a single Mobius transformations ¢ (z) = ZZZIS ,

use ¢ - p to denote (¢, ...,¢) - p. Then p is stable with respect to a region C if and only if
¢ - p is stable with respect to ¢! (C). See Lemma 1.8 in [10]. We will often fix ¢ to be a
Mobius transformation taking #4 to D. Explicitly, for fixed 6 € [0, 27r), consider the pair

ef(z —1)

$(z) = —

_ —i(z 4 ¢'%)
d 'o)= ———~2
+1i and ¢ (2) z —el?

)

3.1

with p(x) = ¢~ 1(e™*) = cot <OTX)

The derivative of p, o’ (x) = % csc?((6 — x)/2), is strictly positive everywhere it is defined,
which is for x € 8 + 2w Z. In particular, we can always choose 6 so that p and its derivative
are defined at any finite setay,...,a, € R.

The following are straightforward from the definitions of stability.

Proposition 3.2. For p € C[z]<q, the following are equivalent:
(a) pisa Lee—Yang polynomial,
(b) forevery L = (Ly,...,4,) € R" and x € C, p(exp(ix{)) = 0 implies x € R,
(¢) for ¢ asin (3.1), ¢ - p is stable with respect to H+ and FH_.

In order to understand polynomials stable with respect to D and C \ D, we first recall
some useful facts about real polynomials stable with respect to ¢ .

We define the support of a polynomial ¢ = ), a2 to be the collection of expo-
nents of monomials appearing in g, i.e., supp(q) = {a € ZZ, : ay # 0}. For any vector

w = (wy,...,w,) € R", define the w-initial form of g to be the sum over all terms in g
maximizing (w, ). That is, we can define

deg,(q) = max (w,a),

a€supp(q)
inw(q) = (1°™@D g™ 2y, T 2)) im0 = Y da2®,
acA
where A is the subset of @ € supp(p) maximizing (w, o).
Proposition 3.3. Lerg =), aqz* € Clzy,. .., z,] be stable with respect to H . Then

(a) for any w € R”, iny(q) is stable with respect to H .,

(b) foranyay,...,an € RL;andb € R”, the polynomial g(b + yia1 + -+ + ymam) €
Cly1,...,ym] is stable with respect to # 4,

(¢) if q is homogeneous, then all its coefficients have the same phase, and

(d) if b € R" is a real zero of q of multiplicity m, namely g(b) = 0 and 0*g(b) = 0 for
all || < m, then the nonzero entries of {0%q(b) : |a| = m} all have the same phase.
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Proof. (a) Note that for any ¢ € R, the polynomial tdegw(q)q(t_wlzl, e, tTWzy) s
stable with respect to #+. By Hurwitz’s theorem, the set of stable polynomials is closed
in the Euclidean topology on C[z]<4, and taking the limit as ¢t — O shows that iny(g) is
stable with respect to # .

(b) First, suppose ay, ..., a, € R’ . If Im(y;) > 0 for all j, then the imaginary part of
b+ >, yia; belongs to R™, and so, g(b + Y 7~ | y;a;) # 0. Hurwitz’s theorem then
shows that the polynomial g(b + Y-, y;a;) # 0 is stable for any ay, ..., a, € R .

(c) This is the content of Theorem 6.1 in [11].

(d) Let m denote the multiplicity of ¢ at z = b. Note that by replacing ¢(z) with
q(z + b), it suffices to address the case b = (0, ..., 0). The notation ! = ]_[;-’:1 aj!
allows to write %¢(0) = a! - ay, and so it is enough to prove that all nonzero a4, with
|| = m, share the same phase. Fix w = (—1,...,—1). Because &! - ay, = d%¢(0) = O for
all |e| < m, then the & € supp(p) that maximize (w, «) = —|a| are those with || = m,
and in particular, iny(gq) = Z‘ﬂ:m aqz%. By parts (a) and (b), this polynomial is stable
and so all of its nonzero coefficients have the same phase, which proves the claim. ]

We translate this statement for derivatives of trigonometric polynomials of the form
F(x) = p(exp (ix)), where p € LYq4.
First, we need a technical lemma on derivatives of compositions.

Proposition 3.4 (Multivariate chain rule). Let ¢: C — C be a meromorphic function such
that ¢'(x) is nonzero wherever defined. Consider f(x) = g(¢(x)), where ¢ is applied
coordinate-wise. For any a € C" at which ¢ is defined, the multiplicity m of f at a equals
the multiplicity of g atb = ¢(a), and for any o € N" with || = m,

0% f(a) = 0"g(b) - [ | ¢'(a))™.

J=1

Proof. The symbolic expansion of % g(¢(a)) using the chain rule will be a sum of prod-
ucts of factors 98 g(b) and p® (a ;) for some |B| < |a| and k < «;. The unique such
term involving 9% g is 0% g(b) ]_[;?:1 ¢'(a;)% , and all others have a factor of 9% g(b) with
|B| < |ee|. If m is the multiplicity of g at b, then 3# g(b) = 0 for all || < m and 3% g(b) # 0
for some |a| = m. The calculation above shows that 9% f(a) = 0 for all || < m and

9 f(a) # 0. -

Proposition 3.5. Let p € LYq4 and define F:C" — C by F(x) = p(exp(ix)). [fa e R"
is a zero of F of multiplicity m, then nonzero elements of {0* F(a) : |¢| = m} have the
same phase.

P_roof. Let ¢ be a Mobius transforn_lation tak_ing Hy to D, as in (3.1), with 8 such that
e’ =£ ¢'% for all the coordinates ¢'?!, ..., e!% of exp(ia). By Proposition 3.2, ¢(z) =
¢ - p(z) is stable with respect to #4 and #_. Then

p()=¢""-q@)=r()-q(¢""(2) and F(x) = plexp(ix)) = r(exp(ix)) - ¢(p(x)),

where p(x) = (cot(“5*), ..., cot(*25*2)) and r(exp(ix)) = ]_[;'zl(eixf — €% In
particular, r(exp(ia)) # 0, so g(p(a)) = 0, hence p(a) is a zero of ¢. An induction argu-

ment shows that a must be a zero of g(p(x)) of multiplicity m. That is, 9%g(p(x)) is
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zero at x = a for all || < m and nonzero for some |a| = m. To do so, suppose that
3%q(p(x))|x=a = O for all || <m’ — 1 form’ < m. Then, for any @ € ZZ, with |a| = m’,

(32) "Fx) = ) Fr(exp(ix) 9”q(p(x).
B+y=a
)
0 = 0¥ F(X)|x=a = r(exp(ia))9%¢(p(X))|x=a-
Since r(exp(ia)) # 0, then 3%g(p(x))|x=a = O for every || = m’, and by induction for
any |e| < m. Together with Proposition 3.4, this gives that

0% F(a) = r(exp(ia)) 0% (p(X)) lx=a = r(exp(ia))(0%q)|=p(w - | | £ (@)™
j=1

The phase of the non-zero factor r(exp(ia)) ]_[7:1 p'(a;)% is independent of «, since
p'(a;) is positive for all j, so the nonzero elements of {0% F(a) : |e| = m} have the same
phase because the nonzero elements of {0%¢g|,—,@) : |&| = m} have the same phase, by
Proposition 3.3 (d). ]

Lemma 3.6. Fort € R, £ € RY, and p € LY4(n), the following coincide:

(a) the multiplicity of t € R as a zero of the function f(t) = p(exp(itf)),

(b) the multiplicity of x = t{ as a zero of F(x) = p(exp(ix)),

(¢) the multiplicity of z = exp (itf) € T" as a zero of p(z), and

(d) the multiplicity of 1 as a root of the univariate polynomial q(s) = p(s exp(itf)).
Proof. Note that by replacing p(z) with p(e'*“1zy, ..., el z,), it suffices to consider
t = 0 for this equivalence.

(a)=(b) Let D, denote the differential operator 2721 £; % Then for any m € N,

m MY\ o oa m\ m!
Dy’ = Z (a)ﬁ %, where (a)_—all---an!’

lae|=m
and
™0 = Df Flean = X (0 )¢ FO),
f ¢ Flx=....0) a|2=:m o

We see that the multiplicity of (0,. .., 0) as a zero of F(x) = p(exp(ix)) lower bounds on
the multiplicity of 0 as a zero of the function f. Moreover, by Proposition 3.5, when m is
the multiplicity of (0, ...,0) as a zero of F(x), the nonzero values of {9* F(0) : |«| = m}
have the same phase. By assumption, at least one of these is nonzero, ensuring that their
sum, f ™ (0), is non-zero and that f has multiplicity m at ¢ = 0.

(b) =(c) Follows from Proposition 3.4 with ¢(x) = e'*.

(b) =(d) Consider

q(s) = p(s,s.....s) and h(t) = q(e'") = p(e',....e"") = F(t,t,...,1).

By Proposition 3.4, the multiplicity of ¢ at s = 1 equals the multiplicity of 4 at # = 0. By
the equivalence (a) = (b) with £ = 1, this equals the multiplicity of F(x) atx = 0. ]
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3.1. Connectivity of LY4 and perturbations

One of the early results on real hyperbolic polynomials is Nuij’s result that the space of
hyperbolic polynomials of a given degree is simply connected [18]. Here we adapt these
techniques to better understand LY 4.

Nuij’s proof relies on the following operators on univariate polynomial that preserve
real rootedness. For A € R, define D,: C[z] — C[z] by D, (¢) = g + Aq’. Nuij shows
that if ¢ is real rooted, then D (¢) is real rooted, D, decreases the multiplicity of roots
of g by 1 for A # 0, and all new roots of D, (g) are simple. In particular, for any real
rooted polynomial ¢ € R[z] of degree d, the multiplicity of any root of ¢ is at most d, and
so applying D, d times to ¢ results in a real rooted univariate polynomial with d simple
roots. The roots of D, (g) interlace those of g in the following sense: if ay, ..., aq are the
roots of ¢ and by, ..., by are the roots of D (¢), then b; < a; < b; 4 forall j.

Let C[y, z]q denote the set of polynomials in yy, ..., y, and z1, . .., z, that are homo-
geneous of degree d; in each set of variables (y;, zj). The zero-set of such polynomials
are well-defined subsets of (P!(C))”. Here we use P!(K) to denote the projective line
over a field K, which is K2\ {(0, 0)} modulo the equivalence (a, b) ~ (Aa, Ab) for A # 0.
For any polynomial p € Cly,z]g and A € (C*)", p(A1 Y1, -, AnYns A121, .-  Anzy) =
AMp(y1..... V.21, ..., 2zy). In a slight abuse of notation, we will use [a : b] to denote a
point ([a; : bi])iefn) € (P1(K))", wherea = (ai,...,a,) andb = (by,...,by). Similarly,
for a subset I C [n], we use [a; : by] to denote the point ([a; : b;])ier € (P1(K))!.

To understand the zero set of p on (P!(K))", we restrict to various affine charts. We
can partition points [a : b] € (P!(K))" by the set I = {i € [n] : a; # 0}. The affine chart
of points [a : b] € (P!(K))" with a; # 0 for all i is isomorphic to K" via the coordinate-
wise correspondence [a; : b;] <> b;/a;. Fori € I,b; # 0andfor j & I,a; # 0, and so
after rescaling we may take b; = l anda; = 1.

On this vector space of polynomials, define the linear operator

D, :Cly.da—>Cly.2a by Dal@)=q+1r) ydq.
j=1

Let i))ltdl denote the operator obtained from D, by applying it |d| = Z;':l d; times.
For each d € Z%, consider the following sets of polynomials:

Ga = {q € Cly, z]q : coeff(q,2z%) = 1 and ¢(1, z) is stable with respect to # and H_},
&g = {q € G4 : ¢ and V¢ have no common zeros in (PY(R))"}.

Proposition 3.7. We have ©4 C Ry, zq.

Proof. One can check directly from the definition that the stability of ¢ (1, z) implies
that for all a € R”, the polynomial g(1,a + t1) € C[t] has real roots, say r; € R, for
j =1,...,|d|. By assumption, the coefficient of z4 in ¢ is 1, which implies that the coef-
ficient of #19 in g(1,a + 1) is 1, s0 g(1,a + 11) = ]_[l;il t — rj), and therefore all of its
coefficients must be real. If ¢ = g + ih, where g, h € R][y, z]q, then we have shown that
h(1,a+ t1) € RJt] is the zero polynomial for all a € R”. In particular, 2 (1,a) = 0 for all

a € R”, which implies that / is identically zero. [
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Proposition 3.8. If g € Cz1, ..., z,]<a is stable with respect to H+ and H_, then so is
the polynomial ¢ + 741 Z}l:l dz;,q in Clz1, ..., Zyt1]. Moreover, for any a € R" and
b € R, the roots of q + Z;:l 0z,q interlace those of q when restricted to z. = a + tb.
That is, Ay < 41 < Ay < -++ < Ajq| < [ja), where {A;}; and {;}; are the roots of the
restrictions of q + Z?:l 0z,q and q, respectively.

Proof. We use the theory of stability preservers by Borcea and Brindén, see Theorem 1.3
in [9]. The symbol of the operator D(q) = q + Zp+1 Z;’zl 2,4 is

n
D((@+ W) = @+ w1+ 2001 Y di(z +w) ™).
j=1

We can see by inspection that this polynomial is stable. If Im(z;) > 0 and Im(w;) > 0
for all j, then we have that Im(—(z,+1)~"!) > 0 and Im((z; + w;)™") < 0 for all j, so
Y1 di(zj +wj)™t # —(za+1) 7", and therefore D((z + w)®) # 0. This shows that the
symbol D((z + w)%) € R[z1....,Zn. Znt1. W1, .. ., Wy] is stable with respect to #.;, and
by the same argument, it is also stable with respect to J_. Then, by Theorem 1.3 in [9],
the linear operation & preserves stability.

The statement of interlacing then follows from Lemma 1.8 in [9]. ]

Lemma 3.9. Let g € ©q, I C [n], and let q1 denote restriction of q to y; =0and z; = 1
forall j & 1. Then qr € Gy,, i.e., qr is nonzero and qr (1, zr) is stable with respect
to H4 and H_. If additionally q € &g, then q1 € Gy, i.e., g1 and Vqr have no common

zeros in (PY(R))!.

Proof. Note that 1 = coeff(g,z%) = ¢(0,1) = g7 (0, 1;), showing that g is nonzero and
has 1 = coeff(qr, [ [;¢; Zidi). Note that [, ¢, z;.ij -qr(1y,zy) is the initial form of ¢(1, z)
with respect to the vector (07, 1j,]\ ), and so g7 (17,27 ) is stable by Proposition 3.3 (a).

Suppose that g7 is zero at a point [a7 : by] € (P'(R))’. We will show that for some
i €l,0yq or d;qy is nonzero at this point. Note that if ax = 0 for some k € I, then
we can replace I with I’ = {i € I : a; # 0}, which is non-empty by assumption. If there
is some i € I’ for which d,,qy or dz,qy is non-zero at [a;/ : by/], this proves the claim.
Therefore we may assume that for alli € I, a; # 0 and take a; = 1. Moreover, by replacing
q(y, z) with its substitution of z; + z; 4+ b; y; forall i € I, we can assume that b; = 0 for
alli e I.

Since g € G, there is some derivative dy; g or d;;¢ that is nonzero at [a : b], where
a= (1;,0p,\7) and b = (07, 1[,\ 7). If j € I, we are done, so take j ¢ I and assume by
contradiction that all derivatives with respect to variables labeled by [ are zero. Since ¢ is
homogeneous of degree d; in (y;,z;), then y;0dy.q + z;0,;,q = d;q. Since g and y; both
vanish at this point and z; does not, we see that it must be dy, g that is nonzero at [a : b].

Consider the polynomial

G(s,t) =qa—tej,b+sl;) € Rfs,t].

We claim that this polynomial is stable. To see this, note the upper halfplane is invariant
under ¢(z) = —1/z. Let ¢y (z) be the vector with i-th entry ¢(z;) if i ¢ I or z; otherwise,
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so that [ | il zj[-lj - p(@1(z)) is stable with respect to upper and lower halfplanes if and only

if p(z) is. The polynomial

[[(=2)% - a1 ¢1(@) = q((Ar. ~zpap\ D). @1 1) 1)) € R[z]
J¢l
is stable. We then obtain the polynomial g as a further restriction of z; = ¢, zx = 0 for
ke[n]\(I U{j}) and z; = s foralli € I.It follows that ¢ is stable by Proposition 3.3 (b).
Note that g(0,0) = ¢g(a,b) = 0. Moreover, we have that

as‘ﬂ(s,t)=(0,0) = (Z 3ziq> |(y,z)=(a,b) =0, and

iel
94 1(s,n=0,00 = (=9y, D y.0=@p) 7 0.

The polynomial (s, 0) = g(a, b + s1;) has leading term s2i<’ % _since ¢(0,1) = 1, and
s0 is nonzero. Let k be the smallest integer for which 9% Gl(s,)=(0,0) is nonzero. By the
arguments above, k exists and k > 2. This means that all monomials s%¢# appearing in G
with non-zero coefficients either have § > 1 or « > k > 2. In particular, we have that
((—1,=k), (o, B)) < —k, with equality if and only if («, 8) = (k,0) or («, B) = (0, 1).
We conclude that the initial form in_; _x)g§ = as® + bt for some non-zero coefficients
a,b € R*. By Proposition 3.3 (a), it is stable with respect to both uppg:r and lower half-

planes. However, since k > 2, there is some ¢ € J4 such that ck = =i, and so (s,¢) =

(c,i) € in is a root, contradicting stability. n

Proposition 3.10. For any g € Gq and . > 0, D;(q) € Gq and D) (q) € &5,

Proof. By Proposition 3.8, the operation ¢ — g + A Y ;_; 3;,q preserves stability of
polynomials in R[z]. We need to show that D }ltdlq has no common zeros with its gradient
on (P!(R))”. By the univariate case discussed above, i))ltdlq(l, b + t1) € R[¢] has simple
roots for all b € R”. It follows that if O‘D)‘tdlq(l, z) vanishes at z € R”, then its gradient does
not. This shows that D /‘kdlq(l, z) and its gradient have no common zeros of the form [a : b]

where aj # 0 for all j. Assume by contradiction that cT))‘CHCI(I, z) and its gradient have
some common zero [a : b] € (P1(R))", and let I = {i : a; # 0}, so I # [n]. Note that we
canassume b; = 1forall j ¢ I.If I = @, then [a : b] = [0 : 1], at which [O)ltdlq(O, 1) =
coeff(i)lkdlq,zd) # 0. Therefore, @ < 1 < [n].

Letg; € R[yi,z; : i € I] denote the restriction of g to y; =0and z; = 1for j & [.
Note that the operator O, commutes with the restriction to y; = 0 and z; = 1. That is,

n
Did) iy o121} = ( A i, )
(Dayj=0.zj=1:j¢1y = (9 + ;% 29y 20z =1j¢0)

=qr+AY_yid;qr = Daq.

iel

In particular, D, gy (a7, 17) = Dyqr (1, al_l) = 0. Since q7 € ©q,, by Lemma 3.9, and it
has total degree |d7| < |d|, then the argument above shows that D, q; € Gq, and that the
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gradient of O )ILdI (g1)(1,z;) cannot vanish at the zero (1, al_l). Hence, there must be some
nonzero derivative of O )‘Ld‘ (qr) at[1y : al_l] = [a; : by], which gives a nonzero derivative
of i))ltdl(q) at [a:b]. L]

Proposition 3.11. Both Gq and G are contractible, and ©q equals the closure (in the
Euclidean topology on Ry, z]q) of ©3(R).

Proof. The proof follows the proof of the main theorem in [18]. For u € R, consider the
linear operator G, on Ry, z]q defined by G, (¢) = q(iy, z). This operator preserves both
stability and the coefficient of z9.

For A € [0, 1], consider the map éD‘l(ﬂ 3, G- This map preserves stability and, for A # 1,
the image of &4 under this map belongs to &;. For A = 1, we get the identity map

i)(l)lel(q) = ¢, and for A = 0 we get i){dl(zd) € ©4(R). Therefore, this gives a defor-
mation retraction of both &4 and &3 onto the point i)ld‘ (z9). |

Proposition 3.12. The interior of Gq in {q € Ry, z]q : coeff(q, z%) = 1} is not empty,
and in particular, it contains G,

Proof. Suppose that ¢ € &2, so that ¢ and its gradient have no common zeros in (P!(R))”.
Let (S1)" = {(y,z) e R?": ylz + Z? =1VjlandletV ={(y.z) € (S1)" : D1¢(y,z) =0},
where D1q is D, q at A = 1. Consider the set of polynomials

U = {g € R[y,z]q : coeff(g,z%) = 1, g(y,2)q(y,z) > 0 for all (y,z) € V}.

The set V is compact, since (S')" is compact, and so miny z ey g(y,2)¢(y, z) is continu-
ous in the coefficients of g, which means that U is openin {g € R[y, z]q : coeff(g,z%) = 1}.
We claim thatg € U and U C &3.

To see that g € U, it suffices to show that ¢ and £;¢ have no common zeros in
(P1(R))". We first check this for the points in the affine chart y = 1. Suppose that
g(1,b) = 0for [1:b] € (P'(R))", so by assumption, there is some j for which dz,4(1,b)
is nonzero. By Proposition 3.3, all of the the nonzero entries of {d,,q(1,b) :i =1,...,n}
have the same phase, which implies that Y "_, 8.,¢(1,b) is nonzero. Since ¢(1,b) = 0,
it follows that D1g = ¢ + Y 7_; 92,4 is nonzero at [1 : b].

For any arbitrary point [a : b] € (P'(R))”, let I = {i € [n] : a; # 0}, which by
assumption is non-empty. By Lemma 3.9, ¢y is stable and has no common zeros with
its gradient on (P!(R))?. The argument above shows that ¢; and £;q; cannot both be
zero at [a : by], and so ¢ and ;¢ cannot both be zero at [a : b].

To see that U € &3, consider a € R” and b € Ri, let {A,}; denote the roots of
Di1q(1,a + bt), and let {s; }; denote the roots of g(1, a + br). These roots are distinct by
the argument above.

By Proposition 3.8, A1 < 1 < Az < -++ < Ajq| < ijq|- In particular, ¢ must alternate
signs on the roots of D1g(1,a + bt). If g € U, then g(1,a + br) € R[¢] has degree |d|
with positive leading coefficient b?, and it alternates signs on the roots of D¢ (1,a + bt).
Hence it has |d| distinct real roots. As this holds for any a € R” and b € R”, then g € &g.
See, for example, Section 2.3 and 2.4 in [22]. n
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We can modify this using the Mobius transformations ¢ from (3.1) to translate these
results to LY4. For any x € [0, 27)", define

LYq(x) = {p € LYq : p(exp(ix)) # 0}, and
LY3(x) = {p € LYq(x) : p and Vp have no common zeros in T"}.

One can check that g € C[y, z]q belongs to Gq (respectively, &) if and only if o1 q(1,2)
belongs to LY 4(x) (respectively, LY4(x)) for ¢ defined using the angles e'*!, ..., e"™.

Definition 3.13. Define an involution of polynomials in C[z]<q by

pz1.....z)) > plzr, . zy) =29 p(Zi~ 1, ... Z,~)), namely
Zaa % +—>Za_“zd_°‘ = Zm v,
o o o

and define the set of polynomials in C[z] <4 that are invariant under the involution

Clz igd ={peClgwa:p=p')= {Zaa 7% 4y = dg—g foralloc},

a<d
and the set of polynomials for which pT is a scalar multiple of p by
C-Clz]%q:={cp:c e C,peClzZ}
= {p € Clzl<q : pT = cp for some ¢ with |¢| = 1}.
The next lemma is straightforward.

Lemma 3.14. The set C [z]ié‘d is a real vector space of dimension 1—[;1:1 (dj + 1), spanned

by (% + 297%) and i (z* — 297%) for « < d. The set C - C[z iﬂd is a semialgebraic set

of dimension 1 + dim(C|z Ed) in the (2 H7=1(dj + 1))-dime;si0nal real vector space
C|z]<q, from which it inherits the Euclidean topology.

Remark 3.15. Note that from the polynomial ¢ = e’* p with x € [0, 7) and p € C [z]igd,
we can uniquely determine x and p. Namely, el* = (eix/e_i")l/2 = (q(z)/qT(z))l/2 and
p =eq.
The image of C - R[y, z]q under the map g — ¢! - ¢(1, z) coincides with C - (C[z]igd:
C-Clg2, = {c 3 da (=) (2 4 exp(ix)* (2 — exp(ix))** 1 aq € R, € <c}.

a<d

Note that for p(z) = ) 44« (—i)!*l(z 4 exp(ix))* (z — exp(ix))9~* with ay, € R, using

the notation z~! = (1/z1,...,1/z,), we have
Pr@ =2 aa(™ (7" + exp(=ix))® (2" —exp(—ix))*™®
a<d
= (exp(—ix)" ) _ aa(i)* (exp(ix) +2)* (exp(ix) — )" = (—exp(=ix))* p(2),
a<d

andsocp € (C[z]i;d for ¢ = (i exp(—ix/2))d.
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Definition 3.16. Let D, x: C[z]q — C|[z]q denote the linear operator corresponding to D,
and fix a tuple of Mobius transformations ¢ = (¢1, . . ., ¢,) where ¢; is defined as in (3.1),
with § = x; forx = (x1,...,x,) € R”. Namely, p — (¢! 0 D; o ¢ - p"™)|y—y, where
™ =yip(z1/y1,. .., 20/ yn). Explicitly, for

P@) =) ae(—)*(z+ exp(ix)* (z — exp(ix)* ™,

a<d

we have

Daxp@ = p@ + 1YY o aa(—i)* (2 + exp(ix))*™% (z — exp(ix))*™®.

j=la<d

Corollary 3.17. For any p € LYq(x) and A > 0 and ¢ defined as above, D) x(p) €
LYq(X) and (@A,X)ldl(p) € LY4(x). The interior of LYq(X) in the Euclidean topology

on C-CJlz Ed is nonempty and contains LYg(X). Moreover, LYq(X) is contained in the

closure of LY(x).

Proof. Note that p € LYq(x) (respectively, LY(x)) if and only if the homogenization of
¢ - p belongs to C*Gyq (respectively, C*&Sg(x)). The result then follows from Proposi-
tions 3.10, 3.11, and 3.12. n

Remark 3.18. The set of Lee—Yang polynomials is connected but not contractible, even
in P(C [z]igd). For example, the set of univariate Lee—Yang polynomials p of degree-one,

modulo global scaling, is parametrized by z — e'?, for 6 € [0, 27], showing this set to be
a circle.

Remark 3.19. The proof of Proposition 3.11 gives an explicit contraction of LYq(x)
(modulo scaling) to a polynomial p* € LY§(x), namely ¢! o {O{dlzd, which we can
explicitly compute. The space of real stable polynomials is contracted to

“ ld] |d| |\ d!
dl_d _ . R o qoed a4 @ d—a
Di _(1+Zyjazj> Z_Z(a)y BZZ—Z(a)a!yZ '
j=1 o a<d
where the sum in the third term is taken over all & € Z% with |e| < |d[, and where

|d| |d|! a5 d)
(a (4 =Dl -—-an! M & H(a,-!>

J=1

Taking ¢ as in (3.1), we find that P(LY4(x)) is contracted to

P =9 0 =" ('d') fT: (z — exp(ix)* (—i (z + exp(ix)))* ™.

o
oa<d

As above, let C|[z]; denote the real vector space of polynomials in C[z]<q that are
invariant under the involution ), aq 2% — ), Ga—a 2%.
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Figure 5. (Left) The zero set of p(eix, ') (in red) and the line (x, y) = t{ (in black) as in Figure 1.
(Right) X, the zero set modulo 27, and the line (x, y) = £ mod 2.

Theorem 3.20. For any d € ZZ, the set of Lee~Yang polynomials 1Y q is a full-dimen-
sional semialgebraic subset of C - (C[z]is"d. That is, dim(LY4) = ]—[;-’zl(dj + 1)+ 1. Its
interior in C - Clz Ed is nonempty, and contains

LY3 = {p € LY4a : p and Vp have no common zeros in T"},

and LY 4 is contained in the closure of LYj.

Proof. Note that the set

{(p.a,b) € C-Clz]Zy x R" x R" : p(a+ib) =0
and ((a} + b} < 1Vj)or (a7 + b7 > 1Y)}

is semialgebraic. By the Tarski—Seidenberg theorem, its projectiononto C - C [z]iﬂd is also
semialgebraic, as is the complement of the image of this projection, LY4.

Suppose that p € LY4 and fix x € [0,27)" with p(exp(ix)) # 0. Then p € LYq(x)
and we invoke Corollary 3.17. If p and Vp have no common zeros in T?”, then p belongs
to LY§(x), which is contained in the interior of LY4(x) € LYq in C - C[z]",. Otherwise, p
is contained in the closure of LY§(x) € LY§. - n

4. The torus zero set X,

It is a simple, yet fruitful, observation that the zeros of x — p(exp(ix{)) correspond to
intersection points of the line {x{ mod 27 : x € R} C R"” /2w Z" with the zero set

Y, :={xeR"/2xZ" : p(exp(ix)) = 0}.

See Figure 5. In particular, certain properties of ji,, ¢ are determined by the structure of X,
regardless of the choice of £ € R’} with Q-independent entries.
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Lemma 4.1 (Dimension and singularity). Given p € LYq(n), its torus zero set £, C
R" /21 Z" is a real analytic variety of dimension n — 1, and the following hold.

(1) The set of singular points, sing(Xp), is a subvariety of dimension at mostn — 2. If p
has no square factors (i.e., if it is square free), then X € X, is singular if and only if
VP li=exp(ix) = 0, or equivalently, its multiplicity is m(x) > 1.

(2) Every irreducible factor of p is a Lee—Yang polynomial. If p is irreducible, then %,
is irreducible in the following sense: the zero set of q(exp(ix)) in Xp, for any
polynomial q € C|zy, ..., z,], is a subvariety of smaller dimension (at most n — 2
dimensional), unless p is a factor of q, in which case q(exp(iX)) vanishes on .

Proof. Since the real and imaginary parts of F(x) = p(exp(ix)) are real analytic, then X,
is a real analytic variety. As such, its singular set sing(X,) is subvariety of lower dimen-
sion. To see why X, is n — 1 dimensional, let p € LYq4q(n) and let Z, denote its zero set
in C". As seen in [1], if p is Lee—Yang, then Z, N T" has real dimension n — 1 and
therefore dim(X,) = n — 1 by the homeomorphism x > exp(ix) between them. More-
over, Z, N T" is Zariski dense in Z, according to [1], which proves part (2).

For part (1), suppose that p is square free, so that the singular points of Z, are exactly
the points in Z, where Vp = 0 (if p has square factors, this criterion fails at zeros of
any multiple factor), or equivalently with multiplicity > 1. Due to Proposition 3.4 with
@(x) = e, x € sing(X,) if and only if z = exp(ix) € sing(Z,). |

4.1. The layers structure of X,

It was shown in Lemma 4.14 of [2] that, for Lee—Yang polynomials arising from quantum
graphs, X, is the union of 2 layers, each homeomorphic to (0, 27]"~1. These special
polynomials are square free and have d = (2,2, ..., 2), so 2n = |d|. In this section, it
is shown that for any p € LYq, X, is the union of |d| such layers, and in the case of
polynomials with square factors, multiplicities should be taken into account.

Proposition 4.2 (Layers structure). Given p € LYq(n), X, is the union of |d| layers,

|
s, = U IS
=1

Each layer is homeomorphic to (0,2m]" ! through the parameterization 9 (0, 2 —
Xp,j given by
@i (y) := (y,0) + 6;(y,0)1 mod 27,

where1 = (1,1,...,1) and 0;:R" — R is a continuous function. Each ¢; is real analytic
on the open set goj_l (reg(2p)) C (0,27]"~Y, which has full Lebesgue measure. The multi-
plicity of X as a zero of p(exp(iX)) is equal to the number of layers X, ; containing X. In
particular, if p is square free, then

sing(X,) = U i NXEp ;.

1<i<j<[d|

See Figure 6 for example of the layers structure of X, for p from Example 1.2.
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Remark 4.3 (Square factors, overlaps, and multiplicities). Suppose that p = ]_[j-v=1 q;j ,

where (g;) ;Vzl are the distinct irreducible factors, each raised to the power ¢; € N. Define

the reduced polynomial p™ := ]_[j.\;l q;, so that it is square free and has the same zero set
as p, s0 Yyea = Xp, but the total degree of ¢ may be smaller, in which case 3 prea Would
have fewer layers than X,,. This means that the layers coming from p must overlap, result-
ing in multiplicity. Note that a given layer X, ; might comprise of pieces of the varieties
of several different irreducible factors of p, each coming with their own multiplicities,
which can differ.

To prove Proposition 4.2, we introduce the continuous phase functions 0;: R" — R,
for j = 1,...,|d|, in Proposition 4.5 below.

RN

o

2n

Figure 6. (Right) The four layers of Xp, presented in the tilted fundamental domain, for p € LY (5 )
given in Example 1.2. (Left) The graphs of 0;(y,0) for y € (0,2x].

Definition 4.4. Given p = )", aqz* € LYq(n) and x € R”, define the univariate poly-
nomial px(s) € CJs] by
_ _ al . |
4.1) px(s) = p(se™, ... se") = Z ( Z e el(x,a)> a
J=0 |a|=j

The polynomial py has degree |d|, with leading term aq e !9 and all roots on the unit

circle, say (e!% ® )}d_ll. Let m(6;,x) denote the multiplicity of "% ™ as aroot of py, which

agrees with the multiplicity of x as a zero of p(exp(ix)) when ¢’%® = 1, by Lemma 3.6.

Proposition 4.5 (Phase functions). Given p € LYq(n), its phase functions are |d| contin-
uous functions 0;: R" — R, such that @™ . ePa®)) are the roots of p, ordered as
follows: 01 (x) < --- < 0)q(x) < 01(X) + 27, for all x € R". Let X, denote the lift of T
to R", so that
' |d] ' R |d]
(4.2) plexp(ix)) = ag '™ [T(1 =% ™) and =, =) 67" 2r2).
j=1 j=1
The phase functions enjoy the following properties:
(1) Each 0; satisfies 0;(x 4+ t1) = 0;(x) — ¢, forallx e R" and t € R. More generally, 6;
is monotonically decreasing when restricted to lines in any non-negative direction
t € R, with upper and lower bounds on the slope —tlm.x < 0;(x + 1£) — 0;(x) <
—tmin, where Lin and €.« are the minimal and maximal entries of £.
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(2) Each 8; is real analytic on reg(/f)p). It is also real analytic around any x € R" which
is not a discontinuity point of m(6;,X), the multiplicity of e'%® as a root of py. The
discontinuity set of X+ m(6;,x), denoted by M; C R", is a closed set of dimension
dim(M;) < n — 1, and sing(S,) = UYL (6, @nZ) N M;).

(3) The sum of the phase functions is linear in x € R":

|d| [d]

D 6;(x) = (d.x)+ Y 6;(0).
j=1

i=1
(4) Translations by the lattice 2t Z" act on the ordered tuple (61, ..., 0)q)) by
O(x + 27n) = o4 0(x) mod 2,

foralln € 7", where o is the permutation (1,2, ...,|d|) — (|d|,1,2,...,|d]| — 1).

Remark 4.6. The choice of such phase functions is not unique. However, given any xo €
R” which is a zero of p(exp(ix)) of multiplicity m < |d|, there is a unique choice of phase
functions as in Proposition 4.5, such that

0= 91(X0) == em(Xo) < 9m+1(X0) <...< 9|d|(X0) < 2m.
The proof of Proposition 4.5 includes a proof of Remark 4.6.

Proof of Proposition 4.5. Fix an arbitrary xo € R” such that p(exp(ixp)) = 0 with mul-
tiplicity m < |d|, so that s = 1 is a root of py,(s) of multiplicity m, by Lemma 3.6. Let

(s; (xo))]‘-ﬂi1 denote the roots of py,, so we can write 5 (Xo) = %% (0) gych that
0= 91(X0) == Qm(Xo) < 9m+1(X0) <...< 9|d|(X0) < 2.

The roots of a univariate polynomial changes continuously with its coefficients, as a result
of Rouché’s theorem. The coefficients of py are analytic in x € R”, so the roots of py,
can extend continuously to the rO(?ts (s; (x))}il of Px for any x € R”, Since R” .is simply
connected, and we may do it while maintaining their counter-clockwise ordering. Each
s;:R" — S can be lifted to a (unique) continuous function #;: R” — R with 6;(xo) as
prescribed above. Since the roots were kept in a counterclockwise order throughout R”,
the relation 0y <--- < 0jq) < 6 + 27 holds everywhere. Since the leading coefficient of py
is aq e'®X) as stated in Definition 4.4, we may write py(s) = aqe’ (4% ]_[]‘-dz‘l (s — et ),

In particular,
ld|

plexp(ix)) = py(1) = age’ ™ JT(1 = €%®).
j=1

Since /E\Jp is the zero set of p(exp(ix)) in R”, then it is the union of 9]._1 2n7Z).
The univariate polynomial changes along the line {x 4+ ¢1: ¢ € R}, for x € R”, by

Pt (s) 1= plse’ TV, selTH) = py(se™).
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Together with the continuity and ordering of the phase functions, this gives
4.3) 0;(x+11) = 0;(x) —1t.

Proof of (2). The function x = m(6;, X) is integer valued, so it is continuous at a
point if it is constant in a neighborhood of that point. Therefore M;, its set of discon-
tinuity points, is closed. Let p,Ek) (s) denote the k-th derivative (in s) of px(s). Given a
point x € R\ M; with m = m(6;,x), every X' in some small neighborhood of x satisfies
Dy )(s] (x')) =0forall k < m and p(m)(sj (x")) # 0. Then, s; is analytic around X, by the
implicit function theorem for analytic functions, as the s(x) solution of p(m 1)(s) =0
around the point (s, x") = (s7(x), X). We conclude that s; is analytic on R" \ M;, and

therefore 6; is real analytic on the same domain. Since 6; (x + ¢t1) = 0;(x) — ¢ holds for
all j simultaneously, then m(8;,x + 1) = m(6;,x) forall x e R” and ¢ € R. In particular,

m(6;,x’) is locally constant around a point X € 9]71 (27k) C /E\p, namely x ¢ M;, if and
only if it is constant in some neighborhood of x in the level set 9]._1 (27k). Since the mul-
tiplicity m(x) of x as a zero of p(exp(ix)) agrees with m(6;,x) forx € 0]-_1(271Z) C Xp,
by Lemma 3.6, and the discontinuity set of m(x) over /E\J is exactly sing(/E\ p), we conclude
that smg(Ep) = Ul (07 Y(27Z) N M;). Next we show that U‘ | M is the projection
of an analytic variety of dlmenswn n— 1 from which it follows that dim(M i) <n—1for
each M;. By (4.3), as discussed above, each M; is invariant under translations in direc-
tion 1. In particular, using (4.3) again, x € inl M; if and only if x 4+ ¢1 € sing(/Z\Jp)
for some ¢ € R. According to Lemma 4.1, sing(fp) is an analytic variety of dimension
atmostn —2,s0 {(x,1) e R” xR :x+11¢€ sing(’Z\p)} is an analytic variety of dimen-
sion at most n — 1, and Uldl M; is the projection of this variety to R” and it is closed

since each M is. We conclude that U‘ M; is a closed subanalytic set with dimension
at most n — 1 (locally around any pomt) see [8] for the definitions.

Proof of (1). We claim that V; (x) € R forall j and all x € R" \ U]‘.‘il M; . To see
this, let x € R” \ U]‘-d=‘1 M;, and since VO;|x = V8;|x4+1 by (4.3), we may assume that
8;(x) = 0. In particular, x € reg(/E\J p)- Note that i can also be written as the zero set of
Fred(x) = p™d(exp(ix)) for the reduced polynomial p™? of p. Since x € reg(Z p), then it
has multiplicity one as a zero of F™(x), and there is a well defined normal vector to Z
at x, which is proportional to both V;(x) and V F™!(x). According to Proposition 3. 5
the nonzero coordinates of V F™4(x) have the same phase, and therefore the nonzero coor-
dinates of V0; (x) € R" all have the same sign. Since (4.3) gives V0;(x) -1 = —1, we find
that VO, (x) € RZ,

It follows that 0;(x1) > 0;(x,) whenever x, —x; € RZ . To see why, we may use con-

tinuity to assume that both x; and x; lie in the open dense set R” \ X for X = inl M;.
Consider all possible smooth curves ¢: [1,2] — R” with ¢ (1) = x1,¢(2) =x3 and ¢’(¢) €
RZ, for all ¢. For such ¢, the composition §; o ¢ is continuous for all ¢, and smooth with
non-positive derivative as long as ¢(¢) ¢ X. Since X is a closed subanalytic set of dimen-
sion at most n — 1, there exists such ¢ that either intersects X transversely in a discrete
set of points, or does not intersect X at all, by Theorem 1.2 in [8] and dimension count.

For such ¢, 8(¢(2)) > 0(¢(1)).
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Now letx € R",¢t € R, and £ € RZ ;. Consider the three points X; = X + t{minl, X =
X+ 1€, and X3 = X + t€paxl, 50 X3 — X5 € R% ) and x» — x; € RZ ), which gives

Gj(X + tﬁmaxl) = 91' (X + tﬁ) = QJ(X + tgminl),
and therefore, using (4.3),
0;(x) — tlmax < 6;(x+1£) < 6;(x) — tLpin-

Proof of (3). Recall that py(s) = aqe’ (¥ ]_[l.cil (s — e'% ™) and by substituting s = 0
we get

d|

P(0) = pe(0) = ag(—1)1 /@X+2=16®) £ o for all x € R”.

, ol g
Since (d,x) + Z}il 6; (x) is continuous and ¢ (X 2= 6 (9) — (_1)ldl %?) is constant,

then
ld| ld|

(d.x) + ) 6;(x) = > 6;(0). forallxeR"
j=1 j=1

Proof of (4). To prove that 6(x + 277n) = ¢‘@™g(x) mod 27 holds for all x € R”
and n € Z", where o is the permutation (1,2,...,|d|) — (|d|,1,2,...,|d| — 1) and
0(x) = (61(x),...,0)q/(x)), it is enough to consider standard basis vectors, namely n = e;.
We only consider n = e, but the proof holds for every e;. For every x € R”, the poly-
nomials px and pxiaze, are equal by Definition 4.4, so their roots are equal as a set
but may have different counterclockwise numbering, which means that 0(x + 2we;) =
o"0(x) + 27k for some integer 0 < r < |d| and k € Z", that may a-priori depend on x.
Notice that if the roots of py are all simple, then r and k are uniquely determined; how-
ever, if all the roots have multiplicity two, for example, then there can be two choice r and
r + 1. Nevertheless, as of pyx and pxy27e, change continuously in X in the same manner,
then there is a continuous (hence constant) choice of r and k. It is therefore enough to
show that r = d; for some point Xo that minimise min; <q m(6;, X), and as this quantity
is invariant to translations in direction 1, then we may take xq € s p-Letm = m(Xo) < |d|,
and by Remark 4.6, we may assume that

0=01(x0) =+ = On(X0) < Oj+1(X0) <+ < bq(X0) < 27.

Letr and k = (kq,...,kn) be such that 6(xo + €;) = 0" 0(x¢) + 2wk. Using part (3) and
the fact that the sum of 07 68(x¢) and 0(xg) is the same, we get

d d d
ij = ZQ(XO +e1)— ZO(XO) = —2md;.
j=1 j=1 j=1

By part (1), 6;(xo + e1) — (o) € [0, 2x]. Since 27k; = 6;(xo + e;) — 0/(xo) for
some j’, and |6;/(xo) — 0;(Xo)| < 27, then k; € {0, —1} for all j. The equation for the
sum above implies that k has exactly d; entries equal to —1, and the rest are zero.
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Denote v := 0" 6(x¢) so that

v = (0)q—r+1(X0), Ojaj—r+2(X0). - - ., Bjq) (X0). 01(X0). - . ., Ojq)—r (X0))-

Then vy <--- < v,y and vy41 < --- < Vg, Wwith v, = 0 < v, < 27, while v + 27k is
ordered increasingly. We conclude that k; = —1 for j < r and k; = 0 for j > r, which
means that r = d;. This proves part (4). [

We are now in position to prove Proposition 4.2 using Proposition 4.5.

Proof of Proposition 4.2. Consider the linear transformation 7 (y,?) = (y,0) + ¢1, and
the quotient map 7: R” — R" /2w Z". Consider 2 := 7 ((0, 27]"), which is a fundamen-
tal domain of 27 Z", so w: Q@ — R"/2nZ" is bijective. The map y — T (y, 6;(y. 0)) is
continuous with a continuous inverse X — (X1 — X, ..., Xp—1 — X), since 6; is contin-
uous by Proposition 4.5, and therefore ¢;(y) = (7 (y, 6;(y, 0))) is a homeomorphism
between (0, 271]"_1 and its image, which we denote by X, ;.

Notice that 8; (7 (y.t)) = 0;(y,0) —t by part (1) of Proposition 4.5, so

(4.4) 0;(T(y.1) € 2nZ <= ¢;(y) = n(T (y.1)).

(25, C Zp)Giveny € (0,27]" L, let 1 = 6;(y,0), so that 0; (T (y, 1)) = 6;(y,0) — ¢
= 0. Therefore, T (y, t) € /E\Jp which means that 7(7 (y, 1)) = ¢(y) € X, by (4.4).

(2, C UL'CL Xp,j) Consider Q := T ((0,27]"), which is a fundamental domain of
2nZ", so w: 2 — R"/2x7Z" is bijective, and therefore any x € X, C R” /277" has a
unique point (y, 1) € (0,27]"~! x (0, 27] for which 7 (7 (y.t)) = x. In such case, T (y, ) €
ip s0 0; (T (y,t)) € 2nZ for some j, and ¢;(y) = n(T (y.t)) = x by (4.4).

(Multiplicity and singularity) Let x = 7(7 (y,?)) € X, as above. The number of layers
containing X is the number of j’s for which ¢;(y) = x, which are those j’s for which
e TN = 1. This is exactly m(x), the multiplicity of x as a zero of p(exp(ix)), by
Lemma 3.6. If p is square free, then X € sing(X,) <= m(x) > 1 <= xe€X,; N X, ;
for some i # j, by Lemma 4.1.

(Real analyticity) Suppose that ¢;(yo) = 7 (T (yo,?)) € reg(X,). Then T (yo.1) €
reg(il,), which means that 6; is real analytic around 7 (yo,¢) = (yo.0) + 1, according to
Proposition 4.5. Therefore, 0; is real analytic around (yo, 0), due to the shift 6; ((y,0) + v)
=0;(T(y.t) +v)+1tforallveR" yeR" It follows that y — T (y, 6; (y, 0)) is real
analytic around yo, and therefore so is ¢;. ]

We may now relate the mingap(p) given in Definition 1.11 to the phase functions
(6; )}'11 defined in Proposition 4.5.

Lemma 4.7. Let p € LYq(n) and let (6; )l-dil be its phase functions. Then
mingap(p) = min[f;1(x) — 0;(x)] over 1 < j <|d|andx € [0,2x]",
where we set 0)q1+1 = 01 + 21 by convention. In particular, mingap(p) > 0 if and only

if p has no square factors and sing(X,) = 9 (equivalently, Vp(z) # 0 for any z € T"
with p(z) = 0).
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Proof. By definition, if z = exp(ix) € T", then (¢'% (X))}(il are the roots of p,, ordered
cyclically with multiplicity, and so mingap(p,) is the minimum of 8;;(x) — 6; (x) over
1 < j <|d|. Since this difference is invariant to x — x + ¢1, we see that mingap(p,) = 0
if and only if 6;41(x + 1) = 6;(x + 1) = 0 for some 7, which means that e’z =
exp(x + ¢1) is a multiple zero of p (multiplicity two or higher) by Lemma 3.6. Since
mingap(p) is the minimum of mingap(p,) over x € [0, 277]", then mingap(p) > 0 if and
only if mingap(p,) > O for all z € T” which happens if and only if p has no multiple
zeros in T”, which happens if and only if p has no square factors and sing(X,) = 9. =

5. Zeros density. Proof of Theorem 1.9

When the polynomial p arises from a quantum graph, then Theorem 1.9 holds by the proof
of Weyl’s law for quantum graphs in Lemma 3.7.4 of [6]. In such case, p(z) = det(1 —
D(z)S), where S is some orthogonal matrix and D(z) = diag(zy, ..., Zn, Z1, - -+ » Zn)-
The proof for a general Lee—Yang polynomial p is similar. The roots (% ®) )}dil of the
univariate polynomial py(s) replace the eigenvalues of D(exp(ix))S.

Proof of Theorem 1.9. Let p € LYq, and consider the phase functions (6; )_l;il described
in Proposition 4.5. Given £ € R” , a point x € R is a zero of f(x) = p(exp(ix{)) of
multiplicity m if and only if exactly m of the phase functions satisfy 6, (x{) € 2nZ, by
Lemma 3.6 and Proposition 4.5. The number of zeros of p(exp (ix¥)), counted with mul-
tiplicities, in an interval [a, b] C R is therefore

d|
ipela.b]) =D [{x € [a.b] : ;(xL) € 27 L}].
j=1

According to part (1) of Proposition 4.5, 6;(af) > 6;(b{) for each j, and the map x
0; (x£) is a bijection between [a, b] and the interval [0; (b€), 6; (a£)] C R, which has length
8;(al) — 0;(bL). Therefore,
0j(al) —0; (bl
{x €la,b] : 0;(x0) € 2nZ}| = |[9j(b€),9,~(a£)] N 2nZ| = w + errj,
T
with |err;| < 1. Leterr := Z}‘il err;. Then |err| < |d| and

|d|
0;(al) — 0; (bt d. ¢
Wpe(la,b]) = Z%+ert = %|b—a|+err.

j=1
In the last equality, we used part (3) of Proposition 4.5. This proves part (1) of the theorem,
by substituting [a, b] = [x,x + T] and err(x, T') = err.
For part (2) of the theorem, let x;4; > x; be consecutive zeros of f(x), and consider
an arbitrary interval / C (x;, Xj11), SO

0=pu 4(1)<M|I|+err = || <2n fert <2m i ,
P - 2 = d ) T (d )

and |/ | can get arbitrarily close to x; 41 — X;. [
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6. Ergodic dynamics on X,

To prove the existence of a gap distribution for the eigenvalues of a quantum graph, Barra
and Gaspard introduced an £-dependent “first return” dynamical system on X, for the
associated Lee—Yang polynomial p, which is uniquely ergodic when £ is Q-linearly inde-
pendent [4]. The same holds for any Lee—Yang p, as shown in this section.

Given £ € R", consider the linear flow on R” /27 Z" induced by the constant vector
field £. That is, the flow at time ¢ is a map X — X + £ mod 27 from R” /27 Z" to itself. The
minimal ¢ > 0 for which a point x € X, gets back to X, is called the first return time t4(X),
and X — X + 7¢(x) £ mod 27 is a map from X, to itself that defines a dynamical system.

Remark 6.1. Throughout this subsection, we omit the “mod 27" when it is clear from
the context.

T, (x)

0 T 2n 0

Figure 7. Illustration of Ty, 7, and the measure my, as in Definition 6.2, for the Lee—Yang poly-
nomial p from Example 1.2 and £ = (7, 1). In the background, the line (x, y) = t£ mod 27 for
t €[0,44].

Definition 6.2 (Dynamical system on X,). Let p € LYq(n) and £ € R’}. The first-return
time t¢: ¥, — R4 and the first-return map T;: £, — X, are defined by

7(x):=min{t >0: x4+l e X,} and Ty (x):=x+ 1p(x)L.
The measure my is a Borel measure on ¥, defined for any Borel subset A C X, by

1, (A
my(A) = 31_% W, with Az :={x+tl:x€ A, |t| <¢},

where vol,, is n-dimensional volume (Lebesgue measure) in R” /27w Z".

Definition 6.3. A bounded function /: X, — C is called Riemann integrable if its dis-
continuity set has zero volume in X, with respect to the # — 1 dimensional volume form
induced by the n-dimensional volume form on R” /27w Z".

Recall that if p has a decomposition into distinct irreducible factors p = ]_[]M=1 q;j ,
then the reduced polynomial is p™¢ := I—[juzl g, and its multi-degree is denoted by d™.

Let m(x) denote the multiplicity of exp(ix) as a zero of p.
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Theorem 6.4 (Unique ergodicity). Let p € LYq(n), let £ € R”, with Q-linearly indepen-
dent entries, and fix an arbitrary point Xo € . Let (x;);ez denote the zeros of f(x) =
p(exp(i(xo + x£))), ordered increasingly with multiplicities, and consider (TZJ (X0))jez
the Ty orbit of Xo. Then the averages of any bounded Riemann integrable h: %, — C over
the orbit (T/ (X0))jeN, and over the sequence (Xo + xj{);jeN, are independent of Xo and
are given by

/ h(x) dmq (%)

N
.1 j
6.1) Jim N;h(n (%0)) = W

1

N
. 1
62 Jim § LMt = oG

/E m (%) h(x) dme (x).

where my(Zp) = (27)"~1(d™9, £) and pr m(x)dmy(x) = 27)"1(d, £).

For Lee—Yang polynomials associated to quantum graphs, this is shown in [4,7, 12].
A proof for any Lee—Yang polynomial is provided for completeness.

Proof. Let {x;}ien denote the positive zeros of f(x) = p(exp(i(x¢ + x{))) ordered with
multiplicity, and let xo = 0, since Xo € X,. Let {k;};en denote the distinct zeros of f,
ordered without multiplicity, with kg = 0, so that TZ (x0) = Xo + ki€ and m(TZ (xp)) is
the multiplicity of k; as a zero of f for all i € N. The first step of the proof is showing
that for any bounded Riemann integrable /: X, — C,

o1 . 1
(6.3) ngnooﬁk;h(n (X0)) = @ /E phdmg.

Consider a layer X, ; as in Proposition 4.2, and let & = y4 be the indicator function of a
Borel set A C X, ; with boundary of zero volume in X,,. The set A,y = {x + £ : (X, 1) €
A X [—e¢, €]} is then a Borel set with boundary of zero volume in R” /27 Z". Since £ has
Q-linearly independent entries, the Kronecker—Weyl theorem gives

vol, (Ag¢) . length({t € [0, R] : xo + t{ € Ag})

4 Dol lell _
©4) Qr)r | Raeo R

Let A= {k;: T; (x0) € A} CR,sothat 0 (xo + k;£) € 2nZ forall k; € A since AC X, ;.
The function ¢ — 60 (X + t£) is strictly monotone with uniform upper and lower bounds
on its slope, by Proposition 4.5 part (1), so # is uniformly discrete, and therefore, for
small enough ¢ > 0, the 2¢-intervals [k; — &, k; + €] for k; € +A are mutually disjoint. The
set {t € [0, R] : xo + t£ € Ay} is the intersection of these disjoint 2¢-intervals with [0, R],
so up to an error of 2¢, its lengths is 2 [A N [0, R]| = 2¢ ) 4 h(Tei (X0))- Substituting
this estimate into (6.4) gives

65) et _ (28— 3 h(T xo) + 0(8)) =2 lim — Z h(T} (xo)).

n R
(27‘[) —00 k<R k<R
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Dividing both sides by 2¢ and taking ¢ — 0 proves (6.3) for the indicator function 7 = y 4.
Both sides of (6.3) are linear in £, so it holds for any step function Z;VZI ¢;j x4, such that
the sets A; C X, are Borel with boundary of zero volume in X,. Such functions can
approximate (in the sup-norm) any non-negative bounded Riemann integrable function
from below and above to any given precision, by taking the upper and lower Darboux
sums, as they converge to the Riemann integral of 4. We conclude that (6.3) holds for any
bounded Riemann integrable function /: 3, — C, as it can be written as h = hy — hp +
i(h3 — h4) so that each A; is real non-negative, bounded, and Riemann integrable, and
hence can be approximated by step functions, for which (6.3) holds.

The second step is calculating mg(X,) and |, s, m(x) dmy(x). The sum of multiplici-

ties of distinct zeros up to T is the number of repeated zeros up to R, > ki<R m(Tli (x0)) =
|[{x; < R}|, which is equal to %R 4+ O(1), by Theorem 1.9, and applying (6.3)toh =m
gives
1
2m)"

Hxi <R} _ (d. )
=

o o
. o dmets) = tim % 3 w7 o = Jim, =

ki<T

It follows that . s, m(x)dmy(x) = (27)"~1(d, £), and by replacing p with p™¢ we get that
my(X,) = fzp dmy = (27)"~1(d™¢, £). To see why, notice that the torus zero set of p™¢
is equal to X,,, with the same measure my, but with multiplicity function which is one for
every x € reg(X,). The complement has my(sing(X,)) = 0, since dim(A4) < n — 2 for
A = sing(X,), which means that dim(A4,¢) < n — 1 and so vol, (4,¢) = 0.

To prove (6.1), apply (6.3) twice and divide the two limits:

= 1 =
me(S,)  Roeo  |tki < R} N o N

J5, hdmg . Y<r (T (x0) i Z;V=1h(T€i(X0)).

Since

D h(xo+xil) = Y m(T{ (%0)) (T} (x0)),

x; <R ki<R
the same argument gives

Js, mE@h(x)dmy(x) o Tserho X0 Yoy h(xo + xi6)
Js, m®dme(x)  R-co  [{x; < R}  Nooo N

6.1. Properties of 7, and my

The gap distributions in Section 9 are defined in terms of ty and my. The needed properties
of 7y and my are stated in the next two lemmas.

In what follows, consider reg(X,) as a smooth Riemannian manifold with volume
form do, induced by dvol, in R” /27 Z", and the normal vector field fi with i(x) € RZ,
for all x € reg(X,), as guaranteed by Proposition 3.5. The n — 1 form with dx; missing

is denoted by dx; /\dxz/\---/\c?}j A ANdxy,.
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Lemma 6.5. The measure my is absolutely continuous with respect to do, the volume
form on reg(X,), with a strictly positive distribution

n
(6.6) dmg = (0, 0)do =Y £;(=1)Tdx; Adxy Ao Adxj Ao Adxy,
j=1

For each layer ¥, j, with parameterization ¢;: (0,27]"~! — X, ; as in Proposition 4.2,
and for every measurable h: %, ; — C,

©7) / h(x) dmg(x) = / 1 (1)) (V65 (y. 0). €) dy.
Xp.j 0,27]n—1
and in particular, for £ = 1,
68) / h(x) dmy(x) = / h(@; (y) dy.
Ep,j (0,27‘[]”—1

Proof of Lemma 6.5. It was shown in the proof of Theorem 6.4 that my(sing(X,)) = 0,
so my is supported on reg(X,). To show (6.6), it is enough to consider a small open set
A Creg(X),). If A is sufficiently small, for ¢ > 0 sufficiently small, we can choose local
coordinates k = (k1,...,kn—1) such that d« = do, which extend to local coordinates in a
neighborhood of A,; by adding a coordinate ¢ in the normal direction f. The fact that do
is induced from d vol, means that dvol, = d«x dt. Therefore, dk = 2¢ [, (fi(x),{)dk >0,
using that £ € R’} and fi(x) € RZ, for all k € A. We conclude that fi(k) € R, for all
k € A. We conclude that

Ly (A .
my(A) ;= Eli_r)%w = //;(n,é) do.

By definition, the form (n, £)do agrees with the n — 1 form

n
0= Zé,-(—l)j“dxl Adxy Ao Ndxj A Adxy
j=1

when restricted to reg(X,).

We are left with deducing (6.7) from (6.6) by simple change of variables. Let y €
(0,27]"~! be such that ¢; (y) € reg(,), and let D = Dygj|, be the n x (n — 1) matrix of
derivatives whose (s, i )th entry is d(¢;)s/dy;|y. Then the change of variables formula for

X = @;(y) is

Y b (=D dxy Adxy A AdXg A Adxy =Y (1K Dedy,
k=1 j=k

where D; denotes the (n — 1) x (n — 1) minor of D obtained by removing the j-th row.
Adding £ as a column vector gives an n x n matrix M = (D {), whose determinant is
exactly det(M) = Y 7_, £x(=1)¥T1 Dy, by expanding according to the column ¢. We
need to show that det(M )= — (V6;(y.0),£). Letv=(30;(y,0)/dy1,...,00;(y,0)/0yn—1)
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e R*71 5o that the entries of D are Ds; =v;ifi #s,and D;; = v; + 1, since ¢; (y) =
(y.0) + 0 (y, 0) 1. Subtracting the last row of M from all other gives the matrix

M = (id"—l ‘), with = (€4 =y, €s — by, ... bny — L),

v .

so that det(M) = det(M) = £, — (v, 67), using the Schur complement in the last equality.
Notice that (v, £) = (V;(y,0), £ — £,1) = (V;(y,0), £) — £, since (VO;(y,0),1) =
—1 by part (1) of Proposition 4.5 . We conclude that det(M) = —(V6;(y, 0), £), which
proves (6.7), and (6.8) follows from (V6;(y,0),1) = —1 again. |

For the next lemma, let p € LY4(n) and, for any £ € R” , consider the first-return-time
740 Xp — R4 introduced in Definition 6.2.

Lemma 6.6. For any fixed { € R",, the map ty: £, — Ry is bounded by 2w |d|/(d, {)
and satisfies the following.

(1) Given any pair of distinct consecutive zeros of f(x) = p(exp(ix{)), say xj11 > Xj,
7(X) = Xj41 —X; for x = x;{ mod 2m.

If xj+1 = xj, then x € sing(X,), and
(2) for any x € sing(X,) and any U C X, neighborhood of X,

{0, 7¢(x)} C{re(x) : x ereg(X,) NU}.

In particular, the infimum of t;(X) over x € reg(X,) is 0 if and only if sing(X,) = @.
(3) Assume p is square free (otherwise, replace p with p™®). Then the infimum of T is
bounded by
mingap(p) <infr < mingap(p)
Zmax ﬁmin
where L.y and Lnin denote, respectively, the largest and smallest entry of £, and
mingap was defined in Definition 1.11 (see also Lemma 4.7).

’

; . on
Moreover, if we let £ vary in R’}

(4) the map ©(x,{) := t¢(x) is continuous on reg(Xp) x R” and is real analytic on the
open subset {(x,£) € reg(Xp) x R : Ty(x) € reg(Zp)}.

Proof. Since p and the reduced polynomial p™! share the same torus zeros set, then they

share the same 7, and so we may assume that p is square free. We work with the lift of 7,
from X, to Z Abusmg notation, we write t¢(Xx) = t¢(x mod 277) when x € E C R”,

and similarly t lifts to s, p X R’. This means that
7(x,4) = 1¢(x) = min{r > 0 : p(exp(i(x + t£))) = 0}.

In particular, t¢(x;£) = x;4+1 — x; when x; 1 > x; are consecutive zeros of p(exp(ix{)),
which proves (1).

For the bound 7;(x) < 2x|d|/(d, £), by replacing p(z) with p(e ¥ zy,...,e " z,)
if needed, it is enough to consider 7,(0) when p(exp(0)) = 0, and to number the zeros
of f(x) = p(exp(ixf)) such that 0 = x¢ < x;. Then 74 (0) = x; — x¢ < 2x|d|/(d, £) by
Theorem 1.9.
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For (2) and (4), the same argument allows us to assume that p(exp(0)) = 0, namely
0 € ¥, and focus on a small neighborhood of 0. The two cases of 0 being a regular or a

singular point of fl; are treated separately.

Case 0 € reg(fl;). If 0 is a regular point of f];, then it is a zero of p(exp(ix)) of
multiplicity one, since p is square free. The phase functions (defined in Proposition 4.5)
can be chosen, according to Remark 4.6, such that

0= 91(0) < 92(0) <..-< 9|d|(0) < 2m,

Taking U C ip a small enough neighborhood of 0, we can ensure that 8;(x) = 0 and
0;(x) € (0,2r) for all x € U and j > 2. In particular, the minimal ¢ > 0 for which
p(exp(i(x + t£)) = 0 must satisfy 6, (x + t£) = 0, for any (x,£) € U x R”, by the order-
ing and strict monotonicity of the phase functions as shown in Proposition 4.5. In such
case, T = 7(X, £) is the unique solution to 6>(x + t£) = 0 and is therefore continuous in
(x, £), by the continuity of (x, ¢, ) + 6,(x + ¢£) and the implicit function theorem for
monotone continuous functions. As a result, (x,£) > T¢(x) = x + 7(x, £){ is also con-
tinuous in U x R’ , and therefore the set 2 := {(x,{) € U x R} : Ty(x) € reg(/E\Ip)} is an
open subset of U x R’} . If (X', £') € 2, then 6 (x + ££) is real analytic in (x, £, ¢) around
X, ¢, t(x',£")), by Proposition 4.5, and so 7(x, £) is real analytic around (x, £’) by the
implicit function theorem for real analytic functions, which proves (4).

Case 0 € sing(i‘;). If 0 is a singular point of gp, then it has multiplicity m = m(0)
as a zero of p(exp(ix)). Choose the phase functions, according to Remark 4.6, such that

0=01(0) == O (0) < Oy 1(0) <--- < 6q)(0) < 2.

IfU C fl\p is a small enough neighborhood of 0, then it has the form

m
U=|JU;. with Uj:={xeU:06;(x) =0},
j=1

since fp = U}‘il QJfl(erZ) and the phase function are continuous. Define ¢; (x, £) as
the unique f-solution to 6;(x + t£) = 0. As before, ¢; is continuous on U X R’ , and
7(0,£) = t;+1(0, £) (where 8ig/+1 = 61 + 27 if m = |d|). Furthermore, for any j < m
andx € U; N reg(fp), 0j+1(x) > 0, and so 7(x,£) = t;4+1(x, {). Consider a converging
sequence X, — 0, with x,, € reg(/Z\Jp) for all n, and by taking a subsequence if needed, we
may assume X, € reg(fp) N U; for all n, for some specific j. So 7(Xp, ) = tj4+1 (X, )
for all n, and

) 7(0,¢) if j =m,

lim 7(x,,£) =1;1+1(0,¢) =
n—>00 (xn, £) = 1j1(0.0) {O ifl<j<m-—1,
by continuity of ¢;41, using that 6;41(0) = 0 when j 4+ 1 < m. This proves the first part
of (2), and the fact that if sing(X,) # @, then the infimum of 7; over reg(X,) is zero. On
the other hand, if sing(%,) = @, then 7 is continuous on X, = reg(X,) and positive, and
by compactness it has a positive minimum. This proves (2).
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For (3), define 4, ; (x) as the ¢ solution to 8, 41 (x 4 t{) = 6;(x), which is well defined
an positive since the phase functions are ordered, continuous and monotone in positive
directions. Then 6 11(x) — ;1 (x 4 7¢,; (X)£) = 0;11(x) — 6;(x) and part (1) of Propo-

sition 4.5 gives
bj+1(x) — 0 (x) bj+1(x) — 0 (x)
Zmax B - emin '
and by taking the minimum over all x € R” and 1 < j < |d|, we get

mingap(p) _ min ;) < mingap(p)

’

Kmax Emin

using Lemma 4.7. Now, on the one hand, for any x € f];, there is some j such that
8;—1(x) =0 mod 27 and 0;(x) > 6;_1(x), and so 7¢(X) = 7¢,;(X), which means that
miny ; 7y ; (x) < inf 7. If inf 7, = 0, then we are done. If inf 7y > 0, then sing(X,) = 0,
and therefore 7, ;(x) > 0 for all x and j. By Proposition 4.5 (1), 7¢ ; (x + 1) = 74, (X)
and we can choose ¢ so that 6 _; (x + #1) = 0 mod 27, in which case 7y (x + 1) = 1 _; (x).
Therefore, inf 7y = miny ; 7¢ ; (x), which finishes the proof. [

7. Proof of Theorem 1.5

Let p € LYq(n) with decomposition p = ]_[]I-V=1 q]c:i into distinct irreducible polynomi-
als, and let £ € R’} with Q-linearly independent entries. Each factor ¢; is a Lee—Yang
polynomial by definition. Let m,(x) denote the multiplicity of x as a zero of f,(x) =
p(exp(ixf)), with mp(x) = 0if f,(x) # 0, and similarly, let m; (x) denote the multiplic-

ity with respect to f; (x) = g, (exp(ix£)). Since f(x) = ]_[j-vzl (fj(x))¥ and multiplicity
of zeros is additive under multiplication of functions, then m(x) = Z}Ll cimj(x). As a

result,
Mpe = Zmp(x)gx = ch Z m;j(x)8x = ZC] Hag;.l»

xeA XEA;

where A denotes the zero set of f and A; the zero set of f;. Clearly, A = U i=1Aj. The
proof of Theorem 1.5 follows from the next lemma and proposition, considering the case
of p being irreducible and either binomial or not.

Lemma 7.1 (Binomial). If the polynomial p € LY q(n) is binomial, normalized such that
p(0) = 1, then p(z) = 1 — e 929 for some ¢ € R. In such case, for any { € R, the
zeros of f(x) = p(exp(ix{)) are simple and form an infinite arithmetic progression
{o+2rxk/{d, L) : keZ}.

Proof. If p € LYq4(n), then p(0) # 0 and the coefficient of z¢ is non-zero. If it has only
two monomials and p(0) = 1, then p(z) = 1 + az9. Assume by contradiction that |a| # 1;
then for any |d|-th root w € C of a, the point z = (@, ..., ) will be a root of p in D"
or in (C \ D), in contradiction to p € LYq(n). Therefore p(z) =1 —e7"%z4, and so
f(x) =1 — e Ub0x=9) for some ¢ € R. Hence, f(x) =0 < x—g¢ ¢ (d,Z)Z’ in
which case f’(x) # 0. [
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Proposition 7.2 (Non-binomial). Let p € LYq(n) be irreducible and non-binomial, let
t € R be Q-linearly independent, and let f(x) = p(exp(ix{)) have zero set A and

multiplicities (m(x))xea. Then,
(1) m(x) < |d| forall x € A and limg— oo '{'X'T{ﬁ;‘z;‘};gm=l}l =1

(2) Forany N € N and any set I' € R with dimg(I") = N, |A N T'| < ¢, with uniform
bound ¢ = c(|d|, N) that only depends on |d| and N. In particular, dimg(A) = oo.

Proof of Proposition 7.2, part (1). The bound m(x) < |d| follows from part (1) of Theo-
rem 1.9. Number the distinct zeros of f(x) by (kj)jez, withk; > Ofor j >0and k; <0
for j < 0. We need to show that

. [{—N < j < N :m(k;) > 1}
lim E =
N —o0 2N

0.

Let pT € LYq as in Definition 3.13, so that pT is also irreducible, non-binomial, and has
piexp(ixf)) =0 <= p(exp(—ixf)) = 0 with the same multiplicities, so it is enough
to prove the one sided limit

. {1 <j <N :m(kj)> 1}
lim - =0
N—>o0 N

By Lemma 3.6 and since p is irreducible, m(k;) > 1 if and only if k; £ € sing(Z,). Notice
thatk; £ = T/ (ko?), using the fact that the k;’s are the distinct zeros. Let / be the indicator
function of sing(X,), so that |[{1 < j < N :m(k;) > 1}| = Z;V:l h(Tej (ko?)). Then, h
is bounded Riemann integrable, and Theorem 6.4 gives

N
Jim %; h(T] (kot)) o / h(x) dmy(x) = my(sing(Z,)) = 0. -

The proof of part (2) in of Proposition 7.2 is a consequence of Theorem 1.2 in [13],
often known as Lang’s GM theorem. To state it, we consider (C*)" as multiplicative
group, and it will be convenient to define the notions of rank, division group, and algebraic
torus cosets in terms of the exponent map exp: C* — (C*)".

Definition 7.3. A subgroup G C (C*)" has rank N if N is the minimal integer for which
G = {exp(Ak) : k € Z"} for some matrix A € C"™N _ Its division group is defined by
G = {exp(4k) : k € Q) for the same A. An algebraic torus of dimension d in (C*)"
has the form H = {exp (By) : y € C?} for some integer matrix B € Z"*¢ of rank d. The
algebraic torus coset zH for z = exp(x) is the set zZH = {exp (x + Ay) |y € C¢}, for the
same matrix B. It also has dimension d.

Theorem (Theorem 1.2 in [13]). Let V' C (C*)" be an algebraic variety of dimension N
and degree D, and let G be a subgroup of (C*)", of rank N, with division group G. Then
G NV is contained in a union of at most r algebraic torus cosets z; H; C V for

n+D
y < o +D(eD () D)
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Lemma 7.4. Suppose that zH C (C*)" is an algebraic torus coset of dimension d <
n — 2, and that £ € R" has Q-linearly independent entries. Then there is at most one
k € R such that exp (ik{) € zH.

Proof. Let B € 2% of rank d such that H = {exp (By) : y € C?}, and suppose that both
exp (ik€) and exp (ik'{) lie in zH . Then, exp (i (k — k’)£) € H and therefore (k — k') =
By + 27k for some k € Z",y € C?. The left kernel of B in C” contains an (n — d)-
dimensional Q-linear vector space of vectors orthogonal to By, so dimg(By) < d, and

therefore,
dimg((k — k")¢) = dimg(By + 27k) <d + 1 < n.

However, if k — k" # 0, then dimg ((k — k')¢) = dimg(£) = n, a contradiction. [

Proposition 7.2, part (2). Let p, £ and A as in Proposition 7.2. Let V' C (C*)" be the zero
set of p in (C*)". The degree of V is finite and only depends on |d|. Given N € N, let
I' C R of dimg(I') = N,so T = {(a,k) : k € Q} for some a € R¥. Define the matrix
A € C™N whose j-th row is the vector i{;a € CV, and let G = {exp(4k) : k € ZV} so
that its division group is the set G = {exp(4k) : k € QV} = {exp(it{) : t € T'}. So

xeANT < exp(ixf) eGNV.

Since G has rank at most NV, Lang’s GM theorem says that there are at most r = r(|d|, N)
algebraic torus cosets z; H; C V such that GNVCcziHiU---Uz - H,.In particular, any
x € A N T satisfies exp(ix{) € z; H; for some i. An algebraic torus coset of dimension
n — 1 is the zero set of a binomial polynomial, and since p is irreducible and not binomial,
then dim(z; H;) <dim(V)—1=n—2foreveryi = 1,...,r. By Lemma 7.4, each z; H;
contains at most one point exp(ix£) for x € R. We conclude that A N " contains at most r
points. ]

8. Proof of Theorem 1.12

Proof of Theorem 1.12. Suppose that n > 2. Say that p € LYq4(n) satisfies (i) if p and Vp
have no common zeros in T”, and satisfies (ii) if p has a non-binomial factor. Say that 1, ¢
satisfies (x) if it is non-periodic, with unit coefficients and has a uniformly discrete sup-
port. The proof of Theorem 1.12 consists of three parts.

Proof of the characterization.

(()+(i) = (x)) It follows from Theorem 1.5 that u, ¢ is non-periodic when £ is Q-
linearly independent and p satisfies (ii). It is left to show that if p satisfies (i), then 1, ¢
has unit coefficients and uniformly discrete support for any £ € R’ . Assume that p
satisfies (i) and £ € R’}. Property (i) is equivalent to sing(X,) = ¢ and m(x) = 1 for
all x € ¥,. According to Lemma 3.6, this means that the multiplicities of the zeros of
J(x) = p(exp(ix{)), which are the coefficients in 1, ¢, are all equal to one. According to
Lemma 6.6, sing(X,) = @ implies that r = inf{z;(x) : x € X} > 0. The zeros of f are
distinct, so their gaps are given by 7y, as seen in Lemma 6.6, providing the uniform lower
bound x; 41 — x; = r¢(x;¢) >r > 0.
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((») = ()+(i)) Let p € LYq(n) with Q-linearly independent £ € R” , and assume
that 1, ¢ satisfies (x). Let A be the support of 1, ¢, so it is non-periodic and uniformly
discrete. If p had only binomial factors, then A would be a union of infinite arithmetic pro-
gressions, by Theorem 1.5, and such a union is either periodic or it has gaps as small as we
wish. We conclude that p satisfies (ii), and it is left to show (i), namely that sing(X%,) = ¢
and m(x) = 1. Let (x;);ez be the zeros of f(x) = p(exp(ix{)), ordered increasingly, so
by (x) they are all simple and t¢(x;£) = x;4+; —x; > r > 0 uniformly for some given
r > 0. Note that x; £ e reg(2,) withm(x;£) = 1 forall j € Z, since every x; has multiplic-
ity one. The sequence {x;{};ez is dense in reg(X,) since £ is Q-linearly independent, so
m(x) = 1 forallx e reg(X,) and inf{7y(x) : x e reg(Z,)} = inf{ry(x;€): j € Z} >r >0,
by continuity of 7y and m on reg(X,). Then sing(X,) = @, by Lemma 6.6, which means
that m(x) = 1.

Proof of the explicit lower estimate.

Lemma 4.7 states that mingap > 0 if and only if p satisfies (i). If mingap = 0, the de-
sired lower bound holds. If mingap > 0, then the desired inequality follows from parts (1)
and (3) of Lemma 6.6.

Proof of the genericity.

By Theorem 3.20, For any d € Z” , the subset LYy C LYq of p € LY4(n) that sat-
isfy (i), is a semialgebraic open, dense subset of LY4(#). Furthermore, for any nonzero
p € LYq4q(n), we can chose x € [0, 27)" for which p(exp(ix)) # 0. By Corollary 3.17,
for any A > 0, the polynomial (!O,\,X)“' p satisfies (i). As seen in Definition 3.16, every
application of 9, 4 contributes one to the degree of A and so the result, (i);t,x)“” p can be
expressed as a polynomial of degree |d| in A.

For (ii), consider the set By of polynomials p € LYq4(n) that has a binomial factor of
multi-degree & < d, @ # d. We will see that By is a semialgebraic subset of LYq(n) of
positive codimension. By Lemma 7.1, the binomial factor of p has the form (1 4+ az%)
for some a € C* with |a| = 1. Therefore By = {(1 + az%)q(z) : la| = 1, ¢ €LY q—qa}
From this and Theorem 3.20, we see that By is semialgebraic of dimension

dim(By) = 1 + dim(LYq_o) =2+ [ [(dj —j + 1).
j=1

Since & # 0, there is some «; > 1. We then calculate that

n
[[di—ei+D=i—ai+D]]@+1)
=1 j#i
n n
=[]@+D -]+ <[] +D-1
j=1 J#i j=1
using that o; [, ;(dj +1) > 2"~ > I sincen > 2 and d; + 1 > 2 forall j. This shows
that dim(Bg) < dim(LYq4) forany 0 < « < d.

Together, these show that the set of polynomials in LY 4(#) satisfying (i) and (ii) is a
semialgebraic, open dense subset of LY 4(7). |
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9. Gap distributions

The existence of a gap distribution p, ¢ was previously known for specific type of Lee—
Yang polynomials, those for which the zeros of p(exp(ix{)) are the square-root eigen-
values of a quantum graph that has n edges of lengths £ = ({1, ..., {,), assuming these
lengths are Q-linearly independent [4,7, 12]. The existence of a gap distribution of 1, ¢
for any choice of Lee-Yang p and positive £ is proven in this section. In particular,
this includes the case of quantum graphs with edge lengths not Q-linearly independent.
Recall that if p has multi-degree d and it decomposes as p = ]_[j-vzl q;j into distinct
red — ]_[jv=1 q; is the reduced square-free polynomial; we denote
its multi-degree by d™d. In particular, d*¢ < d element-wise, with equality if and only
if p is square free. As seen in Lemma 6.6, if we number the zeros of f(x) = p(exp(ixf))
increasingly with multiplicity, then the positive gaps are described by 74: X, — R,

irreducible ¢;’s, then p

©.1) Xj+1—x; = 1¢(x;£) whenever xj1q # Xj,
as can be seen in Figure 5. To prove Theorem 1.14, let us define the measure v, 4.

Definition 9.1. Let p € LY4(n), £ € R”, and let (z¢)« m; denote the push-forward of my
by ;. Define the measure v, ¢ on R by

_ . {d—dep) . 1
(92) Vpt = C()S() + Cr(l’g)*m(, with Co = W and Cr = m
That is, for any continuous f:Rs¢ — C,
©93) [ £vni=cor@+ec [ et dmew,
4
Remark 9.2. The measure v,, ¢ is normalized, [ dv, ¢ = 1, since [ d(¢)«mg = my(Z,),
1 [x, (m(x) — 1) dmy(x)
¢t =-————— and ¢y = 2 =1—comy(Zy).
J5, m() dmy(x) 0 J5, m(x) dmy(x) »

Proof of Theorem 1.14 and Theorem 1.15. Fix u, an N-FQ, and let n € N, p € LYq(n),
and £ € R”, with Q-linearly independent entries such that ; = i, ¢, as guaranteed by [3].
Consider the decomposition p = ]_[ -1 q ’ into distinct irreducible Lee—Yang polynomi-
als. Let (x;);ez be the zeros of p(exp(zxﬁ)) numbered increasingly with multiplicity.

The proofs of Theorem 1.14 and Theorem 1.15 interlace according to the following
sequence of lemmas, which will be proven afterwards. For each, we take the assumptions
listed above.

Lemma 9.3. The gap distribution p = pp ¢ exists and is equal to vy, ¢. That is, for any
continuous function f:R — C,

Jim —Zf(ijrl—x])—/pre

Moreover, vy ¢ = v when q(z) = p(exp(iXo)z) for any fixed xo € R" (part (1) of
Theorem 1.15).



Gap distributions of Fourier quasicrystals 41

For the average gap, Theorem 1.9 provides two estimates:

Mpe([x1,xn4+1]) = N + O(1), and
(d 5)

Mpe([X1, XN+11]) = (xn+1—x1) + O(1),
and their ratio as N — oo gives the f0110w1ng.
Corollary 9.4 (Theorem 1.14, part (4)). The average gap is the density inverse

N
E(p) := lim Lnmt YT SN 27
—00

N Nooo N (df)

Lemma 9.5 (Theorem 1.15, parts (2) and (3)). The measure v, ¢ has an atom at A = 0
if and only if p is not square free. It has an atom at A > 0 if and only if some (not
necessarily distinct) pair of factors, q; and q;, are related by q;(z) = q; (exp(i Al)z) for
all z. Moreover, if this holds and q; = qj, then g; is binomial.

Lemma 9.6. The measure v, ¢ has no singular continuous part.
Lemma 9.5 and Lemma 9.6 then give the following.

Corollary 9.7 (Theorem 1.14, part (1)). The measure vy, ¢ has finitely many atoms and no
singular continuous part.

Lemma 9.8 (Theorem 1.14, part (3)). For any A = xj11 — x; and any open interval I
that contains A, v, ¢(1) > 0.

Together with Theorem 1.5, this gives the following.
Corollary 9.9 (Theorem 1.14, part (2)). If j1p ¢ is periodic, then v, ¢ is purely atomic.
Conversely, if up ¢ is not periodic, with support A, then at least one of the following holds:
(1) A contains two arithmetic progressions with periods Ay, Ay such that A/ A, ¢ Q.
(2) dimg(A) = o0
Each one of these ensures that there are infinitely many gap values, hence the support

of vp¢ is not finite. In particular, v, o must have an absolutely continuous part.

Once proven, these statements complete the proof of Theorems 1.14 and 1.15. ]

Proof of Lemma 9.3. Let f:R — C be continuous, so the composition f o 7y is bounded
and Riemann integrable, since t; is bounded and continuous on an open full measure set
reg(X,), see Lemma 6.6. Therefore, the function

_mx -1 By
) o= Lo+ ()fm(x))

is bounded and Riemann integrable. By Theorem 6.4, we get

- _(d—dde)
Nlinooﬁéh(xf@_ an O+ G- 1d£

= /fdvp,g.

f F((x)) dm(x)
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Whenever xj_1 < X; = Xj41 = *** = Xj4m—1) < Xj4+m, We have 1p(x; ) = xj1m —
Xjtm—1y and m(x;£) = mforalli € {j,...,j +m—1},s0
Jjtm—1 Jjtm—1

D hil) = (m =1 FO) + fjtm = Xjrm-1) = Y, S(it1—xi).
i=j

i=j

Therefore, given any N € N such that xy < xny+1,

N N
1 1
94) ~ 2RO = 2 (g = xp).
j=1 j=1
The left-hand-side of (9.4) converges to [ f dv, ¢ as N — oo. The equality in (9.4) holds
for infinitely many N values (those for which xy < xn41) whose spacing is bounded by
the maximum multiplicity |d|, so according to Lemma A.1,

N

1

lim — Zf(x,-H —Xxj) = /fdvp’g.
j=1

N—oo N

Given any fixed xo € R" /27 Z", let q(z) := p(exp(iXo)z), and let (¢j);cz denote the
repeated ordered zeros of ¢ > g(exp(itf)) = p(exp(i(xo + t£))). Then, according to
Theorem 6.4,

N N
.1 .1
Jm ﬁ; f(j41 = x;) = lim N;f(tj+l — 1),
namely v, ¢ = vy 4. |

Proof of Lemma 9.5. By Definition 9.1, v, ¢ has an atom at A = 0 if and only if the mul-
tidegrees of p and p™¢ differ, which occurs if and only if p is not square free.

Suppose that v, ¢ has an atom at A > 0. Then, (7¢)«m; has an atom at A, which
means that the level set t[l(A) has positive measure my (t[l(A)) > 0. The set 4 :=
reg(Zp,) N T[l(reg(Ep)) is an open subset of reg(X,) of full m; measure and 7; is
real analytic on A by Lemma 6.6. Since my is absolutely continuous with respect to the
volume measure on A, then 4 N T, 1(A) has positive volume, and therefore 7; is iden-
tically A on some open set U C A. By taking U sufficiently small, there are two (not
necessarily distinct) irreducible factors of p, say ¢; and g», such that g; (exp(ix)) = 0
and g, (exp(i(x + Af))) = O for all x € U. It follows that g1 (z) = ¢, (exp(i Af)z) for all
z € C" by part (3) of Lemma 4.1, since g; and g, are irreducible Lee—Yang polynomials.

Now, suppose that ¢; = g2, so q1(z) = q1(exp(i Af)z) for all z € C". In particular,
if A is the zero set of x — ¢ (exp(ix{)), then for any x € A we have x + A € A, and
asaresult, x + jA € A forany j € N. Since g, is irreducible Lee—Yang polynomial and
£ € R’} has Q-linearly independent entries, then ¢, must be binomial, by Theorem 1.5. m

Proof of Lemma 9.6. It follows from Lemma 9.5 that v, ¢ has finitely many atoms, say
(ti),N=1, so that v, ¢ = Z;zl ¢j S,j ~+ Pac, With p,c being a continuous measure (no atoms).
We now show that p,. is absolutely continuous with respect to Lebesgue measure. Let

A:=reg(X,) N T[l(reg(zp)).
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We use A, to denote the union of the connected components of A on which t; is not
constant. Then p,. is (c; times) the push-forward of my by the restriction of 7y to Ay,
using that A has full measure. It is left to show that for any set £ C R of Lebesgue measure
zero, the set Ay N T, 1(E) has zero my; measure, or equivalently, due to Lemma 6.5, zero
volume in reg(%,).

Since 1y is real analytic on A and is not constant on any open set in Ay, then the set
Q = {x € Ay : Vry(x) # 0} is open in A, and its complement in A, has zero volume.
By the definition of €2, 7, has no critical points in €2, which means that for any compact
connected K C €2, the image of 7, over K is an interval [a, b] and the level sets K N 7, L(1)
for ¢ € [a, b] are homotopic to one another. In particular, if we let area(K, t) = 0,—2(K N
173 1(t)) denote the (n — 2)-dimensional volume of the level set, induced by the volume
form do onreg(X,), then t — area(K, ¢) is continuous in ¢ € [a, b], and so it is bounded
by some constant. Let C be the maximum of area(K, ¢) for ¢ € [a,b], and |Vz,(x)|™! for
x € K. Then,

/ dafC/ ||Vrg(X)||d0(X)=M/ area(K,t)dthZ/ dt =0,
Knt;1(E) KNt 1(E) teE teE

using the co-area formula (or disintegration theorem) in the middle equality. It follows
that my (K N T[I(E)) = 0 for any compact connected K C €2, hence

pac(E) ocmy(Q N 77 (E)) = 0.
As this holds for any E of zero Lebesgue measure, p,. is absolutely continuous. ]

Proof of Lemma 9.8. Let A = xj11 — x; for some arbitrary fixed choice of j,let I C R
be any open interval with A € /, and consider the open set U := {x e reg(X,) : 7y (x) € [ }.
It is enough to show that U # @ to conclude that my(U) > 0, by Lemma 6.5, and so

vpe(I) = cemg(U) > 0.

Consider two cases, according to whether A > 0 or A = 0.

Case A > 0. Suppose x;4+1 > xj and let x = x;£ mod 2x, so 7y(x) = A. If x €
reg(Xp), then x € U. Otherwise, if x € sing(X,), then A € {7/(x) : x € reg(X,)}, by
Lemma 6.6, which means that U # @.

Case A = 0. Suppose x;+1 = x;. If sing(Xp) # 0, then A = infyereg(x,) Te(X) by
Lemma 6.6, and so U # 0. Otherwise, if sing(X,) = @, having x;; = x; means that p
has a square factor, and so

vpt([A —&, A +e]) > v,y ({0}) = co > 0. "

Proof of Corollary 1.16. Ttems (2) and (3) were already discussed in Theorem 1.5 and
Lemma 9.5, respectively. For (1), if p is irreducible and not binomial, then its gap distri-
bution cannot have any atoms by Theorem 1.15 part (3), and so it is absolutely continuous
by Theorem 1.14 part (1).

Part (4) is a counting argument. Suppose that p has N + M distinct irreducible fac-
tors, M of which are binomial. There can be three types of atoms according to Lemma 9.5:
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(a) an atom at zero,

(b) an atom at positive A > 0 coming from a pair of distinct non-binomial factors related
by qi(z) = g, (exp(i Al)z),

(c) an atom at a positive A > 0, coming from a pair of (not necessarily distinct) binomial
factors related by g; (z) = g; (exp(i A{)z).

Notice that if g; is binomial and ¢g; is non-binomial, then they cannot satisfy a relation
of the form ¢, (z) = g;(exp(i Af)z), as such a relation means that the torus zero set X,
which is a torus, is a translation of the torus zero set qu, which is not a torus. It is left to
bound the number of atoms of each type. There can be at most one (a) atom.

For atoms of type (b), notice that a pair of non-binomial factors cannot satisfy the
relation g; (z) = ¢q; (exp(i Af)z) for two different values of A > 0, say A; # A,. Other-
wise, we get ¢;(z) = q; (exp(i (A1 — A»){)z) in contradiction to g; being non-binomial.
Therefore, there are at most (1;] ) atoms of type (b), one for each possible pair.

To bound the number of type (c) atoms, consider a pair of (not necessarily distinct)
binomial factors related by ¢; (z) = ¢; (exp(i Af)z). In particular, ¢; and g; share the same
multi-degree, say . According to Lemma 7.1, the zero sets of f;(x) = g;(exp(ix{)) and
Ji(x) = gj(exp(ix{)) are arithmetic progressions of the same step size, say A; = {a +
2wk /{ot, ) }kez and Aj = {a + A + 2nk/(et, £)} ez for some a € R. Suppose that p
has exactly M, binomial factors with multi-degree o, and let A, denote the union of their
arithmetic progressions defined above. Then A is 277 /{e, £) periodic with My, points in a
period, and therefore at most M, gap values between consecutive points. By partitioning
the M binomial factors according to their multi-degrees, we see that there are at most M
atoms of type (c). We conclude that there are at most (];’ ) + M + 1 atoms ]

Proof of Theorem 1.17. By Lemma 9.3, if p € LYq(n) and £ € R’} has Q-linearly inde-
pendent entries, then p, ¢ = v, 4. It is left to show that v, ; is weakly continuous in £,
namely, that for any fixed continuous f:R — C, the following integral is continuous in
LeR::

+

/ Fdvpe = cof(0) + cx /E F(re(x)) dmy(x).

The weights ¢ and ¢, given in Definition 9.1, are continuous in £ € R” , and the remain-
ing integral can be written as

/E ’ S (e(x)) dmy(x) = [r s S (e (x)) dmy(x) = ;ﬁj /r ) St (x)) dmg; (x),

using that my (sing(X,)) = 0 in the first equality, and the linearity of my in £ (Lemma 6.5)
in the second one. The integral fr ca()) f(ze(x))dmy; (x) is continuous in £ because

(x,€) > f(z¢(x)) is continuous over reg(X,) x R by continuity of f/ and Lemma 6.6. m
Let us now prove Theorem 1.19.

Proof of Theorem 1.19. Fix p € LYq(n), and for any x € R" let px € LY|q/(1) be the uni-
variate polynomial py(s) = p(se’™, se'*2 ..., se'**) whose degree is |d| and its roots
lie on the unit circle. Let §;: R" — R, for j = 1,2,...,|d|, be the continuous phase
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functions given in Proposition 4.5, so that (e'% (X))}dil are the roots of py numbered
(counter-clockwise) increasingly including multiplicity, and let 6,441 = 01 + 27m. We
need to prove that for any continuous f:R — C,

|d]

1 1
dvpy = —/ — Bi+1(x) — 0;(x)) | dx,
/f p.1 (27T)n <e[0.27] |:|d| ];f j+1 J :|
where 1 = (1,1, ..., 1). Fix a continuous f:R — C and define

m =10y + — fm).

m(x) m(x)

h(x) :=
Consider the layers X, ; and their parameterizations ¢; as defined in Proposition 4.2, so
that the multiplicity m(x) counts the number of layers containing x, so that

|d] |d]|

h(x)d = h(x)d = h(p; dy,
., mon9 ama ) f, meones dmuco b [ heway

using (6.8) from Lemma 6.5 in the last equality. As in the proof of Lemma 9.3, this gives

d|

1 1
[ Fasns= Gy [, oo dmao = DY [, ey

As seen in the proof of Lemma 6.6, if 8;1(¢; (y)) > 6;(¢;(y)), then 71(p; (y)) is equal
to the unique ¢ € R such that

0j+1(p; (y) +11) = 6 (¢ (¥))-
In such case, using part (1) of Proposition 4.5 and the definition of ¢;, we get
(g (¥) = 0 +1(y.0) — 0;(y. 0).
The number of j’s for which 8;41(y, 0) = 0;(y, 0) is exactly Z}‘il (m(p;(y)) —1),s0

|d] |d]

Y h(relpi () = D f(841(y,0) — 6;(y,0)),

J=1 J=1
for every y, and integrating gives

|d]

I [ 76,1620~ 65 0n v |
=1

Qmo)r=td| Jo 2711 F

Let
|d|

g(x) =Y f(6;+1(x) — 6;(x)).

j=1
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and notice that g is continuous, satisfies g((y, 0) + t1) = g(y, 0) by part (1) of Proposi-
tion 4.5, and is 2r periodic by part (4) of Proposition 4.5, so

1 2n
[ ewoay=g- [ [ eworrmavdi= [ gax
ye(0,2]7—1 T Jt=0 Jye(0,27]7—1 x€(0,27]"

The needed result follows:

1 d|
/ fdvp,l - m x€(0,27]" I:Z f (9j+l(x) N 6']' (X)) dX:| "

j=1

A. Appendix

The next lemma is being used throughout the paper.

Lemma A.l. Let (a,)nen be a bounded sequence |a,| < M and let ($y)neN be the
sequence of partial averages,

1 N
S = — ay.
N N; n

Suppose that there exists a converging subsequence lim; oo Sp; = L, with a uniform
spacing bound nj 1 —nj < M'. Then, lim, o0 5n = L.

Proof. Givenany n; <n’ <nj4q,the uniform spacing bound gives n; /n’ — 0 as j — oo,
and we have

nj _ lan; +1 + an;+2 + ... + an| - M'M

|$pr — = — 0 as j — oo. [

/ .
n nj
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