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Presentations for tensor categories

James East

Abstract. We introduce new techniques for working with presentations for a large class of
(strict) tensor categories. We then apply the general theory to obtain presentations for partition,
Brauer and Temperley–Lieb categories, as well as several categories of (partial) braids, vines,
and mappings.
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1. Introduction

Presentations are important tools in many areas of mathematics. They break com-
plex structures into simple building blocks (generators) and local moves (relations)
that determine equivalence of representations by generators. An apt analogy is the
Reidemeister moves from knot theory [71]; cf. [4,11,52,62], which are closely related
to tensor presentations of tangle categories [17, 38, 51, 76].

Presentations of various kinds of algebraic structures feature prominently in many
studies of knots, links, braids, and related geometrical/topological objects; see, for
example, [5, 11, 18, 19, 25, 45, 46, 51, 55, 68]. A key structure appearing in many such
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studies is the Temperley–Lieb category (and associated algebras and monoids), which
also arises in many other areas of mathematics and science, especially theoretical
physics [47, 48, 75]. As with other so-called diagram categories, the Temperley–Lieb
category has a basis consisting of certain kinds of set partitions, which are represen-
ted and composed diagrammatically. The larger partition categories were introduced
independently by Jones [47] and Martin [64] in the 1990s, again mostly motivated by
problems in theoretical physics, but their applications extend in many other directions,
including representation theory, topology, knot theory, logic, combinatorics, theoret-
ical computer science, and more. See, for example, [13, 24, 31, 36, 48, 58, 63, 64, 66,
74, 75, 77] and references therein, and especially [65] for an excellent survey focus-
sing particularly on connections with statistical mechanics. Some of the ideas behind
these categories go back to important early papers of Schur [73] and Brauer [13] on
classical groups and invariant theory; cf. [10,56–58]. Presentations play an important
role in many/most of the above studies.

Presentations for the partition algebras were given by Halverson and Ram in [39],
along with a sketch of a proof; full proofs may be found in [28, 29]. The techniques
used in [28,29] are semigroup-theoretic in nature; results concerning the algebras are
deduced from the corresponding results on associated diagram monoids via the theory
of twisted semigroup algebras [77]. For other diagram monoids, see [12, 30, 40, 54,
61] and references therein. Presentations are also crucial tools in Lehrer and Zhang’s
recent work on invariant theory [56–58]. For example, the first main result in [58] is a
presentation for the Brauer category. Presentations for the Temperley–Lieb category
may be found in a number of places. See especially [2, Section 3] for an interesting
discussion; among other things, it is explained there that the Temperley–Lieb category
is the free (so-called) pivotal category over one self-dual generator, a fact that follows
from (the well-known) Theorem 3.23 below and which is attributed in [2] to [23, 34].
A presentation for the partition category is given by Comes in [16], building on deep
work of Abrams [1] and Kock [53] on Frobenius algebras and cobordism categories;
see also [24], which treats a number of categories of relations. Further discussion,
as well as sketches of proofs in some cases, can be found in [44]; see also [69] on
oriented versions of some categories.

Many proofs have been given in the literature for presentations of the above-
mentioned categories, algebras and monoids. The techniques vary widely, as does the
level of mathematical rigour in the arguments; for discussions of the latter point, see
the introductions to [12] or [28]. One of the main goals of the current work is to intro-
duce a systematic (and completely rigorous) framework for dealing with presentations
for categories such as those mentioned above. Although diagram categories were the
original source of motivation for the current work, our methods apply to far wider
classes of categories. An additional family of applications come from the import-
ant class of braided monoidal categories [6–8, 14, 34, 49], and we are able to obtain
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presentations for a number of categories of (partial) braids and vines [25–27, 55]. We
also treat several categories of mappings, which are of course among the most import-
ant and foundational.

We begin in Section 2 by proving a number of general results concerning a large
class of tensor categories, the key structural features of which are axiomatised in (sub-
sets of) Assumptions 1–8. These results show how presentations for such categories
can be built from presentations for endomorphism monoids and certain one-sided
units (Theorem 2.17) and then how to rewrite these into tensor presentations (Theor-
ems 2.19 and 2.20). Section 3 concerns diagram categories, and applies the general
machinery of Section 2 to quickly obtain presentations for the partition category
(Theorems 3.2 and 3.7), the Brauer category (Theorems 3.18 and 3.20), and the
Temperley–Lieb category (Theorems 3.22 and 3.23); we also explain in Section 3.5
how to convert each such result into a presentation for the associated linear diagram
category. In particular, we recover tensor presentations of Comes [16] for the par-
tition category (Theorem 3.7) and Lehrer and Zhang [58] for the Brauer category
(Theorem 3.20), with complete self-contained proofs using the uniform framework
outlined in Section 2. (To the best of our knowledge, all other presentations and
tensor presentations are new, with the exception of the tensor presentation of the
Temperley–Lieb category (Theorem 3.23), which is regarded as folklore.) Section 4
treats a number of categories related to Artin braid groups: the partial vine category
(Theorems 4.3 and 4.4), the partial braid category (Theorems 4.12 and 4.13), and the
(full) vine category (Theorems 4.16 and 4.17). Sections 4.5 and 4.6 apply these res-
ults on partial braids and vines to many categories of transformations/mappings. All
in all, we give presentations for a dozen concrete categories, but due to the scope of
the general results of Section 2, the potential for further applications is vast.

2. Categories

This section develops a general theory of presentations for a broad class of (strict)
tensor categories, satisfying natural connectivity assumptions and possessing certain
one-sided units. After fixing notation and gathering some basic ideas in Sections 2.1
and 2.2, we give the two main general results in Sections 2.3 and 2.4. The first of
these (Theorem 2.17) shows how to construct a presentation for a category out of
presentations for its endomorphism monoids, under the assumptions alluded to above.
The second (Theorem 2.19) then shows how to convert this to a tensor presentation.
In Section 2.5, we prove a variation of the second main result (see Theorem 2.20),
tailored to work for categories whose connectivity is more complicated, and motivated
by three of the applications considered later in the paper.
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Before we begin, we note that Higgins considered the relationship between pre-
sentations for (fundamental) groupoids and their vertex groups in [41]. We also ob-
serve that there is a body of literature showing how to obtain presentations for mon-
oids/semigroups constructed from other families by natural constructions, such as
(semi)direct products or wreath products; see, for example, [22, 43, 72]. In a sense,
our Theorem 2.17 could be thought of as belonging to this latter field of study.

2.1. Preliminaries

All categories we consider will have object set N D ¹0; 1; 2; : : :º or P D ¹1; 2; 3; : : :º,
and we write S to stand for either of these. Moreover, the collections of morphisms
m! n (m; n 2 S) will always be a set. Thus, for simplicity throughout, “category”
will always mean “small category with object set S (being N or P )”. We will always
identify such a category C with its set of morphisms. For a 2 C , we write d.a/ and
r.a/ for the domain and range of a. We compose morphisms left-to-right and often
suppress the composition symbol so that for a; b 2 C , ab D a ı b is defined if and
only if r.a/D d.b/, in which case d.ab/D d.a/ and r.ab/D r.b/. Form;n 2 S, we
write

Cm;n D ¹a 2 C W d.a/ D m; r.a/ D nº

for the (possibly empty) set of all morphismsm! n. For n 2 S, we write Cn D Cn;n

for the endomorphism monoid at n.
As in [60, p. 52], a congruence on a category C is an equivalence � on (morphisms

of) C that preserves objects and is compatible with composition; i.e., for all .a; b/ 2 �
and all c; d 2 C ,

• d.a/ D d.b/ and r.a/ D r.b/,

• .ac; bc/ 2 � and .da; db/ 2 � , whenever the stated products are defined.

The quotient category C=� consists of all �-classes under the induced composition.
For a set��C �C of pairs satisfying d.u/D d.v/ and r.u/D r.v/ for all .u;v/2�,
we write �] for the congruence on C generated by �, i.e., the smallest congruence
containing �.

By a category morphism � W C ! D we mean a functor that acts as the identity
on objects; i.e., we have d.a�/D d.a/ and r.a�/D r.a/ for all a 2 C . The kernel of
� is the congruence

ker.�/ D
®
.a; b/ 2 C � C W a� D b�

¯
;

and we have C= ker.�/ Š im.�/. A surmorphism is a surjective morphism.
The categories we consider are all strict tensor (a.k.a. monoidal) categories in

the sense of [49]; see also [60, Chapters VII and XI]. In fact, since all categories we
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consider have object set N or P , certain simplifications arise, and we take [59, Section
24] as our reference.

A (strict) tensor category is a category C (over S) with an extra (totally defined)
binary operation ˚ satisfying the following properties (writing �n for the identity
at n 2 S):

• d.a˚ b/ D d.a/C d.b/ and r.a˚ b/ D r.a/C r.b/ for all a; b 2 C ;

• a˚ .b ˚ c/ D .a˚ b/˚ c for all a; b; c 2 C ;

• a˚ �0 D a D �0 ˚ a for all a 2 C (in the case that S D N);

• �m ˚ �n D �mCn for all m; n 2 S;

• .a ı b/˚ .c ı d/D .a˚ c/ ı .b ˚ d/ for all a; b; c; d 2 C with r.a/D d.b/ and
r.c/ D d.d/.

The symbol˝ is often used in place of˚ in the literature, but since the object part of
the operation is addition on S, we prefer˚.

The term “strict” refers to the fact that we have equalities in the above axioms; in
more general monoidal categories, only isomorphism is required. In what follows, we
will generally drop the word “strict”, as all tensor categories we consider are strict.
The following basic lemma will be used often.

Lemma 2.1. Let a, b, and c be elements of a (strict) tensor category over N.

(i) If r.a/ D 0 and r.b/ D d.c/, then a˚ .b ı c/ D .a˚ b/ ı c.

(ii) If d.a/ D 0 and r.b/ D d.c/, then a˚ .b ı c/ D b ı .a˚ c/.

(iii) If d.c/ D 0 and r.a/ D d.b/, then .a ı b/˚ c D a ı .b ˚ c/.

(iv) If r.c/ D 0 and r.a/ D d.b/, then .a ı b/˚ c D .a˚ c/ ı b.

Proof. For (i), we have a ˚ .b ı c/ D .a ı �0/ ˚ .b ı c/ D .a ˚ b/ ı .�0 ˚ c/ D

.a˚ b/ ı c. The others are similar.

The next result can be deduced from the previous one, or can be similarly proved
directly.

Lemma 2.2. If a and b are elements of a (strict) tensor category over N and if r.a/D
d.b/ D 0, then a ı b D a˚ b D b ˚ a.

A tensor congruence on a tensor category C is a congruence � (as above) such that
for all .a; b/ 2 � , and for all c 2 C , we have .a˚ c; b ˚ c/; .c ˚ a; c ˚ b/ 2 � . For
a set � � C � C of pairs satisfying d.u/ D d.v/ and r.u/ D r.v/ for all .u; v/ 2 �,
we write �]˚ for the tensor congruence on C generated by �.

Some of the tensor categories we consider have further structure. Namely, the
endomorphism monoids Cn D Cn;n (n 2 S) contain natural copies of the symmetric
groups �n, which satisfy the so-called PROP axioms, as in [59, Section 24]. (The term
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PROP is a contraction of PROducts and Permutations.) Since the PROP structures of
our categories will not play an explicit role, we will not give the full details here. But
some rough ideas are worth noting. First, for m; n 2 S, and for f 2 �m � Cm and
g 2 �n � Cn, the permutation f ˚ g 2 �mCn � CmCn acts as expected: as f on the
“first m points” and as g (suitably translated) on the “last n points”. Second, for each
m; n 2 S, there is a permutation fm;n 2 �mCn such that for all m; n; k; l 2 S, and
for all a 2 Cm;n and b 2 Ck;l , .a˚ b/ ı fn;l D fm;k ı .b ˚ a/. Other categories we
consider are PROBs, which have permutations replaced by braids [5, 49].

2.2. Free (tensor) categories and presentations

Let X be an alphabet (a set whose elements are called letters). The free monoid over
X is the set X� of all words over X under concatenation. The empty word � is the
identity of X�. Let R � X� �X� be a set of pairs of words over X . We say a monoid
M has presentation hX W Ri if M Š X�=R] (where, as above, R] is the congruence
on X� generated by R), i.e., if there exists a monoid surmorphism X� ! M with
kernel R]. If � is such a surmorphism, we say M has presentation hX W Ri via �.
Elements of X and R are called generators and relations, respectively. A relation
.u; v/ 2 R is typically displayed as an equation: u D v.

For category presentations, digraphs and paths play the role of alphabets and
words. Let � be a digraph with vertex set S (being N or P ), possibly with mul-
tiple/parallel edges, and possibly with loops. We identify � with its edge set and
denote the source and target of an edge x 2 � by d.x/ and r.x/, respectively. The free
category over � is the set �� of all paths in � under concatenation (where defined).
The empty path at n 2 S will be denoted by �n. Every other path can be thought of
as a word of the form w D x1 � � � xk , where k � 1 and xi 2 � for all 1 � i � k, and
where r.xi / D d.xiC1/ for all 1 � i < k. For such a word/path, we have

d.w/ D d.x1/ and r.w/ D r.xk/:

Now, let���� ��� be a set of pairs of paths such that d.u/D d.v/ and r.u/D r.v/
for all .u; v/ 2 �. We say a category C (over S) has presentation h� W �i if C Š

��=�], i.e., if there exists a surmorphism �� ! C with kernel �]. If � is such a
surmorphism, we say C has presentation h� W �i via �.

There is also a natural notion of a (strict) tensor category presentation. Let � be
a digraph with vertex set S, again identified with its edge set. We will denote the free
tensor category over � by �~. It consists of all terms constructed in the following
way:

(T1) All empty paths �n (n 2 S) are terms, with d.�n/ D r.�n/ D n.

(T2) All edges x 2 � are terms, with d.x/ and r.x/ the source and target of x,
respectively.
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(T3) If s and t are terms and if r.s/ D d.t/, then the formal expression s ı t is a
term, with d.s ı t / D d.s/ and r.s ı t / D r.t/. If d.s/ D m and r.s/ D n,
then �m ı s D s D s ı �n.

(T4) If s and t are terms, then the formal expression s ˚ t is a term, with

d.s ˚ t / D d.s/C d.t/ and r.s ˚ t / D r.s/C r.t/:

Note that (T1)–(T4) describe the elements of �~, while (T3) and (T4) also give the
definition of the ı and ˚ operations. Now, let „ � �~ � �~ be a set of pairs of
terms such that d.u/ D d.v/ and r.u/ D r.v/ for all .u; v/ 2 „. We say a tensor
category C (over S) has tensor presentation h� W „i if C Š �~=„

]
˚, i.e., if there is

a surmorphism �~ ! C with kernel „]˚. If � is such a surmorphism, we say C has
presentation h� W „i via �.

An arbitrary term from �~, as in (T1)–(T4), can be quite unwieldy. However,
every such term w is equal in �~ to one of the form

X1 ı � � � ıXm D .x1;1 ˚ � � � ˚ x1;k1
/ ı � � � ı .xm;1 ˚ � � � ˚ xm;km

/; (2.3)

where each xi;j is either an empty path �n (n 2 S) or else an edge of �, and where
the domains and ranges of the sub-terms Xq D xq;1 ˚ � � � ˚ xq;kq

are compatible
as appropriate. Indeed, this is clear if w is itself of the form (T1) or (T2) as above.
Otherwise, w is of the form s ı t or s ˚ t , as in (T3) and (T4), and inductively s and
t are both of the form (2.3). It immediately follows that s ı t is of the desired form.
To see that s ˚ t also is, write s D X1 ı � � � ı Xm and t D Y1 ı � � � ı Yn, as in (2.3).
Replacing s by s ı �r ı � � � ı �r (r D r.s/), or t by t ı �r ı � � � ı �r (r D r.t/), if necessary,
we may assume that m D n. We then have

s ˚ t D .X1 ı � � � ıXn/˚ .Y1 ı � � � ı Yn/ D .X1 ˚ Y1/ ı � � � ı .Xn ˚ Yn/:

In fact, every term from �~ is equal either to an empty path or to a term of the
form

X1 ı � � � ıXm; where m � 1 and each Xi D �pi
˚ xi ˚ �qi

for some pi ; qi 2 N and xi 2 �. (2.4)

(In the above, if S D P , but say pi D 0, then we interpret Xi D �0 ˚ xi ˚ �qi
D

xi ˚ �qi
, and so on.) Indeed, by (2.3), it suffices to show that this is true of every

term of the form w D y1 ˚ � � � ˚ yk , where each yi is either an empty path or else an
edge of �. We now proceed by induction on � D �.w/, defined to be the number of
i 2 ¹1; : : : ; kº such that yi 2 �. For each i , write ri D r.yi /. If � D 0, then

w D �r1 ˚ � � � ˚ �rk D �r1C���Crk :
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If � � 1, say with yi 2 �, then, with d D d.yi /, we have

w D .y1 ı �r1/˚ � � � ˚ .yi�1 ı �ri�1
/˚.�d ı yi /˚.yiC1 ı �riC1

/˚ � � � ˚ .yk ı �rk /

D .y1 ˚ � � � ˚ yi�1 ˚ �d ˚ yiC1 ˚ � � � ˚ yk/

ı .�r1 ˚ � � � ˚ �ri�1
˚ yi ˚ �riC1

˚ � � � ˚ �rk /

D .y1 ˚ � � � ˚ yi�1 ˚ �d ˚ yiC1 ˚ � � � ˚ yk/ ı .�r1C���Cri�1
˚ yi ˚ �riC1C���Crk /:

Since
�.y1 ˚ � � � ˚ yi�1 ˚ �d ˚ yiC1 ˚ � � � ˚ yk/ D �.w/ � 1;

the inductive assumption completes the proof.

2.3. First main result: Category presentations

Our aim in this section is to prove Theorem 2.17, which shows how to build a present-
ation for a category C (with object set S, being N or P ) out of presentations for the
endomorphism monoids Cn under certain natural assumptions stated below. In what
follows, we write x�n 2 C for the identity at n 2 S. The reason for this (and other)
overline notation will become clear shortly.

The first assumption concerns the concerns the connectivity of C .

Assumption 1. We assume that there is an integer d � 1 such that for all m; n 2 S,

Cm;n 6D ¿, m � n .mod d/:

In most of our applications, we will have d D 1 so that all hom-sets are non-
empty; in some cases, we have d D 2; in a small number of exceptional cases, we
have a more complicated arrangement (see Section 2.5). The next assumption asserts
the existence of certain one-sided units and is stated in terms of the integer d from
Assumption 1.

Assumption 2. We assume that for each n 2 S there exist x�n 2 Cn;nCd and x�n 2
CnCd;n such that

x�nx�n Dx�n:

For each m; n 2 S with m � n and m � n .mod d/, we define

x�m;n D x�mx�mCd � � � x�n�d 2 Cm;n and x�n;m D x�n�d � � � x�mCd x�m 2 Cn;m; (2.5)

noting that x�m;nx�n;m D x�m. (When m D n, we interpret these empty products as
x�m;m D x�m;m Dx�m.) For m, n as above, we define maps

Rm;n W Cm;n ! Cn W a 7! x�n;ma and Ln;m W Cn;m ! Cn W a 7! ax�m;n: (2.6)
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For any a 2 Cm;n and b 2 Cn;m, we have

a Dx�ma D x�m;nx�n;ma D x�m;n �Rm;n.a/ and similarly b D Ln;m.b/ � x�n;m:

(2.7)
Our next assumption essentially just fixes notation for presentations for the endo-

morphism monoids in C .

Assumption 3. For each n 2 S, we assume that the endomorphism monoid Cn has
presentation hXn W Rni via �n W X�n ! Cn. Further, we assume that the alphabets Xn
(n 2 S) are pairwise disjoint and denote by �n the empty word over Xn.

Now, let � be the digraph with vertex set S and edge set

L[R[X; where LD ¹�n W n 2 Sº; RD ¹�n W n 2 Sº; X D
[
n2S

Xn; (2.8)

with sources and targets given by

d.x/ D r.x/ D d.�n/ D r.�n/ D n and r.�n/ D d.�n/ D nC d
for all n 2 S and x 2 Xn. (2.9)

As usual, we identify � with its edge set: � � L [R [X . We have a morphism

� W �� ! C given by �n� D x�n; �n� D x�n; x� D x�n for n 2 S and x 2 Xn.
(2.10)

We extend the overline notation to words/paths over � , writing Nw D w� for all
w 2 ��.

For m; n 2 S with m � n and m � n .mod d/, we define the words/paths

�m;n D �m�mCd � � ��n�d 2 �
�
m;n and �n;m D �n�d � � � �mCd�m 2 �

�
n;m;

where again we interpret �m;mD �m;mD �m. Note that �nD �n;nCd and �nD �nCd;n
for all n, and that �l;m�m;n D �l;n and �n;m�m;l D �n;l for appropriate l , m, n.

Lemma 2.11. The morphism � W �� ! C is surjective.

Proof. Let a 2 C , and writemD d.a/ and nD r.a/; we assume thatm� n, the other
case being symmetrical. By (2.7), we have a D x�m;n �Rm;n.a/. Since Rm;n.a/ 2 Cn

and �n is surjective (cf. Assumption 3), we have Rm;n.a/ D Nw for some w 2 X�n .
Thus,

a D x�m;n Nw D .�m;nw/�:

The final assumption constructs an appropriate set of relations and is again stated
in terms of the integer d from Assumption 1.
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Assumption 4. We assume that � � �� � �� is a set of relations such that, writing
� for the congruence �] on ��, the following all hold:

(i) For every relation .u; v/ 2 �, we have Nu D Nv.

(ii) For all n 2 S, � contains the relation �n�n D �n and a relation of the form
�n�n D wn for some word wn 2 X�nCd .

(iii) For all n 2 S, Rn � �.

(iv) For all n 2 S, there are mappings

Xn ! X�nCd W x 7! xC and Xn ! X�nCd W x 7! xC;

and � contains the relations

x�n D �nxC and �nx D x
C�n for all x 2 Xn.

(v) For all n 2 S, and for all w 2 X�
nCd

, we have �nw�n � u for some u 2 X�n .

Remark 2.12. In practice, there could be several choices of the one-sided units x�n,
x�n from Assumption 2, leading to different relations of the form (ii) and (iv) above.
In the applications in Sections 3 and 4, we have made choices that we believe lead
to the simplest and most convenient versions of these relations. See also Remarks 3.5
and 3.19.

For the remainder of Section 2.3, we assume that Assumptions 1–4 all hold, and
we continue to write � D �]. Our ultimate goal is to show that C has presentation
h� W �i via �; see Theorem 2.17.

In what follows, we extend the maps from Assumption 4 (iv) to morphisms

X�n ! X�nCd W w 7! wC and X�n ! X�nCd W w 7! wC:

It quickly follows that w�n � �nwC and �nw � wC�n for all w 2 XCn .

Remark 2.13. When working with a specific category C , item (v) in Assumption 4
generally involves the most work to verify. One way to do so is to show that, for
any n 2 S and w 2 X�

nCd
, we have wnwwn � wnuCwn or wnwwn � wnuCwn for

some u 2 X�n ; here, wn is the word from Assumption 4 (ii). Indeed, suppose that
wnwwn � wnu

Cwn holds (with the other case being similar). First, note that item (ii)
gives

�n D �n�n � �n�n�n � �nwn and similarly �n � wn�n:

Combining these with (ii), (iv), and wnwwn � wnuCwn, we obtain

�nw�n � �nwnwwn�n � �nwnu
Cwn�n � �nu

C�n � �n�nu � �nu D u:
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We now prove a sequence of lemmas, building up to Lemma 2.16, which gives a
set of normal forms that are crucial in the proof of the main result.

Lemma 2.14. If m; n 2 S are such that m � n and m � n .mod d/, then

(i) �m;n�n;m � �m,

(ii) �n;m�m;n � w for some w 2 X�n .

Proof. We just prove (ii) by induction on n; (i) is similar but easier. The claim being
clear if n D m (take w D �n), we assume that n > m. Then,

�n;m�m;n D �n�d�n�d;m�m;n�d�n�d

� �n�dv�n�d by induction, for some v 2 X�n�d
� �n�d�n�dvC by Assumption 4 (iv)

� wn�dvC by Assumption 4 (ii),

so we take w D wn�dvC.

For the next proof, given n 2 S and k 2 P , we define a mapping X�n ! X�
nCkd

W

w 7! wC
k

in the obvious way by iteratively composing all the individual w 7! wC

mappings (X�n ! X�
nCd

, X�
nCd
! X�

nC2d
, and so on).

Lemma 2.15. Let w 2 ��, with m D d. Nw/ and n D r. Nw/.

(i) If m � n, then w � �m;nw0 for some w0 2 X�n .

(ii) If m � n, then w � w0�m;n for some w0 2 X�m.

Proof. We prove the lemma by induction on k, the length of w. If k D 0, then m D
n, and we have w D �m;n D �m;n D �m, and (i) and (ii) both hold with w0 D �m.
Now, suppose that k � 1, and inductively assume that the lemma holds for words
of length less than k. Write w D x1 � � � xk , where each xi 2 � . For simplicity, we
write u D x1 � � � xk�1 and x D xk . Note that d.u/ D m and r.x/ D n. We also write
q D r.u/ D d.x/. By induction, since u has length k � 1, one of the following holds:

(a) m � q, and u � �m;qs for some s 2 X�q , or

(b) m > q, and u � t�m;q for some t 2 X�m.

Case 1. First suppose that x 2 X so that q D n. If (a) holds, then w D ux � �m;nsx,
with sx 2 X�n . If (b) holds, then, writing m D nC kd , we have

w D ux � t�m;nx � tx
Ck

�m;n;

by Assumption 4 (iv), with txC
k
2 X�m.
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Case 2. Next, suppose that x 2 L so that q D n� d and x D �n�d . If (a) holds, then,
from s 2 X�

n�d
, it follows from Assumption 4 (iv) that

w D u�n�d � �m;n�d s�n�d � �m;n�d�n�d sC D �m;nsC;

with sC 2 X�n . If (b), holds then, writing m D nC kd , and using Assumption 4 (ii)
and (iv), we have

w D u�n�d � t�m;n�d�n�d D t�m;n�n�d�n�d � t�m;nwn�d � tw
Ck

n�d
�m;n;

with twC
k

n�d
2 X�m.

Case 3. Finally, suppose that x 2 R so that q D nC d and x D �n. If (a) holds then,
either

• m D q, and u � �m;ms D �ms D s, and so, w D u�n � s�n D s�nCd;n D s�m;n,
with s 2 X�m, or

• m < q, and by Assumption 4 (v), w D u�n � �m;nCd s�n D �m;n�ns�n � �m;nu
for some u 2 X�n .

If (b) holds, then w D u�n � t�m;nCd�n D t�m;n.

The next lemma strengthens the previous one and is the main technical result we
need. The statement refers to the maps Rm;n and Lm;n defined in (2.6).

Lemma 2.16. Let w 2 ��, with m D d. Nw/ and n D r. Nw/.

(i) If m � n, then w � �m;nw0 for some w0 2 X�n with Nw0 2 im.Rm;n/.

(ii) If m � n, then w � w0�m;n for some w0 2 X�m with Nw0 2 im.Lm;n/.

Proof. We assume that m � n, the other case being symmetrical. First, note that

w � �m;nv by Lemma 2.15, for some v 2 X�n
D �m�m;nv � �m;n�n;m�m;nv by Lemma 2.14 (i).

By Lemma 2.14 (ii), we have �n;m�m;n � u for some u 2 X�n . Then, with w0 D uv,
it follows from the above calculations that

w � �m;nw
0:

We also have
Nw0 D uv D x�n;mx�m;n Nv D Rm;n.x�m;n Nv/:

We now have all we need to prove our first main result.

Theorem 2.17. With notation as above, and subject to Assumptions 1–4, the category
C has presentation h� W �i via �.
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Proof. We showed in Lemma 2.11 that � is surjective. It remains to show that

ker.�/ D �]:

First, note that Assumption 4 (i) says � � ker.�/; since ker.�/ is a congruence, it
follows that �] � ker.�/.

For the reverse containment, suppose that .u; v/ 2 ker.�/, meaning that u; v 2 ��

and NuD Nv. Writem D d. Nu/ D d. Nv/ and nD r. Nu/D r. Nv/, and assume thatm� n, the
other case being symmetrical. By Lemma 2.16 (i), we have u��m;nu0 and v��m;nv0

for some u0; v0 2 X�n with Nu0; Nv0 2 im.Rm;n/, say Nu0 D Rm;n.a/ and Nv0 D Rm;n.b/,
where a; b 2 Cm;n. Then, by (2.7), we have

a D x�m;n �Rm;n.a/ D x�m;n Nu
0
D Nu D Nv D x�m;n Nv

0
D x�m;n �Rm;n.b/ D b:

But then Nu0 D Rm;n.a/ D Rm;n.b/ D Nv
0. Since u0; v0 2 X�n , it follows that .u0; v0/ 2

ker.�n/DR
]
n; cf. Assumption 3. By Assumption 4 (iii), it follows that u0� v0. Putting

all of this together, we deduce that u � �m;nu0 � �m;nv0 � v.

Remark 2.18. Theorem 2.17 shows how to build a presentation for the category C

out of presentations for its endomorphism monoids Cn D Cn;n (under appropriate
assumptions). It would be interesting to study the extent to which one could work in
the opposite direction; i.e., begin with a presentation for C and deduce presentations
for the monoids Cn. However, it does not seem that this is likely to work in general.
For example, consider the category B of all binary relations

¹1; : : : ; mº ! ¹1; : : : ; nº; m; n 2 N:

Then, B can be generated by a relatively simple set of relations akin to the partitions
we use in Section 3; see [24]. On the other hand, it is known that the minimal-size
generating sets of the endomorphism monoids Bn grow super-exponentially with n;
see [42, Corollary 3.1.8].

2.4. Second main result: Tensor category presentations

We now show how to rewrite the presentation from Theorem 2.17 into a tensor pre-
sentation, again under certain natural assumptions, stated below. For the duration of
Section 2.4, we fix a category C (with object set S, being one of N or P ) satisfy-
ing Assumptions 1–4. We also keep all the notation of Section 2.3, in particular the
presentation h� W �i from Theorem 2.17, including the surmorphism

� W �� ! C W w 7! Nw:

Assumption 5. We assume that C is a (strict) tensor category over S.
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As in Section 2.1, we denote the tensor operation on C by˚.

Assumption 6. We assume that

• � is a digraph on vertex set S,

• „ � �~ ��~ is a set of relations over �,

• ˆ W �~ ! C is a morphism. For w 2 �~, we write w D wˆ.

Writing� for the congruence„]˚ on�~, we also assume that the following all hold:

(i) For every relation .u; v/ 2 „, we have u D v.

(ii) There is a mapping � ! �~ W x 7! Ox such that yx D Nx (i.e., Oxˆ D x�) for
all x 2 � . As �� is freely generated by � , we can extend this mapping to
a morphism �� ! �~ W w 7! Ow. (It quickly follows that yw D Nw for all
w 2 ��.)

(iii) For a generator x 2 �, and for natural numbers m; n 2 N, we define the
term

xm;n D �m ˚ x ˚ �n 2 �
~:

(Again, when S D P , we interpret x0;n D x ˚ �n, and so on.) We assume
that for every such x;m; n, we have xm;n � Ow for some w 2 ��.

(iv) For every relation .u; v/ 2 �, we have Ou � Ov.

Here is our second main result.

Theorem 2.19. With notation as above, and subject to Assumptions 1–6, the category
C has tensor presentation h� W „i via ˆ.

Proof. To show that ˆ is surjective, suppose that a 2 C . Since � is surjective, we
have a D w� for some w 2 ��. But then, a D Owˆ by Assumption 6 (ii).

As in the proof of Theorem 2.17, Assumption 6 (i) gives „]˚ � ker.ˆ/. For the
reverse inclusion, suppose that .u; v/ 2 ker.ˆ/, meaning that u; v 2 �~ and u D v.
First, writing u and v in the form (2.4) and then applying Assumption 6 (iii), we have
u � Os and v � Ot for some s; t 2 ��. Assumption 6 (i) and (ii) then give Ns D ys D u D
v D yt D Nt . It follows from Theorem 2.17 that there is a sequence

s D w0 ! w1 ! � � � ! wk D t;

where, for each 1 � i � k, wi 2 �� is obtained from wi�1 by a single application of
a relation from �. It then follows from Assumption 6 (iv) that Os D Ow0 � Ow1 � � � � �
Owk D Ot . Thus, u � Os � Ot � v.

In Sections 3 and 4, we apply Theorems 2.17 and 2.19 to a number of concrete
categories C in order to rapidly obtain useful presentations. Typically, the situation is
as follows.
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• In each case, Assumptions 1 and 2 are easily checked, and the presentations for the
endomorphism monoids Cn required in Assumption 3 are imported from various
sources in the literature [12,25–30,35,39,54,55]. Conditions (i)–(iv) of Assump-
tion 4 will likewise be easy to check, with only condition (v) being a little less
straightforward. With these checks done, Theorem 2.17 then gives us a category
presentation h� W �i for C .

• We then use Theorem 2.19 to rewrite h� W �i into a tensor presentation h� W „i.
The main work here involves checking items (ii)–(iv) of Assumption 6, and this
largely consists of technical/elementary calculations.

The only exception to the above paradigm occurs in Section 4 when we consider the
vine category V and the transformation categories T and O. If C is any of these, then
we have Cm;n 6D ¿ precisely when m D 0 or n � 1. For such categories, we need a
slight variation of Theorem 2.19, and we address this in the next section.

2.5. A variation of the second main result

In this section, we prove a result that will allow us to deal with the kinds of categories
discussed at the end of Section 2.4.

Assumption 7. We assume that C is a strict tensor category over N for which

Cm;n 6D ¿, m D 0 or n � 1:

We assume additionally that jC0;nj D 1 for all n 2 N, and we write

U

for the unique
element of C0;1. It follows that the unique element of C0;n is

U˚n
D

U

˚ � � � ˚

U

for each n 2 N. (We interpret

U˚0
D �0.)

We define the subcategory CC D
S
m;n2P Cm;n, which has object set P , and we

assume that CC satisfies Assumptions 1–4 (with d D 1, as C0;1 6D ¿). We fix the
presentation h� W �i for CC given in Theorem 2.17.

Assumption 8. We assume that

• � is a digraph on vertex set N,

• „ � �~ ��~ is a set of relations over �,

• ˆ W �~ ! C is a morphism. For w 2 �~, we write w D wˆ.

Writing� for the congruence„]˚ on�~, we also assume that the following all hold:

(i) The digraph � has a unique edge

U

with source 0, and we also have

r.

U

/ D 1:

(ii) For every relation .u; v/ 2 „, we have u D v.



J. East 16

(iii) There is a mapping � ! �~ W x 7! Ox such that yx D Nx (i.e., Oxˆ D x�) for
all x 2 � . We extend this to a morphism �� ! �~ W w 7! Ow.

(iv) For a generator x 2 �, and for natural numbers m; n 2 N, define

xm;n D �m ˚ x ˚ �n 2 �
~:

We assume that for .m; x; n/ 6D .0;

U

; 0/, we have xm;n � Ow for some
w 2 ��.

(v) For every relation .u; v/ 2 �, we have Ou � Ov.

(vi) For every x 2 � n ¹

U

º, we have

U˚m
ı x �

U˚n, where m D d.x/ and
n D r.x/.

Theorem 2.20. With notation as above, and subject to CC satisfying Assumptions 1–4
and C satisfying Assumptions 7 and 8, the category C has tensor presentation h� W„i
via ˆ.

Proof. To show that ˆ is surjective, suppose that a 2 C . If d.a/ 6D 0; then we follow
the proof of Theorem 2.19 to show that a D Owˆ for some w 2 ��. Otherwise, a D

U˚n
D

U˚nˆ for some n 2 N.
Again, it remains to show that ker.ˆ/ � �, where � D „

]
˚, so suppose that

.u; v/ 2 ker.ˆ/, and write m D d.u/ D d.v/. If m 6D 0, then we follow the proof of
Theorem 2.19 to show that u � v. For the rest of the proof, we assume that m D 0.
The proof will be complete if we can show that u �

U˚n for some n 2 N, as then
nD r.

U˚n/D r.u/D r.v/, and the same argument will also give v �

U˚n. We may
assume that uDX1 ı � � � ıXk has the form (2.4), and we use induction on k. If k D 0,
then u D �0 D

U˚0, so we now assume that k � 1. By induction,

X1 ı � � � ıXk�1 �

U˚q;

where q D r.X1 ı � � � ıXk�1/D d.Xk/. Further, we haveXk D �a ˚ x˚ �b for some
a; b 2 N and x 2 �. If x D

U

, then q D d.Xk/ D aC b and

u �

U˚q
ı .�a ˚

U

˚ �b/ D .

U˚a
˚ �0 ˚

U˚b/ ı .�a ˚

U

˚ �b/

D .

U˚a
ı �a/˚ .�0 ı

U

/˚ .

U˚b
ı �b/ D

U˚.aCbC1/:

Otherwise, writing c D d.x/ and d D r.x/, we have q D a C c C b, and Assump-
tion 8 (vi) gives

u � .

U˚a
˚

U˚c
˚

U˚b/ ı .�a ˚ x ˚ �b/

D .

U˚a
ı �a/˚ .

U˚c
ı x/˚ .

U˚b
ı �b/

�

U˚a
˚

U˚d
˚

U˚b
D

U˚.aCdCb/:
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3. Diagram categories

In this section, we apply the theory developed in Section 2 to a number of diagram
categories, namely, the partition category P (Section 3.2), the Brauer category B

(Section 3.3), and the Temperley–Lieb category TL (Section 3.4). In each case, we
give a category presentation and a tensor presentation, based, respectively, on Theor-
ems 2.17 and 2.19. In Section 3.5, we show how these lead to presentations for linear
versions of P , B, and TL. We begin by reviewing the relevant definitions and fixing
notation.

3.1. Preliminaries

For n 2 N, we define the set Œn� D ¹1; : : : ; nº, interpreting Œ0� D ¿. For any subset A
of N, we fix two disjoint copies of A, namely,

A0 D ¹a0 W a 2 Aº and A00 D ¹a00 W a 2 Aº:

The partition category P consists of all set partitions ˛ of Œm� [ Œn�0, for all m; n 2
N, under a composition defined shortly. For such a partition ˛, we write d.˛/ D
m and r.˛/ D n, and we write Pm;n D ¹˛ 2 P W d.˛/ D m; r.˛/ D nº. A partition
˛ 2 Pm;n will be identified with any graph on vertex set Œm� [ Œn�0 whose connected
components are the blocks of ˛. When drawing such a graph in the plane, a vertex i 2
Œm� is always drawn at .i; 1/, a vertex i 0 2 Œn�0 at .i; 0/, and all edges are contained in
the rectangle ¹.x; y/ 2 R2 W 1 � x � max.m; n/; 0 � y � 1º. See Figure 1 for some
examples.

To describe the composition operation on P , let m; n; q 2 N and fix some ˛ 2
Pm;n and ˇ 2Pn;q . Let ˛# be the graph on vertex set Œm�[ Œn�00 obtained by renaming
each lower vertex i 0 of ˛ to i 00, let ˇ" be the graph on vertex set Œn�00 [ Œq�0 obtained
by renaming each upper vertex i of ˇ to i 00, and let ….˛; ˇ/ be the graph on vertex
set Œm� [ Œn�00 [ Œq�0 whose edge set is the union of the edge sets of ˛# and ˇ". We
call ….˛; ˇ/ the product graph. The product/composition ˛ˇ D ˛ ı ˇ 2 Pm;q is then
defined to be the partition of Œm�[ Œq�0 for which x; y 2 Œm�[ Œq�0 belong to the same
block of ˛ˇ if and only if x; y are connected by a path in ….˛; ˇ/. When drawing a
product graph ….˛; ˇ/, we draw the vertices from Œm�, Œn�00 and Œq�0 at heights y D 2,
y D 1, and y D 0, respectively. An example calculation is given in Figure 1.

Note that the product graph ….˛; ˇ/ may contain “floating components”, which
are contained entirely in the middle row of the graph. These do not figure in the
composition on P , but we will return our attention to them in Section 3.5 when we
treat the linear diagram categories.

The identity of P at object n is the partition x�n D ¹¹i; i 0º W i 2 Œn�º; see Figure 3.
The endomorphism monoid Pn D Pn;n is the partition monoid of degree n [39]. The
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˛ D

ˇ D

D ˛ˇ

Figure 1. Calculating ˛ˇ D ˛ ı ˇ, where ˛ 2 P6;8 and ˇ 2 P8;7. The product graph ….˛; ˇ/
is shown in the middle.

˛ D

ˇ D

D ˛ ˚ ˇ

Figure 2. Calculating ˛ ˚ ˇ, where ˛ 2 P6;8 and ˇ 2 P8;7.

units of Pn are the partitions of the form ¹¹i; .i�/0º W i 2 Œn�º for some permutation � 2
�n. Such a unit will be identified with the permutation � itself, and the group of all
such units with the symmetric group �n.

The category P has the structure of a (strict) tensor category, with the˚ operation
defined as follows. Let m; n; k; l 2 N, and let ˛ 2 Pm;n and ˇ 2 Pk;l . First, the
partition ˛˚ ˇ 2 PmCk;nCl contains all the blocks of ˛. Additionally, for each block
A [ B 0 of ˇ, ˛ ˚ ˇ also contains the block .A C m/ [ .B C n/0. Geometrically,
˛ ˚ ˇ is obtained by placing a copy of ˇ to the right of ˛, as in Figure 2. The ˚
operation, as well as the subgroups �n � Pn (n 2 N), gives P the structure of a
PROP, as in [59, Section 24].

The category P has a natural involution ˛ 7! ˛� obtained by interchanging dashed
and un-dashed elements. Geometrically, ˛� is obtained by reflecting (a graph rep-
resenting) ˛ in a horizontal axis. This gives P the structure of a so-called regular
�-category, as defined in [21, Section 2], meaning that the following hold for all
˛; ˇ 2 P with r.˛/ D d.ˇ/:

d.˛�/ D r.˛/; r.˛�/ D d.˛/; .˛�/� D ˛; ˛ D ˛˛�˛; .˛ˇ/� D ˇ�˛�:

We also have .˛ ˚ ˇ/� D ˛� ˚ ˇ� for all ˛; ˇ.
A partition ˛ 2 P is planar if some graph representing it may be drawn (in the

plane, as described above) with no edge crossings. In Figure 1, for example, ˇ is
planar but ˛ is not. The set PP of all planar partitions is a subcategory of P , the
planar partition category.
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x�n D

1 n

x�n D

1 n

x�n D

1 n

x�i In D

1 i n

x�i In D

1 i n

x"i In D

1 i n

Figure 3. Partition generators Nx 2 P (x 2 �), as well asx�n.

A partition ˛ 2 P is called a Brauer partition if each block has size 2. The set B

of all such Brauer partitions is the Brauer category. Clearly, Bm;n is non-empty if and
only if m � n .mod 2/. The set TL D PP \B of all planar Brauer partitions is the
Temperley–Lieb category. The partition ˛ pictured in Figure 2 belongs to TL.

The categories PP , B, and TL are also closed under ˚ and �, so these are all
(strict) tensor regular �-categories. The symmetric groups �n (n 2 N) are contained
in B but not in PP or TL. It follows that B is a PROP, though PP and TL are not.

3.2. The partition category

We now come to the first of our applications of the general machinery developed
in Section 2. Our goal in this section is to apply Theorems 2.17 and 2.19 to obtain
presentations for the partition category P ; see Theorems 3.2 and 3.7 below. This
section can be thought of as a blueprint for those that follow, so our treatment will be
fairly detailed.

First, note that Assumption 1 holds in P , with d D 1, as all hom-sets Pm;n are
non-empty. For Assumption 2, we take the partitions x�n 2 Pn;nC1 and x�n 2 PnC1;n

shown in Figure 3; clearly, x�nx�n Dx�n for all n 2 N. For Assumption 3, we require
presentations for the partition monoids Pn (n 2 N). Such presentations are stated
in [39]; proofs may be found in [28, 29]. First, for n 2 N, define an alphabet

Xn D Sn [En [ Tn; where Sn D ¹�i In W 1 � i < nº;

En D ¹"i In W 1 � i � nº;

Tn D ¹�i In W 1 � i < nº:
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Define the morphism �n W X
�
n ! Pn W w 7! Nw, where the partitions Nx (x 2 Xn) are

shown in Figure 3.
Now, let Rn be the following set of relations over Xn (here, and in other such

lists of relations, the subscripts range over all meaningful values, subject to any stated
constraints):

�2i In D �n; "2i In D "i In; �2i In D �i In D �i In�i In D �i In�i In; (P1)

�i In"i In D "iC1In�i In; "i In"iC1In�i In D "i In"iC1In; (P2)

"i In"j In D "j In"i In; �i In�j In D �j In�i In; (P3)

�i In�j In D �j In�i In; �i In�j In D �j In�i In if ji � j j > 1, (P4)

�i In�j In�i In D �j In�i In�j In; �i In�j In�i In D �j In�i In�j In if ji � j j D 1; (P5)

�i In"j In D "j In�i In; �i In"j In D "j In�i In if j 6D i; i C 1; (P6)

�i In"j In�i In D �i In; "j In�i In"j In D "j In if j D i; i C 1. (P7)

Theorem 3.1 (cf. [28, 29, 39]). For any n 2 N, the partition monoid Pn has present-
ation hXn W Rni via �n.

Now, let � � L [ R [ X be the digraph over vertex set N as in (2.8) and (2.9),
and let � W �� ! P be the morphism given in (2.10). Let � be the set of relations
over � consisting of

S
n2N Rn, and additionally

�n�n D �n; �n�n D "nC1InC1; (P8)

�i In�n D �n�i InC1; �n�i In D �i InC1�n for � 2 ¹�; "; �º. (P9)

In the language of Assumption 4 (ii), we havewn D "nC1InC1 for all n 2N. The maps
in Assumption 4 (iv) are given by

�Ci In D .�i In/C D �i InC1

for � 2 ¹�; "; �º.
Here is the first main result of this section, expressed in terms of the above nota-

tion. For the proof, it will be convenient to define an embedding

Pn ! PnC1 W ˛ 7! ˛C D ˛ ˚x�1 for each n 2 N.

So, ˛C 2 PnC1 is obtained from ˛ 2 Pn by adding the transversal ¹nC 1; .nC 1/0º.
Our reuse of the C notation stems from the fact that

NxC D xC

for all x 2 Xn, and hence, NwC D wC for all w 2 X�n .

Theorem 3.2. The partition category P has presentation h� W �i via �.
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1 i n

1 i n

D D

1 i n

Figure 4. Part of relation (P9): x�iIn
x�n D

x�nx�iInC1.

x�m;n D

1 m

1 n

x�n;m D

1 n

1 m

˛ D

1 m

1 n

Rm;n.˛/ D

1 m n

1 n

˛ D

1 n

1 m

Ln;m.˛/ D

1 n

m1 n

Figure 5. The partitions x�m;n and x�n;m (0 � m � n) and the mappings Rm;n W Pm;n ! Pn

and Ln;m W Pn;m ! Pn; cf. Remark 3.3.

Proof. In order to apply Theorem 2.17, all that remains to check is that items (i)
and (v) of Assumption 4 hold. The first is easily checked diagrammatically. In fact,
given Theorem 3.1, we only need to check (P8) and (P9); see Figure 4 for (part of)
the latter. To verify Assumption 4 (v), we use Remark 2.13, which says it suffices to
show the following, where for simplicity we write " D "nC1InC1:

• For all n 2 N and w 2 X�nC1, we have "w" � "uC" for some u 2 X�n .

To show this, letw 2X�nC1, and put ˛D "w" 2PnC1. Note that ˛ contains the blocks
¹nC 1º and ¹nC 1º0. Let ˇ 2 Pn be the partition obtained from ˛ by deleting these
two blocks, so ˛ D x"ˇCx". By Theorem 3.1, we have ˇ D Nu for some u 2 X�n , and we
note that ˇC D NuC D uC. But then,

"w" D ˛ D x"ˇCx" D "uC":

It follows from Theorem 3.1 (and RnC1 � �) that "w" � "uC".

Remark 3.3. The proof of Theorem 3.2 involved an application of Theorem 2.17.
Various ingredients in the proof of Theorem 2.17 have natural diagrammatic meanings
when C D P . For example, Figure 5 shows the elements x�m;n and x�n;m (0 � m � n)
and the mappings Rm;n W Pm;n ! Pn and Ln;m W Pn;m ! Pn defined in (2.6).

Remark 3.4. Certain redundancies exist in the presentation h� W �i from Theorem
3.2. For example, only the j D i C 1 case of (P7) is needed. Indeed, using this and (P1)
and (P2), and writing �i D �i In, we have �i"i�i � �i�i"i�i � �i"iC1�i�i � �i"iC1�i �
�i . The other part of (P7) is similar.
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U D

U

DX D D D I D

Figure 6. Partition generators x 2 P (x 2 �), as well as I .

Remark 3.5. As in Remark 2.12, we could have made different choices for the one-
sided units x�n; x�n 2 P to those shown in Figure 3. For example, out of many other
possibilities, we could instead have taken x�n and x�n to be of the respective forms

x�n D

1 n

and x�n D

1 n

This would result in a change to the second part of relation (P8), which would become
�n�n D �nInC1. The first part of (P8) would remain the same as above, as would both
parts of (P9). The resulting presentation for P does not seem to be any less “natural”
than that given in Theorem 3.2, though of course the above proof of the theorem
would have to be modified accordingly.

Now that we have the presentation h� W�i for P , we wish to use Theorem 2.19 to
transform it into a tensor presentation. We begin by defining the digraph � on vertex
set N with four edges

X W 2! 2; D W 2! 2; U W 1! 0;

U

W 0! 1:

Define the morphism ˆ W �~ ! P W w 7! w, where the partitions x (x 2 �) are
shown in Figure 6. It will also be convenient to write I D �1 for the empty path 1! 1

and I Dx�1 for the identity partition from P1; the latter is also shown in Figure 6.
Let „ be the set of the following relations over �, remembering that I D �1,

X ıX D �2;

U

ı U D �0; (P1)0

D ıD D D D D ıX D X ıD;

.D ˚ I / ı .I ˚D/ D .I ˚D/ ı .D ˚ I /;
(P2)0

.X ˚ I / ı .I ˚X/ ı .X ˚ I / D .I ˚X/ ı .X ˚ I / ı .I ˚X/; (P3)0

.X ˚ I / ı .I ˚D/ ı .X ˚ I / D .I ˚X/ ı .D ˚ I / ı .I ˚X/; (P4)0

X ı .I ˚ U/ D U ˚ I; .I ˚

U

/ ıX D

U

˚ I; (P5)0

.I ˚

U

/ ıD ı .I ˚ U/ D I; D ı .I ˚ U ˚

U

/ ıD D D: (P6)0

Note that by Lemma 2.2 we automatically have the additional relations

U ı

U

D U ˚

U

D

U

˚ U: (3.6)
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D D

Figure 7. Relation (P4)0: .X ˚ I / ı .I ˚D/ ı .X ˚ I / D .I ˚X/ ı .D ˚ I / ı .I ˚X/.

Several other tensor presentations in the paper involve generators with

r.U / D d.

U

/ D 0;

so (3.6) holds in all of those as well.
The second main result of this section is the following, expressed in terms of the

above notation.

Theorem 3.7. The partition category P has tensor presentation h� W „i via ˆ.

Proof. To apply Theorem 2.19, it remains to verify the conditions of Assumption 6.
Condition (i) is easy to check diagrammatically; see Figure 7 for (P4)0.

Conditions (ii)–(iv) involve a morphism ��! �~ W w 7! Ow, which we define by

y�i In D �i�1 ˚X ˚ �n�i�1; y"i In D �i�1 ˚ U ˚

U

˚ �n�i ; y�n D �n ˚

U

;

y�i In D �i�1 ˚D ˚ �n�i�1; y�n D �n ˚ U:

Condition (ii) says that Oxˆ D x� for all x 2 � , and this is easily verified diagram-
matically. Conditions (iii) and (iv) are verified in Lemmas 3.8 and 3.10, respectively.
The first of these refers to the terms xm;n D �m ˚ x ˚ �n (x 2 �, m; n 2 N). For the
rest of the proof, we write� D „]˚.

Lemma 3.8. For any m; n 2 N, and for any x 2 �, we have xm;n � Ow for some
w 2 ��.

Proof. This is clear for x D X or D, since Xm;n D y�mC1ImCnC2 and

Dm;n D y�mC1ImCnC2:

By symmetry, it remains to consider the case of x D U . For this, we claim that

Um;n � y�mC1ImCnC1 ı � � � ı y�mCnImCnC1 ı y�mCn: (3.9)

We prove this (for any m) by induction on n. For n D 0, we have

Um;n D �m ˚ U ˚ �0 D �m ˚ U D y�m;
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which agrees with (3.9) since the product of y� ’s is empty when nD 0. For n� 1, (P5)0

gives

y�mC1ImCnC1 ı UmC1In�1 D .�m ˚X ˚ �n�1/ ı .�m ˚ I ˚ U ˚ �n�1/

D �m ˚ .X ı .I ˚ U//˚ �n�1

� �m ˚ U ˚ I ˚ �n�1 D Um;n;

and we then apply the inductive assumption to UmC1In�1.

Lemma 3.10. For any relation .u; v/ 2 �, we have Ou � Ov.

Proof. Most of the commuting relations from � follow immediately from the tensor
category axioms. For example, consider the second part of (P4). If j � i C 2, then

y�i In ı y�j In D .�i�1˚X˚�j�i�2˚�2˚�n�j�1/ı.�i�1˚�2˚�j�i�2˚D˚�n�j�1/

D �i�1 ˚X ˚ �j�i�2 ˚D ˚ �n�j�1;

and similarly, y�j In ı y�i In D �i�1 ˚X ˚ �j�i�2 ˚D ˚ �n�j�1. The j � i � 2 case is
virtually identical, as is the first part of (P4), both parts of (P6), the first part of (P3),
and the ji � j j � 2 case of the second. The ji � j j D 1 case follows from (P2)0, as

y�i In ı y�iC1In D �i�1 ˚ ..D ˚ I / ı .I ˚D//˚ �n�i�2;

y�iC1In ı y�i In D �i�1 ˚ ..I ˚D/ ı .D ˚ I //˚ �n�i�2:
(3.11)

For the first part of (P9), we use Lemma 2.1 (iii), with a D y�i In, b D �n, and c D

U

,

y�i In ı y�n D y�i In ı .�n ˚

U

/ D .y�i In ı �n/˚

U

D .�n ı y�i In/˚ .

U

ı I /

D .�n ˚

U

/ ı .y�i In ˚ I / D y�n ı y�i InC1:

The second part is similar.
For every other relation from �, we adopt the following basic pattern. We first

use the tensor category axioms to write Ou D �k ˚ s ˚ �l and Ov D �k ˚ t ˚ �l for
some k; l 2 N, and where s; t 2 �~ are relatively simple, as in (3.11), and then use
relations (P1)0–(P6)0 to show that s � t . Table 1 shows the required calculations for
the remaining relations from �. (For the (P7) entry, recall from Remark 3.4 that it
suffices to consider only j D i C 1.)

Many of the reduced relations s � t in Table 1 are simply contained in � itself;
this is the case for (a), (c), (f), (g), (h), and (j), while (k) follows straight from (3.6).
This leaves us with (b), (d), (e), and (i), and we treat these now.

(b) For this, we use (P1)0 and (3.6):

.U ˚

U

/ ı .U ˚

U

/ D U ı

U

ı U ı

U

� U ı �0 ı

U

D U ı

U

D U ˚

U

:
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Relation Label Reduced relation s � t
(P1) (a) X ıX � �2

(b) .U ˚

U

/ ı .U ˚

U

/ � U ˚

U

(c) D ıD � D � D ıX � X ıD

(P2) (d) X ı .U ˚

U

˚ I / � .I ˚ U ˚

U

/ ıX

(e) .U ˚

U

˚ I /ı.I ˚ U ˚

U

/ıX�.U ˚

U

˚ I /ı.I ˚ U ˚

U

/

(P5) (f) .X ˚ I / ı .I ˚X/ ı .X ˚ I / � .I ˚X/ ı .X ˚ I / ı .I ˚X/

(g) .X ˚ I / ı .I ˚D/ ı .X ˚ I / � .I ˚X/ ı .D ˚ I / ı .I ˚X/

(P7) (h) D ı .I ˚ U ˚

U

/ ıD � D

(i) .I ˚ U ˚

U

/ ıD ı .I ˚ U ˚

U

/ � I ˚ U ˚

U

(P8) (j)

U

ı U � �0

(k) U ı

U

� U ˚

U

Table 1. Reduced relations s � t required in the proof of Lemma 3.10; see the text for more
details.

(d) For this, we have

X ı .U ˚

U

˚ I /

D X ı .
U

˚ U ˚ I / by (3.6)

� X ı.

U

˚.X ı.I˚U/// by (P5)0

D X ıX ı .

U

˚ I ˚ U/ by Lemma 2.1 (ii), with aD

U

, bDX , and cDI ˚ U

� �2ı...I˚

U

/ıX/˚U/ by (P1)0 and (P5)0

D .I ˚

U

˚ U/ ıX by Lemma 2.1 (iv), with aDI ˚

U

, bDX , and cDU

D .I ˚ U ˚

U

/ ıX by (3.6).

(e) Here, we must show thatw ıX �w, wherewD .U ˚

U

˚ I / ı .I ˚U ˚

U

/.
First, by (3.6), we have

w D .U ˚

U

˚ I / ı .I ˚ U ˚

U

/ D ..U ˚

U

/ ı I /˚ .I ı .U ˚

U

//

D .U ˚

U

/˚ .U ˚

U

/ D U ˚ U ˚

U

˚

U

: (3.12)

Also, note that

.

U

˚

U

/ ıX D ..

U

ı I /˚

U

/ ıX

D

U

ı .I ˚

U

/ ıX by Lemma 2.1 (iii), with aDcD

U

and bDI

�

U

ı .

U

˚ I / by (P5)0

D

U

˚ .

U

ı I / by Lemma 2.1 (ii), with aDbD

U

and cDI

D

U

˚

U

: (3.13)
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Using (3.12) and (3.13), and also Lemma 2.1 (i), with a D U ˚ U , b D

U

˚

U

, and
c D X , we then have

w ıX D .U ˚ U ˚

U

˚

U

/ ıX

D .U ˚ U/˚ ..

U

˚

U

/ ıX/ � U ˚ U ˚

U

˚

U

D w:

(i) Here, we have

.I ˚ U ˚

U

/ ıD ı .I ˚ U ˚

U

/

� ..I ˚

U

˚ U/ ıD ı .I ˚ U//˚

U

by (3.6) and Lemma 2.1 (iii),

with a D .I ˚ U ˚

U

/ ıD,

b D I ˚ U , and c D

U

D ..I ˚

U

/ ıD ı .I ˚ U//˚ U ˚

U

by Lemma 2.1 (iv),

with a D I ˚

U

, b D D ı .I ˚ U/,

and c D U

� I ˚ U ˚

U

by (P6)0.

As noted above, now that we have proved Lemmas 3.8 and 3.10, the theorem is
proved.

Remark 3.14. Surjectivity of ˆ was also discussed by Martin in [65, pp. 127–128].
Comes [16], in his study of the so-called jellyfish partition categories, stated an altern-
ative (tensor) presentation for P in terms of the five generators

The proof given by Comes relied on some highly non-trivial results concerning cobor-
dism categories and Frobenius algebras [1, 53]. Theorem 3.7 leads to an alternative
proof of Comes’s result, relying on no such heavy machinery; we simply rewrite our
presentation h� W „i into his, using Tietze transformations.

Remark 3.15. We mentioned in Section 3.2 that the category P has a natural involu-
tion ˛ 7! ˛�. The presentation h� W„i from Theorem 3.7 could be modified to give an
involutory tensor category presentation, in which the involution is part of the signature
(as well as ı and˚). Here, we would add the relations

X� D X; D� D D; U � D

U

; and

U�
D U

(or eliminate one of U or

U

altogether), and some of relations (P1)0–(P6)0 could then
be removed. For example, we can remove “D X ı D” from (P2)0, since using the
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other parts we have

X ıD � X� ıD� D .D ıX/� � D� � D:

Similarly, we would only need to keep one part of (P5)0.
Recall from Section 3.2 that P is a so-called PROP in the sense of [59, Section

24]. Thus, one could also give a PROP presentation for P , in which case the sub-
groups (isomorphic to) �n are part of the background “free” data. In this way, X is
simply the freely existing non-trivial element of �2 � �

~

2 and acts according to the
PROP laws. Thus, (P3)0 and the first part of (P1)0 are part of the free data, so too are
relations (P4)0 and (P5)0. These are less obvious but follow from the PROP law

.a˚ b/ ı fn;l D fm;k ı .b ˚ a/ for a 2 Cm;n and b 2 Ck;l .

Indeed, since f1;1 D X , f0;1 D �1, and f1;2 D .X ˚ I / ı .I ˚X/, these follow from

.U ˚ I / ı f0;1 D f1;1 ı .I ˚ U/ and .I ˚D/ ı f1;2 D f1;2 ı .D ˚ I /;

and other such identities.

Remark 3.16. It is worth observing that the partition category P is finitely presen-
ted as a tensor category, as the sets � and „ from the presentation in Theorem 3.7
are both finite. In fact, all of the categories considered in this paper have the same
finiteness property; see Theorems 3.20, 3.23, 4.4, 4.13, 4.17, and so on. The author
believes it would be interesting to investigate this phenomenon, and in particular to
seek necessary and/or sufficient conditions ensuring that a category C (satisfying
Assumptions 1–6) has a finite tensor presentation.

3.3. The Brauer category

We now turn our attention to the Brauer category B. The argument here follows the
same pattern as that of Section 3.2, so we will for the most part abbreviate it. In order
to avoid a buildup of notation, we also reuse symbols such as � , �, � , � , etc., and
indeed in later sections as well.

Since blocks of Brauer partitions have size 2, Assumption 1 holds in B with dD2.
As for Assumption 2, this time we take x�n 2 Bn;nC2 and x�n 2 BnC2;n to be the
partitions shown in Figure 8. The presentations for the Brauer monoids Bn required
for Assumption 3 are taken from [54]. For n 2 N, define an alphabet

Xn D Sn [ Tn; where Sn D ¹�i In W 1 � i < nº and Tn D ¹�i In W 1 � i < nº:

Define a morphism �n W X
�
n ! Bn W w 7! Nw, where the partitions Nx (x 2 Xn) are

shown in Figure 8.
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x�n D

1 n

x�n D

1 n

x�i In D

1 i n

x�i In D

1 i n

Figure 8. Brauer generators Nx 2 B (x 2 �).

Let Rn be the following set of relations over Xn:

�2i In D �n; �2i In D �i In D �i In�i In D �i In�i In; (B1)

�i In�j In D �j In�i In; �i In�j In D �j In�i In;

�i In�j In D �j In�i In if ji � j j > 1,
(B2)

�i In�j In�i In D �j In�i In�j In; �i In�j In�i In D �j In�i In�j In;

�i In�j In�i In D �i In if ji � j j D 1.
(B3)

Theorem 3.17 (cf. [54]). For any n 2 N, the Brauer monoid Bn has presentation
hXn W Rni via �n.

Now, let � � L [ R [ X be the digraph over N as in (2.8) and (2.9), and let
� W �� ! B be the morphism given in (2.10). Let � be the set of relations over �
consisting of

S
n2N Rn, and additionally,

�n�n D �n; �n�n D �nC1InC2; (B4)

�i In�n D �n�i InC2; �n�i In D �i InC2�n for � 2 ¹�; �º. (B5)

Here is the first main result of this section, expressed in terms of the above nota-
tion. The proof is essentially identical to that of Theorem 3.2; the role of "nC1InC1
in that proof is played instead by �nC1InC2, and we use the map Bn ! BnC2 W ˛ 7!

˛C D ˛ ˚x�2.

Theorem 3.18. The Brauer category B has presentation h� W �i via �.

Remark 3.19. As in Remarks 2.12 and 3.5, we could have made different choices
for the one-sided units x�n; x�n 2 B to those in Figure 8. However, and in contrast to
the situation with the partition category (cf. Remark 3.5), the choices we have made
here seem the most “natural” in the sense that any other choice leads to arguably less
convenient forms of the relations (B4) and (B5).
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U D

U

DX D I D

Figure 9. Brauer generators x 2 B (x 2 �), as well as I .

Next, let � be the digraph over N with three edges

X W 2! 2; U W 2! 0;

U

W 0! 2:

Define the morphismˆ W�~!B Ww 7!w, where the partitions x (x 2�) are shown
in Figure 9. It will again be convenient to write I D �1, and I Dx�1 2 B1.

Let „ be the set consisting of the following relations over �:

X ıX D �2;

U

ı U D �0; X ı U D U;

U

ıX D

U

; (B1)0

.X ˚ I / ı .I ˚X/ ı .X ˚ I / D .I ˚X/ ı .X ˚ I / ı .I ˚X/; (B2)0

.I ˚

U

/ ı .U ˚ I / D I D .

U

˚ I / ı .I ˚ U/; (B3)0

.X ˚ I / ı .I ˚ U/ D .I ˚X/ ı .U ˚ I /;

.

U

˚ I / ı .I ˚X/ D .I ˚

U

/ ı .X ˚ I /:
(B4)0

The second main result of this section is the following, expressed in terms of the above
notation.

Theorem 3.20. The Brauer category B has tensor presentation h� W „i via ˆ.

Proof. The proof follows the same outline as that of Theorem 3.7. We need only to
verify Assumption 6. Condition (i) is checked diagrammatically, and for the remaining
assumptions, we use the morphism

�� ! �~
W w 7! Ow;

given by

y�i In D �i�1 ˚X ˚ �n�i�1; y�i In D �i�1 ˚ U ˚

U

˚ �n�i�1;

y�n D �n ˚

U

; y�n D �n ˚ U:

Condition (ii) is again verified diagrammatically. Condition (iii) is proved as in Lem-
ma 3.8; e.g., we have

Um;n � y�mC1ImCnC2 ı � � � ı y�mCnImCnC2 ı y�mCn:

Condition (iv) is proved as in Lemma 3.10; the details are again mostly very similar,
with the only substantial exceptions being the second and third parts of (B3), so we
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treat just these. The second part of (B3) follows from

.X ˚ I / ı .I ˚ U ˚

U

/ ı .X ˚ I /

D ...X ˚ I / ı .I ˚ U//˚

U

/ ı .X ˚ I / by Lemma 2.1 (iii)

� ...I ˚X/ ı .U ˚ I //˚

U

/ ı .X ˚ I / by (B4)0

D .I ˚X/ ı .U ˚ I ˚

U

/ ı .X ˚ I / by Lemma 2.1 (iii)

D .I ˚X/ ı .U ˚ ..I ˚

U

/ ı .X ˚ I /// by Lemma 2.1 (i)

� .I ˚X/ ı .U ˚ ..

U

˚ I / ı .I ˚X/// by (B4)0

D .I ˚X/ ı .U ˚

U

˚ I / ı .I ˚X/ by Lemma 2.1 (i).

For the third part of (B3), we consider only the j D i C 1 case (j D i � 1 is similar),
which follows from

.U ˚

U

˚ I / ı .I ˚X/ ı .U ˚

U

˚ I /

D .U ˚ ..

U

˚ I / ı .I ˚X/// ı .U ˚

U

˚ I / by Lemma 2.1 (i)

� .U ˚ ..I ˚

U

/ ı .X ˚ I /// ı .U ˚

U

˚ I / by (B4)0

D U ˚ ..I ˚

U

/ ı .X ˚ I / ı .U ˚

U

˚ I // by Lemma 2.1 (i)

D U ˚ ..I ˚

U

/ ı ..X ı U/˚ .I ı .

U

˚ I ////

� U ˚ ..I ˚
U

/ ı .U ˚ .
U

˚ I /// by (B1)0

D U ˚ ..I ˚

U

/ ı .

U

˚ U ˚ I // by (3.6)

D U ˚ .

U

˚ ..I ˚

U

/ ı .U ˚ I /// by Lemma 2.1 (ii)

� U ˚

U

˚ I by (B3)0.

Remark 3.21. As in Remark 3.15, certain relations could be removed from the pre-
sentation by considering the involution and/or PROP structure. The involution was
built into the presentation for B given by Lehrer and Zhang in [58, Theorem 2.6];
note that I D �1 is explicitly listed as a generator there, as well as relations such as
I ı I D I and .I ˚ I / ıX D X .

3.4. The Temperley–Lieb category

The methods of Sections 3.2 and 3.3 can also be used to quickly obtain presentations
for the Temperley–Lieb category T L. Here, we let � be the digraph over N with edge
set

L[R[
[
n2N

Xn; where LD¹�n W n2Nº; RD¹�n W n2Nº; XnD¹�i In W 1� i < nº:

The partitions Nx 2 TL (x 2 �) are as already shown in Figure 8. We define in the
usual way the morphism � W �� ! TL W w 7! Nw, and this time, � is the following
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set of relations:

�2i In D �i In; �i In�j In D �j In�i In if ji � j j > 1;

�i In�j In�i In D �i In if ji � j j D 1,
(TL1)

�n�n D �n; �n�n D �nC1InC2;

�i In�n D �n�i InC2; �n�i In D �i InC2�n:
(TL2)

For fixed n, relations (TL1) constitute defining relations for the Temperley–Lieb mon-
oid TLn; cf. [12, 30, 45].

Theorem 3.22. The Temperley–Lieb category T L has presentation h� W�i via �.

Next, let� be the digraph over N with edges U W 2! 0 and

U

W 0! 2. We have a
morphism ˆ W �~! T L W w 7! w, where the partitions U and

U

from T L are as in
Figure 9. Let„ be the set consisting of the following relations over �, where I D �1,

U

ı U D �0; and .I ˚

U

/ ı .U ˚ I / D I D .

U

˚ I / ı .I ˚ U/:

Theorem 3.23. The Temperley–Lieb category TL has tensor presentation h� W „i
via ˆ.

Remark 3.24. It is not clear to whom Theorem 3.23 should be attributed, though
it appears to be folklore. See the discussion in [2, Section 3.1], which refers to [23,
34]; the results from these papers concern so-called free pivotal categories but are
equivalent to Theorem 3.23.

Remark 3.25. As explained in [47, p. 264] and [39, p. 873], the monoid PPn of
planar partitions of degree n is isomorphic to TL2n, the Temperley–Lieb monoid
of degree 2n. Although the categories PP and TL are not similarly isomorphic (as
T L also contains partitions of odd degree), one can derive presentations for PP from
those for T L above. These are in terms of generators x"i In, x�i In, x�n, and x�n (as pictured
in Figure 3), or xU , x

U

, and xD (as pictured in Figure 6). Other diagram categories could
be treated similarly [9, 20, 37, 67].

3.5. Linear diagram categories

Fix a field k, and an element ı 2 k n ¹0º. For m; n 2 N, we denote by P ı
m;n the

k-vector space with basis Pm;n, i.e., the set of all formal k-linear combinations of
partitions from Pm;n. We also write

P ı
D

[
m;n2N

P ı
m;n

for the set of all such combinations. This set is a category (over N) with composition
? defined as follows. Consider basis elements ˛ 2 Pm;n and ˇ 2 Pn;k . We write
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m.˛; ˇ/ for the number of “floating” components in the product graph ….˛; ˇ/, as
defined in Section 3.1, i.e., the number of components contained entirely in Œn�00. (So,
m.˛; ˇ/ D 1 for ˛; ˇ in Figure 1.) The product ˛ ? ˇ 2 P ı

m;k
is defined by

˛ ? ˇ D ım.˛;ˇ/˛ˇ:

So, ˛ ? ˇ is a scalar multiple of the basis element ˛ˇ D ˛ ı ˇ 2 Pm;k . This compos-
ition on basis elements is then extended to all of P ı by k-linearity. The operation ˚
and the involution � on P also extend to corresponding operations on P ı .

Here, we call P ı the linear partition category (associated to k and ı) in order to
distinguish it from the partition category P . Most authors simply call P ı the partition
category. We also have linear versions of the Brauer and Temperley–Lieb categor-
ies: Bı and TLı .

The presentations for the diagram categories given in Sections 3.2–3.4 may be
easily modified to yield presentations for their linear counterparts. To do so, we use
the method of [28, Section 6]; this was originally formulated for algebras but works
virtually unchanged for (tensor) categories.

Let C be any of P , B, or T L, and let � be the digraph defined in Sections 3.2, 3.3,
or 3.4, as appropriate. Consider some path w 2 ��. If w is empty or a single edge, we
define m.w/ D 0. Otherwise, write w D x1 � � � xk , where k � 2 and each xi 2 � . In
the category Cı , we have Nx1 ? � � � ? Nxk D ım.w/ Nw, where

m.w/ D m. Nx1; Nx2/Cm.x1x2; Nx3/C � � � Cm.x1 � � � xk�1; Nxk/:

We may then obtain a presentation for Cı by replacing each relation u D v in a
presentation for C (cf. Theorems 3.2, 3.18, and 3.22) by ım.v/u D ım.u/v:

• For C DP , we replace "2i In D "i In and �n�n D �n by "2i In D ı"i In and �n�n D ı�n.

• For C D B and TL, we replace �2i In D �i In and �n�n D �n by �2i In D ı�i In and
�n�n D ı�n.

We may similarly obtain tensor presentations for P ı , Bı , and TLı from the cor-
responding presentations for P , B, and TL (cf. Theorems 3.7, 3.20, and 3.23). For
all three, this simply amounts to replacing

U

ı U D �0 by

U

ı U D ı�0.

4. Categories of (partial) vines, braids, and transformations

Next, we consider a number of natural categories of braids and vines, namely, the par-
tial vine category P V (Section 4.2), the partial braid category 	B (Section 4.3),
and the (full) vine category V (Section 4.4). Again, we apply the general theory
developed in Section 2 to obtain presentations for each category. The connectivity of
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the categoryV is slightly different from the other categories considered so far, requir-
ing the use of Theorem 2.20 instead of Theorem 2.19.

In Section 4.5, we apply the results of Sections 4.2–4.4 to quickly obtain present-
ations for several categories of (partial) transformations/mappings, and in Section 4.6,
we obtain analogous results for categories of isotone (order-preserving) mappings.

4.1. Preliminaries

We begin by defining the partial vine category P V , following [5, 27, 32, 55]. By a
string we mean a smooth, tame embedding s of the unit interval Œ0; 1� into R3 such
that

• the z-coordinate of s.t/ is 1 � t for all t ,

• s.0/ D .a; 0; 1/ and s.1/ D .b; 0; 0/ for some a; b 2 P .

For such a string s, we write I.s/ D a and T .s/ D b, which codify the initial and
terminal points of s.

A partial vine is (a homotopy class of) a tuple ˛ D .s1; : : : ; sk/ of strings, where
k � 0, satisfying

• I.s1/ < � � � < I.sk/,

• if si .t/ D sj .t/ for some t 2 Œ0; 1�, then si .u/ D sj .u/ for all u 2 Œt; 1�.

For such a partial vine ˛, we define

I.˛/ D
®
I.s1/; : : : ; I.sk/

¯
and T .˛/ D

®
T .s1/; : : : ; T .sk/

¯
:

Examples of partial vines are shown in Figure 10.
For m; n 2 N, we write P Vm;n for the set of all partial vines ˛ with I.˛/ � Œm�

and T .˛/ � Œn�, and we define the vine category

P V D
®
.m; ˛; n/ W m; n 2 N; ˛ 2 P Vm;n

¯
;

with domain, range, and composition operations as follows. For m; n; q 2 N, and for
˛ 2 P Vm;n and ˇ 2 P Vn;q , we define

d.m; ˛; n/ D m; r.m; ˛; n/ D n; .m; ˛; n/ ı .n; ˇ; q/ D .m; ˛ˇ; q/;

where the product ˛ˇ D ˛ ı ˇ 2 P Vm;q is obtained by

• placing a translated copy of ˇ below ˛,

• scaling so that the resulting object lies in the region 0 � z � 1,

• removing any string fragments that do not join top to bottom.

Figure 10 gives an example product. To avoid clutter in our notation, we will typically
identify an element .m;˛;n/ of P V with the partial vine ˛ 2 P Vm;n itself but regard
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˛ D

ˇ D

D ˛ˇ

Figure 10. Calculating ˛ˇ, where ˛ 2 P V4;5 and ˇ 2 P V5;3.

m and n as “encoded” in ˛, writing d.˛/Dm and r.˛/D n. In this way, the hom-sets
of P V are the P Vm;n (m; n 2 N), and the endomorphism monoids are the partial
vine monoids P Vn D P Vn;n of [27]. The units in P Vn form the usual Artin braid
groups Bn [5]; since we will no longer refer to the Brauer monoids, we will reuse the
symbol B, as it is standard.

The category P V is a (strict) tensor category, with ˚ defined as for diagram
categories; ˛ ˚ ˇ is obtained by placing a translated copy of ˇ to the right of ˛.
Unsurprisingly, P V is a (strict) braided tensor category in the sense of Joyal and
Street [49] and hence a PROB (PROducts and Braids).

We say that ˛ 2P Vm;n is a (full) vine if I.˛/D Œm� or a partial braid if the strings
of ˛ do not intersect. The sets V and 	B of all vines and partial braids are subcat-
egories of P V : the vine category and the partial braid category. Endomorphisms in V

and 	B form the vine monoids Vn [55] and inverse braid monoids 	Bn [25]. The
category 	B was studied in [32, Section 12], where it was observed to be an inverse
category in the sense of [50] and [15, Section 2.3.2]: for any ˛ 2 	B, the partial braid
obtained by reflecting ˛ in the plane z D 1

2
is the unique element ˇ of 	B satisfying

˛ D ˛ˇ˛ and ˇ D ˇ˛ˇ. The categories V and 	B are both closed under˚, and both
contain the braid groups Bn (n 2 N), so they are both PROBs. However, while all
hom-sets in P V and 	B are non-empty, we have Vm;0 D ¿ for m � 1.

4.2. The partial vine category

In this section, we apply Theorems 2.17 and 2.19 to obtain presentations for the partial
vine category P V .

First, note that Assumption 1 holds in P V with d D 1. For Assumption 2, we
take the partial vines x�n 2 P Vn;nC1 and x�n 2 P VnC1;n pictured in Figure 11. For
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Assumption 3, we require presentations for the partial vine monoids P Vn (n 2 N),
and these are given in [27]. For n 2 N, we define the alphabet

Xn D Sn [ S
�1
n [En [Mn [Hn;

where

Sn D ¹�i In W 1 � i < nº; Mn D ¹�i In W 1 � i < nº;

S�1n D ¹�
�1
i In W 1 � i < nº; Hn D ¹�i In W 1 � i < nº:

En D ¹"i In W 1 � i � nº; (4.1)

We define a morphism �n W X
�
n ! P Vn W w 7! Nw, where the partial vines Nx (x 2 Xn)

are also shown in Figure 11.
Now, let Rn be the following set of relations over Xn:

�i In�
�1
i In D �

�1
i In�i In D �n; "2i In D "i In; "i In"j In D "j In"i In; (PV1)

�i In D �
2
i In D �i In�i In D �i In�i In D �i In�i In;

�i In D �
2
i In D �i In�i In D �i In�i In D �i In�i In;

(PV2)

�i In�iC1In D �i In�iC1In; �i In�iC1In D �i In;

�iC1In�i In D �iC1In�i In; �iC1In�i In D �iC1In;
(PV3)

�iC1In�i In D �i In�iC1In�i In D �iC1In�i In�iC1In;

�i In�iC1In D �i In�iC1In�i In D �iC1In�i In�iC1In;
(PV4)

�i In"iC1In D �i In; "iC1In�i In D "iC1In;

�i In"i In D �i In; "i In�i In D "i In;
(PV5)

�iC1In�i In D �i In�iC1In�i In�iC1In; �i In�iC1In D �iC1In�i In�iC1In�i In; (PV6)

�i In"i In D "iC1In�i In; �i In"iC1In D "i In�i In; �2i In"i In D "i In; (PV7)

�i In"i In"iC1In D "i In"iC1In D �i In"i In D �i In"iC1In; (PV8)

�i In�j In D �j In�i In; �i In�j In D �j In�i In;

�i In�j In D �j In�i In if ji � j j > 1,
(PV9)

�i In�j In D �j In�i In; �i In�j In D �j In�i In if ji � j j > 1, (PV10)

�i In�j In�i In D �j In�i In�j In if ji � j j D 1, (PV11)

�i In�j In D �j In�i In; �i In"j In D "j In�i In if j 6D i; i C 1, (PV12)

�i In"j In D "j In�i In; �i In"j In D "j In�i In if j 6D i; i C 1. (PV13)

Theorem 4.2 (cf. [27]). For any n 2 N, the partial vine monoid P Vn has presenta-
tion hXn W Rni via �n.
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x�i In D

1 i n

x��1i In D

1 i n

x"i In D

1 i n

x�i In D

1 i n

x�i In D

1 i n

x�n D

1 n

x�n D

1 n

Figure 11. Partial vine generators Nx 2 P V (x 2 �).

Now, let � �L[R[X be the digraph as in (2.8) and (2.9), and let � W��!P V

be the morphism in (2.10). Let� be the set of relations over � consisting of
S
n2NRn,

and additionally,

�n�n D �n; �n�n D "nC1InC1; (PV14)

�i In�n D �n�i InC1; �n�i In D �i InC1�n for � 2 ¹�; ��1; "; �; �º. (PV15)

The proof of Theorem 3.2 is easily adapted to give the following.

Theorem 4.3. The partial vine category P V has presentation h� W �i via �.

Next, let � be the digraph over N, with edges

X W 2! 2; X�1 W 2! 2; V W 2! 1; U W 1! 0;

U

W 0! 1:

Define the morphism ˆ W �~! P V W w 7! w, where the partial vines x (x 2 �) are
shown in Figure 12. As usual, we also write I D �1 for the empty path 1! 1 and
I Dx�1 for the identity braid from P V1 (also shown in Figure 12).

Let „ be the set of the following relations over �:

X ıX�1 D X�1 ıX D �2;

U

ı U D �0; (PV1)0

X ı V D V; V ı U D U ˚ U;

.V ˚ I / ı V D .I ˚ V / ı V; .I ˚

U

/ ı V D I;
(PV2)0

.X ˚ I / ı .I ˚X/ ı .X ˚ I / D .I ˚X/ ı .X ˚ I / ı .I ˚X/; (PV3)0

X ı .U ˚ I / D I ˚ U; X ı .I ˚ U/ D U ˚ I; (PV4)0

.

U

˚ I / ıX D I ˚

U

; .I ˚

U

/ ıX D

U

˚ I; (PV5)0

.I ˚ V / ıX D .X ˚ I / ı .I ˚X/ ı .V ˚ I /;

.V ˚ I / ıX D .I ˚X/ ı .X ˚ I / ı .I ˚ V /:
(PV6)0
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X D X�1 D V D U D

U

D I D

Figure 12. Partial vine generators x 2 P V (x 2 �), as well as I .

D D D

Figure 13. The third and fourth parts of relation (PV2)0: .V ˚ I / ı V D .I ˚ V / ı V and
.I ˚

U

/ ı V D I .

Theorem 4.4. The partial vine category P V has tensor presentation h� W „i via ˆ.

Proof. As ever, it remains to check Assumption 6. Again, condition (i) is established
diagrammatically; see Figure 13 for the third and fourth parts of (PV2)0.

For the remaining conditions from Assumption 6, define a morphism ��! �~ W

w 7! Ow by

y�i In D �i�1 ˚X ˚ �n�i�1; y�i In D �i�1 ˚ V ˚
U

˚ �n�i�1; y�n D �n ˚
U

;

y��1i In D �i�1 ˚X
�1
˚ �n�i�1; y�i In D �i�1 ˚

U

˚ V ˚ �n�i�1; y�n D �n ˚ U:

y"i In D �i�1 ˚ U ˚

U

˚ �n�i ;

Condition (ii) of Assumption 6 is verified diagrammatically. Conditions (iii) and (iv)
are dealt with in Lemmas 4.5 and 4.6. As usual, we write� D „]˚.

Lemma 4.5. For any m; n 2 N, and for any x 2 �, we have xm;n � Ow for some
w 2 ��.

Proof. For x 2 ¹X;X�1;U;

U

º, the argument is the same as in Lemma 3.8. For xDV ,
we first use (PV1)0 to show that y�mC1ImCnC2 ı UmC1In � Vm;n. We then apply the
x D U case.

Lemma 4.6. For any relation .u; v/ 2 �, we have Ou � Ov.

Proof. The first part of (PV1) follows from the first part of (PV1)0. The remain-
ing relations from � involving only �i In and "j In are dealt with in the same way
as for Lemma 3.10, apart from the third part of (PV7), which follows (using (3.6),
Lemma 2.1 (ii), and (PV4)0) from

X ıX ı .U ˚

U

˚ I / D X ıX ı .

U

˚ U ˚ I / D

U

˚ .X ıX ı .U ˚ I //

�

U

˚ .U ˚ I / D U ˚

U

˚ I:
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Relation Label Reduced relation s � t
(PV2) (a) V ˚

U

� .V ˚

U

/ ı .V ˚

U

/ � .

U

˚ V / ı .V ˚

U

/

� X ı .V ˚

U

/ � .

U

˚ V / ıX

(PV3) (b) .V ˚

U

˚ I / ı .I ˚ V ˚

U

/ � .V ˚

U

˚ I / ı .I ˚X/

(c) .V ˚

U

˚ I / ı .I ˚

U

˚ V / � V ˚

U

˚ I

(PV4) (d) .I ˚ V ˚

U

/ ı .V ˚

U

˚ I /

� .I ˚ V ˚

U

/ ı .V ˚

U

˚ I / ı .I ˚ V ˚

U

/

� .V ˚

U

˚ I / ı .I ˚ V ˚

U

/ ı .V ˚

U

˚ I /

(PV5) (e) .V ˚

U

/ ı .I ˚ U ˚

U

/ � V ˚

U

(f) .I ˚ U ˚

U

/ ı .V ˚

U

/ � I ˚ U ˚

U

(PV6) (g) .I ˚ V ˚

U

/ ı .X ˚ I / � .X ˚ I / ı .I ˚X/

ı .V ˚

U

˚ I / ı .I ˚ V ˚

U

/

(PV8) (h) .U ˚

U

˚ I / ı .I ˚ U ˚

U

/ � .V ˚

U

/ ı .U ˚

U

˚ I /

� .

U

˚ V / ı .I ˚ U ˚

U

/

Table 2. Reduced relations s � t required in the proof of Lemma 4.6; see the text for more
details.

Relations (PV14) and (PV15) are treated in the same way as (P8) and (P9) in Lemma
3.10.

The commuting relations (PV9), (PV10), and (PV13) follow immediately from the
tensor category axioms, so too does the ji � j j > 1 case of the first part of (PV12);
for j D i � 1, we must show that

.I ˚ V ˚

U

/ ı .

U

˚ V ˚ I / � .

U

˚ V ˚ I / ı .I ˚ V ˚

U

/:

For this, Lemma 2.1 (ii) and the tensor category axioms give

.I ˚ V ˚

U

/ ı .

U

˚ V ˚ I / D ..I ˚ V / ı .

U

˚ V //˚ .

U

ı I /

D

U

˚ ..I ˚ V / ı V /˚

U

:

Similarly, .

U

˚ V ˚ I / ı .I ˚ V ˚

U

/ D

U

˚ ..V ˚ I / ı V /˚

U

, at which point
we apply (PV2)0.

As in the proof of Lemma 3.10 (cf. Table 1), the remaining relations from � boil
down to certain reduced relations s � t . Up to symmetry, these are shown in Table 2.

Before we begin with the reduced relations, we make three observations. For the
first, Lemma 2.1 (iii) and (PV2)0 give

.V ˚

U

/ ı V D ..V ı I /˚

U

/ ı V D V ı .I ˚

U

/ ı V � V ı I D V;

and similarly, .

U

˚ V / ı V � V: (4.7)
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For the second, (PV2)0 and (PV5)0 give

.

U

˚ I / ı V � .

U

˚ I / ıX ı V � .I ˚

U

/ ı V � I: (4.8)

For the third, Lemma 2.1 (iii) and (PV2)0 give

.

U

˚

U

/ ı V D ..

U

ı I /˚

U

/ ı V D

U

ı .I ˚

U

/ ı V �

U

ı I D

U

: (4.9)

(a) For this, we have

• .V ˚

U

/ ı .V ˚

U

/ D ..V ˚

U

/ ı V / ˚

U

� V ˚

U

, using Lemma 2.1 (iii)
and (4.7);

• .

U

˚ V / ı .V ˚

U

/ D ..

U

˚ V / ı V / ˚

U

� V ˚

U

, using Lemma 2.1 (iii)
and (4.7);

• X ı .V ˚

U

/ D .X ı V /˚

U

� V ˚

U

, using Lemma 2.1 (iii) and (PV2)0;

• .

U

˚ V / ıX D .

U

˚ .V ı I // ıX D V ı .

U

˚ I / ıX � V ı .I ˚

U

/

D .V ı I /˚

U

D V ˚

U

, using (PV5)0 and Lemma 2.1 (ii) and (iii).

(b) This follows from

.V ˚

U

˚ I / ı .I ˚X/ D .V ı I /˚ ..

U

˚ I / ıX/ � V ˚ I ˚

U

;

where we used (PV5)0 in the last step, and

.V ˚

U

˚I /ı.I˚V ˚

U

/ D .V ıI /˚..

U

˚I /ı.V ˚

U

//

D V ˚ ..

U

˚ I / ı V /˚

U

by Lemma 2.1 (iii)

� V ˚ I ˚

U

by (4.8).

(c) Using Lemma 2.1 (ii) and (4.8), we have

.V ˚

U

˚ I / ı .I ˚

U

˚ V / D .V ı I /˚ ..

U

˚ I / ı .

U

˚ V //

D V ˚

U

˚ ..

U

˚ I / ı V / � V ˚

U

˚ I:

(d) First, note that

.I ˚ V ˚

U

/ ı .V ˚

U

˚ I / D ..I˚V /ıV /˚.

U

ı.

U

˚I //

D ..I˚V /ıV /˚.

U

˚.

U

ıI // by Lemma 2.1 (ii)

� ..V ˚ I / ı V /˚

U

˚

U

by (PV2)0.

Thus, it suffices to show that

.V ˚

U

˚ I / ı w � w � w ı .I ˚ V ˚

U

/;



J. East 40

where w D ..V ˚ I / ı V /˚

U

˚

U

. For this, we have

.V ˚

U

˚ I / ı w D .V ˚

U

˚I /ı...V ˚I /ıV /˚

U

˚

U

/

D ..V ˚

U

˚ I / ı .V ˚ I / ı V /˚

U

˚

U

by Lemma 2.1 (iii)

D ....V ˚

U

/ıV /˚.I ıI //ıV /˚

U

˚

U

� ..V ˚ I / ı V /˚

U

˚

U

D w by (4.7),

and

w ı .I ˚ V ˚

U

/

D ...V ˚ I / ı V /˚

U

˚

U

/ ı .I ˚ V ˚

U

/

D ...V ˚ I / ı V / ı I /˚ ..

U

˚

U

/ ı .V ˚

U

//

D ..V ˚ I / ı V /˚ ..

U

˚

U

/ ı V /˚

U

by Lemma 2.1 (iii)

� ..V ˚ I / ı V /˚

U

˚

U

D w by (4.9).

(e) We use (3.6) and (PV1)0:

.V ˚

U

/ ı .I ˚ U ˚

U

/ D .V ı I /˚ .

U

ı .U ˚

U

// D V ˚ .

U

ı U ı

U

/

� V ˚ .�0 ı

U

/ D V ˚

U

:

(f) We use (3.6) and (PV2)0:

.I ˚ U ˚

U

/ ı .V ˚

U

/ D .I ˚

U

˚ U/ ı .V ˚

U

/ D ..I ˚

U

/ ı V /˚ .U ı

U

/

� I ˚ U ˚

U

:

(g) First, note that

.I ˚ V ˚

U

/ ı .X ˚ I /

D ..I ˚ V / ıX/˚ .

U

ı I /

� ..X ˚ I / ı .I ˚X/ ı .V ˚ I //˚

U

by (PV6)0

D .X ˚ I / ı .I ˚X/ ı .V ˚ I ˚

U

/ by Lemma 2.1 (iii),

so it remains to observe (using Lemma 2.1 (iii) and (4.8)) that

.V ˚

U

˚ I / ı .I ˚ V ˚

U

/ D .V ı I /˚ ..

U

˚ I / ı .V ˚

U

//

D V ˚ ..

U

˚ I / ı V /˚

U

� V ˚ I ˚

U

:

(h) By (3.12), the proof of which used only U ˚

U

D

U

˚ U , it suffices to show
that

.V ˚

U

/ ı .U ˚

U

˚ I / � .

U

˚ V / ı .I ˚ U ˚

U

/ � U ˚ U ˚

U

˚

U

:
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For this, we have (using (PV2)0 and Lemma 2.1 (ii))

.V ˚

U

/ ı .U ˚

U

˚ I / D .V ı U/˚ .

U

ı .

U

˚ I //

� .U ˚ U/˚ .

U

˚ .

U

ı I //

D U ˚ U ˚

U

˚

U

:

A similar calculation gives .

U

˚ V / ı .I ˚ U ˚

U

/ � U ˚ U ˚

U

˚

U

.

This completes the proof of the theorem.

Remark 4.10. As in Remark 3.15, we could convert the presentation h� W „i from
Theorem 4.4 into a PROB presentation. In doing this, the generators X and X�1, and
some of the relations from „, are part of the “free” PROB data and can hence be
removed, specifically the first part of (PV1)0 and all of (PV3)0–(PV6)0.

4.3. The partial braid category

Next, we treat the partial braid category 	B. Again, Assumption 1 holds with d D 1,
and for Assumption 2, we take the partial braids x�n and x�n pictured in Figure 11.
Several presentations for the inverse braid monoids 	Bn (n 2 N) exist [25, 26, 35],
but the most convenient one to use for Assumption 3 is due to Gilbert [35]. For n 2N,
let

XnD Sn [S
�1
n [En; where S˙1n D ¹�

˙1
i In W 1� i < nº and EnD ¹"i In W 1� i � nº;

and define �n W X�n ! 	Bn W w 7! Nw, where the partial braids x�˙1i In and x"i In are
pictured in Figure 11. Let Rn be the set of relations

�i In�
�1
i In D �

�1
i In�i In D �n; "2i In D "i In;

"i In"j In D "j In"i In; �i In"j In D "j In�i In if j 6D i; i C 1,
(IB1)

�i In"i In D "iC1In�i In; �i In"iC1In D "i In�i In;

�2i In"i In D "i In; �i In"i In"iC1In D "i In"iC1In;
(IB2)

�i In�j In D �j In�i In if ji � j j > 1;

�i In�j In�i In D �j In�i In�j In if ji � j j D 1.
(IB3)

Theorem 4.11 (cf. [35]). For any n 2N, the inverse braid monoid 	Bn has present-
ation hXn W Rni via �n.

Now, let � � L [R [X be the digraph as in (2.8) and (2.9), and let

� W �� ! 	B
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be the morphism in (2.10). Let� be the set of relations over � consisting of
S
n2NRn,

and additionally,

�n�n D �n; �n�n D "nC1InC1; (IB4)

�i In�n D �n�i InC1; �n�i In D �i InC1�n for � 2 ¹�; ��1; "º. (IB5)

The proof of the following is again essentially the same as for Theorem 3.2.

Theorem 4.12. The partial braid category 	B has presentation h� W �i via �.

Next, let � be the digraph over N, with edges

X W 2! 2; X�1 W 2! 2; U W 1! 0;

U

W 0! 1;

and define the morphismˆ W�~! 	B W w 7! w, where the partial braids x (x 2�)
are pictured in Figure 12. Let „ be the set of the following relations over �, where
I D �1,

X ıX�1 D X�1 ıX D �2;

U

ı U D �0; (IB1)0

.X ˚ I / ı .I ˚X/ ı .X ˚ I / D .I ˚X/ ı .X ˚ I / ı .I ˚X/; (IB2)0

X ı .U ˚ I / D I ˚ U; X ı .I ˚ U/ D U ˚ I;

.
U

˚ I / ıX D I ˚
U

; .I ˚
U

/ ıX D
U

˚ I:
(IB3)0

The proof of the following is contained in the proof of Theorem 4.4.

Theorem 4.13. The partial braid category 	B has tensor presentation h� W„i viaˆ.

Remark 4.14. For a PROB presentation, only the relation

U

ı U D �0 is needed
(cf. Remark 4.10).

4.4. The vine category

We now turn our attention to the (full) vine category V . Things are a little more
complicated here since the connectivity of V is different to all of the other categories
treated so far. Namely, as we have already observed, Vm;n 6D ¿, m D 0 or n � 1.
Thus, we will have to use Theorem 2.20 instead of Theorem 2.19. Accordingly, we
define the subcategory

VC D
[

m;n2P

Vm;n:

Assumption 1 holds in VC with d D 1. Next, note that the partial vines x�n used in
Sections 4.2 and 4.3 (cf. Figure 11) do not belong to V . Thus, for Assumption 2, we
take x�n 2 Vn;nC1 and x�n 2 VnC1;n (n 2 P ) to be the (full) vines pictured in Figure 14.
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x�i In D

1 i n

x��1i In D

1 i n

x�i In D

1 i n

x�i In D

1 i n

x�n D

1 n

x�n D

1 n

Figure 14. Vine generators Nx 2 V (x 2 �).

For Assumption 3, we take the presentation for the vine monoids Vn (n 2 P ) given
by Lavers [55]. For n 2 P , define the alphabet

Xn D Sn [ S
�1
n [Mn [Hn;

where

Sn D ¹�i In W 1 � i < nº; Mn D ¹�i In W 1 � i < nº;

S�1n D ¹�
�1
i In W 1 � i < nº; Hn D ¹�i In W 1 � i < nº:

Define the morphism �n W X
�
n ! Vn W w 7! Nw, where the vines Nx (x 2 Xn) are also

shown in Figure 14. Let Rn be the following set of relations over Xn:

�i In�
�1
i In D �

�1
i In�i In D �n; (V1)

�i In D �
2
i In D �i In�i In D �i In�i In D �i In�i In;

�i In D �
2
i In D �i In�i In D �i In�i In D �i In�i In;

(V2)

�i In�iC1In D �i In�iC1In; �iC1In�i In D �iC1In�i In;

�i In�iC1In D �i In; �iC1In�i In D �iC1In;
(V3)

�iC1In�i In D �i In�iC1In�i In D �iC1In�i In�iC1In;

�i In�iC1In D �i In�iC1In�i In D �iC1In�i In�iC1In;
(V4)

�iC1In�i In D �i In�iC1In�i In�iC1In; �i In�iC1In D �iC1In�i In�iC1In�i In; (V5)

�i In�j In D �j In�i In; �i In�j In D �j In�i In;

�i In�j In D �j In�i In if ji � j j > 1,
(V6)

�i In�j In D �j In�i In; �i In�j In D �j In�i In if ji � j j > 1, (V7)

�i In�j In�i In D �j In�i In�j In if ji � j j D 1, (V8)

�i In�j In D �j In�i In if j 6D i; i C 1. (V9)

Theorem 4.15 (cf. [55]). For any n 2 P , the vine monoid Vn has presentation
hXn W Rni via �n.
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Now, let � � L [R [X be the digraph as in (2.8) and (2.9), and let

� W �� ! VC

be the morphism in (2.10). Because of the different form of x�n (n 2 P ), we have to be
a little more careful in constructing the relations from Assumption 4 (iv). With this in
mind, let � be the set of relations over � consisting of

S
n2P Rn, and additionally,

�n�n D �n; �n�n D �nInC1; (V10)

�i In�n D �n�i InC1 for � 2 ¹�; ��1; �; �º, (V11)

�n�i In D �i InC1�n for � 2 ¹�; ��1; �; �º and i � n � 2, (V12)

�n�n�1In D �nInC1�n�1InC1�n for � 2 ¹�; ��1; �; �º. (V13)

In the language of Assumption 4 (iv), the mapping x 7! xC is still given by

.�i In/C D �i InC1;

but the x 7! xC mapping is slightly more complicated.

Theorem 4.16. The vine category VC has presentation h� W �i via �.

Proof. As usual, the main work is in checking condition (v) of Assumption 4, and for
this, we again use Remark 2.13. Writing � D �n;nC1, the proof will be complete if
we can show the following:

• For all n 2 P and w 2 X�nC1, we have �w� � �uC� for some u 2 X�n .

To do so, let w 2 X�nC1, and put ˛ D �w� 2 VnC1. Also, put ˇ D w�, and note that
˛ D x�ˇx� (since x�2 D x�). Note also that

T .ˇ/ � T .x�/ D Œn�;

where T is defined in Section 4.1. Thus, removing string nC 1 of ˇ leaves us with a
vine from Vn; denote this vine by 
 , and write 
CD 
 ˚x�1 2VnC1. Since T .x�/D Œn�,
we have x�ˇ D x�
C. By Theorem 4.15, we have 
 D Nu for some u 2X�n , and we note
that 
C D NuC D uC. But then, �w� D ˛ D x�ˇx� D x�
Cx� D �uC� in VnC1, so it
follows from Theorem 4.15 (and RnC1 � �) that �w� � �uC�.

Now, let � be the digraph over N, with edges

X W 2! 2; X�1 W 2! 2; V W 2! 1;

U

W 0! 1;

and define the morphism ˆ W �~ ! V W w 7! w, where the partial braids x (x 2 �)
are pictured in Figure 12. Let„ be the set of the following relations over�, where as
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usual we write I D �1:

X ıX�1 D X�1 ıX D �2; X ı V D V; (V1)0

.V ˚ I / ı V D .I ˚ V / ı V; .I ˚

U

/ ı V D I; (V2)0

.X ˚ I / ı .I ˚X/ ı .X ˚ I / D .I ˚X/ ı .X ˚ I / ı .I ˚X/; (V3)0

.

U

˚ I / ıX D I ˚

U

; .I ˚

U

/ ıX D

U

˚ I; (V4)0

.I ˚ V / ıX D .X ˚ I / ı .I ˚X/ ı .V ˚ I /;

.V ˚ I / ıX D .I ˚X/ ı .X ˚ I / ı .I ˚ V /:
(V5)0

Theorem 4.17. The vine category V has tensor presentation h� W „i via ˆ.

Proof. We prove this by applying Theorem 2.20. We have already observed that the
subcategory VC satisfies Assumptions 1–4; we fix the presentation h� W �i for VC

from Theorem 4.16. Since V satisfies Assumption 7, it remains to check Assump-
tion 8. Conditions (i) and (ii) are easily verified. For conditions (iii)–(v), we use the
mapping �� ! �~ W w 7! Ow defined by

y�i In D �i�1 ˚X ˚ �n�i�1; y�i In D �i�1 ˚ V ˚

U

˚ �n�i�1; y�n D �n ˚

U

;

y��1i In D �i�1 ˚X
�1
˚ �n�i�1; y�i In D �i�1 ˚

U

˚ V ˚ �n�i�1; y�n D �n�1 ˚ V:

Condition (iii) is easily checked. Condition (iv) is given by the next lemma. From here
on, we write as usual� D „]˚.

Lemma 4.18. For any m; n 2 N, and for any x 2 �, if .m; x; n/ 6D .0;

U

; 0/, then
xm;n � Ow for some w 2 ��.

Proof. For x 2 ¹X;X�1;

U

º, the argument is again essentially the same as in Lemma
3.8. For x D V , we have

Vm;n � y�mC1ImCnC2 ı y�mC2ImCnC2 ı � � � ı y�mCnImCnC2 ı y�mCnC1:

To prove this, we first show that y�mC1ImCnC2 ı VmC1In�1 � Vm;n and then apply
induction.

Condition (v) of Assumption 8 is given by the following.

Lemma 4.19. For any relation .u; v/ 2 �, we have Ou � Ov.

Proof. The proof is essentially contained in the proof of Lemma 4.6, apart from rela-
tions (V10), (V12), and (V13), which involve the different y�n terms. The first two of
these are easily verified, and the third boils down to showing that

.I ˚ V / ıZ � .I ˚ V ˚

U

/ ı .Z ˚ I / ı .I ˚ V /

for each Z D X , X�1, V ˚

U

, and

U

˚ V .
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For this, noting that d.Z/ D r.Z/ D 2, we have

.I ˚ V ˚

U

/ ı .Z ˚ I / ı .I ˚ V /

D ...I ˚ V / ıZ/˚ .

U

ı I // ı .I ˚ V /

D ...I ˚ V / ıZ/˚

U

/ ı .I ˚ V /

D ...I ˚ V / ıZ ı .I ˚ I //˚

U

/ ı .I ˚ V /

D .I ˚ V / ıZ ı .I ˚ I ˚

U

/ ı .I ˚ V / by Lemma 2.1 (iii)

D .I ˚ V / ıZ ı ..I ı I /˚ ..I ˚

U

/ ı V //

� .I ˚ V / ıZ ı .I ˚ I / D .I ˚ V / ıZ by (V2)0.

All that remains is to check condition (vi) of Assumption 8, and for this, we need
to show that

.

U

˚

U

/ ıX �

U

˚

U

; .

U

˚

U

/ ıX�1 �

U

˚

U

; .

U

˚

U

/ ı V �

U

:

The first and third of these were proved in (3.13) and (4.9), using relations contained
in (V1)0–(V5)0. The second follows quickly from the first, together with (V1)0.

4.5. Categories of (partial) transformations

We now show how to use the results of Sections 4.2–4.4 to obtain presentations for
certain categories of transformations. Such presentations could also be obtained dir-
ectly by applying the results of Section 2, but it is quicker to realise the transformation
categories as suitable quotients of P V , V , or 	B.

For m; n 2 N, write P Tm;n for the set of all partial transformations Œm�! Œn�;
i.e., all functions A! Œn� for A � Œm�. The partial transformation category is

P T D
®
.m; f; n/ W m; n 2 N; f 2 P Tm;n

¯
:

For m; n; q 2 N, and for f 2 P Tm;n and g 2 P Tn;q , we define

d.m; f; n/ D m; r.m; f; n/ D n; .m; f; n/ ı .n; g; q/ D .m; fg; q/;

where fg D f ı g 2 P Tm;q is the ordinary relational composition. As with partial
vines, we will avoid clutter by identifying .m; f; n/ 2 P T with f 2 P Tm;n and writ-
ing d.f / D m and r.f / D n.

There is a natural surmorphism

 W P V ! P T W ˛ 7! z̨

determined by the initial and terminal points of the strings of the partial vine ˛. For
˛ 2 P Vm;n, the partial transformation z̨ 2 P Tm;n has domain I.˛/ and image T .˛/
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and maps a 7! b if and only if ˛ has a string s with I.s/ D a and T .s/ D b. For
example, with ˛ 2 P V4;5 and ˇ 2 P V5;3 as in Figure 10, we have

z̨ D

 
1 2 3 4

2 4 2 1

!
2 P T4;5 and ž D

 
1 2 3 4 5

� 3 3 3 2

!
2 P T5;3:

The surmorphism  maps the vine category V and the partial braid category 	B

onto the subcategories

T D ¹f 2 P T W f is totally definedº and 	 D ¹f 2 P T W f is injectiveº;

which are the full transformation category and the symmetric inverse category, re-
spectively. Thus, presentations for P V , V , or 	B yield presentations for P T , T , or
	 upon adding relations that generate the kernel of  (or its restriction to V or 	B).

Lemma 4.20. If C is any of P V , V , or 	B, then

(i) ker. �C / is generated as a category congruence by®
.x�2i In;x�n/ W n 2 N; 1 � i < n

¯
;

(ii) ker. �C / is generated as a tensor category congruence by ¹.X ıX;x�2/º.

Proof. We must show that ker. �C / D � D �, where

� D
®
.x�2i In;x�n/ W n 2 N; 1 � i < n

¯] and � D
®
.X ıX;x�2/

¯]
˚
:

Since x�2i In Dx�i�1 ı .X ıX/˚x�n�i�2, we have � � �. Since X is the transposition
.1; 2/ 2 �2, we have � � ker. �C /. It remains to show that ker. �C / � � , so sup-
pose that ˛; ˇ 2 C and z̨ D ž. Write m D d.˛/ D d.ˇ/ and n D r.˛/ D r.ˇ/, and
suppose by symmetry thatm � n. Let x�m;n; x�n;m be as defined in (2.5), where the lat-
ter involves the appropriate x�i (cf. Figures 11 and 14). We then have .x�n;m˛/ D
.x�n;mˇ/ , with x�n;m˛; x�n;mˇ 2 Cn. Now, the kernel of  �Cn

is generated (as a
semigroup congruence) by ¹.x�2i In;x�2/ W 1 � i < nº; see [27, Lemma 29], [55, The-
orem 9], and [26, Proposition 31] for C D P V , V , and 	B, respectively. It follows
that x�n;m˛ � x�n;mˇ, and so, ˛ D �m˛ D x�m;nx�n;m˛ � x�m;nx�n;mˇ D �mˇ D ˇ, as
required.

Thus, we can obtain a category presentation for P T , 	, or T by adjoining the
relations �2i In D �n to the appropriate presentation h� W �i from Theorems 4.3, 4.12,
or 4.16. Combining this new relation with the first part of (PV1), this leads to ��1i In D
�i In so that we may remove all generators from

S
n2N S

�1
n . Several relations simplify

as a result, but we will not give all the details, as we are more interested in tensor
presentations.
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We can obtain such a tensor presentation for P T by adding the relation

X ıX D �2

to the presentation h� W „i from Theorem 4.4. Keeping in mind that this also leads to
X�1 D X , we end up with generators X , V , U , and

U

and relations

X ıX D �2; .X ˚ I / ı .I ˚X/ ı .X ˚ I / D .I ˚X/ ı .X ˚ I / ı .I ˚X/;

U

ı U D �0; X ı V D V; V ı U D U ˚ U;

.V ˚ I / ı V D .I ˚ V / ı V; .I ˚

U

/ ı V D I;

X ı .U ˚ I / D I ˚ U; .

U

˚ I / ıX D I ˚

U

;

.I ˚ V / ıX D .X ˚ I / ı .I ˚X/ ı .V ˚ I /:

Note that only the first part of (PV4)0 is listed, as the second follows from the first and
X ıX D �2; viz.,

X ı .I ˚ U/ � X ıX ı .U ˚ I / � �2 ı .U ˚ I / D U ˚ I :

Similarly, we only need the first parts of (PV5)0 and (PV6)0. The above presentation
is via the surmorphism determined by

X 7!

 
1 2

2 1

!
2 P T2; V 7!

 
1 2

1 1

!
2 P T2;1;

U 7!

 
1

�

!
2 P T1;0;

U

7! .¿/ 2 P T0;1:

(4.21)

We can similarly obtain tensor presentations for 	 and T , using Theorems 4.13
and 4.17:

• For 	, we have generators X , U , and

U

, mapping as in (4.21), and relations

X ıX D �2; .X ˚ I / ı .I ˚X/ ı .X ˚ I /D.I ˚X/ ı .X ˚ I / ı .I ˚X/;

U

ı U D �0; X ı .U ˚ I / D I ˚ U; .

U

˚ I / ıX D I ˚

U

:

• For T , we have generators X , V , and

U

, mapping as in (4.21), and relations

X ıX D �2; .X ˚ I / ı .I ˚X/ ı .X ˚ I /D.I ˚X/ ı .X ˚ I / ı .I ˚X/;

X ı V D V; .V ˚ I / ı V D .I ˚ V / ı V; .I ˚

U

/ ı V D I;

.

U

˚ I / ıX D I ˚

U

; .I ˚ V / ıX D .X ˚ I / ı .I ˚X/ ı .V ˚ I /:

Remark 4.22. All of the above presentations can be simplified by adding in the PROP
structure (cf. Remarks 3.15, 4.10, and 4.14). For example, the category 	 then requires
only the relation

U

ı U D �0.
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4.6. Categories of isotone (partial) transformations

A partial transformation f 2P Tm;n is isotone (order-preserving) if we have x � y)
xf � yf for all x; y 2 dom.f /. The set

P O D ¹f 2 P T W f is isotoneº

is a subcategory of P T . We also have the isotone subcategories of T and 	:

O D P O \ T and O	 D P O \ 	:

The results of Section 2 can be used to obtain presentations for the categories P O, O,
and O	.

For P O and O, we first note the following:

• For fixed n 2 N, the monoid P On has presentation with generators En [Mn [

Hn as in (4.1) and all relations from (PV1)–(PV13) involving no letters from
Sn [ S

�1
n ; cf. [70].

• For fixed n 2 P , the monoid On has presentation with generators Mn [ Hn as
in (4.1) and all relations from (PV1)–(PV13) involving no letters from En [ Sn [

S�1n ; cf. [3].

Applying the usual techniques, we obtain (via Theorem 2.17) a category presentation
for P O, which can then be rewritten (using Theorem 2.19) to yield the following.

Theorem 4.23. The category P O has tensor presentation with generators

V 7!

 
1 2

1 1

!
2 P O2;1; U 7!

 
1

�

!
2 P O1;0;

U

7! .¿/ 2 P O0;1

and relations

U

ı U D �0; V ı U D U ˚ U; .V ˚ I / ı V D .I ˚ V / ı V;

.I ˚

U

/ ı V D I D .

U

˚ I / ı V:

For the category O, we first use the above-mentioned presentations for On to
obtain (via Theorem 2.17) a presentation for OC D

S
m;n2P Om;n and then rewrite it

(using Theorem 2.20) to give the following.

Theorem 4.24. The category O has tensor presentation with generators

V 7!

 
1 2

1 1

!
2 O2;1 and

U

7! .¿/ 2 O0;1

and relations

.V ˚ I / ı V D .I ˚ V / ı V and .I ˚

U

/ ı V D I D .

U

˚ I / ı V:
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Remark 4.25. Theorems 4.23 and 4.24 both include the relation

.I ˚

U

/ ı V D I D .

U

˚ I / ı V;

whereas (PV2)0 has only .I ˚

U

/ ı V D I . The reason for this is that, with the addi-
tional generator X , the second half of this relation follows from the first (and other
parts of (PV1)0–(PV6)0); cf. (4.8).

For the category O	, we could apply Theorems 2.17 and 2.19 as usual, starting
from presentations for the monoids O	n as may be found in [33] for example. How-
ever, the relations from [33] are substantially different from (PV1)–(PV13), so this
would require a great deal more work. In any case, the category O	 is simple enough
that we can give a direct proof of the following.

Theorem 4.26. The category O	 has tensor presentation with generators

U 7!

 
1

�

!
2 O	1;0 and

U

7! .¿/ 2 O	0;1

and the single relation

U

ı U D �0.

Proof. Let � be the digraph over N with edges U W 1! 0 and

U

W 0! 1, and let
ˆ W �~ ! O	 be the morphism in the statement. Let � be the congruence on �~

generated by the relation

U

ı U D �0.
To show that ˆ is surjective, let f 2 O	m;n, and write f D

� a1 ��� ak

b1 ��� bk

�
, where

a1 < � � � < ak (and b1 < � � � < bk). For convenience, we also define a0 D b0 D 0,
and akC1 D mC 1 and bkC1 D nC 1. Then, defining pi D aiC1 � ai � 1 and qi D
biC1 � bi � 1 for all 0 � i � k, we have f D wˆ, where

w D .U˚p0˚

U˚q0/˚I˚.U˚p1˚

U˚q1/˚I˚ � � �

˚.U˚pk�1˚

U˚qk�1/˚I˚.U˚pk˚

U˚qk /: (4.27)

Next,� � ker.ˆ/ is easily checked as usual. For the reverse inclusion, it suffices
to show that every term from �~ is �-equivalent to a term of the form (4.27), as
this form uniquely determines wˆ 2 O	. In fact, by (2.4) and a simple induction,
it is enough to show that for any term w as in (4.27) and for z D �c ˚ x ˚ �d , with
c; d 2N, x 2 ¹U;

U

º, and r.w/D d.z/,w ı z is�-equivalent to a term of the desired
form. For convenience, we write

w D y1 ˚ � � � ˚ yl ;

where y1; : : : ; yl 2 ¹I; U;

U

º are the symbols in the order they appear in (4.27). For
0 � i � l , we write w�i D y1 ˚ � � � ˚ yi and wCi D yiC1 ˚ � � � ˚ yl (interpreting
w�0 D w

C

l
D �0) so that w D w�i ˚ w

C

i for all i .
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Case 1. Suppose first that x D U . Noting that r.w/D d.z/D c C d C 1 > c, let 0 �
m � l be maximal so that r.w�m/ D c. Since r.w�mC1/ > c, we must have ymC1 D I
or

U

, and we have w D w�m ˚ ymC1 ˚w
C
mC1 and r.wCmC1/ D d . If ymC1 D I , then

w ı z D .w�m ˚ I ˚ w
C
mC1/ ı .�c ˚ U ˚ �d /

D .w�m ı �c/˚ .I ı U/˚ .w
C
mC1 ı �d / D w

�
m ˚ U ˚ w

C
mC1:

If ymC1 D

U

, then we similarly show (using

U

ı U � �0) that w ı z � w�m ˚w
C
mC1.

In both cases, the final expressions are either already of the form (4.27) or can be
transformed into the desired form using the relation U ˚

U

D

U

˚ U ; cf. (3.6).

Case 2. If x D

U

, then we again let 0 � m � l be maximal so that r.w�m/ D c,
and this time, we have w ı z D w�m ˚

U

˚ wCm , which is again either already of the
form (4.27), or can be transformed into such form using (3.6).
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