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Dirac operator associated to a quantum metric

Shahn Majid

Abstract. We construct a canonical geometrically realised Connes spectral triple or ‘Dirac oper-
ator’D= from the data of a quantum metric g 2�1 ˝A �1 and a bimodule connection on�1, at the
pre-Hilbert space level. Here A is a possibly noncommutative coordinate algebra,�1 a bimodule of
1-forms and the spinor bundle is � D A˚�1. When applied to graphs or lattices, we essentially
recover a previously proposed Dirac operator but now as a geometrically realised spectral triple. We
also apply the construction to the fuzzy sphere and to 2 � 2 matrices with their standard quantum
Riemannian geometries. We propose how D= can be extended to an external bundle with bimodule
connection.

1. Introduction

One of the important ideas for noncommutative geometry is an approach coming out of
cyclic cohomology and operator algebras [10] leading up to the notion of a ‘Connes spec-
tral triple’ in the role of Dirac operator [11, 12]. Essentially, this is

(1) a Hilbert space � ; h ; i on which a �-algebra A acts faithfully with the action of
a� adjoint to the action of a, and on which operators =D;J and in the ‘even’ case
 act, with =D (in our conventions) antihermitian, J an antilinear isometry and 
hermitian,

(2) Œa;JbJ�1� D ŒŒ =D; a�;JbJ�1� D Œ; a� D 0 for all a; b 2 A,

(3) J2 D "id, J =D D "0 =DJ, J D "00J, 2 D id, =D D � =D,

for signs "; "0; "00 which, by analogy with the classical case, are usually taken to fall into
a period 8 table according to a ‘dimension’ n. Here "0 is opposite to Connes’ conventions
since we take =D antihermitian to match our algebraic formulation. Our spectral triples in
this paper will all have " D "0 D "00 D 1, which do not then fully fit into this table: one
could consider them n D 1 ignoring  from this point of view.

One usually demands additionally that =D has compact resolvent and bounded com-
mutators. In this paper, however, we will work at a pre-Hilbert space level without consid-
eration of analytic issues needed for completion to an actual spectral triple, i.e., we will
only construct what should more precisely be called a pre-spectral triple. This suffices for
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our purposes, where our examples will be finite-dimensional or essentially so. If we solve
for just (2)–(3) with a spinor bundle but without yet considering an inner product and the
conditions in (1), then we say that we have a spectral triple at the local tensorial level. In
classical geometry, the local tensorial level would be the construction of =D, charge con-
jugation J and a chirality operator  at the level of smooth sections of the spinor bundle
� before consideration of an L2-inner product and adjoints.

With these limitations understood, we continue the programme in [5, 20, 21] and [7,
Chap. 8.5] to ‘quantum-geometrically realise’ Connes spectral triples starting first at the
local tensorial level and in such a way that =D D F ı rS , where rS W � ! �1 ˝A � is
a bimodule connection on an A-bimodule � and F W �1 ˝A � ! � is a bimodule map
(the ‘Clifford action’) in the role of gamma matrices. We use here a more ‘layer by layer’
approach to noncommutative geometry in which the starting point is anA-bimodule�1 of
‘differential forms’ equipped with a derivation d WA!�1. In recent years, this was exten-
ded to a systematic theory of ‘quantum Riemannian geometry’ (QRG) with a quantum
metric g 2 �1 ˝A �1, a ‘quantum Levi-Civita connection’ (QLC) r W �1! �1 ˝A �

1,
et cetera. We refer to [7] and references therein. This framework has been applied to baby
models of quantum gravity and quantum geodesics, and is also beginning to be applied to
particle physics, see [1] for a recent review. The geometric realisation programme is about
the intersection of these two approaches to noncommutative geometry.

In this context, we provide and study a specific construction that associates a geomet-
rically realised spectral triple on the spinor bundle � DA˚�1 to every QRG under some
mild conditions. If not all of these conditions hold then we can still obtain a natural =D at
the local tensorial level obeying all or most of (2)–(3). Our general construction appears in
Section 2.3, see Theorem 2.5. We then compute how this works in three examples, the first
of which in Section 3.2 produces results broadly similar to the Dirac operators on graphs
studied several times since [14], most recently in [8]. In all three examples, the calcu-
lus is inner and in this case, see Corollary 3.1, there is a canonical but strictly quantum
‘bare’ choice of r where � D id so that the only input is the quantum metric. Remark-
ably, in the examples that we compute, the Dirac operator is the same as obtained by using
the QLC. And because of the general context, we can also take the classical limit of our
construction, where it turns out to be the projection to degrees 0,1 of the spectral triple
in [12, Thm. 11.3] on any closed orientable Riemannian manifold M with � D �.M/C
the complexified exterior algebra and =D D dC ı for the Hodge co-differential ı. Connes
showed in this work that spectral triples in the commutative case, subject to some other
mild assumptions, are either of this type or given by a usual Dirac operator on spinors. On
the other hand, there is no straightforward Hodge–de Rham theory in the general noncom-
mutative case (although these are reasonable examples in special cases [23, 24]), whereas
our degrees 0,1 version will apply at the local tensorial level for any QRG with a certain
� -symmetry condition on the quantum metric.

It is worth noting that � D A˚ �1 is also the first jet bundle J1 in [25], but while
the jet bundle extends to higher order in a quantum symmetric manner, � is more like
the leading part of the exterior algebra which classically would be antisymmetric. The
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same applies when we extend the construction to include an external bundle E with con-
nection rE , which we briefly consider in Section 4. This extended construction in the
graph case seems somewhat different from the lattice Dirac operator coupled to an external
gauge field in [9] but has elements in common. The paper concludes with some remarks
in Section 5 about directions for further work.

We work over C but all of the constructions at the local tensorial level when formulated
in terms of QRG work over any field, other than those involving � and J.

2. QRG’s and the construction of a spectral triple

We start with some preliminaries on the QRG formalism and on how this can be used to
construct geometric spectral triples [5,7]. Then Section 2.3 contains our general construc-
tion within this formalism given a bimodule connection r; � , a � -symmetric quantum
metric and a suitable integration state.

2.1. Elements of QRG

We work with A a unital algebra, typically a �-algebra over C, in the role of ‘coordinate
algebra’. Differentials are formally introduced as a bimodule �1 of 1-forms equipped
with a map d W A! �1 obeying the Leibniz rule d.ab/ D .da/b C adb. We assume this
extends to an exterior algebra .�; d/ with d2 D 0 and d obeying the graded-Leibniz rule,
and where A; dA generate � (this is more restrictive than a differential graded algebra).

A quantum metric is g 2�1˝A�1 and a bimodule map inverse . ; / W�1˝A�1!A

in an obvious sense, together with some form of quantum symmetry condition. Follow-
ing [7], we say g is a generalised quantum metric if no form of symmetry is imposed. A
(left) bimodule connection [16, 26] on �1 is r W �1 ! �1 ˝A �

1 obeying

r.a!/ D ar! C da˝ !; r.!a/ D .r!/aC �.! ˝ da/ (2.1)

for all a 2 A, ! 2 �1, for some ‘generalised braiding’ bimodule map � W �1 ˝A �1 !
�1 ˝A �

1. The latter, if it exists, is uniquely determined and not additional data. A con-
nection is metric compatible if the tensor product connection

r�1˝�1 WD r ˝ idC .� ˝ id/.id˝r/ (2.2)

vanishes on g. Provided � is invertible (which we assume), metric compatibility is equi-
valent to covariance of . ; / in the sense

d. ; / D .id˝ . ; //r�1˝�1

as shown in [7, Lem. 8.4]. It is this form which we will use (we do not actually need g
itself). In this paper, the natural symmetry condition for a quantum metric we will be led
to impose is ‘� -symmetric’

. ; /� D . ; / (2.3)
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in terms of . ; /, with respect to a bimodule connection r; � . This is less self-contained
than the standard notion ^.g/ D 0 of quantum symmetry in [7].

When r is both metric compatible and torsion free in the sense that the torsion Tr WD
^r � d vanishes, we say that we have a quantum Levi-Civita connection (QLC). In the
torsion free case, one can show that ^ ı .idC �/ D 0.

Finally, working over C, we need .�; d/ to be a �-calculus, where A is a �-algebra
and d is extended so as to commute with �. We also usually require g ‘real’ in the sense
g� D g, where � D flip.� ˝ �/ is well defined on �1 ˝A �1, or equivalently

� ı . ; / D . ; / ı � (2.4)

in terms of the inverse metric. Moreover, we usually require r to be �-preserving in the
sense

r ı � D � ı � ı r:

This in turn can be shown [7, Lem. 8.7] to imply that .� ı �/2 D id.
We will particularly need in this context a natural co-differential or divergence

ı D divr W �1 ! A; ı WD . ; /r

which necessarily obeys

ı.a!/ D .da; !/C aı!; ı.!a/ D . ; /�.! ˝ da/C .ı!/a (2.5)

for all a 2 A;! 2 �1.

Lemma 2.1. In the �-calculus case, if the metric and r obey their respective reality and
�-preserving conditions and the metric is � -symmetric, then ı commutes with �.

Proof. Under our assumptions, .ı!/� D . ; / � r! D . ; /��1r.!�/ D ı.!�/ for all
! 2 �1.

This also implies that the Laplacian�D . ; /rdD ıd onA commutes with � as in [7].
Following [6], we say that a positive-linear functional

R
WA!C is divergence-compatible

if Z
ı ı D 0;

as would be true in the classical case for a closed manifold. In this case, (2.5) integrates to
0 for each left-hand side, giving formulae for integration by parts.

2.2. Spinor bundle and Dirac operator

The formulation of a bimodule connection above applies equally well to any A-bimodule
� in the role of sections of a ‘vector bundle’, now with rS W � ! �1 ˝A � and �S W
� ˝A�

1!�1˝A � , and (2.1) now with ! 2�1 replaced by � 2 � . Two bimodules with
bimodule connection necessarily have a tensor product over A following the same lines as
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(2.2). We also define the covariant derivative of a bimodule map f W T ! � , where T is
another bimodule with bimodule connection rT , to be r.f / WD rS ı f � .id˝ f / ı rT
as a map T ! �1 ˝A � , see [7, eqn. (4.1)].

We take a bimodule � as our ‘spinor bundle’ and equip it with a bimodule connection
rS . We also need a Clifford bimodule map F W�1˝A �! � which generalises the role of
the gamma-matrices when constructing Dirac operators [5]. In this case, we define =D D

F ı rS W � ! � as a minimal definition of a ‘geometric Dirac operator’ in the formalism.
Not required for a spectral triple but motivated by the classical case, we optionally

would like the geometric condition r.F/ D 0, i.e.,

.id˝ F/ ı .r ˝ idC .� ˝ id/.id˝rS // D rS ı F; (2.6)

which says that F is covariantly constant in the sense that it intertwines the tensor product
connection on �1 ˝A � and the connection on � . The work [5] also tentatively proposed
a ‘Clifford relation’ that F extends to �2 ˝A � ! � in such a way that

.! ^ �/F� WD !F.�Fs/C .!; �/�; (2.7)

for all !;� 2�1 and � 2 � , is well defined. One can also consider a generalisation of this
to allow an automorphism of � and a scaling of the inner product. The motivation is that
this reduces to the Clifford algebra relations in the classical case. This condition, however,
is less natural and does not fully apply in many examples, including in the constructions
below. It is also not needed for a spectral triple.

For a Connes spectral triple, we instead need [5], [7, Chap. 8.5] that � has an antilinear
skew-bimodule ‘charge conjugation’ involution J W � ! � in the sense

J.a�/ D J.�/a�; J.�a/ D a�J.�/; J2 D "id (2.8)

for all a 2 A, � 2 � and some " D ˙1. This is required to obey

rSJ D �S ı flip.� ˝ J/ ı rS ; J.!F�/ D "0F ı �S .J� ˝ !
�/: (2.9)

The first equation generalises the notion of �-preserving for r to rS . Also, for an even
spectral triple, we need a bimodule map involution  W � ! � with 2 D id required to
further obey

.id˝ / ı rS D rS ı ;  ı F D �F ı .id˝ /; J ı  D "00 ı J: (2.10)

It is shown in [5] that in this way we naturally realise the local tensorial part of Connes’
axioms of a spectral triple.

Finally, we need a compatible sesquilinear inner product h ; i on � with respect to
which we complete the latter into a Hilbert space as stated in the introduction, namely
such that =D is antihermitian, J an antilinear isometry in the sense

hJ�;J i D h ; �i

and (if it exists)  hermitian. Here, { =D is the hermitian Dirac operator in Connes’ axioms
with the result that our "0 has the reversed sign compared to Connes’ conventions. Our ap-
proach will be to build h ; i from a divergence-compatible positive linear trace

R
W A! C.
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2.3. Construction of =D from a QRG

We are now ready to give our construction. Given a differential algebra .A;�1; d/, we set

� D A˚�1 (2.11)

with its direct sum bimodule structure. We next assume a generalised quantum metric g
with inverse . ; / andr a bimodule connection on�1, and define the bimodule connection

rS .aC !/ D daCr! (2.12)

as an element of �1 ˝A � D �1 ˚�1 ˝A �
1 after the canonical identification �1 ˝A

AD�1. Here, as elsewhere, a 2 A and !;� 2�1. The associated generalised braiding is

�S ..aC !/˝ �// D a�C �.! ˝ �/; (2.13)

where also on the input side, � ˝A �
1 D �1 ˚�1 ˝A �

1 by the canonical identification
A˝A �

1 D �1. Next, for the Clifford action, we define

!F.aC �/ D !aC .!; �/ (2.14)

so that
=D.aC !/ D FrS .aC !/ D daC . ; /r! (2.15)

or, in other words, =D D dC ı as desired. From the Leibniz rules, this necessarily obeys

Œ =D; a� D .da/F (2.16)

for all a 2 A. Similarly, from (2.15) it follows that

=D
2
.aC !/ D . ; /rdaC .id˝ . ; //r�1˝�1r! D �aC�! (2.17)

as the natural Laplacians on functions and 1-forms in [22], [7, Lem. 8.6].

Lemma 2.2. The condition r.F/ D 0 in (2.6) holds iff r is metric compatible.

Proof. For covariance of ! ˝ a 7! !a, we need

r.!a/ D .id˝ F/.r! ˝ aC �.! ˝ da// D .r!/aC �.! ˝ da/;

so this holds automatically as the condition for r to be a bimodule connection. For co-
variance of ! ˝ � 7! .!; �/, we need

d.!; �/ D .id˝ F/.r! ˝ �C .� ˝ id/.! ˝r�//

D .id˝ . ; �//r! C .id˝ . ; //.� ˝ id/.! ˝r�/

which is equivalent to metric compatibility when written in terms of . ; / (see [7, Chap. 8]).
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Note that we will not actually need Tr D 0, so r does not need to be a full QLC,
although this would be the natural choice if it exists. On the other hand, the Clifford
relations (2.7) become

!F.�Fa/ � .!; �/a D 0 DW .! ^ �/Fa;

!F.�F�/ � .!; �/� D !.�; �/ � .!; �/� DW .! ^ �/F�

which seems too strong in the sense that the 2nd equation would not be well defined
classically as the wedge product is antisymmetric in !;�. Hence, we will not try to impose
this (optional) condition. Next, we define

J.aC !/ D a� C !�

which automatically obeys (2.8) with " D 1.

Lemma 2.3. Suppose that the generalised quantum metric obeys the reality (2.4) and r
is �-preserving. Then J obeys (2.9) iff the metric is � -symmetric and "0 D 1.

Proof. For the first of (2.9), we have

�Sflip.� ˝ J/.daCr!/ D �S .1˝ da� C � ı r!/ D �S .1˝ da� C ��1 ı r.!�//

D da� Cr.!�/ D rS .a� C !�/ D rSJ.aC !/;

so that this holds automatically given that d commutes with � and r is �-preserving. For
the second of (2.9), we have

"0F ı �S .J.aC !/˝ �
�/ D "0F ı �S ..a

�
C !�/˝ ��/

D "0F.a��� ˝ 1C �.!� ˝ ��//

D "0.a��� C . ; /�.!� ˝ ��//

and we want this to equal

J.�F.aC !// D J.�aC .�; !// D .�; !/� C a��� D a��� C .!�; ��/;

using the reality of the metric in the . ; / form as in [7, Chap. 1]. Comparing, we need the
conditions stated.

In fact, what we actually used in the proof (and this is all we need for a spectral triple)
is neither usual metric reality nor � -symmetry but their combination

.!; �/� D . ; / ı �.�� ˝ !�/;

as the minimum condition needed on the generalised quantum metric for the present con-
struction to work. Finally, we set

.aC !/ D a � !;

which is clearly an involution and a bimodule map, and clearly obeys the last part of (2.10)
with "00 D 1.
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Lemma 2.4. The map  obeys the rest of (2.10) also.

Proof. Here, the first part of (2.10) is

.id˝ /rS .aC!/D .id˝ /.da˝ 1Cr!/D da�r! DrS .a�!/DrS.aC!/

and the 2nd part is

.�F.aC !// D .�aC .�; !// D ��a � .�;�!/ D ��F.aC !/

as required.

If the conditions in these lemmas hold then we have all the local tensorial axioms of a
spectral triple. It remains to define the inner product and we do this by

haC !; b C �i D

Z
.a�b C .!�; �//

which is manifestly sesquilinear as needed provided
R

is a �-preserving linear functional
and the metric reality (2.4) holds at least under the integration. We assume

R
is extended-

positive definite in the sense Z
.a�a/ � 0;

Z
.!�; !/ � 0 (2.18)

for all a 2 A; ! 2 �1 with equality iff a D 0 or ! D 0 respectively. These assumptions
make � into a pre-Hilbert space which can then be completed to a Hilbert space.

Theorem 2.5. If the quantum metric obeys the reality condition (2.4) and
R

is extended-
positive definite and divergence-compatible then =D above is antihermitian and  is her-
mitian. Moreover, J is an antilinear isometry iff

R
is an extended trace in the senseZ

.ab/ D

Z
.ba/;

Z
.!; �/ D

Z
.�; !/

for all a; b 2 A and !; � 2 �1. In this case, we have a (pre-)spectral triple with " D "0 D
"00 D 1.

Proof. Here, using integration by parts

haC !; =D.b C �/i D haC !; db C ı�i D
Z
.a�ı�C .!�; db//

D

Z
.�.da�; �/C .!�; db//;

h � =D.aC !/; b C �i D h � da � ı!; b C �i D �
Z
..ı!/�b C .da�; �//

D �

Z
..b�ı!/� C .da�; �// D

Z
..db�; !/� � .da�; �//
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where for the last equality we used that
R

is �-preserving to allow us to kill the � of a total
divergence. We then need (2.4) to hold at least under the integral to obtain the same result
as the first calculation. Hence =D is antihermitian. Next,

h.aC !/; .b C �/i D ha � !; b � �i D haC !; b C �i

is immediate from the formula for the inner product. Finally,

hJ.aC !/;J.b C �/i D ha� C !�; b� C ��i D

Z
.ab� C .!; ��//;

hb C �; aC !i D

Z
.b�aC .��; !//:

Equality needs the ‘extended trace’ conditions stated.

From the proof, we only really need the reality of the metric under the
R

rather than
(2.4). Remembering the sign change of "0 when passing to the hermitian { =D, the spectral
triple here is technically n D 1 ignoring  in the Connes period 8 classification table for
the pattern of signs.

Also recall that in the local part of the construction, we did not actually need r to
be metric compatible as this was only used for the optional (2.6). However, if there is a
natural r which is metric compatible (such as a QLC) then it makes sense to use this
and consider the above rS as the ‘base’ coming from the QRG. Then any other bimodule
connection on � with the same �S differs by a bimodule map of the form

˛S W � ! �1 ˝A � ; ˛S .aC !/ D a˛0 C ˛.!/

for some central 1-form ˛0 and some bimodule map ˛ W �1 ! �1 ˝A �
1. We can then

use the bimodule connection r˛S WD rS C ˛S in place of rS giving a modified Dirac
operator

=D˛S D
=D C F ı ˛S ; .F ı ˛S /.aC !/ D a˛0 C . ; /˛.!/:

Proposition 2.6. The equations (2.9)–(2.10) continue to hold for r˛S provided

˛�0 D ˛0; ˛ ı � D � ı � ı ˛;

and in this case we still have a (pre-)spectral triple with =D˛S provided

. ; /˛ C .˛0; / D 0:

Proof. We have to recheck the proofs involving rS when ˛S is added. For (the first part
of) (2.9), we need

�Sflip.� ˝ J/.a˛0 ˝ 1C ˛.!// D � ı � ı ˛.!/C ˛
�
0a
�

to equal ˛SJ.aC !/D a�˛0 C ˛.!
�/, which gives the conditions stated given that ˛0 is

central. For the (first part of) (2.10), we have

.id˝ /.a˛0 ˝ 1C ˛.!// D a˛0 � ˛.!/ D ˛S .a � !/ D ˛S;
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as required. Hence, this is automatic. For the extension of Theorem 2.5, it remains to check
that the extended =D˛S is anti-hermitian. Here,

haC !;F ı ˛S .b C �/i D haC !; b˛0 C . ; /˛.�/i D

Z
.a�. ; /˛.�/C .!�; ˛0/b/;

h � F ı ˛S .aC !/; b C �i D h � a˛0 � . ; /˛.!/; b C �i

D

Z
.�a�.˛�0 ; �/ � .. ; /˛.!//

�b/;

using that ˛0 is central. Equality is ensured, given that ˛�0 D ˛0 from the earlier part and
given that the metric obeys the reality condition, provided we assume the condition on
. ; /˛ stated (and this is required if

R
is suitably nondegenerate).

The last condition here says that ˛0 is determined from the bimodule map ˛, so the
latter is the additional freedom for the Dirac operator constructed on the same � and for
given �S (other connections and hence Dirac operators could be possible, e.g., using a
connection for r with a different � ). Although this represents additional freedom in the
construction of =D and has the nature of a gauge field, it is not the most general geometric
way to introduce an external gauge symmetry, which should be done by tensoring with an
external bundle with connection as we do in Section 4.

3. Graph, matrix and fuzzy Dirac operators

Here we analyse how to solve the conditions needed for our construction in some import-
ant cases, the first of which is quite general but has no classical analogue.

3.1. Bare Dirac operator for an inner calculus

A calculus .�1; d/ is inner if there is � 2 �1 such that da D Œ�; a�. This is not possible
in classical geometry but quite typical in the noncommutative case. In this case, bimodule
connections have the form [22]

r! D � ˝ ! � �.! ˝ �/C ˛.!/

for arbitrary bimodule maps � W �1 ˝A �1 ! �1 ˝A �
1 and ˛ W �1 ! �1 ˝A �

1. If
there is no such last term, we say that r is inner. The choice � D s id is a bimodule map
for any constant s, giving a 1-parameter family of canonical inner connections on any
inner calculus. Here,

r! D � ˝ ! � s! ˝ �;

so that the corresponding Laplacian is

�a D . ; /rda D .�; da/ � s.da; �/ D .�; �/aC sa.�; �/ � .1C s/.�; a�/:
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The choice s D 0 is (up to a factor of 2) the Laplacian �� in [7, Chap. 1.5]. By contrast,
the choice s D 1, which we refer to as the ‘bare connection’ is more suited to our needs
and trivially obeys the � -symmetric condition in Lemma 2.3 for any generalised quantum
metric. This bare r is also �-preserving if

�� D ��;

which we assume. The bare r therefore generally leads to a Dirac operator and spectral
triple at the local or tensor level.

Corollary 3.1. If
R

is an extended trace as in Theorem 2.5 then it is automatically diver-
gence-compatible. In this case we have a corresponding bare Dirac operator

=D.aC !/ D daC .�; !/ � .!; �/

forming a geometrically realised (pre-)spectral triple with "D "0D "00D 1 if
R

is extended-
positive definite on � .

Proof. Here, ı!D . ; /r!D .�;!/� .!;�/ so if the integral obeys the integral symmetry
condition then it is automatically divergence-compatible. We then apply Theorem 2.5. To
have a pre-Hilbert space we still need

R
to be extended-positive definite as in (2.18).

In addition, we can add non-inner terms ˛ to the bare case above. On the other hand,
we will generally not have the optional r.F/D 0 covariance condition as the bare r itself
is not generally metric compatible, being usually very far from a quantum Levi-Civita
connection.

3.2. Graph case

As in [22], [7, Chap. 1.5], we can take A D C.X/ the complex functions on the vertex
set X of a bidirected graph (i.e., every edge has arrows in both directions) and �1 with
vector space basis !x!y labelled by the arrows. The spinor space in our construction is
� D C.X/˚�1, which in the finite graph case is jX j C 2jEj-dimensional over the field.
We focus on the finite case, but the underlying constructions work more generally with
suitable care.

The bimodule structure of �1 and d is well known,

a!x!y D a.x/!x!y ; !x!ya D a.y/!x!y ;

da D
X
x!y

.a.y/ � a.x//!x!y ; !�x!y D �!y!x :

A (generalised) quantum metric has the form

.!x!y ; !y0!x0/ D �x!yıx;x0ıy;y0ıx

for real coefficients �x!y associated to the arrows. It is typical in this context (but not
necessary) to assume that the metric is edge-symmetric in the sense �x!y D �y!x so that
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we depend only on the edge. We do not assume this unless stated. Elements of�1 ˝A �1

have vector space basis ¹!x!y!zº labelled by the 2-steps. We let

�2x;y D spanC¹!x!w!yº

be the 2-steps with fixed endpoints, with basis labelled by the possible intermediate ver-
tices.

Among the bimodule connections r, the simplest are of ‘inner form’

r! D � ˝ ! � �.! ˝ �/; � D
X
x!y

!x!y

for any bimodule map � W �1 ˝A �1 ! �1 ˝A �
1. If there are no triangles in the graph

then there is no possibility for a bimodule map ˛ and hence all connections are inner.
Moreover, � amounts to a free choice of linear maps on each �2x;y space, i.e., to matrices
in �x;y 2Mdim.�2x;y/.C/ for all pairs x; y that can be endpoints of 2-steps. One usually
restricts to invertible � , which means each of these matrices should be invertible. In these
terms, an inner connection looks like

r.!x!y/ D
X

wWw!x

!w!x!y �
X

wWy!w

�.!x!y!w/

D

X
wWw!x

!w!x!y �
X

wWy!w

X
zWx!z!w

�x;w
z
y!x!z!w

and is �-preserving if �� squares to the identity, which amounts to

�y;x D ��1x;y

as matrices. Here �2x;y is identified with �2y;x by arrow reversal of the basis elements.
The divergence ı D . ; /r for the chosen bimodule connection is then

ı.!x!y/ D �y!xıy �

� X
zWx!z

�x!z�x;x
z
y

�
ıx ;

which is sensitive only to the �x;x matrices. The somewhat general quantum geometric
Dirac operator by our construction (but not necessarily yet a spectral triple) is therefore

=D.ıx/ D
X
yWy!x

!y!x �
X
yWx!y

!x!y ;

=D.!x!y/ D �y!xıy �

� X
zWx!z

�x!z�x;x
z
y

�
ıx :

(3.1)

Next, towards a spectral triple, we need associated maps J and  , which in our con-
struction are

J.ıx/ D ıx ; J.!x!y/ D �!y!x ; .ıx/ D ıx ; .!x!y/ D �!x!y
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extended antilinearly and linearly respectively. The � -symmetric condition needed in
Lemma 2.3 is

�x!y D
X
zWx!z

�x!z�x;x
z
y (3.2)

for all x ! y, and completes the requirements for a geometrically realised spectral triple
at the local tensorial level. The Dirac operator is then

=D.ıx/ D
X
yWy!x

!y!x �
X
yWx!y

!x!y ; =D.!x!y/ D �y!xıy � �x!yıx (3.3)

and is no longer sensitive to the connection used, i.e., just depends on the metric.
Next, for a (pre-)Hilbert space inner product, we need an integration on A D C.X/ of

the form Z
a D

X
x

�xa.x/; �x > 0;

so that
R
a�a > 0 for nonzero a 2 C.X/. Similarly,Z

.��; �/ D
X
x!y

.��y�y!x/j�
x;y
j
2

for � D
P
x!y �

x;y!x!y . Hence this is positive definite iff

�x!y < 0 (3.4)

for all x ! y. Moreover, the condition for
R

to be divergence-compatible is

�y�y!x D �x�x!y (3.5)

for all x! y. In this case, the extended trace conditions on
R

in Theorem 2.5 are empty on
functions, and on 1-forms just repeat (3.5) already imposed. The Hilbert space structure
is then

haC !; b C �i D
X
x

�xa.x/b.x/C
X
x!y

.��y!x/!x;y�
x;y

for !; � with arrow coefficients ¹!x;yº and ¹�x;yº. In summary, we have a geometrically
realised spectral triple by our construction for a negative metric ¹�x!yº obeying (3.4), an
inner connection defined by ¹�x;yº obeying (3.2) and a measure ¹�xº obeying (3.5). This
operator (3.3) is essentially one of the operators proposed in [14] and later works such
as [8], but now quantum geometrically realised. Moreover, (3.3) should be viewed as the
partner of the graph Laplacian on functions and 1-forms in [22], necessarily recovered as
=D
2 according to (2.17).

Corollary 3.2. Given a graph with negative arrow weights and a measure � such that
(3.5) holds, � D id obeys the remaining condition (3.2) and geometrically realises the
Dirac operator (3.3).
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Proof. We just take the canonical ‘bare’ connection � D id and hence in particular �x;x D
id (the relevant identity matrix) as needed for (3.2). Thus, all conditions are met, and we
can always geometrically realise (3.3) in this case.

For example, if the metric is edge-symmetric then �x D �y , i.e., a constant on each
connected component of the graph, solves (3.5). The connection r; � is only needed for
the geometric realisation and does not directly enter (3.3) itself. The corollary says that
we can always take the bare one, which does the job but typically without the optional
property (2.6) of F covariant for a full geometric realisation.

Example 3.3. For a non-edge symmetric example, one can take the case of the An graph
�-�-� � �-� with n nodes numbered i D 1; : : : ; n. The natural metric that admits a QRG,
see [2], has �i!iC1 D 1

hi
free (we take these now to be negative) and �iC1!i D 1

�ihi
for

certain ‘direction coefficients’

�i D
.i C 1/q

.i/q
; q D e

{�
nC1 ; .i/q D

qi � q�i

q � q�1

in terms of symmetric q-integers. We can then just take

�i D .i/q

to solve (3.5) and note that these are all positive as required. We take the bare connection,
with Dirac operator given by (3.3). On the other hand, we cannot take the QLC in [2] for
this metric as it does not obey (3.2). The same applies for the QRG of N regarded as the
limit n!1.

For a fully geometric example where r can be taken as a QLC and r.F/ D 0, we
consider the n-gon graph with vertices identified with Zn.

Example 3.4. For the n-gon with nodes i D 0; : : : ; n � 1, the natural QLC for any edge-
symmetric metric coefficients �i!iC1 D �iC1!i is reviewed in [1] (and is unique for
n > 4) in terms of left invariant 1-forms e˙ WD

P
i !i!i˙1. Using !i!i˙1 D ıie˙ and

�i!iC1 D
1
a.i/

in terms of the metric coefficient function a in [1], one can find explicitly

r!i!i˙1 D !i˙1!i!i˙1 � !i!i˙1!i � !i�1!i!i˙1 � �˙.i/!i!i˙1!i˙2;

�.!i!i˙1!i˙2/ D �˙.i/!i!i˙1!i˙2; �.!i!i˙1!i / D !i!i�1!i ;

where

�˙.i/ D
�i!i˙1

�i˙1!i˙2
:

The spaces �2i;i˙2 are each 1-dimensional (stepping in the same direction) and � acts by
�˙.i/. The spaces�2i;i are each 2-dimensional (stepping back and forth in either direction)
and � acts by swapping the direction. The general geometric Dirac operator from (3.1) for
this connection is then

=D.ıi / D !i�1!i C !iC1!i � !i!iC1 � !i!i�1;

=D.!i!i˙1/ D �i˙1!iıi˙1 � �i!i�1ıi :
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We also solve (3.5) with measure �i D 1 (say) since the metric is edge-symmetric. How-
ever, for the geometric spectral triple construction, the condition (3.2) holds only when
�i!iC1 D �i!i�1, which forces us to the regular polygon case where �i!iC1 D � inde-
pendently of i . There are then nC 2 zero eigenvalues and the remaining eigenvalues go
as ˙{

p
�� up to real constants that depend on n. Otherwise, the failure of (3.2) means

that the second part of (2.9) in the construction of J in Lemma 2.3 does not hold for the
QLC choice of r. In the non-constant case we can still take the bare connection as per the
corollary, with =D according to (3.3).

These examples illustrate that the required r for our construction of rS might not
be a QLC for the metric. Indeed, we have the freedom on our construction to choose r
differently if we are not aiming for the covariance of F. Spectral triples in general on
graphs have been analysed in [18].

3.3. 2 � 2 matrices M2.C/ case

We take A DM2.C/ with its standard 2D inner �1 with central basis s; t , d D Œ�; º for

� D E12s CE21t

and wedge product relations s ^ t D t ^ s, s2 D t2 D 0 (that s; t commute here is forced
by the structure of �1). The �-structure is hermitian conjugation in A and s� D �t . We
take the two ‘standard’ quantum metrics for which QLCs were studied in [7], namely

Case (i): g D ��1.s ˝ t � t ˝ s/; Case (ii): g D ��1.s ˝ s C t ˝ t /

where we have inserted a fixed real normalisation factor � for convenience later. The
principal component of the moduli space of �-preserving inner QLCs in the first case is
4-dimensional in Case (i) [7, Exm. 8.13] and 3-dimensional in Case (ii) [7, Exer. 8.3].

Lemma 3.5. Among the principal components of the moduli spaces of �-preserving inner
QLCs, the � -symmetry condition (2.3) holds in Case (i) for the unique point

rs D 2E12s ˝ s C 2E21t ˝ s; rt D 2E12s ˝ t C 2E21t ˝ t;

and in Case (ii) for the 1-parameter line

rs D 2E21t ˝ s C �E21.t ˝ t � s ˝ s/ � �E12.s ˝ t � t ˝ s/;

rt D 2E12s ˝ t C �E12.t ˝ t � s ˝ s/ � �E21.s ˝ t � t ˝ s/;

where � 2 {R is imaginary.

Proof. The equations for r and (2.3) are not sensitive to the normalisation of the metric,
so we omit the normalisation factor � for simplicity. In Case (i), we have .s; s/ D 0 while
. ; /�.s˝ s/D�2˛ using the parameterization of QLCs in [7, Exm. 8.13], so ˛D 0 there.
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Similarly, .t; t/ D 0 forces ˇ D 0 there. Next .s; t/ D �1 while . ; /�.s ˝ t / D �1 � 2�
forces � D 0 there, while .t; s/ D 1 similarly forces � D 0 there. This leaves the base
connection r D 2� ˝ . / on the basis, corresponding to � D �flip. In Case (ii), we have
.s; s/ D 1 and . ; /�.s ˝ s/ D 1 � � � � using the parameterization of QLCs in [7,
Exer. 8.3], so that �C � D 0 there. Then .s; t/ D 0 while . ; /�.s ˝ t / D �

�
.�C � � 2/,

which (for generic � as assumed here) forces �D 0. This takes us to the 1-parameter case
stated, which applies for all imaginary � including 0. This 1-parameter case was studied
recently in [6, 21] and has

�.s ˝ s/ D s ˝ s C �.s ˝ t � t ˝ s/; �.t ˝ t / D t ˝ t C �.s ˝ t � t ˝ s/;

�.s ˝ t / D �t ˝ s C �.s ˝ s � t ˝ t /; �.t ˝ s/ D �s ˝ t C �.s ˝ s � t ˝ t /

and vanishing Ricci curvature at � D ˙{ (and vanishing Ricci scalar for all �).

We proceed with these QLCs so that our construction applies and we have a geomet-
rically realised spectral triple at the local tensorial level. In both cases, � is 3-dimensional
over the algebra, with basis 1; s; t . Writing � D �0 C �ss C �t t , the Clifford action on
the column vector of coefficients in M2.C/ is easily seen to be given by the matrices

Case (i): C s D sF D

0@0 0 ��

1 0 0

0 0 0

1A ; C t D tF D

0@0 � 0

0 0 0

1 0 0

1A ;
Case (ii): C s D sF D

0@0 � 0

1 0 0

0 0 0

1A ; C t D tF D

0@0 0 �

0 0 0

1 0 0

1A ;
using the form of the metric in the two cases. Meanwhile, the divergence on the basis
1-forms is

Case (i): ıs D 2�E21; ıt D �2�E12; Case (ii): ıs D 0 D ıt

so that in general

ı.�ss C �t t / D .d�s; s/C .d�t ; t /C �sıs C �tıt

D �

´
¹E21; �sº � ¹E12; �tº Case (i),

ŒE12; �s�C ŒE21; �t � Case (ii):

The Dirac operator =D D dC ı is therefore

=D� D ŒE12; �0�s C ŒE21; �0�t C �

´
¹E21; �sº � ¹E12; �tº Case (i);

ŒE12; �s�C ŒE21; �t � Case (ii):
(3.6)

Note that this necessarily obeys

Œ =D; a� D F.da˝ idC arS / � aFrS D ŒE12; a�C s C ŒE21; a�C t
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for all a 2M2.C/, as operators on � . Moreover, in Case (ii) one has

=D D C sŒE12; �C C
t ŒE21; �

precisely because ı D 0 on the basis. This has an ‘inner’ form like some of the examples
in [3]. By construction, J and  are likewise given explicitly by

J� D �
�
0 � �

�
t s � �

�
s t; � D �0 � �ss � �t t:

This describes the local tensorial part of the construction.
For the Hilbert space, we take

R
D

1
2

Tr as a normalised trace functional. On the other
hand, Z

.�ss C �t t;  ss C  t t / D �
Tr
2

´
�t s � �s t Case (i);

�s s C �t t Case (ii);

which does not obey the extended trace condition in Theorem 2.5 in Case (i) but does in
Case (ii). This means that the former case does not have J as an antilinear isometry (but
=D and  are not affected). In terms of the coefficients of � D �0 C �ss C �t t 2 � and

similarly for  2 � , the inner product is

h�; i D
Tr
2

´
�
�
0 0 � ��

�
s s C ��

�
t  t Case (i);

�
�
0 0 � ��

�
t  s � ��

�
s t Case (ii):

In Case (i), we do not have the extended-positive definite condition but in Case (ii) we do,
provided we use � < 0. For then, choosing a self-adjoint basis and associated components

s1 D
s C t

{
; s2 D

s � t

2
; �1 D

{

2
.�s C �t /; �2 D

1

2
.�s � �t /;

we have in Case (ii) that

h�; i D
Tr
2
.�
�
0 0 � 2�.�

�
1 1 C �

�
2 2//; � < 0;

as the positive definite inner product on � . Thus, at least in Case (ii), we have a full spectral
triple fully realised from QRG, including r.F/ D 0.

Had we used the ‘bare Dirac operator’ with inner connection defined by � D id, we
would have

=D� D d�0 C .�; �ss C �t t / � .�ss C �t t; �/

D ŒE12; �0�s C ŒE21; �0�t C .�; s/�s � �s.s; �/C .�; t/�t � �t .t; �/;

which on evaluation against � DE12sCE21t in the two cases turns out to give exactly the
same result as (3.6). Thus, as with graphs, the Dirac operator itself is not very sensitive
to the connection and taking the ‘bare’ choice gives the same result as the geometric
choice based on a QLC but without covariance of the underlying F coming from metric
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compatibility. Indeed, the ‘bare’ connection has no classical analogue since � D id is not
possible classically.

The above results have some similarities to, but are strictly different from, the Dirac
operators found on [21] in M2.C/ with � 2-dimensional. There, it was the Case (i)
quantum metric which gave a spectral triple while Case (ii) resulted in non-hermitian =D.
In the present paper with � now 3-dimensional, it is Case (ii) which gave a full spectral
triple while the construction for Case (i) does not have a positive definite inner product.
Note that our construction is very specific and we do not exclude the possibility of many
other interesting spectral triples with � 3-dimensional in either metric case. These would
require a search along the lines of [21] but now with bigger matrices. We also note several
other interesting spectral triples on matrix algebras coming from other contexts, such as
[3, 4] among recent work.

3.4. Fuzzy sphere case

The fuzzy sphere is U.su2/ modulo a constant value of the quadratic Casimir, i.e., the
standard quantisation of a coadjoint orbit in su�2 . Explicitly, we take generators xi for
i D 1; 2; 3 with commutation relations and a differential calculus [7, Exm. 1.46]

Œxi ; xj � D 2{�P "ijkx
k ;

X
i

.xi /2 D 1 � �2P ; Œxi ; sj � D 0; dxi D "ijkxj sk ;

where si are a central basis with .si /� D si and �P is a dimensionless positive parameter.
We sum over repeated indices. In the exterior algebra, the si anticommute, but dsi is not
zero. When �P D 1

n
for n a natural number, the standard n-dimensional representation

of su2 descends to one of the fuzzy sphere. (This leads to ‘reduced fuzzy spheres’ iso-
morphic to Mn.C/ if we quotient out by the kernel of this representation.) We define
partial derivatives by

da D .@ia/si ; @i D
1

2{�P
Œxi ; �

for all a 2 A, which classically are the killing vector fields for the action of orbital angular
momentum.

A generalised quantum metric has the form

g D gij s
i
˝ sj ; .si ; sj / D gij ;

where gij 2 C defines a hermitian matrix and gij defines the inverse matrix. The simplest
case is the ‘round metric’ with gij D ıij on our unit sphere.

Next, � D A ˚ �1 is 4-dimensional over the algebra and we write � D �0 C �is
i

with coefficients in A. The Clifford action is then

siF� D si�0 C g
ij�j I C i D siF D

0BB@
0 gi1 gi2 gi3

ıi1 0 0 0

ıi2 0 0 0

ıi3 0 0 0

1CCA
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where we also exhibit the action as matrices acting on the coefficients �0; �i as a 4-vector.
Note that these do not represent a usual Clifford algebra but do have a memory of it in the
form Tr.C iC j / D gij C gj i .

For a quantum metric, we impose quantum symmetry, which amounts to gij symmet-
ric as a matrix (and hence with real entries), and then there is a unique �-preserving QLC
with constant Christoffel symbols [19, Prop. 3.4], namely

rsi D �
1

2
gij .2"jlmgmk C Tr.g/"jkl /sk ˝ sl

with � D flip on the si . With this QLC, the � -symmetry condition reduces to quantum
symmetry already imposed, since .�;  / D �igij j while

. ; /�.� ˝  / D . ; /.�is
j
˝ si j / D �ig

j i j

when � D �isi 2 �1 and similarly for  . We can therefore proceed with our canonical
construction at the local tensorial level. From r above, we see that

ısi D 0

and hence the Dirac operator is

=D� D .@i�0/s
i
C .d�i ; si /C �iısi D .@i�0/si C gij @i�j ; =D D C i@i ;

where we also write it in terms of the ‘Clifford action’ matrices acting on column 4-vectors
for the coefficients. The conjugation and ‘even’ structure are

J.�/ D ��0 C �
�
i s
i ; .�/ D �0 � �is

i :

This completes the local tensorial level of the spectral triple. For the pre-Hilbert space
structure we use

R
W A ! C defined at the algebraic level as the rotationally invariant

component under the action of SU2 on A (this has to be a multiple of 1 as the algebra has
trivial centre), see [19]. This is a trace and, moreover,Z

.�;  / D

Z
�ig

ij j D

Z
 jg

j i�i D

Z
. ; �/

as needed for the extended trace condition, since
R

is a trace and gij is symmetric and
C-valued. Hence we have a (pre-)spectral triple with

h�; i D

Z
��0 0 C

Z
��i g

ij j

provided we take gij with strictly positive eigenvalues so that this is positive definite.
The calculus here is inner in degree 1 with � D 1

2{�P
xisi and hence there is a ‘bare’

connection with � D id. This gives

=D� D d�0 C .�; �isi / � .�isi ; �/ D .@i�0/si C
1

2{�P
.xjgj i�i � �ig

ijxj /

D .@i�0/s
i
C gj i@j�i
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which is again the same as for the geometric QLC. Although A is no longer finite-
dimensional, it is graded by angular momentum under the action of SU2 and each graded
component is finite-dimensional. As with the graph and matrix cases, =D itself is not very
sensitive to the connection used and we get the same using the ‘bare’ connection, but
without covariance of F coming from metric compatibility and with a bimodule connec-
tion that has no classical analogue.

This Dirac operator is strictly different from the natural geometric Dirac operator on
the fuzzy sphere with � 2-dimensional over the algebra as found in [20], which has a more
conventional form with Pauli matrices for the Clifford structure. The same applies to the
rotationally-invariant fuzzy sphere spectral triples studied in [13].

4. Dirac operator with an external bundle and connection

Finally, if we want to have a Dirac operator minimally coupled to an external gauge
field then we should have a separate bimodule E with bimodule connection rE W E !
�1 ˝A E. We still assume a quantum metric and a bimodule connection r with braiding
� on �1. In this case, there is an extended divergence

ıE W �
1
˝A E ! E; ıE D .. ; /˝ id/r�1˝E

which, given the form of the tensor product connection, amounts to

ıE .! ˝ e/ D ... ; /˝ id/r!/e C .. ; / ı � ˝ id/.! ˝rEe/

D .ı!/e C .. ; / ı � ˝ id/.! ˝rEe/

for all e 2 E, ! 2 �1. Then ıE obeys

ıE .a! ˝ e/ D aıE .! ˝ e/C .da; !/e;

ıE .! ˝ ea/ D .ıE .! ˝ e//aC .. ; / ı � ˝ id/.id˝ �E /.! ˝ e ˝ da/;

generalising the Leibniz properties of ı before. It is then natural to take � DE˚�1˝A E

with
rS jE D rE ; rS j�1˝E D r�1˝E

and define the Clifford action on � by

�F.e C ! ˝ f / D �˝ e C .�; !/f

for e; f 2 E and !; � 2 �1, so that

=DE D F ı rS D rE C ıE

as a generalisation of our previous construction (which is recovered with E D A and
rE D d with the usual identifications). Because of the left Leibniz property of ıE and
rE , we still have

Œ =DE ; a�.e C ! ˝ f / D da˝ e C .da; !/f D daF.e C ! ˝ f /: (4.1)



Dirac operator associated to a quantum metric 21

We can also still define and check that

E .e C ! ˝ f / WD e � ! ˝ f; 2E D id; =DEE D �E =DE :

Finally, for JE , we follow the same format as before and require E to have its own
�-structure defined as an antilinear skew-bimodule map �E W E ! E squaring to the
identity. We inherit associated tensor product antilinear skew-bimodule maps, which we
will denote generically as �, notably

�D flip.�E ˝�E / W E ˝A E ! E ˝A E; �D flip.�˝ �E / W �1 ˝A E ! E ˝A �
1;

et cetera, as needed. We can then define

JE jE D �E ; JE j�1˝E D �E ı �; JE .e C ! ˝ f / D �E .e/C �E .�E .f /˝ !
�/

as a well-defined antilinear skew-bimodule map. We used the braiding �E to restore the
order of factors. It is natural at this point to suppose that rE is �-compatible in the sense

rE ı �E D �E ı � ı rE

analogously to (2.9), since this implies [7] that .�E�/2 D id and hence that J2E D id.
Clearly, JEE D EJE , and JEbJ�1E � D �b� also still holds as before for all � 2 �

and b 2 A. Given (4.1) and that F is a bimodule map, we see that in this case all of the
axioms (2)–(3) for the local tensorial level hold with " D "0 D "00 D 1 except possibly
JE =DE D =DEJE .

It remains to be seen what is the best way to handle this remaining condition, but
one approach is to define �R D E ˚ E ˝A �

1 and note that r;rE imply right-handed
bimodule connections

r
R
WD ��1 ı r; rRE WD �

�1
E ı rE

with generalised braidings given by the inverses of the left-handed ones [7, Lem. 3.7].
These imply a tensor product right connection on E ˝A �1 and we have a parallel right-
handed codifferential

ıRE W E ˝A �
1
! E; ıRE WD .id˝ . ; //r

R
E˝�1

;

ıRE .e ˝ !/ D eı
R! C .id˝ . ; / ı ��1/.rREe ˝ !/;

where ıR! WD . ; /rR! is the right-handed divergence on �1. We then define

=D
R
E .e C f ˝ !/ WD r

R
Ee C ı

R.f ˝ !/

as the natural right-handed Dirac operator on �R. This can also be cast as G ı rR
SR

for
the parallel right connection restricting to the ones on E and E ˝�1, and a right-handed
Clifford action. To transfer this right-handed Dirac operator back to � , we use �E which
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we extended as the identity map on the E component of � to give a bimodule map �E W
�R ! � . We then define

z=DE WD �E =D
R
E�
�1
E

as the right-handed =D
R
E viewed on � .

Proposition 4.1. If r;rE are �-preserving and . ; / obeys the metric reality condition,
then JE =DE D

z=DEJE .

Proof. We write � also for �E , and rEe D r1Ee ˝r
2
Ee with a similar notation for rRE .

Then under our assumptions, we compute

�ıE .! ˝ e/ D e
�.ı!/� C .r2Ee/

�.. ; /�.! ˝r1Ee//
�

D e�ıR.!�/C .r2Ee/
�. ; / � �.! ˝r1Ee/

D e�ıR.!�/C .r2Ee/
�. ; /��1..r1Ee/

�
˝ !�/

D e�ıR.!�/C .rRE
1.e�//. ; /��1.rRE

2.e�/˝ !�/

D ıRE .e
�
˝ !�/;

where, for the second equality, we used the reality of the metric and �ı! D . ; / � r! D
. ; /rR.!�/ D ıR.!�/ upon writing r being �-preserving in the form �r D rR�. We
then use �� D ��1� for the third equality and �rE D rRE� for the fourth equality, and
then recognise the answer. In this case,

JE =DE .e C ! ˝ f / D JE .rEe C ıE .! ˝ f // D �E � rEe C ı
R
E .f

�
˝ !�/

D rE .e
�/C ıRE .f

�
˝ !�/ D rE .e

�/C =D
R
E jE˝�1 � .! ˝ f /

D rEJEe C =D
R
E jE˝�1�

�1
E JE .! ˝ f / D

z=DEJE .e C ! ˝ f /;

using our first result and that rE is �-preserving, the definitions of =DR
E and JE and on

noting that

z=DE jE D �E =D
R
E jE D =DE jE D rE ;

z=DE j�1˝E D =D
R
E jE˝�1�

�1
E D ı

R
E�
�1
E ;

since �E was extended to act as the identity on E.

This reduces in the case without E in the setting of Section 2.3 to J =D D z=DJ where
z=D D =D

R
D dC ıR. Hence J commutes with =D if ıR D ı, which happens when the

quantum metric is � -symmetric as needed in that section to get a spectral triple. Also
note that Proposition 4.1 can be phrased more symmetrically if we abandon JE and work
instead with � extended as �E to all of � ,

� W � ! �R; �.e C ! ˝ f / D �E .e/C �E .f /˝ !
�

which is more similar to the map J in Section 2.3. Then JE D �E ı � when �E is also
viewed on � by the identity on E, and in these terms Proposition 4.1 simply says that

� ı =DE D =D
R
E ı �: (4.2)
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In summary, we still obtain a spectral triple at the local tensorial level, except that we
saw that the JE ; =DE relation needs to be modified as in Proposition 4.1 or the more
symmetric (4.2).

Finally, we also suppose an inner product . ; /E W E ˝A E ! A on E with a reality
property � ı . ; /E D . ; /E ı �. It is then natural to set

he; f i D

Z
.�E .e/; f /E ; h! ˝ e; �˝ f i D

Z
.�E .e/; .!

�; �/f /E

and one can check that this is well defined on � , that the action of a� is adjoint to the
action of a as required, and that h ; i is conjugate-symmetric for any �-preserving linear
map

R
W A! C. We can add here positivity requirements, which have a similar flavour

to our extended-positive definite assumptions before, so as to have a pre-Hilbert space.
It is easy to check that  is then hermitian, but in general JE fails to be an antilinear
isometry, at least if we assume the natural extended trace properties for

R
. Motivated by

our experience with =DE , we introduce h ; iR on �R by

he; f iR WD

Z
.�E .e/; f /E D he; f i; he ˝ !; f ˝ �i

R
WD

Z
.!�; .�E .e/; f /E�/;

which is unchanged on theE component but suitably flipped on theE ˝A �1 component.
We then use the extended ��1E to transfer this back to � as

Qh�; Qi WD h��1E �; ��1E  iR

for all �; 2 S .

Lemma 4.2. Under our assumptions above, if
R

obeys the two extended trace conditionsZ
.e; f /E D

Z
.f; e/E ;

Z
.!; �/ D

Z
.�; !/;

then QhJE�;JE Qi D h ; �i or, equivalently, h��;  �iR D h ; �i, for all �; 2 � .

Proof. Between theE components and writing � for �E , it is immediate that he�;f �iR DR
.e; f �/E D

R
.f �; e/E D hf; ei. We also need

h � .! ˝ e/; �.�˝ f /iR D he� ˝ !�; f � ˝ ��i D

Z
.!; .e; f �/E�

�/

D

Z
.!.e; f �/E ; �

�/ D

Z
.��; !.e; f �/E /

D

Z
.��; !/.e; f �/E D

Z
..��; !/e; f �/E

D

Z
.f �; .��; !/e/E D h�˝ f; ! ˝ ei;

using the two extended trace properties for the 4th and 7th equalities, and that the inner
products are bimodule maps and defined on the tensor product over A.
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There is a similar issue with =DE not being hermitian, which we will address in more
detail elsewhere. In the remainder, we consider what the above construction amounts to in
the simplest case, namely E D A as a bimodule by left and right multiplication.

Proposition 4.3. Let .�1; d/ be inner and equipped with a quantum metric and a given
bimodule connection r with generalised braiding � .

(1) Bimodule connections rA on E D A are classified by ˛ 2 �1 of the form ˛ D

�.�/C ˛0 for some bimodule map � W �1! �1 and some central ˛0 2 �1. Then

rAa D .daC a˛/˝ 1; �A.a˝ db/ D a.db C Œb; ˛�/˝ 1

for all a; b 2 A. Here, �A extends to �A.a˝ !/D a.id� �/! ˝ 1 for all ! 2�1.

(2) �1˝A AD�1 via the standard identification acquires a tensor product bimodule
connection

r˛! D r! C �.! ˝ ˛/; �˛.! ˝ �/ D �.! ˝ .id � �/�/

for all !; � 2 �1.

Proof. (1) Since �1 is inner, a bimodule connection by [25] takes the form

rAa D � ˝ a � �A.a˝ �/C ˛A.a/

for freely chosen bimodule maps �A and ˛A. In our case, a bimodule map �A.a ˝ !/ D
a�A.1˝!/D �A.1˝ a!/ needs to have the form �A.a˝!/D a.id� �/! ˝ 1 for some
freely chosen bimodule map � W �1 ! �1 (we just need id � � a bimodule map but have
chosen to split it this way). Similarly, ˛A.a/D a˛A.1/D ˛A.1/a needs ˛A.a/D a˛0 ˝ 1
for a freely chosen central element ˛0 2 �1. The resulting connection depends only on
˛ D �.�/C ˛0 since

rAa D .�a � a� C a�.�/C a˛0/˝ 1 D .daC a˛/˝ 1;

�A.a˝ db/ D a.db ˝ 1 � �.Œ�; b�//˝ 1 D a.db � Œ�.�/; b�/ D a.db C Œb; ˛�/˝ 1:

Here, rA depends only on ˛ and hence so does �A, but the existence of �; ˛0 is needed for
�A to be well defined, i.e., to have a bimodule connection.

(2) Once we have rA as a bimodule connection, we can compute the tensor product
bimodule connection [7], in our case on �1 ˝A A. Then

r�1˝A.! ˝ a/ D r! ˝ aC .� ˝ id/.! ˝rAa/

D r! ˝ aC �.! ˝ .daC a˛//˝ 1;

��1˝A.! ˝ a˝ �/ D .� ˝ id/.! ˝ a.id � �/�˝ 1/ D �.! ˝ a.id � �/�/˝ 1:

We identify �1 ˝A A D �1 in the standard way, in which case it suffices to set a D 1 to
give the result stated. We denote this as r˛ since, after this identification, the result looks
like r modified by the 1-form ˛.
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With the standard identifications, the general ıE and =DE construction above just
amounts to Section 2.3 with rA;r˛ in place of d;r, so rS jA D rA and rS j�1 D r˛ .
The Clifford action and quantum metric are unchanged and hence

=D˛.aC !/ D rAaC . ; /r˛! D =D.aC !/C a˛ C .!; ˛/

as the Dirac operator modified by ˛ according to our construction, assuming for conveni-
ence that the quantum metric was � -symmetric to begin with. The bundle E here is trivial
(a rank 1 free module) and we can think of ˛ as in the role of a U.1/ gauge field in this
expression. Note that this modification is different from what we considered before in
Proposition 2.6, since we are not keeping �S fixed as in the discussion there.

We also take �E D � on A and .a; b/E D ab as the obvious choices for E D A. The
sesquilinear inner product on � and E are, like the Clifford action, unchanged from the
original construction in Section 2.3 once we identify�1 ˝A A D �1. The connection rA
is not necessarily �-preserving but if we restrict ˛ so that it is, then J gets modified to

J˛.aC !/ D a
�
C .id � �/.!�/

after the usual identification, according to our general constructions above. Our point of
view is that even if J˛; =D˛ have modified properties making them no longer part of a
usual spectral triple, they are the natural objects coming from the general theory.

We now specialise this simplest choice of E to a graph calculus on A D C.X/. Then
there are no central elements ˛0 2 �1 and any bimodule map � W �1 ! �1 has to have
the form �.!x!y/D ˛x!y!x!y for some coefficients ˛x!y . These coefficients define a
1-form �.�/D

P
x!y ˛x!y!x!y D ˛ in the same conventions as we used before for the

coefficients of a 1-form in the arrow basis. Thus, the conditions on ˛ in Proposition 4.3
are automatic and the data for the modified connection and Dirac operator are just any
1-form ˛, i.e., an assignment of coefficients to every arrow. Then

r˛.!x!y/ D r!x!y C
X
y!z

˛y!z
X

x!w!z

�x;z
w
y!x!w!z

is the ‘minimally coupled’ covariant derivative. This is not necessarily �-preserving even
if r is and ˛� D �˛ (say). The modified Dirac operator in the case of the metric initially
� -symmetric is then

=D˛.ıx/ D =D.ıx/C
X
yWx!y

˛x!y!x!y ; =D˛.!x!y/ D =D.!x!y/C �x!y˛y!xıx

where =D is the original graph Dirac operator, for example given by (3.3) for a suitable r.
We consider this as the natural Dirac operator of the type we had before, but now minim-
ally coupled to an external 1-form ˛. The associated charge conjugation map is

J˛.ıx/ D ıx ; J˛.!x!y/ D .˛y!x � 1/!y!x ;

extended antilinearly.
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5. Concluding remarks

We have associated a Dirac operator within quantum Riemannian geometry to every
bimodule connection r with generalised braiding � and a � -symmetric quantum met-
ric . ; /. In particular, we can take the canonical ‘bare’ connection on an inner �1

defined by � D id, for any quantum metric, hence giving a canonical =D determined by
the quantum metric alone. On a graph, the quantum metric consists of ‘square lengths’
on every arrow and we essentially recover a graph Dirac operator associated to such
data in [8, 14] and other previous works. We also illustrated the construction on M2.C/
and the fuzzy sphere, obtaining Dirac operators with respectively 3-dimensional and 4-
dimensional spinor bundles over the algebra. When there is a suitable trace

R
W A! C,

the general construction also obeys the pre-Hilbert space level of a spectral triple, giving
good contact with the latter approach to noncommutative geometry. Finally, we showed
how one can naturally ‘minimally couple’ the construction to an external bimodule con-
nection rE and showed how this works in the simplest case ofE D A, and in particular in
the graph case where the data for the external connection just amounts to a 1-form ˛ 2�1,
i.e., a collection ¹˛x!yº of coefficients associated to the arrows.

There are several independent questions that arise from the present work. The first
is that our treatment was essentially algebraic and it would be interesting to extend this
to an analytic setting to handle the extension of maps to the required L2 completion in
the infinite-dimensional case. While this may be clear enough for the final product (con-
structed algebraically on a dense subalgebra) it would also be better to allow A to be
an operator algebra within the QRG itself. There are numerous technical issues for this,
however, particularly in the handling of tensor products over A, putting this beyond our
scope here.

Another question, even at the algebraic level, is how to extend the construction to
� D� the total differential graded or ‘exterior’ algebra of forms on A. If one has a Hodge
operator, or at least a codifferential ı in all degrees, then one can follow the same strategy
with =D D d C ı in all degrees, and thereby aim for a noncommutative version of the
classical spectral triple of this type in [12]. The problem here is that quantum Riemannian
geometries in the existing framework do not necessarily admit natural Hodge or higher
codifferential structures in much generality. Recent work which indeed studied such ı in
a certain extension theory context was in [24]. Likewise, when A is a quantum group with
a bicovariant calculus then � is a super-Hopf algebra allowing one to define a kind of
Hodge operator in nice cases [23]. There are also specific models, such as q-Minkowski
space or the Bruhat graph on S3, where a reasonable Hodge operator can be exhibited on
the exterior algebra by ad hoc methods. The latter example is recapped in [7, Exm. 1.74].
Note that working with an exterior algebra is very different in the graph case from working
in a more usual way with a simplicial complex as in [8], but there could be insights from
here also, and conversely, applications to topological data networks.

Finally, the construction =DE in Section 4 can be taken much further. One can com-
pute =DE for more complicated choices of bimodules E, including, for example, the q-
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monopole bundles on the standard q-spheres associated to CqŒSU2�. Likewise, on graphs,
a general bimodule E is just a collection xEy of vector spaces, for every pair of vertices,
and this can be elaborated to include a connection rE , effectively generalising the 1-form
˛ to connections on more nontrivial vector bundles. Beyond this, one should look gen-
erally at vector bundles and connections E;rE associated to quantum principal bundles
and ‘spin connections’ on them (as for the q-monopole). Moreover, in all these cases, as
seen even for the simplest choice E D A, the abstract properties of =DE remain to be fully
developed as an appropriate generalisation of standard spectral triples. The results so far
suggest that the most elegant way to do this could be in a left-right symmetric manner
with the role of JE replaced by � W � ! �R as in (4.2).

It should be stressed that the classical geometry behind the type of spectral triples in
the present work is very different from spinor geometry. Hence these spectral triples have a
different flavour from ones that deform the classical spinor case, such as on fuzzy spheres
[3, 13, 20] and noncommutative tori [4, 17, 21]. On the other hand, a topical application
of even finite spectral triples (where A and � are finite-dimensional as vector spaces) is
in the almost commutative case where these are tensored onto classical spacetime as an
approach to particle physics [11]. We also note [15] for an example of recent work in this
direction. In this context, new approaches to finite examples such as on M2.C/ in the
present work could be of interest. These are some directions for further work.

Acknowledgements. I would like to thank G. Bianconi for explaining to me her papers
[8,9] and references therein for the graph case, which was a motivation behind the present
work.
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