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On Bernstein type quantitative estimates
for Ornstein non-inequalities

Krystian Kazaniecki and Michał Wojciechowski

Abstract. For the sequence of multi-indices ¹ j̨ ºmjD1 and ˇ, we study the inequality

kDˇf kL1.Td / 6 KN

mX
jD1

kD j̨ f kL1.Td /;

where f is a trigonometric polynomial of degree at most N on the d -dimensional
torus. Assuming some natural geometric property of the set ¹ j̨ º [ ¹ˇº, we show that

KN > C.lnN/� ;

where � < 1 depends only on the set ¹ j̨ º [ ¹ˇº.

1. Introduction

In his inspiring article [12], D. Ornstein showed that if Q.D/; P1.D/; : : : ; Pm.D/ are
homogeneous differential operators of the same order, and if Q … span¹Pj º, then, for any
C > 0, the inequality

(1.1) kQ.D/f kL1.Td / 6 C

mX
jD1

kPj .D/f kL1.Td /

does not hold. In particular, for any C > 0 and any multi-indices ˇ; ˛1; : : : ; ˛m with
jˇj D j˛1j D � � � D j˛mj, ˇ … ¹ j̨ ºmjD1, the inequality

(1.2) kDˇf kL1.Td / 6 C

mX
jD1

kD j̨ f kL1.Td /

does not hold (in this paper, L1.Td / is considered with respect to the normalized Haar
measure).
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In this paper, we deal with the quantitative version of this theorem. We are interested
in the constant of Bernstein type, i.e., what is the growth of the best constant C in (1.1)
when the inequality is restricted to the polynomials of degree at most n. To the best of our
knowledge, no result of such type is known.

Our main idea is to use the properties of finite Riesz products [14]. In fact, we are
constructing explicitly the trigonometric polynomials for which our bounds hold. For dif-
ferent (but qualitative) proofs of the Ornstein non-inequality in the isotropic case, check
for example [3, 9].

Focusing for a moment on the simplest case of our results, we get the following.

Corollary 1.1. For every N 2 N, there exists a trigonometric polynomial PN on T2, of
degree N , which satisfies


 @2

@x2
PN





L1.Td /

C




 @2
@y2

PN





L1.Td /

6 1;

but 


 @2

@x@y
PN





L1.Td /

> C ln1=2N:

We do not know if the bound from Corollary 1.1 is sharp. In fact, one can establish in
a rather standard way that the mixed derivative from Corollary 1.1 could not have norm
greater than c lnN . Indeed, the (linear and invariant) operator T which retrieves the mixed
derivative from the pure ones is of a weak type .1; 1/ (see [5]). Hence, by the Nikolskii
type inequality for Lorentz spaces (see Theorem 3 in [15] and Lemma 3.1 in [1]), for a
trigonometric polynomial f of degree N ,


 @2

@x@y
f




L1.T2/

D kTf kL1;1.T2/ 6 C ln.1CN/kTf kL1;1.T2/

6 C ln.1CN/
�


 @2
@x2

f




L1.T2/

C




 @2
@y2

f




L1.T2/

�
:

The same comment concerns all the results obtained in this paper. All bounds from below
presented here are of the form .lnN/� for some � < 1, while the common upper bound
is lnN . Nevertheless, we conjecture that the optimal exponent � should be equal to one
(see Remark 4.2).

This paper contains final results of the study we began in [7]. It seems it is the first use
in the literature of trigonometric polynomials in the context of Ornstein non-inequalities.

2. Results

In this paper, we consider a more general, anisotropic case of the inequality (1.2), i.e., such
that there exists ƒ 2 Nd with h˛1; ƒi D h˛2; ƒi D � � � D hˇ;ƒi. This case was already
considered in the literature (see [6]), with an additional assumption on the parity of deriv-
atives j j̨ j �2 jˇj. (We mention that the results obtained there were only of the qualitative
nature.) In our present approach, we remove this “parity assumption”. However, we still
need other geometric conditions.
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The paper contains two results which are proved in quite similar way. Each of them
provides a geometric criterion for a set of symbols of partial derivatives which yields
quantitative estimates of Ornstein type.

Theorem 2.1. Assume ˛1; : : : ; ˛n;ˇ are multi-indices in .N [ ¹0º/d , and that there exists
a pair of vectors �; ƒ 2 Nd for which the following conditions are satisfied:

h˛1; ƒi D hˇ;ƒi D h˛2; ƒi D � � � D h˛m; ƒi

and

(2.1) h˛1; �i > hˇ; �i > h˛2; �i > � � � > h˛m; �i;

LetKN be the smallest constant such that, for every trigonometric polynomial f of degree
at most N , the following estimate holds:

(2.2) kDˇf kL1.Td / 6 KN

mX
jD1

kD j̨ f kL1.Td /:

Then, there exists a constant C > 0 such that

KN > C.lnN/� ;

where � D 1
2

�
1 � h˛1�ˇ;�i

h˛1�˛2;�i

�
.

Remark 2.2. The inequalities (2.1) could be satisfied for different vectors � , and then
for different permutations of the set ¹˛1; : : : ; ˛mº. For any fixed set of multi-indices, the
choice of the optimal vector � is a simple optimization problem. In dimension 2, for
fixed ˛1, the value of � does not depend on the choice of � .

Theorem 2.3. Assume ˛1; : : : ; ˛n;ˇ are multi-indices in .N [ ¹0º/d , and that there exists
a vector1 ƒ 2 Nd for which the following condition is satisfied:

h˛1; ƒi D hˇ;ƒi D h˛2; ƒi D � � � D h˛m; ƒi:

Suppose moreover that there exists " 2 ¹0; 1ºd such that

(2.3) hˇ; "i 6� h˛1; "i mod 2 and h j̨ ; "i � h˛1; "i mod 2

for j 2 ¹1; : : : ; mº. Let KN be the smallest constant such that, for every trigonometric
polynomial f of degree at most N , the following estimate holds:

(2.4) kDˇf kL1.Td / 6 KN

mX
jD1

kD j̨ f kL1.Td /:

Then, there exists a constant C > 0 such that

KN > C.lnN/1=2:

Remark 2.4. The case " D .1; 1; : : : ; 1/ corresponds to the anisotropic Sobolev space,
which contains an invariant, complemented, infinite dimensional subspace isomorphic to
a Hilbert space (see [13] for details).

1In this paper, we put N D ¹1; 2; 3; : : :º
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3. Proof of Theorem 2.1

Proof. Let ƒ D .�1; : : : ; �d / and � D .
1; : : : ; 
d /. We introduce an auxiliary sequence
.bk/k>1 depending on the parity of our multi-indices. If j˛1j � jˇj is even, we put bk WD
.2C .�1/k/, and if not, we put bk WD 1. For a fixed n 2N, we define a sequence of vectors
.ak/k>1 in Nd by the formula ak D .ak.1/; : : : ; ak.d//, where

(3.1) ak.j / WD 3
�j 2kn b


j
k
bn�
j c

and

(3.2) � WD
1

h˛1 � ˛2; �i
�

Since 
j and �j are positive integers, we know that, for any j 2 ¹1; 2; : : : ; dº;

(3.3) ak.j / > 3
2.n�1/ ak�1.j /

and

(3.4) kakk2 > 3
2.n�1/

kak�1k2:

We define a modified Riesz product based on this sequence,

(3.5) Rn.x/ D �1C

nY
kD1

.1C coshx; aki/;

and the family of sets

Ak D
°
q W q D ak C

k�1X
jD1

�j aj ; �j 2 ¹�1; 0; 1º for j 2 ¹1; : : : ; k � 1º
±
:

From (3.4), by standard calculations, we know that every point in Ak has a unique repres-
entation as ak C

Pk�1
jD1 �j aj . From (3.3), there exists a constant 2 > � > 1, independent

of k and j , such that

(3.6)
1

�
ak.j / 6 jq.j /j 6 � ak.j /;

for all q 2 Ak .
For � 2 Zd , we denote

n� D

dY
jD1

n
�.j /
j :

For q 2 Ak of the form q D ak C
Pk�1
jD1 �j aj , we set

r.q/ D #¹j W �j ¤ 0º C 1 and r.�q/ D r.q/:
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Let Wn.x/ be a polynomial given by the formula

(3.7) Wn.x/ D

nX
kD1

X
q2Ak[�Ak

i�j˛1j

q˛1

1

2r.q/
eihq;xi:

Note that

D˛1Wn.x/ D

nX
kD1

X
q2Ak[�Ak

1

2r.q/
eihq;xi D Rn.x/:

Moreover, for � 2 ¹ˇ; ˛2; : : : ; ˛mº,

D�Wn.x/ D

nX
kD1

X
q2Ak[�Ak

i j�j�j˛j
q�

q˛1

1

2r.q/
eihq;xi;

which could be represented as

(3.8) D�Wn.x/ D B�;n.x/CG�;n.x/;

where
(3.9)

B�;n.x/ D

nX
kD1

X
q2Ak

i j�j�j˛1j

2r.q/

�� q�
q˛1
�
a
�

k

a
˛1
k

�
eihq;xi C

� .�q/�
.�q/˛1

�
.�ak/

�

.�ak/˛1

�
eih�q;xi

�
and

(3.10) G�;n.x/ D

nX
kD1

i j�j�j˛1j
a
�

k

a
˛1
k

X
q2Ak

1

2r.q/

�
eihq;xi C .�1/j�j�j˛1j eih�q;xi

�
:

First we estimate the L1-norm of B�;n. Let v D .q.1/=ak.1/; : : : ; q.d/=ak.d// for
q 2 Ak . From (3.3),

(3.11) kv � 1k2 6 C.d/ 3�2n;

where 1 WD .1; : : : ; 1/. Observe that for q 2 Ak , by (3.6), (3.11) and by the Lipschitz
continuity of the functions x˛1 and x� on the cube Œ1=�; ��d , we get

(3.12)

ˇ̌
q�a

˛1
k
� a

�

k
q˛1

ˇ̌
6
ˇ̌
q� .a

˛1
k
� q˛1/

ˇ̌
C
ˇ̌
q˛1 .q� � a

�

k
/
ˇ̌

6 C
�
jq˛1 j ja

�

k
j j1 � v˛1 j C jq�j ja

˛1
k
j j1 � v�j

�
(3.6)
6 C ja

˛1
k
j ja

�

k
j
�
j1 � v˛1 j C j1 � v�j

�
Lip.
6 Ck1 � vk2 ja˛1k j ja

�

k
j

(3.11)
6 C 3�2n ja

˛1
k
j ja

�

k
j:
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We calculate a�
k

and a˛1
k

:

(3.13)

a
�

k
D 3

Pd
jD1 �.j /�j 2kn b

Pd
jD1 �.j /
j

k

dY
iD1

bn�
i c�.j /

D 3h�;ƒi2kn b
h�;�i

k

dY
jD1

bn�
j c�.j /;

and similarly (replacing � by ˛1),

(3.14) a
˛1
k
D 3h˛1;ƒi2kn b

h˛1;�i

k

dY
jD1

bn�
j c˛1.j /:

Since we only use a finite number of exponents, there is a constant C > 1 such that
for any � 2 ¹ˇ; ˛1; : : : ; ˛mº;

(3.15)
1

C
n� �h�;�i 6

dY
jD1

bn�
j c�.j / 6 Cn� �h�;�i:

For every� as above, we have h�;ƒiD h˛1;ƒi. By (3.6), (3.12) and (3.13), (3.14), (3.15),
we getˇ̌̌� q�
q˛1
�
a
�

k

a
˛1
k

�ˇ̌̌
D

ˇ̌̌q�a˛1
k
� a

�

k
q˛1

q˛1a
˛1
k

ˇ̌̌
6 C 3�2n

ja
˛1
k
j ja

�

k
j

ja
˛1
k
j2

6 C 3�2nnh��˛1;�i 6 C 3�n:

Plugging the above estimates for � 2 ¹ˇ; ˛2; : : : ; ˛mº into the formula for B�;n, we get

kB�;nkL1.Td / 6
nX
kD1

X
q2Ak

2C 3�n 6 2C 3�n 3n D 2C:

We pass to the estimates of the L1 norm ofG
j̨ ;n for j > 2. For k 2N and 16 k 6 n,

we define

 k.x/ D

k�1Y
lD1

.1C coshx; ali/:

A simple algebraic manipulation gives us

G
j̨ ;n.x/ D

nX
kD1

i j�j�j˛1j
a

j̨

k

a
˛1
k

1

2

�
eihak ;xi C .�1/j j̨ j�j˛1j eih�ak ;xi

�
 k.x/:

Since h j̨ ; ƒi D h˛1; ƒi, by (3.13) and (3.14) we getˇ̌̌a j̨

k

a
˛1
k

ˇ̌̌
6 Cn� �h j̨�˛1 ;�i:
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Therefore,

kG
j̨ ;nkL1.Td / 6 Cn� �h j̨�˛1;�i

nX
kD1

k kkL1.Td /:

As the Riesz products  l ’s have L1 norms equal to 1, we deduce that

kG
j̨ ;nkL1.Td / 6 Cn� �h j̨�˛1;�iC1:

By (2.1) and (3.2), for any j 2 ¹2; : : : ; mº;

� � h j̨ � ˛1; �i D
h j̨ � ˛1; �i

h˛1 � ˛2; �i
6 �1:

Hence there exists C > 0 such that

kG
j̨ ;nkL1.Td / 6 C;

for any n 2 N and any j 2 ¹2; : : : ; mº. Therefore for j 2 ¹2; : : : ; mº and n 2 N,

kD j̨WnkL1.Td / 6 kB
j̨ ;nkL1.Td / C kG j̨ ;nkL1.Td / 6 C:

Since D˛1W is a modified Riesz product,

kD˛1WnkL1.Td / 6 2:

Summing the above inequalities, we get

(3.16)
mX
jD1

kD j̨WnkL1.Td / 6 C:

Now we estimate kDˇWnkL1.Td / from below. Since the norm of Bˇ;n is uniformly
bounded with respect to n, it is enough to show that the norm of Gˇ;n is large.

Remark 3.1. In the article [11], see Remark on p. 563, Y. Meyer observes that the condi-
tion

P1
kD1

ak.j /
akC1.j /

< C1 yields



 X
�2¹�1;0;1ºn

b
� nX
kD1

�k ak.j /
�

exp
�
i

nX
kD1

�k ak.j /t
�




L1.T/

'





 X
�2¹�1;0;1ºn

b
� nX
kD1

�k ak.j /
�

exp
�
i

nX
kD1

�k tk

�




L1.Tn/

:

The constant in the above isomorphism depends only on the value of
P1
kD1

ak.j /
akC1.j /

. For
elementary proofs of this fact, see [8] or Proposition 4 in [2]. By a simple tensoring argu-
ment, 



 X

�2¹�1;0;1ºn

b
� nX
kD1

�k ak

�
exp

�
i

nX
kD1

h�k ak ; ti
�




L1.Td /

'





 X
�2¹�1;0;1ºn

b
� nX
kD1

�k ak

�
exp

�
i

nX
kD1

h�k ; tki
�




L1.Tnd /

:
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In our case, there exists a constant C > 0 independent of n such that the finite sequence
.ak.j //

n
kD1

defined by (3.1) satisfies

nX
kD1

ak.j /

akC1.j /

(3.3)
< n3�2n < C < C1

for any j 2 ¹1; : : : ; dº. Hence, when calculating L1 norm, we can treat exponents with
different ak as independent random variables.

We consider two cases separately.

Case I. j˛1j � jˇj is even.
In this case,

jGˇ;n.x/j D
ˇ̌̌ nX
kD1

a
ˇ

k

a
˛1
k

cos.hak ; xi/ k.x/
ˇ̌̌

D

ˇ̌̌ aˇ1
a
˛1
1

 1 C
a
ˇ
n

a
˛1
n

 nC1 C

n�1X
kD1

�aˇ
kC1

a
˛1
kC1

�
a
ˇ

k

a
˛1
k

�
 kC1

ˇ̌̌
:

Since  l are Riesz products, by (3.4) and by the inequality of Latała (Theorem 1 [10], see
also [2, 4]),

kGˇ;nkL1.Td / > C
� ˇ̌̌ aˇ1
a
˛1
1

ˇ̌̌
C

ˇ̌̌ aˇn
a
˛1
n

ˇ̌̌
C

n�1X
kD1

ˇ̌̌aˇ
kC1

a
˛1
kC1

�
a
ˇ

k

a
˛1
k

ˇ̌̌ �
:

From the definition of ak (and the fact that h˛1; ƒi D hˇ;ƒi), we getˇ̌̌aˇ
kC1

a
˛1
kC1

�
a
ˇ

k

a
˛1
k

ˇ̌̌
> Cn� �hˇ�˛1;�i jb

hˇ;�i

k
� b
hˇ;�i

kC1
j > Cn� �hˇ�˛1;�i j3hˇ;�i � 1j:

From the definition of � , we get

kGˇ;nkL1.Td / > C n1�hˇ�˛1;�i=h˛2�˛1;�i;

and consequently,

kDˇWnkL1.Td / > C n1�hˇ�˛1;�i=h˛2�˛1;�i:

There exists C > 0 independent of n such that jakj 6 3Cn
2

for 1 6 k 6 n. Therefore,
degWn.x/ 6 3Cn

2
and ln.degWn.x// 6 Cn2. Hence, for large enough n, there exists a

constant C > 0 such that

kDˇWnkL1.Td / > C.ln degWn/
1
2 .1�hˇ�˛1;�i=h˛2�˛1;�i/:

From (3.16) and (2.2), we get

K > C.ln degWn/
1
2 .1�hˇ�˛1;�i=h˛2�˛1;�i/:
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Case II. j˛1j � jˇj is odd.
In this case,

jGˇ;n.x/j D
ˇ̌̌ nX
kD1

a
ˇ

k

a
˛1
k

sin.hak ; xi/ k.x/
ˇ̌̌
:

By the definition of the sequence ak ,ˇ̌̌ aˇ
k

a
˛1
k

� n�hˇ�˛1;�i=h˛2�˛1;�i
ˇ̌̌
D

ˇ̌̌ Qd
sD1bn

�
j cˇ.s/Qd
sD1bn

�
j c˛1.s/
� n�hˇ�˛1;�i=h˛2�˛1;�i

ˇ̌̌
6
C

n�
� n�hˇ�˛1;�i=h˛2�˛1;�i:

Therefore,

kGˇ;nkL1.Td / > n�hˇ�˛1;�i=h˛2�˛1;�i



 nX
kD1

sin.hak ; xi/ k.x/




L1.Td /

�
C

n�
� n1�hˇ�˛1;�i=h˛2�˛1;�i:

However,


 nX
kD1

sin.hak ; xi/ k.x/




L1.Td /

D




 nX
kD1

�
cos.hak ; xi/ � eihak ;xi

�
 k.x/





L1.Td /

>



 nX
kD1

eihak ;xi k.x/




L1.Td /

� k nC1kL1.Td /

>



 nX
kD1

eihak ;xi k.x/




L1.Td /

� 1:

The sequence ak satisfies the assumptions of Meyer’s theorem (see Remark 3.1). Because
of that, we can use Lemma 2 from [16], which gives


 nX

jD1

eihak ;xi k.x/




L1.Td /

> Cn:

Thus
kGˇ;nkL1.Td / >

�
C1 �

C

n�

�
n1�hˇ�˛1;�i=h˛2�˛1;�i:

Therefore, for large enough n we get

kGˇ;nkL1.Td / > C n1�hˇ�˛1;�i=h˛2�˛1;�i

and similarly as in Case I, we obtain

K > C.ln degWn/
1
2 .1�hˇ�˛1;�i=h˛2�˛1;�i/:
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4. Proof of Theorem 2.3

Proof. We prove Theorem 2.3 in an analogous way. First we define the sequence ak by
the formula

ak.j / D 3
�j 2kn .�1/"j k :

Once again, we use the modified Riesz products of (3.5) and the corresponding polyno-
mials Wn of (3.7). As in the proof of Theorem 2.1, we have

D�Wn.x/ D B�;n.x/CG�;n.x/

for any � 2 ¹ˇ;˛2; : : : ;˛mº andB�;n.x/ andG�;n.x/ defined as in (3.9) and (3.10). Since
the sequence ak has super-exponential growth,

jak.j /j

jakC1.j /j
6 3�2n;

we obtain the following bounds on B�;n.x/:

kB�;nkL1.Td / 6 C

for any � 2 ¹ˇ; ˛2; : : : ; ˛mº. Note that, by (2.3),

a
j̨

k
D 3hƒ; j̨ i .�1/kh"; j̨ i D 3hƒ;˛1i .�1/kh"; ˛1i D a

˛1
k
:

Hence, by (3.10),

G
j̨ ;n.x/ D

nX
kD1

i j j̨ j�j˛1j
X
q2Ak

1

2r.q/

�
eihq;xi C .�1/j j̨ j�j˛1j eih�q;xi

�
:

Thus for j˛1j � j j̨ j mod 2, we get

kG
j̨ ;nkL1.Td / D




�1C nY
kD1

.1C coshx; aki/




L1.Td /

D kRnkL1.Td / 6 2;

and for j˛1j � j j̨ j C 1 mod 2,

kG
j̨ ;nkL1.Td / D




�1C nY
kD1

.1C sinhx; aki/




L1.Td /

6 2:

The only thing left to do is the estimate on the norm of Gˇ;n from below. By (2.3), we get

a
ˇ

k
D 3hƒ;ˇi .�1/kh"; ˇi D 3hƒ;˛1i .�1/k.h"; ˛1iC1/ D .�1/k a

˛1
k
:

Therefore,

Gˇ;n.x/ D

nX
kD1

.�1/k i jˇ j�j˛1j
X
q2Ak

1

2r.q/

�
eihq;xi C .�1/jˇ j�j˛1j eih�q;xi

�
:
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Let gm be given by the formula

gm.x/ D

´ Qm
kD1.1C coshx; aki/; for jˇj � j˛1j mod 2;Qm
kD1.1C sinhx; aki/; for jˇj 6� j˛1j mod 2:

Then

jGˇ;n.x/j D
ˇ̌̌ n�1X
kD0

.�1/k .gkC1.x/ � gk.x//
ˇ̌̌

D

ˇ̌̌
.�1/n�1gn.x/C g0.x/C

n�1X
kD1

2.�1/k�1gk.x/
ˇ̌̌
:

Applying Latała’s inequality (Theorem 1 in [10]), we obtain

(4.1) kGˇ;nkL1.Td / > Cn:

As in previous section, we get

K > C.ln degWn/1=2:

Remark 4.1. Actually, to obtain estimate (4.1) we could use a weaker (random) form of
Latała’s inequality (see Lemma 1 in [16]). However, to do this one needs to adjust the
construction to the randomness of choice of signs, which significantly complicates the
redaction.

Remark 4.2. The careful study of the above proofs shows that the reason behind the sub-
logarithmic growth of the constant lies in the super-exponential growth of the sequence ak
(see (3.3)). There are two reasons for the significant growth of this sequence. In order to
use the Latała inequality, just geometrical growth would be enough (see [2]). However, we
use a Riesz product as one of the derivatives involved in the proof. To recover the Riesz
product structure for the remaining derivatives – which we need to use in the inequality of
Latała –, we perturbed the actual functions. Our method to control the arising error terms
requires super-exponential growth of the sequence ak . It seems that any improvement of
this method would require a more delicate study of the aforementioned error terms.
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