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Counting nearest faraway flats for Coxeter chambers
Theo Douvropoulos

Abstract. In a finite Coxeter group W and with two given conjugacy classes of parabolic sub-
groups [X] and [Y], we count those parabolic subgroups of W in [Y] that are full support, while
simultaneously being simple extensions (i.e., extensions by a single reflection) of some standard
parabolic subgroup of W in [X]. The enumeration is given by a product formula that depends
only on the two parabolic types. Our derivation is case-free and combines a geometric interpre-
tation of the “full support” property with a double-counting argument involving Crapo’s beta
invariant. As a corollary, this approach gives the first case-free proof of Chapoton’s formula for
the number of reflections of full support in a real reflection group W.

1. Introduction

A long time ago in Waterloo, Ontario, Crapo [9] introduced a numerical invariant for
matroids which has since been known as the beta invariant. When the matroid comes
from an essential, central hyperplane arrangement -, the beta invariant 8(+4) can be
defined in terms of the characteristic polynomial y (s, ¢) as follows:

dy(A,t)

. (_1)\rank(A)—1
B(A) == (=1) iy

(1.1)

Hyperplane arrangements and their invariants have been used widely to encode
and study combinatorial objects. This has been very successful in the setting of Cox-
eter and Coxeter—Catalan combinatorics where remarkable enumerative formulas [3,
4,8, 12] and structural theorems [1,6, 11, 14,26] associated to a finite Coxeter group
W can be phrased in terms of the reflection arrangement A . Moreover, numeri-
cal invariants associated to reflection arrangements seem to behave particularly well.
For example, the characteristic polynomial of Ay will always factor as y(Aw,t) =
]_[l'.’zl(t — ¢;), where n is the rank of the group W and the e;’s are certain positive
integers, known as the exponents of W. We write them in increasing order ¢; < e;41,
and we always have e; = 1 because the arrangement Ay is central. From this infor-
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mation, the definition in (1.1) implies that the beta invariant of Ay is given by

BlAw) = [ (e = D). (12)

i=2

The main motivation behind this paper is the realization that the right-hand side
of (1.2) is a factor in the beautiful product formula below, due to Chapoton [7], for
the number of reflections of full support in a finite Coxeter group W. Recall that an
element g in a Coxeter group W with simple generators S is called full support if all
(equivalently, any of) its reduced S-decompositions involve the full set S of simple
reflections of W.

Proposition 1.1 ([7, Prop. 2.1]). The number fw of reflections of full support in a
finite, irreducible Coxeter group W of rank n is given by the formula

fw = |W| 1"[(el ), (13)

where e1, . .., ey, are the exponents of W and h := e, + 1 is the Coxeter number of W.

Chapoton proved this formula in a case-by-case fashion relying on the classifica-
tion of finite Coxeter groups, and for many years, no case-free proof was known. Thiel
[28] gave a uniform proof for Weyl groups W, but only after relating the reflections of
full support with certain collections of order ideals in the root poset of I¥ that had been
uniformly enumerated by Sommers [23]. As a special case of our main Theorem 3.7,
we will give a different proof of Chapoton’s formula via a double-counting argument
that exploits a combinatorial interpretation of the beta invariant S(sAw ). This proof
is self-contained, case-free and applies to all finite Coxeter groups (not just Weyl
groups). Moreover, it is brief enough that we can sketch it below in Section 1.1 in just
a few paragraphs. In Section 1.2, we present our main theorem, a generalization of
Chapoton’s formula where we count certain parabolic subgroups G < W that belong
to given conjugacy classes and are of full support (with Proposition 1.1 corresponding
to the special case that G consists of the identity element and a single reflection).

1.1. A case-free proof of Chapoton’s formula

The first important ingredient of the proof is a new interpretation (see Lemma 3.4 and
Corollary 3.5) of the full support property in finite Coxeter groups W with simple sys-
tem S. Let Ap be the associated reflection arrangement of W with ambient space V
and collection of chambers € (A ) (we consider closed chambers). If Cy € € (Ap)
is the fundamental chamber of Ay (determined by S), then a reflection ¢t € W that
is full support cannot fix any non-trivial face F of Cy; this would imply that ¢ has
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areduced S-decomposition involving only the subset J C S of simple generators that
fix F. This argument also applies in the opposite direction so that a reflection t € W
is full support if and only if its fixed hyperplane H := V! intersects the fundamental
chamber C precisely at the origin 0 € V.

It turns out that this condition is very much related to an enumerative interpretation
of the beta invariant. Slightly recasting a theorem of Greene and Zaslavksy [13], we
show in Corollary 2.10 that for a real, essential, central arrangement 4 the number
B(A) equals half the quantity of chambers of #4 that intersect any fixed hyperplane
H e A precisely at the origin0 € V.

Now, if N := |Aw/| denotes the number of reflections in W, equivalently hyper-
planes in Ay, the well-known relation ~in = 2N allows us—along with (1.2)—to
rewrite Chapoton’s formula (1.3) as

(W[ fw = N -2B(Aw).

The two sides of this equation reflect two different ways to enumerate the elements of
the set
PW) :={(H.C) € Aw x €(Aw) such that H N C = 0}.

Counting pairs (H, C) € (W) starting with the hyperplane H and then all suit-
able chambers C, we find a total of N - 28(Aw ) elements, after the interpretation of
B(Aw) we discussed. On the other hand, by our geometric interpretation of the full
support property, the number of hyperplanes H intersecting the fundamental cham-
ber Cy at the origin equals fy . Moreover, the intersection patterns of hyperplanes and
chambers are the same for all chambers, and so, if we count pairs (H, C) € B(W)
starting with the chamber C and then considering all suitable hyperplanes H, we will
find a total of |W| - fi elements.

1.2. Our main theorem

After the previous discussion, it is natural to ask whether we can further apply this
geometric interpretation of support and count other objects in finite Coxeter groups.
Moreover, it is well known that, for any flat X € Ay, the restricted arrangements A{,{,
also have characteristic polynomials that factor in positive integer roots b, ..., b,f ,
k = dim(X), which are known as the Orlik—-Solomon exponents of AX (see Sec-
tion 3.2). Is there a way to generalize Chapoton’s formula (1.3) using these expo-
nents biX ?

It turns out that both these questions have positive answers. We briefly preview
some definitions and notation before stating our main theorem (see Section 3 for more
details). In a finite Coxeter group W, we consider for any parabolic subgroup Wy < W
two subsets 7, J € § of the set S of simple reflections, called the core and support of
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Wy, respectively, as follows. We require that
(I) =Wy < (J),

and that / is the maximum subset with this property and J the minimum one (and we
will say that Wy is full support if J = S; see Section 3).

The geometric interpretation of support discussed in Section 1.1 holds in this case
too so that J = S for a flat ¥ if and only if Y N Cy = 0. We then call such flats
faraway flats for the fundamental chamber Cy. Now, it is easy to see that the core I of
Y can have size at most equal to rank(Wy) — 1 if Wy is full support (apart from the
trivial case when Wy = W, see also Remark 2.3). We call such flats nearest faraway
flats for the fundamental chamber.

Our main theorem gives the enumeration of nearest faraway flats for the funda-
mental chamber, keeping track of the parabolic types of the flat and of its core.

Theorem 3.7. Let W be an irreducible, finite Coxeter group with reflection arrange-
ment A, and let X and Y be two flats in £ 4 such that dim(X) = dim(Y') + 1. Then,
the set §([X])[y], which consists of the parabolic subgroups of W of type [Y] that
are full support and have core of parabolic type [ X] (see also Definition 3.1), has size
given by the formula

2. u [X v dim(X)

B X
G((X D)yl = [N(X) : Wx] 1:[ v

where N(X) and Wy are, respectively, the setwise and pointwise stabilizers of X,
bX denote the Orlik—-Solomon exponents of the restricted arrangement 4%, and the
Orlik—Solomon number u[x| [v] is defined to be the number of hyperplanes in AX of
parabolic type [Y].

Notice that the formula of Theorem 3.7 gives a full generalization of Chapoton’s
formula (1.3) (in fact of Thiel’s generalization of it in [28, Thm. 1.2]) for any parabolic
type. The fact alone that the quantity on the right-hand side of the equation in Theo-
rem 3.7 is an integer is surprising (and as far as we know unknown till now).

Summary

In Section 2, we present our interpretation of the beta invariant and the notions of
faraway and nearest faraway flats in the general setting of real, central, simplicial
arrangements. As we briefly discuss in Section 2.3, we hope and expect to see appli-
cations of these ideas outside the context of Coxeter groups. In Section 3, we translate
the results of Section 2 to the setting of our main Theorem 3.7 and prove it. We finish
in Section 3.4 with certain direct generalizations of Theorem 3.7 and the discussion
of possible further extensions of it.
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2. Double counting pairs of chambers and faraway planes

In this section, we introduce the basic combinatorial objects of this paper and prove
our main technical lemma (Lemma 2.12). For any terminology or statements that are
not explained here, the reader may consult the standard references [2,21,24].

2.1. Hyperplane arrangements, faraway planes, and nearest faraway flats

We will start first by fixing some notation and terminology. In this section, + will
denote a real, essential, central hyperplane arrangement and €(+) its collection of
chambers (which are closed sets for us; i.e., each chamber is the closure of a connected
component of the complement of the real arrangement ). We will write V' for its
ambient real vector space and 0 for the origin of V. The intersection lattice of the
arrangement 4 will be denoted by £ 4, and we will call its elements X € £ 4 the
flats of the arrangement. For any such flat X € &£ 4, the restricted arrangement AX
is a hyperplane arrangement with ambient space X, defined as the collection of top-
dimensional flats properly contained in X. More formally, we have

AX ={HNX|Hech, HPX).

For any face F € C of a chamber C € €(+4) of the arrangement, sp(F') will denote
the linear span of F, which is a flat in the intersection lattice &£ 4. Notice that F itself
is then a chamber of the restricted arrangement A4*®). We will denote by dim(X)
and dim(F') the respective dimensions of a flat X and face F. (Notice that dim(F) =
dim(sp(F')).)

We are now ready to give the proper definitions for the notions of faraway planes
and nearest faraway flats discussed in the introduction.

Definition 2.1. For a real, essential, central hyperplane arrangement 4 and a chamber
C € €(+A), we say that a hyperplane H € # is a faraway plane for the chamber C
if it intersects C only at the origin, that is, if H N C = 0. We will write 4 (C) (or
simply ¥ (C) when there can be no confusion) for the collection of faraway planes
associated to the chamber C.

We will often want to restrict—without altering the ambient arrangement A—the
collection of hyperplanes in which we count how many are faraway planes. For any
subset P C A, we define F 4,2 (C) to be the set of faraway planes for the chamber C
that belong to P.

Similarly, for an arrangement +4 as above and a chamber C € € (), we will call
aflat X € £ 4 a faraway flat for C if X N C = 0. We are interested in a particular
subset of faraway flats whose definition (Definition 2.2) we motivate now. Notice that
for any flat X € £ 4 and any chamber C € €(#A) there must exist faces of C whose
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span contains X and among those at least one minimum-dimensional such face F. Of
course, we must have dim(F) > dim(X) and equality would force that

CNX=F

so that in the case of a flat X that is faraway for C, we must have dim(F) > dim(X).
It is natural to consider the faraway flats X for which dim(F) = dim(X) + 1 as being
closest or nearest to the chamber C'.

Definition 2.2. Let 4 be a real, essential, central hyperplane arrangement, with col-
lection of chambers €(+4) and intersection lattice £ 4. For a given chamber C €
€(A), we will say that a flat X € £ 4 is a nearest faraway flat for C if it is a faraway
flat (i.e., if X N C = 0) and the minimum dimension of any face F of C whose span
sp(F) contains X is equal to dim(X) + 1.

Remark 2.3. Comparing Definitions 2.1 and 2.2, we see that the origin 0 is consid-
ered a faraway flat (for any chamber), but it is not a nearest faraway flat.

Now, in general, there may be multiple faces F C C that satisfy the criteria of
Definition 2.2 for a given flat X . For instance, take the arrangement of hyperplanes in
R3 given as

Asq  ={x—z=0,x+z=0,y—z=0,y+z=0}

(These four hyperplanes are the linear spans of the four sides of a square pyramid
with apex at the origin.) If C € €(+Ay,) is the chamber that contains the positive z-
axis in its interior, then the 1-dimensional flat X := {x = z = 0} (i.e., the y-axis) is
a nearest faraway flat for C and lives in the span of two distinct 2-dimensional faces
of C (those that correspond to the hyperplanes x —z = 0 and x 4 z = 0).

There is, however, a class of arrangements for which each nearest faraway flat has
a uniquely determined associated face F' as in Definition 2.2. Recall that an essential,
central hyperplane arrangement is called simplicial when all its chambers are simpli-
cial cones, i.e., cones whose rays form a basis of the ambient space V.

Lemma 2.4. Let A be a central, essential, simplicial, hyperplane arrangement, C €
€ (A) one of its chambers, and X € £ 4 one of its flats. If X is a nearest faraway flat
for C, then there exists a unique face F of C that satisfies sp(F) 2 X and dim(F) =
dim(X) + 1.

Proof. Assume that, on the contrary there are two distinct faces F; and F, of C
satisfying the conditions of the statement. Clearly, we must have sp(F7) # sp(F>) so
that the assumed conditions force sp(F71) N sp(F>) = X. Now, since # is simplicial,
we must further have that

sp(F1) Nsp(F2) = sp(F1 N F3)



Counting nearest faraway flats for Coxeter chambers 127

because the union of the rays that span the faces F; and F5 is a linearly independent
collection, but the intersection F; N F; is itself a face of C and the equality X =
sp(F1 N F») contradicts the assumption that X is a faraway flat. This completes the
proof. |

This allows us to give the following definitions.

Definition 2.5. Let + be a real, essential, central, simplicial hyperplane arrangement.
For a chamber C € €(+4) and a flat X € £ 4 that is a nearest faraway flat for C, we
call the unique face F that satisfies the conditions of Definition 2.2 the associated face
to the (nearest faraway) flat X. We write N ¥ 4 (C, F) (or N ¥ (C, F) when there can
be no confusion) for the collection of nearest faraway flats for the chamber C, with
associated face F.

Similar to Definition 2.1, we will often want to restrict the family of flats that are
considered. For any subset @ C &£ 4, we define N F 4 o (C, F) to be the set of nearest
faraway flats for the chamber C and with associated face F, which belong to Q.

Remark 2.6. Comparing Definitions 2.1, 2.2, and 2.5, notice that—given a simpli-
cial' arrangement # and a chamber C as in the discussion so far—a faraway plane is
always a nearest faraway flat with associated face the whole chamber C'. In particular,
we will have for any subset #» C A that

Fap(C)=NF 4,2(C,C),

where we treat > C A also as a collection of flats, i.e., as a subset of &£ 4.

On the opposite direction to Remark 2.6 above, the condition that faraway flats
be nearest allows us to relate them to faraway planes in restricted arrangements. In
particular, the number of nearest faraway flats for a chamber C, with associated face
F, must equal the number of faraway planes in the restricted arrangement A for
the chamber F € € (APF)). We formalize this below.

Proposition 2.7. Let A be a simplicial hyperplane arrangement as in Definition 2.5
with a chosen chamber C € €(A) and face F C C. If Q C £ 4 is any subset of flats
with 0 ¢ @, we will have

?Abp(F)’@ﬂAbp(F)(F) = NF 4a(C, F).

Proof. The requirement 0 ¢ @ is to avoid the phenomenon of Remark 2.3.

't is not necessary to assume simpliciality here since there can only be a single full-
dimensional face in any chamber; we do it to keep the statement formally compatible with
Definition 2.5.
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To prove the statement, we will show that the corresponding collections of faraway
planes in A¥) and nearest faraway flats in 4 are equal by demonstrating the inclu-
sions C and D between them. To show D, we start with a flat X € N F 4 o(C, F).
This means that X N C = 0, which further implies X N F = 0 since F is a face of C.
Moreover, by Definition 2.5, X also satisfies dim(X) = dim(F) — 1 and X C sp(F),
which completes the proof for this direction.

To prove the inclusion C, we start with a hyperplane Z € @ N A®(F) that satisfies
Z N F = 0. Since Z C sp(F), we will have that

ZNC Csp(F)NC =F,

where the last equality holds because F is a face of the (convex) chamber C. Now,
Z NC C Fimplies that Z N C = Z N F = 0, which completes the direction C and
thus the proof. |

2.2. Crapo’s beta invariant and the double-counting lemma

We start as in Section 2.1 with a real, essential (but not necessarily central or simpli-
cial) hyperplane arrangement + with intersection lattice £ 4 and ambient space V.
Recall that its characteristic polynomial x(+,t) is defined in terms of the Mdbius
function p on £ 4 (where the order is inverse inclusion of flats) as

AAD) =Y (V. X)),
Xel 4

As is well known, many important combinatorial invariants of the arrangement #4 are
encoded in its characteristic polynomial (the number of chambers of 4, the number of
hyperplanes—or flats of any fixed dimension—in # [2], the distribution of projection
volumes for its chambers [18]). One that is more relevant for us is the number b(4)
of bounded chambers of 4, which is given as

b(A) = (=) A . (A, 1),

where the rank of the arrangement is the dimension dim(V') of the ambient space’.
In fact, if 4 is indeed central, then there are no bounded chambers (i.e., b(4) = 0)
so that we must have y(+, 1) = 0; in other words, if +4 is central, 1 must be a root
of its characteristic polynomial. In this paper, we are interested in an invariant similar
to b(A), defined in terms of the derivative of the characteristic polynomial. Now, we
further assume that ¢ is central.

2More generally, the rank of an arrangement # equals the difference between the dimension
of the ambient space and the center of »4; in our case, since we assume 4 to be essential, its
center—the origin 0—is O-dimensional.
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Definition 2.8 (Crapo’s beta invariant). For a real, essential, central hyperplane ar-
rangement 4 with characteristic polynomial y(+,t), we define its beta invariant

B(A) as
] _ dy(A, 1)
A) = (—1 rank(A)—1  ZA\IE P ,
B(A) = (-1) I
where d/d¢ denotes differentiation with respect to 7.

It is not very difficult to see that B(+4) must be a positive integer; much more than
that, it has an enumerative interpretation. The following proposition is [13, Thm. 3.4],
but essentially its proof comes down to [31, Thm. D]. It also appears as Exercise 22 (d)
in [24, Lec. 4].

Proposition 2.9 ([13, Thm. 3.4]). Let A be a real, essential, central hyperplane
arrangement, and let H' be a proper translate of an arbitrary hyperplane H € A.
Then, Crapo’s beta invariant for A agrees with the number of bounded chambers in
the arrangement A U {H'}; that is, we have

B(A) = b(AU{H'}).

Corollary 2.10. Let A be as in Proposition 2.9 and let H € A be any given hyper-
plane. Then, the beta invariant B(A) equals half the number of chambers whose
intersection with H is the origin 0.

Proof. With V being the ambient space of the arrangement, we start by choosing a
linear form oy € V* \ {0} such that oy (v) = 0 for all points v € H. Because 4
is central, the hyperplane H divides its collection of chambers into two disjoint sets
€+ (A) and €y—(A) that consist of the chambers C whose points v € C satisfy
ag (v) > 0orayg(v) <0, respectively.

Now, if we define H' to be the translate of H cut by the equation agy (v) = 1, the
chambers of the arrangement A U H’ are divided into two sets as follows. First, we
have the chambers in €y - () as they are, but then, for each chamber K € €+ (A),
there exist two chambers K, K> in €(A U H'); the points v in K; satisfy 0 <
ayg (v) < 1, while the points v € K, give 1 < ag(v). Now, the chamber K is always
unbounded, but the chamber K; is bounded if and only if it has a bounded inter-
section with the hyperplane H’. If the intersection Ky N H’ is bounded, then, since
A is central and H’ is a (parallel) translate of the hyperplane H > 0, we must have
H N K = 0 (for instance, by Thales’s theorem on similar triangles). If the intersection
is unbounded, it means that K; and thus K contain an infinite ray parallel to H, and
since K is a cone, this means it must contain an infinite ray inside H as well; that is,
KNH#D0.

This means that the set of bounded chambers in 4 U H' is in bijection with the set
of chambers K € €+ (+4) such that K N H = 0. Because # is central, it is invariant
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under scalar multiplication by —1, and then, the same statement must be true for the
arrangement A U H”, with H” cut by ag (v) = —1, and the set € - (+A); moreover,
the two cardinalities (A U H') and (A U H”) must be equal. Combining this with
Proposition 2.9, we have that the quantity 2 - B(+4) is equal to the total number of
chambers C € € () such that C N H = 0. This completes the proof. ]

Remark 2.11. The interpretation of the beta invariant given in Corollary 2.10 above
is used in [2, §8.4] as the definition of B(s4). In this setting, they relate it to the
determinant of the Varchenko matrix of 4 [2, Thm. 8.11]. The connection to Crapo’s
definition is briefly discussed at the end of Section 8 in [2].

Below, we give the key technical lemma of this paper that we will rely upon in
Section 3 for the proof of our main Theorem 3.7.

Lemma 2.12 (Double counting lemma). Let 4 be a real, central hyperplane arrange-
ment with set of chambers €(A), and let P C A be an arbitrary subset of hyper-
planes. If ¥ 4,2 (C) denotes the set of hyperplanes in P that are faraway planes for
some chamber C € € (A), we will have that

> 1Fap(C) =2-12]- B(A).

Ce€(A)
where |P| and B(A) denote the size of P and the beta invariant of A, respectively.

Proof. The proof is the same as our discussion in Section 1.1. The two sides of the
equation reflect two different ways to enumerate the elements of the set

B(P, A) := {(H, C)e P x€(A)suchthat HNC = 0}.

Counting pairs (H, C) € (P, A) starting with the hyperplane H and then finding
all chambers C such that H N C = 0, we get a total of 2 - |P| - B(+4) elements, after
Corollary 2.10. On the other hand, enumerating the pairs (H, C) € (P, +A) starting
with the chamber C and counting the hyperplanes H € J for which H N C = 0 gives
us, after Definition 2.1, precisely ZCetf( ) |F,2(C)|. This completes the proof. m

2.3. General numerological applications

The material presented in this section will be mostly applied—in this paper—in the
context of reflection arrangements and their restrictions. We chose to discuss it in
higher generality (arbitrary central, or simplicial central, arrangements) because we
hope and expect that it will have further applications. We hint at a few possibilities
here.

There is a large family of central hyperplane arrangements #4, called free arrange-
ments [30], for which the characteristic polynomial y(+, ¢) factors into linear terms
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with positive integer roots. They are defined by a condition on the ring O (+4) of (poly-
nomial) vector fields tangent to the hyperplanes of #; if the ring is a free module over
the ambient algebra C[V], then we say that 4 is free. Terao [26] proved the factor-
ization property discussed above by relating the roots of x(+, ¢) to the homogeneous
degrees of a basis for the module D (A). For a free arrangement 4 of rank n, the
roots €1, ..., &, of y(+A,t) are called the exponents of 4. Because # is central, we
may assume that ¢; = 1, and then immediately by Definition 2.8, we will have the
following statement.

Proposition 2.13. For a free arrangement A of rank n, with exponents
81 = 19 829"" Eny

the beta invariant B(A) is given by
B(A) =[] — D).
i=2

Because of Proposition 2.13, many enumerative questions regarding the sets de-
fined in Section 2.1 will have answers given in terms of product formulas when A is
a free arrangement. We give the following as an example.

Corollary 2.14. For a free hyperplane arrangement 4 of rank n with exponents 1 =

1, &2, ..., &, the average number of faraway planes for a chamber is given by the
Sformula
n
- g —1
Expcee)(1FAC)) = [A]- [ —-
i, &t 1

Proof. This is an immediate corollary of Zaslavsky’s theorem that

n
leA) =[JeE+1
i=1
and Lemma 2.12 for ? = +. Notice that the factor 2 of the lemma canceled with the
factore; + 1 = 2. ]

Remark 2.15. Many popular classes of arrangements are known to be free; for in-
stance, all chordal graphical arrangements—more generally all supersolvable arrange-
ments [21, Thm. 4.58]—all reflection arrangements, and all restricted reflection ar-
rangements (see the discussion below (3.2)) are free.

Example 2.16. In Figure 1 below, we give an illustration for some of the results of
this section for three free arrangements 41, 45, 43 that are all chordal graphical
arrangements (with +; being the full braid arrangement B4). They are all rank-3
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2 1 2

N

3

1

3

exp(1) = (1,2,3), (A1) =2 exp(A2) =(1,2,2), B(A2) =1  exp(sh3) = (1,1,2), B(43) =0

Figure 1. Three free arrangements 41, 42, %43, with their exponents, beta invariants, and sets
of faraway planes for each chamber.

arrangements but are depicted in their intersection with the unit sphere in R3. Because
of this, a hyperplane is a faraway plane for some chamber if it has no intersection with
the chamber on the sphere.

The hyperplanes are labeled with numbers 1, ..., 6, and each chamber is labeled
with the set of its faraway planes. (Not all chambers are visible because some lie
completely in the back of the sphere; there are 6, 4, 2 invisible chambers in 1, 4,
A3, respectively.) We can see in «+; that each chamber has a unique faraway plane
and that each hyperplane is the faraway plane for exactly 2 - S(+41) = 4 chambers
(counting the 6 chambers in the back of the sphere that are labeled with planes 1, 5, 3).
There are 4! = 24 chambers, so this agrees as expected with Lemma 2.12.

In the second arrangement +,, things are more interesting as some chambers have
faraway planes while others do not. Counting also the invisible chambers (there are
4 of them and they are labeled exactly as the 4 chambers bounded by hyperplanes
1,3, and 5 in the “front” of the figure), we have a total of 10 chambers with a single
faraway plane and 8 chambers with no faraway planes. On the other hand, all hyper-
planes have exactly 2 - 8(+A,) = 2 chambers for which they are faraway planes. The
average number of faraway planes per chamber is therefore 5/9, which agrees with
Lemma 2.12 and Corollary 2.14. The same thing happens with 43 where 8(4A3) = 0,
and it is easy to see that no chamber has faraway planes.

3. Applications in finite Coxeter groups
In this section, we prove our main result (Theorem 3.7) by combining the double-

counting lemma of the previous section (Lemma 2.12) with a new geometric inter-
pretation of the notion of support in finite Coxeter groups (see Lemma 3.4). In what
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follows, the presentation assumes some familiarity with the theory of finite Coxeter
groups; for any terminology or statements that are not explained, the reader may con-
sult the standard references [15,17,21].

3.1. Finite Coxeter groups and their parabolic subgroups

We start again by fixing some notation and terminology. We will write W to denote
an irreducible, finite Coxeter group, S for its set of simple generators, and n := |S|
for its rank. For any such W, there exists a natural real vector space V' = R” on which
W is acting via linear orthogonal transformations. In this way, the collection of finite
Coxeter groups W agrees precisely with the collection of finite real, reflection groups
(namely, the finite subgroups of GL(V') generated by Euclidean reflections). We will
denote by Aw the reflection arrangement of W, it is a real, essential, central, simpli-
cial hyperplane arrangement that consists of the fixed hyperplanes of the reflections
of W and whose ambient space is V.

We will denote by Cy the fundamental chamber of W, namely, the chamber of
Aw whose boundary hyperplanes are exactly the fixed hyperplanes of the simple
generators s € S. Any subset J C S determines a face COJ of the fundamental cham-
ber as the intersection Co N ();c; V*. The subgroups (J) < W are precisely the
pointwise stabilizers of the faces COJ and are called standard parabolic subgroups.
More generally, the pointwise stabilizer Wp of any collection of points B C V will
be called a parabolic subgroup. It turns out that the fixed spaces of parabolic sub-
groups are always flats of the reflection arrangement Ay (with each flat X € &£ 4,
determining a distinct subgroup Wx) and that the parabolic subgroups Wy are them-
selves reflection groups, with rank(Wy) = codim(X'), which are always conjugate to
some standard parabolic subgroup (and it is possible that different standard parabolic
subgroups are conjugate to each other).

The group W acts via conjugation on the collection of parabolic subgroups Wy <
W, and this action is equivariant to its natural action by multiplication on the flats
X € L4, - The orbits of these actions are called parabolic types (generalizing the
cycle type of elements or Young subgroups in the symmetric group S,) and will be
denoted by [X] € £ 4,,, / W (for any representative flat X). The isomorphism type of a
parabolic subgroup Wy < W as a finite Coxeter group usually determines its parabolic
type as well, but not always. For example, in the hyperoctahedral groups B,,n > 2,
any parabolic subgroup Wy that fixes a hyperplane H € £ 4, is isomorphic to A =
S5 as a Coxeter group, but there are always two distinct parabolic types [H1] and [ H3]
that it could belong to (corresponding to the two orbits of hyperplanes, associated to
the long and short roots, respectively).

The collection ({J)) ycs of standard parabolic subgroups of a finite Coxeter group
W forms a boolean lattice under inclusion. Therefore, for any parabolic subgroup
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Wx < W (in fact any subgroup), there exist unique subsets I and J of S for which
(I) < Wx < (J) 3.1

and such that / is the maximum such subset and J the minimum one. That is, (/)
is the largest standard parabolic subgroup contained in Wy and (J) is the smallest
standard parabolic subgroup containing Wyx. The subset J as above is known [5,
§2.1.1] as the support of Wy, and if J = S, we say that Wy is full support. To facilitate
discussing these objects, we will call I the core of Wy.

Definition 3.1. In a finite Coxeter group W with set of simple generators S and for a
subset / C S, we define § (/) to be the collection of parabolic subgroups that are full
support and whose core is /. More generally, if [X] € &£.4,, /W is an orbit of flats,
we write § ([ X]) for the collection of parabolic subgroups of full support whose core
I determines a subgroup (/) of parabolic type [X].

Furthermore, if [Y] € &£.4,,/W is another orbit of flats, we will write §(/)[y)
and g ([X])[y] for the subsets of §(/) and §([X]), respectively, consisting of those
subgroups that have parabolic type [Y].

A natural problem is to compute the cardinalities of the sets in Definition 3.1
above. It turns out that, for a particular subfamily, this is achievable by using the
techniques of Section 2. In our main Theorem 3.7, we will compute the cardinalities
of the sets §([X])[y] for pairs of parabolic types ([X], [Y]) that satisfy dim(X) =
dim(Y) + 1 (for any representatives X € [X]and Y € [Y]).

There is a more conceptual way to describe the family discussed in the previous
paragraph. Following Taylor [25, Defn. 1.1], we will say, for two reflection subgroups
H < K < W of W, that K is a simple extension of H if K = (H, r) for some (not
necessarily simple) reflection r of W such that r ¢ H. Then, given two parabolic
subgroups Wy < Wy of W, we have that dim(X) = dim(Y) + 1 if and only if Wy
is a simple extension of Wx. To see this, note that we can simultaneously (i.e., using
a single element g € W) conjugate Wy and Wy to standard parabolic subgroups,
following, for example, the argument in [16, Prop. 2.4] that works more generally for
arbitrary chains of parabolic subgroups.

This motivates the following definition and distinct notation for those parabolic
subgroups of full support that are simple extensions of their cores.

Definition 3.2. In a finite Coxeter group W with set of simple generators S and for a
subset I C S, we define & (/) to be the collection of parabolic subgroups of W that
have core I, are of full support, and are simple extensions of (I). More generally, if
[X] € £y /W is an orbit of flats, we write G, ([X]) for the collection of parabolic
subgroups of full support, whose core / determines a subgroup (/) of parabolic type
[X] and which are simple extensions of (/).
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3.2. Orlik—Solomon exponents and the matrix U

Much of the combinatorics of finite Coxeter groups W is encoded in the reflection
arrangement Ay, the restricted arrangements A{fV (for any flat X € £ 4,,), and their
invariants. Orlik and Solomon [20, Thm. 1.4] have shown that the characteristic poly-
nomials of the arrangements A{,{, always factor as

dim(X)

1Ay = [T =55, (3.2)

i=1

for positive, integer numbers biX . These numbers are known as the Orlik—Solomon
X

exponents for the parabolic type [X]; we write them in increasing order biX <bi,

and we always have
¥ =1

since A{,{, is central. In the case X = V, we get the whole arrangement 4y and the
Orlik—Solomon exponents biV are the exponents of W as discussed in the introduction.
This factorization property comes down to the fact’® that all restricted arrangements
A{,{, are free (see Section 2.3). Combining (3.2) with Definition 2.8, the beta invariants
of the restricted arrangements are given by

dim(X)

BAw) = [ &F -1 (33)
=2

As an intermediate step in computing the characteristic polynomials )((A{,(V, 1),
Orlik and Solomon [20, §2] consider a square matrix U whose rows and columns are
indexed by parabolic types. Its entries are important for our Theorem 3.7, so we recall
the definition here.

Definition 3.3. Let W be an irreducible, finite Coxeter group and [X], [Y]e L 4, /W
two of its parabolic types. We define Uiy v 0 be the number of flats in the restricted
arrangement A{,{,, for any representative X € [X], that are of parabolic type [Y]. That

is,
Uix)r] = #{Z € [Y] such that Z C X forafixed X € [X]}.

We arrange these numbers in a square matrix, whose rows and columns are identi-
cally indexed by the parabolic types of W in non-increasing dimension, and we call it
the Orlik—Solomon matrix U . For each irreducible Coxeter group, the Orlik—Solomon
matrices are given in [21, App. C].

3Proven case by case for all real reflection groups in [22] and uniformly for Weyl groups
in [10].
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3.3. Proof of the main theorem

We start by a few propositions that relate the Coxeter-theoretic objects of Section 3.1
with the combinatorial objects of Section 2.1.

Lemma 3.4 (Geometric interpretation of support and core). Let W be a finite Coxeter
group with a set of simple generators S, reflection arrangement A, and fundamental
chamber Cy. For any flat X € L 4, let I(X) and J(X) denote, respectively, the core
and support of the parabolic subgroup Wy. Then, the following hold:

@) COI X is the minimal face of Co whose span contains X.

(ii) COJ X is the maximal face of Cy that is contained in X .

Proof. For part (i), notice that, for any subset / C S, we have that (/) < Wy if and
only if sp(COI ) D X. By its definition, the core /(X)) is the unique maximal standard
parabolic subgroup contained in Wy so that dually COI ) must be the minimal face
whose span contains X .

For part (ii), start with any subset J € S; we have that Wy < (J) if and only if
MNses V* € X if and only if C§ € X. This implies (recall the definition of support
below equation (3.1)) that the support of Wy corresponds to the largest face of Cy that
is contained in X . n

The following corollary states that parabolic subgroups of full support correspond
to faraway flats for the fundamental chamber (see the paragraph below Definition 2.1).

Corollary 3.5. Let W be a finite Coxeter group with reflection arrangement A and
Sfundamental chamber Cy. For any flat X € £ 4, the parabolic subgroup Wy is full
support if and only if X is a faraway flat for C.

Proof. We need to show that Wy is full support if and only if X N Cy = 0. This is
immediate after Lemma 3.4 (ii) since the maximal face of Cy that is contained in X is
equal to X N Co and since CS = 0 (for the set of simple generators S of W). |

In fact, we can do a bit more when the (full support) parabolic subgroups of W
are simple extensions of their cores. Recall from Definition 3.1 that & (/)y} consists
of the parabolic subgroups of type [Y] that are full support and have core 7. If

rank(Wy) = |I| + 1,

then all groups in g (1 )[y] are by construction simple extensions of their core (see the
discussion preceding Definition 3.2).

Corollary 3.6. Let W be a finite Coxeter group with reflection arrangement 4, set of
simple generators S, and associated fundamental chamber Cy. For any pair (I, [Y])
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of a subset I < S and a parabolic type [Y] € L4/ W such that
|[1] 4+ 1 = rank(Wy),

the set §(I)[y) is in bijection with the collection of nearest faraway flats for Cy that
have associated face COI (recall Definition 2.5) and belong to the orbit [Y]. That is,
we have

E(y) = NF 4v1(Co, CJ).

Proof. A parabolic subgroup Wz belongs to the set & (/)[y; if and only if it is full
support and has core / and the flat Z lies in the orbit [Y]. By Lemma 3.4 and Corol-
lary 3.5, this is equivalent to requiring that Z is in [Y], it is faraway for the chamber
Co, and that COI is the minimal face F of Cy such that sp(F) 2 X. Since moreover
we have assumed that |/| 4+ 1 = rank(W7z), we must have that

dim(sp(Cg)) = dim(Z) + 1.

This means that Z is in fact a nearest faraway flat for Cy with associated face C/,
and the proof is complete. ]

We are now ready to give the main theorem and its proof.

Theorem 3.7. Let W be an irreducible, finite Coxeter group with reflection arrange-
ment A, and let X and Y be two flats in L 4 such that dim(X) = dim(Y') + 1. Then,
the set §([X])[y], which consists of the parabolic subgroups of W of type [Y] that
are full support and have core of parabolic type [ X] (see also Definition 3.1), has size
given by the formula

19 ([x]) |_M.dmﬁ()(bx_l)
M NGO wx] T T

where N(X) and Wx are, respectively, the setwise and pointwise stabilizers of X,
biX denote the Orlik—Solomon exponents of the restricted arrangement 4%, and the
Orlik—Solomon number u[x| [y] is defined to be the number of hyperplanes in AX of
parabolic type [Y].

Proof. We start by applying Corollary 3.6 and translating the enumeration of full
support parabolic subgroups with respect to their cores to the enumeration of nearest
faraway flats with respect to the associated faces. We will have that

G(XDyl = D [FDm| = Y [NFam(Co.Cy)

IcS IcS
vie[x] vie[x]

)

where the first equality is just Definition 3.1. The following lines give the enumeration
of the corresponding (nearest) faraway flats; immediately below, we elaborate each of
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the steps:
D NFam(Co.CHl =+ Y D |NFaw(C.F)|
Ics Ce€(A) Fc<C
vielx] sp(F)e[X]
Z| Wzl Y |Fazazom(K)]
Ze[X] Kee(AZ)
| Z Wzl (2 |AZ N[Y]|- B(AZ))
Ze[X]
Wx|
=[W : N(X)]- Il -2 Upyy - BOA)
2-u
[X],[Y] X
= W g,
N0 ] P

The first equation holds because the action of W respects the intersection patterns of
orbits of flats on chambers (and there are | |-many chambers in € (+4)). The second
equation is a reordering of the summation followed by an application of Proposi-
tion 2.7. To see this more clearly, notice that we are summing over pairs (C, F)
of chambers C and faces F' € C in two ways: at first starting with the chambers
C and then starting with the faces F. Indeed, each chamber K of the restricted
arrangement AZ is a face in one of the |Wz|-many chambers of »4 that have a full-
dimensional intersection with Z. The third equation is an application of the (double-
counting) Lemma 2.12 with # = AZ N [Y]. For the fourth equation, we have that
I[X]| = [W : N(X)] by definition of the group N(X), and we have that |AZ N [Y]| =
Uix)[v] by the definition of the Orlik—Solomon matrix U (see Definition 3.3).
Finally, the last equation is just a cancellation of the two |W/| factors, and the
statement of the theorem follows after (3.3). ]

Remark 3.8. Notice that in Theorem 3.7 the quantity % does not depend on

the parabolic type [Y]. In fact, if we denote by v[x] the number of standard parabolic
subgroups of W that are of parabolic type [X], we will have that

dim(X dim(X
XDl _ 2 . 1‘([)(19?(_1):” . ﬁ)bix_
U[X],[Y] [N(X) . Wx] i ! (X1 iy biX + 1’

which relies on the formula viyx - [N(X) : Wx] = ]—[d'm(X)(bX + 1) due to Orlik
and Solomon (see [20, (4.2)]). This is no longer true if dim(X) # dim(Y) + 1; see
Section 3.4.4.

At this point, we will give a few corollaries of our main Theorem 3.7, recovering
in particular the formulas of Thiel and Chapoton. We start with [28, Thm. 1.2] slightly
rephrased to model the formulas of [23, Prop. 6.6 (2)].
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Corollary 3.9. Let W be a finite, irreducible Coxeter group of rank n > 2, and let t be
a reflection of W with fixed hyperplane H := V'. The number ( fw )m of reflections
of full support that are conjugate to t is given by

1_[ =1 (l’l 1— ei)
(fw) = — :
[ [N(H) : W]
where h := e, + 1 is the Coxeter number of W and ey, ..., e, are the exponents

of W, and where N(H) and Wy are, respectively, the setwise and pointwise stabiliz-
ersof H.

Proof. A reflection ¢ of full support corresponds to a parabolic subgroup
Wy = {id, t}

of full support where H = V'*. In this case, the maximum standard parabolic subgroup
of W contained in Wx has to be the identity subgroup {id} < W (since ¢ cannot be a
simple reflection) which corresponds to an empty core / = @J. The parabolic type of
{id} is then the orbit [V] of the ambient space V', and we will have

u[V],[H] = [W . N(H)]

Since biV = e;, we will have by Theorem 3.7

-[W i N(H)] [T[Zi(h—1—e)

w = |g([V _ —1) == ,
(fy )[H] | ([ ])[H]| W l_[( € [N(H) : WH]
where in the last equality we used the fact that |Wgy| = 2 and that ¢; = h — ep41—;.
(This is known as exponent duality; see, for instance, [15, Lemma 3.16].) [

In our next corollary, we give the enumeration of parabolic subgroups W' < W
of full support that are simple extensions of some standard parabolic subgroup, but
without keeping track of the parabolic type of W'.

Corollary 3.10. Let W be an irreducible, finite Coxeter group, and let [X] be a
parabolic type for W. Then, the set 8. ([X]) of parabolic subgroups of full support,
which are simple extensions of some standard parabolic subgroup of type [X], has
size given by the formula

RS
|G ([X1)| = [N(X) : Wx] ,11 "

where |AX| is the number of hyperplanes in AX and the remaining invariants are as
in Theorem 3.7.
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Proof. This is an immediate corollary of Theorem 3.7; we only use the fact that
Y. ([X]) is a disjoint union of the sets §([X])[y; for which dim(X) = dim(Y') 41

and that
> wm = 4
[X1.[Y] ’
[YleL 4/ W
dim(Y )=dim(X)—1
which is just Definition 3.3. u

We now give a proof of Chapoton’s formula (Proposition 1.1) but as a corollary
of Theorem 3.7.

Corollary 3.11. The number fw of reflections of full support in a finite, irreducible
Coxeter group W of rank n is given by the formula

n
fw = |W| l_[(el_ s

where h := ey, + 1 is the Coxeter number of W and ey, . . ., e, are the exponents of W.

Proof. As in the proof of Corollary 3.9, we have that fiy = |8 ([V])|. The statement
now follows after Corollary 3.10 since N(V) = W, Wy = {id}, biV = e;, and by the
formula 2|4 | = hn (see, for instance, [15, Prop. 3.18]). ]

3.4. Further questions

We finish here with a short discussion of the natural extensions but also limitations
of Theorem 3.7. In particular, we give in Table 3 the cardinalities, computed using
SageMath [27], of all sets § (/)y} for the group Hj.

3.4.1. When the group W is reducible. To make the presentation of our results eas-
ier, we have always assumed so far that the finite Coxeter group W is irreducible. This
is not a real problem and the general case can easily be reduced to our Theorem 3.7.

Consider, for example, a reducible group W whose decomposition into irre-
ducibles is given by W = Wy x --- x Wy, and let W/, W’ < W be two parabolic
subgroups with rank(W") = rank(W’) + 1. Their irreducible decompositions are of
the form W' = W] x --- x W/ and W" = W' x --- x W, where W/ and W/ are
(possibly trivial) parabolic subgroups of W;. Now, since rank(W”") = rank(W') + 1,
we must have that W/ = W/ for all but one index i = 1,...,s; let’s assume that this
index is i = 1 so that rank(W|") = rank(W{) + 1.

Now, if W” is assumed to be full support, then all W,”’s must be full support in
W;, and if W' is assumed to be standard, then all Wl/ ’s must be standard in W;. This
forces that W/ = W/ = W, fori # 1 since W, = W/ must be both standard and full
support parabolic subgroups of W;. This means that we have reduced the counting of
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Gy \I
Ui,y {1y {2y {3} {4 G([H]D
[Y]
15 A2 11 12 12 10 45
10 A, | 8 7 7 8 30
6 LG | 4 4 4 6 18
A% =31 Ge(I) | 23 23 23 24 | G ([H]) =93

1 2 3 4
Table 1. 2-dimensional nearest faraway flats for H,: @—® L @

parabolic subgroups of full support in W, which are simple extensions of their core, to
doing so in each of the irreducible components W; of W, which is exactly the setting
of Theorem 3.7.

3.4.2. When the parabolic subgroups are not full support. After the definition of
core and support in (3.1), we have only addressed the case of parabolic subgroups
whose support equals the whole set of simple reflections S. This is also a superficial
restriction, since any parabolic subgroup W’ < W with support J is full support in
the standard parabolic subgroup (J) < W. It may be that (J) is a reducible Coxeter
group, but as we show in Section 3.4.1, our Theorem 3.7 naturally extends to that
case.

3.4.3. When we want to keep track of the core explicitly, not just its parabolic
type. Even though in (3.1) we defined the core of a subgroup W’ < W as a specific
subset / C S, Theorem 3.7 only gives formulas for the cardinality of the sets G ([X])
(and their refinements by type) where we only keep track of the parabolic type [X] of
the core I. It is natural to ask for a further refinement of the theorem and a formula
for the size of the sets G, (/) themselves.

As Tables | and 2 suggest, a product formula seems unlikely to exist; notice in
particular the value 8. ({8}) = 43 for Eg. The entries of the tables were calculated
via a computer using SageMath, while the Coxeter presentations given in the captions
specify the choice of simple systems. We have given in bold the quantities that corre-
spond to the results of Theorem 3.7 and Corollary 3.10 (in both groups H4 and Eg any
two reflections are conjugate so that all singleton subsets of S have the same parabolic
type [H]). Notice that, as discussed in Remark 3.8, the ratio | & ([H])[y] |/u[H],[Y] is
constant; it is equal to 3 and 22 /7, respectively, in H4 and Es.

Remark 3.12. In the coincidental [29, §3.1.5] types A, = Sp+1, B, [2(m), H3 (also
known as good reflection arrangements [2, §5.7]), all restricted arrangements 4% are
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(D \I

Uiy {1} {2} {3} {4 {5} {6} {7} {8} §([H])r
[Y]

63 A2 27 25 24 24 24 24 24 26 198

28 Ar| 11 10 10 10 10 10 10 17 88

AH| =91 Se(I)| 38 35 34 34 34 34 34 43|9.([H]) =286

1 3 4 5 6 7 8
Table 2. 2-dimensional nearest faraway flats for Eg:

combinatorially isomorphic to an irreducible reflection arrangement [2, Thm. 5.28],
and their Orlik—Solomon exponents are the first dim(X )-many exponents of W [19,
§3.3]. Because of the first statement, the intersection patterns of orbits of flats and
chambers are the same for all chambers of A%, and the cardinalities of the sets
9 (I)y) with rank(Wy) = |I| + 1 only depend on [Y] and the parabolic type of (/)
(i.e., not on [ itself as in Tables 1 and 2). In particular, if W is a coincidental type of
rank n and with exponents ey, ..., e,, Theorem 3.7 and the formula for V1] from
Remark 3.8 imply that

n—|I| e — 1
1
|g(1)[Y]| = u[VI],[Y] . 1_[ —ei n I
i=2

3.4.4. When the parabolic subgroups are not necessarily simple extensions of
their cores. The geometric techniques we developed in Section 2 seem to only be
able to model the case of parabolic subgroups that are simple extensions of their
cores. Itis unclear how one might pursue studying the sets § (1 )[y] without any further
restrictions on the types [Y].

In Table 3, we give the complete picture for the group Hy4 (presented as in Table 1)
and its parabolic subgroups of full support. We observe again that product formulas
for the cardinalities seem unlikely; for instance, there are 157 parabolic subgroups
of type [A,] that are full support and have core I = @. Moreover, it is clear that
Remark 3.8 cannot be generalized to the case that the parabolic subgroups are not
simple extensions of their cores. Again, the entries were calculated using SageMath,
and we have given in bold the quantities that can be derived by Theorem 3.7 and
Corollary 3.10.

As a sanity check, we offer the following calculation. For each of the four types
[Y] of parabolic subgroups of rank 3 (listed as A; x Az, A1 X 12(5), A3, and H3),
the total number of parabolic subgroups of type [Y] that are full support must equal
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V'] f(”[” N4 £ 4 1O Axas 4xDG) 45 Hy G(I)
0|42(382 157 48 457 232 197 16 42

Ao 9([AoDry | 42 | 382 157 48 457 232 197 16| %.([Ao]) =42
ULaol[y] | 60 [ 450 200 72 600 360 300 60 |A| = 60

{1} 11 8 4 33 24 26 7 23

{2} 12 7 4 33 28 23 6 23

A {3} 12 7 4 31 32 17 8 23
{4} 10 8 6 30 29 21 8 24

(A1) 45 30 18 127 113 87 29| G ([A:1]) =93

upagyi| 115 10 6 40 36 30 15 |A4] =31

{1,3} 3 2 1 10

{1,4} 3 2 2 10

A2 {2,4} 4 3 01 2 10
(42D 10 10 5 5| §.(42) =30

ULy 1 0 0 4 4 2 2 |A4T] = 12

{2,3} 3 0 5 2 10

4, {3,4} 2 0o 5 3 10
§([42Dm 5 0 10 5| G.([42])=20

ULA,].[V] 1 0 3 0 6 3 |A42| =12

{1,2} 0 4 0 4 8

LG)| (205D 0 4 0 4|%.(05)])=8
UL (5)].[Y] 1 0 5 0 5 |A2O)| =10

Table 3. Numbers of parabolic subgroups of full support in Hy, refined by their core (the max-
imal standard parabolic subgroup they contain) and parabolic type.

Uigol[y] 1. To see this, note that the support of a rank-3 parabolic subgroup must
have at least three elements; then either the subgroup is full support, or it is equal to
(the group generated by) its support. This is easy to verify in Table 3 where we list
the parabolic subgroups with respect to their cores. For example, there is a total of
299 parabolic subgroups of type [A3] that are full support, which are made out of 197
subgroups with core I = @, 87 subgroups with core of type [41], 5 subgroups with
core of type [43], and 10 subgroups with core of type [A45].

3.4.5. When the group W is a complex reflection group. One may ask whether
any of the results of Section 3 holds in a setting more general than the family of
finite Coxeter groups W. There are two common directions of generalization: either
to consider infinite Coxeter groups or to consider complex reflection groups.
Certainly, our proofs make real use of the real embedding of W and of the finite-
ness of the arrangement and cannot be—at least to the extent we know—generalized.
It seems that there may not be much hope for a generalization of the results them-
selves either. In the case of infinite Coxeter groups, most of the collections we are
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counting would be infinite, while for complex reflection groups, there is no uniform,
geometric notion of simple generators. We leave it as an open question whether there
exist versions of either side of the equation of Theorem 3.7 that are well defined and
well behaved for some class of complex reflection groups (wider than the real ones).
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