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Lp gradient estimates and Calderón–Zygmund
inequalities under Ricci lower bounds

Ludovico Marini, Stefano Meda, Stefano Pigola and Giona Veronelli

Abstract. In this paper, we investigate the validity of first and second order Lp

estimates for the solutions of the Poisson equation depending on the geometry of the
underlying manifold. We first presentLp estimates of the gradient under the assump-
tion that the Ricci tensor is lower bounded in a local integral sense, and construct
the first counterexample showing that they are false, in general, without curvature
restrictions. Next, we obtain Lp estimates for the second order Riesz transform (or,
equivalently, the validity of Lp Calderón–Zygmund inequalities) on the whole scale
1 < p < C1 by assuming that the injectivity radius is positive and that the Ricci
tensor is either pointwise lower bounded, or non-negative in a global integral sense.
When 1 < p � 2, analogous Lp bounds on higher even order Riesz transforms are
obtained provided that also the derivatives of Ricci are controlled up to a suitable
order.

1. Introduction

The purpose of this paper is to prove some regularity results (see Section 2 for the precise
statements) concerning solutions to the Poisson equation on Riemannian manifolds under
comparatively weak assumptions on their geometry. We also show that certain regular-
ity results may be strongly influenced by the geometry at infinity of the manifold. One
recurrent theme in our investigation is to prove (at least some of) our results under the
assumption that the Ricci curvature satisfies appropriate Lp lower bounds in place of the
pointwise bounds that commonly appear in the literature.

In order to place our research in perspective, we begin by making some comments that
may help the reader orienting in this fascinating field of research.

Given a function f in Lp.Rn/, where 1 < p <1, and a distributional solution u of
the Poisson equation �u D f , it is well known that @j @`u belongs to Lp.Rn/ for every
pair of integers j and ` in ¹1; : : : ; nº, and

(1.1) k@j @`ukp � Ckf kp;
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where C does not depend on f . This regularity result may be reformulated as a bound-
edness result in Lp.Rn/ for the so called second order Riesz transform, as follows. For j
and ` as above, consider the operator Rj;` defined, at least formally, by

.Rj;`f /y.�/ D
�j �`

j�j2
yf .�/:

The operator Rj;` is a paradigmatic example of Calderón–Zygmund singular integral oper-
ator, and acts on f by convolution with a specific principal value distribution, viz. the
inverse Fourier transform of the function � 7! �j �`=j�j

2. Such operators are known to
be bounded on Lp.Rn/, 1 < p <1, and of weak type .1; 1/, see [21]. By virtue of the
very special structure of the Euclidean space, this is equivalent to saying that the operator
r2.��/�1, where r2 denotes the second covariant derivative associated to the Euclidean
metric, extends to a bounded operator fromLp.Rn/ toLp.RnIT2Rn/, the space of allLp

sections of the second order covariant tensors on Rn, endowed with the standard met-
ric. The operator r2.��/�1 will henceforth be called second order Riesz transform, and
denoted by R2. More generally, for each positive integer k, one can consider the kth
order Riesz transform rk.��/�k=2, denoted by Rk , which is bounded from Lp.Rn/ to
Lp.RnIT2Rn/, 1 < p <1, and of weak type .1; 1/.

The Riesz potential ��1 is unbounded on Lp.Rn/, so that one cannot expect that a
distributional solution of (1.1) with Lp datum f belongs to Lp.Rn/. A simple scaling
argument shows that both the estimates

kukp � Ckf kp and kjrujkp � Ckf kp

fail. However,��1 is a smoothing operator. Indeed, if n � 3, then the Hardy–Littlewood–
Sobolev inequality implies that ��1 maps Lp.Rn/ to Lr .Rn/, where 1=r D 1=p � 2=n.
Thus, distributional solutions u of the Poisson equation (1.1) belong to Lr .Rn/, hence
locally to Lp.Rn/. This, in turn, implies that u is locally (but not globally) in the Sobolev
space W 2;p.Rn/.

Recall that�� generates a Markovian semigroup, so that itsLp spectrum is contained
in the closure of the right half plane. In particular, for every � > 0, the operator �I �� is
invertible in Lp.Rn/, 1 < p <1, or equivalently,

(1.2) kukp � Ck�u ��ukp

whenever the right-hand side is finite. In other words, solutions to the modified Poisson
equation�u� �uD f , with datum f inLp.Rn/, are inLp.Rn/. It is convenient to intro-
duce the kth order local Riesz transform Rk� ´r

k.�I ��/�k=2. Then the estimate (1.1)
may be reformulated by saying that R2� is bounded from Lp.Rn/ to Lp.RnIT2Rn/. Fur-
thermore, observe that the Lp boundedness of the first order Riesz transform r.��/�1=2,
and the moment inequality, see Proposition 6.6.4 in [18] (which we can apply, for �� is
a sectorial operator on Lp.Rn/), imply the gradient estimate

(1.3) kjrujkp � Ck.��/
1=2ukp � Ckuk

1=2
p k�uk1=2p � C.kukp C k�ukp/:

This and (1.1) then yield the bound

(1.4) kukW 2;p.Rn/ � C.kukp C k�ukp/:
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It is natural to speculate how the scenario described above has to be modified as we pro-
gressively move away from the familiar Euclidean space, by replacing Rn with a complete
noncompact n-dimensional Riemannian manifold M , and the Laplace operator by the
Laplace–Beltrami operator, which we henceforth denote by �. Clearly, the definitions of
Riesz transform and local Riesz transform of order k extend in an obvious way to this
more general setting. They will be denoted by Rk� and Rk , respectively.

Simple examples that illustrate how subtle the influence of the geometry at infinity
of M on the estimates discussed above can be are the hyperbolic space Hn and the con-
nected sum Rn]Rn of two copies of Rn. It is worth observing that both Hn and Rn]Rn

have bounded geometry in the strongest possible sense.
Since the bottom of the L2 spectrum of � is strictly negative and its L1 spectrum is

contained in the left half plane, � is invertible on Lp.Hn/, 1 < p <1, so that a distri-
butional solution u of the Poisson equation �u D f , with f in Lp.Hn/, automatically
belongs to Lp.Hn/. Since the first order Riesz transform is bounded from Lp.Hn/ to
Lp.HnIT1Hn/ (see [2, 29]), we can argue as in (1.3), and conclude that

(1.5) kukW 2;p.Hn/ � Ckf kp;

an estimate which has no analogue in Rn.
Coulhon and Duong [10] proved that the first order Riesz transform R1 is unbounded

on Lp.Rn]Rn/ for p > n. In fact, they considered the case n � 3, but their argument
can be adapted to the case where n D 2. Thus, in particular, R1 is unbounded from
Lp.R2]R2/ to Lp.R2]R2IT1.R2]R2// for all p > 2, a fact alien to Rn. For an interest-
ing generalization to manifolds with finitely many Euclidean ends, see [8].

Suppose now that .M;g/ is an n-dimensional Riemannian manifold and that 1<p<1,
and consider the problem of determining (geometric) assumptions under which the ana-
logues of (1.1), (1.2), (1.3), (1.4) and (1.5) hold onM . It may be worth warning the reader
that people in harmonic analysis and in global analysis quite often use different terminolo-
gies to denote the same object: in particular, the former speak about the Lp boundedness
of local Riesz transforms, whereas the latter prefer to refer to the Lp Calderón–Zygmund
inequalities

(1.6)


jr2uj



p
� C

�
kukp C k�ukp

�
; 8u 2 C1c .M/:

An account of this latter approach can be found in the survey paper [28]. The equiva-
lence between the Lp boundedness of the second order Riesz transform and the validity
of an Lp Calderón–Zygmund inequality will be formalised in Proposition 2.4. The two
formulations will be used interchangeably in the rest of the paper.

First we look at (1.3). A special case of a celebrated result of D. Bakry [3] states that if
the Ricci curvature ofM is bounded from below, then the first order local Riesz transform
is bounded on Lp.M/ for every p 2 .1;1/; equivalently, there exists a constant C such
that

(1.7) kjrujkp � C
�
k.��/1=2ukp C kukp

�
; 8u 2 C1c .M/:

Thus, much as in (1.3), we obtain the gradient estimate

kjrujkp � C
�
kukp C k�ukp

�
; 8u 2 C1c .M/:(GE.p/)
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In the case where p > 2, this result was also obtained via probabilistic arguments by
Cheng, Thalmaier and Thompson [9]. To the best of our knowledge, it is not known
whether the first order local Riesz transform is bounded from Lp.M/ to Lp.M I TM/,
1 < p < 2, on any complete Riemannian manifoldM . However, Coulhon and Duong [11]
proved that if p 2 .1;2�, then theLp gradient estimates (GE.p/) holds on any geodesically
complete manifold. A much simpler proof thereof may be found in Lemma 1.6 of [20].
We emphasise that the multiplicative estimate

kjrujkp � C kuk
1=2
p k�uk

1=2
p ; 8f 2C1c .M/;

fails if p > 2 and M D R2 ]R2 (see the second remark after Theorem 4.1 in [11]),
although M has Ricci curvature bounded from below, whence Bakry’s estimate (1.7)
and the moment inequality, Proposition 6.6.4 in [18], imply that (GE.p/) holds for every
p2 .1;1/. This result illustrates how sensitive of the geometry of the underlying manifold
these inequalities may be.

It is natural to speculate whether the gradient estimates (GE.p/) hold for some p > 2
under the sole assumption that M is geodesically complete. One of our main contribu-
tions (see Theorem B in Section 2) is to exhibit, for each p > 2 and each positive integer
n � 2, an n-dimensional Riemannian manifold M that does not support the gradient
estimate (GE.p/). According to what has been discussed above, the curvature of these
manifolds is necessarily lower unbounded. However, as we will explain in Remark 5.1, it
is possible to construct examples where the negative part of the curvature grows as slowly
as desired.

Note that, as a consequence, both R1 and R1� , for any � > 0, are unbounded onLp.M/.
We also prove that if p0 > n, and the Ricci curvature is bounded from below in an

appropriate local Lp0=2 integral sense (see Definition 2.1 in Section 2), then (GE.p/)
holds for all p 2 .1; p0/ (see Theorem A in Section 2). Our condition is trivially satis-
fied if we assume standard pointwise lower bounds for the Ricci curvature, so that our
result extends [9] (which, as mentioned above, can also be obtained as an easy conse-
quence of the Lp boundedness of the first order local Riesz transform, proved in [3]). If,
instead, p0 is as above,M has positive injectivity radius and non-negative Ricci curvature
in a global Lp0=2 integral sense (see Definition 2.1 in Section 2), then (GE.p/) holds for
all p 2 .1;1/ (see Theorem B in Section 2).

Our next set of results is concerned with Riesz transforms of even order. We prove the
following:
(1) if M has positive injectivity radius and the Ricci curvature is (pointwise) bounded

from below, then R2� is bounded from Lp.M/ to Lp.M IT2M/ for every p 2 .1;1/
and � > 0;

(2) if M has positive injectivity radius and non-negative Ricci curvature in the global
Lp0=2 sense for some p0 > n, then R2� is bounded from Lp.M/ to Lp.M I T2M/

for every p 2 .1;1/ and � > 0;
(3) ifM has spectral gap and its and Ricci curvature is (pointwise) bounded from below,

then R2 is bounded from Lp.M/ to Lp.M I T2M/ for every p 2 .1; 2�. As a con-
sequence of this and the Federer–Fleming inequality, the analogue of (1.5) holds
on M ;
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(4) if `� 1, the Ricci tensor ofM and its derivatives up to the order 2`� 2 are uniformly
bounded, and M has positive injectivity radius, then R2`� is bounded from Lp.M/

to Lp.M IT2`M/ for every p 2 .1; 2�.
Note that (1) above was known under an additional pointwise upper bound on the Ricci

curvature, thanks to work of Güneysu and the third author [16]. Subsequently, Baumgarth–
Devyver–Güneysu [4] proved that for p < 2 one can replace the positivity of the injectivity
radius with a bound on the whole Riemann tensor and its derivatives, as a consequence
of some estimates on the covariant Riesz transforms. Finally, a very recent and far reach-
ing result due to Cao–Cheng–Thalmaier [6] states that R2� is bounded from Lp.M/ to
Lp.M I T2M/ when 1 < p � 2 under the sole assumption of Ricci curvature bounded
from below. There is no hope to extend this result to p > 2 in full generality. Indeed, it
is known [20, 24] (see also [13]) that, for every p > 2, there exists a complete Rieman-
nian manifold .M; g/ satisfying Sect � 0 (in fact, Sect > 0 if p > m) on which R2� is
unbounded in Lp for every positive � . Apart from the case of Ricci-bounded geometry
alluded to above, the only further set of assumptions ensuring the validity of (1.6) when
p > 2 are given in Theorem 1.2 of [6]. The manifolds considered therein must satisfy
(Kato type) conditions on the curvature and its derivatives but, on the other hand, could
have zero injectivity radius. Finally, in a different direction, let us recall that R2� is bounded
from L2.M/ to L2.M I T2M/ also on manifolds whose curvature is very negative, i.e.,
explodes polynomially to �1 in an asymptotic sense [25].

Concerning (3) above, it was known under the additional assumption thatM has posi-
tive injectivity radius. Indeed, R2 was known to be bounded fromLp.M/ toLp.M IT2M/

for 1 < p < 2 [26]. Then the Federer–Fleming inequality and Bakry’s estimate allow to
conclude. In a related direction, let us also point out that the study of the Lp boundedness
properties of R2 on complete manifolds whose full curvature tensor decays quadratically
has been announced in [7]. Finally, note that (4) was known under the additional assump-
tion that M has spectral gap (in which case an endpoint estimate for p D 1 was also
provided).

In this paper, we do not consider Riesz transforms of odd order � 3. We believe that it
is an interesting problem to find geometric conditions on M under which either R2kC1� or
R2kC1 is bounded on Lp , for some positive integer k. A neat result by Anker [2] shows
that if M is a symmetric space of the noncompact type, then the Riesz transforms of any
order are bounded on Lp , 1 < p <1.

The paper is organised as follows. In Section 2, we give a precise statement of the
main results. In Section 3, we prove the Lp gradient estimate (GE.p/) under local uni-
form Lq Ricci bounds. The proof for large p is based upon a related L1 estimate [12]
and a covering argument. The whole range p > 2 is obtained via interpolation. In Sec-
tion 4, the estimates (GE.p/) are proved under global Lq Ricci bounds, by exploiting the
local expression in W 1;p-harmonic coordinates. To this end, the positivity of the injec-
tivity radius is required. In Section 5, we exhibit the (as far as we know) first examples
in the literature of complete Riemannian manifolds which do not support (GE.p/) for
large p. Such examples are obtained through a suitable conformal deformation of the
Euclidean plane. Harmonic coordinates with a uniform W 1;q bound are also the key
to prove the Lp boundedness of the second order Riesz transform in the case of lower
bounded Ricci curvature and positive injectivity radius. This is the content of Section 6.
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Note that W 1;q-harmonic estimates for large enough q imply a C 0;˛ control on the met-
ric coefficients. This is an improvement on previously known bounds of the second order
Riesz transform [16], which relied on the existence of uniform C 1;˛-harmonic coordi-
nates, and thus required stronger geometric assumptions. At the end of this section, we
also show how to pass from Lp boundedness of the local Riesz transform to global W 2;p

estimates under the assumption that the underlying manifold has a spectral gap. Finally, in
Section 7 we deal with the Lp boundedness of higher even order local Riesz transforms.
Namely, we use a trick which consists in considering the Cartesian product of M with a
hyperbolic plane. This allows to reduce the problem to previously known bounds for the
(global) Riesz transforms on manifolds with a spectral gap.

2. Assumptions and main results

All over this paper, M D .M; g/ denotes a smooth complete non-compact n-dimensional
Riemannian manifold without boundary, and p 2 .1;1/.

Throughout this paper, C will denote a positive constant, whose value may change
from place to place. In each result, the constant C will depend only on the geometric
bounds assumed there, i.e., on n, p, the curvature bound, and possibly the injectivity
radius i and the spectral gap, whenever these last two quantities are relevant. Given a
symmetric 2-tensor field T , we have denoted by minT its lowest eigenvalue.

In the literature, one can find two notions of integral curvature bounds, one of global
nature and one of uniform local nature.

Definition 2.1. Suppose that K � 0, R > 0 and 1 < p < C1. Set

(2.1) %K.x/´ .min RicC.n � 1/K2/�.x/

(where f� denotes the negative part of f /,

k.x; p;R;K/´ R2
k%KkLp.BR.x//

�.BR.x//1=p
and k.p;R;K/´ sup

x2M

k.x; p;R;K/:

We say that
• M has Ricci curvature bounded from below by �.n � 1/K2 in the global Lp sense if
%K 2 L

p.M/;
• M has an " > 0-amount of Ricci curvature below �.n � 1/K2 in the Lp sense at the

scale R if k.p;R;K/ < ".

Our first main contribution is the following.

Theorem A. Suppose that n < p0 < C1. There exists a constant " D ".p0; n; K/ > 0
such that if k.p0=2; 1; K/ � " for some K � 0, then the Lp gradient estimate (GE.p/)
holds on M for every 1 < p � p0.

Remark 2.2. Note that �K.x/ D 0 if and only if Ric.x/ � �.n � 1/K2gx where the
inequality is intended in the sense of quadratic forms. In particular, if the Ricci curvature
satisfies the lower bound Ric � �.n � 1/K2g, then k.p; R; K/ D 0 for all R > 0 and
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for all p 2 .1;C1/. Consequently, Theorem A provides yet another alternative proof of
the result by Cheng, Thalmaier and Thompson, [9], using only PDEs methods. On the
other hand, the integral bounds we assume are in general weaker than the usual pointwise
bounds; see Remark 3.3 below.

Remark 2.3. If .M; g/ is a complete Riemannian manifold supporting an Lp gradient
estimate for some p 2 .1;C1/, then (GE.p/) extends with the same constant to all func-
tions in H 2;p.M/. Indeed, if u 2 H 2;p.M/ D ¹f 2Lp.M/ W �distrf 2L

p.M/º, by a
result of Milatovic (Appendix of [17]), there exists a sequence ¹ukº � C1c .M/ such that
uk ! u with respect to the H 2;p norm. Applying (GE.p/) to uk , we deduce that ruk
is Cauchy and thus converges in the space of Lp vector fields. Testing ruk against a
smooth and compactly supported vector field and taking the limit shows in fact that ruk
converges in Lp norm to the weak gradient ru.

We also obtain the following variant of Theorem A in the case of global Lq lower
Ricci bounds.

Theorem B. Suppose rinj.M/ > 0 and non-negative Ricci curvature in the global Lq=2

sense for some n < q < C1. Then, for every 1 < p < C1, (GE.p/) holds on M .

While several counterexamples to the validity of the Lp Calderón–Zygmund inequal-
ities have been found in recent years, [16, 23, 25, 30], in the case of Lp gradient estimates
the literature is lacking: see Section 9 in [28] for an extensive account of the topic. As
mentioned in the introduction, using a sequence of conformal deformations on separated
balls of the Euclidean plane, we are able to construct a complete Riemannian manifold on
which the Lp gradient estimate fails for every 2 < p < C1.

Theorem C. Suppose that n is an integer � 2. For any p > 2, there exists a complete
n-dimensional Riemannian manifold M where the Lp gradient estimate (GE.p/) fails.

As we will explain in Section 5, the examples in Theorem C shows that the result of
Cheng, Thalmaier and Thompson [9] on Lp gradient estimates under Ricci lower bounds
is, in fact, optimal with respect to pointwise bounds.

The next contributions of the paper will concern Riesz transforms of even order 2k� 2.
As announced in the introduction, adopting a different point of view, all the next theorems
can be restated in term of Calderón–Zygmund inequalities, as a consequence of the fol-
lowing proposition, whose proof is deferred to Section 6.

Proposition 2.4. Let 1 < p < 1, � > 0 and let k � 1 be an integer. The local Riesz
transform R2k� of order 2k is bounded fromLp.M/ toLp.M IT2kM/ if and only if theLp

Calderón–Zygmund inequality or order 2k

(2.2)


jr2kuj



p
� C Œkukp C k�

kukp�; 8u 2 DomLp .�k/;

holds on M , where

DomLp .�k/ D ¹u 2 Lp.M/ W �ku 2 Lp.M/º

is the domain of the Laplacian in Lp .
Moreover, when k D 1, the latter assertions are also equivalent to

jr2uj



p
� C Œkukp C k�ukp�; 8u 2 C

1
c .M/:
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First, we prove theLp boundedness of the local second order Riesz transform (respec-
tively, the validity of the Lp Calderón–Zygmund inequality), on manifolds with positive
injectivity radius and a lower bound on the Ricci curvature.

Theorem D. Suppose that rinj.M/ > 0. Then R2� is bounded for every � > 0 from Lp.M/

to Lp.M IT2M/

(i) for every 1 < p < C1, if Ric � �.n � 1/K2 for some K � 0;
(ii) for every 1 < p � q, if the Ricci curvature is non-negative in the global Lq=2 sense

for some q > n.

In particular, as explained in [30], we have the validity of a new density result in
Sobolev spaces.

Corollary E. Under the assumptions of Theorem D, C1c .M/ is dense in W 2;p.M/ for
the corresponding ranges of p.

Remark 2.5. As it happens for the Calderón–Zygmund inequality of Theorem D, also
the density result in Corollary E was already known when 1 � p � 2 in the wider class
of complete manifolds with a pointwise lower Ricci bound (indeed, a controlled growth
of the negative part of the Ricci curvature is allowed in this case). See [20] and references
therein.

Remark 2.6. We also prove that if M has a spectral gap, i.e., if the bottom of the L2

spectrum of �� is strictly positive, then one has the estimate

kukLp � Ck�ukLp ; 8u 2 C
1
c .M/;

for every 1 < p < C1. As a consequence, whenever the local Riesz transform R2� is
bounded in Lp and we have a spectral gap, we obtain the following strongW 2;p estimate:

kukW 2;p � Ck�ukLp ; 8u 2 C
1
c .M/;

which, in particular, includes the Lp boundedness of the global Riesz transform R2.

It is worth noting that Calderón–Zygmund estimates can be derived for higher order
derivatives up to imposing more stringent conditions on the geometry of the underlying
manifold.

As recalled above, it was proved in [26] that the Riesz transform R2` is bounded in
Lp.M/ in the range 1 < p � 2, provided the geometry is bounded at the order 2` � 2
and M has a spectral gap. We shall show how to remove the latter condition.

Theorem F. Suppose that ` is a positive integer. Let � > 0. Assume that rinj.M/ > 0

and that the covariant derivatives of the Ricci tensor are uniformly bounded up to the
order 2` � 2. Then R2`� is bounded from Lp.M/ to Lp.M IT2`M/ for every p 2 .1; 2�.

3. Gradient estimates: Local uniform Lq Ricci bounds

This section is devoted to proving Theorem A. Preliminarily, we point out the following
facts, which will be repeatedly used in the sequel.
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Remark 3.1. As noted in Section 2.3 in [27] for the caseK D 0, smallness of k.q;R0;K/
at a fixed scale R0 implies a control on k.q; R;K/ for all scales R > 0. This is a conse-
quence of a volume comparison result contained in Lemma 10 of [5]. Indeed, if q > n=2,
there exists " D ".n; q;K/ > 0 such that if k.q;R2;K/ < ", then for every 0 < R1 < R2
one has

k.q;R1; K/ � 4
�R1
R2

�2�vK.R2/
vK.R1/

�1=q
k.q;R2; K/;

where vK.R/ is the volume of the geodesic ball of radius R in the n-dimensional space
form of constant curvature K. Since vK.R1/ � Rn1 , k.q; R1; K/! 0 as R1 ! 0, i.e.,
k.q;R1; K/ can be made arbitrarily small. See Corollary 13 in [5].

Note also that k.p; r;K/ � k.q; r;K/ whenever p � q.

Under the assumption that k.p=2; 1; K/ is small, we first prove a local Lp gradient
estimate, which is obtained integrating a local gradient estimate proved in [12]. In what
follows, we use the notation

kuk�Lp.�/ D
� −

�

jujp
�1=p

D

� 1

vol.�/

Z
�

jujp
�1=p

:

Lemma 3.2. Let p > n. There exist " D ".n; p; K/ > 0, C.n; p/ > 1 and 0 < R0 � 1
such that if k.p=2; 1;K/ � ", then

(3.1) sup
BR=2.x/

jruj2 � CR�2
�
.kuk�

L2.BR.x//
/2 C .k�uk�Lp.BR.x///

2
�

for all 0 < R � R0, for all x 2 M , and for all smooth functions u on B1.x/. Moreover,
there exists a constant D.n; p/ > 0 such that

(3.2)


jruj

p

Lp.BR=2.x//
� DR�p

�
kuk

p

Lp.BR.x//
C k�uk

p

Lp.BR.x//

�
for all x 2M , 0 < R � R0 and all smooth functions u on B1.x/.

Proof. By Theorem 1.9 in [12], there exists a constant "0.n; p/ > 0 independent of R0
such that if k.p=2; R0; 0/ � "0, then (3.1) holds for all 0 < R � R0. By Remark 3.1,
we know that if k.p=2; 1; K/ � ", then k.p=2; R; K/ . R2�n=2p as R ! 0, and since
%0.x/ � %K.x/C .n � 1/jKj, we have

k.p=2;R; 0/ � k.p=2;R;K/C .n � 1/jKjR2:

Hence, if we take R0 small enough, then k.p=2; R0; 0/ � "0, which concludes the first
part of the lemma. The constant R0 depends on K, n, " and "0.

From (3.1) we have

sup
BR=2.x/

jrujp � Cp=2R�p 2p=2�1
�
.kuk�

L2.BR.x//
/p C .k�uk�Lp.BR.x///

p
�
:

By Hölder’s inequality, � −
BR.x/

u2
�p=2

�

−
BR.x/

up;
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whenceZ
BR=2.x/

jrujp � Cp=2R�p 2p=2�1
vol.BR=2.x//
vol.BR.x//

� Z
BR.x/

jujp C

Z
BR.x/

j�ujp
�
:

To conclude the proof of (3.2), recall that, as a consequence of the volume compari-
son, .M; g/ satisfies a uniform local volume doubling property, i.e., there exists C > 0

such that
vol.BR=2.x// � C vol.BR.x//

for all x 2 M and 0 < R � R0. See Lemma 10 and subsequent results in [5]. This com-
pletes the proof of Lemma 3.2.

We are now ready to prove the global Lp gradient estimate.

Proof of Theorem A. We start by noting that the localLp0 gradient estimate (3.2), p0 >n,
extends to the whole manifold using a uniformly locally finite covering of M . The exis-
tence of such covering is a formal consequence of the local volume doubling inequality,
which, as we have recalled above, holds under local integral Ricci bounds. Thus, let
u 2 C1c .M/ and � D supp.u/, and let 0 < R � R0 be small enough such that 2R � 1.
Here R0 is the radius appearing in Lemma 3.2. By local volume doubling, there exist
x1; : : : ; xh 2M such that
(i) � �

Sh
iD1 BR=2.xi /;

(ii) every x 2 � intersects at most N balls BR.xi /.
Then,Z
M

jrujp0 �

hX
iD1

Z
BR=2.xi /

jrujp0 � DR�p
hX
iD1

� Z
BR.xi /

jujp0 C

Z
BR.xi /

j�ujp0
�

� DR�p0
Z
M

hX
iD1

1BR.xi /
�
jujp0 C j�ujp0

�
� DR�p0N

� Z
M

jujp0 C

Z
M

j�ujp0
�
;

which proves the gradient estimate (GE.p/) with p D p0 > n.
Recall that if p 2 .1;2�, thenLp gradient estimates always holds on complete Rieman-

nian manifolds [11]. We now interpolate between this and the result for p > n obtained in
the first part of the proof.

It is well known that the heat semigroup is strongly continuous and contractive on
Lp.M/ for all p 2 Œ1;C1/, see Theorem IV.8 in [15]. By the Hille–Yosida theorem,�1 is
in the resolvent set of its infinitesimal generator ��. Then �� C I is (surjective and)
invertible in Lp.M/. Therefore .��C I/�1 is bounded on Lp.M/ and its range is con-
tained in the domain of �. Now, suppose that 2 < p � n. Choose q > n and � in .0; 1/,
so that 1=p D �=q C .1 � �/=2.

On the one hand, by the first part of the proof, the operator r.��C I/�1 extends to
a bounded operator from Lq.M/ to Lq.M IT1M/. On the other hand,

jr.��C I/�1f j



2
L2.M/

D
�
.��C I/�1f ;�.��C I/�1f

�
L2.M/

:

Since both .��C I/�1 and �.��C I/�1 extend to bounded operators on L2.M/, the
operator r.��C I/�1 extends to a bounded operator from L2.M/ to L2.M IT1M/.
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By the Riesz–Thorin theorem, r.�� C I/�1 extends to a bounded linear operator
from Lp.M/ to Lp.M IT1M/. As a consequence, the Lp gradient estimate holds on M .

The proof of the theorem is complete.

Remark 3.3. As alluded to in the introduction, the integral curvature bounds assumed
here are weaker than the classical pointwise bounds. An easy example of a Riemannian
manifold .M; g/ satisfying infM min Ric D �1, but with k.p; 1; 0/ arbitrarily small, can
be constructed as follows. We let M D R2 endowed with the conformally flat metric g D
e2'dx2, where ' is a smooth non-positive function. In the following, the sub/superscript e
denotes the objects taken with respect to the Euclidean metric. In particular, volg.K/ �
vole.K/ for any measurable setK �R2, andBgR.w/�B

e
R.w/ for anyR> 0 andw 2R2.

Suppose now that supp ' 2
S
n2N B

e
1=2
..4n; 0//. This guarantees that Bg1 .w/ � B

e
2.w/

for any w 2 R2. Moreover, given w 2 R2, let nw be the unique integer (if any) such that
Be
1=2
..4nw ; 0// intersects Be1.w/. Then

(3.3) volgB
g
1 .w/ � volgBe1.w/ � volg.Be1.w/ n B

e
1=2.4nw ; 0// D

3

4
�:

Fix a 2 .2 � 2=p; 2/ and �0 2 C1c .B
e
1=2
.0; 0//. We define '.x; y/ D

P
n2N �n.x; y/,

where �n.x; y/ D n�a�0.n.x � 4n; y// if n � 1. On the one hand, since �e �0 attains
positive values and since �e �n.x; y/ D n2�a�e �0.n.x � 4n; y//, we have that Ricg D
�2�e ' is lower unbounded. On the other hand,Z
B
g
1 .w/

..min Ric/�/p d�g D 2p
Z
B
g
1 .w/

..�e '/C/
p d�g � 2

p

Z
Be2 .w/

..�e �nw /C/
p dx2

D 2p n2p�pa�2w

Z
Be1 .0;0/

..�e �0/C/
p dx2 � 2p

Z
Be1 .0;0/

..�e �0/C/
p dx2;

which is uniformly bounded independently from w. Moreover, choosing an appropri-
ate �0, we can assume that the right-hand side of the estimate above is arbitrarily small.
Together with the uniform volume lower bound (3.3), this proves that k.p; 1; 0/ < C1
and can be made arbitrarily small.

4. Gradient estimates: Global Lq Ricci bounds

Preliminarily, we recall the following.

Definition 4.1. Let .M;g/ be an n-dimensional Riemannian manifold. Let n < q < C1.
The W 1;q harmonic radius at x, denoted by rW 1;q .x/, is the supremum of all R > 0 such
that there exists a coordinate chart �WBR.x/! Rn satisfying

(a) 2�1 Œıij � � Œgij � � 2Œıij �;
(b) R1�n=q k@kgij kLq.BR.x// � 1;
(c) � is a harmonic map.

The following result encloses in a single statement classical contributions by Anderson
and Cheeger, [1], and a more recent contribution by Hiroshima, [19].
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Theorem 4.2. Fix n 2 N, q > n, K � 0 and i > 0. Let .M; g/ be a complete, n-dimen-
sional Riemannian manifold satisfying rinj � i and either of the following assumptions:
(a) Ric � �.n � 1/K2, or

(b) Ric is non-negative in the global Lq=2 sense, i.e., � D k.min Ric/�kLq=2.M/ < C1.

Then, rW 1;q .z/ � Nr independently of z 2M , where Nr D Nr.n; q;K; i; �/ > 0.

We note that, by the Sobolev embedding, we have for free a C 0;˛ control on the metric
coefficients within the ball B Nr=2.z/.

Finally, we observe the inclusionsBe
Nr=8
� �.B Nr=4.z//�B

e
Nr=2

, whereBe �Rn denotes
the Euclidean ball centered at the origin. Since, inside Be

Nr=8
, the Euclidean and the Rie-

mannian measures are mutually controlled by absolute constants, in performing integra-
tions in local coordinates, the chosen measure is irrelevant.

Remark 4.3. We have already observed that complete manifolds with Ricci lower bounds,
in the uniform local integral sense, enjoy the uniform local volume doubling property at
any fixed scale. In the class of manifolds with positive injectivity radius, the same is true
if we consider the case of global Lq conditions. This follows from the Croke isoperi-
metric estimate and from volume comparison. In particular, at a sufficiently small scale,
we have the existence of the covering with finite intersection multiplicity as in the proof
of Theorem A; see e.g. Proposition 1.5 in [19]. Conversely, if one assumes a priori that
rW 1;q .M/´ infx2M rW 1;q .x/ > 0, then the double sided Euclidean control of the volume
of the balls at a small scale implies the uniform volume doubling property, and hence the
covering property.

In view of Remark 4.3 and of Theorem 4.2, we obtain that Theorem B is a direct conse-
quence of the next result. Recall that, if .x1; : : : ; xn/ is a system of harmonic coordinates,
then

.ru/j D gjk@ku and �u D gij @2iju;

where g D Œgij � and g�1 D Œgij � are, respectively, the matrix of the metric coefficients
and its inverse.

Theorem 4.4. Suppose rW 1;q .M/D Nr > 0 for some q > n. Then for every 1 < p < C1,
the Lp gradient estimate (GE.p/) holds on M .

Proof. Fix 0 < r < Nr=16. Since the metric coefficients in W 1;q-harmonic coordinates are
uniformly C 0;˛-controlled, there exists an absolute constant C > 1 such that, for any
u 2 C1c .M/ and 0 < R � r ,

C�1


jreuj



Lp.BeR/
�


jruj



Lp.B2R.x//
� C



jreuj


Lp.Be4R/

and
kgij @2ijukLp.BeR/ � Ck�ukLp.B2R.x//:

On the other hand, by the Euclidean estimates of the gradient, Theorem 9.11 in [14], there
exists an absolute constant C D C.n; p;R/ > 0 such that

C�1


jreuj



Lp.Be2r /
� kukLp.Be4r / C kg

ij @2ijukLp.Be4r /:
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Hence,

kjrujkLp.Br .x// � C kjr
eujkLp.Be2r / � C

�
kukLp.Be4r / C kg

ij @2ijukLp.Be4r /
�

� C
�
kukLp.B8r .x// C k�ukLp.B8r .x//

�
:

Since, thanks to the uniform local doubling condition,M has a countable covering by balls
¹Br .xj /º such that ¹B8r .xj /º has finite intersection multiplicity, the global Lp estimate
follows by adding the local inequalities.

5. Counterexamples to Lp gradient estimates

In this section, we prove Theorem C.

Proof of Theorem C. First we prove the result in the case where n D 2. Take .†; g/ D
.R2; �2dx2/, where dx2 is the usual Euclidean metric on R2 and � 2 C1.†/ is such
that 0 < � � 1. As above, we denote by � and r the Laplace–Beltrami operator and gra-
dient with respect to the metric g, while we use �e and re to denote the corresponding
Euclidean differential operators. The spaces Lp.†/ are defined in terms of the Rieman-
nian volume form d�g , whereas Lp.R2/ are the spaces with respect to the Lebesgue
measure dx2.

For each non-negative integerm, consider the point xm in R2, with coordinates .m;0/.
Take �.x/ D 1 for all x 2 † n

S
m2N B1=8.xm/. Since .†; g/ is isometric to .R2; dx2/

outside of a countable union of bounded sets whose pairwise distance is uniformly lower
bounded, it is a complete Riemannian manifold. Next, take '0 2 C1c .†/ such that´

'0.u; v/ D uC 1 on B1=4.x0/;
supp.'0/ b B1=2.x0/;

and let 'm.u; v/ D '0.u � m; v/, for all positive integers m. Then, for every positive
integer k, define

uk ´

kX
mD0

2�m 'm:

Clearly, uk 2 C1c .†/. Notice that

kukk
p

Lp.†/
D

kX
mD0

2�mp
Z
†

j'mj
p �2 dx

�

kX
mD0

2�mp k'mk
p

Lp.R2/
D k'0k

p

Lp.R2/

C1X
mD0

2�mp < C1:

Now observe that �'m D ��2�e 'm. Hence

k�ukk
p

Lp.†/
D

kX
mD0

2�mp
Z
†

j�'mj
p �2 dx D

kX
mD0

2�mp
Z
†

j�e 'mj
p �2.1�p/ dx:
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Moreover, we have that �e 'm.u; v/ D .�e '0/.u � m; v/. Since �e '0 vanishes on
B1=4.x0/, the function �e 'm vanishes on B1=4.xm/. This and the fact that the support
of '0 is contained in B1=2.x0/ yield

k�ukk
p

Lp.†/
D

Z
B1=2.x0/nB1=4.x0/

j�e '0j
p �2.1�p/ dx D

Z
B1=2.x0/nB1=4.x0/

j�e '0j
p dx;

where the last equality holds because �D 1 onB1=2.x0/ nB1=4.x0/. Altogether, we obtain
that

k�ukk
p

Lp.†/
� k�e '0k

p

Lp.R2/

C1X
mD0

2�mp < C1:

Now, recall that p > 2 is given. Choose ˇ > 1=.p � 2/, and consider �1.x/´ jxj2ˇ

in Bı.x0/ for some 0 � ı � 1=8. Note that jre'0j D 1 on B1=8.x0/, whenceZ
Bı .x0/

jr
e'0j

p
e �

2�p
1 dx D 2�

Z ı

0

r1�2ˇ.p�2/ dr D C1:

Here jxj D r denotes the Euclidean distance from the origin. Then, for any m 2 N, we
can find "m > 0 such that "m ! 0 as m!C1, andZ

Bı .x0/

jr
e'0j

p .jxj2 C "m/
.2�p/ˇ dx � 2mp:

For x 2 B1=8.x0/ and " 2 Œ0; 1�, we define the function �" 2 C1.B1=8.x0// by8̂<̂
:
0 < �" � 1;

�".x/ D .jxj
2 C "/ˇ if x 2 Bı.x0/;

supp.1 � �"/ � B1=8.x0/:

Now define � 2 C1.†/ by8̂<̂
:
0 < � � 1;

�.x/ D 1 if x 2 † n
S
m2N B1=8.xm/;

�.x/ D �"m.x � xm/ if x 2 Bı.xm/:

Then, arguing much as above,



jrukj

pLp.†/ D Z
†

kX
mD0

jr'mj
p

2mp
�2 dx �

kX
mD0

2�mp
Z
Bı .x0/

jr'oj
p �2m dx

D

kX
mD0

2�mp
Z
Bı .x0/

jr
e'0j

p .jxj2 C "m/
.2�p/ˇ dx � k:

Since ¹kukkLp.†/º and ¹k�ukkLp.†/º are bounded, the gradient estimate fails on †.
This concludes the proof of Theorem C in the case where n D 2.
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Suppose now that n� 3. We proceed as in [20]. Let .†;g/ be the Riemannian manifold
considered above and let .N;h/ be any .n� 2/-dimensional closed Riemannian manifold.
Consider the product manifold M D † �N , and define

vk.x; y/ D uk.x/; 8.x; y/ 2 † �N:

Clearly ¹vkº � C1c .M/. It is straightforward to check that the sequences ¹kvkkLp.M/º

and ¹k�vkkLp.M/º are bounded, whereas ¹kjrvkjkLp.M/º is unbounded. Hence the gra-
dient estimate fails on M .

This concludes the proof of Theorem C.

Remark 5.1. We observe that the choice of the sequence ¹xmº is quite arbitrary. In par-
ticular, let ˛W Œ0;C1/! Œ0;C1/ be an arbitrary increasing function such that ˛.t/!1
as t ! C1. If we choose xm which diverges quick enough to infinity, we can make the
lower bound on Ricci arbitrarily small so that

Ric.x/ � �˛.r.x//:

This shows that the result by Cheng, Thalmaier and Thompson, [9] is, in fact optimal with
respect to pointwise lower bounds, as observed after the statement of Theorem C.

We also point out the following straightforward consequence of the proof of Theo-
rem C.

Corollary 5.2. For any n � 2 and p > 2, there exist a Riemannian manifold M and a
function v1 2 H 2;p.M/ such that v1 62 W 1;p.M/.

Indeed, for n > p, it is enough to define

u1 D

C1X
mD0

2�m 'mI

then u1; �u1 2 Lp.†/, while jru1j 62 Lp.†/. In particular, u1 2 H 2;p.†/, while
u1 62 W

1;p.†/. The case 2 < p � n can be dealt with the same trick as in the proof of
Theorem C.

6. Calderón–Zygmund inequalities

We begin this section by proving the equivalence, stated in Proposition 2.4, between
boundedness of the local Riesz transform and Calderón–Zygmund inequalities.

Proof of Proposition 2.4. Since �� generates a contraction semigroup on Lp.M/, the
operator �� is sectorial in Lp.M/, and the resolvent operator .��C �I/�1 is bounded
on Lp , by the Hille–Yosida theorem. Hence so is .��C �I/�k . Set  .�/´ .�k C �/

.� C �/�k . It is not hard to prove that both  and 1= are in the extended Dunford
class E� for every � in .�=2; �/. By the standard functional calculus for sectorial opera-
tors,  ..��// and .1= /..��// extend to bounded operators on Lp.M/.
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Suppose first that R2k� is bounded on Lp.M/, i.e., there exists a constant C such that

jR2k� f j

Lp.M/
� Ckf kLp.M/; 8f 2L

p.M/:

In particular, if u is in DomLp ..��/k/, then the function f ´ .�� C �I/ku is in
Lp.M/, and

jr2kuj



Lp.M/
� C



.��C �I/ku



Lp.M/

� C
�
k�kukLp.M/ C kukLp.M/

�
;

where C depends on � . The last inequality is a straightforward consequence of the bound-
edness in Lp of .1= /..��//.

Conversely, suppose that (2.2) holds. Consider f inLp.M/. Since � is in the resolvent
set of .��/, the operator .��C �I/k maps DomLp .�k/ onto Lp.M/. Therefore, there
exists u in DomLp

�
�k
�

such that u D .�� C �I/�kf . Consequently, (2.2), with u as
above, yields

(6.1)


jr2kuj



Lp.M/
� C

�

.��C �I/�kf



p
C


�k.��C �I/�kf




p

�
:

Now, both .�� C �I/�k and �k.�� C �I/�k are bounded operators on Lp.M/, as�
.��// is. Furthermore, standard properties of sectorial operators imply that there exists

a constant C such thatˇ̌̌̌ ˇ̌
.��C �I/�k

ˇ̌̌̌ ˇ̌
Lp.M/

�
ˇ̌̌̌ ˇ̌
.��C �I/�1

ˇ̌̌̌ ˇ̌k
Lp.M/

�
C

�k
; 8� > 0;

and ˇ̌̌̌ ˇ̌
�k.��C �I/�k

ˇ̌̌̌ ˇ̌
Lp.M/

�
ˇ̌̌̌ ˇ̌
�.��C �I/�1

ˇ̌̌̌ ˇ̌k
Lp.M/

� C; 8� > 0;

where jjj � jjjLp.M/ denotes the operatorial norm in Lp . This and (6.1) yield

jr2k.��C �I/�kf j



Lp.M/

� C Œ��k kf kp C kf kp� � C max.1; ��k/kf kp;

as required.
Suppose now that k D 1, and that (1.6) holds for all u 2 C1c .M/. Let f 2 DomLp .�/

DH 2;p.M/. Thanks to a density result by O. Milatovic (see Appendix A in [17]), we can
take a sequence uj 2 C1c .M/ converging to f inH 2;p.M/ as j !1 (see Remark 2.3).
Hence, (1.6) and (GE.p/) (which holds due to Theorem 2 in [17]) implies that uj is a
Cauchy sequence inW 2;p.M/, hence it converges to some limit u1 2W 2;p.M/. Finally,
u1 D f and (1.6), as W 2;p.M/ embeds continuously in H 2;p.M/.

The rest of this section is devoted to prove Theorem D. As in Section 4, we use local
estimates inW 1;q-harmonic coordinates and then glue them together thanks to the uniform
local volume doubling condition.

The crucial ingredient is the following estimate of the first order term in the local
expression of the Hessian of a smooth function. Recall that, if .x1; : : : ; xn/ is a system of
harmonic coordinates, then

r
2
iju D Hess.u/ij D @2iju � �

k
ij @ku;

where �kij denote the Christoffel symbols.
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Lemma 6.1. Let 1 < p < C1. Fix z 2 M , q > max.n; p/ and let 0 < r D 1
4
rW 1;q .z/.

Finally, denote by �kij the Christoffel symbols with respect to the W 1;q harmonic coor-
dinates system �.x/ D .x1; : : : ; xn/WBr .z/! U � Be

r=2
. Then, there exists a constant

C D C.n; p; q; r/ > 0 such that, for any u 2 C1.M/,

C�1 � k�kij @kukLp.Ber=2/ �


jHesse uj




Lp.Be

r=2
/
C


jruj



Lp.Br .z//
:

Proof. We apply Hölder’s inequality with conjugate exponents t D q=.q � p/ and t 0 D
q=p to get

(6.2) k�kij @kukLp.Ber=2/ �
X
k

k�kij kLq.Br .z//


jreuj



Lpq=.q�p/.Be
r=2
/
; 8i; j D 1; : : : ; n:

Next, we recall that the Christoffel symbols display a C 1 dependence on the metric coef-
ficients in the form

� D
1

2
g�1 � @g:

Since kgkL1 , kg�1kL1 and k@gkLq are bounded inside Br .z/ (with a bound depending
only on n; q; r), we deduce that there exists a constant C D C.n; q; r/ > 0 such that

(6.3) k�kij kLq.Br .z// � C:

It remains to take care of gradient term in (6.2). To this end, for the sake of clarity, we
distinguish three cases according to the values of p.

Case 1 < p < n. Since
pq

q � p
< p�´

np

n � p
;

we can apply directly the Sobolev(–Kondrachov) embedding theorem and deduce that, for
some constant S D S.r; p; q; n/ > 0,

S�1 �


jreuj



Lpq=.q�p/.Be
r=2
/
�


jHesse uj




Lp.Be

r=2
/
C


jreuj



Lp.Be
r=2
/
:

On the other hand, observe that

jreuj


Lp.Be

r=2
/
� C



jruj


Lp.Br .z//

for some absolute constant C > 0, whence

(6.4)


jreuj



L
pq
q�p .Be

r=2
/
� C

�

jHesse uj



Lp.Be

r=2
/
C


jruj



Lp.Br .z//

�
:

Inserting (6.3) and (6.4) into (6.2), gives the desired inequality when 1 < p < n.
Case p D n. Let 1 < Qp < n D p be defined by

Qp D
nq

2q � n
�

Since
nq

q � n
D

n Qp

n � Qp
DW Qp�;
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we can apply the Sobolev embedding theorem and the Hölder inequality to deduce that,
for some constant S D S.r; q; n/ > 0,

S�1 �


jreuj



Lnq=.q�n/.Be
r=2
/
�


jHesse uj




L Qp.Be

r=2
/
C


jreuj



L Qp.Be
r=2
/

� jBer=2j
.n� Qp/=n Qp

�
kjHesse ujkLn.Be

r=2
/ C kjr

eujkLn.Be
r=2
/

�
:

The conclusion follows exactly as above.
Case p > n. In this case, we can use Morrey’s and Hölder’s inequalities to deduce

that, for some constant S D S.r; p; q; n/ > 0,

kjr
eujkLpq=.q�p/.Be

r=2
/ � jB

e
r=2j

.q�p/=pq
� kjr

eujkL1.Be
r=2
/

� S jBer=2j
.q�p/=qp

�
kjHesse ujkLp.Be

r=2
/ C kjr

eujkLp.Be
r=2
/

�
:

The proof of the lemma is complete.

We are now in the position to prove the following abstract result, which combined with
Proposition 2.4, proves Theorem D.

Theorem 6.2. Let 1 < p < C1. Suppose that rW 1;q .M/ > 0 for some q > max.n; p/.
Then the Lp Calderón–Zygmund estimate (1.6) holds on M .

Proof. Set Nr D rW 1;q .M/=4 and let u 2 C1c .M/. We preliminarily observe that there
exists a uniform constant C > 0 such that, for any z 2M ,

jreuj



Lp.Be
Nr /
� C



jruj


Lp.B2 Nr .z//

and kgij @2ijukLp.BeNr / � Ck�ukLp.B2 Nr .z//:

Using the Euclidean Calderón–Zygmund estimate (see Theorem 9.11 in [14]) joint with
Lemma 6.1, we find a constant C D C.n; p; Nr/ > 0 such that, for any z 2M ,

jHess.u/j




Lp.B Nr=4.z//

�


jHesse uj




Lp.Be

Nr=2
/
C

X
ij

k�kij @kukLp.BeNr=2/

� C
�
kgij @2ijukLp.BeNr / C kukLp.B

e
Nr /
C


jruj



Lp.B2 Nr .z//

�
� C

�
k�ukLp.B2 Nr .z//CkukLp.B2 Nr .z// C



jruj


Lp.B2 Nr .z//

�
:

Now, according to Remark 4.3, we cover M by a sequence of balls ¹B Nr=4.zj /ºj2N with
the property that the covering ¹B2 Nr .zj /ºj2N has finite intersection multiplicity. Summing
up the local inequalities and using monotone and dominated convergence, we deduce the
existence of a constant C D C.n; p;K; i/ > 0 such that

C�1


jHess.u/j




Lp
� k�ukLp C kukLp C



jruj


Lp
:

To conclude we apply theLp gradient estimates of Theorem 4.4. Accordingly, there exists
a constant C D C.n; p;K/ > 0 such that

C�1


jruj



Lp
� kukLp C k�ukLp :

This completes the proof.
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We conclude this section by showing how to pass from a Calderón–Zygmund inequal-
ity to a strong W 2;p estimate when the underlying manifold has a spectral gap. The main
tool is the following result.

Lemma 6.3. Let 1 < p <1. Suppose that M has spectral gap b > 0. Then, there exists
a constant C D C.n; p; b/ > 0 such that, for any u 2 C1c .M/, it holds

C�1kukLp � k�ukLp :

Proof. As M has spectral gap b > 0, the heat semigroup on M satisfies the following
estimate:

jjje�tLjjjL2 � e
�bt ;

where L D �� (recall that jjj � jjjLp denotes the operatorial norm in Lp). On the other
hand, the heat semigroup is contractive in Lp for all 1 � p � 1, i.e.,

jjje�tLjjjL1 � 1 and jjje�tLjjjL1 � 1:

Hence, an application of the Riesz–Thorin interpolation theorem implies that

jjje�tLjjjLp � e
�bcp t ;

for all 1 < p <1, with cp D 1� j.p � 2/=pj. Accordingly, for any u 2 C1c .M/ one has
the representation formula

u D

Z 1
0

e�tL Ludt;

which in turn implies

kukLp �

Z 1
0

e�bcp tkLukLp dt �
1

bcp
k�ukLp :

Remark 6.4. In a first draft of this paper, Lemma 6.3 was proved under the additional
assumption that Ric � �K2. However, thanks to a suggestion of an anonymous referee,
this assumption was later removed.

A trivial consequence of Lemma 6.3 is the estimate

kukLp C k�ukLp � Ck�ukLp ; 8u 2 C
1
c .M/:

This latter gives improved versions of Lp gradient estimates and Calderón–Zygmund ine-
qualities whenever M has a spectral gap.

For instance, we have the following.

Corollary 6.5. Suppose that Ric � �.n � 1/K2 and that M has spectral gap. Then, for
any fixed 1 < p � 2, the strong W 2;p-estimate

(W.2; p/)


jruj



Lp
C


jr2uj



Lp
� Ck�ukLp ; 8u 2 C

1
c .M/;

holds on M for some C > 0. Consequently, the whole W 2;p norm of u can be bounded
in terms of the Lp norm of its Laplacian.
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Proof. Since Ric��.n� 1/K2 and 1 < p � 2, by [6], there exists a constant C > 0 such
that, for every u 2 C1c .M/,

C�1


jHess.u/j




Lp
� kukLp C k�ukLp :

On the other hand, the Lp gradient estimates state that, for a suitable constant C > 0,

C�1


jruj



Lp
� kukLp C k�ukLp :

Summarising,
C�1kukW 2;p � kukLp C k�ukLp :

An application of Lemma 6.3 yields the desired strong W 2;p-estimate.

This corollary improves a result contained in [26] by removing the injectivity radius
assumption. Similarly, we have the following straightforward consequences of Theorem A
and Theorem 6.2, respectively.

Corollary 6.6. Suppose that n < p0 < C1 and that M has spectral gap b > 0. There
exists a constant " D ".p0; n; K/ > 0 such that if k.p0=2; 1; K/ � " for some K � 0,
then the Lp gradient estimate

kjrujkp � C k�ukp; 8u 2 C
1
c .M/;

holds on M for every 1 < p � p0.

Corollary 6.7. Let 1 < p < C1. Suppose that rW 1;q .M/ > 0 for some q > max.n; p/
and that M has spectral gap. Then

jr2uj



p
� C k�ukp; 8u 2 C

1
c .M/:

7. Higher order Calderón–Zygmund inequalities

We start by recalling the following consequence of Theorem 5.2 in [26], proved by the
second named author joint with Mauceri and Vallarino.

Theorem 7.1. Suppose that M has bounded geometry at the order 2` � 2 2 N, namely,

jr
j Ric j � K; 8j D 0; : : : ; 2` � 2; and rinj.M/ � i;

for some constants K � 0 and i > 0. Assume also that M has spectral gap b > 0. Then,
for any 1 < p � 2, there exists a constant C D C.n;p; `;K; b; i/ > 0 such that the global
Riesz transform R2` of order 2` is bounded from Lp.M/ to Lp.M IT2`M/

Actually, the result in [26] is stronger, as it establishes that the global covariant Riesz
transform R2` is bounded as an operator from a certain Hardy space to L1. Its Lp bound-
edness for 1 < p � 2 then follows from an interpolation argument.

It is natural to speculate whether some of the assumptions in Theorem 7.1 can be
removed. Our contribution is to allow b to be zero, at the expense of considering local
Riesz transforms versus the global version thereof. This is the content of Theorem F that
we are now going to prove.
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Proof of Theorem F. All over this proof, we denote by L´ �� the positively defined
Laplace–Beltrami operator of the underlying manifold. Suppose that .M; g/ has bounded
geometry at the order 2` � 2. Take the standard hyperbolic plane H2, and consider the
Riemannian product .M �H2; g C gH2/. Then, denoting by bM D b, bH2 and bM�H2

the bottom of the L2 spectrum of the (positive) Laplace–Beltrami operator on M , H2

and M �H2, respectively, it holds

bM�H2 D bM C bH2 � bH2 D
1

4
�

Moreover,
jr
j RicN j � max.1;K/; for j D 0; : : : ; 2` � 2;

and also
rinj.M �H2/ � rinj.M/ � i:

It follows from Theorem 7.1 and Proposition 2.4 that, if p is in .1; 2/, there exists a
constant C > 0 such that

(7.1)


jrM�H2 j

2`w



Lp.M�H2/

� C kL`
M�H2wkLp.M�H2/; 8w 2DomLp .LM�H2/:

We apply this estimate to functions w of the form ' ˝  , where ' 2 DomLp .LM /

and  belongs to C1c .H
2/. Since

L`
M�H2.' ˝  / D

X̀
jD0

�
`

j

�
.L

j
M'/˝ .L

`�j

H2  /

and 

r2`
M�H2.' ˝  /



2
M�H2 D

2X̀
jD0

2

�
`

j

�

.rjM'/˝ .r2`�jH2  /


2
M�H2 ;

by (7.1) we see that

jr2`M 'j

Lp.M/
k kLp.H2/ D



j.r2`M '/˝  j

Lp.M�H2/

�


jr2`

M�H2.' ˝  /j



Lp.M�H2/

� CkL`
M�H2.' ˝  /kLp.M�H2/

� C
X̀
jD0

�
`

j

�
kL

j
M'kLp.M/ kL

`�j

H2  kLp.H2/:

Now, suppose that  does not vanish identically on H2. Then divide both sides of the
previous inequality by k kLp.H2/, and obtain that



jr2`M 'j

Lp.M/
� C �p;`

X̀
jD0

�
`

j

�
kL

j
M'kLp.M/; 8' 2 L

p.M/;

where

�p;l ´ min
0�j�l

inf
 ¤0

kL
l�j

H2  kLp.H2/

k kLp.H2/

;



L. Marini, S. Meda, S. Pigola and G. Veronelli 824

is a finite constant. Now, since L is sectorial onLp.M/ (for LM generates the contraction
semigroup ¹Htº on Lp.M/), the moment inequality (Theorem 6.6.4 in [18]) implies that

kL
j
M'kLp.M/ � Ck'k

1�j=`

Lp.M/
kL`

M'k
j=`

Lp.M/
;

so that X̀
jD0

�
`

j

�
kL

j
M'kLp.M/ � C

�
k'k

1=l

Lp.M/
C kL`

M'k
1=`

Lp.M/

�`
� C 2`

�
k'kLp.M/ C kL

`
M'kLp.M/

�
:

By combining the steps above, we find that there exists a constant C > 0 such that

(7.2)


jr2`M 'j

Lp.M/

� C
�
k'kLp.M/ C kL

`
M'kLp.M/

�
:

A further application of Proposition 2.4 concludes the proof.

Remark 7.2. (1) It is natural to speculate whether the Riesz transforms of higher odd
order R2`�1� are bounded on Lp.M/ when ` � 2.

(2) It should be possible to give an alternative proof to Theorem F using C 2`�1;˛

harmonic coordinates, which exist in our assumptions, see [1]. Such a proof would likely
work also in the case p > 2, but it would be very technical and involved, due to the large
number of terms of the coordinate expression of r2` to deal with; compare for instance
with the analogous result for the higher order density problem in [22]. For the sake of
simplicity, we decided not to investigate such an approach in this paper.

Acknowledgments. The authors would like to thank Guofang Wei for the helpful com-
ments and corrections on a first draft of the paper. The first, third and fourth authors are
members of the GNAMPA INdAM group.
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