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Abstract. From the generalized Riemann hypothesis for motivic L-functions, we derive an effec-
tive version of the Sato–Tate conjecture for an abelian variety A defined over a number field k with
connected Sato–Tate group. By effective we mean that we give an upper bound on the error term
in the count predicted by the Sato–Tate measure that only depends on certain invariants of A. We
discuss three applications of this conditional result. First, for an abelian variety defined over k, we
consider a variant of Linnik’s problem for abelian varieties that asks for an upper bound on the least
norm of a prime whose normalized Frobenius trace lies in a given interval. Second, for an elliptic
curve defined over k with complex multiplication, we determine (up to multiplication by a nonzero
constant) the asymptotic number of primes whose Frobenius traces attain the integral part of the
Hasse–Weil bound. Third, for a pair of abelian varieties A and A0 defined over k with no common
factors up to k-isogeny, we find an upper bound on the least norm of a prime at which the respective
Frobenius traces of A and A0 have opposite sign.

Keywords: effective Sato–Tate conjecture, abelian varieties over number fields, generalized
Riemann hypothesis, Frobenius sign separation, variants of Linnik’s problem.

1. Introduction

Let A be an abelian variety defined over a number field k of dimension g � 1. For a
rational prime `, we denote by

%A;`WGk ! Aut.V`.A//

the `-adic representation attached to A, obtained from the action of the absolute Galois
group of k on the rational `-adic Tate module V`.A/ WD T`.A/˝Q`. Let N denote the
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absolute norm of the conductor of A, which we will call the absolute conductor of A. For
a nonzero prime ideal p of the ring of integers of k not dividing N`, let ap WD ap.A/

denote the trace of %A;`.Frobp/, where Frobp is a Frobenius element at p. The trace ap is
an integer which does not depend on ` and, denoting by Nm.p/ the absolute norm of p,
the Hasse–Weil bound asserts that the normalized trace

xap WD
app

Nm.p/

lies in the interval Œ�2g; 2g�.
Attached to A there is a compact real Lie subgroup ST.A/ of the unitary symplectic

group USp.2g/ that conjecturally governs the distribution of the normalized Frobenius
traces. More precisely, the Sato–Tate conjecture predicts that the sequence ¹xapºp, indexed
by primes p not dividing N ordered by norm, is equidistributed on the interval Œ�2g; 2g�
with respect to the pushforward via the trace map of the (normalized) Haar measure of
the Sato–Tate group ST.A/. We will denote this pushforward measure by �.

Denote by ıI the characteristic function of a subinterval I of Œ�2g; 2g�. Together with
the prime number theorem, the Sato–Tate conjecture predicts thatX

Nm.p/�x

ıI .xap/ � �.I /Li.x/ as x !1; (1.1)

where Li.x/ WD
R1
2
dt=log.t/. Let L.�; s/ denote the (normalized) L-function attached

to an irreducible character � of ST.A/. It is well known that (1.1) is implied by the con-
jectural nonvanishing and analyticity on the right half-plane<.s/� 1 of L.�; s/ for every
nontrivial irreducible character �. In this paper we derive an asymptotic upper bound on
the error term implicit in (1.1) by further assuming the generalized Riemann hypothesis
for the L-functions L.�; s/.

Our main result is a quantitative refinement of the Sato–Tate conjecture (see The-
orem 3.8). In order to state it we need to introduce some notations. Let g denote the
complexified Lie algebra of ST.A/, and write it as s � a, where s is semisimple and a is
abelian. Set

"g WD
1

2.q C '/
; (1.2)

where ' is the size of the set of positive roots of s and q is the rank of g, and define

�gWR>0 ! R>0; �g.z/ D max
²
1;

log.z/6

z1="g

³
(1.3)

For a subinterval I of Œ�2g; 2g�, let jI j denote its length.

Theorem 1.1 (Effective Sato–Tate conjecture). Let A be an abelian variety defined over
the number field k of dimension g � 1, absolute conductor N , and such that ST.A/ is
connected. Suppose that the Mumford–Tate conjecture holds for A and that the general-
ized Riemann hypothesis holds for L.�; s/ for every irreducible character � of ST.A/.
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Then for all subintervals I of Œ�2g; 2g� of nonzero length, we haveX
Nm.p/�x

ıI .xap/ D �.I /Li.x/CO
�
x1�"g log.Nx/2"g

log.x/1�4"g

�
for x � x0; (1.4)

where the sum runs over primes not dividing N , the implied constant in the O-notation
depends exclusively on k and g, and x0 D O.�g.jI j/ log.2N /2 log.log.4N //4/.

The dependence on g in the implied constant of (1.4) can be traced through Propo-
sitions 3.1 and 3.2 and Lemmas 3.6 and 3.7; it is highly exponential. This theorem gen-
eralizes a result of Murty [25] concerning elliptic curves without complex multiplication
(CM); see also [4, Theorem 3.1]. Its proof follows the strategy envisaged in [4, Section 5]
and it occupies Section 3. A key ingredient is the construction of a multivariate Vino-
gradov function; this is a continuous periodic function, with rapidly decaying Fourier
coefficients, and approximating the characteristic function of the preimage of I by the
trace map in the parameter space of a Cartan subgroup H of ST.A/. By identifying the
quotient of this space by the action of the Weyl group with the set of conjugacy classes
of ST.A/, one can rewrite (a Weyl average of) the Vinogradov function as a combination
of irreducible characters of ST.A/. One can use purely Lie algebra-theoretic arguments
(most notably Weyl’s character dimension formula and a result due to Gupta [19, Theo-
rem 3.8] on the boundedness of the inverse of the weight multiplicity matrix) to show that
the coefficients in the character decomposition of the Vinogradov function also exhibit a
rapid decay. The theorem can then be obtained by using an estimate of Murty (as pre-
sented in [4, (2.4)]) on truncated sums of an irreducible character � over the prime ideals
of k. The implied constant in the O-notation depends in principle on the exponents of the
Cartan subgroupH . In order to bound these exponents purely in terms of g, we show that
the Mumford–Tate conjecture implies thatH is generated by the Hodge circles contained
in it (see Theorem 3.5). This result may be of independent interest.

The conjectural background for Theorem 1.1 is presented in Section 2. We recall the
Mumford–Tate conjecture and the related algebraic Sato–Tate conjecture, define the L-
functions L.�; s/, and state the generalized Riemann hypothesis for them. In Section 4
we give three applications of Theorem 1.1. The first is what we call the interval variant
of Linnik’s problem for an abelian variety (see Corollary 4.1).

Corollary 1.2. Assume the hypotheses and notations of Theorem 1.1. For every subinter-
val I of Œ�2g; 2g� of nonzero length, there exists a prime p not dividing N with norm

Nm.p/ D O
�
�g.min ¹jI j; �.I /º/ log.2N /2 log.log.4N //4

�
such that xap 2 I .

The second application concerns what we call the Frobenius sign separation problem
for a pair of abelian varieties (see Corollary 4.4).

Corollary 1.3. Let A .resp. A0/ be an abelian variety defined over the number field k
of dimension g � 1 .resp. g0 � 1/, absolute conductor N .resp. N 0/, and such that
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ST.A/ .resp. ST.A0// is connected. Suppose that the Mumford–Tate conjecture holds
for A .resp. A0/ and that the generalized Riemann hypothesis holds for L.�; s/ .resp.
L.�0; s// for every irreducible character � of ST.A/ .resp. �0 of ST.A0//. Suppose that
ST.A �A0/' ST.A/ � ST.A0/. Then there exists a prime p not dividing NN 0 with norm

Nm.p/ D O
�
log.2NN 0/2 log.log.4NN 0//6

�
such that ap.A/ and ap.A

0/ are nonzero and of opposite sign. Here, the implied constant
in the O-notation depends exclusively on k, g, and g0.

We also examine what our method says about the set of primes with “maximal Frobe-
nius trace”. Let Mk.x/ denote the set of primes p not dividing N with norm up to x for
which ap D b2

p
Nm.p/c. Vaguely formulated, a natural approach to compute (at least

an asymptotic lower bound on) Mk.x/ is to compute the number of p with norm up to
x for which xap lies in a sufficiently small neighborhood Ix of 2g. However, for this idea
to succeed, the neighborhood Ix should be sufficiently large in order for the “error term”
in (1.4) to be still dominated by the “main term”, which is now multiplied by the tiny
quantity �.Ix/. In the case where A is an elliptic curve with CM it is possible to achieve
this trade-off, yielding the following statement (see Proposition 4.9 and Corollary 4.10).

Corollary 1.4. Let A be an elliptic curve defined over k with potential CM, that is, such
that A xQ has CM. Under the generalized Riemann hypothesis for the L-function attached
to every power of the Hecke character of A, we have

#Mk.x/ �
x3=4

log.x/
as x !1:

This recovers a weaker version of a theorem of James and Pollack [21, Theorem 1],
which asserts (unconditionally) that

#Mk.x/ �
2

3�

x3=4

log.x/
:

A different result in a similar spirit, concerning numbers of points on diagonal curves, is
due to Duke [11, Theorem 3.3].

Corollary 1.3 extends work of Bucur and Kedlaya [4, Theorem 4.3], who considered
the case in which A and A0 are elliptic curves without CM. Later Chen, Park, and Swami-
nathan [6, Theorem 1.3] reexamined this case, obtaining an upper bound of the form
O.log.NN 0/2/ and relaxing the generalized Riemann hypothesis assumed in [4, Theo-
rem 4.3]. Corollary 1.2 extends [6, Theorem 1.8], which again applies to elliptic curves
without CM. It should be noted that the aforementioned results in [6] make explicit the
constants involved in the respective upper bounds, a goal which we have not pursued in
our work.

The framework of the generalized Sato–Tate conjecture includes many additional
questions about distinguishing L-functions, a number of which have been considered
previously. For instance, Goldfeld and Hoffstein [17] established an upper bound on the
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first distinguishing coefficient for a pair of holomorphic Hecke newforms, by an argu-
ment similar to ours but with a milder analytic hypothesis (the Riemann hypothesis for
the Rankin–Selberg convolutions of the two forms with themselves and each other). Sen-
gupta [26] carried out the analogous analysis with the Fourier coefficients replaced by
normalized Hecke eigenvalues (this only makes a difference when the weights are dis-
tinct).

There is an alternative approach to the above kind of questions, which is based on the
use of effective forms of Chebotaryov’s density theorem conditional to Riemann hypoth-
esis for Artin L-functions. This approach was introduced by Serre [29], who gave an
upper bound on the smallest prime at which two nonisogenous elliptic curves have differ-
ent Frobenius traces. The analogue of Serre’s argument for modular forms was given by
Ram Murty [24] and subsequently extended to Siegel modular forms by Ghitza [15] for
Fourier coefficients and Ghitza and Sayer [16] for Hecke eigenvalues. Building on Serre’s
method, several recent works have explored the asymptotic number of zero Frobenius
traces for abelian varieties which are either generic (see [9]) or isogenous to a product of
elliptic curves (see [7, 8]).

Notation and terminology

Throughout this article, k is a fixed number field and g and g0 are fixed positive integers.
For an ordered set .X;�/ and functions f;hWX !R we write f .x/DO.h.x// to denote
that there exist a real number K > 0 and an element x0 2 X such that jf .x/j � Kh.x/
for every x � x0. We will generally specify the element x0 in the statements of theorems,
but we will usually obviate it in their proofs, where it can be inferred from the context.
We refer to K as the implied constant in the O-notation. As we did in this introduction,
whenever using the O-notation in a statement concerning an arbitrary abelian variety
A of dimension g defined over the number field k, the corresponding implied constant
is computable exclusively in terms of g and k (in fact the dependence on k is just on
the absolute discriminant jdisck=Qj and the degree Œk W Q�). For statements concerning
a pair of arbitrary abelian varieties A and A0 of respective dimensions g and g0 defined
over k, the implied constant in the O-notation is computable exclusively in terms of g,
g0, and k. Section 4.3 is the only exception to the previous convention and to emphasize
the dependence on N of the implied constants in the asymptotic bounds therein, we use
the notations ON and �N . We write f � g if f D O.g/ and g D O.f /. By a prime
of k, we refer to a nonzero prime ideal of the ring of integers of k. Additional notation
introduced later in the paper is summarized in Table 1.

2. Conjectural framework

Throughout this section, A will denote an abelian variety of dimension g defined over the
number field k, and of absolute conductor N WD NA. We will define its Sato–Tate group,
introduce the motivic L-functions attached to it, and present the conjectural framework
on which Section 3 is sustained.
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2.1. Sato–Tate groups

Following [32, Chapter 8] (see also [12, Section 2]), one defines the Sato–Tate group ofA,
denoted ST.A/, in the following manner. LetGZar

`
denote the Zariski closure of the image

of the `-adic representation %A;`, which we may naturally see as lying in GSp2g.Q`/.
Denote by G1;Zar

`
the intersection of GZar

`
with Sp2g =Q`. Fix an isomorphism �W xQ` ' C

and let G1;Zar
`;�

denote the base change G1;Zar
`
�Q`;� C. The Sato–Tate group ST.A/ is

defined to be a maximal compact subgroup of the group of C-points of G1;Zar
`;�

. In the
present paper, to avoid the a priori dependence on ` and � of the definition of ST.A/, we
formulate the following conjecture.

Conjecture 2.1 (Algebraic Sato–Tate conjecture; [1]). There exists an algebraic sub-
group AST.A/ of Sp2g =Q, called the algebraic Sato–Tate group, such that G1;Zar

`
'

AST.A/ �Q Q` for every prime `.

The Sato–Tate group ST.A/ is then a maximal compact subgroup of AST.A/�Q C. It
should be noted that, following [31], Banaszak and Kedlaya [1] have given an alternative
definition of ST.A/ that also avoids the dependence on ` and �. However, this is rendered
mostly unnecessary by Theorem 2.3 below.

The algebraic Sato–Tate group is related to the Mumford–Tate group and the Hodge
group. Fix an embedding k ,! C. The Mumford–Tate group MT.A/ is the smallest alge-
braic subgroup G of GL.H1.AC;Q// over Q such that G.R/ contains h.C�/, where

hWC ! EndR.H1.AC;R//

is the complex structure on the 2g-dimensional real vector space H1.AC;R/ obtained
by identifying it with the tangent space of A at the identity. The Hodge group Hg.A/ is
the intersection of MT.A/ with Sp2g =Q. Let GZar;0

`
(resp. G1;Zar;0

`
) denote the identity

component of GZar
`

(resp. G1;Zar
`

).

Conjecture 2.2 (Mumford–Tate conjecture). There is an isomorphism

G
Zar;0
`
' MT.A/ �Q Q`:

Equivalently, we have G1;Zar;0
`

' Hg.A/ �Q Q`.

The identity component of AST.A/ should thus be the Hodge group Hg.A/. It follows
from the definition that ST.A/ has a faithful unitary symplectic representation

%WST.A/! GL.V /;

where V is a 2g-dimensional C-vector space. Via this representation, we regard ST.A/
as a compact real Lie subgroup of USp.2g/.

The following result has recently been established by Cantoral-Farfán–Commelin [5].

Theorem 2.3 (Cantoral-Farfán–Commelin). If the Mumford–Tate conjecture holds for A,
then the algebraic Sato–Tate conjecture also holds for A.
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2.2. Motivic L-functions

As described in [32, Section 8.3.3], to each prime p of k not dividing N one can attach
an element yp in the set of conjugacy classes Y of ST.A/ with the property that

det
�
1 � %A;`.Frobp/Nm.p/�1=2T

�
D det.1 � %.yp/T /;

where Frobp denotes a Frobenius element at p. More generally, via Weyl’s unitarian trick,
any complex representation

� WST.A/! GL.V�/;

say of character � and degree d�, gives rise to an `-adic representation

�A;`WGk ! Aut.V�;`/;

where V�;` is a NQ`-vector space of dimension d�, such that for each prime p of k not
dividing N one has

det
�
1 � �A;`.Frobp/Nm.p/�w�=2T

�
D det.1 � �.yp/T /;

where w� denotes the motivic weight of �. For a prime p of k, define

Lp.�; T / WD det
�
1 � �A;`.Frobp/Nm.p/�w�=2T

ˇ̌
V
Ip

�;`

�
;

where Ip denotes the inertia subgroup of the decomposition group Gp at p. The polyno-
mials Lp.�; T / do not depend on `, and have degree d�.p/ � d�. Moreover, writing ˛p;j

for j D 1; : : : ; d�.p/ to denote the reciprocal roots of Lp.�; T /, we have

j˛p;j j � 1:

In fact, for a prime p not dividing N , we have d�.p/ D d� and j˛p;j j D 1. Therefore, the
Euler product

L.�; s/ WD
Y

p

Lp.�;Nm.p/�s/�1

is absolutely convergent for <.s/ > 1. We will make strong assumptions on the analytic
behavior of the above Euler product. Before doing so, following [27, Section 4.1], define
the positive integer

B� WD jdisck=Qjd� �N�;

where N� is the absolute conductor attached to the `-adic representation �A;`. For j D
1; : : : ; d�, let 0 � ��;j � 1 C w�=2 be the local parameters at infinity (they are semi-
integers that can be explicitly computed from the discussion in [27, Section 3]). Define
the completed L-function

ƒ.�; s/ WDBs=2� L.�; s/�.�; s/; where �.�; s/ WD �d�s=2
d�Y
jD1

�

�
s C ��;j

2

�
: (2.1)

Let ı.�/ be the multiplicity of the trivial representation in the character � of ST.A/.
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Conjecture 2.4 (Generalized Riemann hypothesis). For every irreducible character � of
ST.A/, the following holds:

(i) The function sı.�/.s � 1/ı.�/ƒ.�; s/ extends to an analytic function on C of order 1
which does not vanish at s D 0; 1.

(ii) There exists � 2 C� with j�j D 1 such that for all s 2 C we have

ƒ.�; s/ D �ƒ.x�; 1 � s/;

where x� is the character of the contragredient representation of � .

(iii) The zeros � of ƒ.�; s/ (equivalently, the zeros � of L.�; s/ with 0 < <.�/ < 1) all
have <.�/ D 1=2.

The following estimate of Murty [25, Proposition 4.1] will be crucial in Section 3. We
will need the formulation with the level of generality of [4, (2.3)].

Proposition 2.5 (Murty’s estimate). Assume that Conjecture 2.4 holds for the irreducible
character � of ST.A/. ThenX

Nm.p/�x

�.yp/ log.Nm.p// D ı.�/x CO
�
d�
p
x log.x/ log.N.x C w�//

�
for x � 2:

(2.2)
By applying Abel’s summation trick, the above givesX

Nm.p/�x

�.yp/ D ı.�/Li.x/CO
�
d�
p
x log.N.x C w�//

�
for x � 2: (2.3)

Remark 2.6. In (2.2) and thereafter, we make the convention that all sums involving
the classes yp run over primes p not dividing N . A similar convention applies for sums
involving the normalized Frobenius traces xap D Trace.yp/.

Remark 2.7. We alert the reader to a small discrepancy between (2.3) and [4, (2.4)]: in
the latter, the error term stated is O.d�

p
x log.N.x C d�///. We make this precise here,

although we note that it has no effect on the subsequent results of [4]. Indeed, in many
cases (as those of interest in [4] involving elliptic curves without CM) the weight w� is
bounded by the dimension d�.

Remark 2.8. The proof of Proposition 2.5 uses the bound

log.B�/ D O.d� log.N // for every character � of ST.A/. (2.4)

In order to show (2.4), let us recall the definition of N� as a product

N� WD
Y

p

Nm.p/f�.p/

over primes of k, where f�.p/ is the exponent conductor at p; this is a nonnegative integer
whose definition can be found in [27, Section 2], for example. If A has good reduction
at p, then f�.p/ is zero and so the product is finite. Let T�;` denote a Z`-lattice in V�;`
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stable by the action of Gp. By Grothendieck [18, Section 4], the exponent conductor can
be written as

f�.p/ D "�.p/C ı�.p/;

where "�.p/ D d� � dim.V Ip

�;`
/ and ı�.p/ is the Swan conductor of V�Œ`� WD T�;`=`T�;`

for every ` coprime to p. Since the kernel of the action

x�A;`WGp ! Aut.V�Œ`�/

on this quotient is contained in the kernel of the action of Gp on T`.A/=`T`.A/, we see
that x�A;` factors through a finite group G�;p whose order is O.1/. Consider the normal
filtration of ramification groups

G�;p � G0 � G1 � � � �

ofG�;p. Let us simply write V (resp. Vi ) for V�Œ`� (resp. V�Œ`�Gi ). By [3, Proposition 5.4],
we have

f�.p/ D dim.V=V0/C
�
aC h.G1/C 1=.p � 1/

�
e dim.V=V1/;

where e is the ramification index of p over Q, ph.G1/ is the exponent of the p-group G1,
and pa is the maximal dimension among absolutely simple components of V=V1 as aG1-
module. Since #G1 is O.1/, so are h.G1/ and a, because the dimension of an irreducible
representation of a group is bounded by the order of the group. We deduce that

f�.p/ D O.d�/;

from which (2.4) is immediate.

3. Effective Sato–Tate Conjecture

In this section we derive, from the conjectural framework described in Section 2, an effec-
tive version of the Sato–Tate conjecture for an arbitrary abelian variety A of dimension g
defined over the number field k (see Theorem 3.8). Let I be a subinterval of Œ�2g; 2g�.
By effective we mean that we provide an upper bound on the error term in the count of
primes with normalized Frobenius trace lying in I relative to the prediction made by the
Sato–Tate measure.

The proof is based on the strategy hinted at in [4, Section 5]. The first step is the
construction of a multivariate Vinogradov function aproximating the characteristic func-
tion of the preimage of I by the trace map. This is a continuous periodic function with
rapidly decaying Fourier coefficients that generalizes the classical Vinogradov function
[34, Lemma 12]. This construction is accomplished in Section 3.2.

The core of the proof consists in rewriting the Vinogradov function in terms of the
irreducible characters of ST.A/ and applying Murty’s estimate (Proposition 2.5) to each
of its irreducible constituents. This is the content of Section 3.4.
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In order to control the size of the coefficients of the character decomposition, we use a
result of Gupta [19, Theorem 3.8] bounding the size and number of nonzero entries of the
inverse of the weight multiplicity matrix. Gupta’s result and other background material
on representations of Lie groups is recalled in Section 3.1.

A first analysis does not yield the independence of the implied constant in the O-
notation from the Lie algebra of ST.A/. This independence is shown to follow from the
density of the subgroup generated by the Cartan Hodge circles in the Cartan subgroup. In
a result which may be of independent interest (see Theorem 3.5), this density is shown to
follow from the Mumford–Tate conjecture in Section 3.3.

3.1. Lie group theory background

Let s be a finite-dimensional complex semisimple Lie algebra with Cartan subalgebra h

of rank h. Let ˆ � h� be a root system for s, h�0 be the real vector subspace generated
by ˆ, and R � h�0 denote the lattice of integral weights of s.

Fix a base S for the root systemˆ. The choice of S determines a Weyl chamber in h�0
and a partition ˆ D ˆC [ ˆ�, where ˆC (resp. ˆ�) denotes the set of positive (resp.
negative) roots of s. Let C denote the set of dominant weights, that is, the intersection
of the set of integral weights R with this Weyl chamber. The choice of a basis ¹!j ºj of
fundamental weights determines an isomorphism C ' Zh�0.

For �;� 2 C , the multiplicitym�
�

of � in � is defined to be the dimension of the space

�
�

�
D ¹v 2 ��I b.v/ D �.b/v; 8b 2 hº;

where �� is the irreducible representation of s of highest weight �. Write

� WD
1

2

X
˛2ˆC

˛

for the Weyl vector and W for the Weyl group of s. The multiplicity of � in � can be
computed via Kostant’s multiplicity formula

m
�

�
D

X
w2W

�.w/p.w.�C �/ � .�C �//; (3.1)

where �.w/ is the sign of w, and p.v/ is defined by the identityX
v2R

p.v/ev WD
Y
˛2ˆC

.1 � e˛/�1;

where we make a formal use of the exponential notation e˛ (see [14, Proposition 25.21]).
The natural number p.v/ is thus the number of ways to write the weight v as a sum of
positive roots with nonnegative coefficients.

Write � � � if and only if � � � is a sum of positive roots with nonnegative coeffi-
cients. The lattice R � h�0 is then partially ordered with respect to the relation�. Relative
to this ordering of C , the matrix .m�

�
/�;� of weight multiplicities is lower triangular. Let

.d
�

�
/�;� denote the inverse of .m�

�
/�;�.
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Gupta has obtained a formula1 in the spirit of Kostant’s multiplicity formula for the
entries of the inverse matrix .d�

�
/�;�. More precisely, by [19, Theorem 3.8], we have

d
�

�
D a

�

�
t�1
�

, where t� is the size of the stabilizer of � in W and

a�� WD
X
w2W

�.w/f .w.�C �/ � �/:

Here, for each v 2 R, the integer f .v/ is defined byX
v2R

f .v/ev WD e�
Y
˛2ˆC

.1 � e�˛/: (3.2)

Let ' denote the size of the set ˆC of positive roots.

Proposition 3.1. The sum of the absolute values of the elements in each row .resp.
column/ of .d�

�
/�;� is bounded by #W � 2' . In particular, d�

�
D O.1/ and the number

of nonzero entries in each row .resp. column/ of .d�
�
/�;� is O.1/.

Proof. The proof follows from the aforementioned result by Gupta. Indeed, the sum of
the absolute values of the entries in each row (resp. column) of .d�

�
/�;� is bounded by #W

times the norm X
v2R

jf .v/j:

But this number is bounded by 2' , as one observes from (3.2). Now the other two state-
ments are implied by the fact that ', #W can be bounded in terms of g, as follows from
the general classification of complex semisimple Lie algebras, and thus are O.1/.

For � 2 C , write � as a nonnegative integral linear combination
Ps
jD1mj!j of the

fundamental weights and define

k�kfund WD max
j
mj :

Proposition 3.2. The previous definition has the following properties:

(i) dim.��/ D O.k�k
'
fund/ for every � 2 C .

(ii) dim.��0/ D O.dim.��// for all �; �0 2 C with �0 � �.

(iii) For every � 2 C , the motivic weight of the `-adic representation .��/A;` attached to
�� as in Section 2 is O.k�kfund/.

Proof. For (i), recall Weyl’s dimension formula [30, Corollary 1 to Theorem 4, Chap-
ter VII], which states

dim.��/ D
Y
˛2ˆC

.�C �; ˛/

.�; ˛/
;

1In fact, Gupta’s result is of a more general nature: it applies to a q-analog of d�
�

. The version
of interest to us is obtained by specialization.
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where .�; �/ denotes a W -invariant positive definite form on the real vector space h�0
spanned by the base S . This trivially implies

dim.��/ �
Y
˛2ˆC

.�; ˛/:

It remains to show that .�; ˛/ D O.k�kfund/ for every ˛ 2 ˆC. Let j̨ , for j D 1; : : : ; h,
be the constituents of the base S , the so-called simple roots. The desired result follows
from the following relation linking simple roots and fundamental weights:

2
.!l ; j̨ /

. j̨ ; j̨ /
D ılj : (3.3)

As for (ii), suppose that the expression of � 2 C (resp. �0 2 C ) as a nonnegative linear
combination of the simple roots is

Ph
jD1 rj j̨ (resp.

Ph
jD1 r

0
j j̨ ). Note that �0 � � implies

that r 0j � rj . Therefore

dim.��0/ D O
� Y
˛2ˆC

.�0; ˛/
�
D O

� Y
˛2ˆC

.�; ˛/
�
D O.dim.��//:

Part (iii) is a consequence of the weight decomposition of ��.

3.2. A multivariate Vinogradov function

The main result of this section is Proposition 3.4, which is a generalization of [34,
Lemma 12]. Let q � 1 be a positive integer. We will write � to denote the q-tuple
.�1; : : : ; �q/ 2 Rq (a similar convention applies to z, ı, etc.). We also write m to denote
.m1; : : : ; mq/ 2 Zq . We will say that a function hWRq ! R is periodic of period 1 if it is
so in each variable.

For ı D .ı1; : : : ; ıq/ 2 Œ0; 1/
q , denote by R.ı/ the parallelepiped

Qq
jD1Œ�ıj ; ıj �.

Define also the multiplier

�.m; ı/ WD

qY
jD1

�.mj ; ıj /; where �.mj ; ıj / WD

8<: 1; mj D 0;

sin.2�mj ıj /
2�mj ıj

; mj ¤ 0:

Lemma 3.3. Suppose that hWRq ! R admits a Fourier series expansion

h.�/ D
X
m2Zq

cm.h/e
2�i.m��/; where cm.h/ WD

Z
Œ0;1�q

h.�/e�2�i.m��/ d�:

For ı 2 Œ0; 1/q , define

f .�/ WD

� qY
jD1

1

2ıj

�Z
R.ı/

h.� C z/ dz: (3.4)

Then
cm.f / D cm.h/�.m; ı/: (3.5)
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Proof. The proof follows the same lines as Vinogradov’s one-dimensional version. We
have

cm.f / D

Z
Œ0;1�q

f .�/e�2�i.m��/ d�

D

� qY
jD1

1

2ıj

�Z
Œ0;1�q

Z
R.ı/

h.� C z/e�2�i.m��/ dz d�

D

� qY
jD1

1

2ıj

�Z
R.ı/

Z
Œ0;1�q

h.� C z/e�2�i.m��/ d� dz:

Setting t D � C z so that � D t � z and d� D d t in the above equation, we obtain

cm.f / D

Z
Œ0;1�q

h.t/e�2�i.m�t/ d t �

qY
jD1

1

2ıj

Z ıj

�ıj

e2�imj zj dzj

D cm.h/

qY
jD1

1

2ıj

Z ıj

�ıj

e2�imj zj dzj :

For mj D 0 the corresponding term in the product is

1

2ıj

Z ıj

�ıj

1 dzj D 1 D �.0; ıj /:

For mj ¤ 0 the corresponding term becomes

1

2ıj

Z ıj

�ıj

e2�imj zj dzj D
1

2ıj
�
e2�imj ıj � e�2�imj ıj

2�imj
D

sin.2�mj ıj /
2�mj ıj

D �.mj ; ıj /:

The desired formula follows.

For 1 � j � q, let �j W Œ0; 1�q ! Œ0; 1�q�1 be the map that sends � 2 Œ0; 1�q to the
.q � 1/-tuple obtained from � by suppressing its j -th component. For # 2 Œ0; 1�q�1,
define Xj .#/ D ��1j .#/.

Proposition 3.4. Let T WRq ! R be a differentiable function satisfying the following
hypotheses:

(1) It is periodic of period 1.

(2) There exists a real number K > 0 such that jrT .�/j � K for every � 2 Rq .

(3) There exists a positive integer C > 0 such that, for every  2 R, 1 � j � q, and
# 2 Œ0; 1�q�1, we have

#.T �1./ \Xj .#// � C:

Let ˛, ˇ, � be real numbers satisfying

� > 0; 2� � ˇ � ˛: (3.6)
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Let I denote the open interval .˛; ˇ/. By (3.6) we can define the disjoint sets

R1 WD R1.�; ˛; ˇ/ WD T
�1..˛ C�;ˇ ��// \ Œ0; 1�q;

R0 WD R0.�; ˛; ˇ/ WD T
�1.R n Œ˛ ��;ˇ C��/ \ Œ0; 1�q :

Then for every positive integer r � 1, there exists a continuous function D WD

D�;I WRq ! R periodic of period 1 satisfying the following properties:

(i) For � 2 R1, we have D.�/ D 1.

(ii) For � 2 R0, we have D.�/ D 0.

(iii) D.�/ has a Fourier series expansion

D.�/ D
X
m2Zq

cme
2�i.m��/;

where c0 D
R
T�1..˛;ˇ//\Œ0;1�q

d� and for allm 6D 0 we have

jcmj � min
²
jc0j;

²
C

� maxj jmj j

qY
jD1;mj 6D0

min
²
1;

�
rK
p
q

2�jmj j�

��³³
�D0;:::;r

³
:

Proof. Start by defining the function  0 periodic of period 1 as

 0.�/ WD

8̂̂<̂
:̂
1 if � 2 T �1..˛; ˇ//;

0 if � 2 T �1.R n Œ˛; ˇ�/;

1=2 if � 2 T �1.˛/ [ T �1.ˇ/:

Then clearly

c0. 0/ D

Z
T�1..˛;ˇ//\Œ0;1�q

d�;

and form ¤ 0 we find the bound

jcm. 0/j D

ˇ̌̌̌Z
T�1..˛;ˇ//\Œ0;1�q

e�2�i.m��/ d�

ˇ̌̌̌
� jc0. 0/j: (3.7)

We next derive an alternative upper bound for cm. 0/. Let m denote maxl jml j and let j
be such that m D jmj j. Then by Fubini’s theorem we have

cm. 0/

D

Z
T�1..˛;ˇ//\Œ0;1�q�1

�Z
T�1..˛;ˇ//\Xj .�j .�//

e�2�im�j d�j

�
e�2�i�j .m/��j .�/ d�j .�/:

By condition (3) we find that T �1..˛; ˇ//\Xj .�j .�// is a union of at most C intervals.
It follows that

jcm. 0/j � 2C
1

2�m
D

C

�m
: (3.8)
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Fix ı > 0 such that r
p
qKı D � and set ı WD .ı; : : : ; ı/. By averaging over the region

R.ı/ as in (3.4), we recursively define the function  �, for 1 � � � r , as

 �.�/ D
1

.2ı/q

Z
R.ı/

 ��1.� C z/ dz: (3.9)

We will prove inductively that:

(a)  �.�/ 2 R for all � .

(b) 0 �  �.�/ � 1 for all � .

(c)  �.�/ D 1 for � 2 T �1..˛ C ��=r; ˇ � ��=r//.

(d)  �.�/ D 0 for � 2 T �1.R n Œ˛ � ��=r; ˇ C ��=r�/.

(e) c0. �/ D c0. 0/.

(f) Form ¤ 0,
cm. �/ D cm. 0/�.m; ı/

�:

The initial function  0 satisfies all these properties. Now assume that  ��1 also satis-
fies them. Then it is clear that  � will satisfy the first two. In order to prove (c), note that
for z 2 R.ı/, the multivariate mean value theorem gives

jT .� C z/ � T .�/j � Kjzj � K
p
q ı D

�

r
: (3.10)

Let � 2T �1..˛C��=r;ˇ���=r//. By (3.10), we see that �Cz2T �1..˛C.��1/�=r;
ˇ � .� � 1/�=r// and therefore

 �.�/ D
1

.2ı/q

Z
R.ı/

 ��1.� C z/ dz D
1

.2ı/q

Z
R.ı/

dz D 1;

where in the middle equality we have used the induction hypothesis. The proof of (d) is
analogous. Properties (e) and (f) are immediate from Lemma 3.3.

Note that (f), (3.7), and (3.8) imply that

jcm. �/j � jcm. 0/j � min
²
jc0. 0/j;

C

�m

³
:

To conclude, take D WD  r , and the proposition follows from (f) and the fact that, for
mj 6D 0, we have

j�.mj ; ı/j � min
²
1;

rK
p
q

2�jmj j�

³
:

3.3. The Cartan subgroup

As in the previous sections, A denotes an abelian variety of dimension g defined over the
number field k. From now on we will assume moreover that its Sato–Tate group ST.A/ is
connected.
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Since ST.A/ is reductive, its complexified Lie algebra g is the product of a semisimple
Lie algebra s and an abelian Lie algebra a. Recall the notations from Section 3.1 relative
to s; in particular, h is a Cartan subalgebra for s, and h denotes the rank of h. Given
.�1; : : : ; �g/ 2 Rg , set

d.�1; : : : ; �g/ WD diag.e2�i�1 ; : : : ; e2�i�g ; e�2�i�1 ; : : : ; e�2�i�g /:

Let a denote the rank of a and let q D hC a be the rank of g. As in Section 3.2, write �
to denote .�1; : : : ; �q/ 2 Rq . We may choose aqC1; : : : ; ag 2 Zq such that the image H
of the map

�WRq ! ST.A/; �.�/ D d.�1; : : : ; �q;� � aqC1; : : : ;� � ag/; (3.11)

has complexified Lie algebra isomorphic to h � a. We then say that H is a Cartan sub-
group of ST.A/. For notational purposes, it will be convenient to let a1; : : : ; aq denote
the standard basis of Zq . Let al;j denote the j -th component of al .

Consider the map

T WRq
�
! H � ST.A/

Trace
���! Œ�2g; 2g�; T .�/ D

gX
jD1

2 cos.2�aj � �/: (3.12)

In the next section, we will apply the construction of a Vinogradov function attached to
the map T , as seen in Section 3.2. In order to control jr.T /jwe need to control the size of
aqC1; : : : ;ag . The following form of the Mumford–Tate conjecture serves such a purpose.

By a Cartan Hodge circle we will mean the image of any homomorphism

'WR! H

such that '.�/ has g eigenvalues equal to e2�i� and g eigenvalues equal to e�2�i� .
The following statement is a refinement of the “Hodge condition” included among the
“Sato–Tate axioms” stated in [12, Proposition 3.2], [13, Remark 2.3] (see also [32, Sec-
tion 8.2.3.6(i)]).

Theorem 3.5. Suppose that the Mumford–Tate conjecture holds for A. Then the groupH
is generated by Cartan Hodge circles.

Proof. If ST.A/ is abelian, then it is equal to H and the claim is that ST.A/ itself is
generated by Hodge circles. This follows from [12, Proposition 3.2] as augmented in
[13, Remark 2.3].

We next reduce the general case to the previous paragraph, by arguing as in the proof
of Deligne’s theorem on absolute Hodge cycles. Recall that the Mumford–Tate group
of A is the smallest Q-algebraic subgroup of GL.H1.A

top
C ;Q// whose base extension

to R contains the action of the Deligne torus ResC=R.Gm/ coming from the Hodge struc-
ture. Under our hypotheses on A, we may recover ST.A/ by taking the Mumford–Tate
group, taking the kernel of the determinant to get the Hodge group, then taking a maximal
compact subgroup.
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By the proof of [10, Proposition 6.1], there exists an algebraic family of abelian vari-
eties containing A as a fiber such that, on the one hand, the generic Mumford–Tate group
is equal to that of A, and on the other hand there is a fiber B whose Mumford–Tate group
is a maximal torus in A. Using the previous paragraph, we see that the desired assertion
for A follows from the corresponding assertion for B , which we deduce from the first
paragraph.

Lemma 3.6. Suppose that the Mumford–Tate conjecture holds forA. Then jal;j j DO.1/.

Proof. Write A for the matrix .al;j /l;j . Giving a Cartan Hodge circle amounts to giving
a vector v 2 ¹˙1ºq such that

Avt D ut ; (3.13)

where u 2 ¹˙1ºg (and vt , ut denote the transposes of v, u). By Theorem 3.5, there
exist q linearly independent vectors v satisfying an equation of the type (3.13). Let vj , for
j D 1; : : : ; q, denote these vectors, and let uj 2 ¹˙1ºg denote the corresponding constant
terms in the equation that they satisfy. Let vj;l (resp. uj;l ) denote the l-th component of vj
(resp. uj ). Write V (resp. U) for the matrix .vl;j /j;l (resp. .ul;j /j;l ). Since V is invertible,
we have

A D UV�1:

The lemma now follows immediately from the fact that all the entries of V and of U

are˙1.

Lemma 3.7. Suppose that the Mumford–Tate conjecture holds for A. Then the map
T WRq ! Œ�2g; 2g� from (3.12) satisfies conditions .1/–.3/ of Proposition 3.4. Moreover,
the constants K and C appearing in .2/ and .3/ respectively are both O.1/.

Proof. An easy computation shows that for every � 2 Rq we have

r.T /.�/ D �4�
� gX
jD1

sin.2�aj � �/aj;1; : : : ;
gX
jD1

sin.2�aj � �/aj;g
�
;

from which the desired bound jr.T /.�/j D O.1/ is a consequence of Lemma 3.6.
As for (3), let 1 � j � q, and fix �j .�/ 2 Rq�1 and  2 R. Suppose that # 2 Œ0; 1�

satisfies
T .�1; : : : ; �j�1; #; �jC1; : : : ; �q/ D :

This means that there exist real numbers rl depending exclusively on �j .�/ such that

gX
lD1

2 cos.2�alj# C rl / D :

Let N D maxl alj . By the identity

cos.2�alj# C rl / D cos.2�alj#/ cos.rl / � sin.2�alj#/ sin.rl /
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and de Moivre’s formula, we deduce that there exist polynomials p; q 2 RŒx� of degree
� N such that

p.cos.2�#// � q.sin.2�#// D :

If we write q.x/ D
P
n bnx

n, the above equality implies that cos.2�#/ is a root of

r.x/ D
�
 � p.x/C

X
n

b2n.1 � x
2/n
�2
� .1 � x2/

�X
n

b2nC1.1 � x
2/n
�2
:

Since r.x/ has degree � 2N , we find that cos.2�#/ is limited to 2N values. This implies
that # is limited to 4N values, and we conclude by applying Lemma 3.6, which shows
that N D O.1/.

3.4. Main theorem

In this section we prove an effective version of the Sato–Tate conjecture building on the
results obtained in all of the previous sections.

Let � be the pushforward of the Haar measure of ST.A/ on Œ�2g; 2g� via the trace
map. We refer to [32, Sections 8.1.3, 8.4.3] for properties and the structure of this measure.
It admits a decomposition �D �discC�cont, where �disc is a finite sum of Dirac measures
and�cont is a measure having a continuous, integrable, and even C1 density function with
respect to the Lebesgue measure outside a finite number of points. Since we will assume
that ST.A/ is connected, we will in fact find that �disc is trivial (see [32, Section 8.4.3.3]).

Attached to the Lie algebra g of ST.A/, let " WD "g be as defined in (1.2) and � WD
�gWR>0!R>0 be as defined in (1.3). For an interval I � Œ�2g;2g�, recall that we denote
by ıI the characteristic function of I .

Theorem 3.8. Let k be a number field and g a positive integer. LetA be an abelian variety
defined over k of dimension g, absolute conductor N , and such that ST.A/ is connected.
Suppose that the Mumford–Tate conjecture holds for A and that Conjecture 2.4 holds for
every irreducible character � of ST.A/. For each prime p not dividingN , let xap denote the
normalized Frobenius trace of A at p. Then for all nonempty subintervals I of Œ�2g; 2g�,
we have X

Nm.p/�x

ıI .xap/ D �.I /Li.x/CO
�
x1�"g log.Nx/2"g

log.x/1�4"g

�
for x � x0;

where x0 D O.�g.jI j/ log.2N /2 log.log.4N //4/.

Let us resume the notations of Section 3.1 relative to the semisimple algebra s. Thus,
h is a Cartan subalgebra for s of rank h, R � h�0 is the lattice of integral weights, W is the
Weyl group of s, C denotes the integral weights in a Weyl chamber, and !1; : : : ; !h are
the fundamental weights. Let a denote the rank of a, so that q D hC a. Before starting
the proof we introduce some additional notations.

Recall the map �WRq! ST.A/ from (3.11). Without loss of generality, we may assume
that the decomposition Rq DRh �Ra is such that the complexification of the Lie algebra
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of �.Rh/ (resp. �.Ra/) is h (resp. a). Let us write �h (resp. �a) for the projection of �
onto Rh (resp. Ra).

From now on we fix a Z-basis  1; : : : ;  q of the character group OH of H : for 1 �
j � h, the character  j is induced by the fundamental weight !j of s; for hC 1� j � q,
we set

 j .�.�// D e
2�i�j :

The action of W on h�0 induces an action of W on the character group OH of H . We
may define an action of W on Œ0; 1�q by transport of structure: given w 2 W , let w.�/ be
defined by

 j .�.w.�/// D w. j /.�.�// for all j D 1; : : : ; q: (3.14)

Of course the action of W restricts to the first factor of the decomposition Œ0; 1�q D
Œ0; 1�h � Œ0; 1�a. Note that the map � from (3.11) induces an isomorphism

�W Œ0; 1�q=W
�
�! Conj.ST.A//:

Recall the elements yp 2 Conj.ST.A// introduced in Section 2. Let �p 2 Œ0; 1�
q=W be

the preimage of yp by the above isomorphism.
Consider the map T WRq ! Œ�2g; 2g� defined in (3.12). Note that T .�p/ is well-

defined since T factors through Œ0; 1�q=W , and it is equal to the normalized Frobenius
trace xap. Let K and C denote the constants of Lemma 3.7 relative to the map T .

Let the interior of I be of the form .˛; ˇ/ for �2g � ˛ < ˇ � 2g. Let � > 0 be any
real number satisfying the constraint (3.6) relative to ˛, and ˇ (arbitrary for the moment
and to be specified in the course of the proof of Theorem 3.8).

Let D WD D�;I WRq ! R be the Vinogradov function produced by Proposition 3.4,
when applied to ˛, ˇ, �, and T , and relative to the choice of a positive integer r � 1
(arbitrary for the moment and to be specified in the course of the proof of Theorem 3.8).
Define

F WD F�;I WR
q
! R; F .�/ WD

1

#W

X
w2W

D.w.�//: (3.15)

Notice that F.�p/ is well-defined since F has been defined as an average over W . In con-
sonance with Remark 2.6, we make the convention that sums involving the elements �p

run over primes p not dividing N .

Lemma 3.9. If part (i) of Conjecture 2.4 holds for every irreducible character � of
ST.A/, then X

Nm.p/�x

ıI .xap/ D
X

Nm.p/�x

F�;I .�p/CO.�Li.x//

for every � satisfying (3.6) and every x � 2.

Proof. Let Y˛ , Yˇ denote the preimages of ˛, ˇ by the map T in Œ0; 1�q . Let � D

¹s 2 Œ0; 1�qI r.T /.s/ D 0º denote the set of critical points of T . Let R be the set

¹� 2 Œ0; 1�qI �j .�/ D �j .s/ for some 1 � j � q; s 2 �º:
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Since T satisfies property (3) of Proposition 3.4, by Lemma 3.7 the intersections of Y˛ ,
Yˇ with R are finite (and, in fact, even of cardinality O.1/). Let W˛; Wˇ denote the
intersections of Y˛; Yˇ with the complement of R.

We claim that W˛; Wˇ have volume O.1/ as .q � 1/-dimensional Riemannian sub-
manifolds of Œ0; 1�q . Before showing the claim, we note that it implies the lemma. Indeed,
as functions over Œ0; 1�q , the characteristic function of T �1.I / and F�;I only differ (by
construction of the latter) over the W -translates of tubular neighborhoods B.Y˛; r�/
and B.Yˇ ; r�/ of Y˛ and Yˇ of radii r� D O.�/. If W˛; Wˇ have volume O.1/, then
B.Y˛; r�/; B.Yˇ ; r�/ have volume O.�/. Weyl’s integration formula [2, Chapter IX,
Section 6, Corollary 2, p. 338] together with the fact that the absolute value of Weyl’s
density function is O.1/ (see [2, Chapter IX, Section 6, p. 335]) imply that the Haar mea-
sure of the W -translates of B.Y˛; r�/ and B.Yˇ ; r�/ is O.�/. Then the lemma follows
from the equidistribution of �p implied by part (i) of Conjecture 2.4 and the prime number
theorem.

We now show that W˛ has volume O.1/ (the same argument applies to Wˇ ). For
1 � j � q, define

Vj D

²
� 2 Œ0; 1�qI

@T

@�j
.�/ �

@T

@�l
.�/ for every 1 � l � q

³
:

It suffices to show that W˛ \ Vj has volume O.1/ for every j . By symmetry, we may
assume that j D q, which will be convenient for notational purposes. Let Z˛;q denote
the interior of the image of W˛ \ Vq by the projection map �q W Œ0; 1�q ! Œ0; 1�q�1. For
# 2 Z˛;q , choose Q# 2 W˛ \ Vq such that �q. Q#/ D # . By the implicit function theorem
there exist a neighborhood U# � Z˛;q of # and a differentiable function g# WU# ! R
such that

Q# D .# ; g.#// and .t; g.t// 2 W˛ \ Vq for every t 2 U˛:

The lifts Q# can be compatibly chosen so that the functions g# glue together into a differ-
entiable function gWZ˛;q!W˛ \Vq . Then Lemma 3.7 provides the following bound for
the volume of W˛ \ Vq :

O

�Z
Z˛;q

q�1Y
jD1

�
1C

�
@g

@�j
.#/

�2�1=2
d#

�

D O

�Z
Z˛;q

q�1Y
jD1

�
1C

�
@T

@�q

��2�
@T

@�j

�2
.# ; g.#//

�1=2
d#

�
D O.1/;

which completes the proof.

Proof of Theorem 3.8. The choice of a basis of fundamental weights !1; : : : ; !h gives an
isomorphism

Zh ' R D W � C ;
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by means of which, from now on, we will view integral weights of s as elements in Zh.
Similarly, the choice of the basis elements of (3.14) provides an isomorphism between the
lattice of integral weights of a and Za. For a weight m 2 Zq , let mh and ma denote the
projections to Zh and Za. Formh 2 Zh, define

fmh.�h/ D
1

tmh

X
w2W

e2�imh�w.�h/;

where tmh denotes the size of the stabilizer of mh under the action of W . If �nh denotes
the representation of highest weight nh, then

Trace.�nh.�h// D
X

mh�nh

mmhnh fmh.�h/;

where the sum runs over weightsmh 2 C . Equivalently, we have

fmh.�h/ D
X

nh�mh

dnhmh Trace.�nh.�h//: (3.16)

We remark that Proposition 3.1 ensures that, for each mh, the number of nonzero coeffi-
cients dnhmh in the above equation, as well as the size of each of them, is O.1/. By taking
the Fourier expansion of D, we obtain

F.�/ D
1

#W

X
m2Zq

cmtmhfmh.�h/e
2�ima ��a

D
1

#W

X
m2C�Za

�X
w2W

cw.m/

�
tmhfmh.�h/e

2�ima ��a :

LetM � 1 be a positive integer (arbitrary for the moment and to be determined later). Let
C�M denote the subset of C � Za made of weights m whose components have absolute
value �M . Note that ifm 2 C�M , then in particular we have kmhkfund �M . Let C>M

denote the complement of C�M in C � Za.
On the one hand, by invoking the bounds from part (iii) of Proposition 3.4, we have

F>M .�/ WD
1

#W

X
m2C>M

�X
w2W

cw.m/

�
tmhfmh.�h/e

2�ima ��a

D O

� X
m>M

mq�1
1

m

�
rK
p
q

2�m�

�r�
D O

�
1

M r�qC1�r

�
rK
p
q

2�

�r�
: (3.17)

On the other hand, consider the class function

F�M .�/ WD
1

#W

X
m2C�M

�X
w2W

cw.m/

�
tmhfmh.�h/e

2�ima ��a

D ı.F�M .�//C
1

#W

X
m2C�M

�X
w2W

cw.m/

�
tmh

X
06Dnh�mh

dnhmh Trace.�nh.�h//e
2�ima ��a :

(3.18)
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In the above expression ı.F�M .�// stands for the multiplicity of the identity representa-
tion in F�M .�/. Note that F�M is a finite linear combination of irreducible characters of
ST.A/, and by Proposition 3.1 we may assume thatM is large enough that ı.F�M .�//D
ı.F.�//, which we will do from now on.

The next step is to bound the virtual dimension of the nontrivial part of F�M .�/ in
order to be able to apply Proposition 2.5. More precisely, if pnh denotes the coefficient of
Trace.�nh.�h// in (3.18), thenX

m2C�M

X
0 6Dnh�mh

jpnh j dim.�nh/ D O
� X
0 6Dmh2C�M

cmh dim.�mh/
�

D O

� X
0<m�M

mq�1
1

m

�
rK
p
q

2�m�

��
m'
�
:

In the above computation we have used: Proposition 3.1 to bound the size and number
of nonzero entries in the inverse of the matrix of weight multiplicities; Proposition 3.2 to
control the dimension of the representations of weight lower than a given one and to bound
the dimension of the representation �mh in terms of kmhkfund; and Proposition 3.4 (iii) to
bound the Fourier coefficients for an unspecified (for the moment) 1 � � � r . We will
now distinguish two cases, depending on whether ' is zero or not.

Suppose first that ' is nonzero. Take r D � D q C ' � 1, which we note satisfies
r � 1. ThenX
m2C�M

X
06Dnh�mh

jpnh jdim.�nh/DO
� X
0<m�M

1

m�qC'�1

�
DO

�
log.M/

�qC'�1

�
: (3.19)

Let L > 0 be the implied constant in the bound of Proposition 3.2 (iii) for the motivic
weight, so that formh 2 C�M , we have w�mh

� LM . Using the decomposition

F.�/ D F�M .�/C F>M .�/;

the tail (3.17) and virtual dimension (3.19) bounds, and applying Proposition 2.5, we
obtain X

Nm.p/�x

F.�p/ D ı.F.�//Li.x/CO
�

log.M/

�qC'�1

p
x log

�
N.x C LM/

��
CO

�
Li.x/

M '�qC'�1

�
: (3.20)

It follows from the proof of Lemma 3.9 that

ı.F.�// D �.I /CO.�/: (3.21)

Therefore, to conclude the proof, it will suffice to balance the error terms in (3.20) with
O.�Li.x//. If ' is nonzero, we may take

� WD x�" log.x/4" log.Nx/2"; M D d��.qC'/='e; (3.22)
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where " D "g is as defined in (1.2). In view of Lemma 3.9, this concludes the proof,
provided that we verify that this choice of � satisfies the constraint (3.6). This amounts
to 2� � jI j, or equivalently to

x �
2"
�1

jI j"
�1

log.x/4 log.Nx/2:

By the elementary Lemma 3.10 below, this is easily seen to be the case as long as x � x0,
where

x0 D O
�
�g.jI j/ log.2N /2 log.log.4N //4

�
: (3.23)

Suppose now that 'D 0. We take r D q and use the tail bound (3.17) as in the previous
case. To bound the Fourier coefficients of F�M .�/, we use the bound jcmj D O.1=m/ if
q D 1 and the bound corresponding to � D q � 1 otherwise (as in Proposition 3.4 (iii)).
We obtainX
Nm.p/�x

F.�p/ D ı.F.�//Li.x/CO
�

log.M/

�q�1

p
x log

�
N.x C LM/

��
CO

�
Li.x/
M�q

�
:

(3.24)
To balance the error terms in the above equation with O.�Li.x//, we may take

� WD x�1=.2q/ log.x/2=q log.Nx/1=q; M D d��q�1e:

Since "g D 1=.2q/ in this case, this yields precisely the error term of the statement of
the theorem. Again, � satisfies the constraint (3.6) as soon as x � x0, where x0 is as
in (3.23).

We leave the proof of the following to the reader.

Lemma 3.10. For integers r; N � 1, with r even, and a real number A > 0, we have

A log.x/r log.Nx/2 < x

provided that x > C log.2N /2 log.log.4N //r max ¹1; A log.A/rC2º for some C > 0

depending exclusively on r .

Remark 3.11. To simplify the statement of Theorem 3.8, we have assumed Conjec-
ture 2.4 for every irreducible character � of ST.A/. It is however clear from the proof
that this hypothesis can be relaxed: it suffices to assume Conjecture 2.4 for those repre-
sentations �m withm 2 C�M , where M is as in (3.22).

Remark 3.12. The choice of the exponent of x in the error term in Theorem 3.8 is dic-
tated by the balancing of O.�Li.x// with the first of the two error terms in (3.20). The
balancing with the second error term only affects the logarithmic factors.

4. Applications

In this section we discuss three applications of Theorem 3.8. In Section 4.1 we consider
an interval variant of Linnik’s problem for abelian varieties. Given an abelian variety A
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defined over k of dimension g and a subinterval I of Œ�2g; 2g�, this asks for an upper
bound on the least norm of a prime p not dividing N such that the normalized Frobe-
nius trace xap.A/ lies in I . In Section 4.2 we consider a sign variant of Linnik’s problem
for a pair of abelian varieties A and A0 defined over the number field k and such that
ST.A � A0/ ' ST.A/ � ST.A0/. This asks for an upper bound on the least norm of a
prime p such that ap.A/ and ap.A

0/ are nonnegative and have opposite sign. Finally, in
Section 4.3, when A is an elliptic curve with CM, we conditionally determine (up to con-
stant multiplication) the asymptotic number of primes for which ap.A/ D b2

p
Nm.p/c.

While Section 4.1 is a direct consequence of Theorem 3.8, both Section 4.2 and
Section 4.3 require slight variations of it. We will explain how to modify the proof of
Theorem 3.8 to obtain these versions.

4.1. Interval variant of Linnik’s problem for abelian varieties

Theorem 3.8 has the following immediate corollary.

Corollary 4.1. Assume the hypotheses and notations of Theorem 3.8. For every nonempty
subinterval I of Œ�2g; 2g�, there exists a prime p not dividing N with

Nm.p/ D O
�
�g.min ¹jI j; �.I /º/ log.2N /2 log.log.4N //4

�
such that xap 2 I .

Proof. There exist constants K1; K2 > 0 such that, for

x � K2�g.jI j/ log.2N /2 log.log.4N //4;

the number of primes p such that Nm.p/ � x and xap 2 I is at least

�.I /Li.x/
�
1 �

K1

�.I /
�

�
;

where � is as in (3.22). This count will be positive if K1� < �.I /, or equivalently if

x >
K"
�1

1

�.I /"
�1

log.x/4 log.Nx/2:

One easily verifies that this condition is satisfied for x � x0, for some

x0 D O
�
�g.�.I // log.2N /2 log.log.4N //4

�
;

and the corollary follows.

4.2. Frobenius sign separation for pairs of abelian varieties

In this section we will provide an answer to the Frobenius sign separation problem for
pairs of abelian varieties using a variation of Theorem 3.8. Resume the notations of Sec-
tion 3.4; additionally, let A0 be an abelian variety defined over k and let g0, N 0, �0, etc.
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denote the corresponding notions. We will make the hypothesis that the natural inclusion
of ST.A � A0/ in the product ST.A/ � ST.A0/ is an isomorphism.

Hypothesis 4.2. We have ST.A � A0/ ' ST.A/ � ST.A0/.

Theorem 4.3 shows that under the conjectures of Section 2, this hypothesis ensures
the existence of a prime p not dividing NN 0 such that

ap.A/ � ap.A
0/ < 0 (4.1)

and, in fact, determines the asymptotic density of such primes. Corollary 4.4, which gives
an upper bound on the least norm of such a prime, is then an immediate consequence.
Note that requiring A and A0 not to be isogenous does not guarantee the existence of a
prime satisfying (4.1), as is shown by the trivial example in which A0 is taken to be a
proper power of A.

Write the complexified Lie algebra of ST.A/ (resp. ST.A0/) as g D s � a (resp. g0 D

s0 � a0), where s; s0 are semisimple and a; a0 are abelian. Throughout this section, write

"g;g0 WD
1

2.q C q0 C ' C '0 � 1/
; (4.2)

where ' (resp. '0) is the size of the set of positive roots of s (resp. s0) and q (resp. q0) is
the rank of g (resp. g0). Define

�g;g0 WR>0 ! R>0; �g;g0.z/ D max
²
1;

log.z/8

z1="g;g0

³
:

Theorem 4.3. Let k be a number field, and let g and g0 positive integers � 1. Let A
.resp. A0/ be an abelian variety defined over k of dimension g .resp. g0/, absolute con-
ductor N .resp. N 0/, and such that ST.A/ .resp. ST.A0// is connected. Assume that
Hypothesis 4.2 holds. Suppose that the Mumford–Tate conjecture holds for A � A0, and
that Conjecture 2.4 holds for every product � � �0 of irreducible characters � of ST.A/
and �0 of ST.A0/. For each prime p not dividing NN 0, let xap .resp. xa0p/ denote the nor-
malized Frobenius trace of A .resp. A0/ at p. Then for all nonempty subintervals I of
Œ�2g; 2g� and I 0 of Œ�2g0; 2g0�, we haveX

Nm.p/�x

ıI .xap/ıI 0.xa
0
p/ D �.I /�

0.I 0/Li.x/CO
�
x1�"g;g0 log.NN 0x/2"g;g0

log.x/1�6"g;g0

�
for x � x0, where x0 D O.�g;g0.min ¹jI j; jI 0jº/ log.2NN 0/2 log.4NN 0/6/.

Proof. Let .˛;ˇ/ and .˛0;ˇ0/ denote the interiors of I and I 0, respectively. For a common
choice of� > 0, define F�;I .�/ and F 0�;I 0.�

0/ relative to undetermined positive integers
r and r 0 in a manner analogous to (3.15). Let M � 1 be a positive integer (arbitrary for
the moment and to be determined later). In analogy with the definition ofL> 0 in the line
following (3.19), let L0 > 0 be the implied constant in the bound w�m0

h

D O.km0
h
kfund/.

Let L00 denote max ¹L;L0º.



A. Bucur, F. Fité, K. S. Kedlaya 1738

Suppose that ' C '0 is nonzero. Choose r D q C ' � 1 and r 0 D q0 C '0 � 1. Ana-
logues of (3.17) and (3.19) giveX

Nm.p/�x

F.�p/F
0.�0p/ D ı.F.�//ı.F

0.�//Li.x/

CO

�
log.M/2

�qCq
0C'C'0�2

p
x log

�
NN 0.x C L00M/

��
CO

�
Li.x/

M 'C'0�qCq
0C'C'0�2

�
: (4.3)

Here we have used the fact that the multiplicity of the trivial representation ı.�mh ˝�m0h/
is zero unless both mh and m0

h
are 0, as follows from Hypothesis 4.2. We also used the

fact that the conductor of A � A0 is O.NN 0/. By the proof of Lemma 3.9, we have

ı.F.�/F 0.� 0// D ı.F.�//ı.F 0.� 0// D �.I /�0.I 0/CO.�/:

If ' C '0 is nonzero, take " WD "g;g0 as in (4.2) and

� WD x�" log.x/6" log.NN 0x/2"; M D
˙
�
�
qCq0C'C'0�1

'C'0
�
; (4.4)

which balance the error terms in (4.3) with O.�Li.x//.
Suppose now that ' D '0 D 0. Choose r D q and r 0 D q0. As in (3.24), we apply

Proposition 3.4 (iii) with � D r (resp. �0 D r 0) to bound the Fourier coefficients of F>M
(resp. F 0>M ); for the Fourier coefficients of F�M (resp. F 0

�M ) we use the bound cm D
O.1=m/ (resp. c0m D O.1=m/) if q D 1 (resp. q0 D 1) and the bound corresponding to
� D q � 1 (resp. �0 D q0 � 1) if q > 1 (resp. q0 > 1). We obtainX
Nm.p/�x

F.�p/F
0.�0p/ D ı.F.�//ı.F

0.�//Li.x/

CO

�
log.M/2

�qCq�2

p
x log

�
NN 0.x C L00M/

��
CO

�
Li.x/

M 2�qCq
0

�
:

In order to balance the error terms of the above expression with O.�Li.x//, we take

� WD x�1=.qCq
0�1/ log.x/3=.qCq

0�1/ log.NN 0x/1=.qCq
0�1/; M D d��.qCq

0�1/=2
e:

This yields the error term in the statement of the theorem, since "g;g0 D 1=.2.qC q
0 � 1//

when ' D '0 D 0. It only remains to determine the set of x for which the constraint
2� � min ¹jI j; jI 0jº, or equivalently the inequality

x >
2"
�1

.min ¹jI j; jI 0jº/"�1
log.x/6 log.Nx/2

is satisfied. As follows from Lemma 3.10, this happens if x � x0, where x0 is as in the
statement of the theorem.
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Corollary 4.4. Assume the hypotheses of Theorem 4.3. Then there exists a prime p not
dividing NN 0 with

Nm.p/ D O
�
log.2NN 0/2 log.log.4NN 0//6

�
such that ap.A/ and ap.A

0/ are nonzero and of opposite sign.

Proof. In Theorem 4.3, take the subintervals I D .ı; 2g � ı/ and I 0 D .�2gC ı;�ı/ for
ı D 1=2. There exist constants K1; K2; K3 > 0 such that, for

x � K3 log.2NN 0/2 log.log.4NN 0//6;

the number of primes p such that Nm.p/ � x, xap 2 I , and xa0p 2 I
0 is at least

K1 Li.x/.1 �K2�/;

where� as in (4.4). This count will be positive provided thatK2� < 1, or equivalently if

x > K"
�1

2 log.x/6 log.NN 0x/2:

One easily verifies that this condition is satisfied for x � x0, for some

x0 D O.log.2NN 0/2 log.log.4NN 0//6/:

Remark 4.5. Under the current assumption that ST.A/ and ST.A0/ are connected, one
may wonder when Hypothesis 4.2 is satisfied. According to [1, Lemma 6.10] this should
happen rather often when Hom.A xQ;A

0
xQ
/D 0. More precisely, if bothA andA0 satisfy the

Mumford–Tate conjecture, Hom.A xQ; A
0
xQ
/ D 0, A has no factors of type IV, and either

(i) A0 is of CM type, or

(ii) A0 has no factors of type IV,

then Hypothesis 4.2 holds.

4.3. CM elliptic curve reductions with maximal number of points

In this section we prove a variation of Theorem 3.8 when the interval I varies with x. We
determine (up to constant multiplication and under the assumption of Conjecture 2.4) the
number of primes at which the Frobenius trace of an elliptic curve defined over k with
potential CM achieves the integral part of the Weil bound. We will start by assuming that
A has CM already defined over k, that is, ST.A/ ' U.1/.

Throughout this section let x � 2 and y � 22=3 be real numbers. Let Iy denote the
subinterval Œ2 � y�1=2; 2� of Œ�2; 2�.

Lemma 4.6. For � D dz=.�
p
4 � z2/, we have

�.Iy/ D
1

�y1=4
CO

�
1

y3=4

�
for every y � 22=3:
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Proof. Recall the map from (3.12), which in this case is simply

T WR! Œ�2; 2�; T .�/ D 2 cos.2��/:

We first determine the preimage Œ��y ; �y � WD T �1.Iy/ \ Œ�1=2; 1=2�. We easily find

�y D
1

2�
arccos

�
1 �

y�1=2

2

�
D

1

2�y1=4
CO

�
1

y3=4

�
for every y � 22=3.

Since � is the pushforward via T of the uniform measure on Œ0; 1�, we see that �.Iy/
is the length of Œ��y ; �y �, from which the lemma follows.

Proposition 4.7. Let A be an elliptic curve with CM defined over k of absolute conduc-
torN . Suppose that Conjecture 2.4 holds for every character2 of ST.A/'U.1/. For each
prime p not dividingN , let xap denote the normalized Frobenius trace of A at p. For every
x � 2, we haveX

Nm.p/�x

ıIy .xap/ D
1

�y1=4
Li.x/CO

�p
x log.Nx/ log.x/

�
for every x2=3 � y � x:

Proof. Let us start by choosing � D y�1=2�� for some � > 0 so that hypothesis (3.6)
for � and Iy is satisfied. Let us choose the function D D D�;Iy from Proposition 3.4
relative to r D 1. Proceeding exactly as in the case ' D 0 of the proof of Theorem 3.8 we
arrive at (3.24) (the fact that the exponent of � in the mid error term of (3.24) is q � 1 is
precisely what makes the case q D 1 special: this allowed us to choose� beforehand and
arbitrarily small). As seen in the proof of Lemma 3.9, we have ı.F.�//D�.Iy/CO.�/.
Then, the choice of M D ��2 givesX

Nm.p/�x

F.�p/ D �.Iy/Li.x/CO
�p
x log.Nx/ log.x/

�
:

By Lemmas 3.9 and 4.6 we haveX
Nm.p/�x

ıIy .xap/ D
1

2�y1=4
Li.x/CO

�
Li.x/
y3=4

�
CO.

p
x log.Nx/ log.x//:

The proposition now follows from the fact that if y � x2=3, then the O.Li.x/=y3=4/ term
is subsumed in the error term of the statement.

For every x � 2, define

R.x/ WD ¹p − N prime of kI Nm.p/ � x and jxap � 2j < x
�1=2
º;

and for every x2=3 � y � x, define

S.y; x/ WD ¹p − N prime of kI y < Nm.p/ � x and jxap � 2j < y
�1=2
º:

Lemma 4.6 and Proposition 4.7 have the following corollary.

2In other words, we assume that GRH holds for the Hecke L-function attached to every integral
power of the Grossencharacter attached to A.
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Corollary 4.8. Assume the same hypotheses as in Proposition 4.7. For every x � 2, we
have:

(i) #R.x/ D 1

�x1=4
Li.x/CO.

p
x log.Nx/ log.x//.

(ii) #S.y;x/D 1

�y1=4
.Li.x/� Li.y//CO.

p
x log.Nx/ log.x// for every x2=3 � y � x.

Let Mk.x/ denote the set of primes p of k not dividing N with Nm.p/ � x such that
apD b2

p
Nm.p/c, or equivalently such that jxap � 2j< 1=

p
Nm.p/. Let 2 < xn < xn�1 <

� � � < x1 D x be real numbers. Note that

R.x/ �Mk.x/ �

n�1[
jD1

S.xjC1; xj / [ ¹p − N prime of kI Nm.p/ � xnº: (4.5)

Proposition 4.9. Assume the same hypotheses as in Proposition 4.7. Then

#Mk.x/ �N
x3=4

log.x/
as x !1:

Proof. From (4.5) and Corollary 4.8, we immediately obtain

x3=4=log.x/ D ON .#Mk.x//:

To show that #Mk.x/ D ON .x
3=4=log.x//, for j D 1; : : : ; n WD bx1=16c, define

xj WD x=j
4. Since xn D O.x3=4/, by (4.5) and Corollary 4.8 we have

#Mk.x/ �

n�1X
jD1

j C 1

�x1=4
.Li.xj / � Li.xjC1//C Li.xn/CO.x1=2C1=16 log.Nx/ log.x//

D
2

�x1=4
Li.x/C

1

�x1=4

n�1X
jD2

Li.xj / �
n

�x1=4
Li.xn/CON

�
x3=4

log.x/

�
:

In view of the above, the proposition will follow from the fact that
nX

jD2

x3=4

j 4 log.x=j 4/
D O

�
x3=4

log.x/

�
:

But the change of variable z D x=y4 gives
nX

jD2

x3=4

j 4 log.x=j 4/
D O

�Z x1=16

2

x3=4

y4 log.x=y4/
dy

�
D O

�Z x=16

x3=4

1

z1=4 log.z/
dz

�
:

Set
f .z/ D 1=.z1=4 log.z//

and
�.z/ D 4z3=4=3;

so that integration by parts yields

F.x/ WD

Z x=16

x3=4
f .z/ dz D

�.x=16/

log.x=16/
�

�.x3=4/

log.x3=4/
C

Z x=16

x3=4

�.z/

z log.z/2
dz:
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Since the first term on the right-hand side above isO.x3=4=log.x//, and the second term is
bounded by F.x/=log.x3=4/, we deduce that F.x/ D O.x3=4=log.x//, which concludes
the proof.

Corollary 4.10. Let A be an elliptic curve with potential CM .say by an imaginary
quadratic field K/ not defined over k. Under Conjecture 2.4 for every character of
ST.AkK/ ' U.1/, we have

#Mk.x/ �N
x3=4

log.x/
as x !1:

Proof. Consider the base change AkK and the set of primes of kK defined as

M
split
kK
.x/ WD ¹P − N prime of kK split over kI

Nm.P/ � x and aP.AkK/ D b2
p

Nm.P/cº:

Since the number of primes of kK nonsplit over k of norm up to x is O.
p
x/, in view of

Proposition 4.9 we have

#MkK.x/ � #M split
kK
.x/ as x !1:

On the other hand, the map

M
split
kK
.x/!Mk.x/; P 7! P \ k;

is 2-to-1, and thus
#Mk.x/ �

1
2

#M split
kK
.x/ as x !1:

As noted in the introduction, it was shown unconditionally by James and Pollack
[21, Theorem 1] that

#Mk.x/ �
2

3�

x3=4

log.x/
as x !1:

That result, which gives a partial answer to a question of Serre [33, Chapter II, Ques-
tion 6.7], builds on a conditional result of James et al. [22]; that result is similar to ours,
except that it aggregates primes for which the Frobenius trace is extremal in both direc-
tions. The added ingredient in [21] is the use of unconditional estimates for the number of
primes in an imaginary quadratic field lying in a sector; such an estimate has been given
by Maknys [23], modulo a correction described in [21]. (For the Gaussian integers, see
also [35].)

Remark 4.11. Let A be an abelian variety of dimension g � 1 defined over k. Let d
denote the real dimension of ST.A/. It follows from [32, Section 8.4.4.4] that

�.Œ2g � x�1=2; 2g�/ � Li.x/ � C �
x1�d=4

log.x/
as x !1, (4.6)
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for some constant C > 0. When d > 2, the count (4.6) is subsumed in the error term
of Theorem 3.8. There is thus no hope that the method of proof of Corollary 4.8 can be
extended to the case d > 2 to obtain the analogous statement.

When d D 1 (in which case A is xQ-isogenous to the power of a CM elliptic curve and
ST.A/' U.1/), it is not difficult to generalize Proposition 4.7 to show that the number of
primes p such that

ap.A/ D b2g
p

Nm.p/c

is again�N x3=4=log.x/. Note that for these primes, the equality

b2g
p

Nm.p/c D gb2
p

Nm.p/c

needs to hold because of the Weil–Serre bound.
As Andrew Sutherland kindly explained to us, when d D 2 there are already examples

of abelian surfaces A defined over Q for which there are no primes p of good reduction
for A such that

ap.A/ D 2b2
p
pc: (4.7)

Indeed, let A be the product of two elliptic curves E1 and E2 defined over Q with CM by
two nonisomorphic imaginary quadratic fields M1 and M2, respectively. Suppose there
were a prime p > 3 satisfying (4.7) of good reduction for A. Then

ap.E1/ D ap.E2/ D b2
p
pc

and p would be ordinary for both E1 and E2. This would force both M1 and M2 to
be the splitting field of the local factor of E1 (which coincides with that of E2) at p,
contradicting the fact that M1 and M2 are not isomorphic.
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Tab. 1. Table of notations

Notation Meaning First usage
a Rank of Lie algebra a Section 3.3
ap Frobenius trace of A at p Section 1
xap Normalized version of ap Section 1, (1.1)
A Abelian variety over k Section 1
a Abelian Lie algebra, factor of g Section 3.3
˛p;j Reciprocal roots of local L-factor Section 2.2
D Vinogradov function associated to �;T Proposition 3.4
d� Degree of the character � Section 2.2
ıI Characteristic function of I Section 1
� Cutoff parameter in definition of D Proposition 3.4
�g Dependence on g in Theorem 1.1 (1.2)
�g;g0 Dependence on g;g0 in Theorem 4.3 (4.2)
F Average of D over W (3.15)
g Dimension of A Section 1
g Lie algebra of ST.A/ Section 3.3
�� Representation of g with highest weight � Section 3.1
H Cartan subgroup of ST.A/ Section 3.3
h Rank of Lie algebra h Section 3.1
h Cartan subalgebra of s Section 3.1
I Subinterval of Œ�2g; 2g� (1.1)
jI j Length of I Section 1
k Number field over which A is defined Section 1
Li.x/ Logarithmic integral (1.1)
M Cutoff parameter in weight space Proof of Theorem 3.8
Mk.x/ Extremal primes of norm up to x Section 1
m
�
�

Weight multiplicity Section 3.1
� Pushforward of Haar measure on ST.A/ Section 1
N Absolute conductor of A Section 1
�g Cutoff for O notation (1.3)
p Prime ideal of k Section 3.1
' Size of set ˆC (1.2)
ˆ Root system for s Section 3.1
q Rank of Lie algebra g (D hC a) (1.2)
R Lattice of integral weights of s Section 3.1
S Simple roots of ˆ Section 3.1
s Semisimple factor of g Section 3.1, Section 3.3
ST.A/ Sato–Tate group of A Section 1, Section 2.1
T Trace map on Rq Section 3.3, (3.12)
T`.A/ Tate module of A Section 1
V`.A/ T`.A/˝Q` Section 1
w Element of W Section 3.1
W Weyl group of s Section 3.1
!j Basis element of fundamental weights Section 3.1
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