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Dimension expanders via quiver representations

Markus Reineke

Abstract. We relate the notion of dimension expanders to quiver representations and their gen-
eral subrepresentations and use this relation to establish sharp existence results.

1. Introduction

LetF be a field, and let "> 0 be a real number. An "-expander is a tuple .V;T1; : : : ;Tk/,
consisting of a finite-dimensional F -vector space V , together with linear operators
T1; : : : ; Tk on V such that, for all subspaces U � V of dimension dimU � 1

2
dimV ,

we have

dim
�
U C

kX
iD1

Ti .U /

�
� .1C "/ dimU:

This is a linear algebra analogue of the notion of expander graph [7]. It is proven
in [8] for fields of characteristic zero, and in [1, 2] for finite fields, that there exist k
and a fixed " > 0 such that "-expanders .V; T1; : : : ; Tk/ exist for all dimensions of the
F -vector space V .

In the present article, we sharpen this existence result and determine the optimal
expansion coefficient " for F an algebraically closed field (of arbitrary characteristic).

Theorem 1.1. Let F be an algebraically closed field, let k � 2, and define

"k D
�
k C 1 �

p
k2 � 2k C 5

�.
2:

Then, there exist "-expanders .V; T1; : : : ; Tk/ in all dimensions of V if and only if
" � "k .

We will translate this result into a property of dimension vectors of subrepres-
entations of general representations of generalized Kronecker quivers, which we will
derive from results of Schofield [9]. Since these results address Zariski-open proper-
ties of quiver representations of infinitely many dimension types, our proof will be
non-constructive and will require the base field to be algebraically closed.
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We will review the necessary quiver techniques in Section 2. In Section 3, we
describe the dimension vectors of general representations of generalized Kronecker
quivers. The applications to dimension expanders are derived in Section 4; namely,
Theorem 1.1 is derived from the more general Theorem 4.3. Finally, in Section 5, we
discuss potential generalizations to arbitrary quivers.

2. Recollections on quiver representations

From now on, let F be an algebraically closed field. Let Q be a finite quiver with set
of vertices Q0 and arrows written as ˛ W i ! j for i; j 2Q0, which we assume to be
acyclic. We define the Euler form of Q on ZQ0 by

hd; ei D
X
i2Q0

diei �
X
˛Wi!j

diej

for d D .di /i and e D .ei /i in ZQ0. We consider the category repF Q of finite-
dimensional F -representations of Q, which is an abelian F -linear hereditary finite
length category. Its Grothendieck group identifies with ZQ0 by associating to a rep-
resentation V its dimension vector dimV , and its homological Euler form is given by
the Euler form, that is,

dim Hom.V;W / � dim Ext1.V;W / D hdimV;dimW i

for all representations V and W .
For d 2NQ0, we fix F -vector spaces Vi of dimension di for all i 2Q0. We define

the representation space

Rd.Q/ D
M
˛Wi!j

HomF .Vi ; Vj /;

whose points .f˛/˛ we identify with the corresponding representation of Q on the
vector spaces Vi . On the F -vector space Rd.Q/, the reductive linear algebraic group

Gd D
Y
i2Q0

GL.Vi /

acts linearly via
.gi /i .f˛/˛ D .gjf˛g

�1
i /˛Wi!j

such that theGd-orbits OV inRd.Q/ naturally correspond to the isomorphism classes
ŒV � of F -representations V of Q of dimension vector d.

For e � d componentwise, the subset of Rd.Q/ of all representations V admit-
ting a subrepresentation of dimension vector e is Zariski-closed. Therefore, almost
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all representations in Rd.Q/ (that is, those in a Zariski-dense subset) admit a sub-
representation of dimension vector e if and only if all representations in Rd.Q/ do
so. In this case, we write e ,! d. There is a recursive numerical criterion for this
notion due to Schofield in characteristic zero, generalized to positive characteristic by
Crawley–Boevey.

Theorem 2.1 ([3, 9]). We have e ,! d if and only if he0;d � ei � 0 for all e0 ,! e.

3. General subrepresentations of representation of generalized
Kronecker quivers

Our main result in this section, which will directly apply to dimension expanders, is
a non-recursive description of the relation e ,! d for generalized Kronecker quivers

K.m/D 1
.m/
) 2, given by two vertices 1, 2, andm� 2 arrows from 1 to 2. We prepare

this description by some preliminary results.

Lemma 3.1. For dimension vectors ofK.m/, we have .e1; e2/ ,! .d1; d2/ if and only
if .d2 � e2; d1 � e1/ ,! .d2; d1/.

Proof. For a representation V of K.m/ given by an m-tuple f1; : : : ; fm W V1 ! V2

of linear maps, we denote by V � the representation f �1 ; : : : ; f
�
m W V

�
2 ! V �1 . This

obviously defines a duality on repF K.m/. Assume that a general representation V of
dimension vector d admits a subrepresentation U of dimension vector e. Then, dually,
a general representation V � of dimension vector .d2; d1/ admits a factor representa-
tion of dimension vector .e2; e1/, whose kernel is a subrepresentation of dimension
vector .d2 � e2; d1 � e1/. This finishes the proof.

We now extend the Euler form h_ ; _i of Q D K.m/ to RQ0. We fix 0 6D d D
.d1; d2/ 2 NQ0 such that 0 � hd;di D d21 C d

2
2 �md1d2. In particular, d1; d2 � 1,

and �
m �
p

m2 � 4
�.

2 � d2=d1 �
�
mC
p

m2 � 4
�.

2 DW ˇ:

For fixed x 2 Œ0; d1�, we consider the function

qx.y/ D h.x; y/; .d1 � x; d2 � y/i

on Œ0; d2� and denote by cd the smaller of its two zeroes. The explicit form

cd.x/ D
�
mx C d2 �

p
.mx � d2/2 C 4x.d1 � x/

�.
2

shows existence. In particular, cd.x/ � .mx C d2/=2, and mx C d2 � cd.x/ is the
larger zero of qx . We have qx.y/� 0 for cd.x/� y �mxC d2 � cd.x/, and qx.y/� 0
otherwise. We have the following estimate.
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Lemma 3.2. If hd;di � 0, we have d2=d1 � x � cd.x/ � min.mx; d2/.

Proof. We have

qx.d2=d1 � x/ D hx=d1 � d;d � x=d1 � di D x.d1 � x/=d21 � hd;di � 0

by assumption. Thus, the first inequality follows, since cd.x/� .mxC d2/=2, once we
know that d2=d1 � x � .mx C d2/=2. If d2=d1 � m=2, this holds trivially. Otherwise,
we use d2 � md1 to estimate

.d2=d1 �m=2/x � .d2=d1 �m=2/d1 D d2=2C .d2 �md1/=2 � d2=2;

and again, the desired estimate follows.
For the second inequality, we calculate

qx.mx/ D hx � .1;m/;d � x � .1;m/i D x.d1 � x/ � 0I

thus,
cd.x/ � mx � mx C d2 � cd.x/;

which finishes the proof.

Lemma 3.3. If d2 > ˇd1 and e ,! d, then e2 > ˇe1.

Proof. e ,! d implies he; d � ei � 0 by Schofield’s criterion; thus, e2 � cd.e1/ by
definition of cd. It thus suffices to prove that cd.x/ > ˇx provided that d2 > ˇd1.
Since

ˇ2 �mˇ C 1 D 0;

we have

qx.ˇx/ D x.d1 � .m � ˇ/d2/ < xd1.1 �mˇ C ˇ
2/ D 0;

from which we can conclude that cd.x/ > ˇx provided that ˇx � mx C d2 � cd.x/.
But

ˇx < mx � mx C d2 � cd.x/;

since cd.x/ � d2.

We can now derive the main result of this section.

Proposition 3.4. IfQ DK.m/ is them-arrow Kronecker quiver and hd;di � 0, then
for e � d the following are equivalent:

(1) e ,! d;

(2) he;d � ei � 0;

(3) e2 � cd.e1/.
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Proof. Without loss of generality, we assume d1 � d2 using the duality Lemma 3.1.
Obviously, (1) implies (2) implies (3): if e ,! d then, by Schofield’s criterion applied
to e0 D e, we have he; d � ei � 0, and by definition of the function cd, this implies
that e2 � cd.e1/. Conversely, assume that this inequality holds, and let e0 ,! e. We
want to prove that he0;d� ei � 0; then e ,! d follows from Schofield’s criterion. We
first assume that he; ei � 1; thus, e2 > ˇe1 or e2 < .m � ˇ/e1. Since e2 � cd.e1/ �

d2=d1 � e1 � e1, by assumption and Lemma 3.2, we have e2 > ˇe1 since ˇ � 1. By
Lemma 3.3, we find e02 > ˇe

0
1, and thus

he0;d�eiDe01.d1�e1�m.d2�e2//Ce
0
2.d2�e2/>e

0
1.d1�e1�.m � ˇ/.d2�e2//:

Since d2 � ˇd1, we have d2 � e2 < ˇ.d1 � e1/; thus, d1 � e1 > .m � ˇ/.d2 � e2/,
proving the claim. Now, we assume that he; ei � 0. By Lemma 3.2, we have

e02 � ce.e
0
1/ � e2=e1 � e

0
1;

and thus

he0;d � ei D e01.d1 � e1 �m.d2 � e2//C e
0
2.d2 � e2/

� e01=e1 � .e1.d1 � e1/ �me1.d2 � e2/C e2.d2 � e2//

D e01=e1 � he;d � ei � 0;

again proving the claim.

The following graph shows the set of all e ,! .20; 20/ for m D 4:
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- e1

e2

4. Application to dimension expanders

We generalize the definition of dimension expanders of Section 1, following [5], to
a notion of expander representation. Proposition 3.4 then almost immediately yields
sharp existence results.
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Definition 4.1. Let 0 < ı < 1 and " > 0, and let V and W be non-zero finite-dimen-
sional F -vector spaces. We call a representation f1; : : : ; fm W V ! W of K.m/ a
.ı; "/-expander representation if, for all subspaces 0 6D U � V such that dimU

dimV � ı,
we have

dim
mX
kD1

fk.U / � .1C "/ �
dimW

dimV
� dimU:

The following lemma translates the existence of expander representations to prop-
erties of dimension vectors of subrepresentations of general representations.

Lemma 4.2. For fixed integers m; d1; d2 � 1 and real numbers 0 < ı < 1, " > 0,
there exists a .ı; "/-expander representation of K.m/ of dimension vector .d1; d2/ if
and only if for all .e1; e2/ ,! .d1; d2/ such that e1 � ı � d1, we have

e2 � .1C "/ �
d2

d1
� e1:

Proof. Assume that there exists such an expander representation M given by f1; : : : ;
fm W V ! W , and assume that .e1; e2/ ,! .d1; d2/. Then, in particular, M admits a
subrepresentation of dimension vector .e1; e2/; that is, there exists a subspace U � V
of dimension e1 such that

P
k fk.U / is of dimension at most e2. On the other hand,P

k fk.U / is at least of dimension .1C "/ � d2

d1
� dimU . The claimed inequality for

e2 follows. Conversely, assume that the numerical condition is satisfied. Then, the set
S.e1;e2/ �R.d1;d2/.K.m// of representations admitting a subrepresentation of dimen-
sion vector .e1; e2/ is a proper Zariski-closed subset whenever e2 < .1C "/ � d2

d1
� e1.

Thus, the union of all these finitely many proper closed subsets is again a proper sub-
set, and any representation in its complement is a .ı; "/-expander representation by
definition.

This allows us to establish the following sharp existence result.

Theorem 4.3. Fix an integerm� 1, real numbers 0 < ı < 1 and " > 0, and a rational
˛ such that

˛2 �m˛ C 1 < 0 and mı C ˛ � 2˛ı > 0:

Define

"m.˛; ı/ D
mı C ˛ � 2˛ı �

p
.mı � ˛/2 C 4ı.1 � ı/

2˛ı
> 0:

Then, there exist .ı; "/-expander representations of K.m/ for all dimension vectors
.d1; d2/ such that d2=d1 D ˛ if and only if " � "m.˛; ı/.

Proof. The assumptions on ˛ ensure that "m.˛; ı/ > 0 by a straightforward calcula-
tion. We consider dimension vectors d such that d2=d1 D ˛; in particular, hd;di < 0.
By the previous lemma and Proposition 3.4, we have the following.



Dimension expanders via quiver representations 117

There exists a .ı; "/-expander representation of K.m/ of dimension vector d if
and only if e2 � .1C "/˛e1 for all e1 � ıd1 and all e2 � cd.e1/, or, equivalently, if
dcd.x/e � .1C "/˛x for all integral x � ı � d1.

This implies the following.
There exist .ı; "/-expander representations of K.m/ for all dimension vectors

.d1; d2/ such that d2=d1 D ˛ if and only if dcd.x/e � .1C "/˛x for all dimension
vectors d D .d1; d2/ such that d2=d1 D ˛ and all integral x � ıd1.

The function cd.x/ is concave on the interval Œ0; d2� since, by a straightforward
calculation, its second derivative equals

c00d .x/ D
2hd;di

..mx � d2/2 C 4x.d1 � x//3=2
;

which is negative by assumption. Thus, in the interval Œ0; ıd1�, the fraction cd.x/=x

attains its minimum at ıd1. For � 2 Œ0; 1�, we have

cd.�d1/=.˛�d1/ D 1C "m.˛; �/I

thus, in the interval Œ0; ı�, the function "m.˛; �/ of � attains its minimum at � D ı. We
thus find that the above existence condition is equivalent to

d.1C "m.˛; �//˛�d1e � .1C "/˛�d1

for all d1 such that ˛d1 is integral and all � 2 Œ0; ı� such that �d1 is integral. This is
clearly equivalent to "m.˛; �/ � " for all � 2 Œ0; ı�, and this in turn to "m.˛; ı/ � ".
This finishes the proof.

This result immediately implies Theorem 1.1 as the special casemD kC 1, ˛D 1,
ı D 1=2. Namely, in a general representation ofK.kC 1/ of dimension vector .d;d/,
the map representing the first arrow is invertible; thus, without loss of generality, the
identity, and id; T1; : : : ; Tk W V ! V defines an expander representation if and only if
.V; T1; : : : ; Tk/ is a dimension expander; moreover, "kC1.1; 1=2/ D "k .

5. Potential generalizations

We finish with a few remarks suggesting further directions.
The characterization of dimension vectors e ,! d of subrepresentations of general

representation by the single quadratic equation he; d � ei � 0 of Proposition 3.4 is
special to the quivers K.m/. Namely, we have the following.

Example 5.1. For the complete bipartite three-vertex quiver � ) � ( �, the dimen-
sion vector d D .3; 6; 5/ is a Schur root (even belonging to the fundamental domain),
and e D .3; 5; 1/ fulfills he;d � ei � 0 (even > 0), but e 6,! d.
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It is natural to ask whether the explicit dimension expanders constructed in [8]
using representations of SL2.Z/, and in [1] using monotone expanders, are already
"k-expanders for the optimal expansion coefficients "k .

In another direction, dimension expanders were used in [4] to construct non-
hyperfinite families of representations of generalized Kronecker quivers, and it would
be interesting to know whether the present methods yield new insights about such
families.

Representations f1; : : : ;fm W V1! V2 such that dim
P
k fk.U / >

dimV2

dimV1
dimU for

all proper non-zero subspaces U � V1 are stable in the sense of geometric invariant
theory [6]; thus, the .ı; "/-expander property might be viewed as a quantitative form
of stability. This point of view suggests a generalization to arbitrary quivers which we
sketch in the following, leaving details to future work.

So, let Q be a finite quiver, and let ‚; � 2 .RQ0/� be linear functionals, with
� assuming positive values on positive vectors. We consider dimension vectors d 2
NQ0 for Q such that ‚.d/ D 0 and real numbers 0 < ı < 1 and " > 0.

Definition 5.2. A representation V of Q of dimension vector dimV D d is called
a .ı; "/-expander relative to ‚; � if, for all subrepresentations U � V such that
�.dimU/� ı � �.d/, we have‚.dimU/� " � �.dimU/. We say that .Q;‚;�/ exhib-
its uniform expansion if, for all 0 < ı < 1, there exists " > 0 such that there exist
.ı; "/-expander representations relative to ‚; � for infinitely many dimension vectors
d such that ‚.d/ D 0.

The methods of Section 4, in particular Lemma 4.2 and Theorem 4.3, can be
modified to work for general ‚, � for the quivers K.m/, proving uniform expansion
(in the sense of the definition) in this case. They can be further generalized to special
classes of bipartite quivers, for which the problem can be effectively reduced to a
convexity property as in the proof of Theorem 4.3. It is natural to conjecture that
every wild quiver exhibits uniform expansion with respect to suitable ‚, �.
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