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The condenser quasicentral modulus

Dan-Virgil Voiculescu

Abstract. We introduced the quasicentral modulus to study normed ideal perturbations of oper-
ators. It is a limit of condenser quasicentral moduli in view of a recently noticed analogy with
capacity in nonlinear potential theory. We prove here some basic properties of the condenser
quasicentral modulus and compute a simple example. We also discuss some associated noncom-
mutative variational problems. Part of the results are in the more general setting of a semifinite
von Neumann algebra.

1. Introduction

The quasicentral modulus [8–10] plays a key role in the study of Hilbert space oper-
ators modulo normed ideals (see our surveys [11, 12]). This paper is a sequel to [13].
In [13] we made the case that the quasicentral modulus is a noncommutative ana-
log of capacity in nonlinear potential theory, where the first-order Sobolev spaces
use general rearrangement invariant norms of the gradients. One consequence is that
the quasicentral modulus becomes a limit quantity of condenser quasicentral moduli.
Note that the condenser quasicentral moduli are usually finite and non-zero also in
situations where the quasicentral modulus can take only the values 0 and1, like in
the case of the p-classes when p > 1. Another new feature is that we will often deal
with the more general case of separable semifinite factors or von Neumann algebras,
that is, not only with the type I case of the algebra B.H / of bounded operators on the
Hilbert space H and note also that even the case when H is finite dimensional is no
longer a trivial case.

Concerning the nonlinear potential theory capacity with which we observed an
analogy, see [2]; for more references, see [13]. Prior to this, we had noticed connec-
tions with Yamasaki hyperbolicity [14] and with the noncommutative potential theory
based on Dirichlet forms [1].

Can the analogy with nonlinear potential theory be further extended? A way to
achieve this may be via noncommutative variational problems. We take a small first
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step in this direction introducing variational problems related to the condenser. We
observe that computations in the case of the p-classes naturally lead to noncommuta-
tive analogs of the p-Laplace equation.

Besides the introduction and references, there are eight more sections. Section 2 is
about preliminaries and basic definitions. Section 3 contains some general properties
of the condenser quasicentral modulus in the semifinite setting. In particular, we prove
that under certain conditions the condenser quasicentral modulus is symmetric with
respect to switching the projections which define the condenser. We also give a result
about the behavior with respect to certain conditional expectations. Section 4 gives
a lower bound for the condenser quasicentral modulus in the case of the algebra of
bounded operators on a Hilbert space. This is analogous to the lower bound in [10]
for the quasicentral modulus. Section 5 is the computation of an example arising from
the bilateral shift operator. In Section 6, we adapt and generalize to our semifinite
setting the result in [9] about the largest reducing projection on which the quasicentral
modulus vanishes. In the analogy with nonlinear potential theory, this is a special
noncommutative polar set. Section 7 deals with variants of the quasicentral condenser
modulus. Section 8 is about noncommutative variational problems. We make some
general remarks about minimizers for the condenser problem.

2. Preliminaries and definitions

We introduce here the framework in which we will work, especially related to normed
ideal/symmetric operator space norms [3–6], and we recall the definition of the quan-
tities we introduced in [13].

By .M; �/ we will denote a von Neumann algebra M � B.H /, where H is a
separable complex Hilbert space and � is a faithful normal semifinite trace on M. We
will assume that M is either atomic, that is, it is generated by its minimal projections,
or that it is diffuse and �.I / D 1, in particular, there are no minimal projections in
this case. Thus, M could be, for instance, a type I or a type II1 factor with its trace,
but it could also be for instance L1.S; d�/, where the measure sigma has no atoms
and is not finite or it could be `1.X/with the measure giving mass 1 to each singleton
subset (the traces are those corresponding to the measures).

We will denote by Proj.M/ the selfadjoint projections in M and by P .M/ or
simply P the set of P 2 Proj.M/ so that �.P / <1. By R we will denote the set
of x 2M for which there is P 2 P so that xP D x, that is the ideal of operators of
finite �-rank in M. Further, RC1 will stand for the positive contractions in R, that is,
¹a 2 R j 0 � a � I º. It will also be convenient to introduce the set

ƒ D ¹L 2 L1.M; �/ j 0 � L � I º:

Thus, we have P � RC1 � ƒ �M.
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If x 2M, the generalized singular values (see [5]) are

�.t; x/ D inf¹kA.I � P /k j P 2 P ; �.P / � tº;

where t > 0 and �.x/ will denote the function

.0;1/ 3 x ! �.t; x/ 2 Œ0;1/:

On L1.M; �/ \M we will consider a norm j � jJ to which we will refer as the
symmetric operator norm. We will assume that j � jJ satisfies the following conditions.

(1) �.x/� �.y/) jxjJ � jyjJ which has among its consequences, that if a;b 2
M, x 2M \ L1.M; �/, then jaxbjJ � kakjxjJkbk.

(2) C1 min.jxj1; kxk/ � kxkJ � C2.jxj1 C kxk/ for some constants C1; C2 2
.0;1/.

(3) If Pn 2P are so that �.Pn/! 0 as n!1, then jPnjJ! 0. This condition is
trivially satisfied if M is a type I factor because it is meaningless, there being
no non-zero Pn as above. The condition is equivalent to xn 2M \L1.M; �/,
kxnk � 1, jxnj1! 0) jxnjJ! 0. The condition can also be put in the form:
there is an increasing function � W .0;1/! .0;1/ so that limt!0 �.t/ D 0

for which we have kxk � 1, x 2 L1.M; �/) jxjJ � �.jxj1/. Note also that
if .M; �/ is diffuse and the condition is not satisfied, then there must be a
constant C 2 .0;1/ so that jxjJ � Ckxk.

(4) Considering the von Neumann algebra M˝Mn endowed with the trace �˝
Trn, the norm j � jJ on M \L1.M; �/, identified with a subspace of M˝ e11

has an extension to a norm, that we will still denote by j � jJ on .L1.M; �/ \

M/˝Mn D L
1.M ˝Mn; �˝ Trn/ \ .M ˝Mn/ satisfying the analogues

of (1)–(3). (Here, Mn denotes the n� nmatrices, ei;j are the matrix units and
Trn is the trace.)

We opted for this ad hoc way of introducing j � jJ instead of a discussion starting
with operator spaces [5] which would have taken us farther than the more modest
aim of this paper. We will also denote by J the completion of L1.M; �/ \M with
respect to the norm j � jJ , which is an M bimodule. In the case of B.H /, J identifies
with a normed ideal in B.H / consistent with the notation we used in previous papers
(see [12]). Note also that property 4. in the symmetric operator spaces setting, actually
follows from the general relation of symmetric function spaces, symmetric sequence
spaces and symmetric operator spaces (see [5, Section 2.5], [5, Theorem 2.5.3 and the
discussion of Questions 2.5.4 and 2.5.5]).

Definition 2.1. Let P;Q 2 P , PQ D 0 and let � D .Tj /1�j�n, Tj 2M, 1 � j � n.
The condenser quasicentral modulus with respect to the symmetric operator norm
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j � jJ is the number

kJ.� IP;Q/ D inf¹ max
1�j�n

jŒTj ; A�jJ j A 2 RC1 ; AP D P;AQ D 0º:

Similarly, if ˛ D . j̨ /1�j�n is an n-tuple of automorphisms of M which preserve �
we define

kJ.˛IP;Q/ D inf¹ max
1�j�n

j j̨ .A/ � AjJ j A 2 RC1 ; AP D P;AQ D 0º:

We remark that if P1;Q1 2 P , P1Q1 D 0 and P � P1, Q � Q1 then

¹A 2 RC1 j AP D P;AQ D 0º � ¹A 2 RC1 j AP1 D P1; AQ1 D 0º

so that

kJ.� IP;Q/ � kJ.� IP1;Q1/;

kJ.˛IP;Q/ � kJ.˛IP1;Q1/:

Definition 2.2. Let P;Q 2 Proj.M/, PQ D 0 and let � , ˛, j � jJ be like in Defini-
tion 2.1. We define

kJ.� IP;Q/ D sup¹kJ.� IP
0;Q0/ j P 0;Q0 2 P ; P 0 � P;Q0 � Qº;

kJ.˛IP;Q/ D sup¹kJ.˛IP
0;Q0/ j P 0;Q0 2 P ; P 0 � P;Q0 � Qº:

Further, we define

kJ.� IP / D kJ.� IP; 0/;

kJ.˛IP / D kJ.˛IP; 0/

and the quasicentral moduli of � and of ˛

kJ.�/ D kJ.� I I /;

kJ.˛/ D kJ.˛ W I /:

If M needs to be specified, we will write kJ;M.� IP;Q/, and so on.

In case .M; �/ D .B.H /;Tr/, this definition of kJ.�/ is equivalent to the defini-
tion we used in our earlier work, as we already pointed out in [13].

It will also be useful to have a technical result about replacing RC1 by the larger
set ƒ in the above definitions.

Lemma 2.1. Let P;Q 2 P , � , ˛ be as in Definition 2.1. We have

kJ.� IP;Q/ D inf¹ max
1�j�n

jŒTj IA�jJ j A 2 ƒ;AP D P;AQ D 0º;

kJ.˛IP;Q/ D inf¹ max
1�j�n

j j̨ .A/ � AjJ j A 2 ƒ;AP D P;AQ D 0º:
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Proof. Lemma is an immediate consequence of the fact that

„ D ¹A 2 RC1 j AP D P;AQ D 0º

is a dense subset with respect to the topology defined by the norm j � jJ of the set

‚ D ¹A 2 ƒ j AP D P;AQ D 0º:

This in turn is seen as follows:

„ D P C .I � P �Q/RC1 .I � P �Q/;

‚ D P C .I � P �Q/ƒ.I � P �Q/

so that the proof reduces to the proof of the density of RC1 in ƒ. If X 2 ƒ then let Pj
be the spectral projection ofX for Œ1=j;1�. We then havePj 2P and kXPj �Xk! 0,
jXPj �X j1! 0 so thatXPj 2RC1 and by condition (2), we have jX�XPj jJ! 0.

3. Some general properties

In this section we derive some basic properties of the quasicentral modulus.

Proposition 3.1. Assume kJ.�/D 0 and P;Q 2 Proj.M/ are so that PQD 0. Then,

kJ.� IP;Q/ D kJ.� IQ;P /:

Similarly, if instead of � we have ˛ with kJ.˛/ D 0, then

kJ.˛IP;Q/ D kJ.˛IQ;P /:

Proof. Since kJ. � IP;Q/ for general P , Q is the sup of such quantities with P;Q 2
P , it suffices to prove the proposition under the additional assumption that P;Q 2P .
Moreover, by symmetry, it clearly suffices to prove that

kJ. � IP;Q/ � kJ. � IQ;P /:

If " > 0, there is
A 2 P C .I � P �Q/RC1 .I � P �Q/

so that
max
1�j�n

jŒA; Tj �jJ � kJ.� IP;Q/C ":

Then, we have

max
1�j�n

jŒ.I � A/; Tj �jJ D max
1�j�n

jŒA; Tj �jJ � kJ.� IP;Q/C ":
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Clearly, 0 � I � A � I , .I � A/P D 0, .I � A/Q D Q and we would be done if
there were not the problem that I � A is not in R in general. Since kJ.�/ D 0 we
also have kJ.� IP CQ/D 0 so that there is B 2RC1 such that B.P CQ/D P CQ
and max1�j�n jŒB; Tj �jJ < ". Let F D B.I � A/B . We have

F 2 RC1 ; FP D 0; FQ D Q

and
jŒF; Tj �jJ � 2jŒB; Tj �jJ C jŒI � A; Tj �jJ < 3":

Thus,
kJ.� IP;Q/C 3" � kJ.� IQ;P /

and " > 0 being arbitrary, 3" is as good as " here.
The case of the n-tuple of automorphisms ˛ is dealt with along the same lines. If

A 2 P C .I � P �Q/RC1 .I � P �Q/ and

max
1�j�n

j j̨ .A/ � AjJ � kJ.˛IP;Q/C ";

then we have
j j̨ .I � A/ � .I � A/jJ D j j̨ .A/ � AjJ

and .I �A/P D 0, .I �A/Q DQ. Choosing B as in the previous case, we consider
F D B.I � A/B , and we have

j j̨ .F / � F jJ � 2j j̨ .B/ � BjJ C j j̨ .A/ � AjJ :

This leads then to
kJ.˛IP;Q/C 3" � kJ.˛IQ;P /;

and so on.

The framework for the next result involves a von Neumann subalgebra N �M

so that �jN is semifinite, in which case R.N / is weakly dense in N . Let E be the
conditional expectation of M onto N with respect to � (see [7, Proposition 2.36]). If
the n-tuple of automorphisms ˛ is so that j̨ .N / D N , 1 � j � n, then in view of
the assumption � ı j̨ D �, 1 � j � n, we will have that

j̨ jN ıE D E ı j̨ ; 1 � j � n:

We will also assume that

x 2 L1.M/ \M) jE.x/jJ � jxjJ :

Since the symmetric operator norm j � jJ was introduced in an ad hoc way, without
going into the theory of spaces of operators, we prefer to treat this as an assumption.
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Proposition 3.2. Let N be a von Neumann subalgebra of M so that �jN is semifinite
and let E be the conditional expectation of M onto N with respect to �. Assume
also that the n-tuple of automorphisms ˛, which preserve � is so that j̨ .N / D N ,
1 � j � n. Let further P;Q 2 Proj.N / be so that PQ D 0. Then, we have

kJ;M.˛IP;Q/ D kJ;N .˛jN IP;Q/:

Proof. We first prove the statement in case P;Q 2 P .N /. The inequality

kJ;N .˛jN IP;Q/ � kJ;M.˛IP;Q/

is obvious because the LHS is an inf over a subset of the set the inf of which is the
RHS.

We have E.ƒ.M// D ƒ.N /, so that

E.P C .I � P �Q/ƒ.M/.I � P �Q//DP C .I � P �Q/ƒ.N /.I � P �Q/:

Thus, if
A 2 P C .I � P �Q/ƒ.M/.I � P �Q/;

then we have

j j̨ .E.A// �E.A/jJ D jE. j̨ .A// � AjJ � j j̨ .A/ � AjJ ;

and hence,
kJ;N .˛jN IP;Q/ � kJ;M.˛IP;Q/:

This concludes the proof in the case of P;Q 2 P .N /.
Assume now that we only have P;Q 2 Proj.N /. Then, we get that

kJ;M.˛IP;Q/

D sup¹kJ;M.˛IP1IQ1/ j P1 � P;Q1 � Q;P1;Q1 2 P .M/º

� sup¹kJ;M.˛IP1;Q1/ j P1 � P;Q1 � Q;P1;Q1 2 P .N /º

D sup¹kJ;N .˛ j N IP1;Q1/ j P1 � P;Q1 � Q;P1;Q1 2 P .N /º

D kJ;N .˛ j N IP;Q/:

We still must prove that if P1; Q1 2 P .M/, P1 � P , Q1 � Q, then there are
P2;Q2 2 P .N /, P2 � P , Q2 � Q so that

kJ;M.˛IP1;Q1/ � kJ;M.˛IP2;Q2/C �

for a given � > 0.
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If A 2 P2 C .I � P2 � Q2/ƒ.M/.I � P2 � Q2/, where P2 � P , Q2 � Q,
P2;Q2 2 P .N /, we consider

B D P1 C .I � P1 �Q1/A.I � P1 �Q1/

so that
B 2 P1 C .I � P1 �Q1/ƒ.M/.I � P1 �Q1/:

Since �jN is semifinite, there are P2;Q2 2 P .N /, P2 � P , Q2 � Q so that

j.I � P2/P1j1 < "; j.I �Q2/Q1j1 < ";

which also implies

jP1.I � P2/j1 < "; jQ1.I �Q2/j1 < ":

Then, we have

j.I � P1 �Q1/.I � P2 �Q2/ � .I � P2 �Q2/j1

D j.P1 CQ1/.I � P2 �Q2/j1 D jP1.I � P2/CQ1.I �Q2/j1 < 2":

If X 2M, kXk � 1, this gives

j.I � P1 �Q1/.I � P2 �Q2/X.I � P2 �Q2/.I � P1 �Q1/

� .I � P2 �Q2/X.I � P2 �Q2/j1 < 4"

so that in particular

jB � Aj1 � 4"C jP1 � P2 C .I � P1 �Q1/P2.I � P1 �Q1/j1

D 4"C jP1 � P2 C .I � P1/P2.I � P1/j1

D 4"C jP1 � P1P2 � P2P1 C P1P2P1j1

� 5"C jP1P2P1 � P2P1j1

D 5"C j � P1.I � P2/P1 C .I � P2P1/P1j1 � 7":

We will use the fact that j j̨ .x/jJ D jxjJ , which is a consequence of �. j̨ .x// D
�.x/, which in turn follows from � ı j̨ D �.

On the other hand,

j j̨ .B/ � BjJ � j j̨ .A/ � AjJ � j j̨ .A � B/ � .A � B/jJ � 2jA � BjJ :

In view of condition (3) satisfied by j � jJ , we have

jA � BjJ � 2�.2
�1
jA � Bj1/ � 2�.4"/:
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This in turn gives

kJ;M.˛IP1;Q1/ � kJ;M.˛IP2;Q2/C 4�.4"/;

which concludes the proof.

There is also a similar result for n-tuples � of selfadjoint operators instead of the
n-tuple ˛ of automorphisms. Since the proof is along the same lines, we will leave
out many details.

Proposition 3.3. Let N be a von Neumann subalgebra of M so that �jN is semifinite
and let E be the conditional expectation of M onto N with respect to �. Let further �
be a n-tuple of selfadjoint elements in N and let P;Q 2 Proj.N / be so that PQ D 0.
Then, we have

kJ;M.� IP;Q/ D kJ;N .� IP;Q/:

Sketch of Proof. We first deal with P;Q 2 P .N /. Obviously, we have

kJ;N .� IP;Q/ � kJ;M.� IP;Q/:

On the other hand,
E.ƒ.M// D ƒ.N /;

and if
A 2 P C .I � P �Q/ƒ.M/.I � P �Q/;

then
jŒTj ; E.A/�jJ D jE.ŒTj ; A�/jJ � jŒTj ; A�jJ ;

which gives
kJ;N .� IP;Q/ � kJ;M.� IP;Q/:

This concludes the proof in case P;Q 2 P .N /.
If we only have P;Q 2 Proj.N /, then the preceding immediately gives

kJ;M.� IP;Q/ � kJ;N .� IP;Q/:

We still must show that if P1;Q1 2P .M/, P1 � P ,Q1 �Q, then there are P2;Q2 2
P .N /, P2 � P , Q2 � Q so that

kJ;M.� IP1;Q1/ � kJ;N .� IP2;Q2/C �

for a given � > 0.
Since �jN is semifinite, there are P2;Q2 2 P .N / so that P2 � P , Q2 � Q and

j.I � P2/P1j1 < "; j.I �Q2/Q1j1 < ":
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If
A 2 P2 C .I � P2 �Q2/ƒ.M/.I � P2 �Q2/;

we consider

BDP1C.I �P1�Q1/A.I �P1�Q1/2P1C.I �P1�Q1/ƒ.M/.I �P1 �Q1/:

Then, we have
jB � Aj1 � 7"

so that
jB � AjJ � 2�.2

�1
jB � Aj1/ � 2�.4"/:

It follows that
jŒ�; B�jJ � jŒ�; A�jJ � 2k�k�.4"/:

This in turn shows that

kJ;M.� IP1;Q1/ � kJ;N .� IP2;Q2/C 2k�k�.4"/:

An appropriate choice of " > 0 concludes the proof.

Taking P D I and Q D 0 in Propositions 3.2 and 3.3, we have the following.

Corollary 3.1. Let N be a von Neumann subalgebra of M so that �jN is semifinite.
If ˛ D . j̨ /1�j�n is an n-tuple of automorphisms which preserve �, j̨ .N / D N ,
1 � j � n and � D .Tj /1�j�n is an n-tuple of selfadjoint elements of N , then we
have

kJ;M.˛/ D kJ;N .˛jN /; kJ;M.�/ D kJ;N .�/:

Remark 3. If MDM1˝M2, where .M1; �/ is a type II1-factor and M2 is a factor
of type I1 so that � D � ˝ Tr, and if � D I ˝ �2, where �2 is a n-tuple of selfadjoint
operators in M2 D B.H2/ for some Hilbert space H2, the preceding corollary gives

kJ.�/ D kJ;M2
.�2/:

This shows in particular that the examples of quasicentral modulus of n-tuples in
B.H2/ give automatically examples of quasicentral modulus in type II1 factors by
taking I ˝ �2 in M1 ˝ B.H2/. One can proceed in a similar way for n-tuples of
automorphisms (for the type I1 case, the next proposition shows that this reduces to
the quasicentral modulus for n-tuples of unitary operators).

Let us also make a very simple observation about the case of n-tuples of uni-
tary operators. If u D .Uj /1�j�n is an n-tuple of unitary elements of M we denote
by Ad u D .AdUj /1�j�n the n-tuple of inner automorphisms, where .AdUj /.x/ D
UjxU

�
j . Consider also a map " W ¹1; : : : ; nº ! ¹1;�º and let then u" D .U ".j /j /1�j�n.
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We have

jŒUj ; A�jJ D jŒUj ; A�U
�
j jJ D j.AdUj /.A/ � AjJ

D jU �j ŒUj ; A�jJ D j.AdU �j /.A/ � AjJ D jŒU
�
j ; A�jJ :

This immediately implies the following proposition.

Proposition 3.4. Let u D .Uj /1�j�n be an n-tuple of unitary elements of M, let
" W ¹1; : : : ; nº ! ¹1;�º, and let P;Q 2 Proj.M/, PQ D 0. Then, we have

kJ.uIP;Q/ D kJ.u
"
IP;Q/ D kJ.Adu"IP;Q/:

4. The lower bound

In this section, we assume M D B.H / and that j � jJ is the symmetric norm arising
from a norming function ˆ, so that we will write j � jˆ; kˆ.� � � / instead of j � jJ ,
kJ.� � � /. Byˆ� we will denote the dual norming function so that if S

.0/
ˆ is the closure

of R in the norm j � jˆ, then Sˆ� , the set of compact operators K so that jKjˆ� D

sup¹jKP jˆ� jP 2 P º <1, is its dual with respect to the trace pairing [3]. By C1 we
will denote the trace class.

Proposition 4.1. Assume � D ��, that is Tj D T �j , 1 � j � n and let P;Q 2 P ,
PQ D 0. Let further

� D
°
Xj D X

�
j ; 1 � j � n j i

X
j

ŒTj ; Xj � 2 .B.H //C C C1;
X
j

jXj jˆ� D 1
±
:

Then, we have

kˆ.� IP;Q/ � sup
°

Tr PYP�Tr..I � P �Q/Y.I � P �Q//�jY

D i
X
j

ŒTj ; Xj �; .Xj /1�j�n 2 �
±

and equality holds if kˆ.� IP;Q/ > 0.

Proof. We will first prove �, and then assuming kˆ.� IP;Q/ > 0, we will prove �,
which will yield the equality stated above. We start with 0�B � I �P �Q,B 2RC1
and .Xj /1�j�n 2 �, and we will show that

max
1�j�n

jŒP C B; Tj �jˆ � Tr PYP�Tr..I � P �Q/Y.I � P �Q//�;

where
Y D i

X
j

ŒTj ; Xj �:
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We have

Tr..P C B/Y / D Tr PYPCTr.B.I � P �Q/Y.I � P �Q//

D Tr PYPCTr.B..I � P �Q/Y.I � P �Q//C/

� Tr.B..I � P �Q/Y.I � P �Q//�/

� Tr PYP�Tr.B..I � P �Q/Y.I � P �Q//�/

D Tr PYP�Tr.Z1=2BZ1=2/;

where
Z D ..I � P �Q/Y.I � P �Q//�:

Since 0 � B � I this gives

Tr..P C B/Y / � Tr PYP�TrZ:

On the other hand,

jTr.P C B/Y j D
ˇ̌̌
Tr
�
i.P C B/

X
j

ŒTj ; Xj �
�ˇ̌̌

D

ˇ̌̌
Tr
�X
j

ŒP C B; Tj �Xj

�ˇ̌̌
�

�
max
1�j�n

jŒP C B; Tj �jˆ

�X
j

jXj jˆ�

D max
1�j�n

jŒP C B; Tj �jˆ:

Hence,

Tr PYP�Tr..I � P �Q/Y.I � P �Q//� � max
1�j�n

jŒP C B; Tj �jˆ

for all B 2 RC1 ; 0 � B � I � P �Q.
This gives

Tr PYP�Tr..I � P �Q/Y.I � P �Q//� � kˆ.� IP;Q/

since kˆ.� IP;Q/ is the inf of the max1�j�n jŒTj ; P C B�jˆ when B 2 RC1 satisfies
0 � B � I � P �Q. This concludes the proof of �.

Assume now that kˆ.� IP;Q/ > 0. To prove �, we will consider the real Banach
space .S.0/

ˆ;h
/n of n-tuples .Xj /1�j�n,XjDX�j 2S

.0/
ˆ with the norm max1�j�n jXj jˆ

and two disjoint convex subsets of this Banach space. The first is the open ball cen-
tered at 0 of radius kˆ.� IP;Q/. The second is

¹.i ŒTj ; A�/1�j�njA 2 P C .I � P �Q/R
C
1 .I � P �Q/º:
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The two convex sets are disjoint and the first is open so that there is

.Xj /1�j�n 2 ..S
.0/

ˆ;h
/n/� D .Sˆ�;h/

n

separating the two and having norm 1. Thus, we haveX
j

jXj jˆ� D 1

and X
j

Tr.i ŒTj ; A�Xj / � kˆ.� IP;Q/

for all A 2 P C .I � P �Q/RC1 .I � P �Q/. This givesX
j

Tr.i ŒTj ; P C B�Xj / � kˆ.� IP;Q/

for all B 2 RC1 , 0 � B � I � P �Q. The LHS equals

Tr
�
.P C B/i

X
j

ŒXj ; Tj �
�
D Tr PYPCTr.B.I � P �Q/Y.I � P �Q//;

where
Y D i

X
j

ŒXj ; Tj �:

Remark that .I�P�Q/Y.I�P�Q/�Y is a finite-rank operator of rank� 2Tr.PC
Q/, and its norm is � 4

P
j kTj kkXj k � 4max1�j�n kTj k. This implies that

inf¹TrCY jC 2RC1 º � constC inf¹TrBY jB 2 .I �P �Q/RC1 .I �P �Q/º>�1

so that
Y 2 .B.H //C C C1:

Thus, we have also proved that

inf¹Tr PYPCTr.B.I � P �Q/Y.I � P �Q//jB 2 RC1 º � kˆ.� IP;Q/:

The above inf is precisely

Tr PYP�Tr...I � P �Q/Y.I � P �Q//�/;

which is the result we wanted to prove.

There is an analogue of Proposition 4.1 for unitary operators or equivalently for
the corresponding inner automorphisms. The proof being along the same lines is left
as an exercise for the reader.
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Proposition 4.2. Let u be an n-tuple of unitary operators and let P;Q 2P , PQD 0.
Let further

� D
°
Xj D X

�
j 2 Sˆ� ; 1 � j � n j

X
j

..AdUj /.Xj / �Xj / 2 B.H /C

C C1;
X
j

jXj jˆ� D 1
±
:

Then, we have

kˆ.u W P;Q/

D kˆ.AduIP;Q/

� sup
°

Tr PYP�Tr..I � P �Q/Y.I � P �Q//� j Y D
X
j

..AdUj /.Xj / �Xj /;

.Xj /1�j�n 2 �
±
;

and if kˆ.uIP;Q/ > 0, equality holds.

5. An example

Let U be the bilateral shift operator on H D `2.Z/, Uej D ejC1, where ¹ej ºj2Z is
the canonical orthonormal basis. If f W Z! C is a bounded function, we will denote
by D.f / the diagonal operator in H with respect to the canonical basis. In case
f W R! C we will writeD.f / forD.f jZ/. Moreover, if ! � Z, P! will denote the
projection D.�!/. In case of a singleton ¹j º, we will write Pj instead of P¹j º.

Here, we will compute
kp.U IPM ; PN /;

where M;N � Z are two disjoint finite nonempty subsets, By Propositions 3.2 and
3.4 this would be equivalent to a problem in `1.Z/, that is a problem on the Cayley
graph of Z. We will not use this explicitly, though all our computations will be around
two operators B D D.f / and X D D.g/.

Let a D inf.M [ N/ and b D sup.M [ N/ and let a � a1 < b1 � a2 < b2 �

� � � � am < bm � b be so that the .aj ; bj / are the maximal open intervals so that
.aj ; bj / \ .M [ N/ D ¿ and the endpoints aj and bj are in different sets of the
partition of M [N into M and N . Let also h 2 N. We define a continuous function
f W R! R as follows. First, we require that

f jM � 1; f jN � 0; f j.�1; a � h� � 0; f jŒb C h;1/ � 0:
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Then, on each open interval at the endpoints of which f has been defined, we extend
the definition by linearity on the interval. Thus, f will be piecewise linear with respect
to the partition�1<a� h< a� a1 <b1 � a2 <b2 � � � � � am <bm � b < bC h<

1. The intervals on which this function is not constant are the Œaj ; bj � and possibly
also Œa � h; a� and Œb; b C h� depending on whether a; b 2 M or not. Thus, if B D
D.f / the list of non-zero singular values of B �Ad.U /.B/ consists of bj � aj times
the number .bj � aj /�1 for each interval Œaj ; bj � and each of the intervals Œa � h; a�,
Œb; b C h� may contribute h times the number h�1 depending on whether a; b 2 M .
This gives

jB � Ad.U /.B/jpp D
X
j

.bj � aj /
1�p
C h1�p � ].¹a; bº \M/:

Since
jB � Ad.U /.B/jp � kp.Ad.U /IPM ; PN /;

we get the following upper bound. If p D 1, we have

mC ].¹a; bº \M/ � k1.Ad.U /IPM ; PN /;

while if 1 < p <1, we have�X
j

.bj � aj /
1�p

�1=p
� kp.Ad.U /IPM ; PN /

because h being arbitrary we can take the limit as h!1.
To get the lower bound using Proposition 4.2, we construct an operatorX DD.g/.

Let ".j / D �1 if aj 2M and bj 2 N and let ".j / D C1 if aj 2 N and bj 2M and
observe that ".j / D �".j C 1/. If p > 1, we define

g D c �
X
j

".j /.bj � aj /
�p=q

� �Œaj ;bj /;

where

c D
�X
j

.bj � aj /
1�p

��1=q
:

We have
jX jqq D c

q
�

X
j

.bj � aj / � .bj � aj /
�p
D 1:

If Y D Ad.U /.X/ �X , we have

Y D c �
X
j

".j /.bj � aj /
�p=q.Pbj

� Paj
/:
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From Proposition 4.2, we get the lower bound

TrPMYPM � Tr..I � PM � PN /Y.I � PM � PN //�:

Since bj ; aj 2 .M [N/, the second term in the lower bound is zero, so we need only
compute TrPMYPM . If ".j /D�1we have aj 2M and bj 2N , while if ".j /DC1,
we have aj 2 N and bj 2 M . This gives that TrPM .".j /.Pbj

� Paj
// D 1 for all

indices j . It follows that

TrPMYPM D c �
X
j

.bj � aj /
�p=q

and since p=q D 1=p, we have

TrPMYPM D
�X
j

.bj � aj /
1�p

�1=p
;

where we used 1 � 1=q D 1=p. Thus, the lower and the upper bound are equal if
p > 1.

To obtain the lower bound when p D 1, we will consider

g D �".1/�.�1;a/ � ".m/�Œb;1/ C
X
j

".j /�Œaj ;bj /

and X D D.g/. Then,

Y D Ad.U /.X/ �X D �".1/Pa C ".m/Pb C
X
j

".j /.Pbj
� Paj

/:

Again, the lower bound reduces to computing

TrPMYPM D TrPM .�".1/Pa C ".m/Pb/PM Cm:

It is also easy to see that

TrPM .�".1/Pa C ".m/Pb/PM D ].¹a; bº \M/

so that also in this case the lower and upper bounds we found for kˆ.Ad.U /IPM ;PN /
are equal.

Summing up and using Proposition 3.4, we have proved the following result.

Proposition 5.1. With the notation introduced above, we have

k1.U IPM ; PN / D mC ].¹a; bº \M/

and if 1 < p <1, we have

kp.U IPM ; PN / D
�X
j

.bj � aj /
1�p

�1=p
:
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6. The singular projection and the regular projection

We adapt and generalize to our semifinite setting the facts in [9] about the largest
projection on which the quasicentral modulus vanishes.

The following lemma is based on an argument we used in the proof of Proposi-
tion 3.2.

Lemma 6.1. Let � be the function in property 3 of the J-norm. If P1; P2;Q1;Q2 2
P , P1Q1 D P2Q2 D 0, kTj k � C , 1 � j � n, and " > 0 is so that

jP1 � P2j1 < "; jQ1 �Q2j1 < ";

then we have

jkJ.� IP1;Q1/ � kJ.� IP2;Q2/j � 4C�.6"/;

jkJ.˛IP1;Q1/ � kJ.˛IP2;Q2/j � 4�.6"/:

Proof. Let X 2 RC1 , and let

A D .4C /�1ŒTj ; P1 C .I � P1 �Q1/X.I � P1 �Q1/�;

B D .4C /�1ŒTj IP2 C .I � P2 �Q2/X.I � P2 �Q2/�:

Then, we have kA � Bk � 1 and jA � Bj1 � 6" so that

jA � BjJ � �.6"/:

Taking into account the way we defined kJ.� IP;Q/ using a max over j and then an
inf over X , this gives

jkJ.� IP1;Q1/ � kJ.� IP2;Q2/j � 4C�.6"/:

For automorphisms, we use the same argument with A, B defined now to be

A D 4�1. j̨ .P1 C .I � P1 �Q1/X.I � P1 �Q1//

� .P1 C .I � P1 �Q1/X.I � P1 �Q1///

and

B D 4�1. j̨ .P2 C .I � P2 �Q2/X.I � P2 �Q2//

� .P2 C .I � P2 �Q2/X.I � P2 �Q2///:

Proposition 6.1. Assume that

Bm 2 R; Bm � 0; w � lim
m!1

Bm D B
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and that
lim
m!1

max
1�j�n

jŒTj ; Bm�jJ D 0:

Then, if F is the support projection of B (i.e., E.BI .0;1//), we have ŒTj ; F � D 0,
1 � j � n, and

kJ.� IF / D 0:

Proof. ReplacingBm by FBmF , M by FMF jFH , � by � jFH , etc., it is easily seen
that the proof reduces to the case when F D I , that is, KerB D 0. Recall also that
kJ.� I I / D kJ.�/. So, we need to prove that kJ.� IP / D 0 if P 2 P .

Remark also that we may assume that

s � lim
m!1

Bm D B:

Indeed, we may pass from the initial Bm’s to a subsequence so that

s � lim
m!1

m�1.Bi1 C � � � C Bim/ D B

and replace Bm by m�1.Bi1 C � � � C Bim/.
Now, we show how to complete the proof whenB is invertible, that isE.BI Œ0; "//D

0 for some "> 0 and then go back to the general situation KerB D 0. Let h WR! Œ0;1�

be a C1-function which is 0 on .�1; 0� and 1 on Œ";1/. Then, we have

s � lim
m!1

h.Bm/ D h.B/ D 1

and
lim
m!1

max
1�j�n

jŒh.Bm/; Tj �jJ D 0:

Hence, replacing Bm by h.Bm/, we may assume that Bm 2 RC1 and Bm converges
strongly to I . Let P 2 P . Remark then that

lim
m!1

jBm � .P C .I � P /Bm.I � P //j1 D 0:

This follows from jP �PBmP j1! 0 and j.I �P /BmP j1! 0 which in turn follow
from the strong convergences P � PBmP ! 0 and .PBm.I � P /BmP /1=2 ! 0 in
the finite von Neumann algebra PMP jP jH endowed with the finite trace which is
the restriction of �.

Since also clearly kBm � .P C .I � P /Bm.I � P //k � 2, we infer that also

jBm � .P C .I � P /Bm.I � P //jJ ! 0

as m!1. This then gives

jŒTj ; P C .I � P /Bm.I � P /�jJ ! 0;
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which then finally implies
kJ.� IP / D 0:

Returning to the general case, where only KerB D 0 is assumed, the result we
have obtained thus far is easily seen to give that

kJ.� IE.B; ."; kBk/// D 0

if " > 0. The proof is then completed by observing that given P 2 P we can find
Pk 2 P , Pk � E.BI .1=k; kBk//, so that

lim
k!1

jPk � P j1 D 0

and use Lemma 6.1.
We may take Pk to be the left support projection of E.BI .1=k; kBk//P , that is

the projection onto the closure of the range of this operator.

There is an entirely analogous result for automorphisms which we record as the
next proposition, the proof of which is omitted, being only a slight variation on the
preceding proof.

Proposition 6.2. Assume that

Bm 2 R; Bm � 0; w � lim
m!1

Bm D B

and that
lim
m!1

max
1�j�n

jŒ j̨ .Bm/ � Bm�jJ D 0:

Then, if F is the support projection of B .that is E.BI .0;1// we have j̨ .F / D F ,
1 � j � n and

kJ.˛IF / D 0:

Corollary 6.2. Let P1; P2 2 P . Then, we have

kJ.� IP1/ D kJ.� IP2/ D 0) kJ.� IP1 _ P2/ D 0

and
kJ.˛IP1/ D kJ.˛ W P2/ D 0) kJ.˛IP1 _ P2/ D 0:

Proof. We will prove only the first assertion, the proof of the second being completely
analogous. If kJ.� IP1/ D kJ.� IP2/ D 0, there exist Am; Cm 2 RC1 and A;C 2M

so that

AmP1 D P1; CmP2 D P2

w � lim
m!1

Am D A; w � lim
m!1

Cm D C;

lim
m!1

jŒAm; Tj �jJ D 0; lim
m!1

jŒCm; Tj �jJ D 0; 1 � j � n:



D.-V. Voiculescu 20

Since AP1 D P1, we have that P1H and KerA are orthogonal. Similarly, P2H and
KerC are orthogonal. On the other hand, Ker.AC C/ D KerA \ KerC because A
and C are � 0. Thus, Ker.AC C/ is orthogonal to .P1 _ P2/H . Applying Proposi-
tion 6.1 to the sequence Bm D Am C Cm, we get the desired result.

Proposition 6.3. Given � , there exists a projection E0
J
.�/ 2 Proj.M/ so that

P 2 Proj.M/; kJ.� IP / D 0, P � E0J.�/:

The projection E0
J
.�/ is unique, in particular, if ˇ is an automorphism of M which

preserves � and ˇ.�/ D .�/, then we have ˇ.E0
J
.�// D E0

J
.�/. Similarly, given ˛,

there exists a projection E0
J
.˛/ 2 Proj.M/ so that

P 2 Proj.M/; kJ.˛IP / D 0, P � E0J.˛/:

Moreover, the projectionE0
J
.˛/ is unique, in particular, if ˇ is an automorphism of M

which preserves � and ˇ ı j̨ D j̨ ı ˇ, 1� j � n, then we have ˇ.E0
J
.˛//DE0

J
.˛/.

Proof. We will only prove the first half of the statement, the arguments being very
similar for the two cases. Moreover, in view of the definition of kJ.� IP /, when P 2
Proj.M/, it is easily seen that what we must prove is that

E D
_
¹P 2 P j kJ.� IP / D 0º ) kJ.� IE/ D 0:

The Hilbert space H being separable, there is a sequence Pi , i2N so that kJ.� IPi /D

0, i 2N and E D
W
¹Pi j i 2Nº. Let Ei D P1 _ � � � _Pi . By Corollary 6.2, we have

kJ.� IEi /D 0. Since Ei 2 P , there is Bi 2RC1 so that BiEi D Ei and jŒTj ; Bi �jJ <
1=i , 1 � j � n. We can replace the increasing sequence Ei by a subsequence and
assume that the Bi ’s are weakly convergent to some B . Then, BE D E, and we can
apply Proposition 6.1 to infer that kJ.� IE.BI .0;1///D 0which implies kJ.� IE/D

0 since E � E.BI .0;1//.

We will callE0
J
.�/,E0

J
.˛/ the J-singular projection of � and, respectively, ˛. We

will also use the notation EJ.�/ D I �E
0
J
.�/, EJ.˛/ D I �E

0
J
.˛/ and call EJ.�/,

EJ.˛/ the J-regular projection of � and ˛, respectively.
In [9], in the case of B.H / and of a normed ideal given by a norming function ˆ

we had called a projection P which is � -invariant ˆ well behaved if kˆ.� jPH / D 0.
This is equivalent to kˆ.� IP / D 0, and we think that ˆ-singular, the terminology we
introduce here, is perhaps a better term for this.

Corollary 6.3. We have �
Tj ; E

0
J.�/

�
D 0; 1 � j � n:
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Similarly, we have
j̨ .E

0
J.˛// D E

0
J.˛/; 1 � j � n:

Proof. Also, here, we will give only the proof of the first assertion, the proof of the
second being along the same lines.

It is clear that it suffices to prove that if P 2 P is so that kJ.� IP /D 0, then there
is P 0 2 Proj.M/ so that P 0 � P , kJ.� IP

0/ D 0, ŒP 0; Tj � D 0, 1 � j � n. Indeed,
since kJ.� IP / D 0, there are Bm 2 RC1 so that BmP D P and

lim
m!1

max
1�j�n

jŒTj ; Bm�jJ D 0:

Passing to a subsequence, we can assume that

w � lim
m!1

Bm D B;

and we will then have BP D P and ŒB; Tj � D 0, 1 � j � n. It follows from Propo-
sition 6.1 that P 0 D E.BI .0;1// has the desired properties.

Proposition 6.4. If Am D A�m 2 R are so that kAmk � C for all m 2 N and

lim
m!1

max
1�j�n

jŒAm; Tj �jJ D 0;

then we have
s � lim

m!1
AmEJ.�/ D 0:

Similarly, if Am D A�m 2 R are so that kAmk � C for all m 2 N and

lim
m!1

max
1�j�n

j j̨ .Am/ � AmjJ D 0;

then we have
s � lim

m!1
AmEJ.˛/ D 0:

Proof. We will prove only the first assertion, the proof of the second being along the
same lines. Let Bm D EJ.�/A

2
mEJ.�/ so that we will have to prove that

w � lim
m!1

Bm D 0:

Assuming the contrary and passing to a subsequence of this bounded sequence, we
will have

w � lim
m!1

Bm D B ¤ 0:

Then, Bm and B satisfy the assumptions of Proposition 6.1. It follows that the projec-
tion E.BI .0;1// ¤ 0 is so that kJ.� IE.BI .0;1/// D 0, and hence, by Propo-
sition 6.3, E.BI .0;1// � E0

J
.�/, while obviously E.BI .0;1// � EJ.�/. This

contradiction concludes the proof.
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7. Variants

We briefly discuss here modifications of the definition of the condenser quasicen-
tral modulus quantities along lines, which for the quasicentral modulus we already
pointed out in [8]. We use instead of the max comparable devices in the definitions.
This is in preparation for the next section, where the variants may have some advan-
tages.

Thus, Definition 2.1 is modified as follows:

QkJ.� IP;Q/ D inf
²ˇ̌̌̌� nX

jD1

ŒTj ; A�
�ŒTj ; A�

� 1
2
ˇ̌̌̌
J

ˇ̌̌̌
A 2 RC1 ; AP D P;AQ D 0

³
QkJ.˛IP;Q/ D inf

²ˇ̌̌̌� nX
jD1

. j̨ .A/ � A/
2

� 1
2
ˇ̌̌̌
J

ˇ̌̌̌
A 2 RC1 ; AP D P; AQ D 0

³
:

This is then extended also to Definition 2.2, and the further kJ quantities are replaced
by QkJ quantities. Remark that in essence this amounts to replacing

max
1�j�n

jXj jJ

by ˇ̌̌̌
ˇ̌̌
0B@X1:::
Xn

1CA
ˇ̌̌̌
ˇ̌̌
J

;

since � X
1�j�n

X�j Xj

� 1
2

is the positive operator in the polar decomposition of the column operator matrix. We
view here the 1 � n matrices with entries in M as a subspace in M ˝Mn and use
item (4) from the properties of j � jJ in the preliminaries.

Though we will mostly use QkJ in this paper, it is also quite natural to consider a
Dirac operator construction. This produces Dirac versions kD

J
.� IP;Q/, etc., where

kDJ .� IP;Q/ D inf
²ˇ̌̌� X

1�j�n

ŒTj ; A�˝ ej

�ˇ̌̌
J

ˇ̌̌
A 2 RC1 ; AP D P;AQ D 0

³
with e1; : : : ; en denoting Clifford matrices.

We have
kJ.� IP;Q/ � QkJ.� IP;Q/ � nkJ.� IP;Q/:
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This implies that a kJ-condenser quantity is zero or infinity iff the corresponding
QkJ-condenser quantity is zero or, respectively, infinity.

It is also easy to see that Lemma 2.1, Propositions 3.1, 3.2, and 3.3 still hold if
kJ is replaced by QkJ . Note however that it may not be the case that Proposition 3.4
remains valid when we pass to QkJ .

8. Noncommutative variational remarks

The quasicentral modulus, in its different versions, is based on quantities for which
minimization problems can be formulated:

I� .X/ D max
1�j�n

jŒTj ; X�jJ ;

I˛.X/ D max
1�j�n

j j̨ .X/ �X jJ ;

zI� .X/ D

ˇ̌̌̌� X
1�j�n

ŒTj ; X�
�ŒTj ; X�

� 1
2

ˇ̌̌̌
J

;

zI˛.X/ D

ˇ̌̌̌� X
1�j�n

. j̨ .X/ �X/
�. j̨ .X/ �X/

� 1
2

ˇ̌̌̌
J

;

ID� .X/ D
ˇ̌̌ X
1�j�n

ŒTj ; X�˝ ej

ˇ̌̌
J
;

ID˛ .X/ D
ˇ̌̌ X
1�j�n

. j̨ .X/ �X/˝ ej

ˇ̌̌
J
;

where � D �� throughout this section. If I.X/ 2 Œ0;1� denotes any of the above,
remark that it is a differential seminorm with additional properties:

I.X C Y / � I.X/C I.Y /;

I.�X/ D j�jI.X/;

I.XY / � I.X/kY k C kXkI.Y /;

I.X/ � C jX jJ ;

w � lim
m!1

Xm D X ) lim inf
m!1

I.Xm/ � I.X/;

and with the exception of zI� and zI˛ , we also have I.X�/ D I.X/.
If X D X�, then zI� and zI˛ can also be written as follows:

zI� .X/ D

ˇ̌̌̌�
�

X
1�j�n

ŒTj ; X�
2
� 1

2

ˇ̌̌̌
J

;

zI˛.X/ D

ˇ̌̌̌� X
1�j�n

. j̨ .X/ �X/
2
� 1

2

ˇ̌̌̌
J

:
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Actually, X D X� is a quite natural condition when we set up variational problems.
Euler equations in case J is the p-class, 2 � p <1, can be found for the power-

scaled Ip when I does not include a max. These equations can be viewed as ana-
logues of the p-Laplace equation. More precisely, let X D X� be such that

d

d"
Ip.X C "B/j"D0 D 0:

for all B D B� 2 R, where I.X/ <1.
In case I D zI� , we have

d

d"
�

��
�

X
1�j�n

ŒX C "B; Tj �
2
�p

2

�ˇ̌̌̌
"D0

D
p

2

X
1�k�n

�
�
�ŒB; Tk�ŒX; Tk�

�
�

X
1�j�n

ŒX; Tj �
2
��p

2 �1

�

�
ŒB; Tk�

�
�

X
1�j�n

ŒX; Tj �
2
�p

2 �1

ŒX; Tk�

�
D
p

2

X
1�k�n

�

�
B

�
�

�
Tk; ŒX; Tk�

�
�

X
1�j�n

ŒX; Tj �
2
�p

2 �1
��

C B

�
�

�
Tk;

�
�

X
1�j�n

ŒX; Tj �
2
�p

2 �1

ŒX; Tk�

���
;

which givesX
1�k�n

�
Tk; ŒX; Tk�

�
�

X
1�j�n

ŒX; Tj �
2
�p

2 �1

C

�
�

X
1�j�n

ŒX; Tj �
2
�p

2 �1

ŒX; Tk�

�
D 0:

(8.1)
Similarly, in case I D zI˛ , we have

d

d"
�

�� X
1�j�n

. j̨ .X C "B/ � .X C "B//
2
�p

2

�ˇ̌̌̌
"D0

D
p

2

X
1�k�n

�

�
.˛k.B/ � B/.˛k.X/ �X/

� X
1�j�n

. j̨ .X/ �X/
2
�p

2 �1

C .˛k.B/ � B/
� X
1�j�n

. j̨ .X/ �X/
2
�p

2 �1

.˛k.X/ � .X//

�
D
p

2

X
1�k�n

�..˛k.B/ � B/Dk/

D
p

2

X
1�k�n

�.B.˛�1k .Dk/ �Dk//;



The condenser quasicentral modulus 25

where

Dk D .˛k.X/ �X/
� X
1�j�n

. j̨ .X/ �X/
2
�p

2 �1

C

� X
1�j�n

. j̨ .X/ �X/
2
�p

2 �1

.˛k.X/ �X/:

With this notation, we have X
1�k�n

.˛�1k .Dk/ �Dk/ D 0: (8.2)

Similar computations can be carried out in the Dirac case.

Remark 8.1. It is natural to view solutions of (8.1) as � � p-harmonic elements and
solutions of (8.2) as ˛ � p-harmonic elements. A possible technical problem which
may appear is that in order not to limit considerations to “bounded p-harmonic” ele-
ments it may be necessary to be able to handle the situation when X is an unbounded
operator affiliated with M.

Remark 8.2. In the case of automorphisms, if I 2 N �M is a von Neumann subal-
gebra so that �jN is semifinite and j̨ .N / D N , 1 � j � n, let E be the conditional
expectation of M onto N so that � ı E D �. If I.X/ stands for I˛.X/, zI˛.X/ or
ID˛ .X/, it is easily seen that

I.X/ � I.EX/:

The definitions of the condenser quasicentral moduli kJ.� IP;Q/, kJ.˛IP;Q/,
QkJ.� IP;Q/, QkJ.˛IP;Q/, kDJ .� IP;Q/, k

D
J
.˛IP;Q/, whereP;Q 2P ,PQD 0 sug-

gest corresponding variational problems for the I.X/ quantities involving the convex
sets

C0PQ D ¹B 2 RC1 j BP D P; BQ D 0º;

CPQ D ¹X 2M j X D X�; 0 � X � I; XP D P; XQ D 0º:

The inf of I.B/ when B 2 C0PQ gives the condenser quasicentral moduli, while C0PQ
is weakly dense in CPQ, which is a weakly compact convex set.

In view of the weak lower semicontinuity property of I.X/, we have that the inf of
I.X/ over CPQ is attained at some point of CPQ. Note, however, that we only know
that

inf¹I.X/jX 2 CPQº � inf¹I.X/ j X 2 C0PQº:

Let Xm 2 C0PQ, m 2 N be a sequence so that

lim
m!1

I.Xm/ D inf¹I.X/jX 2 C0PQº
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and which is weakly convergent

w � lim
m!1

Xm D X1;

which can be arranged by passing to a subsequence. We have X1 2 CPQ.
More can be said when .J; j � jJ/ is the p-class, 1 < p <1, because then .J ˝

Mk; j � jJ/ is a uniformly convex Banach space. Assume moreover, I.X/ is one of
zI� .X/, zI˛.X/, ID� .X/, I

D
˛ .X/, i.e., there is no max in the definition of I.X/. Then,

I.X/ D j@.X/jJ , where in each of the four cases @.X/ is0B@ŒX; T1�:::

ŒX; Tn�

1CA ;
0B@˛1.X/ �X:::

˛n.X/ �X

1CA ;
X
1�j�n

ŒX; Tj �˝ ej ;X
1�j�n

. j̨ .X/ �X/˝ ej :

We have

I

�
1

2
.Xp CXq/

�
� lim
m!1

I.Xm/;

that is ˇ̌̌̌
1

2
.@.Xp/C @.Xq//

ˇ̌̌̌
J

� lim
m!1

j@.Xm/jJ :

In view of the uniform convexity, we have that the sequence @.Xm/, m 2 N, is con-
vergent in the norm j � jJ . Since @.Xm/ is weakly convergent to @.X1/, we infer that
the limit in the norm j � jJ equals the weak limit @.X1/. It follows that

I.X1/ D inf
®
I.B/ j B 2 C0PQ

¯
:

Assume that X 0m 2 C0PQ,m 2 N, is another sequence which is weakly convergent
to X 01, and so, that

lim
m!1

I.X 0m/ D inf
®
I.B/ j B 2 C0PQ

¯
:

Then, ˇ̌̌̌
1

2
.@.Xm/C @.X

0
m//

ˇ̌̌̌
J

� inf
®
j@.B/jJ j B 2 C0PQ

¯
;
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which by uniform convexity implies that

lim
m!1

j@.Xm/ � @.X
0
m/jJ D 0

so that
@.X1/ D @.X

0
1/:

The set ker @ is a von Neumann subalgebra of M. In the case of zI� , ID� it is .�/0 \M

the relative commutant of � in M, while in the case of zI˛ , ID˛ it is the fixed point
algebra of the n-tuple of automorphisms ˛.

Summarizing, we have shown the following remark.

Remark 8.3. Assume J is the p-class, 1 < p <1, and assume that I.X/ is one of
the four quantities which do not involve a max. The weak limits of C0PQ-sequences
which minimize I over C0PQ form a weakly compact convex subset of CPQ on which
the value of I is the infimum of I over C0PQ. Moreover, modulo the von Neumann
subalgebra ker @, the elements of this convex set are equal.

The preceding remark leaves open the question about equality of the infimum
of I over C0PQ and CPQ. We can answer this in case kJ.�/ D 0 or, respectively,
kJ.˛/D 0. There is not a “no max” restriction on I.X/ for this. In this situation, there
is a sequence Bk 2 RC1 , k 2 N so that Bk.P CQ/ D P CQ, s � limk!1Bk D I

and jŒ�; Bk�jJ ! 0 or, respectively, j j̨ .Bk/ � BkjJ ! 0, 1 � j � n as k !1 that
is I.Bk/! 0 for our choice of I . Let X 2 CPQ be so that

I.X/ D inf¹I.Y / j Y 2 CPQº:

Then, BkXBk 2 C0PQ and

s � lim
k!1

BkXBk D X:

We have
I.X/ � I.BkXBk/ � I.X/C 2I.Bk/:

This gives
lim
k!1

I.BkXBk/ D I.X/:

Summarizing, we have the following remark.

Remark 8.4. Assume that kJ.�/D 0 or, respectively, that kJ.˛/D 0. Then, we have

I.X/ D inf
®
I.B/ j B 2 C0PQ

¯
D inf

®
I.Y / j Y 2 CPQ

¯
for some X 2 CPQ.
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Assume that J is the p-class, 2 � p < 1, and that I.�/ involves no max. Let
X 2 CPQ be so that

I.X/ D inf¹I.Y / j Y 2 CPQº:

Let P1 D E.X I ¹1º/ and Q1 D E.X I ¹0º/. If B 2 RC1 and " 2 Œ�1; 0�, we have

X" D X C "
�
.P1 � P /C .X �X

2/
1
2

�
B
�
.P1 � P /C .X �X

2/
1
2

�
2 CPQ;

and hence,
d

d"
Ip.X"/j"D0 � 0:

The computations preceding Remark 8.1 with B replaced by�
.P1 � P /C .X �X

2/
1
2

�
B
�
.P1 � P /C .X �X

2/
1
2

�
give

�
�
‚
�
.P1 � P /C .X �X

2/
1
2

��
B
�
.P1 � P /C .X �X

2/
1
2

�
� 0

if I is zI� or zI˛ and ‚ denotes the quantity appearing in (8.1) and, respectively, (8.2).
Since B 2 RC1 is arbitrary, this implies�

.P1 � P /C .X �X
2/

1
2

�
‚
�
.P1 � P /C .X �X

2/
1
2

�
� 0:

This in turn is equivalent to

.I � P �Q1/‚.I � P �Q1/ � 0:

Similarly, if " 2 Œ0; 1�, we have

X" D X C "
�
.Q1 �Q/C .X �X

2/
1
2

�
B
�
.Q1 �Q/C .X �X

2/
1
2

�
2 CPQ

and proceeding as above, we get that

.I � P1 �Q/‚.I � P1 �Q/ � 0:

Thus, in case I D zI� , we have

P1;Q12Proj.M/; P �P1; Q�Q1; P1Q1D0; XP1DP1; XQ1D0;

.I � P �Q1/‚.I � P �Q1/ � 0 (8.3)

and
.I � P1 �Q/‚.I � P1 �Q/ � 0;

where

‚ D
X
1�k�n

�
Tk; ŒX; Tk�

�
�

X
1�j�n

ŒX; Tj �
2
�p

2 �1

C

�
�

X
1�j�n

ŒX; Tj �
2
�p

2 �1

ŒX; Tk�

�
:
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In case I D zI˛ , we have

P1;Q12Proj.M/; P �P1; Q�Q1; P1Q1D0; XP1DP1; XQ1D0

.I � P �Q1/
� X
1�k�n

.˛�1k .Dk/ �Dk/
�
.I � P �Q1/ � 0 (8.4)

and
.I � P1 �Q/

� X
1�k�n

.˛�1k .Dk/ �Dk/
�
.I � P1 �Q/ � 0;

where

Dk D .˛k.X/ �X/
� X
1�j�n

. j̨ .X/ �X/
2
�p

2 �1

C

� X
1�j�n

. j̨ .X/ �X/
2
�p

2 �1

.˛k.X/ �X/:

Similar computations can be carried out in the Dirac case.
Summarizing, we have proved the following remark.

Remark 8.5. Assume that J is the p-class, 2 � p <1, and that X is a minimizer of
I.�/ in CPQ. If I is zI� thenX satisfies (8.3), and if I is zI˛ , thenX satisfies (8.4). These
conditions are compressions of noncommutative � �p-Laplace and, respectively, ˛ �
p-Laplace inequalities.
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