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Abstract. We study a generalization of the Harish-Chandra–Itzykson–Zuber integral to tensors and
its expansion in terms of trace invariants of the two external tensors. This gives rise to natural gen-
eralizations of monotone double Hurwitz numbers, which count certain families of constellations.
We find an expression of these numbers in terms of monotone simple Hurwitz numbers, thereby
also providing expressions for monotone double Hurwitz numbers of arbitrary genus in terms of
the single ones. We give an interpretation of the different combinatorial quantities at play in terms
of enumeration of nodal surfaces. In particular, our generalization of Hurwitz numbers is shown to
count certain isomorphism classes of branched coverings of a bouquet of D 2-spheres that touch at
one common non-branch node.
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1. Introduction

The problem. Our goal is to explore the following generalization of the HCIZ integral
[30, 32]:

t 7! ID;N .t; A;B/ D EU
�
exp.t Tr.AUBU �//

�
: (1.1)

We will be particularly interested in the expansion of its logarithm,

CD;N .t; A;B/ D log ID;N .t; A;B/;
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as a power series in t and a Laurent series inN and in its behavior for largeN . ForD D 1
we take U to be a unitary N � N matrix in U.N/ (U � D U�1, where star denotes the
adjoint), A and B self-adjointN �N matrices and EU the expectation with respect to the
Haar measure; that is, for D D 1, (1.1) is the usual HCIZ integral [30, 32], here denoted
by I1;N .t; A;B/.

In this paper we are interested in the setup where U is a tensor product of D � 2
unitary matrices, U D U .1/ ˝ � � � ˝ U .D/ with U .c/ 2 U.N/, EU is the expectation with
respect to the tensor product of D Haar measures and A; B are self-adjoint ND � ND

matrices called the external tensors. In this case we will call (1.1) the tensor HCIZ inte-
gral. It is also written as

ID;N .t; A;B/ D e
CD;N .t;A;B/ D

Z
ŒdU � et Tr.AUBU�/: (1.2)

Let us note that if the tensors A; B belong to the Lie algebra of U.N/˝D and are
generic (i.e. in the interior of a Weyl chamber), the integral ID;N .t;A;B/ admits an exact
determinantal formula as per Harish-Chandra’s general results. In the particular case of
D D 1, this statement is important because it allows handling all multiplicity-free self-
adjoint matrices A;B . ForD � 2 however, the Lie algebra is smaller and the problem we
are considering is much more general.

Motivations. The Kontsevich integral [33] for a self-adjoint N �N matrix X ,Z
dX e�

1
2 Tr.XBX/C{ g3 Tr.X3/; dX D

Y
a;b

dXab;

with B a fixed N � N matrix is the prototype of a non-invariant probability distribution
for a random matrix. This integral plays a crucial role in two-dimensional quantum gravity
[16]. The Grosse–Wulkenhaar model [27] is obtained by replacing the cubic potential with
a quartic one, and for a specific choice of B this model is a �4 quantum field theory on
the non-commutative Moyal space [42] expressed in a matrix base [17, 19]. Such models
can be generalized [3,10,20] to rank D complex tensors T (with components denoted by
Ti1:::iD ) transforming according to theD-fundamental representation of the unitary group
(T 0
i1:::iD

D
P
j U

.1/

i1j1
: : : U

.D/

iDjD
Tj1:::jD ). One is then interested in partition functions of

the type

Z D

Z
dT d NT e�TB

NTCV.T; NT /; TB NT D
X
i;j

Ti1:::iDBi1:::iD ;j1:::jDTj1:::jD ;

where NT denotes the dual of T (with complex conjugate entries Ti1:::iD and transforming
according to the conjugate representation) and B some ND � ND matrix. The crucial
point is that the perturbation V.T; NT / is taken to be invariant under the action ofU.N/˝D .

A striking feature of both the Kontsevich integral and its generalizations involving
random tensors is that one considers a non-invariant quadratic part and an invariant inter-
action. In order to study the interplay between these two, one can average over the unitary
group:

Z D

Z
dT d NT eV.T;

NT /

Z
ŒdU � e�T UBU

? NT :
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The integral over U is then just a particular case of (1.2) for A the tensor product of T
and its dual.

More generally, the HCIZ integral is extensively used in D D 1 in random matrix
models with non-invariant probability distributions, such as the two-matrix models [21,
32, 38], and matrix models with an external source [4, 6–8, 44, 45], to cite just a few
references. It is also central in studying the law of Gaussian Wishart matrices and non-
centered Gaussian Wigner matrices [29]. The study of the tensor HCIZ integral (1.1) is
justified by the generalization of these problems to random tensors. For example, it is
natural in quantum information to study the sum of independent random tensors, so as
soon as they have a U.N/˝D-conjugation invariance, we expect that our results are a
necessary preliminary to the study of such asymptotic models.

Another application of the HCIZ integral is as a generating function for the mono-
tone double Hurwitz numbers [25, 26]. Hurwitz numbers count n-sheet coverings of the
Riemann sphere by a Riemann surface of a certain fixed genus, where one branch point,
for instance 0, is allowed arbitrary but fixed ramification, and all the other branch points
are only allowed simple ramifications. Double Hurwitz numbers are such that not one but
two points on the sphere, say 0 and 1, are allowed non-simple ramifications [23–26].
Monotone single and double Hurwitz numbers are such that only a subset of the possible
coverings are allowed. These numbers appear in D D 1 as coefficients when expanding
the HCIZ integral in terms of the trace invariants of the two external matrices [25, 26].

It is this last aspect on which the emphasis is put in the present paper: we expand the
logarithm of the tensor HCIZ integral in terms of the trace invariants of the two exter-
nal tensors and study the 1=N expansion of the coefficients. This provides higher order
generalizations of monotone double Hurwitz numbers. We provide a detailed study of the
geometrical interpretation of these numbers and their relation to enumerations of branched
coverings of a bouquet of D spheres.

Final comments. Before proceeding let us comment some more on our model:

Different N ’s. The generalization to the case of different dimensions, U .c/ 2 U.Nc/, is
straightforward.

The D D 1 case. For D D 1 we get the HCIZ integral which is a Fourier transform of
the U.N/-invariant probability measure concentrated on the orbit of the matrix B . In
the general case the same holds true, but for the smaller symmetry group U.N/˝D

instead of U.ND/.

Variants. Other models might be relevant, such as

t ! log EU
�
exp.t Re. NBUA//

�
;

whereA;B are tensors. ForD D 1 this model boils down to the Brézin–Gross–Witten
(BGW) integral

t ! log EU
�
exp.t Tr.AU C U �B�//

�
:

which was widely studied in the literature. For an optimal analytic result both for
HCIZ and BGW in the D D 1 setup, we refer to [40]. It turns out that the combina-
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torics is a bit different and slightly more involved, so we will turn to this model in
subsequent work.

Other groups. Similar results can be derived for the orthogonal or symplectic group. The
initial theory does not change substantially, but the graphical interpretation does. We
also leave this for future work.

Plan of the paper. The notations and prerequisites on Weingarten calculus, constellations
and cumulants are gathered in Sec. 2, where the reader will also find, in Prop. 2.5, an
expression for the moments of the tensor HCIZ integral which follows directly from the
definitions.

The study of the cumulants of the tensor HCIZ integral is more involved. They can be
expressed in terms of a cumulant Weingarten function, defined in Sec. 3.1 and expressed
in Sec. 3.2 as a series in powers of 1=N whose coefficients pC count certain transitive
factorizations of D-uplets of permutations. The rest of the paper is dedicated to the study
and interpretation of the coefficients pC .

Sec. 4 contains our main theorem, Thm. 4.1. This theorem expresses the coefficients
pC as sums over partitions satisfying certain conditions. In this form we are able to com-
pute pC at leading order in 1=N , that is, we identify the smallest exponent of 1=N with
non-vanishing contribution to pC and compute this contribution.

In D D 1, the coefficients pC are related to monotone double Hurwitz numbers, as
detailed in Sec. 4.3. These numbers are known to count certain isomorphism classes of
connected branched coverings of the Riemann sphere. ForD > 1, the coefficients pC lead
to a generalization of monotone double Hurwitz numbers, and one may wonder whether
these numbers have a natural interpretation as counting certain branched coverings.

This question is addressed in Sec. 5. After introducing nodal surfaces in Sec. 5.1 we
show in Sec. 5.2 that the generalized Hurwitz numbers of Sec. 4.3 count certain connected
branched coverings of D 2-spheres that “touch” at one common node .a bouquet of D
2-spheres/. This provides (see Sec. 5.3) a geometric interpretation for the combinatorial
formulas of Thm. 4.1 and recasts the sums over partitions defining pC as sums over certain
nodal surfaces whose nodes are weighted with monotone single Hurwitz numbers.

2. Prerequisites and direct results

2.1. Notations

Indices ranging from 1 to N will be denoted by a1; a2; b1; b2 etc. Let Sn be the group of
permutations of n elements and S�n D Sn n ¹idº. For � 2 Sn, #.�/ denotes the number of
disjoint cycles of � , and k�k the number of transpositions of � (i.e. the minimal number
of transpositions required to obtain � ).1 These quantities satisfy

#.�/C k�k D n: (2.1)

1The common notation would be j� j, but we want to avoid confusion with the number of blocks
of a partition.
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We denote by .�1; : : : ;�k/D .�i /1�i�k with �i 2Sn, or sometimes O�, an ordered sequence
of k permutations, that is, a constellation (see Sec. 2.5).

In this paper, we will deal with indices, permutations, and sequences of permutations
bearing a color c 2 ¹1; : : : ; Dº. The color is indicated in superscript or subscript: ac1
are indices, �c are permutations etc. D-uplets will be written in bold, for instance � D
.�1; : : : ; �D/ with �c 2 Sn is a D-uple of permutations (Sn denotes the set of .nŠ/D such
D-uplets), and O� is a D-uple of constellations. For �; � 2 Sn, we denote by � D ���1

the D-uple of permutations � D .�1��11 ; : : : ; �D�
�1
D /.

We denote by �;� 0; �1; �2 etc. partitions of the set ¹1; : : : ; nº, and by P .n/ the set of
all such partitions. The notation j�j is used for the number of blocks of � , while B 2 �
denotes the blocks, and jBj the cardinality of the block B . We denote by� the refinement
partial order: � 0 � � if each block of � 0 is a subset of some block of � . Furthermore,
_ denotes joining of partitions: � _ � 0 is the finest partition which is coarser than both
� and � 0. Let 1n be the one-block partition of ¹1; : : : ; nº.

The partition induced by the transitivity classes of the permutation � (i.e. the disjoint
cycles of �) is denoted by….�/, hence j….�/j D #.�/. Further, dp.�/ denotes the number
of cycles of � with p elements (d1.�/ is the number of fixed points of �) and we haveX

p�1

dp.�/ D #.�/ D j….�/j D n � k�k:

Note that if � � ….�/, then � stabilizes the blocks of � , that is, �.B/ D B for all
B 2 � .

Finally, ….�; �/ denotes the partition induced by the transitivity classes of the group
generated by ¹�c ; �c j c 2 ¹1; : : : ; Dºº, that is, ….�; �/ D

WD
cD1.….�c/ _….�c// and

j….�; �/j is its number of blocks. Note that all the permutations in �; � stabilize the
blocks of some partition � if and only if ….�;�/ � � .

2.2. Trace invariants

We are interested in the invariants that can be built starting from an ND �ND matrix A.
We define the trace invariant associated to � 2 Sn as

Tr� .A/ D
X

all indices

� nY
sD1

Ab1s :::bDs ;a1s :::aDs

� Y
c2¹1;:::;Dº

� nY
sD1

ıacs ;bc�c.s/

�
:

These quantities are obviously invariant under conjugation by U.N/˝D , that is, under
A 7! UAU ? with U D U .1/ ˝ � � � ˝ U .D/; U .c/ 2 U.N/. For example:

- For D D 1 any Tr� .A/ is a product of traces of powers of A, and the powers are the
lengths of the cycles of � :

Tr� .A/ D
Y
p�1

ŒTr.Ap/�dp.�/: (2.2)

For n D 5;D D 1 and � D .123/.45/ we get Tr� .A/ D Tr.A2/Tr.A3/ .
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- If all the � ’s are equal, �c D � , then Tr� .A/ is again a product of traces of powers of
A, but this time the traces are over indices of size ND . Taking as before � D .123/.45/
(n D 5 and D arbitrary) we get Tr.�;:::;�/.A/ D Tr.A2/Tr.A3/.

- We finish with an example with different � ’s. For n D 2, D D 2, �1 D .12/, and �2 D
.1/.2/,

Tr.�1;�2/.A/ D Tr1ŒTr2.A/Tr2.A/�;

where Trc denotes the partial trace on the index of color c.

2.3. Weingarten calculus

Weingarten calculus [43] allows one to integrate any polynomial function on the unitary
group. There exists a function W .N/ W Sn ! R such that, denoting by dU the Haar mea-
sure on U.N/, we have (see [13])Z
dU Ui1a1 � � �UinanUj1b1 � � �Ujnbn D

X
�;�2Sn

� nY
sD1

ıis ;j�.s/

�� nY
sD1

ıas ;b�.s/

�
W .N/.���1/:

(2.3)

The function W .N/ is uniquely defined if and only if n � N , and it follows from obvious
commutativity relations that W .N/.���1/ depends only on the conjugacy class of ���1,
that is, W .N/ is a central function on the symmetric group Sn. The functions W .N/ are
called Weingarten functions.

The 1=N expansion of Weingarten functions. We start with a theorem that characterizes
and defines the Weingarten functions. Multiplying (2.3) by

Qn
sD1 ıas ;bs and summing the

repeated indices, we get

Theorem 2.1 (Collins–Śniady [15]). The Weingarten function � 7! W .N/.�/ and the
function � 7!ˆ.�/DN #.�/DN nıid;� CN

n
P
�¤idN

�k�kı�I� are pseudo-inverses under
convolution. In particular, for N � n one hasX

�2Sn

W .N/.�/ˆ.��1�/ D ı�;id:

This theorem can be used to compute the Weingarten functions:

W .N/.�/ D N�n
X
k�0

X
�1;:::;�k2S

�
n

�1����kD�

.�1/kN�
Pk
iD1k�ik; (2.4)

with the convention that empty products are 1 and empty sums are 0. For k D 0, � is an
empty product in Sn, hence � D id, and the empty sum

Pk
iD1k�ik is zero. This expansion

is convergent for N � n.
The coefficient of N�n�l in the 1=N expansion of W .N/.�/ is identified as in [13]:

W .N/.�/ D N�n
X
l�0

.�1/lp.�I l/N�l ; .�1/lp.�I l/ D
X
k�0

.�1/km.�I l; k/;
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where

m.�I l; k/ D Card
°
.�i /1�i�k

ˇ̌̌
�i 2 S

�
n with �1 � � � �k D � and

kX
iD1

k�ik D l
±
; (2.5)

and for l D 0 or 1, we have respectivelym.�I0;k/D ı�;idık;0 andm.�;1;k/D ık;1ık�k;1,
while for k D 0 or 1, we have respectively m.�I l; 0/ D ı�;idıl;0 and m.�; l; 1/ D

ıl;k�k.1 � ı�;id/. We conclude that p.�I 0/ D ı�;id and p.�; 1/ D ık�k;1.
This expression for the coefficient of N�n�l as an alternating sum does not render

explicit its sign. Another expression [14] (see also [37]) solves this issue.

Definition 2.2. Let .pq/ be the elementary transposition of p and q (that is, we use cycle
notation, but we omit the cycles with one element). An ordered l-tuple of transpositions
�1 D .p1q1/; : : : ; �l D .plql / is said to have weakly monotone maxima if pk < qk for
each k 2 ¹1; : : : ; lº and qk � qkC1 for each k 2 ¹1; : : : ; l � 1º.

Theorem 2.3 ([14, 37]). Denote by P.�I l/ the set of solutions of � D �1 : : : �l with
�1; : : : ; �l elementary transpositions with weakly monotone maxima. Then p.�I l/ D
jP.�I l/j.

Asymptotics of Weingarten functions. Classical theorems in combinatorics allow one to
obtain the asymptotics of Weingarten functions [13, Theorem 2.15 (ii)].

Corollary 2.4. For � 2 Sn, we have the asymptotic expansion

W .N/.�/ D N�n�k�kM.�/.1CO.N�2//; (2.6)

where M.�/ is Biane–Speicher’s Möbius function on the lattice of non-crossing partitions
[39, Lecture 10], which is a central function which can be written in terms of the Catalan
numbers:

M.�/ D
Y
p�1

�
.�1/p�1

p

�
2p � 2

p � 1

��dp.�/
: (2.7)

2.4. Moments of the tensor HCIZ integral

The moments of the tensor HCIZ integral (1.1) can be written in terms of Weingarten
functions.

Proposition 2.5. The moments of the tensor HCIZ integral (1.1) are

EU
�
ŒTr.AUBU �/�n

�
D

Z
ŒdU � ŒTr.AUBU �/�n

D

X
�;�2Sn

Tr� .A/Tr��1.B/
DY
cD1

W .N/.�c�
�1
c /; (2.8)

where ��1 D .��11 ; : : : ; ��1D / and W .N/.�/ are the Weingarten functions.
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Proof. The proof is straightforward. Starting from

ŒTr.AUBU �/�n D
X

all indices

nY
sD1

Aj1s :::jDs ;i1s :::iDs

� DY
cD1

U
.c/

ics a
c
s

�
Ba1s :::aDs ;b1s :::bDs

� DY
cD1

NU
.c/

j cs b
c
s

�
;

and using D times the Weingarten formula (2.3), the expectation amounts to

X
�;�2Sn

X
all indices

� nY
sD1

Aj1s :::jDs ;i1s :::iDs Ba1s :::aDs ;b1s :::bDs

�� DY
cD1

nY
sD1

ıics ;j c�c.s/
ıacs ;bc�c.s/

�
�W .N/.�c�

�1
c /;

where we recognize the definition of the trace invariants (Sec. 2.2). Observe that the first
and the second indices of the U ’s in (2.3) play slightly different roles, leading to the fact
that the permutations for the invariant of B are inverted.

From Corollary 2.4, we obtain the asymptotic expression of the moments:

E
�
ŒTr.AUBU �/�n

�
D

X
�;�2Sn

Tr� .A/Tr��1.B/
DY
cD1

M.�c�
�1
c /N�n�k�c�

�1
c k.1CO.N�2//: (2.9)

2.5. Constellations

We now review some results on the number of constellations. Constellations are central
to the combinatorial interpretation of our main results.

Definition and graphical representation. Intuitively, a combinatorial map (fatgraph, or
ribbon graph in the physics literature) is a graph embedded in a closed surface2 in which
each edge is subdivided into two half -edges. The map is bipartite if its vertices have one
of two flavors (say 1 and 2) and every edge connects two vertices of different flavors.

Formally a bipartite combinatorial map, or a 2-constellation, is an ordered pair of
permutations, O� D .�1; �2/; �1; �2 2 Sn. It is represented canonically as an embedded
graph as follows:

� We let the flavor be i D 1; 2. To each cycle of �i we draw a vertex embedded in the
plane (a disc). To each s 2 ¹1; : : : ; nº we attach a half-edge, i.e. an outgoing segment
to one of the vertices, labeled hsii . Every s belongs to a cycle of �i and we draw the
half-edges hsii ; h�i .s/ii ; h�i .�i .s//ii etc. ordered cyclically counterclockwise around
the vertex corresponding to this cycle.

2More precisely, the graph is drawn on the surface without edge-crossing and so that the com-
plement of the graph in the surface is homeomorphic to a collection of discs. The graph is then
considered up to orientation preserving homeomorphism of the surface whose restriction to the
embedded graph is an isomorphism.
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� For every s 2 ¹1; : : : ; nºwe join the two half-edges hsi1 and hsi2 into an edge labeled s.

The permutations �1 and �2 encode the “successor” half-edge: h�i .s/ii is the first half-
edge encountered after hsii when turning counterclockwise around the vertex of flavor i
to which hsii belongs. The permutation �1�2 maps the edge s onto the edge �1.�2.s//
obtained by first stepping from s to �2.s/, the successor of s on the vertex of flavor 2 to
which s is hooked, and then stepping from �2.s/ to �1.�2.s//, the successor of �2.s/ on
the vertex of flavor 1 to which �2.s/ is hooked. The cycles of �1�2 are the faces of the
map.

This can be generalized to k� 2 flavors. A labeled k-constellation is an ordered k-uple
of permutations, O�D .�1; : : : ; �k/; �1; : : : ; �k 2 Sn. The construction below is exemplified
in Fig. 1, which we will be using extensively:

� To each permutation �i , i 2 ¹1; : : : ; kº we associate a set of embedded vertices of
flavor i corresponding to its cycles. In Fig. 1 the flavored vertices are represented as
blue (for flavor 1), red (for flavor 2) and yellow (for flavor 3). As �1 D .12/.354/ there
are two blue vertices in the figure, one bi-valent corresponding to the cycle .12/ and
one tri-valent corresponding to the cycle .354/.

The vertices of flavor i have a total of n outgoing, cyclically ordered counterclock-
wise, half-edges hsii for s 2 ¹1; : : : ; nº. For instance, in Fig. 1, the three half-edges
incident to the tri-valent blue vertex are labeled h3i1 ; h5i1 and h4i1.

� To each s 2 ¹1; : : : ; nº we associate an embedded white vertex Œs�.3 We connect the
half-edges hsii for all the flavors i to the vertex Œs� via edges such that the flavors are

1

1

3

3

3

2

2

2

[1]

[2] [3]

[5]

[4]
(1)

(5)

(3)

(24) 〈5〉1

〈4〉1
〈3〉1

Fig. 1. A constellation with k D 3 flavors and n D 5 with �1 D .12/.354/, �2 D .1/.253/.4/

and �3 D .134/.2/.5/. Its faces are the cycles of �1�2�3 D .1/.24/.3/.5/, corresponding to three
hexagons and one dodecagon. The labels in the figure are respectively the flavors of the vertices (no
parenthesis), the labels of some of the half-edges (angle brackets), the labels of the white vertices
(square brackets), and the cycles of �1�2�3 corresponding to the faces (parentheses).

3The labeled white vertices generalize the labeled edges of the bipartite maps and can be viewed
as hyper-edges.
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encountered in the order 1; : : : ; k when turning around the vertex Œs� clockwise; see
Fig. 1. We label the edges by their end vertices as .Œs�; i/ or .i; Œs�/.

� The faces of the constellation are the disjoint cycles of the product �1 � � � �k . A cycle
of length p corresponds to a face with 2pk corners (bounded by 2pk edges) that are
alternately white vertices Œs� and flavored vertices corresponding to �i . The flavored
vertices are encountered cyclically in the order k; k � 1; : : : ; 2; 1 when going around
the face while keeping the boundary edges to the left.

The point is that the composition of the permutations �i encodes the walk around
the faces of the constellation. To see this, let us consider the face to the right of the edge
.Œ4�; 3/ in Fig. 1. Its perimeter consists of the edges

.Œ4�; 3/; .3; Œ1�/; .Œ1�; 2/; .2; Œ1�/; .Œ1�; 1/; .1; Œ2�/;

.Œ2�; 3/; .3; Œ2�/; .Œ2�; 2/; .2; Œ5�/; .Œ5�; 1/; .1; Œ4�/:

The first two edges .Œ4�; 3/; .3; Œ1�/ encode the fact that one passes from the white
vertex Œ4� to the white vertex Œ1� by passing through a vertex of flavor 3. This translates
into the fact that �3.4/ D 1. The next couple of edges .Œ1�; 2/; .2; Œ1�/ leads to the
fact that �2.1/ D 1, hence the first four edges together read, in terms of permutations,
�2�3.4/D 1. Finally, .Œ1�; 1/; .1; Œ2�/ signifies that �1.1/D 2, which combined with the
previous edges reads �1�2�3.4/ D 2. Continuing the walk along the face encodes the
action with �3; �2 and �1 again. The face closes when we come back to the vertex Œ4�,
at which point the tour around the face reads �1�2�3�1�2�3.4/ D 4.

� The connected components of the resulting graph correspond to the transitivity classes
of the group generated by ¹�1; : : : ; �kº. Indeed, for s; s0 2 ¹1; : : : ; nº such that
�i1 � � � �il .s/ D s0, the vertices Œs� and Œs0� are connected in the constellation by the
path

.Œs�; il /.il ; Œ�il .s/�/ : : : .Œ�i2 � � � �il .s/�i1/.i1Œs
0�/:

The partition ….�1; : : : ; �k/ D
Wk
iD1….�i / � …. O�/ is reconstructed by collecting all

the white vertices Œs� belonging to the same connected component of the constellation
into a block. The number of connected components of a constellation is j…. O�/j. The
constellation is said to be connected if j…. O�/j D 1, that is, the group generated by
¹�1; : : : ; �kº acts transitively on ¹1; : : : ; nº.

For k D 2 the white vertices Œs� have valency 2 and therefore can be viewed as deco-
rations (labels) on edges, and we recover the bipartite maps described at the beginning of
the section.

Euler characteristic. A k-constellation O� has
P
i #.�i /Cn vertices, kn edges, #.�1 � � ��k/

faces and j…. O�/j connected components. Being a combinatorial map, it has a non-negative
genus, denoted by g. O�/ � 0, and Euler characteristic

kX
iD1

#.�i / � n.k � 1/C #.�1 � � � �k/ D 2j…. O�/j � 2g. O�/: (2.10)
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A constellation (seen as a combinatorial map) is planar, g. O�/ D 0, if and only if it can be
drawn on the 2-sphere without edge-crossings so that each region of the complement of
the graph on the sphere is homeomorphic to a disc.

In terms of the length of permutations, (2.10) becomes

kX
iD1

k�ik D 2n � k�1 � � � �kk C 2g. O�/ � 2j…. O�/j: (2.11)

Among the connected constellations, the planar ones are such that
Pk
iD1k�ik is min-

imal at fixed � D �1 � � � �k .

Counting planar constellations. The main result we will need is due to [5] and concerns
the number of planar constellations. We fix � 2 Sn. For k � 2, the number of connected
planar k-constellations .�1; : : : ; �k/ in Sn with faces corresponding to disjoint cycles of
�1 � � � �k D � is

Q
.�Ik/ D k
Œ.k�1/n�1�Š

Œ.k�1/n�#.�/C2�Š

Y
p�1

�
p

�
kp�1

p

��dp.�/
D

X
�1;:::;�k2Sn; �1����kD�

…. O�/D1n;
P
ik�ikD2n�2�k�k

1:

(2.12)
For the boundary values, we get

Q
.�I 0/ D ı�;id; Q
.�I 1/ D ı#.�/;1: (2.13)

This can be adapted to constellations .�1; : : : ; �k/ satisfying the same assumptions,
but for which none of the permutations �i involved is the identity [5] (such constellations
are said to be proper), whose number is given by


.�I k/ D

kX
jD0

�
k

j

�
Q
.�I j /.�1/kCj ; (2.14)

and 
.�I 0/ D ı�;id. One can furthermore compute [13] the following alternating sum:


.�/ D
X
k�0

.�1/k
.�; k/ D .�1/k�k
.3n � k�k � 3/Š

.2n/Š

Y
p�1

�
.2p/Š

pŠ.p � 1/Š

�dp.�/
D M.�/

.3n � k�k � 3/Š

.2n/Š

Y
p�1

Œ2p.2p � 1/�dp.�/; (2.15)

with M.�/ the Möbius function (2.7) on non-crossing partitions. Note that this is a class
function.

More generally, we denote by Q
l .�I k/ and 
l .�I k/ the numbers of generic (i.e. not
necessarily proper) and respectively proper connected k-constellations with faces corre-
sponding to the disjoint cycles of �1 � � � �k D � with

Pk
iD1k�ik D l (hence with genus
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2g. O�/ D l C 2 � 2nC k�k):

Q
l .�I k/ D
X

�1;:::;�k2Sn; �1����kD�P
ik�ikDl;…. O�/D1n

1;


l .�I k/ D
X

�1;:::;�k2S
�
n ; �1����kD�P

ik�ikDl;…. O�/D1n

1 D

kX
jD0

�
k

j

�
Q
l .�I j /.�1/

kCj ;

where the last equality follows by inverting the relation Q
l .�I k/ D
Pk
jD0

�
k
j

�

l .�I j /.

Finally, we denote by 
l .�/ the alternating sum of the numbers of connected proper
constellations with faces corresponding to the disjoint cycles of �1 � � � �k D � withPk
iD1k�ik D l :


l .�/ D
X
k�0

.�1/k
l .�I k/: (2.16)

Equations (2.12), (2.14), and (2.15) correspond to the minimal possible value l D

2n � 2 � k�k.

2.6. Cumulants

For X some random variable, the cumulant C.Xn/, also sometimes called connected
correlation, is defined by

C.t/ D log E.exp tX/ D
X
p�1

tn
C.Xn/

nŠ
:

For instance, the second cumulant C.X2/ D E.X2/�E.X/2 is the variance of the prob-
ability distribution of X . The cumulants can be written in terms of the moments of the
distribution and vice versa. In order to write down the relation between the two in a con-
venient form, we introduce some notation.

It is convenient to distinguish between the different factors X in the monomial Xn.
We do this by introducing a fictitious label i D 1; : : : ; n and writing Xn D X1 � � �Xn
where Xi D X for all i . Then the nth cumulant can be written as C.Xn/ � C.

Qn
iD1Xi /.

For any partition � 2 P .n/ with blocks B 2 � , we define C� D
Q
B2� C.

Q
i2B Xi /.

We are now in a position to write expectations in terms of cumulants:

E
� nY
iD1

Xi

�
D

X
�2P .n/

C� : (2.17)

Equation (2.17) can be inverted through the Möbius inversion formula to express
cumulants in terms of expectations. Defining E� D

Q
B2� E.

Q
i2B Xi /, we have

E� D
X
� 0��

C� 0 ; C� D
X
� 0��

�� 0;�E� 0 ; (2.18)
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where �� 0;� is the Möbius function (2.7) for the lattice of partitions [41]:4

�� 0;� D
Y
B2�

.�1/
j� 0
jB
j�1
.j� 0
jB j � 1/Š;

where � 0
jB

is the restriction of the partition � 0 to the block B 2 � . This restriction is well-
defined because � 0 � � . In particular, recalling that 1n denotes the one-block partition,
we have

C.Xn/ D C1n D
X
�

��E� ; �� � ��;1n D .�1/
j�j�1.j�j � 1/Š: (2.19)

3. Cumulants of the tensor HCIZ integral

The study of cumulants of the tensor HCIZ integral is the core of this paper. They expand
in terms of trace invariants of A and B times cumulant Weingarten functions defined
in Sec. 3.1. An expression of the latter as a series in 1=N is derived in Sec. 3.2. The
coefficients of this expansion are shown to count certain transitive factorizations of D-
uplets of permutations.

3.1. Cumulant Weingarten functions

We denote by �.�/ the indicator function which is 1 if the condition � is true and 0 other-
wise.

Definition 3.1 (Cumulant Weingarten functions). For any partition � , let W .N/
� Œ�;�� be

- zero if at least one of the permutations involved in � or � does not stabilize the blocks
of � , that is, W .N/

� Œ�;�� is zero unless ….�;�/ � � ;

- the product over the blocks of � of Weingarten functions involving permutations
restricted to these blocks if all the permutations in �;� stabilize the blocks of � .

Denoting by �cjB the restriction of �c to the block B 2 � (which is well-defined
whenever �c stabilizes the blocks of �), we have

W .N/
� Œ�;�� D �.….�;�/ � �/

Y
B2�

DY
cD1

W .N/.�cjB�
�1
cjB/:

The cumulant Weingarten function W .N/
C Œ�;�� is

W
.N/
C Œ�;�� D

X
�

��W
.N/
� Œ�;��; (3.1)

where �� D ��;1n is the Möbius function with the second argument set to the one-block
partition.

4This should not be confused with the Möbius function for the lattice of non-crossing partitions.
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Observe that, due to the indicator function, both W .N/
� Œ�; �� and W .N/

C Œ�; �� depend
on � and � and not only on the product ���1. The cumulant Weingarten functions arise
naturally in the expansion of the cumulants of the tensor HCIZ integral in terms of trace
invariants.

Proposition 3.2. The cumulants of the tensor HCIZ integral (1.1) are

C
�
ŒTr.AUBU �/�n

�
D

X
�;�2Sn

Tr� .A/Tr��1.B/W
.N/
C Œ�;��; (3.2)

where W .N/
C Œ�;�� is the cumulant Weingarten function, uniquely defined for N � n.

Proof. To any partition � , we associate the expectation

E� D
Y
B2�

E
�Y
i2B

Tr.AUiBU �i /
�
D

X
�;�2Sn

Tr� .A/Tr��1.B/W
.N/
� Œ�;��;

where the second equality follows from Prop. 2.5. It then follows from (2.19) that

C
�
ŒTr.AUBU �/�n

�
D

X
�;�2Sn

Tr� .A/Tr��1.B/
X
�

��W
.N/
� Œ�;��;

which leads to (3.2) using the definition (3.1).

3.2. Exact expression of cumulant Weingarten functions

Theorem 3.3. The cumulant Weingarten functions are

W
.N/
C Œ�;�� D N�nD

X
l�0

.�1/lpC Œ�;�I l �N
�l ;

where
.�1/lpC Œ�;�I l � D

X
k�0

.�1/kmC .�;�I l; k/;

and mC .�; �I l; k/ is the number of D-uplets of constellations .�cic /1�ic�kc , c 2
¹1; : : : ;Dº, with the following properties:

� all the permutations �cic are different from the identity permutation,

� for all c 2 ¹1; : : : ;Dº, �c��1c D �
c
1 � � � �

c
kc

,

�
PD
cD1 kc D k with kc � 0, and kc D 0 implies �c D �c ,

�
PD
cD1

Pkc
icD1
k�cick D l ,

� the collection of all ¹�c ; �c ; .�cic /1�ic�kc º1�c�D acts transitively on ¹1; : : : ; nº.

This expansion is convergent for N � n.

The boundary values are mC .�; �I 0; k/ D ıj….�;�/j;1ı�;�ık;0 and pC Œ�; �I 0� D

ıj….�;�/j;1ı�;� .
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Proof. The functions W .N/
� Œ�; �� in Def. 3.1 are non-trivial only if � and � stabilize the

blocks of � . We let � D ���1 and denote by �cjB the restriction of �c to the block B .
Then (2.4) leads to

W .N/
� Œ�;�� D �.….�;�/ � �/

�

DY
cD1

Y
B2�

N�jBj
� X
kBc �0

X
�
c;B
1

;:::�
c;B

kBc

2S�
jBj

�
c;B
1
����
c;B

kBc

D�cjB

.�1/k
B
c N

�
PkBc
iBc D1

k�
c;B

iBc

k
�

D �.….�;�/ � �/
X

¹kBc ºc;B�0

X
¹�
c;B
1

;:::�
c;B

kBc

2S�
jBj
ºc;B

¹�
c;B
1
����
c;B

kBc

D�cjB ºc;B

.�1/
P
c;B k

B
c

�N
�nD�

P
c;B

PkBc
iBc D1

k�
c;B

iBc

k

: (3.3)

where we have exchanged the sums and the products. Note that if kBc D 0 for some c
and B , then there are no permutations �c;B

iBc
and the rightmost sum becomes ı�cjB ;id.

The permutations �c;B
iBc

can be trivially lifted to permutations on ¹1; : : : ; nº by sup-
plementing them with the identity on the complement of B . We denote the set of all the
(lifted) permutations � by

O� D
®
�
c;B

iBc

ˇ̌
1 � iBc � k

B
c ; B 2 �; c 2 ¹1; : : : ;Dº

¯
;

and by …. O�/ the partition induced by the transitivity classes of the group generated by all
the permutations in O�. As �c;B

iBc
acts non-trivially only on the block B 2 � , it follows that

all the permutations in O� stabilize the partition � , hence …. O�/ � � .
Now comes a subtle point. We would like to rewrite W .N/

� Œ�; �� via a moment-
cumulant formula such as (2.18), that is, as a sum of “cumulants” over � 0 � � . The
obvious idea to rearrange the sum according to the partition …. O�/ of a summand which
in turn sums all the O�s with the same …. O�/ fails due to the global factor �.….�;�/ � �/.
Another idea works: we rearrange the sum according to the partition ….�; �/ _…. O�/ �

….�;�/, that is, we note that

W .N/
� Œ�;�� D

X
….�;�/�� 0��

W
.N/
C;� 0 Œ�;��;

with the cumulant

W
.N/
C;� 0 Œ�;�� D

X
¹kBc ºc;B�0

X
¹�
c;B
1

;:::;�
c;B

kBc

2S�
jBj
ºc;B

¹�
c;B
1
����
c;B

kBc

D�cjB ºc;B

….�;�/_…. O�/D� 0

.�1/
P
c;B k

B
c N

�nD�
P
c;B

PkBc
iBc D1

k�
c;B

iBc

k

:

(3.4)
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This expression is inverted using (2.18) to yield

W
.N/
C;� Œ�;�� D

X
….�;�/�� 0��

�� 0;�W
.N/
� 0 Œ�;��:

Choosing � D 1n, we recover the right hand side of (3.1), thusW .N/
C Œ�;��DW

.N/
C;1n

Œ�;��,
i.e.

W
.N/
C Œ�;��D

X
¹kcºc�0

X
¹�c
1
;:::;�c

kc
2S�n ; �

c
1
����c
kc
D�cºc

….�;�/_…. O�/D1n

.�1/
P
c kcN

�nD�
P
c

Pkc
icD1

k�c
ic
k
;

D

X
k;l�0

.�1/kN�nD�l
X
¹kcºc�0P
c kcDk

X
¹�c
1
;:::;�c

kc
2S�n ; �

c
1
����c
kc
D�cºc

….�;�/_…. O�/D1n;
PD
cD1

Pkc
icD1

k�c
ic
kDl

1; (3.5)

and we recognize the coefficient of N�nD�l in this expansion to be the alternating sum
defining mC .�;�I l; k/.

One drawback of (3.5) is that analytic bounds are difficult to obtain because the sum
is signed. On the other hand, it renders obvious the invariance by relabeling of ¹1; : : : ; nº.

Corollary 3.4. If ¹�;�º acts transitively on ¹1; : : : ; nº, that is, j….�;�/j D 1, then

W
.N/
C Œ�;��j

j….�;�/jD1
D

DY
cD1

W .N/Œ�c�
�1
c � D

DY
cD1

N�n�k�c�
�1
c kM.�c�

�1
c /.1CO.N�2//:

If moreover � D �, then

W
.N/
C Œ�; � �j

j….� /jD1
D N�nD.1CO.N�2//:

Proof. If ….�; �/ D 1n, the condition ….�; �/ _…. O�/ D 1n in (3.5) is lifted, and we
recover the product of (2.4) for each color.

Remark 3.5. Let D D 1 and fix �; � 2 Sn. We observe that ….�; �/ � ….���1/ and
…. O�/ � ….���1/ for any O� such that ���1 D �1 � � � �k . This is because the group gener-
ated by ���1 is a subgroup of both the group generated by .�; �/ and the one generated
by .�1; : : : ; �k/.

We have ….�; �/ _…. O�/ D …. O�/ for any O� such that ���1 D �1 � � � �k if and only if
….�; �/ D ….���1/.5 This comes about as follows:

� If ….�; �/ D ….���1/ then taking into account that …. O�/ � ….���1/, we conclude
that …. O�/ � ….�; �/; therefore ….�; �/ _…. O�/ D …. O�/.

5The condition ….�; �/ D ….���1/ means that the bipartite map .�; ��1/ has one face per
each connected component: the faces of this map are exactly the cycles of ���1, hence correspond
to the blocks of ….���1/, while the connected components correspond to the blocks of ….�; �/.
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� Conversely, assume that….�;�/>….���1/. We will exhibit three permutations �1;�2;
�3 such that �1�2�3 D ���1 and ….�; �/ _…. O�/ > …. O�/.

As….�;�/>….���1/ there exists a block of….�;�/ containing at least two blocks
B1 and B2 of ….���1/. We choose �1; �2; �3 as follows:

– �1jB1 D .��
�1/jB1 and �1 is the identity on the complement of B1,

– �2jB2 D .��
�1/jB2 and �2 is the identity on the complement of B2,

– �3 is the identity on B1 and B2 and coincides with ���1 on their complement:

�3j¹1;:::nºn.B1[B2/ D .��
�1/j¹1;:::nºn.B1nB2/:

Obviously ���1 D �1�2�3. At the same time ….�; �/ _ …. O�/ > …. O�/ because the
blocks B1 and B2 which are distinct blocks in …. O�/ are collapsed into one block of
….�; �/.

Now, at D D 1, for any � and � we have

mC .�; � I l; k/ D
X

�1;:::;�k2S
�
n ; �1:::�kD��

�1Pk
iD1k�ikDl;….�;�/_…. O�/D1n

1; (3.6)

and using on the one hand the remark above and on the other noting that….���1/�…. O�/
we get

mC .�; � I l; k/j….�;�/D….���1/ D mC .��
�1; idI l; k/ D 
l .���1I k/;

.�1/lpC Œ�; � I l �j….�;�/D….���1/ D .�1/
lpC Œ��

�1; idI l � D 
l .���1/; (3.7)

as in both cases the condition ….�; �/ _…. O�/ D 1n in (3.6) reduces to …. O�/ D 1n.

There is a non-signed version in terms of a generalization of monotone double Hurwitz
numbers, which we describe now (see also Sec. 4.3).

Proposition 3.6. The number pC Œ�; �I l � in Thm. 3.3 is also the number of D ordered
sequences of transpositions .�11; : : : ; �

1
l1
/; : : : ; .�D1 ; : : : ; �

D
lD
/ such that

� for every c 2 ¹1; : : : ; Dº, the lc transpositions �c1; : : : ; �
c
lc

have weakly monotone
maxima .Def. 2.2/ and satisfy �c D �c1 � � ��

c
lc
�c ,

� l1 C � � � C lD D l ,

� the group generated by all the transpositions � and all �c and �c is transitive on
¹1; : : : ; nº.

In particular, pC Œ�;�I l � is a non-negative integer.

Proof. Note that

W .N/
� Œ�;�� D �.….�;�/ � �/

X
¹lBc ºc;B�0

X
¹�
c;B
1

;:::;�
c;B

lBc

2P.�cjB ;l
B
c /ºc;B

.�N�1/
P
c;B l

B
c ;

(3.8)

where P.�; l/ denotes the set of transpositions with weakly monotone maxima which
factorize � (Def. 2.2). From this point on, the proof is mutatis mutandis the same as that
of Thm. 3.3.
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4. Asymptotics of cumulant Weingarten functions

In many applications, such as random tensor models, one is mostly interested in comput-
ing the large-N contribution to the logarithm CD;N .t; A; B/ of the tensor HCIZ integral
(1.1). For some given �; � 2 Sn, one thus needs to identify the smallest integer l such
that pC Œ�; �I l � does not vanish and, if possible, to obtain an explicit expression for
the corresponding pC . We provide this in Thm. 4.1. A general combinatorial formula,
(4.6), is furthermore derived for pC Œ�; �I l � for any l . To our knowledge this expression
for the sub-leading contributions to the cumulant Weingarten functions is new also for
D D 1.

4.1. Main result

The large-N behavior of cumulant Weingarten functions is captured by the following
theorem.

Theorem 4.1. For any l , the coefficient pC Œ�;�I l � is given by

.�1/lpC Œ�;�I l � D
X

�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1n

X
l1;:::;lD�0P

lcDl

DY
cD1

h X
¹lBc ºBc2�c�0P

Bc
lBcDlc

Y
Bc2�c


lBc .�cjBc /
i
;

(4.1)

with �c D �c��1c and 
l .�/ defined in Sec. 2.5. The smallest value of l such that pC Œ�;�I l �
does not vanish is

`.�;�/ D

DX
cD1

k�c�
�1
c k C 2.j….�;�/j � 1/: (4.2)

In order to simplify the notation we sometimes denote ` � `.�; �/. The cumulant Wein-
garten functions thus have the asymptotic expression

W
.N/
C Œ�;�� D N�nD�`.�1/`pC Œ�;�I `�.1CO.N

�2//; (4.3)

where the leading coefficient is

.�1/`pC Œ�;�; `� D
X

�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1nP
c.j….�c/j�j�c j/Dj….�;�/j�1

DY
cD1

Y
Bc2�c


.�cjBc /: (4.4)

Note that �cjBc is well-defined as �c � ….�c/. In detail,


.�cjBc / D M.�cjBc /
.3jBc j � k�cjBck � 3/Š

.2jBc j/Š

Y
p�1

Œ2p.2p � 1/�dp.�cjBc /; (4.5)

with the non-crossing Möbius function M defined in (2.7).
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In general, for l > `.�;�/, (4.1) can be rewritten as

.�1/lpC Œ�;�I l � D

l�`
2X

LD0

X
�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1nP

c.j….�c/j�j�c j/Dj….�;�/jCL�1

X
g1;:::;gD�0P
c gcD

l�`
2 �L

DY
cD1

h X
¹gBc ºBc2�c�0P
Bc
gBcDgc

Y
Bc2�c


l.gBc /.�cjBc /
i
;

(4.6)

where l.gBc / D jBc j C….�cjBc /C 2gBc � 2.

Proof. See Sec. 4.2.

The sum over partitions appears rather complicated, but it has a simple graphical inter-
pretation in terms of sums of trees. This interpretation was developed in [46] for D D 1
and l D `.�; �/ and is generalized in this paper to larger l and larger D in Sec. 5.3.2.

Corollary 3.4 implies that if j….�;�/j D 1 then .�1/`pC Œ�;�; `� D
QD
cD1 M.�c/. We

have chosen to factor the Möbius functions to render this explicit. This can be obtained
directly from (4.4): as �c � ….�c/, we have j….�c/j � j�c j, and from the condition in
the sum, j….�c/j D j�c j so that only �c D ….�c/ contributes, and �cjBc is the restriction
of �c to one of its cycles:

.3jBc j � k�cjBck � 3/Š

.2jBc j/Š

Y
p�1

Œ2p.2p � 1/�dp.�cjBc / D 1:

The leading contribution at large N to the cumulant is

C
�
ŒTr.AUBU �/�n

�
D N�nD

X
�;�2Sn

Tr� .A/Tr��1.B/N
�
PD
cD1k�c�

�1
c k�2.j….�;�/j�1/

� .�1/`pC Œ�;�; `� .1CO.N
�2//: (4.7)

As a result of the scaling behavior of the trace invariants Tr� .A/ and Tr��1.B/ in
terms ofN , the sum in (4.7) is dominated by a subset of its terms. For instance if Tr� .A/�
Tr��1.B/ � O.1/ in the limit of large N , then the term with � D �, k….� /k D 1 will
dominate. If Tr� .A/ � 1 but Tr��1.B/ � N

P
c #.�c/, more terms dominate at large N .

A detailed study of the possible behaviors of the cumulant, relevant for different applica-
tions to physics, will be conducted in future work.

4.2. Proof of Theorem 4.1

The proof of Theorem 4.1 is divided into four parts:

- Derivation of (4.1). Although lengthy, this part is straightforward: we compute the sum
over k in Thm. 3.3. We obtain (4.1) where the right hand side is an alternating sum
(with constraints) over constellations.
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- Reinterpretation of ….�;�/ _ �1 _ � � � _ �D D 1n. We show that the condition

….�;�/ _ �1 _ � � � _ �D D 1n;

which constrains the sum over ¹�cºc in (4.1), is equivalent to requiring that a certain
abstract graph, denoted by GŒ….�;�/; ¹�cºc I….�c/�, is connected.

- The lower bound (4.2) on l . We show that the leading order at large N (minimal l) in
(4.1) fulfills two conditions:

– the abstract graph GŒ….�; �/; ¹�cºc I….�c/� has minimal number of edges; as it is
connected, this means it is a tree;

– the constellations are planar.

We will show in Section 5 that these two conditions translate in fact into the planarity
of a certain nodal surface.

- Proof of (4.6). We rearrange the terms in (4.1) according to the number of excess edges
of the abstract graph GŒ….�; �/; ¹�cºc I….�c/� (i.e. the number of independent cycles,
or loop edges in the physics literature) and to the genera of the constellations to get (4.6).

Derivation of (4.1). Our starting point is Thm. 3.3, which states that

W
.N/
C Œ�;�� D N�nD

X
l�0

.�1/lpC Œ�;�I l �N
�l ;

.�1/lpC Œ�;�; l � D
X
k�0

.�1/kmC .�;�I l; k/;

where, denoting �c D �c��1c , we have

mC .�;�I l; k/ D
X
¹kcºc�0

X
¹�c
1
;:::;�c

kc
2S�n ;�

c
1
����c
kc
D�cºcP

c

Pkc
icD1

k�c
ic
kDl;

P
c kcDk

….�;�/_…. O�/D1n

1;

and O� denotes the D-uple of constellations . O�1; : : : ; O�D/ where, for c 2 ¹1; : : : ; Dº, the
constellation O�c is .�c1; : : : ; �

c
kc
/. We aim to derive the asymptotic behavior ofW .N/

C Œ�;��

using the results in Sec. 2.5. Let us classify the terms in the above formula by the values
lc D

Pkc
icD1
k�cick and by the partitions �c D …. O�c/ � ….�c/:

mC .�;�I l; k/ D
X

�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1n

X
l1;:::;lD�0P

c lcDl

X
¹kcºc�0P
c kcDk

DY
cD1

M.�c ; �c I lc ; kc/;

M.�c ; �c I lc ; kc/ D
X

�c
1
;:::;�c

kc
2S�n ; �

c
1
����c
kc
D�c

…. O�c/D�c ;
Pkc
icD1

k�c
ic
kDlc

1: (4.8)
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We wish to compute

.�1/lpC Œ�;�; l � D
X
k�0

.�1/kmC .�;�I l; k/

D

X
�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1n

X
l1;:::;lD�0P

c lcDl

DY
cD1

X
¹kcºc�0

.�1/kcM.�c ; �c I lc ; kc/: (4.9)

The sum
P
k�0.�1/

kM.�;�I l; k/. Let us focus on the rightmost sum of (4.9). We define

SŒ�; �I l � D
X
k�0

.�1/kM.�; �I l; k/; M.�; �I l; k/ D
X

�1;:::;�k2S
�
n ; �1����kD�P

ik�ikDl;…. O�/D�

1;

QM.�; �I l; k/ D
X

�1;:::;�k2Sn; �1����kD�P
ik�ikDl;…. O�/D�

1;

where we emphasize that, unlikeM , the sum defining QM includes the case when some of
the permutations �i are the identity. M and QM are related by

QM.�;�I l; q/D

qX
kD0

�
q

k

�
M.�;�I l; k/; M.�;�I l; k/D

kX
qD0

�
k

q

�
.�1/k�q QM.�;�I l; q/:

QM.�; �I l; q/ is a sum over q permutations �i . The first equation follows by noting that
if exactly q � k of these permutations are the identity then QM.�; �I l; q/ reduces to
M.�; �I l; k/; the second equation is obtained by inverting the first one.

The point is that QM factors over the blocks of � . As � (respectively �i ) stabilizes any
block B 2 � , it can be decomposed as the product of j�j permutations �jB (respectively
�i jB ), � D

Q
B �jB (respectively �i D

Q
B �i jB ), where we trivially lift �jB (respectively

�i jB ) to the whole set ¹1; : : : ; nº. The number of transpositions of �i is distributed among
the blocks of � , k�ik D

P
Bk�i jBk, and we getX

�1;:::;�q2Sn; �1����qD�P
ik�ikDl;…. O�/D�

1D
X

¹lB ºB�0P
B lBDl

Y
B2�

X
�1jB ;:::;�qjB2SjBj
�1jB ����qjBD�jBP

ik�ijBkDlB ;…. O�jB /D1jBj

1D
X

¹lB ºB�0P
B lBDl

Y
B2�

Q
lB .�jB Iq/;

where we recognize the number of connected q-constellations with fixed lB , Q
lB .�jB I q/
of Sec. 2.5. We emphasize that constellations are not necessarily proper (i.e. the sums run
over SjBj and not S�

jBj
). The number of arbitrary (i.e. not necessarily proper) constellations

is written in terms of the number of proper ones as

Q
lB .�jB I q/ D

qX
kBD0

�
q

kB

�

lB .�jB I kB/;
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and substituting, we find

SŒ�; �I l � D
X
k�0

kX
qD0

�
k

q

�
.�1/q QM.�; �I l; q/

D

X
¹lB ºB�0P
B lBDl

X
k�0

kX
qD0

�
k

q

�
.�1/q

Y
B2�

Q
lB .�jB I q/

D

X
¹lB ºB�0P
B lBDl

X
¹kB ºB�0

�Y
B2�


lB .�jB I kB/
��X
k�0

kX
qD0

�
k

q

�
.�1/q

Y
B2�

�
q

kB

��
;

with the convention that ill-defined binomial coefficients (e.g. with kB > q) are zero. At
fixed kB , the sum over q and k can be computed as it is the coefficient of the monomialQ
B x

kB
B in the generating function:

X
k�0

kX
qD0

�
k

q

�
.�1/q

Y
B

� qX
jBD0

�
q

jB

�
x
jB
B

�
D

X
k�0

h
1 �

Y
B

.1C xB/
ik

D

X
¹kB ºB�0

Y
B

.�1/kBx
kB
B ;

which ultimately leads to

SŒ�; �I l � D
X

¹lB ºB�0P
B lBDl

X
¹kB ºB�0

Y
B2�

.�1/kB
lB .�jB I kB/ D
X

¹lB ºB�0P
B lBDl

Y
B2�


lB .�jB/:

Inserting this expression in (4.9) completes the proof of (4.1):

.�1/lpC Œ�;�I l � D
X

�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1n

X
l1;:::;lD�0P

lcDl

DY
cD1

h X
¹lBc ºBc2�c�0P

Bc
lBcDlc

Y
Bc2�c


lBc .�cjBc /
i
:

This formula can be analyzed further.

The graph GŒ…; ¹�cºc I ¹…cºc �. Consider 2D C 1 partitions …; ¹�cºc ; ¹…cºc on
¹1; : : : ; nº such that

8c; … � …c and �c � …c :

The relation between these partitions can be encoded in a convenient graphical represen-
tation. Let GŒ…; ¹�cºc I ¹…cºc � be the abstract bipartite graph consisting of

� white vertices associated to the blocks B of the partition …,

� c-colored vertices associated to the blocks Bc of the partitions �c ,

� c-colored edges associated to the blocks bc of …c linking a white and a c-colored
vertex; the block bc is at the same time
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– contained in a block of …, which we denote by B.bc/, as … � …c ,

– contained in a block of �c , which we denote by Bc.bc/, as �c � …c .

The edge corresponding to bc links B.bc/ to Bc.bc/.

Π

{1, 2, 3}

{4, 5}

π1

Π1

{1, 2}

{1, 2, 3, 4, 5}

{3, 4, 5}

π2

Π2

{1}
{2}

{1, 2, 3}

{4, 5}
{3}

{4, 5}

Fig. 2. The graph GŒ…; ¹�cºc I ¹…cºc � for … D ¹¹1; 2; 3º; ¹4; 5ºº, �1 D ¹¹1; 2º; ¹3; 4; 5ºº, �2 D
¹¹1; 2; 3; 4; 5ºº and…1 D ¹¹1º; ¹2º; ¹3º; ¹4; 5ºº,…2 D ¹¹1; 2; 3º; ¹4; 5ºº. HereD D 2 (two colors),
n D 5.

Lemma 4.2. The graph GŒ…; ¹�cºc I ¹…cºc � has j… _ �1 _ � � � _ �Dj connected compo-
nents.

Proof. Two blocks B 2… and Bc 2 �c are connected by an edge in GŒ…; ¹�cºc I ¹…cºc �

if and only if there exists a bc 2 …c such that bc � B;Bc , hence both B and Bc belong
to the block of … _ �1 _ � � � _ �D which contains bc . The lemma follows by noting that

- belonging to the same connected component of GŒ…; ¹�cºc I ¹…cºc � and

- belonging to the same block of the partition … _ �1 _ � � � _ �D
are both transitive relations between the blocks of … and ¹�cºc .

Lower bound on l . In order to find a lower bound on l , we first rewrite
P
c j�c j. Observe

that in (4.1) we sum over partitions ¹�cºc such that

8c �c � ….�c/; and ….�;�/ _ �1 _ � � � _ �D D 1n:

Since ….�; �/ � ….�c/, from Lemma 4.2 we conclude that the sum runs over partitions
¹�cºc such that the graph GŒ….�;�/; ¹�cºc I….�c/� is connected.

The graph GŒ….�; �/; ¹�cºc I ….�c/� has
P
c j….�c/j edges and j….�; �/j CP

c j�c j vertices. If it is connected then any tree spanning this graph will have
exactly j….�; �/j C

P
c j�c j � 1 edges. We denote the number of excess edges of

GŒ….�; �/; ¹�cºc I ¹….�c/ºc �, that is, the number of edges in the complement of a span-
ning tree in the graph, by

LŒ….�; �/; ¹�cºc I ¹….�c/ºc � D
X
c

j….�c/j � j….�; �/j �
X
c

j�c j C 1 � 0: (4.10)
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Let us consider a term in (4.1). At fixed lBc , each block Bc of �c contains a sum over
constellations with fixed genus because, from (2.11),

lBc D 2jBc j � k�cjBck C 2gBc � 2; lc D 2n � k�ckC2
X
Bc2�c

gBc � 2j�c j: (4.11)

Summing over c and using n D k�ckCj….�c/j we get

l D
X
c

k�ck C 2.j….�;�/j � 1/C 2

DX
cD1

X
Bc2�c

gBc C 2LŒ….�;�/; ¹�cºc I ¹….�c/ºc �:

(4.12)

Thus l � `.�; �/, leading to (4.2), which proves (4.3). We see that the bound l D `.�; �/
is attained if and only if gBc D 0 for all Bc , and

LŒ….�;�/; ¹�cºc I ¹….�c/ºc � D 0 H)
X
c

j….�c/j �
X
c

j�c j D j….�;�/j � 1;

which proves (4.4).

Remark 4.3. The condition gBc D 0 for all Bc already suggests that the large-N
limit corresponds to some type of planarity. It turns out that the additional condition
LŒ….�; �/; ¹�cºc I ¹….�c/ºc � D 0 is also a “minimal genus” condition. In Section 5 we
will show that the sum in (4.1) can be reinterpreted as a sum over a class of nodal sur-
faces and at leading order at large-N only nodal surfaces of minimal arithmetic genus
contribute.

Formula for l > ` � `.�; �/. More generally for non-minimal l , we can rear-
range the sum in (4.1) according to the number of excess edges of the graph
GŒ….�;�/; ¹�cºc I ¹….�c/ºc �. Writing (4.12) as

l � `

2
D

DX
cD1

X
Bc2�c

gBc C LŒ….�;�/; ¹�cºc I ¹….�c/ºc �; (4.13)

we rearrange (4.1) as

.�1/lpC Œ�;�I l � D
X

�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1n

X
l1;:::;lD�0P

lcDl

DY
cD1

h X
¹lBc ºBc2�c�0P

Bc
lBcDlc

Y
Bc2�c


lBc .�cjBc /
i
;

by replacing the sum over the partitions ¹�cºc with a sum over ¹�cºc such that L DP
c.j….�c/j � j�c j/ �….�; �/C 1 is fixed and a sum over L from its minimal allowed

value 0 to the maximal allowed value .l � `/=2 fixed by (4.13). Then at fixed L, we use
(4.11) and replace the sums over ¹lcºc with

P
c lc D l with sums over the genera gBc � 0

constrained by (4.11) to obey

DX
cD1

X
Bc2�c

gBc D
l � `

2
� L:
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At the end, we get

.�1/lpC Œ�;�I l � D

l�`
2X

LD0

X
�1�….�1/;:::;�D�….�D/
….�;�/_�1_���_�DD1nP

c.j….�c/j�j�c j/Dj….�;�/jCL�1

X
g1;:::;gD�0P
c gcD

l�`
2 �L

DY
cD1

h X
¹gBc ºBc2�c�0P
Bc
gBcDgc

Y
Bc2�c


l.gBc /.�cjBc /
i
;

where l.gBc / D jBc j C….�cjBc /C 2gBc � 2, which is (4.6).
This completes the proof of Thm. 4.1.

Corollary 4.4. For D D 1, consider all the possible �; � with fixed numbers of cycles
#.�/ and #.�/. Consider an arbitrary k � 0 and a k-constellation as in Thm. 3.3, with
l D #.�/C #.�/ � 2. Then g.�; ��1/ D 0 .as a bipartite map/, and l D `.�; �/.

Proof. For D D 1, denoting � D …. O�/, (4.12) becomes

l D `.�; �/C 2
X
B2�

gB C 2LŒ….�; �/; � I….�/�; `.�; �/ D k��
�1
k C 2.j….�; �/j � 1/:

The Euler relation of the 2-constellation .�; ��1/ is k���1k D #.�/C #.�/C 2g.�; ��1/
� 2j….�; �/j, so that the equation above becomes

l D #.�/C #.�/ � 2C 2.g.�; ��1/C
X
B2�

gB C LŒ….�; �/; � I….�/�/: (4.14)

4.3. Monotone Hurwitz numbers and their generalization

ForD D 1, monotone double Hurwitz numbers are obtained by summing the coefficients
pC Œ�; � I l � for �; � of fixed cycle types. These numbers have an interpretation in enu-
merative geometry. We detail some known facts about monotone Hurwitz numbers, and
review the results of our paper in this context. A generalization of monotone double Hur-
witz numbers is then introduced, using the coefficients pC for D > 1.

Monotone double Hurwitz numbers. The definition of the number pC Œ�;�I l � in Prop. 3.6
resembles for D D 1 the combinatorial definition of monotone Hurwitz numbers. It is
known that for D D 1 and A and B having asymptotic traces of order N , the HCIZ
integral has the expansion [25, 26]

1

N 2
log I1;N .t; A;B/

D

NX
nD1

tn

nŠ

X
h�0

1

N 2h

X
˛;ˇ`n

.�1/#.˛/C#.ˇ/ EHh.˛; ˇ/
Tr˛.A/
N #.˛/

Trˇ .B/
N #.ˇ/

CO.tNC1/; (4.15)

where ˛; ˇ are partitions of n, n D
P
p p � dp.˛/, where dp.˛/ is the number of parts of

˛ of size p, and #.˛/ D
P
p dp.˛/ denotes the total number of parts of ˛.
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Denoting by C˛ the set of permutations having fixed cycle type ˛, the coefficients

EHh.˛; ˇ/ D
X
�2C˛

X
�2Cˇ

pC Œ�; �; l�; l D #.˛/C #.ˇ/C 2h � 2; (4.16)

are the genus-h monotone double Hurwitz numbers. In detail these numbers count the
number of l C 2-uplets of permutations �; �; �1; : : : ; �l with � 2 C˛; � 2 Cˇ , and �i
transpositions with weakly monotone maxima (Def. 2.2) such that � D�1 � � ��l� and fur-
thermore the group generated by � and all the transpositions acts transitively on ¹1; : : : ;nº.

Divided by nŠ, these numbers also count weighted branched coverings of the Rie-
mann sphere by a surface of genus h with l C 2 branch points, l of which have simple
ramifications (that is, they have n � 1 preimages), and the ramifications profiles at 0 and
infinity are given respectively by the partitions ˛ and ˇ (for more details, see Sec. 5.2).
The condition that the transpositions have weakly monotone maxima restricts the admis-
sible coverings. The formula relating l (the number of simple branch points) and h is
the well-known Riemann–Hurwitz formula. Note that if � D �1 � � ��l� and the group
generated by � and all the transpositions acts transitively on ¹1; : : : ; nº, then applying
the Euler characteristic formula (2.10) to the constellations .�; ��1/, .�1; : : : ; �l /, and
.�; �1; : : : ; �l / (the last one is connected) yields

hD g.�;�1; : : : ;�l /D g.�; �
�1/C g.�1; : : : ;�l /CL

�
….�;�/;� I….���1/

�
; (4.17)

where � D j….�1; : : : ; �l /j, and we recall that L is given by (4.10).
The value of l for h D 0 is fixed by the Riemann–Hurwitz formula as l D #.˛/ C

#.ˇ/ � 2 D #.�/C #.�/ � 2 for any .�; �/ 2 C˛ � Cˇ . From Corollary 4.4, this restricts
the sum in (4.16) to �; � satisfying g.�; ��1/ D 0 and l D `.�; �/ so that

EH0.˛; ˇ/ D
X

.�;�/2C˛�Cˇ
g.�;��1/D0

pC Œ�; �; `�; ` D #.˛/C #.ˇ/ � 2; (4.18)

and we can use Thm. 4.1 in D D 1 (see also [13]) to express EH0.˛; ˇ/ as

EH0.˛; ˇ/

D

X
.�;�/2C˛�Cˇ
g.�;��1/D0

nY
pD1

�
.2p/Š

pŠ.p � 1/Š

�dp.���1/ X
��….�/

….�;�/_�D1n
#.�/�j�jDj….�;�/j�1

Y
B2�

.2jBj C #.�jB / � 3/Š
.2jBj/Š

:

(4.19)

In contrast to single Hurwitz numbers (see (4.20) below), one cannot eliminate the
sum over permutations, since both the number of connected components and the genus
of .�; ��1/ depend on the specific representatives .�; �/ 2 C˛ � Cˇ and not only on their
conjugacy classes ˛ and ˇ.6

6For instance, ..12/.3/.4/; .12/.3/.4// and ..1/.2/.34/; .12/.3/.4// have respectively 3 and 2
connected components, while ..123/; .321// and ..123/; .312// have respectively genus 0 and 1.
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Monotone single Hurwitz numbers. Single Hurwitz numbers are obtained when taking
� D idn (or similarly for � ) above:

EHh.˛/ D
X
�2C˛

pC Œ�; idnI l � D jC˛j � pC Œ˛; idnI l �; l D #.˛/C nC 2h� 2; (4.20)

where we have used the fact that pC Œ�; idI l � depends only on the partition ˛ induced
by the cycles of � and not on the specific representative � 2 C˛ , since mC .�; id; l; k/
is invariant under conjugation (note that we have introduced the somewhat abusive nota-
tion pC Œ˛; idnI l �). The cardinality of C˛ is jC˛j D nŠ=.

Q
p�1 p

dp.˛/dp.˛/Š/. Similarly
to (4.15), these numbers are obtained from the HCIZ integral for D D 1, but when the
asymptotic moments of the matrix B are degenerate, limN!1

1
N

Tr.Bk/ D ı1;k [26].
Combining (3.7) and (4.20) we find that for any h � 0 and ˛ ` n, the genus-h mono-

tone single Hurwitz numbers are, up to signs, the numbers of connected proper constella-
tions with faces �1 � � � �k D � 2 C˛ , and

Pk
iD1k�ik D l for some � 2 C˛:

EHh.˛/ D .�1/
#.�/Cn

jC˛j
#.�/CnC2h�2.�/; (4.21)

and this is independent of the representative � 2C˛ chosen. Like the double numbers, they
also count branched coverings of the sphere, and requiring the covering to be of genus 0
amounts to requiring that l D #.�/C n� 2, which is its minimal possible value, `.�; id/.
Fixing � D idn in (4.19), as ….�/ D ….�; id/ D ….�/, the sum restricts to � D 1n and

EH0.˛/ D
nŠQ

p�1 dp.˛/Š

.2nC #.˛/ � 3/Š
.2n/Š

nY
pD1

�
2p

p

�dp.˛/
; (4.22)

recovering the value found in [23, 26].
The expressions for single Hurwitz numbers (4.22) were first obtained in [13] as sums

over permutations, with pC expressed7 as in Thm. 3.3 and then evaluated for zero genus
using the counting of planar constellations of Bousquet-Mélou–Schaeffer [5]. Higher
genus monotone single Hurwitz numbers count higher genus constellations, but for now
there is no simple closed formula for them. Single and double monotone Hurwitz num-
bers were later studied in [23–26]. To our knowledge, the result of [13] leading to (4.19)
is the only explicit expression for monotone double Hurwitz numbers of genus 0.

Double numbers in terms of single ones. Note that (4.19) expresses monotone double
Hurwitz numbers of genus 0 in terms of monotone single Hurwitz numbers:

EH0.˛; ˇ/ D
X

.�;�/2C˛�Cˇ
g.�;�/D0

X
��….�/

….�;�/_�D1n
#.�/�j�jDj….�;�/j�1

Y
B2�

EH0.c.�B//

jCc.�B /j
; (4.23)

7The expressions for pC Œ�; � I `� and pC Œ�; idI `� D EH0.˛/=jC˛ j, where ˛ is the partition of n
induced by the disjoint cycles of � , are found in (iii) and (i) of [13, Thm. 2.15]. See also [31, (5.41)].
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where �D ���1, and we denote by c.�B/ the cycle type of �B��1B (the associated partition
of the integer jBj). More generally, using (4.6) for D D 1 and (4.21), as well as the fact
that if l is given by the Riemann–Hurwitz formula (4.16), then l�`.�;�/

2
D h � g.�; ��1/,

we get

Theorem 4.5. For any h � 0 and ˛; ˇ ` n, the genus-h monotone double Hurwitz num-
bers are expressed in terms of the single ones as follows:

EHh.˛; ˇ/

D

X
.�;�/2C˛�Cˇ

h�g.�;��1/X
LD0

X
��….�/

….�;�/_�D1n
#.�/�j�jDj….�;�/jCL�1

X
¹gB ºB2��0P

B gBDh�g.�;�
�1/�L

Y
B2�

EHgB .c.�B//

jCc.�B /j
:

The sum over partitions can be interpreted as a sum over all ways to add nodes to the
2-constellation .�; ��1/ with a weight per node given by monotone Hurwitz numbers, as
explained in [46] for h D 0 and in Sec. 5 below for h > 0.

We thus get an expression for monotone double Hurwitz numbers of genus h for
partitions of n in terms of monotone single Hurwitz numbers of genus � h, for partitions
of integers � n (see e.g. [1, 18, 28, 31]). We do not know if this relation is already known
in the literature.

Higher order monotone Hurwitz numbers. The tensor generalization of the HCIZ integral
naturally gives rise to the following generalization of monotone Hurwitz numbers:

EH l .˛1; ˇ1; : : : ; ˛D; ˇD/ D
X

¹.�c ;�c/2C˛c�Cˇc ºcD1;:::D

pC Œ�;�I l �; (4.24)

where the combinatorial definition of pC Œ�; �I l � in terms of factorizations of a D-uplet
of permutations (Prop. 3.6) generalizes the combinatorial definition of monotone double
Hurwitz numbers. Just as in Thm. 4.5, pC Œ�;�; `� can be expressed as a sum over parti-
tions of products of monotone single Hurwitz numbers by using Thm. 4.1 and (4.21).

For each color c D 1; : : : ; D in Prop. 3.6, pC Œ�; �I l � counts factorizations of per-
mutations, that is, constellations, and thereby certain branched coverings of genera
hc D g.�c ; �1; : : : ; �lc /, with j….�c ; �1; : : : ; �lc /j connected components which sat-
isfy the Riemann–Hurwitz formula for disconnected coverings,

lc D #.˛c/C #.ˇc/C 2hc � 2j….�c ; �1; : : : ; �lc /j:

However, the transitivity condition in Prop. 3.6, which involves all the permutations,
for all c, imposes a global constraint on the coverings. We show in Sec. 5.2 that
1
nŠ
H l .˛1; ˇ1; : : : ; ˛D; ˇD/ counts certain weighted connected branched coverings of D

distinguishable 2-spheres that “touch” at a single point. The covering spaces are nodal
surfaces, for which a generalization of the genus – the arithmetic genus – is kept fixed.
A generalization of the Riemann–Hurwitz formula relates the arithmetic genus to the
number of preimages of branch points.
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5. Interpretation of the combinatorial quantities in terms of nodal surfaces

In this section we give a geometrical picture for combinatorial quantities at play:

� In Sec. 5.2, we interpret transitive factorizations of multiplets of permutations with
conditions on the length of the permutations – as counted for instance bymC (Thm. 3.3)
or pC (Prop. 3.6) – as branched coverings ofD spheres touching at one common point.

� In Sec. 5.3 we develop step-by-step a geometric understanding of mC , pC , and of the
combinatorial formula (4.6) that gives an expression for pC in terms of single Hurwitz
numbers.

Both geometric descriptions involve nodal surfaces, which are collections of surfaces that
“touch” in groups at certain points called nodes. Let us provide more formal definitions.

5.1. Nodal surfaces and nodal topological constellations

Nodal surfaces. Given p � 2 topological spacesXi , 1� i � p, each with a distinguished
point xi , the wedge sum of the spaces Xi at the points xi is the quotient space of the
disjoint union of the spacesXi under the identifications xi � xj for all i < j 2 ¹1; : : : ;pº.
A wedge sum of 2-spheres is often poetically called a bouquet of 2-spheres.

A surface is an orientable manifold of dimension 2, together with an orientation. Given
a surface X D

F
i Xi with p connected components Xi , as well as r sets of points Pj ,

1 � j � r , such that all the elements in all of the sets Pj are distinct points that may
belong to any of the connected surfaces Xi (a set Pj may contain several different points
from the same Xi ), a nodal surface with r � 1 nodes is the quotient space of X under the
identifications x � y for all j 2 ¹1; : : : ; rº and all x; y 2 Pj . For each j 2 ¹1; : : : ; rº, the
identification of all the points in Pj defines a node or nodal point. Such a nodal surface is
then denoted by

X� D X=¹Pj º1�j�r ;

and the Xi are said to be its irreducible components. A wedge sum of surfaces is a nodal
surface with one nodal point but the converse is not always true: a surface may have two
or more distinct points in a node.

A nodal surface is said to be connected if for any two points, there exists a path
between them, the path being allowed to jump from one surface to another through a
nodal point at which they touch.

A map F W X� ! Y � between two nodal surfaces is said to be a homeomorphism if

� the restriction of F to each irreducible component of X� is well-defined and is a hom-
eomorphism between surfaces,

� F preserves the identifications for each node (that is, the points in the irreducible com-
ponents of the codomain Y � that are identified in a given node are exactly the images
of the points that belong to the irreducible components of the domain X� that are iden-
tified in a node of X�).
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Arithmetic genus. The arithmetic genus of a connected nodal surface X� DFp
iD1Xi=¹Pj º1�j�r with p irreducible components Xi and r nodes is

G .X�/ D

pX
iD1

g.Xi /CL.X�/; L.X�/ D

rX
jD1

ŒCard.Pj / � 1� � p C 1; (5.1)

where g.Xi / is the genus of Xi and L.X�/ is the rank of the first homology group of X�.
This is also the number of excess edges of the abstract graph that has a point vertex for
each nodePj , a square vertex for eachXi , and an edge between a point vertex and a square
vertex if the corresponding node belongs to the corresponding irreducible component Xi ,
and Pj \Xi ¤ ;. The arithmetic genus is the genus obtained by “smoothing” the nodes,
whereas

Pp
iD1 g.Xi / is sometimes called the geometric genus of the nodal surface. See

the example in Fig. 3, which has geometric genus 2 but arithmetic genus 4 (L D 2).

Fig. 3. A nodal surface of arithmetic genus 4 (left), and a surface of genus 4 obtained by “smooth-
ing” the nodes (right).

Nodal topological constellations. Consider aD-uplet O�D . O�1; : : : ; O�D/ of constellations
defined on the same set of n elements, where O�c D .�c1; : : : ; �

c
kc
/ is a kc-constellation,

kc � 1. As detailed in Sec. 2.5, a graph embedded in a connected surface X is the draw-
ing of a connected graph on X so that the vertices correspond to distinct points on the
surface, the images of the edges are paths that may only intersect at the vertices, and the
complement of the graph in X is homeomorphic to a disjoint union of discs. To simplify
the discussion below, we say that a disconnected graph with p components is embedded
in a surface with p connected components if each connected component of the graph is
embedded in a connected component of the surface.

For two connected surfaces X1; X2, two embedded graphs �1 � X1 and �2 � X2 are
said to be isomorphic if there exists a homeomorphism � W X1 ! X2 of surfaces whose
restriction to �1 is a graph isomorphism between �1 and �2.

We consider each constellation O�c as an isomorphism class of (not necessarily con-
nected) embedded graphs (for more details, see [34]). For each 1 � c � D, and for every
choice of graph embeddings �c � Xc in the isomorphism class, the white vertices are
points on the (not necessarily connected) surface Xc , which we denote by vci , 1 � i � n,
and setting Pj D ¹v1j ; : : : ; v

D
j º, we consider the nodal surface

FD
cD1 Xc=¹Pj º1�j�n,

together with the graph �c embedded in each surface Xc . Two such objects, called here
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nodal embedded graphs, are said to be isomorphic if there exists a homeomorphism
between the nodal surfaces as defined above such that the restriction to each domain
irreducible component is an isomorphism between embedded graphs.

We define a nodal topological constellation to be a resulting isomorphism class of
nodal embedded graphs. It is uniquely encoded by an ordered multiplet of constellations
on the same n elements.

Example: the nodal topological constellation �.�;�/. We may for instance view .�;��1/
as a nodal topological constellation, which we denote by �.�; �/, where the role of O�c is
played by the 2-constellation .�c ; ��1c /. We represent for each i 2 ¹1; : : : ; nº the identi-
fication of the white vertices labeled i by introducing a new triangular vertex, linked by
dotted edges to the white vertices labeled i in each of theD bipartite maps .�c ; ��1c /. This
is illustrated in Fig. 4.

Fig. 4. Graphical representation of �.�; �/ for an example in D D 2, n D 5, where �1 D

.13/.2/.4/.5/, ��11 D .13/.2/.45/, �1��11 D .1/.2/.3/.45/, �2 D .123/.45/, ��12 D id5, �2��12 D

.123/.45/. The blue vertices (flavor 1) represent the �s and the red vertices (flavor 2) represent the
�s. Here we have represented the bipartite maps as 2-constellations and added aD-valent triangular
node for every i 2 ¹1; : : : ; nº, between the corresponding white vertices (edges of the bipartite map).
In this example, j….�;�/j D 2, and the arithmetic genus is 2.

Isomorphisms and relabeling. Two (topological) k-constellations .�1; : : : ; �k/ and
.�1; : : : ; �k/ are said to be isomorphic if they differ by a relabeling of 1; : : : ; n, that
is, if there exists � 2 Sn such that �i D ��i��1 for all i . Two nodal topological constella-
tions encoded respectively by O� and O� where O�c D .�c1; : : : ; �

c
kc
/ and O�c D .�c1; : : : ; �

c
kc
/

are kc-constellations are said to be isomorphic if there exists � 2 Sn such that for all
1 � c � D and all 1 � i � kc , �ci D ��

c
i �
�1. Note that � must be the same for all colors:

an isomorphism between nodal constellations is a simultaneous relabeling of 1; : : : ; n for
all colors.
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Transitivity and connectivity. The introduction of nodal surfaces and nodal topological
constellations is motivated by the following lemma:

Lemma 5.1. For c 2 ¹1; : : : ;Dº, let O�c D .�c1; : : : ; �
c
kc
/ be a kc-constellation, kc � 1. The

number j…. O�/j of transitivity classes of the group generated by all O�ci on ¹1; : : : ; nº is the
number of connected components of the corresponding nodal topological constellation.

For instance, �.�;�/ is connected if and only if the group generated by all �c ; �c acts
transitively on ¹1; : : : ; nº, and more generally, the number of connected components of
this nodal topological constellation is j….�;�/j.

Proof of Lemma 5.1. Consider a representative in the isomorphism class of nodal embed-
ded graphs, that is, a nodal surface X� D

F
c Xc=¹Pj º1�j�n together with the graph �c

corresponding to O�c embedded in the surface Xc for every c. From the definition of an
embedded graph, we know that Xc has j…. O�c/j connected components. It is therefore
enough to show that two elements a; b 2 ¹1; : : : ; nº are in the same transitivity class of
the group generated by ¹�c1; : : : ; �

c
kc
º1�c�D if and only if there exists a path between the

corresponding nodes on the graph �� obtained from �1; : : : ; �D by identifying the D
white vertices of flavor k for each k 2 ¹1; : : : ; nº.

Two elements a;b 2 ¹1; : : : ;nº are in the same transitivity class of the group generated
by ¹�c1; : : : ; �

c
kc
º1�c�D if and only if there exists a wordw in these permutations and their

inverses so thatw.a/D b. Assuming that this is the case, we may build a path between the
points corresponding to the two nodes labeled a and b in ¹1; : : : ; nº in �� as follows: we
read the word w from right to left; when encountering a permutation �ci .d/, 1 � d � n,
the path follows the two edges of flavor i from the node labeled d to the node labeled
�ci .d/ on the embedded graph �c � Xc , and similarly for �ci .d/

�1. The important point
is that there is no problem in successively applying permutations of different colors, since
the path may go between any two �c � Xc and �c0 � Xc0 at any node. Conversely, a
path in �� from a node a to a node b is composed of successive steps from a node to a
vertex of flavor i via an edge e and on to another node j via an edge e0 in some �c for
some c. To each such step we associate the permutation .�ci /

.dC1/, d being the number
of edges encountered when turning from e to e0 around the flavored vertex clockwise.
A word w such that w.a/ D b is then obtained by composing these permutations from
right to left.

Now, as the number of connected components of the nodal topological constellation
is j…. O�/j, the number of its irreducible components is

P
c j…. O�

c/j, its geometric genus
is
P
c g. O�

c/, and the surface has n nodal points each with cardinal D, we obtain the
arithmetic genus (5.1) of the nodal topological constellation:

G . O�/ D

DX
cD1

g. O�c/CDn �
� DX
cD1

j…. O�c/j C n � j…. O�/j
�

D

DX
cD1

.g. O�c/ � j…. O�c/j/C n.D � 1/C j…. O�/j: (5.2)
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For instance, combining this formula for �.�; �/ with (2.11) for the Euler character-
istics of .�c ; ��1c / we get

2g.�c ; �
�1
c / � 2j….�c ; �

�1
c /j D k�c�

�1
c k � #.�c/ � #.�c/: (5.3)

Supplementing this with the definition (4.2), `.�;�/D
PD
cD1k�c�

�1
c kC 2.j….�;�/j � 1/,

leads to the following lemma.

Lemma 5.2. The arithmetic genus G .�;�/ of �.�;�/ is related to `.�;�/ by

`.�;�/ D

DX
cD1

Œ#.�c/C #.�c/�C 2G .�;�/ � 2 � 2n.D � 1/: (5.4)

5.2. Transitive factorizations of multiplets of permutations and branched coverings of a
bouquet of 2-spheres

Given two topological spacesX and Y , and a subsetL of Y , a map f WX! Y is said to be
an n-sheeted branched covering of Y branched over L if f restricted to the complement
of the preimage of L in X is continuous, and for every y 2 Y n L there exists an open
neighborhood U such that f �1.U / is homeomorphic to U � ¹1; : : : ; nº. Two branched
coverings f1 W X1 ! Y and f2 W X2 ! Y are said to be isomorphic if there exists an
orientation preserving homeomorphism u W X1 ! X2 such that f1 D f2 ı u. The set L
is called the branch locus, Y the target space, and X the covering space. The number
of connected components of a covering is that of the covering space. For X; Y two nodal
surfaces,L consists of points called branch points, and their preimages are called singular
points.

It is well known (see [34]) that n-sheeted coverings of the oriented 2-sphere branched
over k ordered points are up to isomorphism in one-to-one correspondence with k-con-
stellations O� D .�1; : : : ; �k/, that is, k-uplets of permutations of n elements such that
�1 � � ��k D id, up to isomorphism. Given such an unlabeled constellation, an isomorphism
class of branched coverings is obtained by sending each face of the corresponding topo-
logical constellation (for every surface in the isomorphism class) to the face of the unique
constellation with one white vertex. Each “star” in the constellation formed by a white ver-
tex and its incident edges thus corresponds to the preimage of the only “star” in the target
space. The vertices with flavors of the constellation correspond to the singular points, and
the partitions of n that label the conjugacy classes of the permutations �1; : : : ; �k , called
ramification profiles, describe the way in which the n sheets meet in groups at the singular
points. The covering space is a collection of K D j…. O�/j connected surfaces seen up to
isomorphism, whose genera sum up to h D g. O�/. The Riemann–Hurwitz formula relates
these two numbers:

kX
iD1

k�ik D 2.nC h �K/; (5.5)
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where for the branch point labeled i , k�ik D n � #.�i / is the difference between the
number n of preimages that the point would have if it was not in the branch locus, and the
number of preimages it actually has.

A D-uplet O� D . O�1; : : : ; O�D/ of constellations, where O�c D .�c1; : : : ; �
c
kc
/ is a kc-

constellation on n elements, kc � 1, up to isomorphism is therefore in bijection with D
branched coverings f1; : : : ; fD of the 2-sphere S , up to isomorphism, fc W Xc ! S being
branched over kc points. Unlike for nodal constellations, here the isomorphisms are for
each color independently, that is, independent relabelings of 1; : : : ; n for different colors
are allowed. There is no direct interpretation in this context for the quantity j…. O�/j, which
moreover is not invariant under relabelings of ¹1; : : : ; nº for each color independently; it
is only invariant under simultaneous relabelings for all colors. On the other hand, j…. O�/j

has a natural interpretation in the context of nodal constellations, as stated in the following
theorem.

Theorem 5.3. Isomorphism classes of connected branched coverings of a bouquet of D
distinguishable 2-spheres Sc , c 2 ¹1; : : : ; Dº, branched over a set of k C 2D ordered
points that do not belong to the nodal point, kc C 2 of which belong to Sc for each c
.
PD
cD1 kc D k/, are in one-to-one correspondence with systems of permutations of the

type:

� for c 2 ¹1; : : : ;Dº, �c0; : : : ; �
c
kcC1

2 Sn such that id D �c0 � � � �
c
kcC1

,

� j…. O�/j D 1, that is, the group generated by all the permutations is transitive on
¹1; : : : ; nº,

up to isomorphism of nodal constellations .up to simultaneous relabeling of 1; : : : ; n for
all 1 � c � D/.

Proof. We prove the correspondence between topological objects, knowing the corre-
spondence between nodal topological constellations and systems of permutations. Con-
sider a branched covering f W X� ! Y � where Y � is a bouquet of D distinguishable
2-spheres Sc , c 2 ¹1; : : : ; Dº. On each 2-sphere Sc of the target space Y �, one can draw
a star-graph 
c by adding non-crossing arcs between the kc branch points and the nodal
point so that the arcs around the nodal point are numbered from 1 to kc clockwise (see
the right of Fig. 5). Doing this for all c, we get a nodal embedded graph 
� � Y �, whose
preimage �� �X� is a representative of a nodal topological constellation in the sense that
it is a representative in the corresponding isomorphism class of nodal embedded graphs.
There is no labeling of the n preimages of the nodal point, so that the nodal constella-
tion can be seen up to isomorphism (up to simultaneous relabeling of 1; : : : ; n for all
1 � c � D).

For two isomorphic branched coverings f1 WX�1 ! Y � and f2 WX�2 ! Y �, there exists
by definition an orientation preserving homeomorphism u W X�1 ! X�2 of nodal surfaces
such that f1 D f2 ı u. Denoting by ��1 � X

�
1 and ��2 � X

�
2 the preimages of 
� � Y �

by f1 and f2 respectively, it is clear that u restricted to each irreducible component of X�1
is an isomorphism between embedded graphs: it is a homeomorphism of surfaces by
definition, and it is clear that the restriction of u to ��1 on each irreducible component is
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a graph isomorphism. Therefore, the nodal embedded graphs ��1 � X
�
1 and ��2 � X

�
2 are

isomorphic, and are two representatives of the unlabeled nodal topological constellation.
This defines a map from isomorphism classes of branched coverings of Y � to iso-

morphism classes of nodal topological constellations, and we now verify that this map is
invertible. Indeed, consider a representative �� � X� of a nodal topological constellation
O� D . O�1; : : : ; O�D/, where O�c D .�c1; : : : ; �

c
kc
/ is a kc-constellation. Then �� � X� is a

nodal embedded graph, and for every c, we denote by Xc the disjoint union of the irre-
ducible components of X� that contain vertices associated with �c0. A branched covering
f W X� ! Y � is then obtained by choosing homeomorphisms sending each connected
component of the complement of the graph �� in Xc to the complement of the star-
graph 
c in the irreducible component Sc of Y �.

Given two representatives ��1 � X
�
1 and ��2 � X

�
2 of a nodal topological constel-

lation, there exists a homeomorphism u W X�1 ! X�2 of nodal surfaces that induces an
isomorphism of embedded graphs on every irreducible component of X�1 . Considering
the branched coverings f1 W X�1 ! Y � and f2 W X�2 ! Y � constructed as in the previous
paragraph, we see that f1 D f2 ı u so that f1 and f2 are isomorphic.

The construction described above that associates a covering f to a representative
�� � X� is independent of the labeling of the nodal points of ��, so that we have defined
the converse map from isomorphism classes of nodal topological constellations to iso-
morphism classes of branched coverings of Y �.

The statement regarding the number of connected components is a direct consequence
of Lemma 5.1.

We illustrate this with the following example with n D 5, D D 2, k1 D 2, k2 D 3,
for which the nodal topological constellation is represented graphically on the left of
Fig. 5: for the permutations of O�1: �10 D .12/.3/.4/.5/, �

1
1 D .12/.34/.5/, �

1
2 D .12/.345/,

�31 D .12/.3/.45/; for the permutations of O�2: �20 D .132/.45/, �
2
1 D .15/.24/.3/, �

2
2 D

.1/.23/.4/.5/, �23D .14/.2/.35/, �
4
2D id5. In the figure, the colors representing the flavors

!
f

Fig. 5. A nodal topological constellation (left) can be interpreted, up to relabeling the nodes, as an
isomorphism class of branched coverings f of a bouquet of D distinguishable 2-spheres (right). In
this example, D D 2, n D 5, k1 D 2, and k2 D 3.
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0,1,2,3,4 are in that order pink, blue, red, orange, green. The nodal topological constella-
tion is connected and has arithmetic genus 4. The fact that �42 D id5 (all green vertices are
leaves in the nodal constellation) means that when interpreted as a branched covering of
a bouquet of two 2-spheres, the green vertex in the target space is actually not a branch
point since it has five preimages.

Fixing D; k � 1, H � 0 and for all c 2 ¹1; : : : ; Dº, ˛c ; ˇc ` n non-trivial, we let
CH Œ¹˛c ; ˇcºc ; k� be the set of isomorphism classes of connected n-sheeted branched
coverings of a bouquet of D distinguishable 2-spheres Sc , c 2 ¹1; : : : ;Dº, branched over
a set of precisely8 k C 2D ordered points that do not belong to the nodal point, at least
two of which belong to Sc for each c, so that the first and last points for each c have
ramification profiles ˛c and ˇc ,9 and so that the arithmetic genus of the covering space as
defined in (5.1) is H .

Note that for an elementX of CH Œ¹˛c ;ˇcºc ; k�, the nodal surfaces in the isomorphism
class have n nodal points (the node of the bouquet of spheres does not belong to the branch
locus and its n preimages are the only nodes of X ), so that L.X/ D n.D � 1/ � p C 1

in (5.1).
We let BH Œ¹˛c ; ˇcºc ; k� be the subset of CH Œ¹˛c ; ˇcºc ; k� of the elements X for

which the branch points whose ramification profiles are not fixed to be one of the ˛c or
ˇc have simple ramification (they have n � 1 preimages) and satisfy an additional mono-
tonicity condition: Consider any set of permutations encoding X (a choice of labeling of
1; : : : ; n in Thm. 5.3). For c 2 ¹1; : : : ; Dº, the transpositions encoding the ramification
profiles of the branch points in Sc whose ramification profiles are not fixed to be ˛c or
ˇc inherit an ordering from the global ordering of the branch points. With this ordering,
these transpositions must have weakly monotone maxima.

We recall that for ˛ ` n, the conjugacy class C˛ gathers the permutations in Sn whose
cycle type is ˛, that mC and pC were respectively defined in Thm. 3.3 and Prop. 3.6, as
well as the definition of higher order monotone double Hurwitz numbers (4.24):

EH l .¹˛c ; ˇcºc/ D

DX
cD1

X
.�c ;�c/2C˛c�Cˇc

pC Œ�;�I l �: (5.6)

We also define the following generalization of the Bousquet-Mélou–Schaeffer num-
bers [5]:

EBS lk.¹˛c ; ˇcºc/ D
DX
cD1

X
.�c ;�c/2C˛c�Cˇc

mC .�;�I l; k/: (5.7)

8That is, each of these points has less than n preimages. Since ˛c ; ˇc are non-trivial and since
the other permutations involved in the definitions of mC and pC are different from the identity
permutation (proper), all the k C 2D points have non-trivial ramifications.

9For the Riemann sphere, these points are usually taken to be zero and infinity.
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Corollary 5.4. Fix D; k � 1, H � 0, and for all c 2 ¹1; : : : ; Dº, ˛c ; ˇc ` n non-trivial
and �c 2 C˛c , ��1c 2 Cˇc , and define

l D
X
c

Œ#.˛c/C #.ˇc/�C 2H � 2 � 2n.D � 1/: (5.8)

(1) The cardinality of CH Œ¹˛c ; ˇcºc ; k� is 1
nŠ
EBS l
k
.¹˛c ; ˇcºc/.

(2) The cardinality of BH Œ¹˛c ;ˇcºc ; k� is 1
nŠ
EH k.¹˛c ;ˇcºc/ and k D l as defined in (5.8).

In both cases, the total number of singular points is

nk � l C
X
c

#.˛c/C #.ˇc/ D 2 � 2H C n.k CD � 1/: (5.9)

The relation (5.8) should be compared with the Riemann–Hurwitz formula (4.16).

Proof of Corollary 5.4. Let f W X� ! Y � be an element of CH Œ¹˛c ; ˇcºc ; k�, where
Y � is a bouquet of D distinguishable 2-spheres Sc , c 2 ¹1; : : : ; Dº. Then there exist
k1; : : : ; kD � 0 such that

P
c kc D k and for each c, kc C 2 of the (ordered) branch points

belong to Sc , and the first and last respectively have ramification profiles ˛c and ˇc . From
Thm. 5.3 and its proof, f is bijectively mapped to D ordered sequences of permutations

O�c D .��1c ; �c1; : : : ; �
c
kc
; �c/ 2 S

kcC2
n with id D ��1c �c1 � � � �

c
kc
�c ;

for c 2 ¹1; : : : ; Dº, such that �c 2 C˛c and �c 2 Cˇc , and the group generated by all the
permutations is transitive on ¹1; : : : ;nº, up to simultaneous relabelings of 1; : : : ;n for all c,
and so that the arithmetic genus of the nodal topological constellation encoded by this sys-
tem of permutations is H . This explains that Card CH Œ¹˛c ; ˇcºc ; k� D

1
nŠ
EBS l
k
.¹˛c ; ˇcºc/

if we show that
PD
cD1

Pkc
iD1k�

c
i k is given by the right hand side of (5.8).

From (5.2), H D
PD
cD1.g. O�

c/� j…. O�c/j/C n.D � 1/C 1, and from the Euler char-
acteristic (2.11) of O�c ,

2.g. O�c/ � j…. O�c/j/ D

kcX
iD1

k�ci k � #.�c/ � #.�c/;

so that
DX
cD1

kcX
iD1

k�ci k D

DX
cD1

Œ#.�c/C #.�c/�C 2.H � n.D � 1/ � 1/;

which proves the first point of the corollary. For the elements of BH Œ¹˛c ; ˇcºc ; k�,
�c1; : : : ; �

c
kc

are transpositions with weakly monotone maxima, and the total number k

of these transpositions is also
PD
cD1

Pkc
iD1k�

c
i k. This concludes the proof.

Remark 5.5. ForDD 2, the number of isomorphism classes of branched covers of a bou-
quet of two 2-spheres should be relevant in the context of compactifications of the moduli
spaces of curves such as the Deligne–Mumford compactification, where the necessity to
include degenerate cycles implies considering nodal surfaces where at each node only two
surfaces meet [11, 22, 35, 47].
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Remark 5.6. We have presented a geometrical interpretation based on nodal surfaces.
From the colored structure, the reader familiar with the literature on colored triangulations
and random tensor models will recognize a combinatorial encoding that resembles that of
colored triangulations in dimension 2 and higher. This begs for an interpretation in terms
of higher-dimensional objects, instead of nodal surfaces, but we leave this for future work.

5.3. The 1=N expansions as topological expansions

The aim of this subsection is to provide a combinatorial and geometric interpretation
to the formulas of Theorem 4.1. The transpositions �ci in the combinatorial definition
of pC (Prop. 3.6) do not appear for instance in (4.6): the intuition is that we should
try to keep all the �c ; �c fixed on one the hand, and “resum” the contributions of all
the �ci on the other hand, in some way. To this end, given D sequences of permutations
�c ; �c ;�

c
1; : : : ;�

c
kc

for c 2 ¹1; : : : ;Dº such that idD ��1c �c1 � � ��
c
kc
�c , instead of considering

the nodal topological constellation encoded by the .��1c ; �c1; : : : ; �
c
kc
; �c/ for all c as in

Corollary 5.4, we will rather consider a new kind of isomorphism class of nodal surfaces
from the nodal topological constellation �.�; �/ on the one hand, and the D topological
constellations O�c D .�c1; : : : ; �

c
kc
/ on the other hand.

5.3.1. Nodal surfaces for (�; ��1; O�/. We fix �; � 2 Sn as well as k; l � 0, and for c 2
¹1; : : : ;Dº, we let O�c D .�c1; : : : ;�

c
kc
/ be a kc-constellation, kc � 0, such that

PD
cD1 kc D k

and
8c; �c�

�1
c D �

c
1 � � � �

c
kc
; (5.10)

subject to the conditions

(C1) the collection of all ¹ O�c ; �cºc acts transitively on ¹1; : : : ; nº,

(C2)
PD
cD1

Pkc
icD1
k�cick D l .

This data defines

� a (not necessarily connected) nodal topological constellation �.�; �/ as defined in
Sec. 5.1 (see Fig. 4),

� a (not necessarily connected) topological kc-constellation O�c for each c 2 ¹1; : : : ;Dº.

Since �c D �c��1c D �
c
1 � � � �

c
kc

, the disjoint cycles of �c��1c and the disjoint cycles of
�c1 � � � �

c
kc

match, so that for every nodal embedded graph �� � X� in the isomorphism
class �.�;�/ and any embedded graphs �1� Y1; : : : ;�D � YD in the isomorphism classes
O�1; : : : ; O�D , there is a one-to-one correspondence ‰ between the faces F1; : : : ; Fnk�l of
�� � X� (the connected components of the complement of the graph �� in the nodal
surface X�) and the faces F 01; : : : ; F

0
nk�l

of the �c � Yc for c 2 ¹1; : : : ; Dº, where the
labelings are chosen so that ‰.Fj / D F 0j . To render this pairwise identification obvious,
we choose for each j 2 ¹1; : : : ; nk � lº two points vj and v0j in the interiors of Fj and F 0j
respectively, and we consider the nodal surface Z� D .X� t

FD
cD1 Yc/=¹Pj ºj (together

with the graphs �� and �c drawn on Z�).
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We then denote by �.�; �; O�/ the isomorphism class of such objects, where by iso-
morphism we mean homeomorphism of nodal surfaces that induces an isomorphism of
the embedded graph on each irreducible component, and preserves the incidence between
the nodes Pj and the faces Fj and F 0j , in the sense that if a node Pj belongs to the inte-
rior of the faces Fj and F 0j , then the image of the node also belongs to the interior of the
images of the faces.

An example is shown in Fig. 6, where the nodal points in the interior of the faces are
represented by dotted edges (whereas we recall that the nodes of �.�; �/ are represented
by dashed edges linking triangular vertices).

In this context, the graph GŒ….�; �/; ¹�cºc I ¹….�c/ºc � for �c D …. O�c/ and �c D
�c�
�1
c introduced in Sec. 4.2 is simply obtained by contracting the connected compo-

nents of the nodal surface �.�; �/ (not its irreducible components!) and those of each
constellation O�c to points. This retains the information on which faces Fj and F 0j identi-
fied by ‰ are in the same connected component of �.�; �/ on the one hand, and which
are in the same connected component of O�c on the other hand (this is why it only depends
on the associated partitions). The graph GŒ….�; �/; ¹�cºc I ¹….�c/ºc � for the example in
Fig. 6 is the one in Fig. 2.

[1] [3]

[2]

[4] [5]

[1]

[3]

[2]

[4] [5]

[1] [3]

[2]

[4] [5]

(σ1, τ
−1
1 )

(σ2, τ
−1
2 )

S(σ1, τ1, σ2, τ2)

[1] [2]
[4]

[3]

[5]

[1]

[2] [3]

[4]

[5]

(2)

(1)

(3)

(45)

(η11, η
1
2)

(η21, η
2
2, η

2
3)

(123)

(45)

S(σ1, τ1, σ2, τ2; η11, η12; η21, η22, η23)

Fig. 6. Graphical representation of �.�; �I O�/ for an example in D D 2, n D 5, where �.�; �/ is
as in Fig. 4, and �11 D .12/.34/.5/, �

1
2 D .12/.345/, �

2
1 D .15/.24/.3/, �

2
2 D .1/.23/.4/.5/, and

�23 D .14/.2/.35/. The colors for the constellations are blue for 1, red for 2, orange for 3. The dotted
lines representing the pairwise identification of faces are labeled with the corresponding cycles.
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Lemma 5.7. The number of connected components of �.�; �; O�/ is the number of con-
nected components of GŒ….�;�/; ¹…. O�c/ºc I ¹….�c/ºc �, which is also the number of tran-
sitivity classes of the group generated by all �; �; O�, namely j….�; �; O�/j. Imposing tran-
sitivity in (C1) is imposing that �.�;�; O�/ is connected.

Lemma 5.8. With the notations (5.10), l is related to the arithmetic genus G .�; �; O�/ of
�.�;�; O�/ by

l D

DX
cD1

kcX
iD1

k�ci k D

DX
cD1

Œ#.�c/C #.�c/�C 2G .�;�; O�/ � 2 � 2n.D � 1/: (5.11)

In particular, by (5.4),

l � `.�;�/ D 2.G .�;�; O�/ � G .�;�//: (5.12)

Fixing l in (C2) therefore amounts to fixing the arithmetic genus of �.�;�; O�/ .

Proof. From the definition (5.1),

G .�;�; O�/ D

DX
cD1

�
g.�c ; �

�1
c /C g. O�c/

�
C nD C

DX
cD1

#.�c��1c / � n

�

DX
cD1

�
j….�c ; �

�1
c /j C j…. O�c/j

�
C 1:

Summing the Euler characteristics (2.10) of O�c yields

DX
cD1

.g. O�c/ � j…. O�c/j/ D
1

2
.l � nD/ �

1

2

DX
cD1

#.�c��1c /:

The result follows using the Euler characteristics of .�c ; ��1c / (5.3).

From these lemmas (for item (1) of the proposition) as well as the results of Sec. 5.2
(for item (2)) we get

Proposition 5.9. The 1=N expansion of the cumulant Weingarten functions in Thm. 3.3
can be seen as a topological expansion:

W
.N/
C Œ�;�� D .�1/`.�;�/N 2G .�;�/�`.�;�/�nD

�

X
G�G .�;�/

1

N 2G
pC Œ�;�I `.�;�/C 2.G � G .�;�//�;

where
.�1/`.�;�/pC Œ�;�I l � D

X
k�0

.�1/kmC .�;�I l; k/;

and mC .�;�I `.�;�/C 2.G � G .�;�//; k/ counts both
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(1) the isomorphism classes of nodal surfaces �.�; �; O�/ with O� D . O�1; : : : ; O�D/ as in
(5.10),

(2) the nodal topological constellations encoded by O�0 D . O�01; : : : ; O�0D/ where O�0c D
.��1c ; O�c ; �c/,

and in both cases, the spaces are connected and of fixed arithmetic genus G � G .�; �/,
and so that the vertices of flavor i of the O�c are not all of valency 1. The number pC Œ�;�I l �
counts those spaces listed above for which the O�c consist of sequences of transposi-
tions with weakly monotone maxima .this also translates into a condition on the flavored
vertices/.

The arithmetic genus G .�;�; O�/, or equivalently the exponent l D
PD
cD1

Pkc
icD1
k�cick,

can then be expressed as (Sec. 4.2)

G .�;�; O�/ � G .�;�/ D
l � `.�;�/

2
D

DX
cD1

g. O�c/C LŒ….�;�/; ¹�cºc I ¹….�c/ºc �;

(5.13)

where g. O�c/ is the genus of the kc-constellation O�c (the sum of the genera of its connected
components) and LŒ….�; �/; ¹�cºc I ¹….�c/ºc � is the number of excess edges (4.10) of
GŒ….�;�/; ¹�cºc I ¹….�c/ºc �:

LŒ….�;�/; ¹�cºc I ¹….�c/ºc � D
X
c

.j….�c/j � j�c j/ � j….�;�/j C 1: (5.14)

This provides a better understanding of how to characterize and count the contri-
butions to mC and pC in Prop. 5.9: counting connected �.�; �; O�/ of fixed arithmetic
genus G amounts to counting those �.�; �; O�/ for which the graph GŒ: : : � is con-
nected and has excess L between 0 and G � G .�; �/ while the genera g. O�c/ sum up to
G � G .�;�/�L (the other conditions in Prop. 5.9 must also be satisfied). In the example
of Fig. 6, the constellations are planar and .l � `/=2D 2D L. For instance, the following
gives a prescription for generating all the spaces that contribute at leading order:

Proposition 5.10. The spaces �.�; �; O�/ that correspond to the leading term in N for
the expansion (4.3) of the cumulant Weingarten functions W .N/

C Œ�; �� are those of mini-
mal arithmetic genus G .�; �; O�/ D G .�; �/, that is, such that the O�c are all planar and
GŒ….�;�/; ¹�cºc I ¹….�c/ºc � is a tree.

From this picture the aim is to keep �.�; �/ fixed and group the contributions of the
different constellations O� that lead to the same values of L and the same genera for the
connected components of the O�c . This is achieved in the last subsection.

5.3.2. A simpler kind of nodal surfaces. For both mC and pC , one fixes �; � but sums
over the proper O� (denoted by O� or O�) satisfying a number of assumptions. In order to
understand this geometrically, one may therefore, from �.�; �I O�/ introduced in the pre-
vious subsection, contract to points the connected components of the constellations O�c
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but keep the nodal topological constellation �.�; �/ (that is, go only half-way to build
the graph GŒ….�;�/; ¹�cºc I ¹….�c/ºc �). The result is a new kind of object �.�;�I ¹�cºc/

(since only the information on the connected components of the constellations is retained,
they have been replaced in the argument by the corresponding partitions of ¹1; : : : ; nº). It
can be obtained directly from �.�;�/ by adding nodal points between the faces of �.�;�/

corresponding to the blocs of ¹�cºc . Let us introduce this object more formally.
We fix �; � 2 Sn as well as G � 0, and for c 2 ¹1; : : : ; Dº, we let �c � ….�c/ be a

partition of the disjoint cycles of �c D �c��1c subject to the conditions

(C01) ….�;�/ _ �1 _ � � � _ �D D 1n,

(C02) LŒ….�;�/; ¹�cºc I ¹….�c/ºc � D G � G .�;�/.

For every nodal embedded graph �� � X� in the isomorphism class �.�; �/, ¹�cºc
provides a partition of the faces F1; : : : ; Fnk�l of �� � X� (the connected components
of the complement of the graph �� in the nodal surface X�). We may see the blocks in
this partition as a new kind of node: we choose for each j 2 ¹1; : : : ; nk � lº a point vj
in the interior of Fj , and we see each block Bc of �c for each c as a node P.Bc/ D
¹vj j Fj 2 Bcº. We then consider the nodal surface X�=

F
c¹P.Bc/ºBc2�c (together with

the nodal graph �� embedded in X�).
We then denote by �.�; �I ¹�cºc/ the isomorphism class of such objects, where by

isomorphism we mean homeomorphism of nodal surfaces that induces an isomorphism
of the nodal embedded graph on �� � X� and that preserves the incidence between the
nodes P.Bc/ and the faces Fj , in the sense that if a node P.Bc/ belongs to the interiors
of the faces Fj 2 Bc , then the image of the node also belongs to the interior of the images
of the faces. We let

SG .�;�/ D
®
�.�;�I ¹�cºc/ j ¹�cºc satisfy (C01) and (C02)

¯
; (5.15)

and more generally, we call the �.�;�I ¹�cºc/ the foldings of �.�;�/.
An example is shown in Fig. 7, where now the nodal points in the interiors of the

faces are represented by dotted edges that meet at star-vertices labeled by the blocks of
the partitions �c .

As for Lemma 5.7, the following follows directly from the fact that the graph
GŒ….�; �/; ¹�cºc I ¹….�c/ºc � is obtained by contracting the connected components of
�.�;�/ to points:

Lemma 5.11. The number of connected components of �.�;�I ¹�cºc/ is

j….�;�/ _ �1 _ � � � _ �Dj:

However now, in comparison to Lemma 5.8, the information on the genera of the
connected components of the O�c has been lost:

Lemma 5.12. The arithmetic genus of a connected folding �.�; �I ¹�cºc/ can be
expressed as

G .�;�I ¹�cºc/ D G .�;�/C LŒ….�;�/; ¹�cºc I ¹….�c/ºc �: (5.16)
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[1] [3]

[2]

[4] [5]

[1]

[3]

[2]

[4] [5]

[1] [3]

[2]

[4] [5]

(σ1, τ
−1
1 )

(σ2, τ
−1
2 )

(2)

(1)

(3)

(45)

(123) (45)

S(σ1, τ1, σ2, τ2; π1; π2)

{3,4,5}
{1,2}

{1,2,3,4,5}

Fig. 7. The nodal surface �.�;�I�1; �2/ for the example of Fig. 6, where �.�;�/ is as in Fig. 4 and
with �1 D ¹1; 2; 3º¹4; 5º and �2 D ¹1; 2; 3; 4; 5º.

Proof. From the definition (5.1),

G .�;�; ¹�cºc/D

DX
cD1

g.�c ; �
�1
c /CnDC

DX
cD1

#.�c��1c /�n�

DX
cD1

.j….�c ; �
�1
c /jC�c/C1:

The result follows using (5.2) for �.�;�/ as well as (5.14).

We can therefore express conditions (C01) and (C02) geometrically:

Lemma 5.13. SG .�;�/ is the set of connected foldings of �.�;�/ whose arithmetic genus
is G .

We may express bothmC and pC in terms of connected foldings of �.�;�/ of bounded
arithmetic genus. While in Prop. 5.9, the �.�; �I O�/ were counted with weight 1, now the
�.�; �I ¹�cºc/ must be counted with a non-trivial weight that takes into account all the
different choices of O� satisfying the conditions in Prop. 5.9 and that lead to the same
�.�; �I ¹�cºc/. For mC .�; �I l; k/, from (4.8), for each color c this weight is the num-
ber M.�c ; �c I lc ; kc/ of proper kc-constellations with respect to the partition �c , that is,
…. O�c/D �c . However, as already mentioned in Sec. 4.2, this quantity does not factor over
the connected components of O�c , since a permutation �ci may still be different from the
identity but reduce to the identity on a subset of ¹1; : : : ; nº corresponding to a connected
component of O�c (graphically, the vertices of flavor i may all be the identity on a con-
nected component of O�c without it being the case for all connected components of O�c).
This means that M.�c ; �c I lc ; kc/ cannot be expressed as a product of weights associated
to some of the vertices of �.�;�I ¹�cºc/.
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On the other hand, for pC Œ�;�I l �, one has factorization over the blocks of �c , leading
to the following geometrical interpretation of the formula (4.6) of Thm. 4.1 in terms of
the nodal surfaces �.�; �I ¹�cºc/, with non-trivial combinatorial weights. We let V c� .�/
be the set of nodes of a folding � D �.�;�I ¹�cºc/ of �.�;�/ that correspond to the blocks
of �c , called nodes of color c, and let V�.�/ D

F
c V

c
� .�/ be the set of colored nodes.

For v 2 V c� .�/, we also let �cjv be the restriction of �c D �c�
�1
c to the block Bc 2 �c

corresponding to v, and c.�cjv/ its cycle type, which is a partition of jBc j. We recall that
for ˛ D c.�cjv/, jC˛j D

jBc jŠQ
p�1pdp.˛/dp.˛/Š

, where dp.˛/ is the number of parts of ˛ of
size p.

Proposition 5.14. With these notations, pC Œ�; �I l � can be expressed as a sum of con-
nected foldings of �.�;�/ of bounded arithmetic genus, whose colored nodes are weighted
by monotone single Hurwitz numbers:

pC Œ�;�I l �

D

1
2 Œl�`.�;�/�X
GDG .�;�/

X
�2SG .�;�/

X
¹gvºv2V�.�/�0P

v2V�.�/ gvD
1
2 Œl�`.�;�/�CG .�;�/�G

Y
v2V c� .�/

EHgv .c.�cjv//

jCc.�cjv/j
:

(5.17)

The topological expansion of the cumulant Weingarten functions in Prop. 5.9 can there-
fore also be re-expressed as a topological expansion over connected foldings of �.�; �/

of fixed arithmetic genus.

With this interpretation, generating all the contributions to pC Œ�;�I l � is quite simple:
fixing �; � and l , one sums over the excess L between 0 and .l � `/=2, and over all
possible ways to add nodes of color c (represented by star-vertices of color c) for every
color c 2 ¹1; : : : ;Dº between all the faces of �.�;�/, so that the resulting (class of) nodal
surface is connected and the graph obtained when contracting the connected components
of �.�; �/ to points has L excess edges. This generates all the foldings of �.�; �/ of
arithmetic genus G .�; �/C L. For each such folding � D �.�; �I ¹�cºc/, each node of
color c corresponds to a blockBc of �c . One then distributes the total genus .l � `/=2�L
(see (5.13)) among all the nodes of color c, and each such node is endowed with a weight

l.gBc /.�cjBc /, which precisely takes into account the contributions of all the connected
constellations of genus gBc corresponding to the connected component of O�c for every
�.�; �; O�/ that contracts to � . From (4.21) this factor 
l.gBc /.�cjBc / is proportional to a
genus-gBc single monotone Hurwitz number (the signs combine into the overall .�1/l

factor in (4.6)).
The simplified version of this geometrical picture corresponding to D D 1 and mini-

mal l D ` has been introduced in [46].
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