
J. Comb. Algebra 8 (2024), 209–249
DOI 10.4171/JCA/83

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

A generalization of the Davis–Moussong complex
for Dyer groups

Mireille Soergel

Abstract. A common feature of Coxeter groups and right-angled Artin groups is their solution
to the word problem. Matthew Dyer introduced a class of groups, which we call Dyer groups,
sharing this feature. This class includes, but is not limited to, Coxeter groups, right-angled Artin
groups, and graph products of cyclic groups. We introduce Dyer groups by giving their standard
presentation and show that they are finite-index subgroups of Coxeter groups. We then introduce
a piecewise Euclidean cell complex† which generalizes the Davis–Moussong complex and the
Salvetti complex. The construction of† uses simple categories without loops and complexes of
groups. We conclude by proving that the cell complex † is CAT.0/.

1. Introduction

There is extensive literature on Coxeter groups as well as on right-angled Artin groups
and more generally graph products of cyclic groups. One common feature of these
two families of groups is their solution to the word problem. It was given by Tits
for Coxeter groups [16] and by Green for graph products of cyclic groups [9]. The
algorithm does not only give a solution to the word problem but also allows to detect
whether a word is reduced or not. In his study of reflection subgroups of Coxeter
groups, Dyer introduces a family of groups which contains both Coxeter groups and
graph products of cyclic groups. A close study of [7] also implies that this class of
groups, which we call Dyer groups, has the same solution to the word problem as
Coxeter groups and graph products of cyclic groups. A complete and explicit proof is
given in [15].

Similar to Coxeter groups and right-angled Artin groups, the presentation of a
Dyer group can be encoded in a graph. Consider a simplicial graph � with vertices
V D V.�/ and edges E D E.�/, a vertex labeling f W V ! N�2 [ ¹1º, and an
edge labeling m W E ! N�2. We say that the triple .�; f; m/ is a Dyer graph if for
every edge e D ¹v;wº with f .v/ � 3 we have m.e/ D 2. The associated Dyer group
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D D D.�; f;m/ is given by the following presentation:

D D hxv; v 2 V j x
f .v/
v D e if f .v/ ¤1;

Œxv; xu�m.e/ D Œxu; xv�m.e/ for all e D ¹u; vº 2 Ei;

where Œa; b�k D aba : : :„ ƒ‚ …
k

for any a; b 2 D, k 2 N, and we denote the identity with e.

It is natural to ask the following question. Consider a property P satisfied by both
Coxeter groups and graph products of cyclic groups. Do Dyer groups also satisfy P?

In [6], Davis and Januszkiewicz show that right-angled Artin groups are finite-
index subgroups of right-angled Coxeter groups. For a right-angled Artin group A,
they give right-angled Coxeter groups W and W 0, where W 0 and A are both finite-
index subgroups of W and moreover the cubical complexes corresponding to A and
W 0 are identical. Inspired by this work, we consider the following question: are Dyer
groups finite-index subgroups of Coxeter groups? Out of a Dyer graph .�; f; m/, we
build a labeled simplicial graph ƒ and prove the following statement.

Theorem 1.1 (Theorem 2.8). We have W.ƒ/ Š D.�; f; m/ Ì� .Z=2Z/k for some
determined k 2 N.

The next corollary is a direct consequence.

Corollary 1.2 (Corollary 2.9). Every Dyer group is a finite-index subgroup of some
Coxeter group.

This corollary has many interesting consequences; among others, it implies that
Dyer groups are CAT.0/ [5, Theorem 12.3.3], linear [1, Corollary 2], and biauto-
matic [14]. This is the starting point for a more precise study of their geometry.
Coxeter groups are known to act properly and cocompactly by isometries on the
Davis–Moussong complex, while right-angled Artin groups are known to act properly
and cocompactly by isometries on the Salvetti complex. Moreover, graph products of
cyclic groups are known to be CAT.0/ by [8, Theorem 8.20]. The aim is to construct
an analog of the Davis–Moussong and Salvetti complexes for Dyer groups, and by
way of construction, give a unified description of them. The piecewise Euclidean cell
complex † associated to a Dyer group D is constructed as follows. One considers a
simple category without loops X and a complex of groups D.X/. The development
C of D.X/ will then encode the necessary information to build †. In Section 4.1,
this is done for the case of spherical Dyer groups, where a Dyer group D is spher-
ical if it decomposes as a direct product D2 � D1 � Dp with D2 a finite Coxeter
group, D1 D Zn for some n 2 N, and Dp a direct product of finite cyclic groups.
In Section 4.2, the construction of Section 4.1 is extended to any Dyer group. The
complexes D.X/ and C are analogs to the poset of spherical subsets � and the poset
of spherical cosetsW � for Coxeter groups, which are recalled in Section 3.2. Finally,
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Section 4.3 is devoted to the construction of the piecewise Euclidean cell complex †,
on which the Dyer group D acts properly and cocompactly, and culminates with the
proof of the following statement.

Theorem 1.3 (Theorem 4.21). The cell complex † is CAT.0/.

As we do not assume the reader to be familiar with simple categories without loops
(scwols), Section 3.1 recalls the definitions and statements needed for the construction
of the scwol C . In Sections 3.2 and 3.3, we recall the constructions of the Davis–
Moussong complex and of the Salvetti complex.

2. Dyer groups

We recall the definition of Dyer groups as given in the introduction. These groups
were introduced by Dyer in [7]. It follows from Dyer’s work that Dyer groups have the
same solution to the word problem as Coxeter groups and right-angled Artin groups;
this aspect of Dyer groups is discussed in detail in [15].

Definition 2.1. Let � be a simplicial graph with set of vertices V D V.�/ and set
of edges E D E.�/. Consider maps f W V ! N�2 [ ¹1º and m W E ! N�2 such
that for every edge e D ¹v; wº with f .v/ � 3 we have m.e/ D 2. We call the triple
.�; f;m/ a Dyer graph.

Definition 2.2. Let .�; f; m/ be a Dyer graph. The Dyer group D D D.�; f; m/

associated to the Dyer graph .�; f;m/ is given by the following presentation:

D D hxv; v 2 V j x
f .v/
v D e if f .v/ ¤1;

Œxv; xu�m.e/ D Œxu; xv�m.e/ for all e D ¹u; vº 2 Ei;

where Œa; b�k D aba : : :„ ƒ‚ …
k

for any a; b 2 D, k 2 N, and we denote the identity with e.

The pair .D; ¹xv; v 2 V º/ is called a Dyer system.

Example 2.3. As mentioned in the introduction, Coxeter groups, right-angled Artin
groups, and graph products of cyclic groups are examples of Dyer groups.

Remark 2.4. For a subset W � V , we can consider �W the full subgraph of �
spanned by W and the restrictions

fW D f W and mW D m E.�W /:

The triple .�W ; fW ;mW / is again a Dyer graph. We denote the associated Dyer group
by DW . From [7], we know that the homomorphism DW ! D induced by the inclu-
sion W ,! V is injective, hence, DW can be regarded as a subgroup of D.
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Figure 1. Dyer graph �m;q for some m; q 2 N�2.

Definition 2.5. Let V2 D ¹v 2 V j f .v/D 2º, V1 D ¹v 2 V j f .v/D1º, and Vp D
V n ¹V2 [ V1º. For i 2 ¹2; p;1º, let �i be the full subgraph spanned by Vi and
Di the Dyer group associated to the triple .�i ; fVi

; mVi
/. Note that D2 is a Coxeter

group,D1 a right angled Artin group, andDp a graph product of finite cyclic groups.

Example 2.6. Let m; q 2 N�2. Consider the Dyer graph �m;q given in Figure 1. The
associated Dyer group is

Dm;q D ha; b; c; d j b
2
D c2 D dq D e; ab D ba; .bc/m D e; cd D dci:

We recall the definition of Coxeter groups.

Definition 2.7. Let ƒ be a simplicial graph with set of vertices V D V.ƒ/ and set of
edges E D E.ƒ/. Let m W E ! N�2 be an edge labeling of ƒ. The Coxeter group
W D W.ƒ/ associated to the graph ƒ is given by the following presentation:

W D hxv; v 2 V j x
2
v D e for all v 2 V;

Œxv; xu�m.e/ D Œxu; xv�m.e/ for all e D ¹u; vº 2 Ei;

where Œa; b�k D aba : : :„ ƒ‚ …
k

for any a; b 2 W , k 2 N, and we denote the identity with e.

Note that for an edge e D ¹u; vº 2 E the relation

Œxv; xu�m.e/ D Œxu; xv�m.e/

is equivalent to the relation .xvxu/m.e/ D e, since x2u D x
2
v D e.

Dyer groups are finite-index subgroups of Coxeter groups. The aim is now to
show that every Dyer group is a finite-index subgroup of a Coxeter group. From a
given Dyer graph .�; f;m/, we build a graph ƒ with edge labeling m0. We then show
that D.�; f; m/ is a finite-index subgroup of W.ƒ/. See Example 2.11 for a simple
case. We define the undirected labeled simplicial graph ƒ. Its set of vertices is the
disjoint union V.ƒ/ D V q .Vp [ V1/. We will refer to the elements of the disjoint
copy of Vp [ V1 as v0 for v 2 Vp [ V1. Two vertices u; v 2 V � V.ƒ/ span an edge
in ƒ if and only if they span an edge e D ¹u; vº in � , and we set the label of the edge
e D ¹u; vº 2 E.ƒ/ to bem0.e/D m.e/. For all u 2 Vp [ V1 and v 2 V.ƒ/ n ¹u;u0º,
there is an edge e D ¹u0; vº 2 E.ƒ/ labeled by m0.e/ D 2. Finally, for all u 2 Vp ,
there is an edge e D ¹u; u0º 2 E.ƒ/ labeled by m0.e/ D f .u/. So, V � V.ƒ/ spans
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a copy of � inƒ and the disjoint copy Vp [ V1 � V.ƒ/ spans a complete graph inƒ.
LetW DW.ƒ/ be the Coxeter group associated to the graphƒ. We give an action of
.Z=2Z/Vp[V1 on D. For v 2 Vp [ V1, let �v W ¹xu; u 2 V º ! D with �v.xu/ D xu
for any u 2 V n ¹vº and �v.xv/ D x�1v . For all v 2 Vp [ V1, the map �v extends to
a homomorphism �v W D ! D. Moreover, for all u; v 2 Vp [ V1, �v ı �u D �u ı �v ,
and .�v/2 D e. Hence, we have an action � W .Z=2Z/Vp[V1 �D ! D.

Theorem 2.8. We have W Š D Ì� .Z=2Z/Vp[V1 .

Proof. Let us first recall the presentations of W , D, and U D D Ì� .Z=2Z/Vp[V1 :

W D hyv; v 2 V.ƒ/ j 8v 2 V.ƒ/; .yv/
2
D e

and 8e D ¹u; vº 2 E.ƒ/; .yuyv/m
0.e/
D ei;

D D hxv; v 2 V j x
f .v/
v D e if f .v/ ¤1;

Œxv; xu�m.e/ D Œxu; xv�m.e/ for all e D ¹u; vº 2 Ei;

U D h¹xu; u 2 V º [ ¹�v; v 2 Vp [ V1º j x
f .u/
u D e for all u 2 V with f .u/ ¤1;

Œxv; xu�m.e/ D Œxu; xv�m.e/ for all e D ¹u; vº 2 E;

�2v D e for all v 2 Vp [ V1; �v�u D �u�v for all u; v 2 Vp [ V1;

�uxv D xv�u for all u 2 Vp [ V1; v 2 V n ¹uº;

�uxu�u D x
�1
u for all u 2 Vp [ V1i:

We show that U is isomorphic toW by giving explicit homomorphisms � WW !
U and  W U ! W satisfying � ı  D IdU and  ı � D IdW .

First, consider the map � W ¹yv; v 2 V.ƒ/º ! U defined as follows: for u 2 V2,
�.yu/ D xu and for u 2 Vp [ V1, �.yu/ D �uxu, and �.yu0/ D �u. We show that �
extends to a homomorphism � W W ! U .

(1) For u 2 V2, �.yu/2 D x2u D e. For u 2 Vp [ V1, �.yu0/2 D �2u D e and
�.yu/

2 D �uxu�uxu D x
�1
u xu D e. So, �.yu/2 D e for all u 2 V.ƒ/.

(2) Let u; v 2 V � V.ƒ/ with e D ¹u; vº 2 E.ƒ/, so e 2 E and m0.e/ D m.e/.
If u; v 2 V2, we have

.�.yu/�.yv//
m0.e/

D .xuxv/
m.e/
D e

since x2u D x2v D e, and hence, Œxu; xv�m.e/ D Œxv; xu�m.e/ is equivalent to
.xuxv/

m.e/ D e. If u 2 V2 and v 2 Vp [ V1, we have m0.e/ D 2, and so, the
relations in U give the equality

�.yu/�.yv/ D xu�vxv D �vxuxv D �vxvxu D �.yv/�.yu/:

If u; v 2 Vp [ V1, m0.e/ D 2, and we have

�.yu/�.yv/D�uxu�vxvD�u�vxuxvD�v�uxvxuD�vxv�uxuD�.yv/�.yu/:
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(3) Let u 2 Vp [ V1 and v 2 V n ¹uº. Then, there is an edge ¹u0; vº 2 E.ƒ/ with
m0.¹u0; vº/ D 2. If v 2 V2, �.yu0/�.yv/ D �uxv D xv�u D �.yv/�.yu0/. If
v 2 Vp [ V1 n ¹uº, we have

�.yu0/�.yv/ D �u�vxv D �v�uxv D �vxv�u D �.yv/�.yu0/:

(4) Let u 2 Vp [ V1 and v 2 .Vp [ V1/ n ¹uº, then there is an edge ¹u0; v0º 2
E.ƒ/ with m0.¹u0; v0º/ D 2, and we have

�.yu0/�.yv0/ D �u�v D �v�u D �.yv0/�.yu0/:

(5) For every u 2 Vp , there is an edge ¹u0; uº 2 E.ƒ/ labeled by m0.¹u0; uº/ D
f .u/, and we have

.�.yu0/�.yu//
f .u/
D .�u�uxu/

f .u/
D xf .u/u D e:

So, the map � extends to a homomorphism � W W ! U .
Now, consider the map  W ¹xu; u 2 V º [ ¹�v; v 2 Vp [ V1º ! W defined as

follows: for u 2 V2,  .xu/D yu and for u 2 Vp [ V1,  .xu/D yu0yu, and  .�u/D
yu0 . We show that  extends to a homomorphism from U to W .

(1) For all v 2 V2, f .v/ D 2, and so,  .xv/f .v/ D y2v D e, and for all v 2 Vp ,
there is an edge e D ¹v; v0º 2 E.ƒ/ with m0.e/ D f .v/, so

 .xv/
f .v/
D .yv0yv/

f .v/
D e:

(2) For all eD ¹u;vº 2E, there is an edge eD ¹u;vº 2E.ƒ/withm0.e/Dm.e/.
If u; v 2 V2, we have

Œ .xu/;  .xv/�m.e/ D Œyu; yv�m.e/ D Œyv; yu�m.e/ D Œ .xv/;  .xu/�m.e/:

If u 2 V2 and v 2 Vp [ V1, we have m.e/ D 2 and

 .xu/ .xv/ D yuyv0yv D yv0yuyv D yv0yvyu D  .xv/ .xu/:

If u; v 2 Vp [ V1, m.e/ D 2, and

 .xu/ .xv/ D yu0yuyv0yv D yv0yvyu0yu D  .xv/ .xu/;

as yuyv0 D yv0yu, yvyu0 D yu0yv , and yu0yv0 D yv0yu0 .

(3) For all v 2 Vp [ V1, we have  .�v/2 D y2v0 D e.

(4) For all u; v 2 Vp [ V1 distinct, we have e D ¹u0; v0º 2 E.ƒ/ withm0.e/D 2,
so  .�u/ .�v/ D yu0yv0 D yv0yu0 D  .�v/ .�u/.
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(5) For all u 2 Vp [ V1 and v 2 V n ¹uº, we have ¹u0; vº; ¹u0; v0º 2 E.ƒ/ with
labels m0.¹u0; vº/ D 2 and m0.¹u0; v0º/ D 2. If v 2 V2, we have

 .�u/ .xv/ D yu0yv D yvyu0 D  .xv/ .�u/:

If v 2 Vp [ V1, we have

 .�u/ .xv/ D yu0yv0yv D yv0yu0yv D yv0yvyu0 D  .xv/ .�u/:

(6) For all u 2 Vp [ V1,

 .�u/ .xu/ .�u/ D yu0yu0yuyu0 D .yu0yu/
�1
D  .xu/

�1:

So, the map  extends to a homomorphism  W U ! W .
We now check that � ı  D IdU and  ı � D IdW by showing that these maps

are the identity on the generators. For v 2 V2, we have �. .xv// D �.yv/ D xv and
 .�.yv// D  .xv/ D yv . For v 2 Vp [ V1,

�. .xv// D �.yv0yv/ D �v�vxv D xv

and �. .�v// D �.yv0/ D �v . For v 2 Vp [ V1,

 .�.yv// D  .�vxv/ D yv0yv0yv D yv

and  .�.yv0// D  .�v/ D yv0 .

Corollary 2.9. Every Dyer group is a finite-index subgroup of some Coxeter group.

Remark 2.10. As mentioned in the introduction, Corollary 2.9 has many interesting
consequences. It implies that Dyer groups are CAT.0/ [5, Theorem 12.3.3], linear [1],
and biautomatic [14] and that they satisfy the Baum–Connes conjecture, the Farrell–
Jones conjecture, the Haagerup property, and the strong Tits alternative. They also
admit a proper and virtually special action on a CAT.0/ cube complex.

Example 2.11. We apply the previous theorem to Example 2.6. The corresponding
graph ƒ is given in Figure 2. So, by Theorem 2.8, the Dyer group Dm;q is an index 4
subgroup of the Coxeter group

W D
˝
a; b; c; d; a0; d 0 j a2 D b2 D c2 D d2 D a02 D d 02 D e;

.ab/2 D .bc/m D .cd/2 D e;

.a0b/2 D .a0c/2 D .a0d/2 D .a0d 0/2 D e;

.d 0a/2 D .d 0b/2 D .d 0c/2 D e; .d 0d/q D e
˛
:
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a b c d
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d 0
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Figure 2. The graph ƒm;q built out of the Dyer graph �m;q for some m; q 2 N�2. We color
coded the vertices V � V.ƒ/ and ¹v0 j v 2 Vp [ V1º. For the edges: for edges of the form e D

¹u;u0º and for edges of the form e D ¹u0; vº, v 2 V.ƒ/ n ¹u;u0º, and u0 2 ¹v0 j v 2 Vp [ V1º.
Every edge is labeled by 2, if not specified otherwise.

The Dyer group D is not the only Dyer group, up to isomorphism, which is a
finite-index subgroup of W . We describe another such Dyer group D0 D D.�; g; n/
by giving the Dyer graph .�; g; n/. The vertices of � are the disjoint union

V.�/ D V q V1:

We will refer to the elements of the disjoint copy of V1 as v0 for v 2 V1. The label-
ing of the vertices is defined as follows: g .V2[V1/qV1

D 2 and g Vp
D f Vp

. The
subsets V2 [ Vp [ V1 and .V2 [ Vp/q V1 both span copies of � , with the same
labeling of edges, and for u; v 2 V1, the vertices v; u0 span an edge labeled by 2 in�
if and only if v and u span an edge in � . Let D0 be the Dyer group associated to �.
Note that every generator xv , v 2 V.�/ of D0 has finite order. We now give an action
of .Z=2Z/Vp[V1 onD0. For v 2 Vp , let �v W ¹xu; u 2 V.�/º !D0 with �v.xu/D xu
for any u 2 V.�/ n ¹vº and �v.xv/D x�1v . For v 2 V1, let �v W ¹xu; u 2 V.�/º !D0

with �v.xu/D xu for any u 2 V.�/ n ¹v; v0º and �v.xv/D xv0 and �v.xv0/D xv . For
all v 2 Vp [ V1, the map �v extends to a homomorphism �v W D

0 ! D0. Moreover,
for all u; v 2 Vp [ V1, �v ı �u D �u ı �v , and .�v/2 D e. Hence, we have an action
� W .Z=2Z/Vp[V1 �D0 ! D0.

Theorem 2.12. We have W Š D0 Ì� .Z=2Z/Vp[V1 .

Proof. Let us first recall the presentations of W ,D0, and U D D0 Ì� .Z=2Z/Vp[V1 .

W D hyv; v 2 V.ƒ/ j 8v 2 V.ƒ/; .yv/
2
D e

and 8e D ¹u; vº 2 E.ƒ/; .yuyv/m
0.e/
D ei;

D0 D hxv; v 2 V.�/ j x
g.v/
v D e for all v 2 V.�/;

Œxv; xu�n.e/ D Œxu; xv�n.e/ for all e D ¹u; vº 2 E.�/i;
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a b c d

a0

m q

Figure 3. The graph �m;q built out of the Dyer graph �m;q for some m; q 2 N�2. There are
two types of vertices: V � V.ƒm;q/ and ¹v0 j v 2 V1º. Every vertex and every edge is labeled
by 2, if not specified otherwise.

U D h¹xu; u 2 V.�/º [ ¹�v; v 2 Vp [ V1º j x
g.u/
u D e for all u 2 V.�/;

Œxv; xu�n.e/ D Œxu; xv�n.e/ for all e D ¹u; vº 2 E.�/;

�2v D e for all v 2 Vp [ V1; �v�u D �u�v for all u; v 2 Vp [ V1;

�uxv D xv�u for all u 2 Vp; v 2 V.�/ n ¹uº;

�uxv D xv�u for all u 2 V1; v 2 V.�/ n ¹u; u0º;

�uxu�u D x
�1
u for all u 2 Vp; �uxu�u D xu0 for all u 2 V1i:

As in Theorem 2.8, we can check that U is isomorphic to W by considering
explicit homomorphisms � W W ! U and  W U ! W satisfying � ı  D IdU and
 ı � D IdW .

The map � W ¹yv; v 2 V.ƒ/º ! U is given as follows: for u 2 V2, �.yu/ D xu;
for u 2 Vp , �.yu/ D �uxu, and �.yu0/ D �u, and for u 2 V1, �.yu/ D xu, and
�.yu0/ D �u. One can easily check, using methods which are similar to those used in
the proof of Theorem 2.8, that the map � induces a homomorphism

� W W ! U:

The map  W ¹xu; u 2 V.�/º [ ¹�v; v 2 Vp [ V1º ! W is given as follows: for
u 2 V2,  .xu/ D yu; for u 2 Vp ,  .xu/ D yu0yu and  .�u/ D yu0 ; and finally, for
u 2 V1,  .xu/ D yu,  .xu0/ D yu0yuyu0 , and �.�u/ D yu0 . Again, one can easily
check, using methods which are similar to those used in the proof of Theorem 2.8,
that the map  induces a homomorphism

 W U ! W;

that � ı  D IdU , and that  ı � D IdW .

Example 2.13. We apply the previous theorem to Example 2.6. The corresponding
graph �m;q is given in Figure 3. The associated Dyer group is

D0m;q D ha; b; c; d; a
0
j a2 D a02 D b2 D c2 D dq D e;
ab D ba; a0b D ba0; .bc/m D e; cd D dci:
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It is an index 4 subgroup of the Coxeter group W associated to the graph ƒm;q given
in Figure 2.

Remark 2.14. If the Dyer group D is a right-angled Artin group, i.e., V D V1,
the constructions described here are those given in [6]. In particular, if D is a right-
angled Artin group, the groups W and D0 are right-angled Coxeter groups. So, there
is a decomposition of W as a semi-direct product of a right-angled Artin group and
the right-angled Coxeter group .Z=2Z/V .

Remark 2.15. There is a Coxeter group W 0 associated to the Dyer group D0 such
thatW 0 DD0 Ì .Z=2Z/Vp . The following questions arise: doW andW 0 relate in any
(meaningful) way? What can we say about their Davis–Moussong complexes? How
doD andD0 relate to each other? What are all the Dyer subgroups of a given Coxeter
group?

3. Complexes of groups

This section introduces the tools needed in Section 4. We first recall necessary defini-
tions and results about small categories without loops. We then recall the constructions
of the Davis–Moussong complex and of the Salvetti complex.

3.1. Introduction to scwols

Small categories without loops (scwols) and complexes of groups were introduced
by Haefliger in [10, 11]. Based on [2], we would like to recall some notions about
scwols and complexes of groups, as we do not assume the reader to be familiar with
these constructions. We hope to give all necessary definitions and results; details can
be found in [2]. The reader familiar with scwols might only consider the specific
examples developed in this section as they will be used in the construction of the cell
complex †.

A small category without loops (scwol) X consists of a set V.X/, called the vertex
set of X, and a set E.X/, called the set of edges of X. Additionally, two maps i W
E.X/! V.X/ and t W E.X/! V.X/ are given. We call i.˛/ the initial vertex of
˛ 2 E.X/ and t .˛/ the terminal vertex of ˛ 2 E.X/. The set E.2/.X/ denotes the
pairs .˛; ˇ/ 2 E.X/ � E.X/ with i.˛/ D t .ˇ/. A third map ı W E.2/.X/! E.X/

associates to each pair .˛; ˇ/ an edge ˛ˇ, called their composition. These sets and
maps need to satisfy the following conditions:

(1) for all .˛; ˇ/ 2 E.2/, we have i.˛ˇ/ D i.ˇ/ and t .˛ˇ/ D t .˛/;

(2) for all ˛;ˇ;  2 E.X/, if i.˛/D t .ˇ/ and i.ˇ/D t ./, then .˛ˇ/ D ˛.ˇ/;
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(3) for each ˛ 2 E.X/, we have i.˛/ ¤ t .˛/.

A subscwol X0 of X is given by subsets V.X0/� V.X/ andE.X0/�E.X/ such
that if ˛ 2 E.X0/, then i.˛/; t.˛/ 2 V.X0/, and if ˛; ˇ 2 E.X0/ with i.˛/ D t .ˇ/,
then ˛ˇ 2 E.X0/.

Remark 3.1. To any poset .P ; </ we can associate a scwol X, where the set of
vertices is P and the set of edges are pairs .a;b/ 2P �P such that b < a, t ..a;b//D
a, and i..a; b// D b.

Definition 3.2 (Product of scwols). Given two scwols X and Y, their product X � Y

is the scwol defined as follows: V.X � Y/ D V.X/ � V.Y/ and

E.X � Y/ D .E.X/ � V.Y// t .E.X/ �E.Y// t .V .X/ �E.Y//:

The maps i; t W E.X � Y/! V.X � Y/ are defined by i.˛; ˇ/ D .i.˛/; i.ˇ// and
t .˛; ˇ/ D .t.˛/; t.ˇ// (we consider i.v/ D t .v/ D v for any v 2 V.X/ t V.Y/) and
the composition .˛;˛0/.ˇ;ˇ0/D .˛ˇ;˛0ˇ0/whenever t .ˇ;ˇ0/D i.˛;˛0/ (we consider
˛ˇ D ˛ whenever ˛ 2 E.X/ t E.Y/ and ˇ D i.˛/ 2 V.X/ t V.Y/, and ˛ˇ D ˇ
whenever ˇ 2 E.X/ tE.Y/ and ˛ D t .ˇ/ 2 V.X/ t V.Y/).

Remark 3.3. Let Œn�D ¹1; : : : ;nº. One can inductively define the product of n scwols
X1; : : : ;Xn. Then, the product X D

Q
j2Œn� Xj is the scwol with vertices V.X/ DQ

j2Œn� V.Xj / and edges

E.X/ D
G

S�Œn�;S¤;

� Y
j2Sc

V.Xj /
�
�

�Y
j2S

E.Xj /
�
:

The maps i; t W E.X/! V.X/ are defined by

i.˛/ D i.. j̨ /j2Œn�/ D .i. j̨ //j2Œn� and t .˛/ D t .. j̨ /j2Œn�/ D .t. j̨ //j2Œn�

(we consider i.v/ D t .v/ D v for any v 2
F
j2Œn� V.Xj /) and the composition ˛ˇ D

. j̨ /j2Œn�. ǰ /j2Œn� D . j̨ ǰ /j2Œn� whenever defined.

Example 3.4. Consider a finite set S . Let P .S/ be the set of subsets of S . Consider
the poset .P .S/;�/ and its associated scwol YS . Then, YS D

Q
v2S Y¹vº. Moreover,

for any v 2 S , the scwol Y¹vº, also denoted by Yv , has two vertices ; and ¹vº and a
single edge ev with i.ev/ D ; and t .ev/ D ¹vº.

Example 3.5. Consider a finite set S . For v 2 S , let Z¹vº D Zv be the scwol consist-
ing of two vertices ; and ¹vº and of two edges denoted by .;; ¹vº;;/ and .;; ¹vº; ¹vº/
with i.;; ¹vº; ;/ D i.;; ¹vº; ¹vº/ D ; and t .;; ¹vº; ;/ D t .;; ¹vº; ¹vº/ D ¹vº. Let
ZS D

Q
v2S Z¹vº. Note that V.ZS / D P .S/ and the edges can be described as

E.ZS / D ¹.A;B; �/ j A ¨ B � S; � � B n Aº;
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where i.A;B; �/ D A and t .A;B; �/ D B . This example seems artificial at this point
but will be quite useful later as the geometric realization of ZS is a torus TS and its
fundamental group is ZS . Indeed, we are particularly interested in the case where S
is the vertex set of a complete Dyer graph � for which all vertices are labeled by1.

A simple complex of groups G .X/ D .Gv;  ˛/ over a scwol X is given by the
following data:

(1) for each v 2 V.X/, a group Gv called the local group at v;

(2) for each ˛ 2E.X/, an injective homomorphism  ˛ WGi.˛/!Gt.˛/, with the
following compatibility condition:  ˛ˇ D  ˛ ˇ whenever defined.

A simple complex of groups G .X/ D .Gv;  ˛/ over a scwol X is called inclu-
sive if it additionally satisfies the following condition: for each ˛ 2 E.X/, we have
Gi.˛/ < Gt.˛/ and  ˛.g/ D g for all g 2 Gi.˛/. We will only be considering simple
inclusive complexes of groups. These are restrictions on the more general definition
of complexes of groups, which can be found in [2].

Definition 3.6. The product G .X/ �G.Y / of two simple complexes of groups G .X/

and G .Y / is the simple complex of groups over the scwol X � Y given by the follow-
ing data:

(1) for each v D .v1; v2/ 2 V.X � Y/, the local group Gv D Gv1
� Gv2

is the
direct product of the corresponding local groups in G .X/ and G .Y /;

(2) for each ˛ D .˛1; ˛2/ 2 E.X � Y/, the injective homomorphism is  ˛ D
 ˛1
�  ˛2

(if one ˛i is a vertex, we set  ˛i
to be the identity on G˛i

).

As G .X/ and G .Y / are simple complexes of groups, so is G .X/ �G.Y /.

Similar to the definition of products of scwols, this definition can be extended to
finite products of simple inclusive complexes of groups. The product

Q
i2Œn� G .Xi /

of simple complexes of groups G .Xi /, i 2 Œn�, is the simple complex of groups over
the scwol

Q
i2Œn� Xi given by the following data:

(1) for each v D .vi /i2Œn� 2 V.
Q
i2Œn� Xi /, the local group Gv D

Q
i2Œn� Gvi

is
the direct product of the corresponding local groups in G .Xi /;

(2) for each ˛ D .˛i /i2Œn� 2 E.
Q
i2Œn�Xi /, the injective homomorphism is  ˛ DQ

i2Œn�  ˛i
(if an ˛i is a vertex, we set  ˛i

to be the identity on G˛i
).

We will now give fundamental examples of complexes of groups and products of
complexes of groups over the scwols introduced in Examples 3.4 and 3.5.

Example 3.7. We consider the scwols defined in Example 3.4. For every v 2 S , we
choose a positive integer pv . Let Cv be the finite cyclic group of order pv . For v 2 S ,
let D.Yv/ be a simple complex of groups over Yv by choosing G; D hei the trivial
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group, G¹vº D Cv , and  ev
the trivial map. We define a simple complex of groups

D.YS / over YS as follows:

(1) for A 2 V.YS /, we set GA D
Q
v2A Cv;

(2) for e 2 E.YS / with i.e/ D A and t .e/ D B , we have A � B , so GA < GB ,
and so, there is a canonical inclusion  e W GA! GB . These inclusions satisfy
the compatibility condition.

We indeed have D.YS / D
Q
v2S D.Y¹vº/.

Example 3.8. For a finite Coxeter system .W; S/, we can define W.YS /, a simple
complex of groups over YS , as follows:

(1) for A 2 V.YS /, we choose the local group to be WA, the subgroup of W
generated by A;

(2) for e 2 E.YS / with i.e/ D A and t .e/ D B , we have A � B , so there is a
canonical inclusion e WWA!WB . These inclusions satisfy the compatibility
condition.

In general, in this case, we have W.YS /¤
Q
v2S W.Y¹vº/ even though the scwols

satisfy YS D
Q
v2S Y¹vº.

Example 3.9. We consider the scwols defined in Example 3.5. We can always define
a trivial complex of groups over a scwol. The product of trivial complexes of groups
will again be trivial. This leads to the following notation. For every v 2 S , we define
a simple complex of groups D.Zv/ over each scwol Zv by choosing

G; D G¹vº D hei;

the trivial group, and  .;;¹vº;;/ D  .;;¹vº;¹vº/, the trivial map. Similarly, we define a
simple complex of groups D.ZS / by choosing GA D hei, the trivial group, for every
A 2 V.ZS / and  .A;B;�/, the trivial map, for every .A;B; �/ 2 E.ZS /. We have

D.ZS / D
Y
v2S

D.Zv/:

Assume that the scwol X is connected; i.e., there is only one equivalence class
on V.X/ for the equivalence relation generated by (i.˛/ � t .˛/ for every edge ˛ 2
E.X/). One can define the fundamental group of a complex of groups G .X/ over
a scwol X. For simplicity and as it suffices for the cases we consider, we give the
following characterization.

Definition 3.10. Consider a simple complex of groups G .X/ over a connected scwol
X. Assume that each group Gv is finitely presented with Gv D hSv j Rvi. Choose a
maximal tree T in the underlying graph. Let E.X/˙ D ¹˛C; ˛� j ˛ 2 E.X/º. Then,
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the fundamental group �1.G .X/; T / is generated by the set� G
v2V.X/

Sv

�
tE.X/˙

subject to the following relations:

all the relations Rv in the groups Gv;

.˛C/�1 D ˛� for all edges ˛ 2 E.X/;

˛CˇC D .˛ˇ/C for ˛; ˇ 2 E.X/; whenever ˛ˇ 2 E.X/ is defined,

 ˛.s/ D ˛
Cs˛�; 8˛ 2 E.X/; 8s 2 Si.˛/;

˛C D e; 8˛ 2 T:

Different choices of T will give isomorphic fundamental groups. So, we can con-
sider �1.G .X// D �1.G .X/; T / for any choice of maximal tree T . Moreover, the
subgroup of �1.G .X/; T / generated by ¹˛C; ˛ 2 E.X/º corresponds to the funda-
mental group of the scwol X.

Remark 3.11. The fundamental group of a complex of groups can also be character-
ized in more categorical terms. By [11, Definition 2.7.1], the fundamental group of
a complex of groups G .X/ is also given by the fundamental group of the geometric
realization BG .X/ of the nerve N.CG .X// of the associated category CG .X/. The
corresponding definitions are given in [11].

Lemma 3.12. For two simple inclusive complexes of groups G .X/ and G .Y /, we
have

�1.G .X// � �1.G .Y // D �1.G .X/ �G.Y //:

Proof. We use the characterization of the fundamental group given in Remark 3.11.
Let G .X/ and G .Y / be two simple inclusive complexes of groups. Then, the category
C.G .X/ �G.Y // associated to the product of complexes of groups G .X/ �G.Y / is
isomorphic to the product category CG .X/ � CG .Y / of the categories associated to
G .X/ and G .Y /. For the nerves, we have that N.C.G .X/ �G.Y /// is isomorphic to
the cartesian productN.CG .X//�N.CG .Y // (where the k-skeleton .N.CG .X//�

N.CG .Y ///k is .N.CG .X///k � .N.CG .Y ///k). So, by [12, Theorem 2], the geo-
metric realization B.C.G .X/ �G.Y /// of the nerve N.C.G .X/ �G.Y /// is home-
omorphic to the product B.CG .X// � B.CG .Y // of the geometric realizations of
N.CG .X// andN.CG .Y //. So, the fundamental group �1.B.C.G .X/ �G.Y //// is
isomorphic to the product �1.B.CG .X/// � �1.B.CG .Y ///.

Example 3.13. In Example 3.7, the fundamental group of D.YS / is �v2SCv . In Ex-
ample 3.9, the fundamental group of D.ZS / is ZS . In Example 3.8, the fundamental
group of W.YS / is the Coxeter group W .
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We will now consider morphisms. Consider two scwols X and Y. A morphism of
scwols f WX! Y is a map that sends V.X/ to V.Y/, and sends E.X/ to E.Y/ such
that

(1) for every ˛ 2 E.X/, f .i.˛// D i.f .˛// and f .t.˛// D t .f .˛//,

(2) for composable edges ˛; ˇ 2 E.X/, f .˛ˇ/ D f .˛/f .ˇ/.

Let G .X/D .Gv; ˛/ and H .Y/D .Hv; �˛/ be two simple complexes of groups.
Let f W X ! Y be a morphism of scwols. A morphism of complexes of groups � D
.�v; �.˛// W G .X/! H .Y/ over f consists of

(1) a homomorphism �v W Gv ! Hf .v/ for every v 2 V.X/,

(2) an element �.˛/ 2 Ht.f .˛// for every edge ˛ 2 E.X/ such that we have
Ad.�.˛//�f .˛/�i.˛/ D �t.˛/ ˛ and �.˛ˇ/ D �.˛/�f .˛/.�.ˇ// for all com-
posable edges ˛; ˇ 2 E.X/,

where Ad.�.˛// is the conjugation by �.˛/ (where Ad.�.˛//.g/ D �.˛/g�.˛�1/

for g 2 Ht.f .˛//).
Finally, let G be a group. A morphism � D .�v; �.˛// W G .X/! G consists of a

homomorphism �v W Gv ! G for each v 2 V.X/ and an element �.˛/ 2 G for each
˛ 2 E.X/ such that Ad.�.˛//�i.˛/ D �t.˛/ ˛ and �.˛ˇ/ D �.˛/�.ˇ/ whenever
composable. There is always a morphism from the complex of groups to the funda-
mental group of the complex of groups � D .�v; �.˛// W G .X/! �1.G .X// with
�.˛/ D ˛C 2 �1.G .X// for every edge ˛ 2 E.X/.

Example 3.14. Consider the complex of groups D.YS / given in Example 3.7. Its
fundamental group is the product �1.D.YS // D �v2SCv . For A 2 V.YS /, let �SA W
�v2ACv ! �v2SCv with �S .g/ D g, and for ˛ 2 E.YS /, let �S .˛/ D e. The mor-
phism �S D .�SA ; �

S .˛// WD.YS /! �v2SCv is injective on the local groups.

Example 3.15. Consider the complex of groups W.YS / given in Example 3.8. Its
fundamental group is �1.W.YS // D W . For A 2 V.YS /, let �A W WA ! W be the
inclusion with �.g/ D g, and for ˛ 2 E.YS /, let �.˛/ D e 2 W . The morphism

� D .�A; �.˛// WW.YS /! W

is injective on the local groups.

Example 3.16. Consider the complex of groups D.ZS / given in Example 3.9. Its
fundamental group is �1.D.ZS // D ZS . For the notation, let e be the trivial element
in ZS , and let xs , s 2 S be the standard generators of ZS . For A 2 V.ZS /, let

�SA W hei ! ZS

with �S .e/ D e, and for .A;B; �/ 2 E.ZS /, let �S ..A;B; �// D
Q
s2� xs . The mor-

phism �S D .�SA ; �
S .˛// WD.ZS /! ZS is injective on the local groups.



M. Soergel 224

Definition 3.17. A complex of groups G .X/ over a scwol X is developable if there
exists a morphism � from G .X/ to some group G which is injective on the local
groups.

Remark 3.18. This definition is not the original definition given in [2, Corollary
III.C .2.11] but it is equivalent to it by Corollary III.C .2.15 in [2] and better suited
to our use.

Let G .X/ be a complex of groups over a scwol X; let G be a group and � W
G .X/ ! G a morphism. The development of X with respect to � is the scwol
C.X; �/ given as follows:

(1) its vertices are

V.C.X; �// D ¹.g�v.Gv/; v/ j v 2 V.X/; g�v.Gv/ 2 G=�v.Gv/ºI

(2) its edges are

E.C.X; �//

D ¹.g�i.˛/.Gi.˛//; ˛/ j ˛ 2 E.X/; g�i.˛/.Gi.˛// 2 G=�i.˛/.Gi.˛//º;

(3) the maps i; t W E.C.X; �//! V.C.X; �// are

i.g�i.˛/.Gi.˛//; ˛/ D .g�i.˛/.Gi.˛//; i.˛//

and
t .g�i.˛/.Gi.˛//; ˛/ D .g�.˛/

�1�t.˛/.Gt.˛//; t.˛//I

(4) the composition is

.g�i.˛/.Gi.˛//; ˛/.h�i.ˇ/.Gi.ˇ//; ˇ/ D .h�i.ˇ/.Gi.ˇ//; ˛ˇ/;

where ˛; ˇ are composable and g�i.˛/.Gi.˛// D h�.ˇ/�1�i.˛/.Gi.˛//.

Note that, by [2, Theorem III.C .2.13], C.X; �/ is indeed well defined. Moreover,
there is an action of G on C.X; �/, where G n C.X; �/ D X.

As for simplicial complexes, we can define geometric realizations of scwols. For
a scwol X, denote its geometric realization by jXj. If a scwol does not have mul-
tiple edges, this construction coincides with the geometric realization of simplicial
complexes. This is the only case we will need in this article, and details on the gen-
eral construction can be found in [2, Chapter III.C .1]. The action of G on C.X; �/

induces an action ofG on jC.X; �/j. If we require the action ofG on jC.X; �/j to be
by isometries, putting a metric on jC.X; �/j corresponds to putting a metric on jXj
as G n jC.X; �/j D jXj.
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Example 3.19. Consider the complex of groups D.YS / and the associated morphism
�S W D.YS /!

Q
v2S Cv from Example 3.14. One can check that the development

C.YS ; �
S / is the product

Q
v2S C.Y¹vº; �

¹vº/. Each C.Y¹vº; �
¹vº/ is a scwol with

set of vertices ¹.g; ;/ j g 2 Cvº [ ¹.Cv; ¹vº/º and set of edges ¹.g; ev/ j g 2 Cvº
with i.g; ev/ D .g; ;/ and t .g; ev/ D .Cv; ¹vº/. So, it is a star on jCvj branches, the
leaves correspond to the vertices ¹.g;;/ j g 2 Cvº, the central vertex is .Cv; ¹vº/, and
the edges are oriented from the leaves to the center. The group Cv acts by rotation
and stabilizes the central vertex. For each v 2 S , choose lv > 0. Let Stern.v/ be
the geometric realization of C.Yv; �

¹vº/ as follows: for g 2 Cv , consider the interval
Ig D Œ0; lv�, then Stern.v/D

S
g2Cv

Ig=�where 02 Ig � 02 Ie. Note thatCv acts by
isometries on Stern.v/. The space Stern.S/D

Q
v2S Stern.v/ with the product metric

is a geometric realization of C.YS ; �
S /, due to the product structure of C.YS ; �

S /.
Moreover,

Q
v2S Cv acts by isometries on Stern.S/.

Example 3.20. Consider the complex W.YS / and the morphism � WW.YS /! W

from Example 3.15. The development C.YS ; �/ is a scwol with ¹.gWA; A/ j A �
S; gWA 2W=WAº as set of vertices and ¹.gWA; .A;B// j A ¨ B; gWA 2W=WAº as
set of edges where i.gWA; .A; B// D .gWA; A/ and t .gWA; .A; B// D .gWB ; B/. It
is the scwol associated to the poset WP .S/ D

S
T�S W=WT , the poset of parabolic

cosets ordered by inclusion. In Section 3.2, we will introduce the Coxeter polytope
Cox.W / of W , which is a geometric realization of C.YS ; �/.

Example 3.21. Consider the complex D.ZS / and the morphism �S WD.ZS /! ZS

from Example 3.16. One can check that the development C.ZS ; �
S / is the product

�v2SC.Z¹vº; �
¹vº/. Each C.Z¹vº; �

¹vº/ is a scwol with vertices

V.C.Z¹vº; �
¹vº// D ¹.g;;/ j g 2 hxviº [ ¹.g; ¹vº/ j g 2 hxviº

and edges

E.C.Z¹vº; �
¹vº// D ¹.g; .;; ¹vº;;// j g 2 hxviº [ ¹.g; .;; ¹vº; ¹vº// j g 2 hxviº;

where i.g; .;; ¹vº; ;// D .g; ;/, t .g; .;; ¹vº; ;// D .g; ¹vº/, i.g; .;; ¹vº; ¹vº// D
.g; ;/, and t .g; .;; ¹vº; ¹vº// D .gx�1v ; ¹vº/. So, it is a line; each vertex has either
two incoming or two outgoing edges. The group Z D hxvi acts by translation. There
are two orbits: one corresponding to the vertices with incoming edges and one to
the vertices with outgoing edges. A geometric realization of C.Z¹vº; �

¹vº/ is the real
line R, where we identify .e;;/ 2 C.Z¹vº; �

¹vº/with 0 2R, and .e; ¹vº/with 0:5, and
.x�1v ; ¹vº/ with �0:5. Since we want Z to act by isometries, this means that for every
xkv 2 Z we identify the vertex .xkv ; ;/ with k 2 R and .xkv ; ¹vº/ with k C 0:5 2 R.
Using the product structure with the `2 -metric, we get that RS with the Euclidean
metric is a geometric realization of C.ZS ; �

S / on which ZS acts by translation.
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The construction of the future cell complex † relies on the understanding of the
local combinatorial structure of the development C.X; �/ of a complex of groups
G .X/. We first define links and stars of vertices for scwols.

Definition 3.22 (Links and stars of vertices). Let X be a scwol. Let v 2 V.X/. The
incoming link Lkin.v;X/ is the scwol with vertex set

V.Lkin.v;X// D ¹˛ 2 E.X/ j t .˛/ D vº;

edges
E.Lkin.v;X// D ¹.˛; ˇ/ 2 E.2/.X/ j t .˛/ D vº;

maps i; t W E.Lkin.v;X// ! V.Lkin.v;X//, with i..˛; ˇ// D ˛ˇ, t ..˛; ˇ// D ˛,
and composition .˛; ˇ/.˛0; ˇ0/ D .˛; ˇˇ0/ when ˛ˇ D ˛0. Similarly, we define the
outgoing link Lkout.v;X/ as the scwol with vertex set

V.Lkout.v;X// D ¹˛ 2 E.X/ j i.˛/ D vº;

edges
E.Lkout.v;X// D ¹.˛; ˇ/ 2 E

.2/.X/ j i.ˇ/ D vº;

maps i; t W E.Lkout.v;X//! V.Lkout.v;X//, with i..˛; ˇ// D ˇ, t ..˛; ˇ// D ˛ˇ,
and composition .˛; ˇ/.˛0; ˇ0/ D .˛˛0; ˇ0/ when ˇ D ˛0ˇ0. The incoming star is the
oriented combinatorial join

Stin.v;X/ D Lkin.v;X/ ? ¹vº;

and the outgoing star is defined similarly:

Stout.v;X/ D ¹vº ? Lkout.v;X/:

If the scwol X does not have multiple edges between vertices, the links and stars
of vertices can be regarded as subscwols of X. Let v 2 V.X/. The incoming link
Lkin.v;X/ is then the subscwol of X spanned by the vertex set

V.Lkin.v;X// D ¹u 2 V.X/ j 9e 2 E.X/ W i.e/ D u and t .e/ D vº:

The incoming star Stin.v;X/ is the subscwol spanned by

V.Stin.v;X// D ¹u 2 V.X/ j 9e 2 E.X/ W i.e/ D u and t .e/ D vº [ ¹vº:

Similarly, the outgoing link Lkout.v;X/ is then the subscwol of X spanned by the
vertex set

V.Lkout.v;X// D ¹u 2 V.X/ j 9e 2 E.X/ W t .e/ D u and i.e/ D vº:
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The outgoing star Stout.v;X/ is the subscwol spanned by

V.Stout.v;X// D ¹u 2 V.X/ j 9e 2 E.X/ W t .e/ D u and i.e/ D vº [ ¹vº:

We will only study links of star of developments C.X; �/ of a connected scwol X

over the canonical morphism � W G .X/! �1.G .X//. In this case, the development
C.X; �/ is simply connected and in particular does not have multiple edges between
vertices (see [2, Theorem 3.13]).

Example 3.23. Consider the development C.Y¹vº; �
¹vº/ from Example 3.19. The

incoming star of the vertex .g; ;/, g 2 Cv only contains the vertex .g; ;/, but the
incoming star of the vertex .Cv; ¹vº/ is C.Y¹vº; �

¹vº/.

Example 3.24. Consider the development C.YS ; �/ from Example 3.20. The incom-
ing link of a vertex .gWA; A/ 2 C.YS ; �/ is spanned by the vertices

¹.hWB ; B/ j B � A; gh
�1
2 WAº:

Example 3.25. Consider the development C.Z¹vº; �
¹vº/ from Example 3.21. Let

g 2 hxvi. The incoming link of the vertex .g; ;/ is empty, and its outgoing link con-
sists of the two disjoint vertices .g; ¹vº/ and .gx�1v ; ¹vº/. The incoming link of the
vertex .g; ¹vº/ consists of the two disjoint vertices .g; ;/ and .gxv; ;/, and its out-
going link is empty. As C.ZS ; �

S / is the product �v2SC.Z¹vº; �
¹vº/, the incoming

(resp., outgoing) link of a vertex in C.ZS ; �
S / can also be expressed as a product of

incoming (resp., outgoing) links.

3.2. Coxeter groups and the Davis–Moussong complex

The discussion of the Davis–Moussong complex is based primarily on [5]. We will
omit most proofs as they can be found in the literature, in particular in [1, 5].

Let S be a finite set. LetM D .m.s; t//s;t2S be a symmetric matrix withm.s; t/ 2
N [ ¹1º, m.s; s/ D 1, and m.s; t/ D m.t; s/ � 2 if s ¤ t . Such a matrix is called a
Coxeter matrix. The Coxeter group associated to M is given by the following presen-
tation:

W D hs 2 S j .st/m.s;t/ D 1 for all s; t 2 Si;

where m.s; t/ D 1 means that there is no relation given between s and t . The pair
.W; S/ is called a Coxeter system. Consider the S � S matrix c defined by

cst D cos.� � �=m.s; t//;

the matrix c is called the cosine matrix of the Coxeter matrix M . When m.s; t/ D
1, we interpret �=1 to be 0 and cos.� � �=1/ D �1. The following fact states
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a classical result, giving a necessary and sufficient condition for a Coxeter group to
be finite.

Fact 3.26 ([5, Theorem 6.12.9]). A Coxeter groupW is finite if and only if the cosine
matrix c is positive definite.

For T � S , let WT be the subgroup of W generated by T . Consider the poset
of spherical subsets � D ¹T � S j WT is finiteº ordered by inclusion. In an abuse
of notation, let us also write � for the scwol associated to the poset � . Similarly, to
Examples 3.8, 3.15, and 3.20, let W.�/ be the complex of groups over � , where the
local group at T 2 � is WT , and for an edge .R; T /, the associated map  .R;T / W
WR ! WT is the inclusion  .R;T /.r/ D r for every r 2 R. The fundamental group
of W.�/ is W , and there is an injective morphism � D .�T ; �..R; T ///, where �T W
WT ! W is the inclusion and �..R; T // D e for every edge .R; T /. Let C.� ; �/ be
the development of W.�/ with respect to �. Let us also consider the poset W � DS
T2� W=WT , called the poset of spherical cosets. In a similar abuse of notation, let

us also write W � for the scwol associated to the poset W � .

Remark 3.27. The set of vertices of C.� ; �/ is ¹.wWT ; T / j T 2 � ;wWT 2W=WT º.
The set of edges of C.� ; �/ is ¹.wWR; .R; T // j R;T 2 � ; R � T; wWR 2W=WRº,
where .wWR; .R; T // is an edge from the vertex .wWR; R/ to the vertex .wWT ; T /.
In particular, there is an edge from a vertex .wWR; R/ to a vertex .w0WT ; T / if and
only if R � T and wWT D w0WT (i.e., w0�1w 2 WT ).

Lemma 3.28. The scwols C.� ; �/ and W � are equal.

Proof. It follows from Remark 3.27 that the two scwols have the same set of vertices.
For the edges, note that, forwWR;w0WT 2W � , we havewWR �w0WT if and only if
R � T and w0�1w 2 WT . So, using Remark 3.27, the sets of edges also coincide.

Coxeter polytope. From now on, assume that W is finite. Let us recall the canonical
representation of W . Consider … D ¹˛s j s 2 Sº and V D

L
s2S R˛s . Let

h�; �i W V � V ! R

be the scalar product on V given by h˛s; ˛t i D � cos. �
m.s;t/

/. The canonical represen-
tation of W on GL.V / is given by � W W ! GL.V / with �.s/.x/ D x � 2h˛s; xi˛s
for s 2 S , x 2 V . The scalar product on V is �.W /-invariant. There is a dual basisQ�
D ¹˛�s j s 2 Sº, satisfying h˛�s ; ˛t i D 0 if s ¤ t and h˛�s ; ˛si D 1. We choose

x0 D
P
s2S ˛

�
s 2 V . The Coxeter polytope of .W; S/, denoted by Cox.W /, is the

convex hull of ¹�.w/.x0/ 2 V j w 2 W º. It is endowed with the Euclidean met-
ric. Note that its interior is nonempty. For a subset T � S , let

Q
T D ¹˛s j s 2 T º

and VT be the subvector space of V spanned by
Q
T . Let

Q�
T D ¹˛

�
s;T j s 2 T º be
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the dual basis of
Q
T in VT . Fix x0;T D

P
s2T ˛

�
s;T . Let Cox.WT / be the convex

hull of ¹�.w/.x0;T / 2 VT j w 2 WT º. Moreover, let CoxT .W / be the convex hull of
¹�.w/.x0/ 2 V j w 2 WT º. Let u D x0 � x0;T and tu W V ! V be the translation
by the vector u. This translation sends �.w/.x0;T / to �.w/.x0/ for every w 2 WT .
Specifically, it is an isometry from Cox.WT / to CoxT .W /.

Lemma 3.29 ([5, Lemma 7.3.3]). The poset W � and the face poset F .Cox.W //
of Cox.W / are isomorphic. Specifically, the correspondence wWT ! w CoxT .W /
induces an isomorphism of posets.

So, we can identify W � and hence C.� ; �/ with the barycentric subdivision of
the Coxeter polytope Cox.W /, thus identifying jC.� ; �/j isometrically with Cox.W /.
The metric on jC.� ; �/j induced by the identification with Cox.W / is called the
Moussong metric. In particular, for wWT 2 W � , the geometric realization

jW ��wWT
j � jW � j

is identified with the face w CoxT .W /.

The general case. We now consider any Coxeter group W , so W need not necessar-
ily be finite. We put a coarser cell structure on W � (or equivalently on C.� ; �/) to
build the Davis–Moussong complex† by identifying each subposet .W �/�wWT ;T2� ,
which is isomorphic to the poset WT .��T /, with a Coxeter polytope Cox.WT /. So,
we can give the following description of †.

Theorem 3.30 ([5, Proposition 7.3.4]). There is a natural cell structure on † so that

(1) its vertex set is W , its 1-skeleton is the Cayley graph Cay.W; S/, and its 2-
skeleton is the Cayley 2-complex over Cay.W; S/ with the relations

.st/m.s;t/ D e for all s; t 2 S; s ¤ t I

(2) each cell is a Coxeter polytope;

(3) the link Lk.v;†/ of each vertex is isomorphic to the abstract simplicial com-
plex �>;;

(4) a subset of W is the vertex set of a cell if and only if it is a spherical coset;

(5) the poset of cells in † is W � .

Note that the Cayley graph Cay.W;S/ is considered to be undirected; hence, there
are no double edges between vertices, even though all elements of S have order 2
in W . Furthermore, all edges in Cay.W; S/ are labeled; hence, the edges of † are
labeled. This labeling coincides with the labeling of vertices in Lk.v; †/. By [5,
Lemma 12.1.1], the piecewise Euclidean structure on † induces a piecewise spheri-
cal structure on the link Lk.v; †/ of a vertex and as such on the abstract simplicial
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complex �>; with edge length d.u; v/ D � � �=m.u; v/ for two adjacent vertices
u; v 2 S .

Now that we have an appropriate description of †, let us state the following geo-
metric property of †.

Theorem 3.31 (Moussong’s Theorem [13]). For any Coxeter system, the associated
cell complex †, equipped with its natural piecewise Euclidean metric, is CAT.0/.

A simplicial complex L with piecewise spherical structure has simplices of size
� �=2 if each of its edges has length � �=2. Such a simplicial complex is a metric
flag complex if the following condition holds: suppose that ¹v0; : : : ; vkº is a set of
pairwise adjacent vertices of L. Put cij D cos.d.vi ; vj //. Then, ¹v0; : : : ; vkº spans a
simplex if and only if the matrix .cij / is positive definite. Then, Moussong’s theorem
is the consequence of the following lemmata.

Lemma 3.32 ([5, Lemma 12.3.1]). Let Lk be the link of a vertex in† with its natural
piecewise spherical structure inherited from †. Then, Lk is a simplicial complex and
has simplices of size � �=2. Moreover, it is a metric flag complex.

Note that using Fact 3.26 the set of vertices of Lk is S and T � S spans a simplex
if and only if WT is finite. Moreover, the distance between two vertices in Lk is given
by d.v;w/ D � � �=m.v;w/.

Lemma 3.33 (Moussong’s lemma [5, Lemma I.7.4]). Suppose that L is piecewise
spherical simplicial cell complex in which all cells are simplices of size � �=2. Then,
L is CAT.1/ if and only if it is a metric flag complex.

3.3. Right-angled Artin groups and the Salvetti complex

Every Coxeter group has an associated Artin group. We will concentrate on the class
of right-angled Artin groups and present their analog to the Davis–Moussong com-
plex, the Salvetti complex S� . An extensive discussion of right-angled Artin groups
can be found in Charney’s survey [3].

Given a simplicial graph � , with vertex set V and edge setE, the associated right-
angled Artin group A.�/ is given by the following presentation:

A.�/ D hxv; v 2 V j for every e D ¹v;wº 2 E; xvxw D xwxvi:

If � has no edges, A.�/ is the free group of rank jV j; if � is a complete graph,
A.�/ is the free abelian group of rank jV j.

Salvetti complex S� . Let � be a simplicial graph with vertex set V . For any set of
pairwise adjacent vertices V 0 D ¹v1; : : : ; vnº, consider the corresponding generators
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xi D xvi
, and let

C.V 0/ D ¹x
"1

1 � � � x
"n
n 2 A.�/ j "i 2 ¹0; 1º for every i 2 ¹1; : : : ; nºº:

Note that for two sets V 0; V 00 � V of pairwise adjacent vertices we have V 0 ¤ V 00

if and only if C.V 0/ ¤ C.V 00/. The Salvetti complex S� is the cube complex with
vertex set A.�/, and for every a 2 A.�/ and every set of pairwise adjacent vertices
V 0 � V , there is a cube aC.V 0/. The Salvetti complex S� is known to be a CAT.0/
cube complex by [4] and A.�/ acts properly and cocompactly on S� .

Recall Examples 3.5, 3.9, and 3.21. Let � be a complete simplicial graph with ver-
tex set V . The development C.ZV ; �

V / is the barycentric subdivision of the Salvetti
complex of the Artin groupA.�/. Moreover, the geometric realization of C.ZV ; �

V /,
described in Example 3.21, is isometric to the Salvetti complex S� endowed with the
standard `2-cubical metric with edge length 1.

4. A piecewise Euclidean cell complex for Dyer groups

The goal of this section is to show geometrically that Dyer groups are CAT.0/ by
constructing an appropriate Euclidean cell complex †. In particular, we want Dyer
groups to act properly and cocompactly on the cell complex †. The first step is to
construct a scwol C associated to a Dyer group. The scwol C encodes the necessary
information to build †. The vertices of C will correspond to subcomplexes of †,
and the edges of C will encode identifications between subcomplexes of †. Finally,
we will also be able to interpret C as a simplicial subdivision of the complex †. We
will first focus on spherical Dyer groups D, which factor as a direct product of a
finite Coxeter group and cyclic groups. We start with the construction of a scwol X

associated to a spherical Dyer group D and then define a complex of groups D.X/.
The scwol C will be the development of the complex of groups D.X/. The second
subsection will discuss this for general Dyer groups. The third subsection will be
devoted to the Euclidean cell complex †.

4.1. A combinatorial structure for spherical Dyer groups

A Dyer group D D D.�; f; m/ is spherical if its underlying graph � is complete
and the subgroup D2 is a finite Coxeter group. If D D D.�; f; m/, we also say
that � D .�; f;m/ is a spherical Dyer graph. In this section, we will assume thatD is
a spherical Dyer group. In particular, we then haveDDD2 �Dp �D1, whereD2 is
a finite Coxeter group,Dp is a direct product of finite cyclic groups, andD1 D ZV1 .
As with Coxeter groups, we can characterize spherical Dyer groups through the cosine
matrix. Let .�;f;m/ be a Dyer graph, and let V DV.�/ andEDE.�/. We extend the
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mapm WE!N�2 to a mapm W V � V !N�2 [ ¹1º by settingm.u;v/Dm.¹u;vº/
if ¹u; vº 2 E, m.u; v/ D 1 if u ¤ v and ¹u; vº … E, and m.u; u/ D 1. We interpret
�=1 to be 0 and cos.� � �=1/ D cos.�/ D �1. The cosine matrix associated to a
Dyer graph .�; f; m/ is the V � V matrix c defined by cuv D cos.� � �=m.u; v//.
The following characterization of spherical Dyer groups follows from Fact 3.26.

Lemma 4.1. A Dyer group D.�; f;m/ is spherical if and only if the cosine matrix c
associated to .�; f;m/ is positive definite.

Proof. Assume thatD is a spherical Dyer group. Then, the restriction of c to V2 � V2
is positive definite. Since additionally � is a complete Dyer graph, this implies that
the matrix c is positive definite. Now, assume that the cosine matrix c associated to
.�; f; m/ is positive definite. Consider the matrix M D .m.u; v//u;v2V . Then, the
cosine matrix c associated to .�; f; m/ is equal to the cosine matrix of the Coxeter
matrix M as defined in Section 3.2. So, by Fact 3.26, the cosine matrix c is posi-
tive definite if and only if the Coxeter group associated to M is finite. So, we have
m.u; v/ ¤ 1 for all u; v 2 V . Moreover, since � is a Dyer graph, this also implies
that the restriction of c to V2 � V2 is positive definite. So, the graph � is complete and
D2 is a finite Coxeter group by Fact 3.26. Hence, D is a spherical Dyer group.

Let X D X.�/ be the scwol with set of vertices V.X/ D ¹X � V º and set of
edges E.X/ D ¹.X; Y; !/ j X ¨ Y � V.�/; ! � .Y n X/1º with i.X; Y; !/ D X
and t .X; Y; !/ D Y and .Y;Z; !0/.X; Y; !/ D .X;Z; ! [ !0/. We call X the scwol
associated to the spherical Dyer graph � . Similar to the groupD, we can also describe
X as a direct product of scwols.

Lemma 4.2. Let X2 DX.�2/, Xp DX.�p/ and X1 DX.�1/. Then, we have the
product decomposition X DX2 �Xp �X1. Moreover, Xp D YVp

D �v2Vp
Yv and

X1 D ZV1 D �v2V1Zv as in Examples 3.4 and 3.5.

Proof. Since V D V2 t Vp t V1, every X 2 V.X/ can be decomposed as a disjoint
union X D X2 t Xp t X1, so V.X/ D V.X2/ � V.Xp/ � V.X1/. For the edges,
note that .X; Y; !/ 2 E.X/ if and only if Xi � Yi for every i 2 ¹2; p;1º, and at
least, one of those inclusions is strict and ! � Y1 nX1.

Example 4.3. Let � be a complete graph with vertex set V D ¹s; t; u; vº. Let

f W V ! N�2 [ ¹1º

with f .s/D f .t/D 2, f .v/D1, and f .u/D q for some q 2N>2. Letm WE!N�2
withm.¹s; tº/Dm for somem2N>2 andm.e/D 2 for every other edge e 2E. Then,
the triple .�; f;m/ is a Dyer graph and the associated Dyer group D is spherical. The
associated scwol X is given as follows. Its vertex set is V.X/ D P .V / D ¹X � V º.
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For X; Y 2 P .V /, there is an edge .X; Y; ;/ if and only if X ¨ Y and an edge
.X; Y; ¹vº/ if and only if v 2 Y and v … X . Moreover, these are the only edges in X.
Since X has 16 vertices, we do not attempt to draw the corresponding figure here.

We define the simple complex of groups D.X/ over the scwol X. For each
X 2 V.X/, let the local group be Df

X D DX2[Xp
. As mentioned in Remark 2.4,

we know by [7] that if X � Y , Df
X < D

f
Y < D. For each edge .X; Y; !/ 2 E.X/,

let  .X;Y;!/ WD
f
X !D

f
Y be the map induced by  .xv/D xv for every v 2 X2 [Xp .

These maps are all injective. Note that they do not depend on !. We also introduce the
morphism � D �� WD.X/!D, where �X D ��X WD

f
X !D is the natural inclusion

and �.X;Y;!/D ��.X;Y;!/D
Q
v2! xv . Note that �.X;Y;!/ is well defined since

the subgraph spanned by ! � V1 is complete. Moreover, �.X; Y; !/ only depends
on !, so we will write

�.X; Y; !/ D �.!/ D
Y
v2!

xv:

Also note that each local group Df
X is finite.

Lemma 4.4. The complex of groups D.X/ is isomorphic to the product of com-
plexes of groups D.X2/ �D.Xp/ �D.X1/. Moreover, D.Xp/ is isomorphic toQ
v2Vp

D.Yv/ from Example 3.7 and D.X1/ is isomorphic to
Q
v2V1

D.Zv/ from
Example 3.9.

Proof. For every X 2 V.X/, the local group Df
X can be decomposed as a product

D
f
X D D

f
X2
�D

f
Xp

. As Df
X1

is the trivial group, we also have

D
f
X Š D

f
X2
�D

f
Xp
�D

f
X1

:

Moreover, DXp
D
Q
v2Vp

D¹vº and DX1 D
Q
v2V1

D¹vº. The morphism � D ��

also decomposes as a product � D �2 � �p � �1, where �2 D ��2 , �p D ��p , and
�1 D �

�1 . So, using Lemma 4.2, we have that the complex D.X/ is isomorphic to
the product D.X2/ �D.Xp/ �D.X1/.

Lemma 4.5. The fundamental group of D.X/ isD, and the complex of groups D.X/

is developable.

Proof. We use the product decomposition given in Lemma 4.4. The scwol X2 is asso-
ciated to the poset P .V2/, so it is simply connected. Moreover, it contains a unique
maximal element V2, so the fundamental group of D.X2/ is Df

V2
D D2. The same

argument implies that the fundamental group of D.Xp/ is Dp . Recall that D.X1/

is isomorphic to
Q
v2V1

D.Zv/. The fundamental group of each D.Zv/ is Z. So, by
Lemma 3.12, the fundamental group of D.X1/ is ZV1 DD1. So, by Lemma 3.12,
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the fundamental group of D.X/ is D2 � Dp � D1 D D. Since the maps �X are
injective for all X 2 V.X/, the complex D.X/ is developable.

Since the complex D.X/ is developable, we can describe its development

C D C.X; �/:

Since Df
X < D and the maps �X are canonical inclusions, we will identify the image

�X .D
f
X / with Df

X < D. The set of vertices of C is

V.C/ D ¹.gD
f
X ; X/ j X 2 V.X/; gD

f
X 2 D=D

f
X º:

The set of edges of C is

E.C/ D ¹.gD
f
X ; .X; Y; !// j .X; Y; !/ 2 E.X/; gD

f
X 2 D=D

f
X º;

where i.gDf
X ; .X; Y; !// D .gD

f
X ; X/ and t .gDf

X ; .X; Y; !// D .g�.!/
�1D

f
Y ; Y /.

For a simpler notation, we write gX for a vertex .gDf
X ; X/ and g.X; Y; !/ for an

edge .gDf
X ; .X; Y; !//. Note that gX D hY if and only if X D Y and g�1h 2 Df

X .
Similarly, g.X; Y; !/ D h.X 0; Y 0; !0/ if and only if X 0 D X , Y 0 D Y , !0 D !, and
g�1h 2 D

f
X . In particular, X is the quotient of C by the action of the group D.

Lemma 4.6. The development C.X; �/ has a product decomposition

C.X2; �2/ � C.Xp; �p/ � C.X1; �1/:

Proof. This follows from the product decomposition of X, D.X/, D, and �.

Remark 4.7. For i 2 ¹2; p;1º, Lemma 4.6 implies that we can consider each scwol
C.Xi ; �i / to be a subscwol of C.X; �/. There is a canonical inclusion by identifying
a vertex gX 2 C.Xi ; �i / with gX 2 C.X; �/. The subscwol C.Xi ; �i / is then stable
under the action of Di .

Remark 4.8. The incoming star Stin.gY;C/ is isomorphic to the incoming star

Stin.eY;C.X.�Y /; ��Y //:

Moreover, the product decomposition of C induces a product decomposition of the
incoming star

Stin.eY;C/DStin.eY2;C.X2;�2//�Stin.eYp;C.Xp;�p//�Stin.eY1;C.X1;�1//

and as such also a product decomposition for every Stin.gY; C/. Moreover, for a
vertex hZ 2 Stin.gY;C/, the star Stin.hZ;C/ is a subscwol of Stin.gY;C/.
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2 2
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m 2
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2 q

d

Figure 4. Dyer graph �m;q for some m; q 2 N�2 as given in Figure 1.

4.2. A combinatorial structure for general Dyer groups

Let us now give a similar construction with analogous results for general Dyer groups.
Let .�;f;m/ be a Dyer graph andD DD.�/ the associated Dyer group. We note that
V D V.�/. Let X D X.�/ be the scwol with set of vertices

V.X/ D ¹X � V j D.�X / is a spherical Dyer groupº

and edges

E.X/ D ¹.X; Y; !/ j X; Y 2 V.X/; X ¨ Y; ! � .Y nX/1º

with i.X; Y; !/ D X and t .X; Y; !/ D Y and .Y;Z; !0/.X; Y; !/ D .X;Z; ! [ !0/.
The main difference with the spherical case is the set of vertices of X. Indeed, we
do not consider all subsets X � V but only those for which �X is complete and
the group Df

X D DX2[Xp
is finite. We also define a complex of groups D.X/ over

X. For each X 2 V.X/, let the local group be Df
X D DX2[Xp

, and for each edge
.X; Y; !/ 2 E.X/, let  .X;Y;!/ W D

f
X ! D

f
Y be the natural inclusion. By [7], these

maps are all injective. The local groups are all finite. We also introduce the morphism
� W D.X/ ! D, where �X W D

f
X ! D is the natural inclusion and �.X; Y; !/ D

�.!/ D
Q
v2! xv (this element is well defined since ! � V1 and �! is complete).

As in the spherical case, we can write D.X.�// and �� when also considering the
same construction on a subgraph. As before, we are interested in the development of
the complex of groups D.X/, so we first show that D.X/ is developable.

Example 4.9. Consider the Dyer graph �m;q , given again in Figure 4, and the Dyer
group Dm;q from Example 2.6. The associated scwol Xm;q is drawn in Figure 5. Its
vertex set is V.Xm;q/ D ¹;; ¹aº; ¹bº; ¹cº; ¹dº; ¹a; bº; ¹b; cº; ¹c; dºº.

Lemma 4.10. The scwol X is isomorphic to the union of scwols Y D
S
Y2V.X/XY ,

where XY is the scwol associated to the spherical Dyer group DY . The fundamental
group of D.X/ is D. In particular, the complex of groups D.X/ is developable.

Proof. First, we compare the sets of vertices. If Y 2 V.X/, then Y 2 V.XY /, so
Y 2 V.Y/. On the other hand, if Y 2 V.Y/, we have Y 2 V.XZ/ for someZ 2 V.X/,
so Y �Z, and so,DY is spherical. This implies that V.X/D V.Y/. Now, we compare
the sets of edges. If e D .X; Y; !/ 2 E.X/, then e 2 E.XY /, so e 2 E.Y/. On the
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;

¹aº

¹bº

¹cº

¹dº

¹a; bº

¹b; cº¹c; dº

Figure 5. The scwol Xm;q associated to the graph �m;q given in Figure 4.

other hand, if e 2 E.Y/, e 2 E.XZ/ for some Z 2 V.X/, so e D .X; Y; !/ with
X ¨ Y � Z and ! � .Y n X/1, so e 2 E.X/. This implies that E.X/ D E.Y/.
We can now apply the Seifert–van Kampen theorem for the fundamental group of a
complex of groups [2, Chapter III.C, Example 3.11 (5)] to Y. The set V.X/ is finite,
and each scwol XY is connected. We have ; 2 V.XY / for all Y 2 V.X/ and ; is
adjacent to any vertex in any XY . So,

T
Y2V.X/ XY is nonempty and connected.

We can then use the presentations to see that the fundamental group of D.X/ is D.
Finally, by [7], the maps �X WD

f
X !D are all injective. So, D.X/ is developable.

Since the complex D.X/ is developable, we can describe its development

C D C.X; �/:

Since Df
X < D and the maps �X are canonical inclusions, we will identify the image

�X .D
f
X / with Df

X . The set of vertices of C is

V.C/ D ¹.gD
f
X ; X/ j X 2 V.X/; gD

f
X 2 D=D

f
X º:

The set of edges of C.X; �/ is

E.C/ D ¹.gD
f
X ; .X; Y; !// j .X; Y; !/ 2 E.X/; gD

f
X 2 D=D

f
X º;

where i.gDf
X ; .X; Y; !// D .gD

f
X ; X/ and t .gDf

X ; .X; Y; !// D .g�.!/
�1D

f
Y ; Y /.

For a simpler notation, we write gX for a vertex .gDf
X ; X/ and g.X; Y; !/ for an

edge .gDf
X ; .X; Y; !//. Note that gX D hY if and only if X D Y and g�1h 2 Df

X .
Similarly, g.X; Y; !/ D h.X 0; Y 0; !0/ if and only if X 0 D X , Y 0 D Y , !0 D !, and
g�1h 2 D

f
X . As in the spherical case, C does not have multiple edges between two

vertices.
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Lemma 4.11. For every vertex gY 2 V.C/, the scwols Stin.eY;C.XY ; �
�Y // and

Stin.gY;C.X; �// are isomorphic.

Proof. It suffices to show this for g D e. Then, the statement is clear as it follows
directly from the definitions.

4.3. Construction of a piecewise Euclidean cell complex for Dyer groups

The scwol C , which is also a simplicial complex, described in the previous sec-
tion is a combinatorial object. To build the cell complex †, we could try to endow
the geometric realization of C with a CAT.0/ metric. This would give a simplicial
complex with a non-standard piecewise Euclidean metric. The problem is that Mous-
song’s Lemma 3.33 does not apply directly to simplicial complexes with a piecewise
Euclidean metric since dihedral angles should be at least �=2. The idea is to interpret
C as some generalized face poset of †. Indeed, C does not give us the face struc-
ture of † but some form of subcomplex structure. Each vertex in C corresponds to a
subcomplex of†, and edges give identifications between these subcomplexes. Never-
theless, we will be able to interpret C as a simplicial subdivision of †. We start with
the description and study of the subcomplexes associated to vertices, then build †,
and finally show that † is CAT.0/ using Moussong’s Lemma 3.33.

Let .�; f;m/ be a Dyer graph, D D D.�; f;m/ the associated Dyer group, X D

X.�/ the associated scwol, and D.X/ the associated complex of groups. Consider
the injective morphism � WD.X/! D given by the natural inclusion

�X W D
f
X ! D and �.X; Y; !/ D �.!/ D

Y
v2!

xv:

As in the previous section, we construct the development C D C.X; �/.

Elementary building blocks. Let Y 2 V.X/. First, we consider elementary building
blocks in the cases Y D Y2, Y D Y1, and Y D Yp . For Y 2 V.X/ with Y D Y2, let
Cox.Y / be the Coxeter polytope associated to the Coxeter group DY endowed with
its natural Euclidean metric as described in Section 3.2. Its set of vertices is DY . For
Y 2 V.X/ with Y D Y1, consider Œ0; 1�Y � RY with its standard cubical structure.
Its set of vertices is P .Y /, where 0 2 RY corresponds to ; 2 P .Y /. For v 2 Vp ,
let Stern.v/ be the f .v/-branched star where each edge of the star is identified with
Œ0; 1�. Its center is denoted by cv , and its leaves are identified with the elements of the
finite cyclic group Cf .v/ of order f .v/. For Y 2 V.X/ with Y D Yp , let Stern.Y / be
the product of stars

Q
v2Y Stern.v/ endowed with the `2 metric. So, its vertex set isQ

v2Y .¹cvº [ Cf .v//. Note that

V.Stern.Y // D
Y
v2Y

.¹cvº [ Cf .v//
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can be identified with
`
Z�Y DY =DZ . We identify a vertex .gv/v2Y 2

Q
v2Y .¹cvº [

Cf .v// with gDY =DZ 2
`
Z�Y DY =DZ , where

Z D ¹v 2 Y j gv D cvº and g D
Y

v2Y nZ

gv:

Since �Y is a complete graph and Y D Yp , the element g 2 DY is well defined. Let
us denote a vertex gDZ 2 DY =DZ in Stern.Y / with gZ.

The cell complex Cc.Y /. To every Y 2 V.X/we associate a Euclidean cell complex
Cc.Y / as follows. Let Cc.Y / be the product Cox.Y2/� Œ0;1�Y1 � Stern.Yp/ endowed
with the `2 metric. Each of its factors is piecewise Euclidean, so it is a piecewise
Euclidean cell complex. In particular, Cc.Y / D Cc.Y2/ � Cc.Y1/ � Cc.Yp/. The set
of vertices of Cc.Y / isDY2

�P .Y1/�
Q
v2Yp

.¹cvº [Cf .v//. The groupDf
Y acts by

isometries on Cc.Y /. Indeed, Df
Y D DY2

�
Q
v2Yp

Cf .v/. So, Df
Y acts through DY2

on Cox.Y2/ and through Cf .v/ on Stern.v/. These actions are all isometries.

Lemma 4.12. Consider a vertex l D .w; �; gZ/ 2 Cc.Y /. The link Lk.l;Cc.Y // is
isometric to the spherical join

Lk.w;Cox.Y2// ? ..?v2�� n ¹vº/ ? .?v2Y1n�� [ ¹vº//

? .?v2Z Lk.cv;Stern.v/// ? .?v2YpnZ Lk.e;Stern.v///;

where the length of an edge between two vertices u; v in two different terms if the
decomposition is d.u; v/ D �=2 and Lk.w;Cox.Y2// is identified with the piecewise
spherical flag complex with 1-skeleton �Y2

and edge length d.u;v/D � � �=m.u;v/
for two vertices u; v 2 Y2.

Proof. The link of l D .w; �; gZ/ is the spherical join

Lk.w;Cox.Y2// ? Lk.�; Œ0; 1�Y1/ ? Lk.gZ;Stern.Yp//:

By Section 3.2, the term Lk.w; Cox.Y2// is identified with the piecewise spherical
flag complex with 1-skeleton �Y2

and edge length d.u; v/ D � � �=m.u; v/ for two
vertices u;v 2 Y2. The link Lk.gZ;Stern.Yp// is isometric to Lk.Z;Stern.Yp//which
is isometric to the spherical join

?v2Z Lk.cv;Stern.v// ?v2YpnZ Lk.e;Stern.v//:

Each term Lk.e; Stern.v// consists of a single vertex and each term Lk.cv; Stern.v//
consists of jCf .v/j disjoint vertices. For every � � Y1, the term Lk.�; Œ0; 1�Y1/
is isometric to the spherical join .?v2�� n ¹vº/ ? .?v2Y1n�� [ ¹vº/. So, the link
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(a) Cc.¹a; bº/ (b) Cc.¹b; cº/ (c) Cc.¹c; dº/

Figure 6. The cell complexes associated to some vertices of Xm;q .

Lk.l;Cc.Y // is isometric to the spherical join

Lk.w;Cox.Y2// ? ..?v2�� n ¹vº/ ? .?v2Y1n�� [ ¹vº//

? .?v2Z Lk.cv;Stern.v/// ? .?v2YpnZ Lk.e;Stern.v///:

Note that in particular for two vertices u; v 2 V.Lk.l;Cc.Y /// in two different terms
of the decomposition, we have

d.u; v/ D �=2:

Example 4.13. Let m; q 2 N�2. We go back to the example of the Dyer graph �m;q
with associated Dyer group Dm;q and scwol Xm;q given in Figure 1, Example 2.6,
and Figure 5. Figure 6 shows the cell complexes Cc.¹a; bº/, Cc.¹b; cº/, Cc.¹c; dº/ in
the cases m D 4 and q D 3.

The cell complex †.gY /. Let Y 2 V.X/ and gDf
Y 2D=D

f
Y so that gY 2 V.C/. We

now describe the subcomplexes of † associated to vertices of C . We start by identi-
fying the vertex set of Cc.Y / with a subset of V.Stin.Y;C// and more generally with
a subset of V.Stin.gY;C//. Let Vp.gY / be the following subset of V.Stin.gY;C//:

Vp.gY / D ¹kX 2 V.C/ j X � Vp and kX 2 V.Stin.gY;C//º:

By definition, kX 2 V.Stin.gY;C// if and only if kX D gY or there exists a unique
edge h.X; Y; !/ in C with initial vertex kX D hX and terminal vertex

gY D k�.!/�1Y:

So, kX 2 V.Stin.gY;C// if and only if X � Y , and there exists a unique ! � Y1 n
X1 with k.

Q
v2! xv/

�1D
f
Y D gD

f
Y . So,

Vp.gY /D ¹kX 2 V.C/ j X � Vp \ Y and k
�Y
v2!

xv

��1
D
f
Y D gD

f
Y with ! � Y1º:
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Lemma 4.14. The map j W V.Cc.Y //! Vp.eY / given by j.w;�; hZ/D w�.�/hZ
is bijective. Moreover, it induces a bijective map jg W V.Cc.Y //! Vp.gY / given by

jg.w; �; hZ/ D g � j.w; �; hZ/ D gw�.�/hZ:

Proof. Let Z 2 V.X/ and kDf
Z 2 D=D

f
Z so that kZ 2 Vp.eY /. So, we have Z �

Vp \ Y and k.
Q
v2� xv/

�1D
f
Y D D

f
Y for some � � Y1. As Df

Y D DY2
�DYp

, the
representative k.

Q
v2� xv/

�1 has a unique decomposition

k
�Y
v2�

xv

��1
D k2

Y
v2Yp

kv;

with k2 2 DY2
and kv 2 Cf .v/ for every v 2 Yp . This gives a unique decomposition

k D k2

�Y
v2�

xv

�� Y
v2Yp

kv

�
:

In particular, k 2DY . As �Y is complete and the coset kDf
Z 2D=D

f
Z , we can assume

that kv D e for every v 2 Zp . As DZ2
is a parabolic subgroup of the Coxeter group

DY2
, we can also assume k2 to be the unique element of minimal length in k2DZ2

.
So, j.k2; �;

Q
v2YpnZ

kvZ/ D kZ. Hence, the map j is surjective. Such a choice
of k2 and kv , v 2 Yp n Z is independent of the representative k. Indeed, let k0 be
another representative, so k0Df

Z D kD
f
Z . Then, again, k0 D k02.

Q
v2� xv/.

Q
v2Yp

k0v/.

As k�1k0 2Df
Z , we have k�12 k02 2DZ2

, so k02DZ2
D k2DZ2

, and so, by uniqueness
of the minimal representative, k2 D k02. Similarly, kv D k0v for every v 2 Yp . As there
is a unique edge from kZ to eY , the subset � � Y1 is uniquely determined. Hence,
the map j is also injective, so it is bijective.

Finally, kZ 2 Vp.gY / if and only if Z � Vp \ Y and k.
Q
v2� xv/

�1D
f
Y D gD

f
Y

for some � � Y1. So, kZ 2 Vp.gY / if and only if g�1k.
Q
v2� xv/

�1D
f
Y D D

f
Y for

some � � Y1 and Z � Vp \ Y . So, kZ 2 Vp.gY / if and only if g�1kZ 2 Vp.eY /.
So, the map jg is bijective.

For Y 2 V.X/ and gDf
Y 2D=D

f
Y so that gY 2 V.C/, let†.gY / be the piecewise

Euclidean cell complex given as follows:

(1) The set of vertices (or 0-cells) is Vp.gY /.

(2) Every cell in †.gY / is isometric to a cell in Cc.Y /.

(3) The map jg W V.Cc.Y //! Vp.gY / extends to an isometry

jg W Cc.Y /! †.gY /:

Let hDf
Y 2 D=D

f
Y with hDf

Y D gD
f
Y , then jg ı j�1h is an isometry from †.hY / to

†.gY /. So, the cell structure on †.gY / is well defined.
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We now discuss identifications of subcomplexes. Let Y 2 V.X/ and gDf
Y 2

D=D
f
Y so that gY 2 V.C/. Let Z 2 V.X/ and hDf

Z 2 D=D
f
Z so that

hZ 2 V.Stin.gY;C//:

Then, Stin.hZ;C/ is a subscwol of Stin.gY;C/, and hence, Vp.hZ/ � Vp.gY /. The
following lemma shows that this inclusion induces an isometric embedding of the cell
complex †.hZ/ into †.gY /.

Lemma 4.15. Let Y 2 V.X/ and gDf
Y 2D=D

f
Y so that gY 2 V.C/. Let Z 2 V.X/

and hDf
Z 2 D=D

f
Z so that hZ 2 V.Stin.gY;C//. The cellular map

� W †.hZ/! †.gY /

satisfying �.v/ D v for every vertex v 2 V.†.hZ// is an isometric embedding. In
particular, we can identify †.hZ/ with �.†.hZ//.

Proof. Since hZ 2 V.Stin.gY;C// if and only if g�1hZ 2 Stin.Y;C/, it suffices to
consider the case g D e. For hZ 2 V.Stin.eY;C//, we can write h D h2h1hp with
h2 2 DY2

, h1 D �.�/ for a unique � � .Y nZ/1 and hp 2 DYpnZp
. We claim that

the cellular map �h W Cc.Z/! Cc.Y / given by �.w;�;mM/D .h2w;�[ �; hpmM/

for .w;�;mM/ 2 V.Cc.Z// (sow 2DZ2
, ��Z1,M �Zp , andm 2DZpnM ) is an

isometric embedding. Both Cc.Z/D Cox.Z2/� Œ0; 1�Z1 � Stern.Zp/ and Cc.Y /D
Cox.Y2/ � Œ0; 1�Y1 � Stern.Yp/ are endowed with the `2 metric. By Section 3.2, the
cellular map

�2 W Cox.Z2/! Cox.Y2/

with �.w/Dh2w forw2V.Cox.Z2// is an isometric embedding identifying Cox.DZ2
/

with h2 � CoxZ2
.DY2

/. The cellular map

�1 W Œ0; 1�
Z1 ! Œ0; 1�Y1

with �1.�/ D � [ � for � 2 P .Z1/ is also an isometric embedding identifyingQ
v2Z1

Œ0; 1� with
Q
v2Z1

Œ0; 1� �
Q
v2�¹1º �

Q
v2Y1n.�[Z1/

¹0º in
Q
v2Y1

Œ0; 1�.
The cellular map

�p W Stern.Zp/! Stern.Yp/

with �p.mM/ D hpmM for mM 2 V.Stern.Zp// is an isometric embedding identi-
fying Stern.Zp/ with Stern.Zp/ � ¹hpº � Stern.Yp/. So, the map �h decomposes as
the product of maps

�h D .�2; �1; �p/ W Cc.Z/! Cc.Y /I
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hence, it is a cellular isometric embedding. Then, the map

� W †.hZ/! †.eY /

given by je ı �h ı j
�1
h

is a cellular isometric embedding.

Simplicial subdivision. Let Y 2 V.X/ and gDf
Y 2 D=D

f
Y so that gY 2 V.C/. We

describe a simplicial subdivision of Cc.Y / and †.gY /. Let Bar.Cox.Y2// be the
barycentric subdivision of Cox.Y2/. Let Bar.Œ0; 1�/ be the barycentric subdivision of
Œ0; 1�. Then, Bar.Cox.Y2//, BarŒ0; 1�, and Stern.v/ for v 2 Yp are piecewise Euclidean
simplicial complexes. Moreover, the simplicial complex Bar.Cox.Y2// is isomorphic
to Stin.Y2; C/ by Lemma 3.28. For v 2 Y1, the simplicial complex Bar.Œ0; 1�/ is
isomorphic to Stin.¹vº;C/. For v 2 Yp , the simplicial complex Stern.v/ is isomor-
phic to Stin.¹vº;C/. These isomorphisms induce a scwol structure on the barycentric
subdivisions and on Stern.v/. So, the scwol

Bar.Cc.Y // D Bar.Cc.Y2// �
Y
v2Y1

Bar.Cc.¹vº// �
Y
v2Yp

Cc.¹vº/

is well defined and isomorphic to

Stin.Y;C/ D Stin.Y2;C/ �
Y
v2Y1

Stin.¹vº;C/ �
Y
v2Yp

Stin.¹vº;C/:

We endow Bar.Cc.Y // with the `2 metric, so it is a piecewise Euclidean simplicial
complex isometric to Cc.Y /. We call Bar.Cc.Y // the nice simplicial subdivision of
Cc.Y /. We call the simplicial subdivision of †.gY / induced by the isometry jg the
nice simplicial subdivision of †.gY /.

The next lemma discusses how Stin.gY; C/ can be interpreted as a simplicial
subdivision of †.gY /.

Lemma 4.16. Let Y 2 V.X/ and gDf
Y 2 D=D

f
Y so that gY 2 V.C/. The nice sim-

plicial subdivision of †.gY / is simplicially isomorphic to the scwol Stin.gY;C/. For
Z 2 V.X/ and kDf

Z 2D=D
f
Z so that kZ 2 V.Stin.gY;C//, the isometric embedding

� W †.hZ/! †.gY / given in Lemma 4.15 preserves the nice simplicial subdivision.

Proof. The nice simplicial subdivision is isomorphic to Bar.Cc.Y // which is isomor-
phic to Stin.Y;C/ which is isomorphic to Stin.gY;C/. The second statement follows
from the product decomposition of the nice simplicial subdivision, the map � and the
complexes †.hZ/ and †.gY /.

Example 4.17. Let m; q 2 N�2. We go back to the example of the Dyer graph �m;q
with associated Dyer group Dm;q and scwol Xm;q given in Figure 1, Example 2.6,
and Figure 5. Figure 7 shows the subcomplexes †.e¹a; bº/, †.e¹b; cº/, †.e¹c; dº/
and their simplicial subdivision in the case m D 4 and q D 3.
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e

a

b

ab

(a)†.e¹a; bº/

e
b

bc

bcb

bcbc

c

cb

cbc

(b)†.e¹b; cº/

e

d2 ¹dº

d

c¹dº

cd

cd2

c

(c)†.e¹c; dº/

Figure 7. The subcomplexes associated to some vertices of the development of Xm;p and their
simplicial subdivision.

The cell complex †. We now have the tools needed to build the cell complex †.
Consider

† D
[

gY2V.C/

†.gY /;

where we identify†.hZ/ with �.†.hZ//�†.gY / whenever hZ 2 Stin.gY;C/. So,
by Lemma 4.15, † has a well-defined piecewise Euclidean metric. We endow † with
the associated length metric. The set of vertices of † is

Vp.C/ D ¹gY 2 V.C/ j Y 2 V.X/; Y � Vp; gD
f
Y 2 D=D

f
Y º:

The action of D on Vp.C/ induces an action by isometries of D on †; in particular,
for d 2 D, we have d � †.gY / D †.dgY /. By Lemma 4.16, the nice simplicial
subdivision of each †.gY / induces a simplicial subdivision of †, which we call the
nice simplicial subdivision of †.

Lemma 4.18. The scwol C is isomorphic to the nice simplicial subdivision of †. In
particular, this implies that † is a simply connected metric space.

Proof. Since C D
S
gY2V.C/ Stin.gY;C/ and by Lemma 4.16 every Stin.gY;C/ is

isomorphic to the nice simplicial subdivision of †.gY / preserved by �, the complex
C is isomorphic to the nice simplicial subdivision of †. This induces a metric on C

with respect to which the geometric realization jC j is isometric to †. By [2, Theorem
III.C.3.14], the scwol C is simply connected. So,† is a well-defined simply connected
metric space.
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We are finally in a position to show that† is CAT.0/. Since† is simply connected,
we only need to understand its local structure, so we are back to studying links of
vertices. In order to have a precise description of the links of vertices, we introduce
an edge labeling of † by V.�/.

Edge labeling. Let Y 2 V.X/ and hDf
Y 2 D=D

f
Y so that hY 2 V.C/. We start by

labeling the edges of †.hY / by elements of Y . To define this edge labeling, we study
when two vertices of †.hY / are adjacent and then give the corresponding label. Let
X;Z 2 V.X/ and kDf

X 2D=D
f
X , lDf

Z 2D=D
f
Z so that kX; lZ 2 Vp.hY /; i.e., they

are vertices of †.hY /. Then, kX and lZ are adjacent in †.hY / if and only if their
preimages j�1

h
.kX/; j�1

h
.lZ/ 2 V.Cc.Y // are adjacent in Cc.Y /. Let j�1

h
.kX/ D

.k2; �k; kpX/, j�1h .lZ/ D .l2; �l ; lpZ/ 2 V.Cc.Y //; hence, hk2�.�k/kpX D kX

and hl2�.�l/lpZ D lZ in Vp.hY /. Remember that

Cc.Y / D Cc.Y2/ � Cc.Yp/ � Cc.Y1/:

Then, the vertices j�1
h
.kX/; j�1

h
.lZ/ 2 V.Cc.Y // are adjacent in Cc.Y / if and only

if one of the following holds:

(1) k2, l2 are adjacent in V.Cc.Y2// and �k D �l and kpX D lpZ. Equivalently,
k�12 l2 D xv for some v 2 Y2 and �k D �l and X D Z and kplp 2 D

f
X .

(2) k2 D l2 and �k; �l are adjacent in V.Cc.Y1// and kpX D lpZ. This is equiv-
alent to one of the following:

(a) k2 D l2 and �k � �l and �l n �k D ¹vº � Y1 and X D Z and k�1p lp 2

D
f
Z .

(b) k2 D l2 and �l � �k and �k n �l D ¹vº � Y1 and X D Z and k�1p lp 2

D
f
Z .

(3) k2 D l2 and �k D �l and kpX; lpZ are adjacent in V.Cc.Yp//. This is equiv-
alent to one of the following:

(a) k2 D l2 and �k D �l and X � Z and Z n X D ¹xvº for some v 2 Yp
and k�1p lp 2 D

f
Z .

(b) k2 D l2 and �k D �l and Z � X and X n Z D ¹xvº for some v 2 Yp
and k�1p lp 2 D

f
X .

Using the fact that Y 2 V.X/ so that DY is a spherical Dyer group, this leads
to the following characterization and labeling of edges by Y � V.�/. The vertices
kX; lZ 2 Vp.hY / are adjacent in †.hY / if and only if one of the following holds:

(1) X D Z and k�1l 2 xvD
f
X for some v 2 Y2. In this case, we label the edge by

v 2 Y2 � V.�/.

(2) X D Z and k�1l D x˙1v D
f
X for some v 2 Y1. In this case, we label the edge

by v 2 Y1 � V.�/.
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(3) (a) X � Z and Z nX D ¹xvº for some v 2 Yp and k�1l D k�1p lp 2D
f
Z . In

this case, we label the edge by v 2 Yp � V.�/.

(b) Z � X and X nZ D ¹xvº for some v 2 Yp and k�1l D k�1p lp 2D
f
X . In

this case, we label the edge by v 2 Yp � V.�/.

Note that, for h0Y 0 2 Stin.gY;C/, the labeling of an edge in †.h0Y 0/ is invariant
under the inclusion � W †.h0Y 0/! †.gY /. Moreover, the labeling of edges in †.eY /
is invariant under the action of Df

Y . So, this defines a labeling by V.�/ of the edges
of †. Note that this edge labeling is invariant under the action of D.

4.19. Links of vertices As our goal is to apply Moussong’s lemma to †, we need
to understand links of vertices in †. We start with links of vertices in †.gY /. This
is crucial to prove later on that † is CAT.0/. Let Y 2 V.X/ and hDf

Y 2 D=D
f
Y so

that hY 2 V.C/. Let X 2 V.X/ and kDf
X 2 D=D

f
X so that kX 2 Vp.hY /. The edge

labeling on † and †.gY / induces a vertex labeling l W V.Lk.kX; †//! V , which
restricts to l W V.Lk.kX;†.hY ///! Y . Using the map jh in Lemma 4.14, the link
Lk.kX; †.hY // is isometric to the link Lk.j�1

h
.kX/; Cc.Y //. With Lemma 4.12,

this implies that Lk.kX; †.hY // can be identified with the spherical flag complex
�Y2

? �Y1 ? �YpnX ? .?v2X¹v
i j 1 � i � f .v/º/. The vertex labeling is given by

l.v/ D v for every v 2 Y2 [ Y1 [ Yp n X and l.vi / D v for every vi 2 ¹vi j v 2
X; 1 � i � f .v/º. By Lemma 4.12, the edge length in Lk.kX;†.hY // is given by

d.v;w/ D � � �=m.l.v/; l.w//:

As Y 2 V.X/, the matrix .cos.d.v; w///v;w2Y is positive definite by Lemma 4.1.
So, Lk.kX; †.hY // is a metric flag complex. Additionally, we have that v; w are
adjacent vertices in Lk.kX; †.hY // if and only if l.v/ ¤ l.w/. As this holds for
every gY 2 V.C/, it implies that if v;w are adjacent vertices in Lk.kX;†/, we have
l.v/ ¤ l.w/. So, for pairwise adjacent vertices v1; : : : ; vn 2 Lk.kX; †/, we have
l.vi / ¤ l.vj / for every i ¤ j . To simplify the notation, we will write bvi D l.vi / 2 V
when considering pairwise adjacent vertices v1; : : : ; vn 2 Lk.kX;†/.

Lemma 4.20. Let Y 2 V.X/ with Y � Vp so that Y 2 Vp.C/. Let the vertices

v1; : : : ; vk 2 V.Lk.Y;†//

be pairwise adjacent. There exist Z 2 V.X/ and g 2 D such that Y 2 V.†.gZ//
and v1; : : : ; vk 2 V.Lk.Y;†.gZ/// if and only if Y [ ¹bv1; : : : ; bvkº 2 V.X/.
Proof. As v1; : : : ; vk 2 V.Lk.Y;†// are pairwise adjacent, we have bvi ¤ bvj . Assume
that there exist Z 2 V.X/ and g 2 D such that Y 2 V.†.gZ// and the vertices
v1; : : : ; vk 2 V.Lk.Y;†.gZ///. Then, Y 2 Vp.gZ/, so Y �Z and ¹bv1; : : : ; bvkº �Z.
Hence, Y [ ¹bv1; : : : ; bvkº � Z which implies that Y [ ¹bv1; : : : ; bvkº 2 V.X/.
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Now, assume that Y [ ¹bv1; : : : ; bvkº 2 V.X/. Each vertex v 2 V.Lk.Y;†// is an
edge in † between eY and some vertex hvZv 2 †: Let us define an element gv 2 D.

(i) If Ov 2 V2, the vertex v 2 V.Lk.Y; †// is an edge between Y and x OvY . In
this case, let gv D e.

(ii) If Ov 2 V1, the vertex v 2 V.Lk.Y;†// is an edge between Y and �. Ov/Y or
between Y and �. Ov/�1Y . In the first case, let gv D e. In the second case,
let gv D �. Ov/�1 D x�1

Ov
. Note that only one of these cases can occur as

v1; : : : ; vk are pairwise adjacent.

(iii) For Ov 2 Vp n Y , the vertex v 2 V.Lk.Y; †// is an edge between Y and
Y [ ¹ Ovº. In this case, we fix gv D e.

(iv) For Ov 2 Y , the vertex v 2 V.Lk.Y; †// is an edge between Y and xt
Ov
.Y n

¹ Ovº/ for some 1 � t � f . Ov/. In this case, fix gv D e.

We claim that for Z D Y [ ¹bv1; : : : ; bvkº and g D
Qk
iD1 gvi

we have Y 2 V.†.gZ//
and v1; : : : ;vk 2V.Lk.Y;†.gZ///. Since Y [ ¹bv1; : : : ; bvkº 2V.X/, we have gvgw D
gwgv for all v;w 2 ¹v1; : : : ; vkº. In fact, g D �.!/�1 for ! D ¹Ov 2 Z j gv D x�1Ov º �
.Z n Y /1. Hence, Y 2 Vp.gZ/. Let v 2 ¹v1; : : : ; vkº. Now, we need to show that the
element hvZv 2 Vp.gZ/. We use the case-by-case analysis above to fix the following
notation:

(i) If Ov 2 V2, we have hvZv D x OvY , and we set �v D ! � .Z nZv/1.

(ii) If Ov 2 V1 and hvZv D �. Ov/Y , let �v D ! [ ¹vº � .Z nZv/1. If Ov 2 V1
and hvZv D �. Ov/�1Y , let �v D ! n ¹ Ovº � .Z nZv/1.

(iii) If Ov 2 Vp n Y , we have hvZv D Y [ ¹ Ovº, and we set �v D ! � .Z nZv/1.

(iv) If Ov 2 Y , we have hvZv D xtOv.Y n ¹ Ovº/ for some 1 � t � f . Ov/, and we set
�v D ! � .Z nZv/1.

As Z D Y [ ¹bv1; : : : ; bvkº 2 V.X/, we have gZ D hv�.�v/
�1Z and Zv � Z, so

hvZv 2 V.Stin.gZ;C//. As additionally,Zv �Z \Vp , we have hvZv 2 Vp.gZ/.

We now have the necessary tools to show the following statement.

Theorem 4.21. The cell complex † is CAT.0/.

Proof. By [2, Theorem II.5.4], † is CAT.0/ if and only if it is simply connected and
the link of every vertex is CAT.1/. By Lemma 4.18, the cell complex† is simply con-
nected. Let us now prove that the link of every vertex is CAT.1/ by using Moussong’s
Lemma 3.33. Let Y 2 V.X/ with Y � Vp , and gDf

Y 2 D=D
f
Y so that gY 2 V.†/.

Assume that gDf
Y D D

f
Y , so

gY D eY D Y 2 V.†/:
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Claim 1. Every edge in the link Lk.Y;†/ of Y in † has length � �=2.

Proof. Since the vertex Y 2 V.†/ is contained in †.gZ/ if and only if the vertex
gZ2Stout.Y;C/, we can describe Lk.Y;†/ as the union

S
gZ2Stout.Y;C/

Lk.Y;†.gZ//,
where Lk.Y; †.gZ// is the link of Y in the subcomplex †.gZ/. By 4.19, for two
adjacent vertices u; v 2 V.Lk.Y; †.gZ///, the length of the corresponding edge is
d.u; v/ D � � �=m. Ou; Ov/ � �=2 as m. Ou; Ov/ � 2. So, each edge in Lk.Y; †/ has
length � �=2.

Claim 2. The link Lk.Y;†/ of the vertex Y in the cell complex † is metrically flag.

Proof. Consider a set of pairwise adjacent vertices v1; : : : ; vk2Lk.Y;†/. As Lk.Y;†/
is a piecewise spherical simplicial complex, the vertices v1; : : : ; vk are pairwise dis-
tinct. As mentioned in 4.19, then bv1; : : : ; bvk are pairwise distinct. So, the map

¹v1; : : : ; vkº ! ¹bv1; : : : ; bvkº; .v 7! Ov/

is a bijection. In particular, Y [ ¹bv1; : : : ; bvkº spans a complete subgraph of � . So,
v1; : : : ; vk span a simplex in Lk.Y; †/ if and only if v1; : : : ; vk span a simplex in
Lk.Y;†.gZ// for some gZ 2 V.C/. By 4.19, the link Lk.Y;†.gZ// is a piecewise
spherical flag complex. So, the vertices v1; : : : ; vk 2 V.Lk.Y; †// span a simplex in
Lk.Y; †/ if and only if there exists some gZ 2 V.C/ with Y 2 V.†.gZ// and the
vertices v1; : : : ; vk 2 V.Lk.Y;†.gZ///. By Lemma 4.20, this is the case if and only
if

Y 0 D Y [ ¹bv1; : : : ; bvkº 2 V.X/:
By Lemma 4.1, Y 0 2 V.X/ if and only if the matrix .cos.� � �=m.u; v///u;v2Y 0
is positive definite. As � � �=m.u; v/ D �=2 for all u 2 Y 0 n V2, v 2 Y 0 n ¹uº
and � � �=m.u; u/ D 0 for all u 2 Y 0, the matrix .cos.� � �=m.u; v///u;v2Y 0 is
positive definite if and only if its restriction .cos.� � �=m.u; v///u;v2Y 0\V2

is posi-
tive definite. As Y 0 \ V2 D ¹bv1; : : : ; bvkº \ V2 and � � �=m. Ou; Ov/ D d.u; v/ for all
Ou; Ov 2 Y 0 \ V2, the matrix .cos.� � �=m. Ou; Ov/// Ou; Ov2Y 0\V2

is positive definite if and
only if the matrix .cos.d.u; v/// Ou; Ov2Y 0\V2

is positive definite. Finally, d.u; u/ D 0

for all Ou 2 ¹bv1; : : : ; bvkº, and d.u; v/ D �=2 for all Ou 2 ¹bv1; : : : ; bvkº n V2 and Ov 2
¹bv1; : : : ; bvkº n ¹ Ouº, so the matrix .cos.d.u; v///

Ou; Ov2¹bv1;:::;bvkº\V2
is positive definite if

and only if
.cos.d.u; v///

Ou; Ov2¹bv1;:::;bvkº

is positive definite. So, we conclude that v1; : : : ; vk 2 V.Lk.Y;†// span a simplex if
and only if the matrix .cos.d.u; v///u;v2¹v1;:::;vkº

is positive definite. So, Lk.Y;†/ is
metrically flag.
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Remark 4.22. If D is a spherical Dyer group, the scwol C decomposes as a product
C2 � Cp � C1. For i 2 ¹2; p;1º, let †i be the cell complex associated to Di . So,
†2D Cox.V2/,†1DRV1 , and†p D Stern.Vp/. Then,†D†2 �†1 �†p , where
each factor is known to be CAT.0/. So, † is CAT.0/.

Corollary 4.23. The Dyer group D is CAT.0/.

Proof. D acts properly discontinuously and cocompactly by isometries on †.

Remark 4.24. If the Dyer group D is a Coxeter group, † is the Davis–Moussong
complex described in Theorem 3.30. If the Dyer group D is a right-angled Artin
group, † is the Salvetti complex described in Section 3.3. The dimension of † is
dim.†/ D max¹jY j j Y 2 V.X/º. Consider the Coxeter group W from Theorem 2.8
and its associated Davis–Moussong complex †.W /. The dimension of †.W / is

dim.†.W // D max¹jS j j S � V.ƒ/;WS is finiteº:

Looking at the construction of the graph ƒ, we can see that

dim.†.W // D max¹jY j C jVpj C jV1 n Y j j Y 2 V.X/º:

So, we have that dim.†/ � dim.†.W //.

Remark 4.25. There are many complexes beside Davis–Moussong complexes asso-
ciated to Coxeter groups. Similarly, there are other complexes, such as Deligne com-
plexes, associated to right-angled Artin groups. In this article, we focused on the
Davis–Moussong and the Salvetti complex as the associated actions are geometric,
but one could also generalize those other constructions to Dyer groups.
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