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A four-dimensional cousin of the Segre cubic

Laurent Manivel

Abstract. This note is devoted to a special Fano fourfold defined by a four-dimen-
sional space of skew-symmetric forms in five variables. This fourfold appears to be
closely related with the classical Segre cubic and its Cremona–Richmond configura-
tion of planes. Among other exceptional properties, it is infinitesimally rigid and has
Picard number six. We show how to construct it by blow-up and contraction, starting
from a configuration of five planes in a four-dimensional quadric, compatibly with
the symmetry group �5. From this construction, we are able to describe the Chow
ring explicitly.

Dedicated to the memory of Laurent Gruson

1. Introduction

Fano threefolds were classified more than fourty years ago, after some fifty years of
efforts. The classification of Fano fourfolds is still elusive and will probably remain so
for a long time. There are many ways to construct such manifolds, and a systematic study
was launched a few years ago, of those that can be constructed from vector bundles on
products of Grassmannians and more general flag manifolds [6]; a sample has already
appeared in [5]. In this database, there is a unique fourfold with maximal Picard number,
equal to six: the study of this fourfold is the object of this note.

This study turned out to be related with interesting questions at the intersection of
algebraic geometry with Lie theory. Consider two complex vector spaces V4 and V5, of
dimensions four and five, respectively. The action of GL.V4/ � GL.V5/ on V _4 ˝ ^

2V _5
is known to be prehomogeneous, its open orbit being the complement of a degree 40
hypersurface, see [25], p. 98. It is in fact one of the most complicated prehomogeneous
spaces, containing no less than 63 distinct orbits [10,24]. An important literature has been
devoted to this prehomogeneous space, including some in connections with quintic field
extensions, in the spirit of Bhargava’s work on higher reciprocity laws [7, 17, 18].
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The Fano fourfold X4 we are interested in is defined by a generic element of the
prehomogeneous space V _4 ˝^

2V _5 . It has two natural projections to G.2; 4/ and to the
six-dimensional G.3; 5/ that we describe in some detail in Section 4. In particular, we
show it is a small resolution of a fourfold with ten singular points which appears to be
a cousin, or a big brother of the Segre cubic primal; this small resolution contracts ten
planes which can be seen as a special subcollection of the classical Cremona–Richmond
configuration. We deduce the following.

Theorem. Consider five general planes in one of the two families of projective planes in a
smooth four-dimensional quadricQ4. They intersect pairwise in ten points. Blow-up these
ten points and then the strict transforms of the five planes. Then the strict transforms of
the exceptional divisors of the first blow-up can be contracted to a smooth Fano fourfold,
which is precisely X4.

Then we show that the automorphism group is Aut.X4/ D �5, so that

Pic.X4/�5 ' Z2

is generated by the pull-back of the hyperplane classes by the two projections. This sug-
gests to construct the tensor that defines X4 by reverse-engineering, starting from the
representation theory of �5; we show how this leads to a normal form from this tensor. We
then use the previous constructions to describe the Chow ring ofX4 completely, including
the action of �5. We also check that X4, as expected, is infinitesimally rigid.

This study can be considered as a warm-up for the more mysterious case of U_5 ˝
^2V _5 , directly related to E8, which has infinitely many but well-described orbits for the
action of GL.U5/ � GL.V5/ (see [16] for a first approach). Among other nice geometric
objects, this representation will give rise to an interesting family of special Fano sixfolds.

2. Models

According to the classical Borel–Weil theorem, the representation V _4 ˝ ^
2V _5 can be

interpreted as a space of global sections of an irreducible homogeneous vector bundle
over a homogeneous space, and this in more than one way:

V _4 ˝^
2V _5 D �.G.2; V4/ � P .V5/;U

_ �Q_.1//

D �.P .V4/ � P .V _5 /;O.1/� ^
2V_/

D �.G.2; V5/; V
_
4 ˝^

2V_/

D �.P .V4/ � P .V5/;O.1/�Q_.1//

D �.G.2; V4/ �G.3; V5/;U
_ � ^2V_/

D �.P .V4/ �G.3; V5/;O.1/� ^2V_/

D �.P .V4/ �G.2; V5/;O.1/� ^2V_/

D �.G.2; V4/ �G.2; V5/;U
_ � ^2V_/:

Here U and V denote tautological bundles on Grassmannians (with some abuse of nota-
tions, since we use the these symbols several times for distinct bundles on different Grass-
mannians); the general statement is that �.G.k; Vd /; ^iU_/ D ^iV _d for i � k < d .
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The bundle Q on projective space is the tautological quotient bundle, and the slightly less
familiar statement is that �.P .Vd /;Q_.1// D ^2V _d : given a skew-symmetric bilinear
form ! on Vd , for any nonzero vector v the linear form !.v; �/ descends to the quotient
of Vd by the line generated by v, hence the isomorphism.

As a consequence, consider a general element � in V _4 ˝ ^
2V _5 . Interpreting it as a

global section of a vector bundle in these seven different ways, we obtain smooth sub-
varieties of codimensions equal to the ranks of the vector bundles in question, that we
respectively denote as follows (the notation is such that Xd has dimension d ):

X0 � G.2; V4/ � P .V5/; X1 � P .V4/ � P .V _5 /;
X2 � G.2; V5/; X3 � P .V4/ � P .V5/;
X4 � G.2; V4/ �G.3; V5/; X6 � P .V4/ �G.3; V5/;
X8 � P .V4/ �G.2; V5/; X 08 � G.2; V4/ �G.2; V5/:

Another obvious thing to do is to consider � as a general morphism from V4 to ^2V _5 .
The image of P .V4/ inside P .^2V _5 / is then a generic projective three-plane, that has
to meet the Grassmannian G.2; V _5 / along a set Y0 of five reduced points (the degree of
the Grassmannian being equal to five). Correspondingly, we get a set P0 of five points
in P .V4/, and a set …0 of five planes in P .V5/, all in general position. Concretely, if we
choose a basis e1; : : : ; e4 of V4, with dual basis e_1 ; : : : ; e

_
4 of V _4 , and decompose �

accordingly as
� D e_1 ˝ �1 C e

_
2 ˝ �2 C e

_
3 ˝ �3 C e

_
4 ˝ �4;

then the contraction �.v/ D v1�1 C v2�2 C v3�3 C v4�4 has rank two when Œv� belongs
to P0; that is, it decomposes as f _1 ^ f

_
2 for two linear forms f _1 and f _2 whose kernels

intersect along the corresponding plane in P .V5/. We will denote the five two-forms of
rank two (defined up to scalars) obtained by contracting � as !1; : : : ; !5. It would be
natural then to impose the normalization !1 C � � � C !5 D 0, and decompose � as

� D u_1 ˝ !1 C u
_
2 ˝ !2 C u

_
3 ˝ !3 C u

_
4 ˝ !4 C u

_
5 ˝ !5

for some linear forms u_1 ; : : : ; u
_
5 such that u_1 C � � � C u

_
5 D 0.

Notations. P0 D ¹p1; : : : ; p5º is a set of five points in P .V4/, in natural bijection with
the set ¹!1; : : : ; !5º of five decomposable two-forms in ^2V _5 , that define five points in
G.2;V _5 /'G.3;V5/, hence five planes P1; : : : ;P5 in P .V5/. They also define five planes
�1; : : : ; �5 in G.2; V4/, where �k is the set of planes in V4 that contain pk .

L0 is the set of pairs of points in P0. According to the previous identifications, it is in
natural bijection with a set of ten lines in P .V4/, a set of ten points in P .V5/, and a set of
ten points in G.2; V4/.

3. Small dimensions

Most results in this section are classical. Our purpose is mainly to set up the scene for the
main character, which will make its entry in the next section.

Proposition 3.1. X0 consists of 10 points of G.2; V4/ � P .V5/, in natural bijection
with L0.
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Proof. By definition, a point .A2; B1/ belongs to X0 if and only if we can decompose �
in such a way that A2 is cut out by the linear forms e_3 and e_4 , and the skew-symmetric
forms �1 and �2 have the same kernelB1� V5. Otherwise said, �1 and �2 belong to^2B?1 .
Since in the latter space decomposable tensors are parametrized by a quadric, we can make
a change of basis in A?2 and suppose that �1 and �2 are indeed decomposable. Concretely,
this means that we can write � in the form

� D e_1 ˝ f
_
1 ^ f

_
2 C e

_
2 ˝ f

_
3 ^ f

_
4 C e

_
3 ˝ �3 C e

_
4 ˝ �4:

Then Œe1� belongs to P0, the associated plane in P .V5/ being P1D hf1;f2i?, and also Œe2�
belongs to P0, the associated plane being P2 D hf3; f4i?. In particular, A2 D he1; e2i and
B1 D P1 \ P2, as claimed.

Proposition 3.2. X1 is the union of five disjoint lines, in natural bijection with P0.

Proof. By definition, a point inX1 is a pair .A1;B4/ such that �.v/ vanishes onB4 when v
generates A1. But then �.v/ must have rank two, of the form f _1 ^ f

_
2 . In particular, A1

must correspond to one of the five points of P0, and the hyperplane B4 can move in the
pencil hf _1 ; f

_
2 i.

Proposition 3.3. X2 � G.2; V5/ is a del Pezzo surface of degree five.

Proof. Obvious.

Recall that the del Pezzo surface of degree five contains 10 lines. Since the embed-
ding in G.2; V5/ is anticanonical, this means in our setting that there exist ten flags
A1 � A3 � V5 such that �.v; w/ D 0 for any v 2 A1; w 2 A3. It is easy to see that these
ten flags are in natural bijection with L0, the ten points ŒA1� in P .V5/ being exactly the
intersections of the planes P1; : : : ; P5.

The following statement is classical, see e.g. Chapter 9 in [13]. We include a proof as
a warm-up.

Proposition 3.4. The projection of X3 to P .V4/ is the blow-up of the five points of P0.
The projection to P .V5/ is a small resolution of a Segre cubic primal C3, ten lines being
contracted to the ten singular points of C3 defined by L0.

Proof. By definition, X3 parametrizes the pairs .A1 D Œv�; B1/ such that B1 is contained
in the kernel of �.v/. Generically, this two-form has rank four and the kernel is one-
dimensional, which implies that X3 projects birationally to P .V4/. The projection has
non-trivial fibers when the rank of �.v/ drops, that is, over one of the five points in P0.
Then the kernel has dimension three and the fiber is a projective plane, as it has to be.

Now we turn to the projection to P .V5/. By definition, the fibers are linear subspaces
defined by the image of the morphismQ.�1/! V _4 ˝OP.V5/ induced by � . In particular,
the fibers are non-trivial over the corresponding determinantal locus C3, which is a cubic
threefold since det.Q.�1//D OP.V5/.�3/. This threefold becomes singular exactly when
the rank drops to two. If w 2 V5 generates B1, this means that the morphism from V4
to V _5 sending ei to �i .w;�/ has rank two. So we may suppose after a change of basis that
�1.w; �/ D �2.w; �/ D 0. In other words, �1 and �2 have the same kernel B1, and after
another change of basis if necessary, we have already seen that we can suppose they are
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decomposable. So they define two points in P0, in such a way that B1 is the point obtained
as the intersection of the corresponding planes in P .V5/, while the line contracted to this
point is the span of the corresponding points in P .V4/.

As a result, C3 is a cubic threefold with 10 nodes. In fact, C3 is the image of the
rational map from P .V4/ to P .V5/ sending Œv� to the kernel of the two-form �.v/, and
essentially by definition this is a Segre cubic primal [11].

Reminder on the Segre cubic primal. It was Guido Castelnuovo who introduced the
Segre cubic primal in 1888, as the union of lines in P4 parametrized by a quintic del
Pezzo surface obtained as a linear section of the Grassmannian. It can also be described
directly, in terms of homogeneous coordinates x0; : : : ; x5 on P5, by the two equations

x0 C � � � C x5 D 0 and x30 C � � � C x
3
5 D 0:

This presentation exhibits an �6 symmetry, and it is known that Aut.C3/D �6. Classically,
the Segre primal contains 15 planes. (See 4.5 in Chapter X of [26] and Chapter 9 in [13]
for much more information.)

The Segre cubic primal admits a classical modular interpretation, according to which
C3 ' .P1/6==SL2. Moreover, xM0;6 is a resolution of its singularities (that just blows-up
the singular points), and according to Kapranov, it can be constructed by blowing-up five
general points in P3, plus the strict transforms of the ten lines that join them [19]. (Note
also that xM0;6 compactifies the moduli space of genus 2 curves.)

Note also that C3 is known to be G-birationally rigid, and even G-birationally super-
rigid, when A5 � G � �6 [1].

Blowing-up the ten singular points in C3, we get ten exceptional divisors isomorphic
to P1 � P1, each of which is contracted to P1 in X3. According to [15], any of the rul-
ings of P1 � P1 can in fact be contracted, yielding 210 D 1024 small resolutions of the
singularities of C3, falling into 13 orbits of �6, including 6 for which the resolution is
projective. Homological projective duality for the Segre cubic is discussed in [3].

On the planes in the Segre cubic. In coordinates, the 15 planes on the Segre cubic are
given by three equations

xa C xb D xc C xd D xe C xf D 0;

for .abcd ef / a permutation of .123456/; we denote such a plane by .abjcd jef /. To-
gether with the 15 points in the hyperplane x0 C � � � C x5 D 0 with four coordinates equal
to zero, they form a .153; 153/ configuration classically known as the Cremona–Richmond
configuration: each plane contains three of the 15 points, and each of those points belongs
to three planes of the configuration. But beware that two planes may meet along a sin-
gle point, or a projective line; the second possibility occurs when their symbols have a
common pair.

Proposition 3.5. There are exactly 6 collections of five planes among the fifteen planes
in C3, meeting pairwise along single points. These collections are exchanged transitively
by the action of �6. Each one has for stabilizer a copy of �5, embedded in �6 in a non-
standard way.
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To understand the last sentence, recall that �6 has the exceptional property that its
outer automorphism group is non-trivial: there exists a unique outer automorphism, and
a non-standard embedding of �5 in �6 is the composition of a standard embedding by
such an outer automorphism. Note that this outer automorphism of �6 exchanges the two
conjugacy classes consisting of transpositions on one hand, and products of three disjoint
transpositions on the other hand; the former corresponds to points, the latter to planes in
the Cremona–Richmond configuration, which is for this reason self-dual.

Proof. Suppose given a collection of five planes, any two of which meet at a single point.
This means that each plane is represented by three pairs, none of which being shared with
another plane. So we have a total amount of 15 distinct pairs; necessarily, all the 15 pairs
of integers from 1 to 6 must appear exactly once.

Up to permutation, we can assume that one of our planes is .12j34j56/. Then the plane
containing .13/ is either .13j25j46/ or .13j26j45/, and up to permuting 5 and 6, we can
suppose it is the first one. Then the other planes are determined. For example, for the
one containing .14/, we must split .2356/ into two pairs, and since .25/ and .56/ have
already been used, the only possibility is .14j26j35/. This also shows that we have three
choices for the plane containing .12/, then two choices for the plane containing .13/, and
then no more choices; this means there are exactly six possibilities. Explicitly, they are the
following:

.12j34j56/ .12j34j56/ .12j35j46/ .12j35j46/ .12j36j45/ .12j36j45/

.13j25j46/ .13j26j45/ .13j24j56/ .13j26j45/ .13j25j46/ .13j24j56/

.14j26j35/ .14j25j36/ .14j25j36/ .14j23j56/ .14j23j56/ .14j26j35/

.15j24j36/ .15j23j46/ .15j26j34/ .15j24j36/ .15j26j34/ .15j23j46/

.16j23j45/ .16j24j35/ .16j23j45/ .16j25j34/ .16j24j35/ .16j25j34/:

Let us denote these six configurations byABCDEF . The action of �6 on them induces
a morphism �6 ! �6, and a direct examination shows that it sends the transposition .12/
to the permutation .AB/.CD/.EF /. So it has to correspond to the outer automorphism
of �6, and our final claim follows.

Question. Is there an interpretation in terms of the root system E7? In fact, the Lie alge-
bra e7 admits a Z3-grading of the form

e7 D sl3 � sl6 ˚ .C
3
˝^

2C6/˚ .C3
˝^

2C6/_;

and roots of e7 defined by weights of C3˝^2C6 can be interpreted as triples of pairs [21].
Note that roots of e7 are classically connected with the 28 bitangents of a plane quartic.

4. The Fano fourfold

Recall that our main characterX4 �G.2;V4/�G.3;V5/ is defined by � a general element
in V _4 ˝^

2V _5 , considered as a general section of the vector bundle U_�^2V_. Here U

denotes the tautological rank two bundle on G.2; V4/, while V denotes the tautological
rank three bundle on G.3; V5/.

In this section, we describe the geometry of X4 by blow-ups and contractions.
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4.1. The main invariants

We start by computing the main numerical invariants ofX4, including its Hodge numbers.

Proposition 4.1. X4 is a rational Fano fourfold of index one.
Its cohomology is pure, with h1;1 D 6 and h2;2 D 17.
Moreover, h0.�KX4/ D 40 and K4X4 D 172.

Proof. The first assertion is an immediate consequence of the adjunction formula:

KX4 D KG ˝ det.U_ � ^2V_/jX4

D OG.�4;�5/˝ det.U_/3 ˝ det.^2V_/2
jX4
D OX4.�1;�1/;

where for simplicity we letG WDG.2;V4/�G.3;V5/. The Hodge numbers and invariants
can computed using exact sequences, along the lines explained in [5]. (They could also
be deduced from the geometric descriptions that will follow.) Since 172 D 4 � 43 is not
divisible by any fourth power, the index must be one.

Remark. There exist only very few examples, if we exclude products, of Fano fourfolds
with Picard number six or more. See Section 6 in [8] for details.

Note that
h0.�KX4/ D 40 < dim.^2V4 ˝^3V5/ D 60;

which means that X4 is linearly degenerate inside G D G.2; V4/ �G.3; V5/. This can be
checked by considering the twisted Koszul complex

0 �! ^6E_.1; 1/ �! � � � �! E_.1; 1/ �! OG.1; 1/ �! OX4.1/ �! 0:

Indeed, H 0.E_.1; 1// ' V4 ˝ V5 has dimension 20, while it can be checked that
H 0.^kE_.1; 1// D 0 for k > 1.

We will describe in some detail the two projections �1 and �2:

X4
�1

{{

�2

$$

G.2; V4/ G.3; V5/:

We start with the second one.

4.2. The second projection and the Cremona–Richmond configuration

We start with the projection to G.3; V5/, which is very similar to the resolution of singu-
larities of the Segre cubic primal.

Proposition 4.2. The projection of X4 to G.3; V5/ is a small resolution of a codimension
two subvariety C4 of degree 12, contracting ten planes to ten singular points in natural
bijection with L0.
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Proof. The fiber of �2 WX4 �! G.3; V5/ over a point ŒV � 2 G.3; V5/ is defined by the
morphism �V W ^

2V ! V _4 induced by � . In particular, the fibers are non-trivial when the
rank is at most two, which happens in codimension two. We conclude that the image C4
of X4 is a determinantal fourfold. Its structure sheaf admits a resolution by the Eagon–
Northcott complex (see, e.g., (6.1.6) in [27])

(4.1) 0 �! V_.�3/ �! V4 ˝OG.2;V5/.�2/ �! OG.2;V5/ �! OC4 �! 0;

where V denotes the rank three tautological bundle. We deduce in particular that the class
of C4 in the Chow ring of the Grassmannian G.3; V5/ is 3�2 C 2�11, so that its degree is
3 � 2C 2 � 3 D 12.

The rank of �V drops to one on the singular locus of C4, which must have codimen-
sion 6, hence be a finite set, over which the fibers are projective lines. The fact that �V
has a two dimensional kernel means that we can find a basis v1; v2; v3 of V such that
�i .v1; v2/ D �i .v1; v3/ D 0 for all i . Completing with two vectors v4; v5 and taking the
dual basis, we conclude that every �i belongs to the space of forms generated by v_1 ^ v

_
4 ,

v_1 ^ v
_
5 and ^2.v?1 /. In particular, h�1; �2; �3; �4i has to meet ^2.v?1 / in dimension at

least two, which means that V defines a pair of planes �p and �q in P0, whose intersec-
tion point is a line in V . Finally, V defines a hyperplaneHpq of V4, and the corresponding
fiber is the set G.2;Hpq/ ' P2 of planes in Hpq .

Conversely, such a pair of planes being given, we can decompose � in an adapted
basis as

� D e_1 ˝ f
_
1 ^ f

_
2 C e

_
2 ˝ f

_
3 ^ f

_
4 C e

_
3 ˝ �3 C e

_
4 ˝ �4;

and then the conditions �3.f5; �/ D �4.f5; �/ D 0 define a 3-plane V containing f5. This
exactly means that the singular locus of C4 consists in ten points, in natural bijection
with L0.

Proposition 4.3. Each singular point of C4 defines a plane in the Segre cubic primal C3.
The five remaining planes are the projectivized kernels of the five singular form!1; : : : ;!5.

Proof. By definition, a point Œv�2P .V5/ belongs toC3 when the four linear forms �i .v;�/
on V5 are linearly dependent. In the proof above, we have seen that a singular point in C4
corresponds to a three-plane V Dhv1;v2;v3i in V5 with �.v1; v2/ D �.v1; v3/ D 0. So for
any v 2 V , the linear forms �i .v; �/ vanish on v1, and also on v by skew-symmetry.
When v and v1 are independent, the four linear forms �i .v; �/ thus belong to the three-
dimensional space hv;v1i? � V _5 , so they must be linearly dependent. Hence P .V /�C3.

That the projectivized kernels P .Kj / of the five singular skew forms �j are contained
in C3 is obvious, since �j .v; �/ D 0 for v 2 Kj is a linear dependence relation between
the �i .v; �/.

Note that we also have a special point Œv1� in each of the ten planes P .V /. Moreover,
the five planes P .K1/; : : : ;P .K5/ meet pairwise at a single point. In particular, they pro-
vide one of the special subcollections of the Cremona–Richmond configuration described
in Proposition 3.5.

Also observe that a form ! which is as above in the span of v_1 ^ v
_
4 , v_1 ^ v

_
5

and ^2.v?1 /, but does not belong to ^2.v?1 /, can be written as v_1 ^ w
_ C 
 , with 
 2

^2.v?1 / and w_ a combination of v_4 and v_5 . It has rank two when 
 has rank (at most)
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two and w_ ^ 
 D 0, which means if w_ ¤ 0 that 
 is divisible by w_. But then !
itself is divisible by w_, and since w_ is a combination of v_4 and v_5 , this implies that
!.v2; v3/ D 0. In other words, the linear form that definesHpq � V4 vanishes at the point
that corresponds to !. This exactly means that

pi 2 Hjk for i ¤ j; k:

We thus get in G.2; V4/ a collection of 5C 10 planes, such that each plane of the second
type meets exactly three planes of the first type. Hence a configuration .103; 56/. The
condition that .jk/ be disjoint from .lm/, so that the two hyperplanes meet in pn, defines
a copy of the Petersen graph.

Being a degeneracy locus of a morphism between vector bundles, C4 admits two nat-
ural resolutions of singularities; X4 is one of them. For the other one, we need to impose
a rank one kernel in the source of the morphism ^2V ! V _4 ; note that a rank one sub-
space of ^2V is always of the form ^2W for W � V a rank two subspace. But then
the composition ^2W ! V _4 vanishes exactly when W defines a point in the del Pezzo
surface X2 � G.2; V5/. Our second resolution of singularities is thus simply PX2.Q/, the
projectivisation of the quotient bundle of G.2; V5/, restricted to X2. The two resolutions
are dominated by QX4, the set of triples .U2; V3 � W2/ such that .U2; V3/ belongs to X4
and W2 belongs to X2. We get the following diagram:

QX4

˛

~~

�

��

ˇ

##

X4
�1

{{
�2

  

PX2.Q/

�2
{{

�1

##

G.2; V4/ C4 X2:

Remark. Since �1 and ˛ are birational, this diagram induces a rational map fromG.2;V4/

toX2 �G.2;V5/: as we have just seen, the generic U2 � V4 is sent to the unique planeW2
in V5 such W2 � V3, where V3 is generated by the kernels of the forms �.v/, v 2 U2. If
U2 D hv1; v2i, that we complete in a basis of V4 by two vectors v3 and v4, this means that
W2 D ha1; a2i is defined in V3 by the two conditions �.v3/.a1; a2/ D �.v4/.a1; a2/ D 0.
But then for any Œs1; s2� 2 P1, the condition that �.v/.s1p1C s2p2;�/D 0 reduces to only
three scalar conditions on v, that can be realized by some nonzero vector. This implies that
the line p1p2 is contained in C3, and must be the residual line of the conic obtained by
applying � to the line P .U2/. As observed by one of the referees, it was already known
to Castelnuovo that X2 can be interpreted as one of the components of the Fano variety
of lines on C3. Then mapping a line in P .V4/ to the residual line of the corresponding
conic as before defines a natural rational map from G.2; V4/ to X2, and our QX4 resolves
the indeterminacies of this rational map.

Proposition 4.4. The morphism �2 WPX2.Q/! C4 is a small resolution of singularities,
contracting ten lines to the ten singular points of C4. These ten lines are mapped by �1 to
the ten lines in the del Pezzo surface X2.
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The morphism ˇ is the blow-up of the ten exceptional lines of �2, as well as ˛ is the
blow-up of the ten exceptional planes of �2.

Finally, � is the blow-up of the ten singular points of C4, its exceptional divisor being
the disjoint union of ten copies of P2 � P1.

Remark. Contrary to X4, the fourfold X 04 D PX2.Q/ is not Fano. Indeed, the canonical
bundle of X2 is det.Q_/ D OX2.�1/, and we deduce that the canonical bundle of X 04 is
��1OX2.1/˝ �

�
2OC4.�3/. In particular, it has degree one on the lines contracted by �2.

Note also the striking similarity with the two main projective resolutions of the Segre
cubic, which can be encapsulated in a similar diagram,

QZ3

~~

��

##

Z3

||   

PX2.U /

{{ ##

P .V4/ C3 X2;

where Z3 is the blow-up of P .V4/ D P3 at five points. Two important differences: Z3,
contrary to X4, is only weak Fano; Z3 and Z03 D PX2.U /, contrary to X4 and X 04, are
related by flops and therefore derived-equivalent. Instead of that, we have:

Proposition 4.5. The birational map ��12 ı �2 WX4Ü X 04 is a flip.

Proof. We have to check that the canonical bundle changes sign on the fibers of the pro-
jection to C4, see Chapter 9 in [23]. On the one hand, since X4 is Fano, KX4 is certainly
negative on the fibers of �2. On the other hand, we have just seen thatKX 04 has degree one
on the lines contracted by �2.

According to the Bondal–Orlov conjecture, there should therefore exist a fully faithful
functor Db.X 04/ �! Db.X4/ that would be interesting to describe explicitly.

4.3. Pencils of skew-forms and the first projection

In order to describe the projection to G.2; V4/, we first note that a plane in V4 defines
through � a pencil of skew-symmetric forms in five variables, and that such pencils have
been classified. In fact, for a two dimensional vector space V2, the action of GL.V2/ �
GL.V5/ on V _2 ˝^

2V _5 has finitely many orbits, which are described in [20]. Let us only
mention that there are exactly eight orbits: the open orbit O7, an orbit O6 of codimen-
sion two, and another O5 of codimension four, and then all the other orbits have bigger
codimension.

The orbit O5 (or rather its closure) is characterized as consisting of tensors of rank at
most four, in the sense that they belong to V _2 ˝ ^

2V4 for some hyperplane V4 � V _5 .
The orbit O6 (or rather its closure) is characterized as consisting of those pencils in ^2V _5
admitting a rank two element. So the open orbit O7 parametrizes pencils of forms of
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constant rank four. By Proposition 2 in [22], given such a pencil, one can find a basis
of V5 for which the two skew-forms

'1 D f
_
1 ^ f

_
3 C f

_
2 ^ f

_
4 and '2 D f

_
1 ^ f

_
4 C f

_
2 ^ f

_
5

are generators. The projective line hf _1 ; f
_
2 i is the pivot of the pencil. Now, observe that if

a three-plane V � V5 is isotropic with respect to any skew-form s'1 C t'2 of the pencil,
it has to contain its kernel, which is generated by s2f3 � stf4 C t2f5. So necessarily
V D hf3; f4; f5i, the orthogonal to the pivot.

Proposition 4.6. The projection of X4 to G.2; V4/ is birational. The exceptional locus
in G.2; V4/ is the union of five planes, intersecting in the ten points of L0, whose fibers
are quadratic surfaces.

Proof. The fiber of the projection �1 WX4 �! G.2; V4/ over the point ŒU � 2 G.2; V4/ is
defined by the morphism �U WU ! ^

2V _5 . This morphism is injective and we thus get a
pencil of skew-symmetric forms. If this pencil is generic, which means that it has constant
rank, then we have just seen that there is a unique three-plane in V5 which is isotropic with
respect to any skew-form in the pencil. This three-plane is the image of the induced map
�
.2/
U WS

2U ! ^4V _5 ' V5. In particular, �1 is birational.
Special fibers will occur when the pencil Im.�U / becomes special in some way. By the

usual arguments for orbital degeneracy locus [4], each type of special pencil will appear
along a locus whose codimension is equal to the codimension of the corresponding orbit
inside the space of pencils. In particular, we only need to take into account the orbits of
pencils of codimension smaller than five, which apart from the open one, are the orbits O5
and O6 we have described above.

Pencils in O5 contain two skew-forms of rank two. In our case, they must be two of the
skew-forms !1; : : : ; !5, say �1 and �2. Choose an adapted basis such that �1 D f _1 ^ f

_
2

and �2 D f _3 ^ f
_
4 , so that

�U D e
_
1 ˝ f

_
1 ^ f

_
2 C e

_
2 ˝ f

_
3 ^ f

_
4 :

It is straightforward to check that the three-planes that are isotropic with respect to any
skew-form in the pencil are those generated by f5, a vector in hf1; f2i, and a vector in
hf3; f4i. We thus get for fiber a copy of P1 � P1.

Finally, pencils in O6 contain exactly one skew-form of rank two, say �1. To describe
the corresponding fiber, we must understand the 3-planes isotropic with respect to both
the generic form �2 and the degenerate form �1 D f

_
1 ^ f

_
2 . Such a 3-plane must contain

the kernel of �2; let us choose a generator f5 and a hyperplane H4 in V5 not contain-
ing f5. We may suppose that f _2 vanishes on f5. The 3-planes we are looking for are
in correspondence with the 2-planes H D hh; h0i in H4 such that �2.h; h0/ D 0 and
f _1 .h/ D f _1 .h

0/ D 0. Such a 2-plane must be contained in the kernel K3 of f _1 , and
it has to contain the kernel K1 of the restriction of �2 to K3. We finally get for fiber a
pencil of planes.

To summarize, the exceptional locus is the union of five planes �1; : : : ;�5 inG.2;V4/,
where �i parametrizes the planes in V4 containing pi . Their pre-images in X4 are five
divisors that we denote F1; : : : ; F5. Any two among the five planes meet at a single point,
over which the fiber of �1 is a quadratic surface.
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If U2 does not belong to any of the five exceptional planes, we have seen that U3
is the span of the kernels of the two-forms �.v/, for v 2 U2. Since this kernel can be
computed as �.v/ ^ �.v/, there is a natural associated conic bundle over G.2; V4/ minus
the five exceptional planes. This also stresses the analogy with the construction of the
Segre primal C3 as the image of a rational map P .V4/Ü P .V5/ defined by � . Here we
get C4 as the image of a rational map G.2; V4/Ü G.2; V5/ also defined by � . We will
put its equations in simple form in the next section.

4.4. Blow-up and contract

Proposition 4.6 suggests to construct X4 by first blowing-up G.2; V4/ along the 10 points
of L0, then the strict transforms of the 5 planes, which are Del Pezzo surfaces of degree
five. The first blow-up Bl0 WG0 �! G.2; V4/ gives 10 exceptional divisors E0ij ' P3 for
1 � i < j � 5, each with a pair of skew lines `i and j̀ coming from the two planes �i
and �j intersecting at pij . The second blow-up BlP WG1 �!G0 produces five other excep-
tional divisors F 11 ; : : : ; F

1
5 that will be sent in X4 to F1; : : : ; F5. Moreover, the strict

transform E1ij of E0ij is the blow-up of E0ij along `i [ j̀ . Since the blow-up of P3 along
two skew lines is the total space of P .O.�1;0/˚O.0;�1// over P1 �P1, we deduce that
the rational map to X4 is a morphism. More precisely, it has to coincide with the blow-up
BlQ WG1 �! X4 of the ten quadratic surfaces Sij D ��11 .pij / in X4. This explains in
particular why the Picard number is equal to 6.

G.2;V4/

X4G0

Bl0

G1

BlP BlQ

�1

Let F 1 D F 11 C � � � C F
1
5 , and let E1 be the sum of the ten divisors E1ij inG1. LetH1

and H2 be the pull-backs of the hyperplane classes by �1 and �2, that we denote in the
same way on X4 and on G1. From the identity

KG1 D �4H1 C 3E
1
C F 1 D KX4 CE

1
D �H1 �H2 CE

1;

we deduce the relation 3H1 D H2 C 2E1 C F 1.
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The exceptional locus of �2 defines a collection of 10 planes in X4, contracted to
the ten singular points of C4, and that we can identify with their isomorphic images in
G.2; V4/. Recall that in this Grassmannian we have the five planes �1; : : : ; �5:

Proposition 4.7. The resulting collection of 10C 5 planes in G.2; V4/ is in natural cor-
respondence with the Cremona–Richmond configuration.

4.5. Incidences with the Segre cubic

Now we relate the two varieties X3 and X4 by considering the incidence correspondence

I D ¹.A1; B1/; .U2; U3/ 2 X3 �X4; A1 � U2; B1 � U3º:

Recall that, by definition, B1 is (contained in) the kernel of �.v/ for v 2 A1, while the
general U3 is the linear span of the kernels of the two forms �.u/ for u 2 U2; this kernel
depends quadratically on u since it is given by �.u/^ �.u/. So I is birationally equivalent
to the flag variety Fl.1; 2; V4/, and we have a commutative diagram:

I

�3

xx ��

�4

''
X3

��

Fl.1; 2; V4/

yy &&

X4

��

P .V4/ G.2; V4/:

We leave the proof of the next statement to the interested reader.

Proposition 4.8. The morphism �4 is a conic fibration, while �3 is a fibration in del Pezzo
surfaces of degree four.

4.6. Projective duality

We have seen that X4 is birationally equivalent to the projective bundle PX2.Q/ over
the del Pezzo surface X2. Since Q_ has no section, we would rather write it as P D
PX2.^

2Q_/, in which case the relative tautological bundle OP .�1/ sends P to P .^2V _5 /
' P .^3V5/, the image being C4 � G.3; V5/. We are then in the context of homological
projective duality for projective bundles, according to which P ! P .^2V _5 / is dual to
P� ! P .^2V5/, with P� the projective bundle PX2.W ^ V5/, where W denotes the rank
to tautological bundle.

Proposition 4.9. The image of P� ! P .^2V5/ is an octic hypersurface in P .^2V5/,
containing the Grassmannian G.2; V5/ in its singular locus.

Proof. First consider the full projective bundle PG.2;V5/.W ^ V5/ and its projection to
P .^2V5/. The generic fiber is a smooth three-dimensional quadric Q3 (while the special
fibers, that occur over G.2; V5/, are codimension two Schubert cycles). When we restrict
to X2, we cut the fibers by linear spaces of codimension four. Generically, they meet the
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span of the fiber at one point; in codimension one, this point will be on the fiber itself. This
implies that P� ! P .^2V5/ is birational onto its image, which must be a hypersurface.
As usual, we compute the degree of this hypersurface asZ

P�
OP�.1/

8
D

Z
X2

s2.W ^ V5/ D

Z
G.2;V5/

.2�2 C �11/�
4
1 D 8:

Here we used exact sequences to compute the Segre class

s.W ^ V5/ D c.Q/
5c.S2U/;

with c.Q/ D 1C �1 C �2 C �3 and c.U / D 1 � �1 C �11.
Over a point W 0 of the Grassmannian, the fiber of PG.2;V5/.W ^ V5/! P .^2V5/ is

the Schubert cycle of planes W meeting W 0 along at least a line. It is desingularized by a
P3-bundle over P .W 0/. If we fix a line L �W 0, there exists a planeW � L in X2 if and
only if the four linear forms �.L;�/ on V5=L are linearly dependent. This defines a section
of^4.Q_.1//DO.3/ over P1, and we conclude that the general fiber of PX2.W ^ V5/!
P .^2V5/ over G.2; V5/ consists in three points. Since this morphism is birational onto its
image, Zariski’s main theorem implies thatG.2;V5/ is contained in the singular locus.

5. Symmetries

The symmetries of the Segre cubic primal must be reflected in X4. In this section, we
describe the symmetries of X4 in some detail. In particular, we will prove:

Proposition 5.1. The generic stabilizer of the action of PGL.V4/� PGL.V5/ on P .V _4 ˝
^2V _5 / is the symmetric group �5.

What is classically known, as we mentioned in the introduction, is that the action of
PGL.V4/ � PGL.V5/ on V _4 ˝^

2V _5 is prehomogeneous. The representative of the open
orbit given in [24] is

� D e_1 ˝ .f25 � f34/C e
_
2 ˝ .f15 � f24/C e

_
3 ˝ .f23 � f14/C e

_
4 ˝ .f45 � f12/;

with the notation fij D f _i ^ f
_
j . The corresponding points in P .V4/ and rank two forms

are easy to identify; we get

p1 D e2 C ie4; !1 D .f1 C if4/ ^ .f2 C if5/;

p2 D e2 � ie4; !2 D .f1 � if4/ ^ .f2 � if5/;

p3 D e1 C e3 C e4; !3 D .f2 C f4/ ^ .f1 C f3 C f5/;

p4 D e1 C j e3 C j
2 e4; !4 D .f2 C j

2f4/ ^ .f1 C j
2f3 C j f5/;

p5 D e1 C j
2e3 C j e4; !5 D .f2 C jf4/ ^ .f1 C jf3 C j

2f5/:

Here j and i are primitive fourth and third roots of unity. Each pair !p; !q defines two
planes in V _5 whose common orthogonal is a line Œepq�: Then the planes of the Cremona–
Richmond configuration are obtained as follows: Ppq is generated by the three points eij ,
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ejk and eik for ijk distinct from pq; and Pp is generated by the four points eip for i ¤ p.
Explicitly, the ten vectors epq can be chosen as follows:

e12 D .0; 0; 1; 0; 0/; e24 D .i;�j
2;�2ij; 1; ij 2/;

e13 D .1;�i;�2; i; 1/; e25 D .i;�j;�2ij
2; 1; ij /;

e14 D .�i;�j
2; 2ij; 1;�ij 2/; e34 D .1; 0; j

2; 0; j /;

e15 D .�i;�j; 2ij
2; 1;�ij /; e35 D .1; 0; j; 0; j

2/;

e23 D .1; i;�2;�i; 1/; e45 D .1; 0; 1; 0; 1/:

Each !i defines a plane �i in V _5 , from which we can deduce a collection of hyper-
planes �ij D �i C �j and points pijk D �i \ .�j C �k/:

Proposition 5.2. For any permutation i; j; k; l; m of 1; : : : ; 5, pijk D pilm.

Proof. Explicit check.

We have no convincing explanation of this coincidence, but as a consequence, we do
not get thirty but only fifteen points in P .V _5 /. Obviously, pijk belongs to �i , hence to
any of the four hyperplanes �il , l ¤ i . Conversely, �ij contains the three points piab plus
the three points pjcd .

Proposition 5.3. The fifteen points �ijk and the ten hyperplanes �ij in P .V4/ form a
configuration .154; 106/.

We thus recover the abstract configuration classically defined by the Segre primal. In
particular, the fifteen points �ijk should be in natural correspondence with planes in the
Segre primal.

Automorphisms in PGL.V4/ � PGL.V5/ that fix h�i are in bijective correspondence
with elements of PGL.V5/ fixing the four-plane generated by the !i ’s. Automatically, such
an automorphism will preserve the set of five planes �1; : : : ; �5, hence the collection of
the thirty points pijk .

In order to show that any permutation of the five planes can be lifted to PGL.V5/,
it is enough to lift two generators of �5, say a transposition and a complete cycle. By
sending fi to "ifi , with "i D 1 for i odd and "i D �1 for i even, we exchange �1 and �2
and let the three other planes be fixed. So let us turn to a maximal cycle. We claim that the
cycle .12345/ 2 �5 can be lifted to the transformation of GL.V5/ given by

f1 7!
j
3
f1 � 2ijf2 C

j
3
f3 � ijf4 C

4j
3
f5;

f2 7! �
2i
3
f1 � f2 C

i
3
f3 C

i
3
f5;

f3 7!
4j 2

3
f1 C 4ij

2f2 �
2j 2

3
f3 � 4ij

2f4 C
4j 2

3
f5;

f4 7! �
ij
3
f1 �

ij
3
f3 � jf4 C

2ij
3
f5;

f5 7!
4
3
f1 C if2 C

1
3
f3 C 2if4 C

1
3
f5:

Corollary 5.4. The automorphism group of the Fano fourfold X4 is Aut.X4/ D �5.

Proof. An automorphism of X4 is induced by a linear transformation in PGL.V4/ �
PGL.V5/ preserving � . Considered as a homomorphism from V4 to ^2V _5 , � defines a
codimension four linear section of G.2; V5/, that is a degree five del Pezzo surface S5.
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This implies that Stab.�/ embeds into Aut.S5/, which is well known to be �5. Since we
know by the previous computations that Stab.�/ contains �5, we are done.

Once we identify �5 with the stabilizer of � in SL.V4/ � SL.V5/, we get actions of �5
on V4 and V5, clearly irreducible. Up to the sign representation there is a unique irreducible
representation of �5 of dimension 4, and a unique one of dimension 5. The complex (4.1)
shows that C4 is cut out by a family of quadrics on G.2; V5/ parametrized by V4, hence
a �5-invariant copy of V4 inside the Schur module S22V _5 D H

0.G.2; V5/;OG.2;V5/.2//.
We will show later on that this copy is unique. (This point of view from finite group
representation theory is typically used in [14]. Something with the same flavour has been
done in [2] for the quintic del Pezzo surface.)

We use the character table of �5 (see for example [12]) to compute some plethysm and
tensor product representations. Recall that �5 has irreducible representations, of dimen-
sions 1, 1, 4, 4, 5, 5 and 6, that we denote by U1 U�1 , U4, U�4 , U5 and U�5 ; U6. All
these representations are self-dual, being defined over the real numbers. Concretely, U1 is
the trivial representation, U�1 is the sign representation, U4 is the natural representation,
U�4 D U4 ˝ U

�
1 and U6 D ^2U4. One computes that

S2U4 D U5 ˚ U4 ˚ U1 and ^
2 U5 D U

�
4 ˚ U6:

The last decomposition implies, in particular, that .U�4 /
_ ˝ ^2U_5 contains a unique

�5-invariant tensor ��5 , up to scalars.
At this point, it could therefore be reasonable to reverse the whole process and start

from the representation theory of �5. One should be able to check directly that ��5 is
generic, and then we should get ��5 -invariant descriptions of all the objects we have been
studying.

Note that S2U4 D U5 ˚ U4 ˚ U1 allows to construct U5 from U4, as the space of
quadrics which are apolar to the obvious invariant cubic. In coordinates x1; : : : ; x5 per-
muted by �5, the representation U4 is the hyperplane x1 C � � � C x5 D 0, the invariant
cubic is x31 C � � � C x

3
5 and the apolar quadrics are of the form

P
i¤j aijxixj , with

aij D aj i for all i ¤ j;
X
i¤k

aik D 0 for all k:

We get ten indeterminates and five independent relations, consistently with the fact that
these quadrics should span a copy of V5.

Inside the space V5 of apolar quadrics to the invariant cubic, note that we have qij;kl D
.xi � xj /.xk � xl / for i; j; k; l distinct integers. These quadrics are subject to the Plücker
type relations qij;kl � qik;jl C qil;jk D 0. This suggests to define the following elements
of ^2V5:

Q1 D q23;45 ^ q24;35;

Q2 D q13;45 ^ q14;53;

Q3 D q12;45 ^ q14;25;

Q4 D q12;35 ^ q13;52;

Q5 D q12;34 ^ q13;24:
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Obviously, for any permutation � 2 �5 one must have �.Qi / D ˙Q�.i/. We also let, for
a pair i ¤ j with complement p; q; r in 1; : : : ; 5,

Qi;j D qip;qr ^ qjp;qr C qiq;rp ^ qjq;rp C qir;pq ^ qjr;pq :

Proposition 5.5. The action of �5 on hQ1; : : : ;Q5i gives a copy of the representationU�4
in ^2U5. Similarly, the action of �5 on hQi;j ; 1 � i < j � 5i gives a copy of the repre-
sentation U6.

What have we gained in doing all that? First, we get a better, more symmetric normal
form for the generic � than that of Ozeki, as

��5 D e1 ˝Q1 C e2 ˝Q2 C e3 ˝Q3 C e4 ˝Q4 C e5 ˝Q5;

with e1 C � � � C e5 D 0.
Also, we can make explicit the quadratic equations of C4. A character computation

yields:

Lemma 5.6. The multiplicity of U�4 inside S2.^2U5/ is equal to one.

So the space of quadratic equations we are looking for is uniquely defined in terms
of the �5-action. Moreover, recall that ^2U5 D U�4 ˚U6. Another character computation
shows that the copy of U�4 that we are looking for inside S2.^2U5/ is in fact contained
inside U�4 ˝ U6 D U�4 ˝ ^

2.U�4 / � U
�
4 ˝ End.U�4 / (recall that U�4 is self-dual). So

there is an obvious map to U�4 , and dually, this says that the space of quadrics we are
looking for is generated by the five quadrics

CQi D
X
j¤i

Qi;jQj ; for 1 � i � 5:

Remark. Since Aut.C3/ D �6, certain automorphisms of the Segre primal do not lift
to X4. Would it be possible that �6 act on X4 by birational transformations?

6. The Chow ring of X4

In this section, we completely determine the Chow ring of X4, with its structure of �5-
module. Let us start with the Picard group.

From the relation 3H1 D H2 C 2E C F that we found on G1, we compute that

H 4
1 D 2; H 3

1H2 D 6; H 2
1H

2
2 D 13; H1H

3
2 D 14 and H 4

2 D 12:

The Picard group is generated by H1, H2 and the five components of F , which are per-
muted by �5. We deduce:

Proposition 6.1. The Chow ring of X4 is generated by A�.G/ and the five divisors
F1; : : : ; F5. As a representation of �5, the Picard group decomposes as

Pic.X4/˝Z C D 2U0 ˚ U4:
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We know by Proposition 4.1 that the middle dimensional Chow group A2.X4/ has
dimension 17, and we expect that the invariant part has dimension four, with two classes
coming from G.2; V4/ and two other classes from G.2; V5/. We will show that are all
come (at least over Q) from products of divisor classes.

We compute the multiplicative structure of the Chow ring by embedding it in the
Chow ring of G1, that we shall now describe. First, the Chow ring of G0 is generated
by the Chow ring of G D G.2; V4/ and the ten exceptional divisors E0pq of the blow-up
b0 D Bl0WG0 �! G.2; V4/, such that

.E0pq/
4
D �1; E0pqE

0
p0q0 D 0 for ¹p; qº ¤ ¹p0; q0º; E0pq :b

�
0C D 0

for any class C 2 A�.G/ of positive degree. After this first blow-up, the five planes
�1; : : : ; �5 give five disjoint surfaces †1; : : : ; †5, each one being a plane blow-up in
five points, that is a del Pezzo surface of degree 5. We denote the four exceptional lines
in †p by `qp , whose image in G is the point �pq , for q ¤ p.

The second blow-up b1DBlP WG1 �!G0 is the blow-up of these five surfaces. Recall
that we denoted by F 1p the five exceptional divisors, and by E1pq the strict transforms of
the divisorsE0pq inG0. Since F 1p D P .Np/, forNp the normal bundle of†p insideG0, we
need to describe this normal bundle. Recall that when one blows up one point in a smooth
variety X , creating an exceptional divisor E inside the blow-up Y

�
! X , the tangent exact

sequence is 0! T Y ! ��TX ! i�TE ! 0, where i WE ! Y denotes the inclusion.
Since the normal bundle of �p inside the Grassmannian G is the quotient bundle Q, we
get the following diagram:

0 0 0??y ??y ??y
0 �����! T†p �����! TG0j†p �����! Np �����! 0??y ??y ??y
0 �����! b�0T�p �����! b�0TGj�p �����! b�0Q �����! 0??y ??y ??y
0 �����! ˚q¤pT `

q
p �����! ˚q¤pTE

0
pq �����! ˚q¤pN

q
p �����! 0??y ??y ??y

0 0 0:

Here we denoted byN q
p the normal bundle to `qp ' P1 inside E0pq ' P3, which is just

O`qp .1/˚O`qp .1/. We deduce the Segre class

s.Np/ D s.b
�
0Q/

Y
q¤p

c.O`qp .1//
2
2 A�.†p/:

One the one hand, the Segre class s.Q/ equals the Chern class of the tautological bundle
onG, that is, s.Q/D 1�H1C �11, and the Schubert class �11 restricts to zero on �p . On
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the other hand, on the del Pezzo surface †p we have O`qp .1/ D O.�`
q
p/j`qp , from which

we get the Segre class s.O`qp .1// D 1C `
q
p C 2.`

q
p/
2. Finally,

s.Np/ D 1 �H1 C 2
X
q¤p

`qp C 2
X
q¤p

.`qp/
2:

We can deduce several intersection numbers, since for any class C3�k of degree 3 � k
on G0, we have the classical formulas

.F 1p /
kC1b�1 C3�k D

Z
F 1p

.F 1p /
k b�1 C3�k D .�1/

k

Z
†p

sk�1.Np/C3�k :

Lemma 6.2.

.F 1p /
4
D 8; .F 1p /

3H1 D �1; .F 1p /
2H 2

1 D �1 and F 1pH
3
1 D 0:

Note also that F 1p does not meetE1rq for r; q ¤ p, but it meetsE1pq transversally along
the surface Sqp D b�11 .`

q
p/. Therefore,

OG1.E
1
pqjF 1p

/ D OF 1p .S
q
p / D b

�
1O†p .`

q
p/:

Applying the previous formula to C3�k D .E0pq/
3�k , we get:

Lemma 6.3. F 1pE1rq D 0 if r; q ¤ p, but

.F 1p /
3E1pq D �2; .F 1p /

2.E1pq/
2
D 1 and F 1p .E

1
pq/

3
D 0:

On the other hand, E0pq gets blown-up along the two-skew lines `qp and `pq , and its
strict transform E1pq is contracted to the quadratic surface `qp � `

p
q in X4. This surface is

also the intersection of Fp and Fq in X4, in particular it is contained in Fp . We deduce,
denoting BlQ by c, that

c�Fp D F
1
p C

X
q¤p

E1pq :

Summing up over p, we get the relation c�F D F 1 C 2E1, where F D F1 C � � � C F5.

Corollary 6.4. C4�G.3;V5/ is the image of GDG.2;V4/ by the linear system jI�.3H1/j
of cubics vanishing along the union � of the five planes �1; : : : ; �5.

This is similar to the classical statement thatC3 is the image of P3 by the linear system
of quadrics passing through five points in general position, see Proposition 9.4.15 in [13].
As a referee points out, this somehow reveals the mystery of C4.

We now have enough information to describe the intersection product on X4.

Proposition 6.5. The nonzero intersection numbers among H1; F1; : : : ; F5 are the fol-
lowing: for 1 � p ¤ q � 5,

F 4p D 12; F 3p Fq D�2; F 2p F
2
q D 1; F 3pH1 D�1; F 2pH

2
1 D�1 and H 4

1 D 2:

Moreover, we always haveH1FpFq D 0 for p ¤ q and FpFqFr D 0 for p ¤ q ¤ r ¤ p.
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Proof. The values of F 3pH1 and F 2pH
2
1 can be computed directly by restricting to a gen-

eral hyperplane or a general codimension two section of G; then we avoid the points �qr
and we are reduced to compute the self-intersection of the exceptional divisor for the
blow-up of a line in a three-dimensional quadric, or a point in a surface. Then we can
deduce the value of F 4p by computing the self-intersection of H2 D 3H1 � F , which we
know is equal to

12 D 81H 2
1 � 108H

3
1 F C 54H

2
1 F

2
� 12H1F

3
C F 4 D 162 � 270C 60C F 4:

This gives F 4 D F 41 C � � � C F
4
5 D 60, hence F 4p D 12. (But note that this is not equal to

.c�Fp/
4 D�4, as a consequence of the fact that Fp contains four of the quadratic surfaces

blown-up by c.)
The other intersection numbers can be computed by pulling-back by c and using

Lemma 6.2.

Proposition 6.6. The square map S2A1.X4/�!A2.X4/ is surjective. As a consequence,
the �5-module structure of A2.X4/ is

A2.X4/ D 4U0 ˚ 2U4 ˚ U5:

Proof. The decomposition of the �5-module S2A1.X4/ is 4U0 ˚ 3U4 ˚ U5, the sum of
three isotypical components, and the kernel of the square map must decompose accord-
ingly.

First consider the four invariant classes H 2
1 , H1F , F .2/ and F .11/, where

F .2/ D
X
p

F 2p and F .11/ D
X
p<q

FpFq :

Suppose that there is a relation aH 2
1 C bH1F C cF

.2/C dF .11/D 0. Multiplying succes-
sively by H 2

1 , H1Fp , F 2p and FpFq , and using the results of Proposition 6.5, we deduce
that 2a� 5cD 0, bC cD 0, aC bC 16c � 8d D 0, 4c � d D 0, hence aD bD cD d D 0.

Now consider the possibility that U5 be contained in the kernel of the square map.
We claim that U5 is embedded inside S2A1.X4/ as the space of linear combinationsP
p¤q apqFpFq with apq D aqp and

P
r apr D 0 for all p; q. Indeed, this defines an

invariant five-dimensional subspace of S2A1.X4/, not containing any invariant class, so
it must be U5. A typical element is

3FpFq � .Fp C Fq/
X
r¤p;q

Fr C
X

s;t¤p;q

FsFt :

If this was zero inA2.X4/, multiplying by FpFq would imply that the intersection number
F 2p F

2
q D 0, which is not the case.

We can conclude that the kernel of the square map must be contained in the isotypical
component 3U4 of S2A1.X4/, which is generated by the three copies of U4 respectively
obtained as the linear combinationsX

p

apH1Fp;
X
p

apFFp and
X
p

apF
2
p ;
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for
P
p ap D 0. A copy of U4 in the kernel corresponds to a relation of the form

uH1Fp C vFFp C wF
2
p D I; for all p;

for I an invariant class. Since I is invariant, multiplying by H1Fp and H1Fq must then
give the same intersection number, which gives the relation �u � v � w D 0. Similarly,
multiplying by F 2p or F 2q must give the same result, that is �uC 4v C 12w D �v C w.
Finally, multiplying by FpFq or FqFr with q; r distinct from p must also give the same
result, that is, �v � 2w D 0. These three equations are linearly dependent and reduce to
u D w and v D �2w, which proves that there is a unique copy of U4 in the kernel of the
square map. This concludes the proof.

Threefolds

Consider the two families of divisors in X4 given by sections of H1 and H2, respectively.
Since a general hyperplane section in G.2; V4/ will avoid the ten points �pq , the first
ones are just blow-ups of five disjoint lines in a smooth three-dimensional quadric. For the
same reason, the second ones, sayZ3, are isomorphic with their images inG.3;V5/\H2,
which are codimension two degeneraci loci defined by the condition that the morphism
^2V ! V _4 has rank exactly two. Its image is then the pull-back from G.2; V4/ of the
dual quotient bundle Q_. In particular, we get an exact sequence

0! O.1;�2/! ��2.^
2V /! ��1Q_ ! 0

on Z3. This shows in particular that O.�1; 2/, the restriction of 2H2 �H1 D 5H1 � 2F ,
is generated by sections on Z3. The image in Z3 is the closure of the planes U � V4 such
that the image of S2U ! ^2V5 ' V5 is isotropic with respect to some three-form on V5.
This defines a section of ^3.S2U/_ D det.U_/3, so that the image of Z3 in G.2; V4/ is
a singular cubic hypersurface.

K3 surfaces

By taking sections of H1 ˚H2 in X4, we get a family of smooth K3 surfaces S in X4.
We denote by h1, h2, f1; : : : ; f5 the restriction to S of the divisors H1;H2; F1; : : : ; F5.

Proposition 6.7. The intersection numbers of these divisors in S are

h21 D 6; h22 D 14; h1h2 D 13; h1fi D 1; h2fi D 5 and fifj D �2ıij :

Proof. This is an immediate consequence of the computations above, since for two divi-
sors A and B on X restricting to a and b on S , we have ab D ABH1H2.

An obvious consequence is that h1; f1; : : : ; f5 are linearly independent. Moreover,
the curves Ci D Fi \ S are .�2/-curves on S , mapping to lines on G.2; V4/ and to
rational quintics in G.2; V5/. The divisor 5h1 � h2 D 2h1 C f should contract these
five .�2/-curves to the five singular points of a surface NS . Note that this is a divisor of
degree 34, so NS could be a degeneration of a smooth K3 surface of genus 18. Mukai
described the generic such K3 surface as the zero locus inOG.3; 9/ of five sections of the
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rank two spinor bundle. What is the connection? Note that we have a family of surfaces of
dimension 5C 9 D 14 D 19 � 5, which is coherent with the expectation that imposing 5
nodes on a K3 surface of genus 18 should give five independent conditions.

7. The Igusa quartic and the Coble fourfold

Given a linear form h on V5, there is an associated quadratic form Qh on V4:

Qh.v/ D h ^ �.v/ ^ �.v/ 2 ^
5V _5 ' C:

Proposition 7.1. The quartic det.Qh/ D 0 is the Igusa quartic in P4 D P .V _5 /.

Proof. Recall that the generic point of the Segre cubic C3 � P .V5/ is the kernel of one
of the two-forms �.v/, and that we can get this kernel as the line generated by �.v/ ^
�.v/ 2 ^4V _5 ' V5. At this generic point, the affine tangent space to the Segre cubic
is therefore the hyperplane of V5 generated by the vectors of the form �.v/ ^ �.w/ 2

^4V _5 ' V5. This hyperplane is defined by a linear form hv 2 V
_
5 that vanishes on these

vectors, which exactly means that hv ^ �.v/ ^ �.w/ D 0 for any w 2 V5. In other words,
Qhv .�.v/; �.w// D 0 for all w 2 V5, which means that �.v/ belongs to the kernel of the
quadratic form Qhv . In particular, the latter is degenerate.

We have thus proved that the generic point of the projective dual variety of the Segre
cubic is contained in the quartic hypersurface det.Qh/D 0. But this projective dual is well
known to be the Igusa quartic in P .V _5 /, and these two quartics have to coincide.

This yields a simple determinantal representation of the Igusa quartic. Using Ozeki’s
representative, we get

Qh D

0BB@
2h1 �h2 �h3 �h5
�h2 2h3 �h4 0

�h3 �h4 2h5 �h1
�h5 0 �h1 2h3

1CCA ;
whose determinant is readily computed to be

� det.Qh/ D 4h43 C 4h
2
3 .3h1h5 � h2h4/ � 4h3 .h

3
1 C h

3
5 C h1h

2
4 C h

2
2h5/

C .h1h2 � h4h5/
2:

One can consider inside P .V _5 / �G.2; V4/ the locus J5 of pairs .Œh�; U / such that U
is isotropic with respect toQh. Recall thatOGQ.2; 4/D P1 [ P1 is the disjoint union of
two smooth conics whenQ is non-degenerate. WhenQ is a quadratic form of corank one
on V4, the corresponding orthogonal Grassmannian OGQ.2; V4/ is a single conic (while
ifQ has corank two,OGQ.2; V4/ is the union of two planes meeting at one point, defined
by the kernel). This means that the Stein factorization of the projection of J5 to P .V _5 / is
J5! Cob4! P .V _5 /, where Cob4 is the double cover of P .V5/ branched over the Igusa
quartic: that is, the Coble fourfold [9].

On the other hand, denote by QX4 the pull-back to X4 of the rank two quotient bundle
on G.3; V5/. The P1-bundle P .QX4/ over X4 has a natural map to G.2; V4/ � P .V _5 /,
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and we claim that its image is precisely J5. Indeed, a generic element .U; V � H/ of
G.2; V4/ � F l.3; 4; V5/ belongs to P .Q_X4/ when V , hence H , contains the kernels of all
the two-forms �.v/, v 2 U . But if h is a linear form defining H , the condition that H
contains the kernel of �.v/ exactly means that h ^ �.v/ ^ �.v/ D 0, hence our claim.
Moreover, the projection map P .Q_X4/! J5 is birational, being clearly bijective outside
the five special planes in G.2; V4/. So we get a diagram

P .Q_X4/

bir

||

P1

##

J5

conic

##

X4;

Cob4

where the south-west arrow is a conic bundle, at least generically. But the picture does not
seem to recover the small resolutions of Cob4 described in [9].

8. Local rigidity

Since V _4 ˝^
2V _5 is prehomogeneous, we expect that X4 has strong rigidity properties.

What we can prove is the following statement.

Proposition 8.1. X4 is locally rigid.

Proof. Local rigidity is equivalent to the vanishing of H 1.TX4/. In order to check this,
as usual we rely on the normal exact sequence, which yields an exact sequence of coho-
mology groups

H 0.TGjX4/ �! H 0.EjX4/ �! H 1.TX4/ �! H 1.TGjX4/:

So local rigidity will follow from the following statements, to be proved separately:
(1) H 1.TGjX4/ D 0;
(2) H 0.EjX4/ D V

_
4 ˝^

2V _5 =h�i;
(3) H 0.TGjX4/ �! H 0.EjX4/ is surjective.

The third statement follows from the fact that P .V _4 ˝ ^
2V _5 / is prehomogeneous

under PGL.V4/ � PGL.V5/, more precisely from the fact that the orbit of Œ� � is open,
since this implies that the image of the natural differential sl4 � sl5 D H 0.TG/ �!

V _4 ˝^
2V _5 =h�i sending X to X.�/mod � is surjective; since this morphism can also be

defined by restricting first to X4 and then composing with the morphism we are interested
in, the latter must also be surjective.

In order to prove the second statement, we twist by E the Koszul complex resolving
the structure sheaf of X4. By standard cohomological arguments, it is enough to check
that H 0.G;End0.E// D 0 and H i .G;E ˝^iC1E_/ D 0 for any i > 0.
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For the first claim, observe that

End0.E/ D End0.U /˚ End0.V /˚ End0.U /˝ End0.V /

is in fact acyclic.
For the second claim, check that E ˝^iC1E_ is also acyclic for any i > 0. Similarly,

in order to prove the first statement we need to check thatH iC1.G;TG ˝^iE_/D 0 for
any i � 0, which is again a straightforward application of Bott’s theorem.

The question remains open, whetherX4 is also globally rigid, which would be remark-
able for a Fano fourfold with such a big Picard number. The first thing to be checked is
whether X4 remains smooth when we degenerate � to the codimension one orbit. If the
answer were yes, we would get a similar situation to the case of codimension two linear
sections of the spinor tenfold (which has Picard number one, though).

Another question one may ask is whether the quotient bundle restricted to X4 is rigid.
In other words, is the morphism to G.3; V5/ uniquely defined?

9. Higher dimensions

Let us briefly describe the higher dimensional models.

Proposition 9.1. X6 is a rational Fano sixfold of index one and Picard rank two.
The projection of X6 toG.3;V5/ is birational, with non-trivial fibers isomorphic to P1

over the smooth locus of C4, and to P2 over its ten singular points.
The projection to P .V4/ is a Q3-bundle outside P0, with five four-dimensional fibers

over P0.

From this description and that of X4, we deduce that in the Grothendieck ring of vari-
eties, one has the relation ŒX6�C L3ŒY0� D ŒG.3; V5/�C LŒX4�. This yields the Poincaré
polynomial of X6,

PX6.t/ D 1C 2t C 8t
2
C 9t3 C 8t4 C 2t5 C t6:

Proposition 9.2. X8 is a Fano eightfold of pseudo-index three, whileX 08 is Fano eigthfold
of index three.

Proposition 9.3. The projections of X8 and X 08 to G.2; V5/ are dual P2-fibrations over
the complement of a del Pezzo surface of degree five, the exceptional fibers being isomor-
phic to P .V4/ and G.2; V4/ respectively.

We can readily deduce that X8 and X 08 have pure cohomology, with Poincaré polyno-
mials

PX8.t/ D 1C 2t C 4t
2
C 6t3 C 11t4 C 6t5 C 4t6 C 2t7 C t8

and

PX 08.t/ D 1C 2t C 5t
2
C 11t3 C 13t4 C 11t5 C 5t6 C 2t7 C t8:
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Of course, X6; X8; X 08 inherit the same symmetries as X4. E. Fatighenti and F. Tan-
turri checked the necessary vanishing conditions to establish, as for X4, that they are also
infinitesimally rigid.
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