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Cellular subalgebras of the partition algebra

Travis Scrimshaw

Abstract. We describe various diagram algebras and their representation theory using cellular
algebras of Graham and Lehrer and the decomposition into half diagrams. In particular, we show
the diagram algebras surveyed here are all cellular algebras and parameterize their cell modules.
We give a new construction to build new cellular algebras from a general cellular algebra and
subalgebras of the rook Brauer algebra that we call the cellular wreath product.

1. Introduction

Schur–Weyl duality is a classical result in representation theory due to Schur [172]
and publicized by Weyl [189] that relates the irreducible representations of the sym-
metric group †n with that of the general linear group GLm.C/. If we take the natural
representation V WD Cm of GLm.C/, then there is a natural †n-action on V˝n that
permutes the factors. Since GLm.C/ acts diagonally on V˝n, this commutes with the
†n-action. Schur–Weyl duality is the statement that the image of the representation
afforded by the †n-action is everything that commutes with the GLm.C/-action and
vice versa. Consequently, for m � n, we have that

V˝n Š
M
�`n

S� � V.�/

as .†n � GLm.C//-representations, where S� (resp., V.�/) is the irreducible †n
(resp., GLm.C/) representation indexed by the partition �. In particular, the decom-
position is multiplicity free. For more information, we refer the reader to [66, 69, 86].
(Additionally, the actual endomorphism algebra S.m; n/ D End†n V˝n is the well-
studied Schur algebra; see, e.g., [77].)

If we have a subgroupH �GLm.C/, then V is anH -representation by restriction.
Subsequently, the endomorphism algebra EndH V˝n could potentially be larger (and
usually is). As a first case, we take H D †m. To describe the endomorphism alge-
bra, we will use the partition algebra Pn.ˇ/ introduced independently by Jones [95]
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and Martin [129], which is connected to the study of the Potts model from statistical
mechanics (see also, e.g., [128, 130, 135]). The partition algebra has been well stud-
ied from different perspectives and applications; see, e.g., [34, 74, 82–84, 138, 190].
In particular, it is the prototypical diagram algebra whose diagrams are a graphical
representations of set partitions of ¹1; : : : ; nº t ¹10; : : : ; n0º.

This leads to a combinatorial description of the centralizer algebras for groups
†m � H � GLm.C/. One well-studied group is H D On.C/ the orthogonal group.
The subalgebra of the partition algebra is named the Brauer algebra after Brauer
for his initial work on it, in particular for proving the corresponding Schur–Weyl
duality [37]. This also (essentially) covers the case of the symplectic group H D
Sp2n.C/ (see, e.g., [17, Theorem B6.3]). Another case is H D G.r; p; m/ by Tan-
abe [181], where G.r; p; m/ is the infinite family of complex reflection groups in
the Shepard–Todd classification [173]. In particular, G.2; 1; m/ is the Weyl group of
O2mC1.C/ consisting of signed permutations, with the centralizer algebra studied by
Orellana [150, 151]. Another case that has been studied is the centralizer algebra of
G.r; 1;m/ for r � n [2, 120, 121, 148].

On the other hand, we can construct various subalgebras of Pn.ˇ/ by imposing
combinatorial restrictions on the diagrams and study the corresponding algebras. One
of the most famous subalgebras is the Temperley–Lieb algebra first introduced by
Temperley and Lieb in [182] in the context of the Potts model, which was rediscovered
by Jones in his work on subfactors (e.g., [92–94]) and linked to knot theory. The
Temperley–Lieb algebra is a well-studied algebra with an extensive literature (see,
e.g., [18, 26, 31, 72, 73, 110, 128, 153, 154, 157]) and generalizations (such as [19, 62,
90, 125, 133, 139]). Some facts include an analog of Schur–Weyl duality with the
quantum group Uq.gl2/ and that it is a quotient of the Hecke algebra of †m [94].
Furthermore, it is (essentially) equivalent to the planar partition algebra (see, e.g., [84,
95] and Problem 4.4). Other subalgebras that have been considered, such as the half
partition algebra [84], quasi-partition algebra [56], rook algebra [145,175], and planar
rook algebra [68]. For most of these cases, an analog of Schur–Weyl duality has been
constructed.

Let us digress slightly by looking at the diagram algebras where blocks have size
at most 2. For these cases, a new phenomenon can appear. We can have a second
independent parameter  that counts the number of simply connected interior com-
ponents when composing diagrams and ˇ counts the number of loops. Specifically,
these algebras are the rook Brauer algebra [57, 61, 81, 131], Motzkin algebra [23, 57],
and partial Temperley–Lieb algebra [62]. When  D ˇ, these are naturally a subalge-
bra of Pn.ˇ/, and they are isomorphic for all  ¤ 0 by rescaling the diagrams (see,
e.g., [61, Lemma 7.3]). Hence, generically, we can consider them to be diagrammatic
subalgebras of Pn.ˇ/ up to rescaling. Nothing seems to be known for the degenerate
cases of ˇ D 0 (resp., ˇ D 0) and  ¤ 0 (resp.,  ¤ 0).
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In this note, we will survey a number of results on the representation theory of the
partition algebra Pn.ˇ/ and some of its diagram subalgebras. Our main tool will be
using the theory of cellular algebras introduced by Graham and Lehrer [74]. We will
then use the decomposition of the partition algebra of Xi [190], which is particularly
amenable to combinatorics and diagrammatic subalgebra. Thus, the representation
theory of the algebras in large part reduces the study to that of the symmetric group. In
particular, we will be following the approach of half diagrams, given for the specific
case of the Temperley–Lieb algebra under the name of (quotients of) link modules
(see, e.g., [74,128,134,157]). We remark that many of the algebras presented here (see
Table 1 for many examples) are known to be cellular [23,62,74,190]. For nearly all of
the other cases considered, they are possibly known by experts to be cellular even if
they have not been explicitly written down. More specifically, the centralizer algebra
ofG.r; 1;m/ for r � 2 andm� n, the (planar) rook algebra, and half partition algebra
can be shown to be cellular as a consequence of Proposition 2.7 (which is immediate
from the definition of a cellular algebra) and the partition algebra being cellular. Yet
not every case follows quite so easily. In particular, to show that the (planar) quasi-
partition algebra is cellular (Theorems 3.2 and 4.22) requires more technical analysis,
which the author believes to be new.

Additionally, we remark that the techniques used in other papers (e.g., [56, 82,
131, 148]) are no less important than the approach taken here; on the contrary, they
often provide more refined descriptions and can be better adapted to addressing other
questions such as characters. Yet, the diagrammatic approach with cellular algebras
taken here allows us to describe the cell modules (and, in principle, the simple mod-
ules) and the algebra action naturally in terms of tableau more uniformly in terms of
inducing representations of Young subgroups of †n. On the other hand, the approach
taken here allows us to study these diagram algebras over arbitrary fields k (not neces-
sarily C) and discuss the semisimplicity of a number of these algebras over arbitrary
fields and describe their irreducible modules. However, we do not perform this anal-
ysis here as each such algebra not previously treated deserves its own detailed paper.
It is the hope of the author that this paper helps facilitate easier translations between
the combinatorial and algebraic information.

To illustrate this, we consider the uniform block (permutation) algebra Un studied
in [148]. This is spanned by the set diagrams that represent permutations of blocks of
equal size. We show that a number of the constructions given in [148] can be described
as coming from the cellular structure of the partition algebra Pn.ˇ/ restricted to Un.
As a consequence, we are able to show that Un is a cellular algebra and describe its
simple representations (as far as we understand the representations of the symmetric
group) over an arbitrary field (in [148], they only considered it as a C-algebra). For
another example, let us consider the description using multiset-valued tableaux, which
are tableau filled with multisets with a given total ordering under the usual standard
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Name Notation Planar Propagating Block sizes

Partition Pn.ˇ/ no no any size

Half partition Pn�1=2.ˇ/ no n � n0 any size

Quasi-partition QPn.ˇ/ no no > 1

G.r; d;m/-centralizer G
.r;d;m/
n .ˇ/ no no based on r

Uniform block Uk no yes top equals bottom

Rook Brauer RBn.ˇ/ no no � 2

Rook Rn.ˇ/ no if size 2 � 2

Brauer Bn.ˇ/ no no D 2

Symmetric group kŒ†n� no yes D 2

Planar partition P Pn.ˇ/ yes no any size

Temperley–Lieb T Ln.ˇ/ yes no D 2

Motzkin Mn.ˇ/ yes no � 2

Partial TL P T Ln.ˇ/ yes no � 2 and balanced

Planar quasi-partition P QPn.ˇ/ yes no > 1

Planar rook P Rn.ˇ/ yes if size 2 � 2

Planar r-color P Cr;n.ˇ/ yes no based on r

Table 1. A list of some subalgebras of the partition algebra and a summary of the conditions
imposed on the indexing diagrams.

condition1, for the Pn.ˇ/ irreducible representations. This has appeared (sometimes
implicitly) under a few different names in many different papers [24, 25, 82, 138, 148,
149]. We can see this as a rephrasing of the decomposition of [190], which breaks
the diagrams into an upper part, a lower part, and a middle permutation part using the
propagating blocks, using a simple generalization of the blocks-with-defects approach
(see Section 2.1). In both of these cases, we are just inducing a Specht module of a
Young subgroup †k and the exactly k defects in the half diagrams correspond to the

1The standard condition here means that we restrict to set-valued tableaux. Moreover, the
(multi)set-valued tableaux here are different than those in the K-theory of the Grassmannian
considered in [85,123,152], which have different semistandard conditions, weights, and gener-
ating functions.
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multiset that we use to fill the tableau. Moreover, the Robinson–Schensted–Knuth
(RSK) algorithm [116,159,170] provides the link between tableaux and permutations
(of the multisets) as for the symmetric group, with this link used explicitly in [49].
The restriction of this decomposition was given for the Temperley–Lieb algebra and
Brauer algebra in [74], which appeared as early as the work of Brown [38]. For more
detailed treatments of (most of) the general approach in this paper, see [23] for the
Motzkin algebra and [62] for the partial Temperley–Lieb algebra.

Let us discuss the new results in this paper. As previously mentioned, we show
a number of diagram algebras are cellular and describe their cell modules. Many of
these diagram algebras are likely already known to experts but not written down, but
we believe the (planar) quasi-partition algebra is new (Theorems 3.2 and 4.22). A
combinatorially interesting fact is that the cell modules of the planar quasi-partition
algebra are given by the triangle Riordan numbers. We provide a number of new for-
mulas for the dimensions of the cell modules of the (planar) G.r; 1; m/-centralizer
algebra, including an appearance of the Fuss–Catalan numbers (Proposition 4.15);
see Sections 4.6 and 4.7. Another novel result in this paper (Theorem 6.1) is a gen-
eral construction to construct new cellular algebras from a general cellular algebra
and subalgebras of the rook Brauer algebra. We call this the wreath product of cel-
lular algebras. This is the common generalization of the papers [166, 192] and also
yields another proof of the cellularity of kŒG.r; 1; m/� (assuming the r D 1 case for
the symmetric group). We expect this can be extended to having the “base” be an
algebra with Hecke-type relations (e.g., BMW algebras), giving another proof of the
cellularity [74] of the Ariki–Koike algebra [12].

In the process of trying to describe the various algebras and their irreducible mod-
ules, we came across a number of questions that we have included for the interested
reader to pursue. These include corner cases where the behavior seems to differ on
an algebraic level, but perhaps not within their representation theory (Problems 3.15,
4.4, and 4.8). Other examples include combinatorial questions that might lead to inter-
esting relations (e.g., Problem 4.13). There could also be new diagram-type algebras
constructed by mixing different constraints and understood using the techniques in
this paper. For example, a blob algebra [133] (see also Section 5.1) version of the
Motzkin algebra, or putting other cellular algebras on the leftmost strands (which
could be seen as a subalgebra of the wreath product).

Next, we mention a number of known Schur–Weyl duality statements in Table 2,
although this is likely not exhaustive of those involving subalgebras of the partition
algebra. Let us mention some additional cases not previously discussed. The first is
a Schur–Weyl duality for the Burau representations, both reduced and unreduced, of
the braid group Bm given in [60]. In this case, the centralizer algebra is given by
the rook algebra Rn.Œm�q/, where Œm�q D qm�1

q�1
are the q-analogs of m. Next is the

so-called tangle algebra Tn.1/ studied in [22], which we conjecture is equivalent to
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Tensor T -action Module V Module G-action

CŒ†n� natural V Š Cm GLm.C/

G
.r;p;m/
n .m/ natural V Š Cm CŒG.r; p;m/�

Pn�1=2.m/ natural CŒ†m�-module CŒ†m�1�

QPn.m/ Specht S .n�1:1/ CŒ†m�

Rn.m/ V.1/˚ V.0/ GLm.C/

Rn.Œm�q/ unreduced Burau CŒBm�

RBn.mC 1/ V .1/˚ V.0/ Om.C/

RBn.m; ˇ
0/ Burau Cm CŒT Wm�

T Ln.˙.q C q
�1// natural V.1/ Š C2 Uq.sl2/

Mn.1˙ .q C q
�1// adjoint V.1/˚ V.0/ Uq.sl2/

P Rn.ˇ/ natural V˝n U.gl.1j1//

P T Ln.1˙ .q C q
�1// V .1/˚ V.0/ Uq.gl2/

Tn.1/ V .2/ U.sl2/

Table 2. Some known Schur–Weyl duality statements on the module V˝n, where V is a (left)
G-module.

the planar quasi-partition algebra (Conjecture 4.21). The centralizer of the twin group
T Wm on the natural (type A) Hecke algebra representation, which can be considered
as the Burau representation, was shown to be the rook Brauer algebra (see Section 3.5)
in [61]. The general Lie superalgebra gl.1j1/ has a Schur–Weyl duality with the pla-
nar rook algebra [27]. The last is the partition algebra Schur–Weyl duality has been
extended to the non-semisimple setting over general commutative rings in [35] with
the kernel of the symmetric group action giving a cellular basis in [36]. Similar and
some more general results using different techniques were shown in [58].

We conclude by mentioning some additional references for the interested reader.
There is a survey on combinatorial representation theory by Barcelo and Ram [17]
that discusses questions on diagram algebras (among others) from a different per-
spective. Another perspective on diagram algebras was considered by Cox, Martin,
Parker, and Xi in [54], where they studied the diagram algebras as a tower of algebras
through an abstract framework. Furthermore, they introduce a generalization of the
Temperley–Lieb algebra by assigning arrows to each line, which also generalizes the
blob algebra. By considering Schur–Weyl duality with GLm.C/ on V˝n ˝ .V�/˝k ,
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we obtain the walled Brauer algebra, which is a subalgebra of the Brauer algebra
originating in the work of Tureav [186] and Koike [118] with its own rich literature;
see, e.g., [15, 21, 51, 80, 96] and references therein. In particular, Brundan and Strop-
pel in [42] make a link with their previous work on studying Khovanov’s arc algebra
and generalizations [39–41, 43]. In turn, this is connected with another diagrammatic
algebra known as the Khovanov–Lauda–Rouquier (KLR) algebra or quiver Hecke
algebra [112, 162] that has a vast literature too large to even begin to list here, but
we simply mention the generalized Schur–Weyl duality functors of Kang, Kashiwara,
and Kim [106,107] (see [108,109] for some recent results related to these functors). A
broader framework of sandwiched cellular algebras was introduced by Tubbenhauer
and coauthors [141,184,185] as a way to generalize Kazhdan–Lusztig cells to general
algebras.

2. Background

Consider a positive integerm 2 Z>0. Let Œm� WD ¹1 < 2 < � � � < nº and Œm0� WD ¹10 <
20 < � � � < n0º. Let k denote a field of characteristic p (possibly p D 0). All of the
k-algebras considered in this paper will be associative and unital. Unless otherwise
specified, tensor products will be over k. Let Zr WD Z=rZ, which we will often con-
sider as a cyclic abelian group (underC).

Let †m denote the symmetric group on Œm�. For r; d 2 Z>0 such that d j r ,
let G.r; d; m/ denote the complex reflection group given by r colored permutations
(where multiplication is constructed as the wreath product Zr o †m) such that the
sum of the colors is equivalent to 0 .mod d/. This has a natural representation V
on Cm corresponding to products of permutation matrices and diagonal matrices
D.�

i1
r ; : : : ; �

im
r / such that i1 C � � � C im � 0 .mod d/, where �r is a primitive r-

th root of unity. In particular, the matrices all are generalized permutation matrices,
with each row and column having exactly one nonzero entry of the form �kr . Note that
G.1; 1;m/ Š †m and G.r; 1;m/ Š Zr o†m.

A (integer) partition � of n is a weakly decreasing sequence of positive numbers
.�1 � �2 � � � � � �` > 0/ whose sum �1 C � � � C �` D n. We write this as � ` n
or j�j D n, and let `.�/ D ` denote its length. For nonnegative integers m; n 2 Z�0
and partitions � 2 m and � 2 n, we say � � � in graded dominance order if m � n
or if m D n then

Pk
iD1 �i �

Pk
iD1 �i for all k (i.e., usual dominance order), where

we extend � and � with an infinite number of trailing 0’s. A standard tableau of �
by a totally ordered alphabet A is a filling of the Young diagram of � such that each
letter appears exactly once and rows and columns are (strictly) increasing. We draw
our partitions and tableaux using English convention.
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Let f� denote the number of standard tableaux for a partition �. It is a classical
fact that X

�`k

f 2� D kŠ (2.1)

with many proofs; for example, this is a consequence of the Robinson–Schensted–
Knuth (RSK) bijection (see, e.g., [177, Chapter 7]).

Caution. It can be the case that � is not a partition in the sequel.

2.1. Partition algebras

Fix some ˇ 2 k. Let Pn.ˇ/ denote the partition algebra, whose basis is indexed by set
partitions of Œn� t Œn�0, which we represent as diagrams from Œn� on the top to Œn�0 on
the bottom and identify the parts of the set partition with connected components. We
often identify the basis elements of Pn.ˇ/ with their defining set partition. Following
composition conventions, multiplication � � � of basis elements (diagrams) � and �
as the set partition formed by stacking the diagram of � on top of � and removing the
D interior components times ˇD . We say a block (or part) �i of a basis element � is
propagating if �i \ Œn� ¤ ; and �i \ Œn�0 ¤ ;; i.e., it connects to both sides of the
diagram.

Example 2.1. For the diagrams

� D

D ¹¹1; 20; 50; 60º; ¹2; 3; 5º; ¹4º; ¹6; 80º; ¹7º; ¹8º; ¹10; 30; 40º; ¹70ºº;

� D

D ¹¹1; 2; 4; 20º; ¹3; 5; 6; 10º; ¹7º; ¹8; 30; 50º; ¹40; 70º; ¹60º; ¹80ºº;

we have the multiplication

� � � D ” ˇ2

D ˇ2 ¹¹1; 2; 4; 8º; ¹3; 5; 6; 20; 50; 60º; ¹7º; ¹10; 30; 40º; ¹70º; ¹80ºº:
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We note that � (resp., � and � � � ) has 2 (resp., 3 and 1) propagating blocks. Likewise,
we compute

� � � D ˇ

D ˇ ¹¹1; 10º; ¹2; 3; 5º; ¹4º; ¹6; 30; 50º; ¹7º; ¹8º; ¹20º; ¹40; 70º; ¹60º; ¹80ºº;

which also has only 1 propagating block.

Remark 2.2. Our multiplication convention might be the reverse of some authors,
e.g., [82].

By [190, Lemma 4.2], we have a decomposition

Pn Š

nM
kD0

V 0k ˝ kŒ†k�˝ Vk (2.2)

as k-modules, where Vk (resp., V 0
k

) is the free k-module spanned by set partitions � of
Œn� (resp., Œn�0) with at least k parts and chosen subset S � � such that jS j D k called
the defects. This means we can decompose our natural basis elements of Pn into
two set partitions and a permutation encoding the crossings of the connecting blocks
using the mapping from min.�i \ Œn�/ 7! min.�i \ Œn�0/. Pictorially, this is dividing
our diagram for � into three parts, the lower set partition on Œn�, the middle part with
the crossings, and the upper set partition on Œn�0. Note that in the decomposition, the
defects in the lower and upper parts correspond to the propagating blocks. We call the
basis elements of V 0

k
(and Vk) half diagrams.

Example 2.3. If we consider the diagram � from Example 2.1 (drawn below using a
different realization where the propagation is done from smallest element to smallest
element), then this decomposition is given by

�  !

.¹¹1; 2; 4º; ¹3; 5; 6º; ¹8ºº; ¹¹7ºº/ D v�"
1 3 8

20 10 30

#
D ��

.¹¹10º; ¹20º; ¹30; 50ºº; ¹¹40; 70º; ¹60º; ¹80ºº/ D v0�

 ! v0� ˝ �� ˝ v� 2 V
0
3 ˝ kŒ†3�˝ V3;

where the set partition is the union of the pair and the first part is the defects and the
permutation is written in two-line notation.

The following is a classical fact due to Jones.
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Theorem 2.4 ([95]). There exists a surjection Pn.m/! End†m V˝n. Furthermore,
this map is a bijection if and only if m � 2n.

An explicit bijection between the Bratteli diagram approach for the general theory
of End†m V˝n and the partition algebra when m � 2n was constructed in [49].

Remark 2.5. The partition algebra has a nice set of generators (and relations) that
involve fairly simple diagrams. While these are useful to prove a number of facts
(such as isomorphisms), we generally will not use them. Consequently, we do not
describe such presentations, but they can be found in the references.

2.2. Cellular algebras

We give the necessary definitions following [74].

Definition 2.6 (Cellular algebra [74]). Let A be a (unital associative) k-algebra with
an anti-involution �. Let ƒ be a finite poset. Let M D .M.�/ j � 2 ƒ/, where M.�/
is a finite set. Let

C D
®
C �ST j � 2 ƒIS; T 2M.�/

¯
be a k-basis for A. We say A is a cellular algebra with cell datum .ƒ; �;M;C / if

(1) �.C �ST / D C
�
TS ,

(2) for every � 2 ƒ, S; T 2M.�/, and a 2 A, we can write

aC �ST D
X

U2M.�/

ra.U; S/C
�
UT CA<�;

where ra.U; S/ 2 k do not depend on T and

A<�
WD spank

®
C
�
UV j � < �IU; V 2M.�/

¯
is the module of lower order terms.

The basis C is called a cell basis of A.

From the definition, we have the following result, which is likely well known to
experts but the author could not find in the literature, about certain subalgebras of
cellular algebras.

Proposition 2.7. Let A be a cellular algebra with cell datum .ƒ; �;M;C /. Let xA�A

be a subalgebra with a basis xC � C invariant under �. Then, xA is a cellular algebra
with cell datum .xƒ; �j xA;

xM; xC/ with xƒ and xM being the indices that appear in xC .

From the triangularity property (2) in the definition, we have the following way to
construct new cellular bases that, similar to Proposition 2.7, is likely well known to
experts.
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Proposition 2.8. Let A be a cellular algebra with cell datum .ƒ; �;M;C /. Then, any
basis of the form

zC D
®
zC �ST 2 C

�
ST CA<�

j � 2 ƒIS; T 2M.�/
¯

is a cell basis of A and defines new cell datum .ƒ; Q�;M; zC/ with

Q�. zC �ST / D
zC �TS :

Proof. We only need to show Definition 2.6 (2) holds. We have

a zC �ST D aC
�
ST C aA<�

D

X
U2M.�/

ra.U; S/CUT CA<�

D

X
U2M.�/

ra.U; S/ zCUT CA<�;

since A<� is a left ideal by Definition 2.6 (see also [119]) and the change of basis
C ! C 0 is unitriangular.

For a cellular algebra A with cell datum .ƒ; �;M;C /, the cell module (or standard
module) indexed by � 2 ƒ is the free k-module

W.�/ WD spank
®
CS j S 2M.�/

¯
with the natural action

aCS D
X
U

ra.U; S/CU :

Roughly speaking, the action is given by fixing a � and forgetting one of the indices of
the basis. Hence, dimW.�/D jM.�/j. An immediate consequence of these definitions
is

dim A D
X
�2ƒ

.dimW.�//2: (2.3)

We define a bilinear form ˆ�WW.�/ �W.�/! k by

C �STC
�
UV � ˆ�.CT ; CU /C

�
SV .mod A<�/

and extended bilinearly. The bilinear form ˆ� is symmetric and A-invariant in the
sense ˆ�.av; w/ D ˆ�.v; �.a/w/ for all a 2 A and v; w 2 W.�/. This allows us to
construct the simple modules.

Theorem 2.9 ([74]). The simple modules of a cellular algebra with cell datum .ƒ; �;

M; C / are parameterized by ¹� 2 ƒ j ˆ� ¤ 0º. Moreover, the (absolutely) simple
module

L.�/ Š W.�/=R.�/;
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where
R.�/ WD

®
w 2 W.�/ j ˆ�.v; w/ D 0 for all v 2 W.�/

¯
is the radical of ˆ�.

Remark 2.10. A particular feature of this result is that for a cellular algebra, it is
equivalent to work over the algebraic closure of k, which is also necessarily cellular.
In other words, the semisimplicity and the set of simple modules is the same for a
cellular algebra over k as its algebraic closure, which we can get by extension of
scalars. This is the definition of an absolutely simple module.

Note that this does not mean that we can consider any subfield of k and the alge-
bra remains cellular. In particular, the group algebra kŒZn� when �n 2 k (i.e., k has
all n-th roots of unity) has n irreducible representations (all of dimension 1), but oth-
erwise, we can find fewer (nonsplit) irreducible representations of higher dimension.
For example, consider n D 4 and compare when k D C and when k D R (which has
a simple 2-dimensional module with the generator of Z4 acting as rotation by �=2).
Consequently, RŒZ4� is not cellular but CŒZ4� is (see Section 6 below).

Remark 2.11. From the definition of a cellular algebra, there is a naturalƒ-filtration
of left ideals on any cellular algebra A; that is,

A D
[
�2ƒ

A��

such that A�� � A�� whenever � � � in the poset ƒ and

A �A�� � A��

for any fixed � 2 ƒ. It is clear that �.A��/ D A��, and so, the left ideal A�� is a
two-sided ideal. The cell modules are the “square root by �” of the direct summands of
the associated graded module of the (left) regular representation with respect to this
filtration; more precisely,

A D
M
�2ƒ

A��=A<�

and
A��=A<�

Š W.�/˝ �.W.�//:

This is essentially the basis-free definition of cellular algebras given in [119] as the
cell modules are left ideals of A��. The construction of the link modules for the
Temperley–Lieb algebra (see, e.g., [74, 157]) is similar by looking at a maximal ƒ-
indexed chain of left ideals.

We note that kŒ†k� has an explicit construction of a cellular basis withM.�/ given
as the set of standard Young tableaux of shape � ` k; see [74]. By using a cellular
basis for kŒ†k� and the decomposition (2.2), we have the following.
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Theorem 2.12 ([190, Theorem 4.1]). The partition algebra Pn.ˇ/ is a cellular alge-
bra with cell datum .ƒ; �;M;C / given by

• ƒ D ¹� ` k j k 2 ¹0; 1; 2; : : : ; nºº under graded dominance order;

• � reflecting the diagram vertically;

• M.�/ is all pairs .�;T /, where � is a set partition of Œn� such that j�j � j�j, where
j�j denotes the number of parts of � as usual, and T is a standard tableau of shape
� in the alphabet A � � such that jAj D j�j under some total order on the subsets
of Œn�;

• some cell basis C .

2.3. Cellular partition theory

Recall that the characteristic of k is p. An important consequence [190, Corollary
4.11] is we can parameterize the simple modules of Pn.ˇ/ as those � 2 ƒ that are
a p-partition of size ıˇ0 � k � n. Next, we reinterpret the description of the cell
modules from [190, Corollary 4.10] using interpretation given in [83] with the half
diagram description. Indeed, the basis for W.�/ is given by M.�/, where we use the
total order given on subsets of Œn� by comparing the smallest value in each part2.
Note that the elements in the standard tableau are the defects, and the cell module
comes with a natural Pn.ˇ/-action. We note that the Pn.ˇ/-action cannot increase
the number of defects, and since we want the number of defects to remain fixed, any
element of Pn.ˇ/ that decreases the number of defects acts by 0. This translates to an
action of the natural basis on the set partition and tableau pair, where we can apply
the Garnir straightening relations. Hence, two alternative descriptions [33,190] of the
cell module for � ` k are

W.�/ Š V 0k ˝ S
�
˝ vk Š V

0
n;k ˝kŒ†k � S

�; (2.4)

where S� is the Specht module of†k , vk is a fixed vector in Vk , and V 0
n;k

is the k-span
of the diagrams with k propagating blocks and i , for all 1 � i � n � k, a singleton
block.

From the half diagram description, we can write some formulas for the dimension
of V 0

k
, which then yields dimW.�/ D f� dimV 0

k
. Let

®
a
b

¯
denote the Stirling number

of the second kind counting the number of set partitions of Œa� into b parts. Define

Ba D

aX
bD0

´
a

b

µ

2Some authors use the largest value, such as in [24,82,148]. This is inconsequential and can
be considered as using a different cellular basis.



T. Scrimshaw 160

as the a-th Bell number that counts the number of set partitions of Œa�, we claim that

dimV 0k D

nX
jDk

 
n

j

!´
j

k

µ
Bn�j D

nX
jDk

 
j

k

!´
n

j

µ
:

The first formula comes from choosing a subset of size j for all of the defect blocks
and then taking a set partition on the remaining elements, which was proven bijec-
tively in [46, Theorem 2.4] (see also [45, 63, 160, 161]). The second formula comes
from choosing k parts of a set partition of n (with exactly j parts) to be the defects.

When k is a field of characteristic 0 and ˇ … ¹0; 1; 2; : : : ; 2n � 1º, the cell mod-
ules are the set of simple modules from the double-centralizer theory with †m (see,
e.g. [84, 132]). Alternatively, vacillating tableaux or, equivalently, chains in the Bratteli
diagram give dimension formulas for the cell modules.

We can give a necessary pictorial condition for the bilinear formˆ�.CT ;CU /D 0

as the diagram formed by reflecting U vertically and connecting it with T does not
induce a bijection between the defects of T and U . Indeed, this will cause the number
of propagating blocks (which equals the number of defects on the top and bottom) in
the result to decrease and corresponds to a multiplication by 0; see also Remark 2.11.
On the other hand, if we have a bijection, then it induces a permutation in †k , which
is the one coming from the decomposition of the diagrams for Pn.ˇ/. Furthermore,
ˆ�.CT ; CU / is equal to ˇD , where D is the number of interior components not
containing a defect, times the bilinear form induced from the module S� of kŒ†k�
evaluated at the corresponding induced permutation.

Example 2.13. Consider the elements v� and v0� from Example 2.3, which identify
with elements CU and CT , respectively, in a cell moduleW.�/, where j�j D 3. Then,
the corresponding pairingˆ�.CT ;CU /Dˆ�.CU ;CT /D 0 as we do not have a bijec-
tion between the defects

where we have reflected T instead of U . However, if we instead took

U 0 D .¹¹20º; ¹30; 50º; ¹80ºº; ¹¹10º; ¹40; 70º; ¹60ºº/;

then for ˆ�.CT ; CU 0/ we do obtain a bijection

which induces the identity permutation and is scaled by ˇ0. Finally, if we take

U 00 D .¹¹30; 50; 60º; ¹40º; ¹80ºº; ¹¹10º; ¹20º; ¹70ºº/;
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then for ˆ�.CT ; CU 0/ we obtain

which induces the simple transposition .1 2/ and scaled by ˇ1.

3. Cellular subalgebras

For the remainder of this paper, � will be the automorphism of the partition algebra
that reflects the diagram vertically (i.e., sends i$ i 0 within the set partition) restricted
to the subalgebra we are considering.

3.1. Half integer partition algebra

We begin with the half integer partition algebra Pn�1=2.ˇ/ studied in [84], which is
defined as the subalgebra spanned by all diagrams such that n and n0 are in the same
part. As such, the analysis of the representation theory is similar to that of the usual
partition algebra with a few small differences. We have dimPn�1=2.ˇ/DB2n�1 since
we chose the set partition for Œn� 1�t Œn�0 and the part n belongs to is the same as n‘.
This is analogous to dim Pn.ˇ/ D B2n. By Proposition 2.7, we have the following.

Proposition 3.1. The half integer partition algebra Pn�1=2.ˇ/ is cellular.

Since n and n0 need to be in the same block, the half diagrams on Œn�0 are now
required to have n0 as an element of a defect. Thus, we see that ƒ is the set of all
partitions � such that 1 � j�j � n and

dimW.�/ D .k zV 0k C
zV 0k�1/f�;

where k WD j�j and zV 0
k

is the half diagram module for Pn�1.ˇ � 1/ (from (2.4)), by
choosing the defect block to add n0 to or if n0 is a defect on its own.

3.2. Quasi-partition algebra

The quasi-partition algebra QPn.ˇ/ was defined in [56] as a centralizer algebra with
ˇ D m 2 Z>0. However, we instead define it as a subalgebra of Pn.ˇ � 1/ using [56,
Lemma 2.3] with a basis indexed by all diagrams without any isolated vertices (cf. [56,
Section 2.4]). (Due to the differences in multiplication conventions, we need to flip all
diagrams by �.) However, the basis is not given by these diagrams alone, but instead
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as a sum over certain subsets. In order for this algebra to be well defined, we require
ˇ ¤ 0. For brevity, we do not include the explicit description of the basis here as we
only need the properties given by [56, Lemma 2.2].

Theorem 3.2. The quasi-partition algebra is a cellular algebra.

Proof. By [56, Lemma 2.2], the basis of QPn.ˇ/ is triangular when expressed in
the basis of Pn.ˇ � 1/ with respect to refinement, denoted by �, of set partitions.
Furthermore, when we refine any block on the top, all of the vertices in that block will
become isolated. Hence, we strictly decrease the number of propagating blocks when
we perform any refinements of the top (the element of Vk in the decomposition (2.2)).
Therefore, in terms of (2.2), we can express any basis element Q� 2 QPn.ˇ/ as an
element Pn.ˇ � 1/ by

Q� D Qv0� ˝ Q�� ˝ Qv� D
X
���

b��.v
0
� ˝ �� ˝ Qv�/CA<; (3.1)

where
Qv� D v� and A<

D

X
�`.k�1/

A<�

with k equaling the number of propagating blocks of �. Thus, by the argument of
Proposition 2.8, we can ignore these terms in A<. Next, the definition of multiplica-
tion in Pn.ˇ� 1/ implies there exists maps �k WQPn.ˇ/�Vk!Vk and �k WQPn.ˇ/�

Vk ! †k such that

a � Q� D �k.a; Qv
0
� /˝ �k.a; Qv

0
� / Q�� ˝ v�:

We use the map Q� that simply reflects the diagram indexing the basis (like for the usual
partition algebra) as the anti-involution (analogous to Proposition 2.8). That this is an
anti-involution follows from [56, equation (5)] and the fact that flipping the diagram
is an anti-involution on Pn.ˇ � 1/. Hence, this satisfies the conditions for an iterated
inflation [78, 190].

Example 3.3. The map Q� is not simply the restriction of � for Pn.ˇ � 1/ since

 ! � ˇ�1 � ˇ�1 C ˇ�2 C ˇ�2 2 Pn.ˇ � 1/:

Indeed, this element is invariant under Q� but not �.

A more from-first-principles proof of Theorem 3.2 is also possible. We can build a
cellular basis for QPn.ˇ/ and Pn.ˇ � 1/ by starting with a cellular basis of†k for all
0 � k � n (RSK allows us to go between the cell basis indices and diagrams). Then,
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equation (3.1) implies that this cellular basis has the analogous triangular expansion
in terms of a cellular basis of Pn.ˇ � 1/ that fixes the second index; that is,

zC �ST D
X
R�S

bRSC
�
RT CA<�:

We then would conclude the proof by using that we have a cellular basis of Pn.ˇ � 1/.
Note thatƒ is given by all partitions of size at most n just like for Pn.ˇ/, recover-

ing [56, Corollary 4.3]. We recover [56, Theorem 4.6] from a straightforward counting
of the half diagrams of the cell modules.

Corollary 3.4 ([56, Theorem 4.6]). Let � 2 ƒ and k D j�j. Then, we have

dimW.�/ D f�

kX
sD0

 
n

s

! bn�s2 cX
jDk�s

 
j

k � s

!´
n � s

j

µ
�2

;

where
®
a
b

¯
�2

is the number of set partitions of a into b parts with each part having
size at least 2.

Proof. From Theorem 3.2, it is sufficient to count the half diagrams by selecting the
defect blocks as the f� comes from the decomposition (2.4). We chose exactly s
singleton defects, then we chose the remaining k � s defects from the parts of the set
partition, which necessarily has no singletons.

The dimension of the quasi-partition algebra was given in [56, Corollary 2.9] as

dim QPn.ˇ/ D

2nX
jD1

.�1/j�1B2n�j C 1I

see also [174, A000296]. We can also perform the same analysis like the half partition
algebra to get the odd-sized base sets, but it would require showing that the restricted
basis is closed under multiplication. If that is true, the Schur–Weyl duality for the half
partition algebra suggests a Schur–Weyl duality for the half quasi-partition algebra.

3.3. Complex reflection group centralizer

We begin this subsection with the submodule G
.r;d;m/
n .ˇ/ � Pn.ˇ/ Tanabe stud-

ied in [181] and its relationship with EndG.r;d;m/ V˝n, the centralizer algebra of
G.r; d;m/ under the natural diagonal action. Following [181, Lemma 2.1], we define
G
.r;d;m/
n as the submodule of Pn.ˇ/ with basis given by the set partitions �D ¹�1; �2;
: : : ;�`º such that `�m and satisfy either of the following conditions: DenoteN.�i /WD
j�i \ Œn�j and N 0.�i / WD j�i \ Œn�0j:

(1) N.�i / � N 0.�i / .mod r/ for all i
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(2) ` D m and

(a) N.�i / � N
0.�i / .mod r=d/ for all i ,

(b) there exists s 2 ¹1; 2; : : : ; r � 1º such that N.�i /�N 0.�i / � s .mod r/
for all i .

Note that condition (2b) is stronger than N.�i / � N 0.�i / 6� 0 .mod r/ for all i . We
remark that condition (2) can never be satisfied if d D 1 or if m > 2n. Similarly,
condition (2a) becomes vacuous if d D r .

In [181, Lemma 2.1], it is claimed that

G .r;d;m/n .m/ Š EndG.r;d;m/ V˝n

as k-algebras (taking G .r;d;m/ as a subalgebra), but his claim of linear independence
relies on the faithfulness of the Pn.m/-representation on End†m V˝n from Theo-
rem 2.4. Thus, his proof that this does form a basis of the centralizer of theG.r;d;m/-
action only holds whenm � 2n. In fact, form< n, G

.r;1;m/
n does not necessarily have

a unit as the next example shows, and hence, it cannot be isomorphic (as k-algebras)
to the endomorphism algebra (which is unital).

Example 3.5. Consider G
.2;1;2/
3 .ˇ/ for ˇ ¤ 0, and it can be verified that

dim G
.2;1;2/
3 .ˇ/ D 25

and G
.2;1;2/
3 .ˇ/ is closed under the usual diagram multiplication. All of its diagrams

have either one or two propagating blocks, and we denote the set of diagrams with i
propagating blocks by Pi . We have jP1j D 16 and jP2j D 9, and one such diagram in
P1 and P2 are

; :

Note that G
.2;1;2/
3 .ˇ/ does not contain 1 2 Pn.ˇ/ as this diagram has 3 parts. The

product of diagrams P1 � P2 � P1 and P2 � P1 � P1 by a parity argument. Hence,
G
.2;1;2/
3 .ˇ/ is not unital when considered as a subalgebra.

However, his main result describing the generators yields the following theorem.

Theorem 3.6 ([181]). Suppose that G
.r;d;m/
n is an algebra over k. There exists a sur-

jection
�WG .r;d;m/n .m/! EndG.r;d;m/ V˝n:

Furthermore, the surjection � is an isomorphism if m � 2n.

Conjecture 3.7. For r > 1 and d D 1, the map  is an isomorphism if and only if
m � n.
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Let us further discuss the assumption that G
.r;d;m/
n .ˇ/ is an algebra. Indeed, the

number of blocks could potentially grow larger than m. In [181], it was said that
diagrams with strictly more than m parts are 0 in G

.r;d;m/
n .ˇ/, which means that such

diagrams should span an ideal 	 of the partition algebra such that

G .r;d;m/n .ˇ/ Š Pn.ˇ/=	:

Indeed, taking such a quotient is equivalent to setting (the basis elements of) the dia-
grams to 0, and there would be no other relations since the remaining diagrams (were
claimed in [181, Lemma 2.1] to) form a basis for G

.r;d;m/
n . However, this is not the

case, as the next example shows. This is a byproduct of the fact that the diagrams
should be in a quotient of the algebra G

.r;d;2n/
n .ˇ/ for small m.

Example 3.8. Consider G
.2;2;2/
2 .ˇ/. We have the following diagrams coming from

condition (2):

; ; ; ;

and using these elements, we can form the elements

; : (3.2)

Hence, the “basis” for G
.2;2;2/
2 .ˇ/ with ˇ ¤ 0 (such as ˇ D m D n D 2) is not closed

under multiplication unless we consider the product to be 0. As above, we must have
the diagrams with 3 or 4 parts spanning an ideal of P2.ˇ/. However, we can take one
of the products

� D ; � D ;

which is not in the supposed ideal (either left or right).
In fact, we note that the elements in (3.2) plus s1 and ¹¹1; 2; 10; 20ºº (both are

defined as “basis” elements of G
.2;2;2/
2 .ˇ/) are the generators of the full partition

algebra P2.ˇ/. Hence, under the usual multiplication, we have G
.2;2;2/
2 .ˇ/ D P2.ˇ/.

Another way to recover the important portion of Tanabe’s results in [181] would
be to say that there exists a surjection

G .r;d;2n/n .m/! EndG.r;d;m/ V˝n:

Note that
G .r;d;m/n .ˇ/ Š G .r;d;2n/n .ˇ/
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for all m � 2n. Furthermore, it is likely that the set of diagrams for m < 2n is the
indexing set for a basis, but the multiplication is more complicated than the usual
concatenation of diagrams.

Consequently, we will be considering either when r > n or when m � 2n. Recall
that in these cases, diagrams satisfying condition (2) can never be satisfied. Further-
more, we will always take G

.r;d;m/
n .ˇ/ to be a subalgebra. Now, we present our first

main result.

Theorem 3.9. Suppose that either r > n orm� 2n. TheG.r;d;m/-partition algebra
G
.r;d;m/
n .ˇ/ is a cellular algebra.

Proof. The same proof as in [190, Theorem 4.1] (see also [78]) holds here since the
additional conditions make the allowed set of permutations isomorphic to a direct
product of symmetric groups. Note that the set of such diagrams is invariant under �.
This gives us the indexing set ƒ as a k-tuple of partitions, where k is the number of
factors in the direct product for those diagrams satisfying condition (1). We take the
ordering on ƒ as a product poset of the graded dominance order. For any � 2 ƒ, the
setM.�/ is the corresponding set of pairs consisting of a tuple of semistandard Young
tableaux of shape � and a set partition.

Recall thatG.1;1;m/Š†m and the centralizer is the full partition algebra, which
was shown to be cellular for m � 2n by Xi [190] (with a small correction by [78]).
This likely extends to all cases such that G

.r;d;m/
n .ˇ/ is a k-algebra with a potentially

more complicated description of ƒ.

Next, we will explore some particular cases in more detail and describe the cell
datum and cell modules.

3.3.1. Uniform block algebra. We consider the case of G.r; d;m/ when d D 1 and
r > n.

Let Un denote the uniform block algebra, which is a subalgebra of the partition
algebra such that the number of top elements equals the number of bottom elements.
We omitted m from our notation as we are primarily interested in the case m � n,
where the description is independent of m, and the case m < n is not fundamentally
different. The construction of all simple modules of Un over C was recently done
by Orellana, Saliola, Schilling, and Zabrocki [148] whenm � n. Their representation
theoretic results essentially becomes a corollary of Theorem 3.9 using the framework
of Section 2.3.

Let us examine their results in detail. We begin with the (sub)algebra of idempo-
tents 	Un whose structure was given by [148, Lemma 2.3]. The following proposi-
tion is a straightforward consequence and forms the foundation of the constructions
of [148].
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Proposition 3.10. The algebra 	Uk is a cellular algebra with cell datum .ƒ; �;M;C /
given by the following:

• ƒ is all set partitions of Œn� with at most m parts under the refinement order with
¹Œn�º as the bottom element;

• � becomes the identity;

• M.�/ D ¹�º (so we can ignore it);

• C is the natural diagram basis.

Moreover, the cell modules are all (nonzero) simple modules and one dimensional.

The main observation is that we cannot have an arbitrary permutation � 2 †k
for k � min.n; m/ but instead have to preserve the block sizes. Hence, we remark
that [148, Proposition 2.5] is effectively the decomposition of [190, Lemma 4.2]. Fur-
thermore, we obtain a Young subgroup corresponding to the block sizes, which was
the maximal group for the corresponding idempotent in [148]. This means we could
use Proposition 2.7 to give an alternative proof via a product of symmetric group
algebra cellular bases.

Within each Young subgroup, we have a permutation of multisets of the same
size k (contrast this with the partition algebra) representing what can happen with
the blocks of size k. This permutation can be represented by a pair of semistandard
tableaux whose entries are (disjoint) sets of size k, where we use the total ordering
given by comparing the smallest element in each set. Consequently, we see that we can
interpretƒ as the set of partition tuples �D .�.1/; : : : ;�.n// such that

Pn
kD1 kj�

.k/j D

n. Furthermore,M.�/ becomes the set of semistandard tableau tuples, where the k-th
element has shape �.k/ and is filled with subsets of Œn�, and the union of all of the
entries is Œn�. Compare this with Theorem 2.12, where we are requiring for each pair
.�; T / that j�j D j�j and are further separating into separate blocks based on the size
of the parts.

From the above description, we see that the cell modules are precisely the modules
given in [148]. Additionally, the bilinear formˆ� is given by the corresponding bilin-
ear form of a product of symmetric groups, which is the product of the bilinear forms
of the appropriate symmetric group. Consequently, all of the cell modules are simple
when k has characteristic 0, which recovers the description in [148]. Furthermore, we
obtain a set of simple modules corresponding over a field of characteristic p > 0when
each partition in the tuple � is a p-regular partition (cf. [190, Corollary 4.11]).

3.3.2. Parity matching algebra. Recall that the group of signed permutations of
rank m, which is the Weyl group of O2mC1.C/ or the Coxeter group of type Bm, and
corresponds to G.2; 1;m/. The centralizer algebra was studied in more detail in [150,
151], where it was related to the colored partition algebra introduced by Bloss [32].
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From [181, Lemma 2.1], the diagrams for this algebra are given by the set partitions
of Œn� and Œn�0 such that

(I) the blocks of even (resp., odd) size connect to blocks of even (resp., odd)
size;

(II) all odd blocks must be connected;

(III) there are at most m such connected components in the resulting diagram.

In particular, the number of odd-sized blocks must be the same for Œn� and Œn�0. If we
have n � m, the last condition (III) is always satisfied and G

.2;1;m/
n .ˇ/ is a (unital)

k-algebra. Hence, assuming m � n, we call the subalgebra Pn.ˇ/ spanned by these
diagrams the parity matching algebra and denote it by P Mn.ˇ/ since it becomes
independent of m like the uniform block algebra. Furthermore, P Mn.ˇ/ is cellular
by Theorem 3.9.

An alternative description of the basis of P Mn.ˇ/ consists of all diagrams � D
¹�1; : : : ; �`º that are even set partitions, that is, we have j�i j � 0 .mod 2/ for all i .
Hence, another name for this algebra could be the “even partition algebra.” We can see
this is indeed a k-subalgebra (i.e., closed under multiplication) by a straightforward
parity argument. As a consequence, we obtain the recursion formula (see, e.g., [151,
Section 5]) for its dimension

dim P Mn.ˇ/ D

nX
iD1

 
2k � 1

2i � 1

!
dim P Mn�i .ˇ/

by removing the block containing n from each diagram. The sequence of dimen-
sions is [174, A005046], which contains further combinatorial interpretations and the
closed formula

dim P Mn.ˇ/ D

2nX
kD1

k�1X
iD0

.�1/i
.i � k/2n

2k�1kŠ

 
2k

i

!
:

Another similarity to the uniform block algebra is the even and odd blocks cannot
interact. Hence, we can use the Young subgroup of†k1 �†k2 � †k , where there are
k1 (resp., k2) odd (resp., even) with k D k1 C k2, to deconstruct our diagrams.

The cell modules of P Mn.ˇ/ are parameterized by pairs of partitions .�; �/ such
that

j�j C 2j�j � n; (3.3a)

n � j�j � 0 .mod 2/: (3.3b)

Recall this is the set ƒ. The inequality (3.3a) comes from partitioning the blocks
into the even and odd propagating blocks, which must have size at least 2 and 1,
respectively. The condition (3.3b) is that the non-defect blocks must have even size.
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The indexing set M.�/ for the basis of the irreducible representation W.�/ for
� D .�; �/ 2 ƒ is a pair of standard tableaux of shapes .�; �/ such that � (resp.,
�) are filled with subsets of Œn� of odd (resp., even) size and a set partition of the
remaining letters with all blocks having even size such that the disjoint union of all
of the entries is Œn�. For the element vk in the construction (2.4), we can have a very
propagating block (which is fixed by the choice of �) of size 1 or 2 in some fixed
order. By the condition (3.3a), such an element exists.

To describe the dimensions of the cell modules, we need some combinatorial data.
LetOn;k (resp.,En;k) denote the number of set partitions �D ¹�1; : : : ; �kº (so exactly
k parts) of Œn� such that j�i j � 1 .mod 2/ (resp., j�i j � 0 .mod 2/) for all i . These
are the set of odd (resp., even) set partitions with exactly k parts, and On;k is the
sequence [174, A136630] (resp., [174, A156289] for E2n;k). We note the formulas

On;k D On�2;k�2 C k
2On�2;k;

E2n;k D .2k � 1/E2n�2;k�1 C k
2E2n�2;k;

On;k D
1

2kkŠ

kX
jD0

.�1/k�j

 
k

j

!
.2j � k/n;

E2n;k D
2

2kkŠ

kX
jD1

.�1/k�j

 
2k

k � j

!
j n:

Note that E2nC1;k D 0 and On;k D 0 whenever nC k � 1 .mod 2/ by parity argu-
ments. The On;k recurrence relation can be proven combinatorially from two cases.
We have a singleton ¹nº, which necessarily means that there is another singleton, and
removing both of these singletons yieldsOn�2;k�2 (it does not affect the result which
singleton we remove by renaming). Otherwise, we need to remove another element
from the part containing n. To reconstruct such a part, for some fixed � contributing
to On�2;k , we choose a part �i in some � 2 On�2;k to add n to and choose another
part to correspond to n� 1$ min �j � 1=2 by renaming and reordering. A combina-
torial proof for the En;k recurrence is similar. While an explicit combinatorial proof
does not seem to be in the literature, these proofs sketched above are likely known to
experts.

For � D .�; �/ 2 ƒ, from the combinatorial description of M.�/, we see that

dimW.�/ D f�f�

nX
iDk1

 
n

i

!
Oi;k1

b.n�i/=2cX
jDk2

 
j

k2

!
En�i;j (3.4a)

D f�f�

b.n�k1/=2cX
iDk2

 
n

2i

!
iX

jDk2

 
j

k2

!
E2i;j �On�2i;k1 ; (3.4b)
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where k1 D j�j and k2 D j�j. Indeed, for the first equality, the first sum comes from
choosing the elements for the odd-sized blocks (all of which must be defects), the
second sum comes from choosing exactly k2 of the even-sized set partitions to be
defects. The second equality is similar, but first, we choose the elements for the even-
sized blocks. Furthermore, we have

dim P Mn.ˇ/

D

X
�2ƒ

.dimW.�//2

D

nX
k1D0

c.n�k1/=2bX
k2D0

k1Šk2Š

� nX
iDk1

 
n

i

!
Oi;k1

b.n�i/=2cX
jDk2

 
j

k2

!
En�i;j

�2
D

nX
k1D0

c.n�k1/=2bX
k2D0

k1Šk2Š

� b.n�k1/=2cX
iDk2

 
n

2i

!
iX

jDk2

 
j

k2

!
E2i;j �On�2i;k1

�2
from equation (3.4), where we have used equation (2.1) to obtain the final two formu-
las.

By the double-centralizer theorem (see, e.g., [66]), the irreducible representations
of P Mn.m/ are in bijection with those irreducibleG.2;1;m/-representations appear-
ing in the decomposition of V˝n. All irreducible representations of G.2; 1;m/ which
are indexed by pairs of partitions .�; Q�/ such that j�j C jQ�j D m (this was attributed
to Specht [176] in [156]). We can see by directly counting that we do not obtain all
irreducible representations of G.2; 1; n/ when m � n.

Example 3.11. The basis for P M2.ˇ/ is given by four diagrams:

; ; ; ;

which indeed forms a k-algebra. The set ƒ is given by the following pairs of parti-
tions: �

;;
�
;

�
;;

�
;

�
;;

�
; .;;;/;

which are each one-dimensional modules with corresponding semistandard tableaux�
1 2 ;;

�
;

�
1
2
;;

�
;

�
;; 12

�
; .;;;/;

However, there are 5 irreducible representations of G.2; 1; 2/ corresponding to the
pair of partitions�

;;
�
;

�
;;

�
;

�
;;

�
;

�
;;

�
;

�
;

�
;

where the last one corresponds to a 2-dimensional representation.
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3.3.3. Colored permutation symmetrizer. The remaining case corresponding to
colored permutations G.r; 1; m/ with 2 < r � n is essentially the same as r D 2.
The index set will be a subset of all r-tuples of partitions that satisfy the general form
of the conditions (3.3) for � D .�.1/; : : : ; �.r//. There exists a k0 2 Z�0 such that

rk0 C

rX
jD1

j j�.j /j D 0;

with � again coming from encoding the propagating blocks and k0 approximately
counting the non-propagating blocks (which must necessarily be a multiple of r ;
hence, k0 is a sum of these factors). Furthermore, such a diagram exists indepen-
dent of m as we can always combine the blocks of size r with one of those for �.j /

for any j , and since all of these are connected with the defect blocks, they do not
contribute any additional connected components. The setM.�/ is the analogous tuple
of semistandard tableaux of shape �with �.j / being filled with multisets of size j and
a set partition with all the blocks having size equivalent to 0 modulo r . As before, all
entries must be disjoint.

3.4. Brauer algebra

The Brauer algebra Bn.ˇ/ is the subalgebra of the partition algebra Pn.ˇ/ spanned
by all diagrams with parts that have exactly size 2. It was introduced by Brauer [37]
coming from Schur–Weyl duality using the orthogonal group, and it is known to be a
cellular algebra [74] (see also [190]) of dimension

dim Bn.ˇ/ D
.2n/Š

2nnŠ
D .2n � 1/ŠŠ:

Furthermore, from our description, we can easily see that the cell modules (which are
Brauer–Specht’s modules) have dimension

dimW.�/ D

 
n

j�j

!
.n � j�j � 1/ŠŠ dimV†j�j.�/;

where � is a partition such that j�j � n and j�j � n .mod 2/. Indeed, we select j�j
propagating (necessarily) singletons from Œn�, then we are left choosing a Brauer dia-
gram on the renaming n � j�j such nodes; the usual Specht module V†j�j.�/ comes
from equation (2.4). When k has characteristic 0, Wenzl [188] showed that it is semi-
simple whenever ˇ 2 k n ¹0;˙1; : : : ;˙nº. The representations of Bn.ˇ/ when it is
not semisimple were studied by Doran, Hanlon, and Wales [59] and Cox, De Visscher,
and Martin [52, 53]. The classification of when Bn.ˇ/ is semisimple for the general
characteristic case was shown by Rui and Si [163, 164].
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3.5. Rook Brauer algebra

The rook Brauer algebra RBn.ˇ/ (also known as the partial Brauer algebra) is
defined as the subalgebra of Pn.ˇ/ spanned by all diagrams such that the parts have
size at most 2. This has been studied in [81, 131] with two different descriptions of
their irreducible representations. The monoid algebra version (so ˇ D 1) was also
studied in [57]. Furthermore, we have the following result.

Theorem 3.12 ([131]). The rook Brauer algebra is a cellular algebra. Moreover, it is
Morita equivalent to

RBn.ˇ/ ' Bn.ˇ � 1/˚Bn�1.ˇ � 1/

for ˇ � 1; ˇ ¤ 0.

Theorem 3.12 gives us one method to describe all of the irreducible representa-
tions. However, we could also undertake the same half diagram analysis like for the
Brauer algebra to determine the dimensions of its cell modules:

dimW.�/ D f�

 
n

k

!
b.n�k/=2cX
mD0

 
n � k

2m

!
.2m � 1/ŠŠ;

where k D j�j, by choosing the positions of the singletons.
We can allow ˇ D 0 in Theorem 3.12 if we slightly change the multiplication

to only count the number of loops removed in the product, not paths contractible to
a point. In fact, this leads to a more general definition of the rook Brauer algebra
(and its subalgebras) using two parameters RBn.ˇ; /, where ˇ counts the number
of loops removed and  counts the number of contractible paths. Thus, RBn.ˇ/ D

RBn.ˇ;ˇ/, and furthermore, we have isomorphic algebras RBn.ˇ;ˇ/ŠRBn.ˇ;/

whenever ˇ;  ¤ 0 [81, 131].

Example 3.13. There is a misprint in the definition of the diagram multiplication
in [81], as it is not sufficient to only consider singletons for the second parameter  .
Indeed, if we take this as the definition, then we do not have an associative algebra for
general 

2 D D D  D ˇ
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Given the two parameters, we have the following statement and problem (cf. [61,
131]).

Proposition 3.14. For all  ¤ 0, we have

RBn.0; / Š RBn.0; 1/:

Proof. Same as the case ˇ ¤ 0.

Problem 3.15. Determine when RBn.0; / and RBn.ˇ; 0/ are semisimple.

We remark that the second parameter can never occur in the Brauer algebra as we
can only have loops in the product.

3.6. Rook algebra

The rook algebra Rn.ˇ/ � Pn.ˇ/ is the set of diagrams � such that every block
has size at most 2 and N.�/; N 0.�/ � 1. In other words, every block of size 2 must
be propagating. An alternative description is in terms of partial permutations of Œn�,
which are injective maps � WD ! Œn�0 for some D � Œn�. Furthermore, by rescaling
by ˇ�I , where I is the number of isolated in one half of the diagram (note that we
necessarily have the number of isolated vertices on each side being equal), we can see
Rn.ˇ/ Š Rn.1/ for all ˇ ¤ 0.

This was first introduced and the irreducible representations studied by Munn
[145]3 and later refined by Solomon [175]. Like for the (rook) Brauer algebra, we
have ƒ as for the partition algebra, but M.�/ consists only of the standard Young
tableau with entries consisting of a single entry. This is just like the classical case
when we restrict to a specific subset of Œn� of size j�j, which correspond to the propa-
gating blocks.

As a consequence, we obtain that

dim Rn.ˇ/ D

nX
kD0

X
�`k

 
n

j�j

!2
f 2� D

nX
kD0

 
n

k

!2
kŠ; (3.5)

where f� is equal to the number of standard Young tableau on Œk� of shape � ` k.
We have factored out the choice of subset in the binomial coefficient and used equa-
tion (2.1). The dimension formula in equation (3.5) is also known from the original
definition of the rook monoid through a straightforward combinatorial argument; see,
e.g., [175, equation (1.2)].

We remark that we cannot have any loops to remove in the product of the rook
algebra. As such, we have Rn./ � RBn.ˇ; / and ˇ is not involved.

3Munn in [145] considered it as a monoid algebra, and so, ˇ D 1.
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In [60], it was shown that the centralizer algebra of the n-fold tensor power of the
(unreduced) Burau representation F of the braid group Bm with m strands is isomor-
phic to Rn.Œm�q/ for q not a root of unity and m > 2n. It is generated by �i being
the simple crossing of the i -th strand over the .i C 1/-th strand, and these satisfy the
braid relations �i�iC1�i D �iC1�i�iC1. However, the braid group has a number of
interesting subgroups

• The affine braid group zBm�1 of m � 1 braids in a cylinder by considering the
center hole to be an additional (fixed) strand.

• IfmD2M�1 is odd, the typeBM Artin group is h�1�m;�2�m�1; : : : ;�M�1�MC1;
�M i as it can be easily checked that

�M�1�M �M�1�M D �M �M�1�M �M�1 for �M�1 WD .�M�1�MC1/:

• The pure braid group PBm, which can be defined by the short exact sequence
0! PBm ! Bm ! †m ! 0 using the natural projection.

• The subgroup Rm D h�2i i, which is a right-angled Artin group (also known as a
partially commutative group) of a line4 by [48, 55, 89].

There are other subgroups of these subgroups. For example, the affine braid group
zBm�1 has the pure affine braid group fPBm�1 with the short exact sequence 0 !fPBm�1! zBm�1!e†m�1! 0, where e†mD1 is the affine symmetric group; the right-
angled Artin group of a circle generated by the square of generators of zBm�1; and the
affine type zCM braid group (constructed similarly to the type BM inside B2M�1).
Right-angled Artin groups are known to have many interesting subgroups [30], and
Rm naturally projects onto the twin group studied in [61]. (Some surveys on general
(right-angled) Artin groups are [44, 143].)

Problem 3.16. Determine the centralizer algebra for the subgroups of the braid group
mentioned above acting on F˝n. Furthermore, classify the subgroups where the cen-
tralizer algebra is isomorphic to a subalgebra of Pn.Œm�q/.

It is possible that the techniques used in [61] can be applied to any projection
from an Artin group to its corresponding Coxeter group, where we consider the Burau
representation as Hecke algebra representation.

4. Planar algebras

A diagram is planar if it can be drawn without crossings. A planar algebra is a sub-
algebra of the partition algebra if it has a basis given by planar diagrams. We will

4Some conventions in the literature use the complement graph.
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sometimes use the term “noncrossing” instead of “planar” in this manuscript. For any
planar algebra, we necessarily have for each diagram the corresponding permutation
� D 1, but this does not completely classify planar diagrams in general. Furthermore,
since the diagrams are noncrossing, the bilinear form of [190, Lemma 4.3] maps to
the k-span of the trivial permutation. Thus, each diagram is an element of the cellular
basis for Pn.ˇ/ given in Theorem 2.12. Proposition 2.7 yields the following theorem.

Theorem 4.1. Any planar algebra on Œn� t Œn�0 fixed under � is cellular with a cell
basis given by the natural diagram basis and ƒ being a graded poset, where the
grading is the number of defects. Moreover, there is a unique top element inƒ of rank
n corresponding to 1 2 P , and if there exists an element of rank 0 in ƒ, it is unique.

Note that the element of rank n corresponds to half of the identity element. For
the element of rank 0, fix some set partition �0 (resp., �00) of Œn� (resp., Œn�0) with 0
defects. Then, we can compose any 0-defect set partition � of Œn�0 with ¹�0; �00º, and
the result is �00.

Consequently, we will always take the trivial kŒ†k� module to build the cell mod-
ules. Thus, in each case where we restrict to the planar subalgebra, we can define
the basis of the cell modules by the corresponding noncrossing set partitions (with
some fixed number of designated propagating blocks). Furthermore, for generic ˇ,
the pictorial description of bilinear form being 0 is also a sufficient condition as in
the resulting diagram �, the result is simply ˇD , where D is the number of interior
components (i.e., not containing a matching pair of defects).

Example 4.2. If we have the pairing of ˆ�.CU ; CT / given pictorially as

then we have
ˆ�.CU ; CT / D ˇ

5:

We note that the description of the cell modules is essentially the same as the
construction given in [82, Theorem 3.21] for the planar algebras considered there. In
turn, this yields the tableaux description by following the construction in Section 2.3.

4.1. Temperley–Lieb and planar partition algebras

We begin with the Temperley–Lieb algebra T Ln.ˇ/ [182], which was surveyed in
[157]. This is spanned by the set of diagrams such that all parts in the set partition
have size 2, which is also called a perfect matching and is counted by the even Catalan
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numbers

dim T Ln.ˇ/ D CN D
1

N C 1

 
2N

N

!
; (4.1)

where N D 2n. Thus, we see the cell modules built from the partition algebra are
a reformulation of the link modules [74] (see also Remark 2.11) with the simple
modules indexed by ƒ D ¹n � 2k j k 2 hniº under the natural order, where hni WD
¹0;1; : : : ;bn=2cº5. Precise conditions on ˇ when T Ln.ˇ/ is semisimple can be found
in, e.g., [157, Theorem 4.7] and [62, Theorem A.1] (which interprets results in [72]).

For any half diagram for M.�/, the number of defects is equal to �. Furthermore,
we see that the dimensions of the cell modules are the triangle Catalan numbers

dimW.�/ D jM.�/j D CN;k D

 
N C k

k

!
�

 
N C k

k � 1

!
D
N C k � 1

N C 1

 
N C k

N

!
;

where � D 2n � k and N D n � k. In particular, when � D 0; 1, this is precisely the
bn=2c-th Catalan number. We also have that dimW.�/ counts the number of Dyck
paths of length n that end at height �. Furthermore, equation (2.3) yields the identity

C2n D

bn=2cX
kD0

C 2n�k;k : (4.2)

Next, we consider the planar partition algebra P Pn.ˇ/. For ˇ ¤ 0, this reduces
to the case of the Temperley–Lieb algebra by the following well-known result (see,
e.g., [84, 95]).

Theorem 4.3. For ˇ ¤ 0, we have

P Pn.ˇ
2/ Š T L2n.ˇ/:

Roughly speaking, the isomorphism is to consider the outline of a thickened ver-
sion of the planar partition algebra. Making this precise, for ˇ ¤ 0, the isomorphism
is given by

pi D

� � �

� � �

� � �

� � �

7! ˇ �

� � �

� � �

� � �

� � �

D ˇe2i�1;

bi D

� � �

� � �

� � �

� � �

7! ˇ�1 �

� � �

� � �

� � �

� � �

D ˇ�1e2i :

5In [74, 157], instead of the ƒ given here, the authors used the set hni to index the cell
modules, which correspond to the number of defects instead of the number of non-defect entries
as described here.
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It is a simple direct check to see this is a morphism as it satisfies the Temperley–
Lieb algebra relations. Since the image is the generating set of T L2n.ˇ/ and the
dimensions of the two algebras are equal, this is an isomorphism. (Alternatively, the
map is clearly invertible that maps to the generating set of P Pn.ˇ/.)

For ˇ D 0 (or if we wanted to work over more general rings, when ˇ is not a unit),
the map above does not make sense. However, based upon computations done using
SAGEMATH [168] with k D Q (this should have no dependence on the field since all
structure coefficients are either 1 or 0) and vague claims in the literature, there should
still be an isomorphism at ˇ D 0. The author does not know of any proof and could
not construct an explicit isomorphism for n D 2 over C.

Problem 4.4. Determine if Theorem 4.3 holds at ˇ D 0.

Therefore, by Theorem 4.3 and assuming it also holds for ˇ D 0, the semisimplic-
ity of P Pn.ˇ/ is determined by the Temperley–Lieb algebra T L2n.

p
ˇ/ description

from [157] as we can always extend k to include
p
ˇ by Remark 2.10. It is pos-

sible these algebras are not isomorphic at ˇ D 0 but satisfy the weaker statement
of being Morita equivalent, which would be sufficient for the purposes of this arti-
cle since we are only interested in properties of the representations. A proof of the
Morita equivalence should be a consequence of the description of the bilinear forms
ˆ� from [157, Section 4] with suitable modifications for the natural basis of P Pn.ˇ/.

It is known that the ˇ D 0 case is often one of the more interesting cases (see,
e.g., [157] and references therein). Other interesting behaviors can occur for ˇ D
˙.q C q�1/ with q being a root of unity, which covers all of the cases when the
Temperley–Lieb algebra is possibly not semisimple (e.g., q D

p
�1 gives ˇ D 0). For

example, in [91], the Temperley–Lieb algebra T Ln.˙.qC q
�1// at q being a root of

unity was related to the fusion category generated by tilting modules of Uq.sl2/; see
also [11].

4.2. Planar uniform block algebra

The planar subalgebra P Un of 	Un � Un is simply the subalgebra of planar idem-
potents of Un (see Section 3.3.1). Therefore, the basis is indexed by compositions
of n. For such a composition � D .�1; : : : ; �`/, the basis element is indexed by the
idempotents of the form®

¹1; : : : ; �1º; ¹‰1 C 1; : : : ; ‰1 C �2º; : : : ; ¹‰`�1 C 1; : : : ; nº
¯
;

where ‰k D �1 C � � � C �k , to the same primed set partition. Consequently, we see
that

dim P Un D 2
n�1; (4.3)
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and by Proposition 3.10, all of the cell modules are one-dimensional irreducible rep-
resentations.

4.3. Planar rook algebra

The planar rook algebra P Rn.ˇ/ was studied in [68] and consists of planar diagrams
with either singletons or propagating blocks. As a consequence, the planar condition
is now equivalent to having a corresponding permutation � D 1.

Corollary 4.5. The planar rook algebra P Rn.ˇ/ is a cellular algebra with cell data
given by ƒ D ¹0; 1; : : : ; nº and M.�/ being the subsets of Œn� of size �. The Gram
matrix for the bilinear formˆ� with respect to the natural diagram basis is a diagonal
matrix with entries being ˇ�. It is always semisimple unless ˇD 0, in which case there
is a unique simple one-dimensional module M.0/.

Proof. The first statement is Theorem 4.1 with the subsets of Œn� corresponding to the
singleton blocks. The remaining claims are straightforward from the combinatorial
description.

For ˇ D 0, we can describe the action on M.0/ explicitly by av D cav for all
a 2 P Rn.ˇ/ and v 2M.0/, where ca is the coefficient of 1 in a.

We can also easily see from equation (2.3) that

dim P Rn.ˇ/ D

 
2n

n

!
D

nX
�D0

 
n

�

!2
:

4.4. Motzkin algebra

The Motzkin algebra M.ˇ/ introduced in [23] can be described as the Temperley–
Lieb algebra but with singletons allowed. The dimension of M.ˇ/ is the 2nth Motzkin
number M2n. For the cell datum, we have ƒ D Œn� with M.�/ being the set of
noncrossing matchings with allowing singletons with exactly � defects, a set of non-
nested singletons. The dimensions of the cell modules are counted by the Motzkin
triangle numbers, which are known to be computed by [23, equation (3.22)] and [124]
(see also [174, A026300])

Mn;k D

b.n�k/=2cX
iD0

 
n

k � 2i

!´
k C 2i

i

µ

D

b.n�k/=2cX
iD0

 
n

2i C k

!� 
2i C k

i

!
�

 
2i C k

i � 1

!�
DMn�1;k�1 CMn�1;k CMn�1;kC1;
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withMn;�1 DMn;nC1 D 0 andM0;0 D 1. The bijection from a half diagram inM.�/
to a Motzkin path of length n that ends at height � is obtained by reading the diagram
from left-to-right and treating each pair ¹a; bº as an arc from a to b, where each
outgoing (resp., incoming) edge is C1 (resp., �1), non-defect singletons are 0, and
defect singletons areC1. This is the cell datum shown in Benkart and Halverson [23,
Theorem 4.16]. We also have the analog of equation (4.2) by equation (2.3)

M2n D

nX
�D0

M 2
n;�: (4.4)

Theorem 4.6 ([23, Theorem 5.14]). The Motzkin algebra Mn.ˇ/ is semisimple if and
only if ˇ � 1 is not the root of the rescaled Chebyshev polynomials of the second kind6

defined by uk.x/ D Uk.x=2/ for all 1 � k < n.

The first definition in [23] has the Motzkin algebra with two parameters M.ˇ; /

as it is a subalgebra of the rook Brauer algebra. There is a similar misprint in [23] as
in [81] as described in Example 3.13. We have the analogs of Proposition 3.14 and
Problem 3.15.

Proposition 4.7. For all  ¤ 0, we have RBn.0; / Š RBn.0; 1/.

Problem 4.8. Determine when the two-parameter Motzkin algebra M.ˇ; 0/ is semi-
simple. Are the points where it is not semisimple described as roots to some spe-
cialization of a higher level generalization of Chebyshev polynomials in the Askey
scheme, more specifically as a specialization of Jacobi polynomials?

We remark on another curious appearance of Chebyshev polynomials of the sec-
ond kind with the branching rule of the Brauer algebra Bn.ˇ/ to T Ln.ˇ/ that was
given in [26].

Problem 4.9. Determine if there is a relationship between the branching rule from the
Motzkin algebra to the Brauer algebra and the semisimplicity of the Motzkin algebra.

One way to define a half integer Motzkin algebra would be to mandate that, e.g.,
1 is always a singleton. Indeed, this is a subalgebra of dimension M2n�1, but it is not
immediately clear it is cellular since the basis is not invariant under �.

4.5. Partial Temperley–Lieb algebra

The partial Temperley–Lieb algebra P T Ln.ˇ/ was recently introduced in [62] as
a subalgebra of the Motzkin algebra Mn.ˇ/. Specifically, its basis is indexed by

6The rescaled Chebyshev polynomials have coefficients in Z, so they can still be evaluated
when x is an element of a field of characteristic 2.
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balanced diagrams: for a diagram �, the number of pairs of � \ Œn� equals those of
�\ Œn�0. Each balanced diagram corresponds to a basis element given as an alternating
sum of diagrams by removing edges (but leaving the vertices). The proof of cellularity
by Doty and Giaquinto is using the following stronger result.

Theorem 4.10 ([62, Theorem 4.2]). We have the Morita equivalence

P T Ln.ˇ/ '

nM
kD1

T Lk.ˇ � 1/:

As a consequence of Theorem 4.10, we have a complete classification of the
semisimplicity of the partial Temperley–Lieb algebra from the Temperley–Lieb one.
Furthermore, their description of the modules of P T Ln.ˇ/ is essentially the same as
given here by using half diagrams with the cellular algebra structure. We remark that
Proposition 2.7 and Proposition 2.8 give an alternative simple proof that P Ln.ˇ/ is
a cellular algebra (using that Mn.ˇ/ is a cellular algebra).

4.6. Planar even algebra

If we take the planar version of the parity matching algebra, we obtain a cellular
algebra with interesting combinatorial properties. We call the planar subalgebra of
P Mn.ˇ/ the planar even algebra and denote it by P En.ˇ/.

The dimension of this subalgebra is known [174, A001764]

dim P En.ˇ/ D
1

2nC 1

 
3n

n

!
; (4.5)

as well as many other combinatorial interpretations. It would be interesting to see
what the product structure in P En.ˇ/ is on other such interpretations, and if these
have other natural algebraic structures, what is its interpretation in terms of P En.ˇ/.
Next, we explicitly describe a parameterization of the cell modules for ˇ ¤ 0.

Theorem 4.11. The set ƒ for P En.ˇ/ is given by all words � D �1 � � � �` in the
alphabet ¹1;2º such that the sum S D

P`
iD1�i � n and n�S .mod 2/. Furthermore,

the bilinear form ˆ� ¤ 0 for all � 2 ƒ.

Proof. We first assume that ˇ ¤ 0. The basis elements of all cell modules are given
by all planar set partitions of Œn�0, where the choice of defect blocks must not be
nested. Our first claim that, for any such basis diagram � 2 W , we can multiply it by
a diagram � 2 P En.ˇ/ such that we get some sequence � of defect blocks of sizes 1
and 2 in some order followed by a sequence of caps ¹i 0; .i C 1/0º. We denote such an
element by ��.
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If there are no defects (necessarily, we must have n being even), we can simply
multiply by the cap and cup element

¹¹1; 2º; : : : ; ¹2n � 1; 2nº; ¹10; 20º; : : : ; ¹.2n � 1/0; .2n/0ºº D b1b3 � � � b2n�1

D

� � �

� � �

� � �

� � �

(4.6)

We can do a similar multiplication but reordering all elements in the defects of �
so that they become Œm0� for some m. In particular, if the defects are on the ele-
ments i1 < � � � im, then we can multiply by the diagram in P En.ˇ/ consisting of
¹i1;1

0º; : : : ;¹im;m
0º and all remaining elements are cups or caps. Thus, we can assume

every element in Œn�0 belongs to a defect of �.
It is sufficient to prove it for when � D ¹Œn�0º with a single defect block. If n is

odd, the we use the same diagram in equation (4.6) except that we make the last block
a propagating block ¹n; n0º. If n is odd, we make the rightmost block a propagating
block instead of a cap-cup pair. Thus, we have shown the first claim.

Next, we claim that an even propagating block cannot cross an odd propagating
block. This follows from a straightforward parity argument. Hence, the elements ��
uniquely determine the cell modules up to isomorphism, which is clearly in bijec-
tion with the claimed ƒ. This also naturally extends to a description of the cellular
basis by connecting a pair of such cell module basis elements (essentially undoing the
decomposition (2.2)).

For ˇ D 0, we have some additional terms equal to 0, which does not change the
proof above that the resulting basis is cellular.

To see thatˆ�¤ 0 for some fixed � 2ƒ, consider the element Q��, which connects
all of the caps in �� to the last defect block. The pairing ˆ�. Q��; Q��/ D 1.

Define EP .m/ WD dim P Em=2 given in equation (4.5) if m 2 2Z and 0 other-
wise. Thus, EP .m/ counts the number of planar even set partitions of Œm�. Note that
EP .0/ D 1 by equation (4.5).

Proposition 4.12. Fix � 2 ƒ such that � is a permutation of 1k12k2 . Then, we have

dimW.�/ D
X

¹i1<���<i`�1º2.
Œn�1�
`�1 /

k1Y
jD1

.2 � ıij ;ij�1C1/EP .ij � ij�1 � 1/

�

Ỳ
jDk1C1

EP .ij � ij�1/; (4.7)

where i0 D 0.
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n D 1 n D 2 n D 3 n D 4

0 1

0 0 0

1 0 1

0 1 2

0 1 0 0

1 1 0 0

2 0 0 1

0 1 2 3

0 0 0 0 0

1 0 3 0 0

2 0 1 0 0

3 0 0 0 1

0 1 2 3 4

0 3 0 0 0 0

1 4 0 0 0 0

2 1 0 5 0 0

3 0 0 1 0 0

4 0 0 0 0 1

Table 3. The dimension of W.1k12k2/ in P En.ˇ/ for n � 4. The value k1 (resp., k1 C k2 or
the number of propagating blocks) is given by the column (resp., row) in each table.

Proof. Since we cannot cross propagating blocks, we divide Œn�0 up into ` D k1 C k2
sets

¹10; : : : ; i 01º t ¹.i1 C 1/
0; : : : ; i 02º t � � � t ¹.i`�1 C 1/

0; : : : ; n0º;

where i1 < � � � < i`�1, such that the smallest entry in each block part of the propa-
gating block. Without loss of generality, we can look at the first set ¹10; : : : ; i 01º. If
�1 D 2, then if we consider all even set partitions on Œi 01�, we simply consider the lexi-
cographic smallest part as the propagating block. If �1 D 1, then we consider all even
set partitions on ¹20; : : : ; i 01º, but we have two cases. The first is ¹10º is an isolated
propagating block, and the second is we join 10 to the lexicographic smallest part.
Note that the second case is impossible when ij�1 C 1 D ij . The claim follows as we
can choose these even set partitions independently in each set.

Consequently, we see that the dimension only depends on the number of 1’s and
2’s in the word �, and there are

�
k1Ck2
k1

�
such sequences. This gives the following

identity of binomial coefficients

EP .n/ D
X

k1Ck2�n

 
k1 C k2

k1

!�
dimW.1k12k2/

�2
after substituting in equation (4.7). We give some examples of the dimensions in
Table 3. We note that

W.;/ D EP .n/

since it consists of all noncrossing even set partitions on Œn�0.

Problem 4.13. Find a recurrence relation, generating function, and more compact
(closed) formula for dim.1k12k2/.
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Example 4.14. The basis diagrams for the cell modules of P E4.ˇ/ are

W.;/ W ; ; ;

W.1/ W ; ; ; ;

W.22/ W ; W.11/ W ; ; ;

; ;

W.211/ W ; W.121/ W ; W.112/ W ;

W.14/ W :

We can see that

dimW.211/ D dimW.121/ D dimW.112/ and dimW.;/ D dim P E2.ˇ/:

4.7. Planar r-color algebra

Like P En.ˇ/ as a planar version of P Mn.ˇ/, we can consider a planar version of
G
.r;1;m/
n .ˇ/ for any m � n. This is again independent of m whenever m � n. Let

P Cr;n.ˇ/ denote the corresponding algebra, which we call the planar r-color alge-
bra. The set ƒ is similar to the case r D 2; we take all compositions � with parts in
Œr� (i.e., �i 2 Œr�) such that j�j � n and j�j � n .mod r/. Note that compositions are
equivalent to words.

Recall that T L2n.ˇ/ Š P Pn.ˇ
2/ has dimension equal to the Catalan numbers

given by equation (4.1), which is the planar version of G
.1;1;m/
n .ˇ2/. Additionally,

recall equation (4.5), which is for the planar version of G
.1;1;m/
n .ˇ2/. Thus, a natural

guess is dim P Cr;n.ˇ/ is a Fuss–Catalan number (of type An; see, e.g., [180] and
references therein or [174, A137211])

C .r/n WD
1

rnC 1

 
.r C 1/n

n

!
:

Indeed, Edelman showed in [64] that the Fuss–Catalan numbers count the number of
noncrossing set partitions of Œnr� with block sizes that are divisible by r , with the
enumeration dating back to the work of Fuss [70]. Unfortunately, this is not the case,
as Table 4 indicates when compared with

.C .3/n /1nD0 D .1; 1; 4; 22; 140; 969; 7084; 53820; 420732; 3362260; : : :/:

However, we do have that the dimension of the unique cell module with zero
defects is equal to the Fuss–Catalan numbers from the description given by Edel-
man [64]. Indeed, the following is just a rephrasing of this result.
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1 2 3 4 5 6 7

1 2 14 132 1430 16796 208012 2674440

2 1 3 12 55 273 1428 7752

3 � 2 5 16 54 186 689

4 � � 4 9 24 70 202

5 � � � 8 17 40 102

6 � � � � 16 33 72

7 � � � � � 32 65

8 � � � � � � 64

Table 4. The .r; n/-th entry is equal to dim P Cr;n.ˇ/. Note that every entry marked with a � is
equal to the entry above it, which equals dim P Un D 2

n�1 (and also holds for the subdiagonal
entries; see equation (4.3)).

Proposition 4.15 ([64]). There is a diagram of P Cr;n.ˇ/ with zero propagating
blocks if and only if r j n. Moreover, if r j n, then let � D ; be the unique index
for the cell module corresponding to zero defects in P Cr;n.ˇ/. Then

dimW.;/ D C
.r/

n=r
:

We can compute dimW.�/ by using the analog of Proposition 4.12, whereEP .j /
is replaced by the corresponding Fuss–Catalan number. Thus, we obtain a closed, if
somewhat complicated, formula for dim P Cr;n by equation (2.3). Moreover, given
equation (4.2) and equation (4.4) (as well as Theorem 4.22 below for the Riordan
numbers), we have the following problem.

Problem 4.16. Determine if the dimensions of the cell modules W.�/ can be used to
define Fuss–Catalan triangle, or an r C 1 dimensional simplex, numbers.

For the remainder of this section, we will focus on the case n � r > n=2 and can
give some explicit compact formulas for the dimensions of the planar r-color algebra
and its cell modules W.�/ (as well as jƒj). From the definitions and equation (4.3),
we have

dim P Cr;n.ˇ/ D dim P Un D 2
n�1 for all r > n:

It is easy to see that dim P Cn;n.ˇ/ D 2n�1 C 1. Indeed, we have all of the basis
elements of P CnC1;n.ˇ/ D P Un (where any such block must be propagating) plus
the diagram ¹Œn�; Œn�0º (the unique element in P Cn;n.ˇ/ with no propagating blocks).
Similarly, we can show that

dim P Cn�1;n.ˇ/ D 2
n�1
C 8
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by noting that there are additional diagrams of the form

; ; ; ;

; ; ; ;

generalized to arbitrary n. Extending this argument, we obtain the following lemma.

Lemma 4.17. There exists a sequence .aj /1jD0 such that for n � r > n=2, we have

dim P Cr;n.ˇ/ D 2
n�1
C an�r :

Proof. Since n � r > n=2, there can be at most one additional block of size r on
either side, that is, not propagating or adjoined to a propagating block. Consider-
ing half diagrams, if every block is a defect, it is a half diagram of P Un, which is
our base case since P Cr;n D P Un for r > n. Thus, we can assume that every half
diagram has exactly one non-propagating block which occupies consecutive positions
¹j 0; : : : ; .j C r/0º for j 2 Œn� r C 1�. On the remaining n� r elements, we must have
defect blocks. Therefore, the number of additional diagrams not in P Un � P Cr;n

depends only on n � r .

Expanding slightly on the proof of Lemma 4.17, we can obtain explicit dimension
formulas for the cell modules.

Proposition 4.18. Let r > n=2. Then, the dimensions of the cell modules of P Cr;n is
given by

dimW.�/ D

´
1 if j�j D n;

n � r C 1C `.�/ if j�j D n � r:

Proof. If j�j D n, then this is the same as P Un; thus we assume j�j D n � r . As
mentioned above, there are n � r C 1 places to place the consecutive positions of the
nondefect block of size r . Then, there are also `.�/ to attach the additional (consecu-
tive) r elements.

Furthermore, we can obtain a simple formula for dim P Cr;n.ˇ/ when r > n=2.
We separate the cases when r D n and r > n as the formula we give breaks down and
these cases have already been given above.

Corollary 4.19. Let n > r > n=2. Then, we have

dim P Cr;n D 2
n�1
C .9.n � r/2 C 17.n � r/C 6/2n�r�3:
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Proof. Note that the number of compositions of N of length ` is
�
N�1
`�1

�
. Every com-

position of n � r corresponds to a composition of r containing a part of size strictly
greater than r and choosing a part of the composition. So, we remove these from our
count of 2n�1. Then, from Proposition 4.18 and equation (2.3), we have

dim P Cr;n D 2
n�1
�

n�rX
`D1

 
n � r � 1

` � 1

!
`C

n�rX
`D1

 
n � r � 1

` � 1

!
.n � r C 1C `/2:

(4.8)
Then, by the well-known binomial coefficient sums (from the binomial theorem), we
have

NX
`D0

 
N

`

!
.M C `/ D .N C 2M/2N�1;

NX
`D0

 
N

`

!
.M C `/2 D .4M 2

C 4MN CN CN 2/2N�2;

which applied to equation (4.8) yield the claim after some simple manipulations.

Example 4.20. Consider P C3;5. We have

dimW.�/ D 1 .j�j D 5/; dimW.2/ D 4; dimW.11/ D 5;

with the half diagrams spanning W.2/ and W.11/ being

W.2/ W ; ; ;

;

W.11/ W ; ; ;

; :

We see that there are 13 D 24 � 1 � 2 compositions of 5 with parts in ¹1; 2; 3º, and
we verify that

dim P C3;5 D 54 D 13C 1 � 4
2
C 1 � 52 D

X
�2ƒ

.dimW.�//2:

Additional examples of the dimensions of P Cr;n.ˇ/ are given in Table 4, which
were computed by directly counting the number of diagrams in the basis using SAGE-
MATH. Furthermore, we see that the sequence in Lemma 4.17 is given by

aj D .9j
2
C 17j C 6/2j�3

for j > 0 with a0 D 1. Some initial terms are

.1; 8; 38; 138; 436; 1264; 3456; 9056; 22976; : : :/:
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4.8. Planar quasi-partition algebra

By [56, Lemma 2.2], the basis of the quasi-partition algebra QPn.ˇ/ is given inside
of Pn.ˇ � 1/ by looking at certain refinements of the indexing diagram. From this
and [56, Corollary 2.7], we can restrict to the set of planar diagrams without single-
tons and this can be constructed as a subalgebra of P Pn.ˇ � 1/. We call this the
planar quasi-partition algebra and denote it by P QPn.ˇ/. By [22, Theorem 5.12]
(see also [174, A099251]), we have

dim P QPn.ˇ/ D RN D
1

N C 1

bN=2cX
kD1

 
N C 1

k

! 
N � k � 1

k � 1

!
D
N � 1

N C 1
.2RN�1 C 3RN�2/;

where N D 2n and RN are the Riordan numbers [158] (see also [174, A005043]),
with R0 D 1 and R1 D 1. This can be described as the number of Motzkin paths from
.0; 0/ to .n; 0/ that do not have any horizontal steps on the y D 0 line.

Let us consider the algebra given in [22, Section 5], which we call the tangle
algebra and denote it by Tn./; here we add the parameter  that counts the number
of interior components in the product. Here, we consider Tn./ as an abstract algebra
defined by a basis (in [22, Section 5], these are the normalized 3-tangles) and relations.
As noted in [22], the tangle algebra has the same dimension as P QPn.ˇ/. Further-
more, the tangle algebra for  D 1 has a Schur–Weyl duality property [22, Theorem
5.7] (see also [22, Remark 5.13]) similar to the cases considered here. This leads to
the following conjecture.

Conjecture 4.21. Let k be a field with jkj > nC 1. Let  ¤ 0. There exists a ˇ 2 k
such that

Tn./ Š P QPn.ˇ/:

By a brute-force computation, we can see that

7! ; 7!


ˇ � 1
; 7! �

2ˇ

ˇ � 2
C

2

ˇ � 2

defines an isomorphism P QP2.ˇ/! T2./. It would be interesting to determine for
which values of  and ˇ we have an isomorphism. (Clearly, when ˇ D 1; 2, the above
map is not valid.)

We define the Riordan triangle numbers recursively by

Rn;� D

´
Rn�1;�C1 CRn�1;� CRn�;��1 if � > 0;

Rn�1;1 if � D 0;
(4.9)

with Rn;n D 1 and R1;0 D 0 [28, 144].
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Theorem 4.22. The planar quasi-partition algebra P QPn.ˇ/ is a cellular algebra
of dimension R2n with ƒ D ¹0; 1; : : : ; nº. Furthermore, for any � 2 ƒ, we have

dimW.�/ D Rn;�:

Moreover, we have

R2n D

nX
�D0

R2n;�:

Proof. From Theorem 3.2 and Theorem 4.1, the planar quasi-partition algebra is cel-
lular. We note that any singleton in a half diagram must be a propagating block. We
can also move all of the propagating blocks to the front and have size 1. This proves
the indexing set ƒ D ¹0; 1; : : : ; nº. The last claim is simply equation (2.3). Thus, we
only need to prove the dimension of the cell modules.

We show that the half diagrams satisfy the same recurrence relation as the Riordan
triangle numbers. Let � be a half diagram, and suppose that n 2 �1. If j�1j > 1, then
construct a new half diagram by having �1 n ¹nº be a defect block and keeping the
other parts the same. Thus, the number of defects has increased by one if and only if
�1 is a defect (otherwise, the number of defects does not change). This is bijective as
we simply take the rightmost defect block in the half diagram of Œn� 1� to reconstruct
�. Lastly, if j�1j D 1, then it necessarily must be a defect. We simply remove �1 from
the half diagram to form the new half diagram. This decreases the number of defects
and is clearly bijective.

For some other interesting appearances of the Riordan triangle numbers, see [115,
147] (there is an unfortunate misprint in the definition of the Riordan triangle numbers
in [147]).

It is a straightforward exercise to show that Theorem 4.22 also holds for the tangle
algebra. Hence, Conjecture 4.21 is true when both Tn./ and P QPn.ˇ/ are semisim-
ple as they have the same dimension and all simple modules (which are the cell
modules) have the same dimensions. Therefore, we have an abstract isomorphism
by the Artin–Wedderburn theorem. The author thanks Hyohe Miyachi for noting this.
It would be good to have an explicit (combinatorial) isomorphism.

It would also be interesting to show they are both satisfy the same Schur–Weyl
duality directly (and could lead to such an isomorphism). To this, we believe there is
a minor misprint in [22], as the module should be V.2/ instead of the adjoint repre-
sentation. In particular, the dimension of the irreducible module V.�/, which equals
the cell module W.�/ in this case by semisimplicity, is the multiplicity of V.2�/ in
the decomposition of V.2/˝n (as U.sl2/-modules). This can be seen by counting the
multiplicities inductively on n, where the Pieri rule yields the Riordan triangle number
recursion relation (4.9). Alternatively, if it was built using the adjoint representation,
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then [23] implies that the tangle algebra is isomorphic to the Motzkin algebra, but
they (and their cell modules) have different dimensions.

Conjecture 4.23. The tangle algebra Tn./ and the quasi-partition algebra P QPn

.ˇ/ satisfy Schur–Weyl duality with Uq.sl2/ for the module V.2/˝n for some  and
ˇ when k is a field of characteristic 0.

Given that the half (integer) quasi-partition algebra exists, we can also do the same
for the planar version. This would lead to an algebra P QPn�1=2.ˇ/whose dimension
is R2n�1.

5. Alternative perspectives and generalizations

In this section, we discuss just a few generalizations of the partition algebra, although
there are indubitably many more than we discuss here. We also give an alternative
perspective using tensor categories, which are often strongly linked to combinatorics
(which can be seen in, e.g., [13]).

5.1. Blob algebra

The blob algebra Bn.ˇ; ; ı/, for parameters ˇ; ; ı 2 k, defined by Martin and Saleur
[133] can be considered as the type B analog of the Temperley–Lieb algebra, where
we can put idempotent blobs on strands that can escape out the left boundary of the
diagram. Alternatively, if we unfold the diagram (along the right side), then these are
the strands that are not nested in the noncrossing perfect matching. Multiplication is
given as for the Temperley–Lieb algebra except loops with a blob contribute ı instead
of ˇ and the blobs are idempotent (which is resolved before loops are removed): when
we combine two blobs together, we have a blob remaining and multiply by a factor of
 . The blob algebra has also been well studied (see, e.g., [90] and references therein)
and is known to be cellular [76] (along with some generalizations, such as in [125]
using the version of Martin and Woodcock [139]).

The classical blob algebra also fits into our framework, but now

ƒ D
®
n � 2k; n � 2k j k 2 hni

¯
under the ordering N1 < 1 < N2 < 2 < � � � . For � 2 ƒ with � D k or Nk, the number of
defects is equal to k. Furthermore, the barred values indicate that the leftmost defect
has a blob on it and unbarred entries have no blobs on the defects. Otherwise, M.�/
is the expected set of blobbed half diagrams. We can see that this is a cellular algebra
since blobs are idempotent, and so, we cannot remove a blob from a strand/defect
once it has been added.
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5.2. Other Schur–Weyl duality algebras

We briefly remark on some other variations of the partition algebra that have appeared
coming from a Schur–Weyl duality.

The first is the rook partition algebra RPn.ˇ/ introduced by Grood [79] that
comes from Schur–Weyl duality involving the GLm.C/ module V D V.1/ ˚ V.0/

restricted to the corresponding †m action. This version involves the usual diagrams
except we color singletons by two different colors. Alternatively, we can color the
nodes by two different colors, call them red and green, and if a node is colored red,
then it must be a singleton. Since the only difference is coloring singletons, the proof
that it is a cellular algebra is the same as for the classical partition algebra.

Proposition 5.1. The rook partition algebra is a cellular algebra with the same cell
datum as Pn.ˇ/ except that M.�/ consists of all half diagrams with singletons col-
ored one of two colors.

Corollary 5.2. Let � 2 ƒ be a partition of k. Then, we have

dimW.�/ D f�

n�kX
iD0

 
n

i

!
n�iX
jDk

 
j

k

!´
n � i

j

µ
:

Proof. This comes from choosing i nodes to first color red, and the rest is just the
usual partition algebra formula.

Grood also showed [79] that dim RPn.ˇ/ D B2nC1 through an indirect combi-
natorial argument, but we can give a more straightforward argument. The red colored
nodes are simply one special block, which how we mark it as special is say it contains
an extra node ¹0º. This perspective gives us an alternative formula for the cell module
dimensions as

dimW.�/ D f�

nX
jDk

 
n

j

!´
j

k

µ
Bn�jC1:

Ly in [126] studied a Schur–Weyl-type duality using the supercharacter theory
of Um.Fq/ of upper triangular matrices from [183], which is used to approximate its
“wild” type representation theory. However, it is not clear how to apply the techniques
of this paper to that construction.

Problem 5.3. Determine if the centralizer algebra in [126] is cellular.

Lastly, there is the walled Brauer algebra Bn;k.ˇ/ coming from Schur–Weyl
duality with GLm.C/ on V˝n ˝ .V�/˝k that was initially studied in [21, 118, 186].
This is a subalgebra of BnCk.ˇ/, where we do not have any propagating strands ¹a; Nbº
or ¹b; Naº for 1 � a < nC 1

2
< b � nC k. That is, there is a “wall” between positions
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k and k C 1 that does not allow propagating blocks to pass it (although caps and cups
are fine). The walled Brauer algebra was shown to be cellular in [51], where they also
classified when it is semisimple. This could also be seen from Proposition 2.7, where
we are restricting †nCk that dictates the decomposition (2.2) to the Young subgroup
†n �†k . Hence,ƒ is now given by a pair of partitions .�;�/ of sizes at most k and n,
respectively (cf. [80]). Generalizations have also been considered, such as [165,169].

5.3. Diagram algebras as categories

Another perspective on the diagram algebras is to view them as (graded) monoidal
categories, where the algebra is isomorphic to the Grothendieck ring of the category.
This is known as categorification, and it can bring out new properties both for the
category and Grothendieck ring.

One example is the Temperley–Lieb category TL, which was first introduced by
Graham and Lehrer [75], with objects Z>0 and morphisms n! m corresponding to
Temperley–Lieb diagrams from Œn�! Œm0� (with m not necessarily equal to n). The
composition of diagrams is the composition of morphisms (as per our multiplication
convention). If we restrict to the subcategory corresponding to the object n, then the
Grothendieck ring is isomorphic to T Ln.ˇ/. The category TL and its representations
have been studied with expected applications to conformal field theory; see, e.g., [20]
and references therein. In [105], an interpolation category was constructed between
TL and the corresponding categorification of the Brauer algebra.

A different categorification of T Ln.1/was given by Bernstein, Frenkel, and Kho-
vanov [29], although it is just the Karoubi envelope of the additive closure in the
previous construction. Their construction was later extended to T Ln.ˇ/ and other
types by Stroppel [179]. Recently, a two-parameter analog of TL was given in [114]
as a method to categorify Chebyshev polynomials of the second kind (yet another
appearance of these polynomials).

A related but different construction for the invariant spaces of the Uq.sl2/-action
on V˝n and generalizations was given diagrammatically by Kuperberg webs and spi-
ders [122]. These have seen some attention, such as in [171, 187] with many open
questions remaining, such as a basis for slm for m � 4.

5.4. Knots, braids, and ties

One of the important results from the Temperley–Lieb algebra has been the construc-
tion of invariants of knots and links. By realizing T Ln..q C q

�1// as a quotient of
the braid group algebra and using Kauffman’s bracket polynomial [111], we are nat-
urally led to a Markov trace of connecting the top of a diagram to its bottom. This
is the construction of the famous Jones polynomial [93]. Some surveys on the Jones
polynomial are [1, 71, 113].
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The Ariki–Koike algebra [12] is a deformation of the group algebra kŒG.r; 1;m/�
analogous to the usual (Iwahori–)Hecke algebra deformation, but there is another
deformation known as the Yokonuma–Hecke algebra Ym;r.q/ [191] that originally
arose in the context of Chevalley groups. In particular, Ym;r.q/ is the centralizer alge-
bra of the permutation representation of GLm.Fpm/, where q2 D pm for a prime
p, with respect to a maximal unipotent subgroup. The Yokonuma–Hecke algebra
Ym;r.q/ is more naturally attuned to knot theory as it is the quotient of the framed
braid group Z oBm and the modular framed braid group Zr oBm, with generalizations
to other Coxeter systems given by Marin [127]. From the braid group construction, an
invariant on framed knots was constructed [100, 101, 104] by using the Markov trace
given by Juyumaya [99]. It also can be extended to define an invariant on classical and
singular knots [102, 103]. Subsequent results have made further connections between
Ym;r.q/ and knot theory, such as to the HOMFLYPT polynomial [155].

Based upon a new presentation for Ym;r.q/ introduced by Juyumaya [97], a new
algebra coined the braids and ties algebra, or bt-algebra, Em.q/ was introduced by
Aicardi and Juyumaya [5, 98]. A basis for Em.q/ was given by Ryom–Hansen [167],
showing its dimension is mŠBm. However, Banjo [16] has proven that Em.1/ is iso-
morphic to the small ramified partition algebra from [136], which allows us to con-
struct a diagrammatic basis for Em.q/. A Markov trace on Em.q/ was constructed
in [6], allowing it to be used to construct knot invariants. There is also a two parame-
ter version of the bt-algebra [9], which arose from extending the Markov trace to two
parameters [47] to construct knot invariants such as the HOMFLYPT polynomial. The
representation theory of Em.q/ has been studied in papers such as [5, 16, 167]. Both
Ym;d .q/ and Em.q/were shown to be cellular in [65] with a combinatorial description
than can be translated into the diagrammatic language.

Another way to construct Em.q/ is using the monoid of tied braids, coming from
tied links introduced in [7] with analogous polynomial invariants [8, 10]. Therefore,
we have a natural description of Em.q/ in terms of diagrams. This diagrammatic
description was later extended to the Brauer algebra and other submonoids of the
partition monoid [4], which are referred to as ramified monoids and includes other
Coxeter/Artin-type monoids. We call the corresponding monoid algebras ramified
algebras. The inverse symmetric monoid and planar monoid cases were examined
in detail in the recent work [3].

Problem 5.4. Determine if the ramified algebras are cellular.

6. Wreath products

Recall that G.r; 1; m/ Š Zr o †m, whose group algebra has a cellular basis [74]
roughly speaking by taking “product” of the cellular basis of kŒZr � and kŒ†m�. The
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cellularity of kŒZr � when �r 2 k (alternatively k splits xr � 1) follows from a special
case of the Ariki–Koike algebras from [74], which is done over ZŒq; u1; : : : ; ur � but
the group algebra is under the specialization q D 1 and uk D �kr . A more direct con-
struction was done in, e.g., [166, Section 4] (see also [192, Example 4.14]). There is
also the cyclotomic blob (resp., Temperley–Lieb) algebra introduced in [192] (resp.,
[166]), which can be constructed as the blob (resp., Temperley–Lieb) algebra with
each strand carrying a copy of Zr , where it was shown to be cellular (again, assuming
k splits xr � 1). Furthermore, the cellular basis of the cyclotomic blob/Temperley–
Lieb algebra has the same “product” of cellular bases structure. In this section, we
generalize this construction as a method to produce new cellular algebras by taking a
wreath product of an arbitrary cellular algebra with certain subalgebras of the partition
algebra.

Let A be any finite dimensional k-algebra with basis B . Let � be any subalgebra
of the partition algebra such that blocks have size at most 2. Define the wreath product
A o � as the k-span of diagrams of � with an element ofB attached to each block. The
multiplication is the natural concatenation of diagrams, where we take the product in
� , then multiply the elements of A along any strand and expanding this as a linear
combination of basis elements in the natural way before removing cycles. This has
a natural involution �o induced from the involution � of � . We call this the cellular
wreath product of the base � by the algebra A and denote this by A o � .

Theorem 6.1. Let A be a cellular algebra with cell datum .zƒ; Q�; zM; zC/. Let � be
any subalgebra of the partition algebra such that blocks have size at most 2 with
cell datum .ƒ; �; M; C /. Then, the wreath product A o � is a cellular algebra. If
� D RBn.ˇ; / (resp., Mn.ˇ; /), then the cell datum .ƒo; �o;Mo; Co/ is given by

• ƒo D ¹.�; L/ j � 2 ƒ; L 2 hzƒ; D.�/iº, where D.�/ is the number of defects
corresponding to � and h zƒ;`i is the number of multisets (resp., sequences) of size
` with elements in zƒ, under the natural lexicographic order;

• �o is the natural involution induced from � on �;

• Mo.�;L/ DM.�/ � zM.L/ � .
F
zM/N.�/, where N.�/ is equal to the number of

non-defect blocks corresponding to �,

zM.L/ WD

D.�/Y
iD1

zM.Li / and
G
zM WD

G
�2zƒ

zM.�/I

• Co is formed by writing the cellular basis element C �ST in terms of the natural

diagram basis and attaching the corresponding element in C
Q�i
zSi zTi

to the i -th strand
for all such i determined by (inverse) RSK.

Otherwise, it is given by the appropriate restriction.
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Proof. Consider some �o 2 ƒo and So; To 2Mo.�; L/. We have �o.C �SoTo/ D C
�
ToSo

by
construction. For every � 2 ƒ, S; T 2M.�/, and a 2 A, we have

aC
�o
SoTo
D

X
U;V 2M.�;L/

ra.U; So; V /C
�o
UV CA<�o ;

since we attach elements of the cellular basis of A to each strand and that multiplica-
tion in � cannot increase the number of propagating blocks. It remains to show that
we must have V D To and ra.U; So; V / does not depend on T . Indeed, this follows
from the fact that we can think of the (partial) permutation as a (partial) mapping fromF
zM !

F
zM , the multiplication properties of cellular basis elements of A to each

strand, and properties of the Kazhdan–Lusztig basis (see, e.g., [74, Example 1.2]).
The restriction is Proposition 2.7.

Our proof is essentially a mild generalization of the proof of [74, Theorem 5.5]. In
fact, this suggests that there should be a good set of commutative elements that would
play the role of the Jucys–Murphy elements in a Hecke algebra analog (cf. [140,
Section 2.2]).

Problem 6.2. Show this can be extended to the Hecke algebra action on the diagrams
of � (instead of kŒ†n�). Furthermore, construct a set of elements L2; : : : ; LN such
that

• they generate an abelian subalgebra,

• there is a basis given by monomials in Li times a Hecke algebra basis element
Tw ,

• the center contains all symmetric polynomials in L2; : : : ; LN .

Towards this, we note that the generalized rook monoid [178] is constructed as
the wreath product Zr o Rn, where Rn is the rook monoid. Thus, our cellular wreath
product says the corresponding monoid algebra is a cellular algebra by using the rook
algebra Rn.ˇ/, and Jucys–Murphy elements (for ˇ D 1) were recently constructed
in [142].

For the product to be well defined, it is necessary that the blocks have the same
size. We have used the particular case that each block has size 2, but this could be
extended for the block partition algebra by associating to each block of size k a bundle
of k (ordered) strands. In this case, we get a natural Hecke algebra analog by taking
the corresponding product of (typeA) Hecke algebras, analogous to how we have used
a product of symmetric group algebras (equivalently the group algebra of a product
of symmetric groups).

Let us remark on two other constructions based on wreath products. The first is
the coloring of the partition algebras by a finite group G in the work by Bloss [32]



Cellular subalgebras of the partition algebra 195

to understand Schur–Weyl duality with the wreath product G o†m. When we restrict
to subalgebras of the rook Brauer algebra, we obtain our construction. The second is
the ramified partition algebra of Martin and Elgamal [137], which was further stud-
ied in [136] using the symmetric group and the partition algebra. However, those
constructions are distinct from kŒ†n� o Pn.ˇ/ since this has the same dimension as
kŒ†n� ˝ Pn.ˇ/ but they are not isomorphic for n > 1 since there are more irre-
ducible representations of kŒ†n� o Pn.ˇ/ (e.g., 12 for n D 2) than kŒ†n� ˝ Pn.ˇ/

(resp., 6). Moreover, the algebra P Ë
n .ˇ/ in [136] clearly has smaller dimension than

kŒ†n�˝Pn.ˇ/.
It is clear that the wreath product construction extends to graded cellular algebras

defined in [87]. It is expected that the wreath product construction will extend to gen-
eralizations of cellular algebras, such as affine cellular algebras [117], the recently
defined skew graded cellular algebras [88]. It should also work by replacing the
underlying diagram algebra; for example, the base algebra could use the blob alge-
bra Bn.ˇ; ; ı/, generalizations of the Temperley–Lieb algebra (see, e.g., [14] and
references therein), the higher genus diagram algebras [185], the BMW algebra [31,
146] or the associated tangle algebra [67], or quiver Hecke algebras (also known as
Khovanov–Lauda–Rouquier (KLR) algebras [112, 162]) [87].

One important algebra could be the cellular wreath product of the symmetric
group with itself. Indeed, the cell modules for this are given by composing a †n-
representation with a †k-representation. This would be a restriction of the corre-
sponding GLn-representation with a GLk-representation that defines the plethysm
s�Œs��. This leads to the following problem.

Problem 6.3. Determine the relationship between the representation theory of kŒ†n�o
kŒ†k� and the plethysm coefficients a�

��
given by

s�Œs�� D
X
�

a���s� :

We refer the reader to [50] for some recent information on plethysm coefficients.
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060–0808 Sapporo, Japan; tcscrims@gmail.com

https://zbmath.org/?q=an:0020.20601
https://mathscinet.ams.org/mathscinet-getitem?mr=255
https://doi.org/10.1023/A:1001776125173
https://zbmath.org/?q=an:0939.16006
https://mathscinet.ams.org/mathscinet-getitem?mr=1711582
https://zbmath.org/?q=an:0225.20027
https://mathscinet.ams.org/mathscinet-getitem?mr=218467
https://doi.org/10.1016/j.jpaa.2005.06.011
https://zbmath.org/?q=an:1092.16009
https://mathscinet.ams.org/mathscinet-getitem?mr=2185623
mailto:tcscrims@gmail.com

	1. Introduction
	2. Background
	2.1. Partition algebras
	2.2. Cellular algebras
	2.3. Cellular partition theory

	3. Cellular subalgebras
	3.1. Half integer partition algebra
	3.2. Quasi-partition algebra
	3.3. Complex reflection group centralizer
	3.3.1 Uniform block algebra
	3.3.2 Parity matching algebra
	3.3.3 Colored permutation symmetrizer

	3.4. Brauer algebra
	3.5. Rook Brauer algebra
	3.6. Rook algebra

	4. Planar algebras
	4.1. Temperley–Lieb and planar partition algebras
	4.2. Planar uniform block algebra
	4.3. Planar rook algebra
	4.4. Motzkin algebra
	4.5. Partial Temperley–Lieb algebra
	4.6. Planar even algebra
	4.7. Planar r-color algebra
	4.8. Planar quasi-partition algebra

	5. Alternative perspectives and generalizations
	5.1. Blob algebra
	5.2. Other Schur–Weyl duality algebras
	5.3. Diagram algebras as categories
	5.4. Knots, braids, and ties

	6. Wreath products
	References

