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Mixed-norm of orthogonal projections and analytic
interpolation on dimensions of measures

Bochen Liu

Abstract. Suppose that � and � are compactly supported Radon measures on Rd ,
V 2G.d; n/ is an n-dimensional subspace, and let �V WRd ! V denote the orthog-
onal projection. In this paper, we study the mixed-norm

R
k�y�k

q
Lp.G.d;n//

d�.y/,
where

�y�.V / WD

Z
yCV ?

�dHd�n
D �V �.�V y/;

assuming � has continuous density. When n D d � 1 and p D q, our result signifi-
cantly improves a previous result of Orponen on radial projections. We also discuss
about consequences including jump discontinuities in the range of p, and m-planes
determined by a set of given Hausdorff dimension.

In the proof, we run analytic interpolation not only on p and q, but also on
dimensions of measures. This is partially inspired by previous work of Greenleaf
and Iosevich on Falconer-type problems. We also introduce a new quantity called
s-amplitude, that is crucial for our interpolation and gives an alternative definition of
Hausdorff dimension.

1. Introduction

Let �e.x/ D x � e, x 2 R2, e2S1, denote the orthogonal projection. In 1954, Marstrand
proved in [12] that, for every Borel set E � R2 with dimH E > 1, the set �e.E/ has
positive Lebesgue measure for almost all e2 S1. In 1968, Kaufman [8] gave a simple
alternative proof of Marstrand projection theorem using Fourier analysis. Moreover, he
proved that the induced measure �e� on �e.E/ has L2 density for almost all e2 S1,
where � is a Frostman measure on E. Nowadays, orthogonal projection has become a
central problem in geometric measure theory, and has been studied actively from different
perspectives.

In higher dimensions, we denote orthogonal projections by �V WRd ! V , where V 2
G.d; n/ is a n-dimensional subspace of Rd and G.d; n/ denotes the Grassmannian. Also,
throughout this paper H s denotes the s-dimensional Hausdorff measure, and d;n is the
probability measure on G.d; n/ induced by the Haar measure �d on the orthogonal group.
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Of course, �V�2L2.HnjV / is not a necessary condition for Hn.�V .E// > 0. But for
technical reasons, the L2-method is the most popular approach to this type of problems.
We refer to [11, 13] for L2-approaches to Falconer distance conjecture.

It is not surprising that L2 does not always help. For x ¤ y in Rd , let

�y.x/ WD
x � y

jx � yj
2 Sd�1

denote the radial projection. The visibility problem asks that, given E;F � Rd , whether
there exists y2F such that �y.E n¹yº/ � Sd�1 has positive surface measure. Although
there are L2-estimates in the literature (e.g., [18]), their geometric consequences are far
from being desired. Finally, Orponen [17] proved that if supp� \ supp � D ;, s > d � 1
and s C t > 2.d � 1/, then

(1.1)
Z
k�y�k

p

Lp.Sd�1/
d�.y/ . Is.�/

p=2
� It .�/

1=2

for every

1 � p < min
° t

2.d � 1/ � s
; 2 �

t

d � 1

±
;

where Is denotes the s-energy (see (1.9) below for definition) and �y� denotes the push-
forward of the weighted measure cd jx � yj�.d�1/ d�.x/ under �y , which in particular
equals Z

�.y C te/ dt

if � has continuous density. For applications, there is no difference between this repre-
sentation and the pushforward of � itself (we can always assume � has compact support
away from y), but the modified version is more convenient when writing the proof.

Notice that in Orponen’s result, p < 2 is required, and p ! 1 as s; t get close to the
critical case s C t D 2.d � 1/. Both will be improved significantly in this paper.

As a geometric consequence of (1.1), if E; F � Rd are such that dimH E > d � 1

and dimH E C dimH F > 2.d � 1/, then

(1.2) Hd�1.�y.E n¹yº// > 0; for some y2F:

It is known that neither of assumptions dimH E > d � 1, dimH E C dimH F > 2.d � 1/

can be relaxed. We refer to [16] for the discussion on the sharpness, and to Example 5.13
in [15] for details of examples. This also implies that both s > .d � 1/ and sC t > 2.d � 1/
are necessary for the existence of p > 1 in (1.1).

What is more, the estimate (1.1) was quickly introduced into the study of Falconer
distance conjecture, playing crucial roles in a couple of recent breakthroughs [7, 9]. This
brings more attention to Lp-estimates of projections.

Even more recently, Dabrowski, Orponen, Villa [1] proved that, if � is a compactly
supported measure on Rd satisfying the s-dimensional Frostman condition

�.B.x; r// . rs; for all r > 0; x 2 Rd ;

then

(1.3)
Z
k�V�k

p

Lp.Hn/
dd;n.V / <1; for all 2 � p < 2C

s � n

d � s
�
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This is sharp for s > d � 1, and has applications to Furstenberg sets and discretized
sum-product problems.

Estimates (1.1) and (1.3) are closely related, due to Orponen’s formula (see Lemma 3.1
in [17] and Lemma 4.17 in [1], with some notation redefined here)

(1.4)
Z
k�y�k

p

Lp.G.d;n//
d�.y/ D

Z
k�V�k

p

Lp.�V �/
dd;n.V /;

given � has continuous density and

(1.5) �y�.V / WD

Z
yCV ?

�dHd�n
D �V�.�V y/:

A remark is that �y itself is not a projection when n < d � 1, as a .d � n/-plane cannot
be determined by two points. For this reason, it is not straightforward to define �y� as
a measure on G.d; n/ when � is not continuous. We leave the detailed discussion to the
beginning of Section 4. This is also why we prefer naming this paper “mixed-norm of
orthogonal projections” instead of “radial projections”.

Although the proof of (1.4) is not hard (just change variables Rd D V ˚ V ?), it is
very important. In [17], the proof of (1.1) starts from (1.4); in [1], (1.4) is used to obtain
an incidence estimate from (1.3).

In [1], the authors suggest studying the mixed-normZ
k�V�k

q

Lp.Hn/
dd;n.V /;

especially for q � p. Their motivation is the following. As a corollary of (1.3), for almost
all V 2G.d; n/,

(1.6) �V� 2 L
p.Hn

jV /; for all p < 2C
s � n

d � s
�

Since both supp� and G.d; n/ are compact, one may expect a wider range of p by con-
sidering smaller q.

In fact, it is not hard to obtain mixed-norm estimates for q � p. It follows directly from
the classical L2-estimate (see, e.g., Section 4.1 in [15]) and the Sobolev embedding that

(1.7)
Z
k�V�k

2
Lp.Hn/ dd;n.V / <1; 8p

´
< 2n

2n�s
; if n < s � 2n;

D1; if s > 2n:

The range of p in (1.7) is wider than (1.6) if n < s < 2.d � n/ or s > 2n. Then by analytic
interpolation, one can proveZ

k�V�k
q

Lp.Hn/
dd;n.V / <1

for 2 � q � p <1 and

(1.8)
n

p
C
2d � 2n � s

q
> d � s:

Although this interpolation is not the standard Riesz–Thorin because of the mixed-norm,
it follows from its vector-valued version (see e.g. Exercise 5.5.2 in [4]), or one can just
see our interpolation argument in Section 7 below.



B. Liu 830

On the other hand, unfortunately, interpolation on p never makes its range wider. In
this paper, we shall interpolate also on dimensions of measures, that indeed extend the
range of p.

Now we turn to the mixed-normZ
k�y�k

q

Lp.G.d;n//
d�.y/:

When q > p, it is equivalent to considerZ
k�y�k

p

Lp.G.d;n//
f .y/ d�.y/; for kf kL.q=p/0 .�/ D 1;

so some results follow from the case p D q, as fd� is also a Frostman measure if the
measure � is (Hölder’s inequality); while when q < p, due to the lack of Sobolev embed-
ding, there seems no way to reduce it to q D p. As we mentioned above, the first step of
Orponen’s argument on (1.1) is to apply his formula (1.4), whose proof relies on q D p.
So we need new ideas for q < p, even to start.

To state our main theorem, we need the classical s-energy

(1.9) Is.�/ WD

“
jx � yj�s d�.x/ d�.y/

as well as a new quantity As.�/, called the s-amplitude. This new quantity plays a key
role in our analytic interpolation, and makes our statement quite clean. See Section 3 for
more discussions.

Definition 1.1. For every compactly supported Radon measure � on Rd and 0 < s < d ,
define the s-amplitude of � by

As.�/ WD sup
x2Rd

Z
jx � yj�s d�.y/:

Theorem 1.2. Suppose � and � are compactly supported Radon measures on Rd , and let
0 < t < n, 0 < s; ˛ < d , and s C t � 2n. Denote

q0 WD 1C
s C t � 2n

2.d � ˛/
�

Then, for every

1 � p <
2nq0

nC t
D

2n

nC t

�
1C

s C t � 2n

2.d � ˛/

�
;

we have
(1.10)Z
k�y�k

q

Lp.G.d;n//
d�.y/.d;n;p;s;t;˛

´
Is.�/

1=2 � A˛.�/
q�1 � It .�/

1=2; qDq0;

Is.�/
1=2 � A˛.�/

q�1 � Amax¹t; q
2q0

tº.�/; q>q0:

Furthermore, when t D n,
(1.11)Z
k�y�k

q

Lq0 .G.d;n//
d�.y/ .d;n;s;˛

´
Is.�/

1=2 � A˛.�/
q�1 � In.�/

1=2; q D q0;

Is.�/
1=2 � A˛.�/

q�1 � Amax¹n; q
2q0

nº.�/; q > q0:
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With Theorem 1.2, one can compute for what p;q the mixed-norm estimates on Frost-
man measures �; � are finite. We leave the full table of p; q to the end of this section, as
it looks quite complicated. In particular, by taking p D q and n D d � 1, we can improve
the range of p in (1.1) to

(1.12) 1 � p �
2.d � 1/

d � 1C t

�
1C

s C t � 2.d � 1/

2.d � s/

�
:

To see this is an improvement, first notice that the range of p in (1.1) makes sense only if
t 2.2.d � 1/ � s; d � 1/. Then we fix s > d � 1 and observe that, as a piecewise linear
function in t ,

max
t2Œ2.d�1/�s;d�1�

�
min

° t

2.d � 1/ � s
; 2 �

t

d � 1

±�
D

2.d � 1/

3.d � 1/ � s
�

Finally, one can easily check that (1.12) is increasing in t 2 Œ2.d � 1/ � s; d � 1�, and
therefore by plugging in t D 2.d � 1/ � s, it is

�
2.d � 1/

3.d � 1/ � s
;

as desired. In fact, the improvement of (1.12) over (1.1) is significant: the range of p tends
to Œ1;1� as s ! d and equals Œ1; 2.d�1/

d�1Ct
/ when s C t D 2.d � 1/, while (1.1) cannot go

beyond p D 2, and collapses when s C t D 2.d � 1/.
As a remark, the assumption 0 < t < n is necessary (see Section 10), so our result

is not comparable to (1.3) by taking � D � and p D q. But our method does give an
alternative proof of (1.3), with a more delicate upper bound. See also Section 10.

Now we ignore q and focus on when �y� 2 Lp.G.d; n//. By Theorem 1.2, or from
the full table in Corollary 1.5, one can obtain the following.

Corollary 1.3. Suppose � and � are compactly supported Radon measures on Rd satis-
fying

�.B.x; r// . rs� ; �.B.x; r// . rs� ; for all x 2 Rd ; r > 0;

where 0 < s� < n and 2n � s� < s� < d . Then, for every

1 � p <

8<: 2n
nCs�

�
1C

s�Cs��2n

2.d�s�/

�
; if s� � 2d � 3n;

2n
nCmax¹2n�s�;0º

�
1C

max¹s��2n;0º
2.d�s�/

�
; if s� < 2d � 3n;

there exists y2 supp � such that

�y� 2 Lp.G.d; n//:

In particular, if s� > 2n, then the set of y 2 Rd such that

inf¹p W �y� … Lp.G.d; n//º < 2C
s� � 2n

d � s�

has Hausdorff dimension 0.
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Notice that, near the critical line segment

¹.s�; s�/ 2 .0; d/
2
W s� C s� D 2n; 0 < s� < nº;

the critical p in Corollary 1.3 equals

2n

nC s�
D

2n

3n � s�
> 1:

On the other hand, by considering �; � on RnC1 � ¹0º � Rd , the sharpness of the visibil-
ity problem in RnC1 implies that s� C s� > 2n is necessary for the existence of p > 1.
Together, it follows that the range of p has jump discontinuities at critical cases. See
Figure 1 below: in the shadow, p > 2n=.3n � s�/, while in the blank, p D 1. This
phenomenon cannot be seen from Orponen’s previous result (1.1), thus unexpected and
surprising. I think there are deep reasons behind it to be explored.

p D 1
p > 2n

3n�s�

s�

s�

d

n

.d; 2n � d/

.n; n/

n > d=2

p D 1
p > 2n

3n�s�

s�

s�

2n

n

n < d=2

d

.n; n/

Figure 1. Jump discontinuities of p at s� C s� D 2n.

I do not know whether our range of p is sharp, or how far it is from being sharp. It
seems very hard to compute Lp-estimates from known geometric examples. I think the
first step towards the sharpness is to understand the jump discontinuities along the critical
line segment.

Our results also generalize the visibility problem. Notice that not every generaliza-
tion is nontrivial. For example, one can easily conclude that for every E; F � Rd with
dimH E > n and dimH E C dimH F > 2n, there exists y2F such that

(1.13) d;d�n¹W 2 G.d; d � n/ W W \ .E � y/ ¤ ;º > 0:

To see this, just project E and F onto a .nC 1/-dimensional subspace, preserving their
dimensions or having positive Lebesgue measure; then (1.13) follows from the visibility
problem in RnC1. See [2] for an application of this trick on Falconer distance conjecture.

To make nontrivial generalizations, we consider the set of m-planes determined by
E � y, that is,

�y.Em/ WD ¹W 2 G.d;m/ W W D Span¹x1 � y; : : : ; xm � yº W x1; : : : ; xm 2 Eº:

Throughout this paper, when writing

W D Span¹Ev1; : : : ; Evmº;

vectors Ev1; : : : ; Evm are a priori assumed nonzero and linearly independent.
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Corollary 1.4. Suppose 1 � m � d � 1 and let E � Rd be a Borel subset.

(i) If
dimH E > max

°
d �

m

2m � 1
; 3m � d

±
;

then

dimH ¹y 2 Rd W d;m.�
y.Em// D 0º

� max
°
2.d �m/ � dimH E;

.d �m/.dimH E � 2mCm.d � dimH E//

d �m �m.d � dimH E/
; 0
±
:

(ii) If

dimH E > max
°
2.d �m/; d �

2m � d

m � 1

±
;

then
dimH ¹y 2 Rd W d;m.�

y.Em// D 0º D 0:

One can check that (i) matches the results above on the visibility problem withmD 1.
Also (ii) makes sense only if m > d=2.

To deal with .mC 1/-point configurations like Corollary 1.4, people used to consider
.mC 1/-linear estimates. One example is the method in [5,6] that we shall discuss briefly
in next section. In our case, multi-linear means q 2 Z, but for Corollary 1.4 we need
p D m C " (see Section 8), whose associated q may not be an integer. This explains
why our interpolation between multi-linear estimates gives a better bound than multi-
linear estimates themselves. We hope this will shed lights on other multiple configuration
problems in the future.

I do not know how sharp Corollary 1.4 is, or what to expect for m � 2. One could
follow the idea in [16] on the sharpness of the visibility problem .m D 1/, to transfer
special cases to orthogonal projections via projective transformations. But then one should
check, not only the projected image has positive Lebesgue measure, but also each slice is
not contained in a lower dimensional affine subspace. This seems not easy.

Now we give the full table of p; q as the end of the introduction. Since p; q !1 as
s� ! d , our result covers all p; q 2 Œ1;1/.

Corollary 1.5. Suppose � and � are compactly supported Radon measures on Rd satis-
fying

�.B.x; r// . rs� ; �.B.x; r// . rs� ; for all x 2 Rd ; r > 0;

where 0 < s� < n and 2n � s� < s� < d . Then

(1.14)
Z
k�y�k

q

Lp.G.d;n//
d�.y/ <1

if one of the following holds:
• s� � 2d � 3n, and

1 � p <
2n

nCmax¹2n � s�; 0º

�
1C

max¹s� � 2n; 0º
2.d � s�/

�
D

´
2n

3n�s�
; s� < 2n;

2C
s��2n

d�s�
; s� � 2n;

1 � q <
2s�

max¹2n � s�; 0º

�
1C

max¹s� � 2n; 0º
2.d � s�/

�
D

´
2s�
2n�s�

; s� < 2n;

1; s� � 2n:
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• s� � 2d � 2n, and

1 � p <
2n

nC s�

�
1C

s� C s� � 2n

2.d � s�/

�
; 1 � q < 2C

s� C s� � 2n

d � s�
�

• 2d � 3n < s� < 2d � 2n, and p and q lie in the region enclosed by

1 � p <
2n

nC s�

�
1C

s� C s� � 2n

2.d � s�/

�
;

1 � q <
2s�

max¹2n � s�; 0º

�
1C

max¹s� � 2n; 0º
2.d � s�/

�
D

´
2s�
2n�s�

; s� < 2n;

1; s� � 2n;

and
s� � 2d C 3n

1 �
d�s�
n
p

< nC
2d � 2n � s�
d�s�
s�

q � 1
�

In particular, in the case p D q,Z
k�y�k

p

Lp.G.d;n//
d�.y/ <1

for every

1 � p <

´
2n
nCs�

�
1C

s�Cs��2n

2.d�s�/

�
; if s� � 2d � 3n;

2n
nCmax¹2n�s�;0º

�
1C

max¹s��2n;0º
2.d�s�/

�
; if s� < 2d � 3n:

Organization. In Sections 2–4, we discuss in detail about different ingredients in our
proof, including analytic interpolation (Section 2), the newly defined s-amplitude and its
role in the dimension theory (Section 3), as well as some “trivial” estimates on orthog-
onal projections (Section 4). In Section 5–9, we prove our theorems and corollaries. In
Section 10, we compare between our setup and the estimate (1.3) of Dabrowski–Orponen–
Villa, and then give an alternative proof of (1.3) using our method.

Notation. X . Y means X � CY for some constant C > 0, X � Y means X . Y and
Y . X , and X ." Y means X � CY for some constant C D C."/ > 0.

2. Preliminaries on analytic interpolation

2.1. The Hadamard three-lines lemma

Suppose f is a bounded analytic function in the strip ¹0 < Re z < 1º, continuous on the
boundary, and let

M0 WD sup
Re zD0

jf .z/j <1; M1 WD sup
Re zD1

jf .z/j <1:

The Hadamard three-lines lemma states that for every z 2 ¹0 < Re z < 1º,

jf .z/j �MRe z
0 �M 1�Re z

1 :

There is a higher dimensional version of the Hadamard three-lines lemma. We give
the statement and a proof for completeness. One can also see, e.g., Lemma 3.16 in [5].
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Lemma 2.1. Let f .z1; : : : ; zn/ be an analytic function on Cn and let a1; : : : ; ak 2 Rn be
real-valued vectors, k � 2. Suppose that for every j D 1; : : : ; k,

sup
.Re z1;:::;Re zn/Daj

jf .z1; : : : ; zn/j � 1:

Then jf .z1; : : : ; zn/j � 1 whenever .Re z1; : : : ;Re zn/ 2 Rn lies in the convex hull gen-
erated by a1; : : : ; ak .

Proof. The proof goes by induction in k. When k D 2, one can assume a1 D .0; : : : ; 0/
and a2 D .1; 0; : : : ; 0/. Then, by restricting f to the complex line C � ¹0º � � � ¹0º, the
desired estimate follows from the one-dimensional three-lines lemma. For general k, first
by the inductive hypothesis on k � 1 we have jf j � 1 if .Re z1; : : : ;Re zn/ lies in the
boundary of the convex hull generated by a1; : : : ; ak . For .Re z1; : : : ;Re zn/ lying in the
interior of this convex hull, one can find a line segment containing this point with end
points in the boundary. Then, by restricting f to this line segment, the desired estimate
again follows from the one-dimensional three-lines lemma.

The Hadamard three-lines lemma was first announced in 1890s. It was introduced into
harmonic analysis in mid-20th century to bound norms of operators between Lp spaces.
These techniques are still widely used today, including Riesz–Thorin interpolation, Stein’s
interpolation, and many others.

2.2. The Riesz potential

Our analytic interpolation is inspired by both classical ones and the work of Greenleaf–
Iosevich [6] and Grafakos–Greenleaf–Iosevich–Palsson [5]. Suppose � 2C10 .R

d /, � � 0,R
� D 1, define �ı.�/ WD ı�d�.�=ı/, and let

�ı.x/ WD �ı � �.x/:

Then the Riesz potential,

(2.1)
�z=2

�.z=2/
j � j
�dCz

� �ı.x/;

is a smooth function in x 2 Rd , initially defined for Re z > 0, that can be extended to
z 2 C by analytic continuation. It is well known that (2.1) has Fourier transform

�.d�z/=2

�..d � z/=2/
y�ı.�/ j�j�z ;

in the sense of distributions, and in particular, (2.1) equals cd�ı as a distribution when
z D 0. We refer to pp. 71 and 192 in [3] for details. Also, when z 2 .0; d/ is real, the Riesz
potential is the same as the fractional Laplacian .��/�z=2�ı up to a normalization which
is defined by the Fourier inverse of y�ı.�/j�j�z .

In [5, 6], geometric k-point configuration problems are reduced to k-linear forms

ƒ.�ı ; : : : ; �ı/;
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where � is a Frostman measure and ƒ is a symmetric k-linear form. Take

(2.2) ˆ.z1; : : : ; zk/ WD ƒ
� �z1=2

�.z1=2/
j � j
�dCz1 � �ı ; : : : ;

�zk=2

�.zk=2/
j � j
�dCzk � �ı

�
as an analytic function on Ck . If �.B.x; r// . rsC" for all r > 0 and Re zj D d � s 2
.0; d/, it follows immediately that

(2.3)
ˇ̌̌ Z
jx � yj�dCzj d�.y/

ˇ̌̌
�

Z
jx � yj�s d�.y/ . 1:

Therefore, jˆ.z/j can be reduced to a bilinear form

B
� �zj1=2

�.zj1=2/
j � j
�dCzj1 � �ı ;

�zj2=2

�.zj2=2/
j � j
�dCzj2 � �ı

�
;

where

Re zj1 D Re zj2 D �
k.d � s/

2
�

We skip details here. One can read [6] or Section 6 below for a clue.
Sinceƒ is symmetric, the bilinear form estimate is independent in the choice of j1; j2,

which means the same estimate holds for
�
k
2

�
non-proportional vectors .Re z1; : : : ;Re zk/

whose convex hull contains the origin. Hence estimates of

ˆ.0/ D ƒ.�ı ; : : : ; �ı/

follow from the Hadamard three-lines lemma.

2.3. Remarks

There are some technical issues about [5, 6] to be clarified.
(i) Though (2.3) holds, one cannot conclude that the Riesz potential (2.1) is also . 1,

due to the unbounded factor j�.z=2/j�1. To resolve this issue, we shall work with

(2.4) �ız.x/ WD  .x/ � e
z2 �z=2

�.z=2/
j � j
�dCz

� �ı.x/;

with  2 C10 .R
d /, nonnegative and equal to 1 on supp�. The role of ez

2
is to control

jez
2

� ��1.z/j .Re z 1;

as ��1 is an entire function of order 1. It also guarantees the boundedness of j�ız.x/j in
each strip ¹a < Re z < bº, necessary for the Hadamard three-lines lemma. The role of  
is to ensure the support of �ız.x/ is compact.

(ii) When Re z 2 .0; d/, it is straightforward that

j�ız.x/j .Re z

Z
jx � yj�dCRe z d�ı.y/ � �ıRe z.x/:
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But we are not convinced that this relation can be extended to general z 2C: the right-hand
side is not even guaranteed positive for Re z … .0; d/, because it is defined via analytic
continuation. In our argument below, we are super careful when taking absolute values of
possibly complex-valued �ız , as we do not know how to compute the Fourier transform
of j�ızj. Readers can keep an eye on our timing of taking absolute values in Section 6.

3. Energy, amplitude, and dimensions of measures

For every Borel set E � Rd , denote by M.E/ the collection of nonzero compactly sup-
ported Radon measures on E.

The well-known Frostman lemma implies that, for every Borel subset E � Rd and
every s < dimH E, there exists � 2M.E/ such that

�.B.x; r// . rs; for all r > 0 and all x 2 Rd :

In fact,

dimH E D sup
°
s W 9� 2M.E/ such that sup

x;r

�.B.x; r//

rs
<1

±
:

We call

sup
x

�.B.x; r//

rs

the Frostman constant of � (of dimension s).
By direct computation, the above implies that for every s < dimH E, there exists

� 2M.E/ such that the s-energy

Is.�/ WD

“
jx � yj�s d�.x/d�.y/

is finite. Also

(3.1) dimH E D sup¹s W 9� 2M.E/ such that Is.�/ <1º:

In dimension theories, s-energy plays an important role due to its Fourier-analytic
representation (see, e.g., Section 3.5 in [15])

Is.�/ D Cd;s

Z
j O�.�/j2 j�j�dCs d� D Cd;s k.��/

�.d�s/=4�k2
L2
:

In fact, Kaufman’s simple alternative proof of Marstrand projection theorem is just

(3.2)

Z
S1
k�e�k

2
L2.R/ d�.e/ D

“
jb�e�.r/j2 dr d�.e/ D

“
j O�.re/j2 dr d�.e/

D

Z
j O�.�/j2j�j�1 d� D CI1.�/:

So far, in the literature, all estimates on Frostman measures are written in terms of the
Frostman constant and the energy . But these are not enough for our analytic interpolation.
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For our use, estimates should hold with complex-valued �, or more precisely, �ız defined
in (2.4). The s-energy works well with �ız : thanks to its Fourier-analytic representation,
we have that, for  2 C10 and �ız defined as (2.4),

(3.3) Is.�
ı
z/ . ;d;s;Re z Is�2Re z.�/:

To prove (3.3), notice �ız 2 C
1
0 , and therefore

Is.�
ı
z/ D Cd;s

Z
j
c
�ız.�/j

2
j�j�dCs d�

D Cd;s �
ˇ̌̌ ez2 �.d�z/=2
�..d � z/=2/

ˇ̌̌2 Z ˇ̌̌ Z
O�.�/ j�j�z j O�.ı�/j O .� � �/ d�

ˇ̌̌2
j�j�dCs d�

.
“
j O�.�/j2 j�j�2Re z

j O .� � �/j d� j�j�dCs d�;

where the implicit constant depends on  , d , s and Re z, but is independent in ı. Then,
when j�j > j�j=2,Z

j�j>j�j=2

j O .� � �/j j�j�dCs d� . j�j�dCs
Z
j O .� � �/j d� . j�j�dCs :

When j�j < j�j=2, we have j� � �j & j�j, and thereforeZ
j�j<j�j=2

j O .� � �/j j�j�dCs d� .N
Z
j���j&j�j

j� � �j�N j�j�dCs d� .N .1C j�j/s�N ;

where the last inequality follows from changing variables � D j�j�. This completes the
proof of (3.3).

Though the s-energy is compatible with �ız , there seems no easy way to deal with the
Frostman constant of �ız , namely

sup
x

j�ız.B.x; r//j

rs
�

This is why we introduce the s-amplitude defined in Definition 1.1. This definition is very
natural. In fact, (3.1), the connection between dimH E and Is.�/, is built uponAs.�/<1
(see, for example, Theorem 2.8 in [15]), that immediately implies

dimH E D sup¹s W 9� 2M.E/; As.�/ <1º:

However, there seems no further discussion about this quantity in the literature.
Unlike Frostman constant, one can expect the s-amplitude to act on �ız , due to the

semigroup property of the Riesz potential (see, e.g., p. 48 in [10]): heuristically, if 0 <
s � Re z < d , then

As

� �z=2

�.z=2/
j � j
�dCz

� �ı
�
D

ˇ̌̌ �z=2
�.z=2/

ˇ̌̌
�
j � j�s � j � j�dCz � �ı

L1

D

ˇ̌̌ez2�.dCz/=2 � ��d�s
2

�
� �
�
s�z
2

�
�
�
s
2

�
� �.d�z

2
/ � �

�
d�.s�z/

2

� ˇ̌̌
�
j � j�sCz � �ı

L1

� Cd;s;Re z � As�Re z.�
ı/:(3.4)
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To make this heuristic argument rigorous, some functional analysis is required. For sim-
plicity, we keep (3.4) in mind and write our proof in Section 7 in a slightly different way
to avoid tedious discussion.

It is routine to consider �ı first and take ı! 0 at the very end. One can check that all
implicit constants below are independent in ı. From now, we write � for �ı for abbrevia-
tion, and assume � has continuous density.

4. Trivial estimates on orthogonal projections

4.1.

The finiteness for p D q D 1 is trivial. In fact, for every finite measure � of continuous
density, we have

(4.1)
Z
�y�.V / dd;n.V / � 1; for all y … supp�:

This also implies that for � of singular support, one can define �y� as a measure on
G.d; n/ by taking the weak limit of a subsequence of �y�ı . However, as we mentioned
at the end of the previous section, it is more convenient to take this limit at the very end,
after all estimates are proved. So we continue working with � of continuous density.

For the proof of (4.1), since d;n is induced by the Haar measure �d on the orthogonal
group O.d/, by its invarianceZ

�y�.V / dd;n.V / D

Z
O.d/

Z
Rn

�.y C g � .x0; 0// dx0d�d .g/

D

Z
O.d/

Z
Sn�1

Z 1
0

�.y C g � .r�; 0// rn�1 dr d� d�d .g/

D

Z
Sn�1

Z 1
0

� Z
O.d/

�.y C g � .r�; 0// d�d .g/
�
rn�1 dr d�

D
jSn�1j

jSd�1j

Z
Sd�1

Z
�.y C r�/ rn�1 dr d�

D
jSn�1j

jSd�1j

Z
�.y C x/ jxjn�d dx � 1:(4.2)

As a consequence, if supp� and supp � are disjoint,“
�y�.V / dd;n.V / d�.y/ � 1:

4.2.

The trivial estimate (4.2) looks perfect and there seems nothing more to discuss. But here
we would like to present another trivial estimate of“

�y�.V / dd;n.V / d�.y/

that inspires our argument below.
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Assume both � and � have continuous density. Then, by the definition of �y�.V /
(see (1.5)), with s C t D 2n and s > n,“

�y�.V / dd;n.V / d�.y/

D

“
�V�.u/ � �V �.u/ dHn.u/ dd;n.V /

�

� Z
G.d;n/

Z
Rn

jb�V�.�/j�nCs d� dd;n.V /
�1=2
k.��/�.n�t/=4�V �kL2.Hn�d;n/

D C � I 1=2s .�/ � I
1=2
t .�/:(4.3)

The second line of (4.3) follows because in general, given ˛ 2 .0; n/,

(4.4)

Z
Rn

f Ng D

Z
Rn

Of Og D

Z
Rn

Of .�/ j�j˛ Og.�/ j�j�˛ d�

�

� Z
Rn

j Of .�/j2 j�j2˛ d�
�1=2
k.��/�˛=2gkL2 :

The last line of (4.3) follows because for arbitrary but fixed V0 2 G.d; n/,

(4.5)

“
jb�V�.�/j2 j�j˛ d� dd;n.V / D

“
j1�gV0�.�/j2 j�j˛ d� d�d .g/

D

ZZ
gV0

j O�.�/j2 j�j˛ dHn.�/ d�d .g/ D

ZZ
V0

j O�.g�/j2 j�j˛ dHn.�/ d�d .g/;

which equals a constant multiple of InC˛.�/ by applying polar coordinate on V0 and
integrate in �d first as in (4.2).

The estimate (4.3) looks useless, as we already know it is � 1 even if the energy
blows up. However, it inspires our proof in Section 5, which is the beginning of this
project. We hope that presenting this “trivial” estimate here would help readers have a
better understanding of this paper.

5. The case q D 1

We start our proof with q D 1. This is also how we discover jumps of p at s C t D 2n.

Proposition 5.1. Suppose � is a complex-valued C10 function on Rd , � is a compactly
supported measure on Rd , and 0 < t < n. Then

(5.1)
Z
k�y�kLp.G.d;n// d�.y/ .d;n;p;t I2n�t .�/1=2 � It .�/1=2

for every

1 � p <
2n

nC t
�

Furthermore,

(5.2)
Z
k�y�kL1.G.d;n// d�.y/ .d;n In.�/1=2 � In.�/1=2:



Mixed-norm of orthogonal projections and analytic interpolation 841

By considering � � �ı ! �, we may assume � has continuous density. The reason we
work with complex-valued � is for the analytic interpolation in Section 7. It brings extra
difficulties, and even the case p D 1 is no longer trivial. More precisely, if we follow the
argument in Section 4,

(5.3)

Z
k�y�kL1.G.d;n// d�.y/ D

Z Z
G.d;n/

j�y�.V /j dd;n.V / d�.y/

D

“
j�V�.u/j � �V �.u/ dHn.u/ dd;n.V /;

getting stuck due to the absolute value symbol. The following argument overcomes this
obstacle, and eventually proves Proposition 5.1.

Now we start our proof. The endpoint case t D n, p D 1 follows directly from taking
Cauchy–Schwarz of (5.3). So we assume 0 < t < n and 1 < p < 2n

nCt
< 2.

To estimate k�y�kLp.G.d;n//, 1 � p <1, the most natural way is to consider

sup
kf k

Lp
0D1

ˇ̌̌ Z
�y�.V / � f .V / dd;n.V /

ˇ̌̌
:

But this setup is not convenient to us due to the integral in d�.y/ outside the supremum.
Instead, we take f to be the maximizer directly, namely,

fy.V / D f .V; y/ D
sgn.�y�.V // � j�y�.V /jp�1

k�y�k
p�1

Lp.G.d;n//

;

with

sgn.�y�.V // WD
�y�.V /

j�y�.V /j
� ��y�.V /¤0.V; y/:

Then the mixed-norm in Proposition 5.1 is reduced to

(5.4)
“

�y�.V / � f .V; y/ dd;n.V / d�.y/

with kf .�; y/kLp0 D 1, for all y.
We first fix V , parametrize Rd by .u; v/ 2 V ˚ V ? and integrate in v 2 V ? first.

Since �y�.V /D �V�.�V y/ is a constant in each level set y 2 ��1V .u/, the integral (5.4)
equals

(5.5)
Z
G.d;n/

Z
V

�V�.u/
� Z

y2��1V .u/

f .V; y/ �.y/ dHd�n.y/
�
dHn.u/ dd;n.V /:

Denote

(5.6) F.V; u/ WD

Z
y2��1V .u/

f .V; y/ �.y/ dHd�n.y/:

Then, similar to (4.3), the integral (5.5) is reduced to

(5.7)

Z
G.d;n/

Z
V

�V�.u/F.V; u/ dHn.u/ dd;n.V /

� I
1=2
2n�t .�/ � k.��u/

�.n�t/=4F kL2.Hn�d;n/
:
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The first factor is desirable, so it remains to consider the second. Since 0 < t < n, it
follows that

(5.8)
k.��/�.n�t/=4F k2

L2
D

Z Z
Rn

j OF .V; �/j2 j�j�nCt d� dd;n.V /

DCd;n;s

•
ju � u0j�t F.V; u/ F.V; u0/ du du0 dd;n.V /:

By the definition ofF in (5.6) and again Rd DV ˚V ?, (5.8) equals, up to a multiplicative
constant,

(5.9)
•
j�V .y � y

0/j�t f .V; y/ d�.y/ f .V; y0/ d�.y0/ dd;n.V /:

Now fix y ¤ y0 and integrate overG.d;n/ first. Since 1 < p < 2 and kf .�; y/kLp0 D 1
for every y, it follows that

kf .�; y/f .�; y0/kLp0=2 � 1; for all y; y0;

with 1 < p0=2 <1. Therefore, by Hölder’s inequality,

(5.10)

Z
j�V .y � y

0/j�t f .V; y/ f .V; y0/ dd;n.V /

�

� Z
j�V .y � y

0/j�t � .p
0=2/0 dd;n.V /

�1=.p0=2/0
:

It is well known (see, for example, Theorem 3.12 in [14]) that (5.10) is integrable and

.d;n;p;s jy � y0j�t if t � .p0=2/0 < n.

After computation, this is equivalent to

p <
2n

nC t
;

which completes the proof of Proposition of 5.1.

6. The case q D k

Proposition 5.1 only works when p < 2. This is not satisfactory. In this section, we prove
results for large p. For technical reasons, both � and � have to be positive. See (6.5) in
the proof below.

Proposition 6.1. Suppose � and � are compactly supported Radon measures on Rd , and
let k � 2, 0 < t < n and 0 < s; ˛ < d be real numbers satisfying

(6.1) s C t D 2nC 2.k � 1/.d � ˛/:
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Then

(6.2)
Z
k�y�kkLp.G.d;n// d�.y/ .d;n;p;k;s;t Is.�/1=2 � A˛.�/k�1 � It .�/1=2

for every

1 � p <
2nk

nC t
�

Furthermore, when t D n,

(6.3)
Z
k�y�kk

Lk.G.d;n//
d�.y/ .d;n;k;s Is.�/1=2 � A˛.�/k�1 � In.�/1=2:

As G.d; n/ is compact, we may assume p � k and denote pk WD p=k � 1. WriteZ
k�y�kkLp.G.d;n// d�.y/ D

Z
k.�y�/kkLpk .G.d;n// d�.y/:

We shall study the pk-norm of the k-linear form
Qk
jD1 �

y�j , with �j D �.
If one repeats the argument in Section 5, there is an obstacle that (4.4) does not

work for multi-linear forms. To overcome this difficulty, we take ideas from Greenleaf–
Iosevich [6] and Grafakos–Greenleaf–Iosevich–Palsson [5], that are already sketched in
Section 3. Compared with their multi-linear estimates, our case is more subtle because of
the mixed-norm. We should be super careful, especially on the timing of taking absolute
values.

Now we start the proof of Proposition 6.1. Again we assume both � and � have con-
tinuous density. With �j D �, j D 1; : : : ; k, similar to Section 5 it suffices to consider

(6.4)
“ kY

jD1

�y�j .V / � f .V; y/ dd;n.V / d�.y/;

with kf .�; y/k
L
p0
k
D 1, 8y.

Let  2 C10 .R
d / be nonnegative and equal to 1 on supp�, and define

ˆ.z1; : : : ; zk/ WD

“ kY
jD1

�y�zj .V / � f .V; y/ dd;n.V / d�.y/

to be an analytic function on Ck , where �z.x/ is defined as in (2.4). Similar to Section 5,
since �V�z is a constant in each level set ��1V .u/, one can write ˆ.z1; : : : ; zk/ asZ

G.d;n/

Z
V

�V�zj0 .u/
� Z

y2��1V .u/

Y
j¤j0

�y�zj .V / f .V; y/ �.y/ dHd�n.y/
�

� dHn.u/ dd;n.V /;

for arbitrary j0 2 ¹1; : : : ; kº. Take

Re zj D d � ˛ for j ¤ j0; and Re zj0 D �
X
j¤j0

Re zj D �.k � 1/.d � ˛/:
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Since � is positive,

(6.5) j�zj .x/j D
ˇ̌̌
 .x/ �

ez
2
j �zj =2

�.zj =2/

Z
jx�yj�dCzj d�.y/

ˇ̌̌
.d;˛ A˛.�/; for all j ¤ j0:

Denote

(6.6) F.V; u/ WD

Z
y2��1V .u/

Y
j¤j0

�y�zj .V / f .V; y/ �.y/ dHd�n.y/:

Then, as in (4.3) and (5.7),

(6.7)
jˆ.z1; : : : ; zk/j D

ˇ̌̌ “
�V�zj0 .u/ F.V; u/ du dV

ˇ̌̌
� I2n�t .�zj0 /

1=2
� k.��/�.n�t/=4F kL2 :

By (6.1), we have

2n � t D s � 2.k � 1/.d � ˛/ D s C 2Re zj0 ;

so by (3.3), the square of the first factor is

I2n�t .�zj0 / .t I2n�t�2Re zj0 .�/ D Is.�/;

as desired.
It remains to estimate the second factor in (6.7). Now we can feel free to take absolute

values. By (6.6) and (6.5),

(6.8) jF.V; u/j .d;˛;diam.supp�/ A˛.�/
k�1
�

Z
y2��1V .u/

jf .V; y/j �.y/ dHd�n.y/:

Then the special case (6.3) follows quickly: when t D n and pk D 1, we have that
kf .�; y/kL1 D 1, for all y, and therefore

kF kL2.Hn�d;n/
. A˛.�/

k�1
� k�V �kL2.Hn�d;n/

. A˛.�/
k�1
� In.�/

1=2;

as desired.
We now prove (6.2). When 0 < t < n, as in Section 5, we write k.��/�.n�t/=4F k2

L2

to be

(6.9)

Z Z
Rn

j OF .V; �/j2 j�j�nCt d� dd;n.V /

D

•
ju � u0j�t F.V; u/ F.V; u0/ du du0 dV:

By plugging (6.8) into (6.9), we obtain the upper bound

A2.k�1/˛ .�/ �

•
j�V .y � y

0/j�t jf .V; y/j d�.y/ jf .V; y0/j d�.y0/ dd;n.V /:
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The rest is the same as Section 5, and eventually gets to

p=k D pk <
2n

nC t
�

As j0 2 ¹1; : : : ; kº is arbitrary, the estimate holds for k non-proportional vectors
.Re z1; : : : ;Re zk/ 2 Rk whose sum equals E0. This implies the origin lies in their con-
vex hull. Hence by Lemma 2.1,

jˆ.0/j D
ˇ̌̌“ kY

jD1

�y�j .V / � f .V;y/dd;n.V /d�.y/
ˇ̌̌
. Is.�/1=2 �A˛.�/k�1 � It .�/1=2;

that completes the proof of Proposition 6.1.

7. Analytic interpolation

The previous sections already constitute an interesting paper. One can even prove a weaker
version of Corollary 1.4 from Proposition 6.1 as a geometric application. But if we com-
pute the range of p for

�y� 2 Lp.G.d; n//;

there is something strange. Suppose � and � are Frostman measures satisfying

�.B.x; r// . rs� ; �.B.x; r// . rs� ; for all x 2 Rd and all r > 0;

with 0 < s� < n and 2n � s� < s� < 2n. It follows from Propositions 5.1 and 6.1 that

�y�.V / 2 Lp.G.d; n//; for some y 2 supp �;

for every

(7.1) 1 � p < max
k

2nk

3n � s� C 2.k � 1/.d � s�/
;

where k is taken over all positive integers satisfying

(7.2) s� C s� � 2nC 2.k � 1/.d � s�/:

By solving k from (7.1), we see that when s� � 2d � 3n we should take k as small as
possible, that is, k D 1, while when s� > 2d � 3n we should take k as large as possible,
that is, by (7.2),

k D 1C
hs� C s� � 2n
2.d � s�/

i
;

where Œ � � denotes the integer part. This means the range of p has jump discontinuities at
each 1

2
.s� C s� � 2n/=.d � s�/ 2 ZC. We have seen in the introduction that jumps at

s� C s� � 2n D 0 do exist. However, there is no evidence to support jumps elsewhere.
We would like to drop the Œ � � symbol for a wider range of p. As we commented right

after (1.8), traditional interpolations only on p and q do not help. To make it, we introduce
a new technique that also interpolates dimensions of measures. For technical reasons, one
cannot interpolate between the estimates in Proposition 6.1 directly. We have pointed out
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that both � and � there have to be positive. In fact, for the proof of Theorem 1.2, readers
can skip Section 6 and read this section directly. However, without Proposition 6.1 and the
observation above, there is no way to know what to prove. For later use of this mechanism,
one can first obtain an analog of Proposition 6.1 on the scratch paper, and then prove
desired estimates by arguments below.

We shall see how s-amplitude helps us, and why we consider s and ˛ to be possibly
different in Proposition 6.1.

Proposition 7.1. Suppose � and � are compactly supported Radon measures on Rd , and
let 0 < t < n, 0 < s, ˛ < d and s C t � 2n. Denote

(7.3) q WD 1C
s C t � 2n

2.d � ˛/
�

Then

(7.4)
Z
k�y�k

q

Lp.G.d;n//
d�.y/ .d;n;p;s;t;˛ I 1=2s .�/ � A˛.�/

q�1
� It .�/

1=2

for every

(7.5) 1 � p <
2nq

nC t
D

2n

nC t

�
1C

s C t � 2n

2.d � ˛/

�
:

Furthermore, when t D n,

(7.6)
Z
k�y�k

q

Lq.G.d;n//
d�.y/ .d;n;s;˛ Is.�/1=2 � A˛.�/q�1 � In.�/1=2:

The case q D 1 is already done in Proposition 5.1. So, as t < n and the integrand is
compactly supported, we may assume p > q > 1.

It suffices to consider“
�y�.V / � f .V; y/ dd;n.V / g.y/ d�.y/;

with kf .�; y/kLp0 D 1, for all y, and kgkLq0 .�/ D 1.
For every z 2 C, let

sz D s C 2z; ˛z D ˛ C z;

qz D 1C
sz C t � 2n

2.d � ˛z/
D
2.d � ˛/C s C t � 2n

2.d � ˛ � z/
; pz D

p

q
qz :

Then we make the following observations:
• s0 D s, ˛0 D ˛, q0 D q, p0 D p;
• For all z 2 C,

sz C t D 2nC 2.qz � 1/.d � ˛z/;

and particularly,

(7.7) sRe z C t D 2nC 2.k � 1/.d � ˛Re z/; if qz D k 2 ZCI

• both 1=pz and 1=qz are linear in z.
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The linearity of 1=pz and 1=qz in z is important to us, because it guarantees that
je1=pz j D e1=pRe z and je1=qz j D e1=qRe z .

Now take

ˆ.z/ D

“
�y�z.V / � fz.V; y/ dd;n.V / gz.y/ d�.y/

as an analytic function, where �z is defined as (2.4),

fz.V; y/ WD sgn.f / � jf .V; y/jp
0.1�1=pz/ and gz.y/ WD sgn.g/ � jg.y/jq

0.1�1=qz/:

Since both 1=pz and 1=qz are linear in z,

(7.8)
kfz.�; y/kL.pRe z/0 D

jf .�; y/jp0.1�1=pRe z/

L.pRe z/0 D 1; for all y;

kgzk
L
q0Re z
D
jgjq0.1�1=qRe z/


L
q0Re z
D 1:

Heuristically, if Proposition 6.1 could be applied to �z , it would imply that for each
qRe z 2 ZC,

(7.9)

jˆ.z/jqRe z . I 1=2Re sz .�z/ � ARe˛z .�z/
qRe z�1 � It .�/

1=2

. IRe.sz�2z/.�/
1=2
� ARe.˛z�z/.�/

qRe z�1 � It .�/
1=2

D Is.�/
1=2
� A˛.�/

qRe z�1 � It .�/
1=2:

Recall that q > 1 and that 1=qz is linear in z. So qRe z is monotonic in Re z, and there
must exist a1 < 0 < a2 such that qa1 ; qa2 2 ZC. Therefore one can apply the Hadamard
three-lines lemma to the analytic function

ˆ.z/

Is.�/1=.2qz/ � A˛.�/1�1=qz � It .�/1=.2qz/
;

whose absolute value is . 1 when Re z D a1 < 0 and Re z D a2 > 0. Consequently,

jˆ.0/j . Is.�/
1=.2q/

� A˛.�/
1�1=q

� It .�/
1=.2q/;

as desired.
In the following, we make the estimate (7.9) rigorous.
First consider Re z D �.s C t � 2n/=2 < 0. In this case, qRe z D 1. Then by Hölder’s

inequality, (7.8), Proposition 5.1, and (3.3),

jˆ.z/j �

Z
k�y�zkLpRe z .G.d;n// d�.y/ . IRe sz .�z/

1=2
� It .�/

1=2

.d;s;Re z Is.�/
1=2
� It .�/

1=2:

We also need estimates with Re z > 0. Since qRe z !1 as Re z ! d � ˛ > 0, there
exists Re z > 0 such that qRe z is an integer k � 2. Recall we have assumed p > q > 1, so
pRe z > qRe z D k. In this case, by Hölder’s inequality and (7.8),

jˆ.z/jk �

Z
k�y�zk

k
LpRe z .G.d;n// d�.y/

D

“
�y�z.V / � � ��

y�z.V / � h.V; y/ dd;n.V / d�.y/;
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where
kh.�; y/kL.pRe z=k/0 D 1; for all y:

Fix z. Our intuition for the next step is to follow the idea from the previous section to
consider “ kY

jD1

�y.�z/wj .V / � h.V; y/ dd;n.V / d�.y/:

With the semigroup property (3.4) in mind, one should expect .�z/wj D �zCwj up to a
complex-valued factor. However, as we explained after (3.4), this requires some functional
analysis. To make the proof simpler, instead we directly consider

‰z.w1; : : : ; wk/ WD

“ kY
jD1

�y.�zCwj /.V / � h.V; y/ dd;n.V / d�.y/;

that is analytic in Ck , because by our definition of �z in (2.4), the integrand is compactly
supported. For an arbitrary but fixed 1 � j0 � k, take

Rewj D d �Re˛z ; for j ¤ j0; and Rewj0 D�
X
j¤j0

Rezj D�.k � 1/.d �Re˛z/:

Then, with

F.V; u/ WD

Z
y2��1V .u/

Y
j¤j0

�y.�zCwj /.V / h.V; y/ �.y/ dHd�n.y/;

we can write j‰z.w1; : : : ; wk/j asˇ̌̌ Z
G.d;n/

Z
V

�V .�zCwj0 /.u/ � F.V; u/ dHn.u/ dd;n.V /
ˇ̌̌

� I2n�t .�zCwj0 /
1=2
� k.��/�.n�t/=4F kL2

. I2n�t�2Re.zCwj0 /
.�/1=2 � k.��/�.n�t/=4F kL2 ;

where the last inequality follows from (3.3).
Due to qRe z D k, (7.7) and our choice of wj0 , the first factor equals Is.�/1=2, as

desired.
It remains to estimate the second factor. We shall need the observation that

(7.10) k�zkL1 . Ad�Re z.�/; if Re z2.0; d/;

where the implicit constant is independent in Im z. See (6.5) above for the proof.
When t D n, it follows immediately that

kF kL2.Hn�d;n/
. ARe.˛z�z/.�/

k�1
� k�V �kL2.Hn�d;n/

. A˛.�/
k�1
� In.�/

1=2;

as desired.
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When 0 < t < n,

k.��/�.n�t/=4F k2
L2
D

•
ju � u0j�t F.V; u/ F.V; u0/ du du0 dV

. A
2.k�1/

Re.˛z�z/
.�/ �

•
j�V .y � y

0/j�t jh.V; y/j d�.y/ jh.V; y0/j d�.y0/ dd;n.V /

D A2.k�1/˛ .�/ �

•
j�V .y � y

0/j�t jh.V; y/j d�.y/ jh.V; y0/j d�.y0/ dd;n.V /:

The rest is the same as Section 5. We omit details. Eventually, it ends up with

j‰z.w1; : : : ; wk/j . Is.�/
1=2
� A˛.�/

k�1
� It .�/

1=2;

where the implicit constant is independent in the choice of j0. By (3.3) and (7.10), this
implicit constant is also independent in Imw and Im z. Therefore, by Lemma 2.1, when
qRe z D k � 2,

jˆ.z/jqRe z D j‰z.0/j . Is.�/
1=2
� A˛.�/

qRe z�1 � It .�/
1=2;

where the implicit constant is independent in Im z.
Now we have estimates of jˆ.z/j at hand, for both positive and negative Re z. Hence

jˆ.0/jq . Is.�/
1=2
� A˛.�/

q�1
� It .�/

1=2

by the Hadamard three-lines lemma again, which completes the proof of Proposition 7.1.

8. Proof of Corollaries 1.3 and 1.4: Optimize the range of p

To finally go from Proposition 7.1 to Theorem 1.2, it remains to broaden the range of q. We
leave it to the next section. In fact, Proposition 7.1 is enough for Corollaries 1.3 and 1.4,
as we should ignore q for the maximal possible p.

Proof of Corollary 1.3. Since we need

q0 D 1C
s C t � 2n

2.d � ˛/
� 1;

the assumption s C t � 2n is required. Also, for the finiteness of Is.�/ A˛.�/ and It .�/,
we need 0 < s; ˛ < s� and 0 < t < s� . Therefore, the maximal p equals, up to the end
point,

(8.1) sup
0�s;˛�s�
0� t� s�
sCt�2n

2n

nC t

�
1C

s C t � 2n

2.d � ˛/

�
:

The assumptions 0 < s� < n and 2n � s� < s� < d ensure the supremum is well
defined, namely not taken over an empty set. As parameters lie in a compact set, the
supreme can be attained, say at s0; ˛0; t0.
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Notice that, for every fixed t , the critical p is an increasing function in s and ˛. There-
fore s0 D ˛0 D s�. To find t0, write

2n

nC t

�
1C

s� C t � 2n

2.d � s�/

�
D

n

d � s�

�
1C

2d � 3n � s�

nC t

�
:

To make this quantity large, one can see that, when s� � 2d � 3n, we should take t0 as
large as possible, namely t0 D s� ; and when s� < 2d � 3n, we should take t0 as small as
possible, namely t0 D max¹0; 2n � s�º. This completes the proof of Corollary 1.3.

Proof of Corollary 1.4. WhenmD 1, it matches previous result on the visibility problem,
so assume m � 2.

Let F � Rd denote the exceptional set. First we may assume E \ F D ;. This is
because for every " > 0, one can find disjoint compact subsets E1; E2 � E satisfying
dimH E1; dimH E2 > dimH E � " (see, e.g., p. 59 and Theorem 8.13 in [14]), and then
consider �y.Em1 / if y2E2 and �y.Em2 / if y2E1.

Next we point out that F is Borel. This follows because one can define d;m by count-
ing the number of almost disjoint ı-“cubes” in the covering (like the Lebesgue measure),
which implies the set ¹y 2 Rd nE W d;m.�

y.Em// > "º is Borel for every " > 0.
Now we consider Frostman measures � and � on E and F , of exponents s� and s� ,

respectively. It suffices to show that when s� is large enough, then there exists y2F such
that d;m.�y.Em// > 0, contradiction.

To prove our result, we shall consider the push-forward measure induced by the map

ˆy.x1; : : : ; xm/ D Span¹x1 � y; : : : ; xm � yº 2 G.d;m/:

However, the mapˆy is not well defined for arbitrary x1; : : : ;xm, because the vectors x1 �
y; : : : ; xm � y may be linearly dependent. Fortunately, as in either case of Corollary 1.4
one has dimH E > d � 1, we may assume dimH E > d � 1. Then there exist compact
subsets E1; : : : ; Em � E such that �.Ei / > 0, for all i , and no m-tuple .x1; : : : ; xm/ 2
E1 � � � � �Em lies in am-dimensional affine subspace. This guarantees the mapˆy is well
defined onE1 � � � � �Em, for all y2F . We can also conclude thatˆy has no critical point
on E1 � � � � � Em. This is convenient to us when changing variables later. For its proof,
just consider the action of the orthogonal group on a neighborhood of E1 � � � � � Em.
From this point of view, if there exists a critical point in this neighborhood, then every
point in this neighborhood is critical, which implies ˆy is a constant map, contradiction.

Denote �i D �jEi and define a measure ˆy.�1 � � � � � �m/ on �y.Em/ byZ
f .W /dˆy.�1 � � � � ��m/.W /D

Z
� � �

Z
f .ˆy.x1; : : : ; xm// d�1.x1/ : : : d�m.xm/:

Then, to show that d;m.�y.Em// > 0, it suffices to show the measureˆy.�1 � � � � ��m/
has L Qp density for some Qp > 1.

By considering � � �ı ! �, we may assume � has continuous density. Since ˆy is
regular and E1 � � � � �Em is compact, by the co-area formula we have

ˆy.�1 � � � � � �m/.W / �

Z
ˆ�1y .W /

�1 � � ��m dHm2
D

mY
iD1

Z
yCW

�i dHm
� j�y�.W ?/jm:

Here� holds because ˆy has no critical point.
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Therefore, to show ˆy.�1 � � � � � �m/ has L Qp density, it suffices to showZ
j�y�.W ?/jm Qp dd;m.W / D

Z
j�y�.V /jm Qp dd;d�m.V / <1:

Denote p D m Qp.
To proceed, one could apply the multi-linear estimates from Proposition 6.1. However,

as we already observed at the beginning of Section 7, the range of p would have jumps.
This means one has to make s� and s� large enough to ensure the range of p jumps
across m. In other words, the q associated to p D m may not be an integer. This explains
why our interpolation between multi-linear estimates gives a better bound than multi-
linear estimates themselves. We hope it will shed lights on other multiple configuration
problems in the future.

To finish the proof, we invoke Corollary 1.3 with n D d � m, and check when the
range of p covers m D d � n. Recall 0 < s� < n and s� C s� > 2n are always required.

We first prove (i) in Corollary 1.4.
Since s� > 2d � 3n, we need to solve

2n

nC s�

�
1C

s� C s� � 2n

2.d � s�/

�
> d � n:

This can be reduced to

(8.2) .nC s�/.n � .d � n/.d � s�// > n.s� � 2d C 3n/:

Since nC s� < 2n is required, (8.2) has a solution only if

n � .d � n/.d � s�/ >
1

2
.s� � 2d C 3n/ > 0;

equivalent to

s� > d �
d � n

2.d � n/ � 1
D d �

m

2m � 1
�

Then we solve for s� from (8.2) to obtain

(8.3) s� >
n.s� � 2.d � n/C .d � n/.d � s�//

n � .d � n/.d � s�/
D
.d �m/.s� � 2mCm.d � s�//

d �m �m.d � s�/
;

which completes the proof of (i) in Corollary 1.4. One can check that the right-hand side
of (8.3) is non-negative unless

s� > d �
d � 2n

d � n � 1
D d �

2m � d

m � 1
�

Now we turn to (ii) in Corollary 1.4.
When s� > 2d � 3n, it follows directly from taking the right-hand side of (i) to be 0.

So we assume s� < 2d � 3n. Since s� > 2n, by the second part of Corollary 1.3, we need
to solve

2C
s� � 2n

d � s�
> d � n;
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which is equivalent to

s� > d �
d � 2n

d � n � 1
D d �

2m � d

m � 1
;

that completes the proof.
There is one case we did not discuss, that is when s� < 2d � 3n and s� < 2n. This is

because in this case we need
2n

3n � s�
> d � n;

that has a solution only if n D d � 1, namely m D 1, already ruled out.

9. Proof of Theorem 1.2 and Corollary 1.5: Broaden the range of q

Since both G.d; n/ and supp � are compact, for every pair p; q in Proposition 7.1, the
estimate also holds for smaller p;q. So it remains to prove results for large q. Theorem 1.2
is a summary of Proposition 7.1 and the following.

Proposition 9.1. Suppose � and � are compactly supported Radon measures on Rd , and
let 0 < t < n, 0 < ˛ < d and 2n � t � s < d . Denote

q0 WD 1C
s C t � 2n

2.d � ˛/
�

Then

(9.1)
Z
k�y�k

q

Lp.G.d;n//
d�.y/ .d;n;p;s;t I 1=2s .�/ � A˛.�/

q�1
� Amax¹t; q

2q0
tº.�/

for every

q > q0 and 1 � p <
2nq0

nC t
D

2n

nC t

�
1C

s C t � 2n

2.d � ˛/

�
:

Furthermore, when t D n,

(9.2)
Z
k�y�k

q

Lq.G.d;n//
d�.y/ .d;n;q;s Is.�/1=2 � A˛.�/q�1 � Amax¹t; q

2q0
tº.�/:

The proof goes by analyzing those right-hand sides in Proposition 7.1. We do not need
to treat t D n and 0 < t < n separately.

It suffices to considerZ
k�y�k

q0
Lp.G.d;n//

g.y/ d�.y/; for kgk
L.q=q0/

0
.�/
D 1:

When q < 2q0, we treat g as g 2 L2. So we may assume q � 2q0. By Proposition 7.1 it
is bounded above by

I 1=2s .�/ � A˛.�/
q�1
� It .jgj d�/

1=2:
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Now it remains to estimate

It .jgj d�/ D

“
jy � y0j�t jg.y/j d�.y/ jg.y0/j d�.y0/:

Let r WD q=.2q0/ � 1. Then the relation

1

r
D 1 �

� 1

.q=q0/0
�

1

q=q0

�
is satisfied. Denote

K.y; y0/ D jy � y0j�t

as the kernel. By definition of As , we have� Z
jK.y; y0/jr d�.y/

�1=r
D

� Z
jK.y; y0/jr d�.y/

�1=r
� A q

2q0
t .�/

1=r :

Then, by Hölder’s inequality, the fact kgk
L.q=q0/

0
.�/
D 1, and Young’s inequality,“

K.y;y0/ jg.y/jd�.y/ jg.y0/jd�.y0/�
Z K.y; �/ jg.y/jd�.y/

Lq=q0 .�/
�A qt

2q0

.�/1=r;

as desired.

Proof of Corollary 1.5. It follows directly from Theorem 1.2.
We first consider the special case pD q. Observe from Theorem 1.2 that lifting q from

q0 to 2q0 does not change the finiteness. Then, since

p <
2nq0

nC t
� 2q0;

it follows that lifting q from q0 to p does not influence the optimal p, that is Corollary 1.3.
Now we consider general p; q. We need to find all p; q 2 Œ1;1/ such that, there

exist s, ˛ and t satisfying

0 < s; ˛ < s�; 0 < max
°
t;
q

2q0
t
±
< s� ; s C t � 2n and p <

2nq0

nC t
;

where
q0 WD 1C

s C t � 2n

2.d � ˛/
�

Since both p; q are increasing in s and ˛, up to the end point we may take s D ˛ D s�
for large p; q. Then conditions above are equivalent to

max¹2n � s�; 0º < t < s� ;

and

(9.3)
p <

2n

nC t

�
1C

s� C t � 2n

2.d � s�/

�
D

n

d � s�

�
1C

2d � 3n � s�

nC t

�
;

q <
2s�

t

�
1C

s� C t � 2n

2.d � s�/

�
D

s�

d � s�

�
1C

2d � 2n � s�

t

�
:
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When s� � 2d � 3n, both p; q are decreasing in t , so for large p; q, we should take t
as small as possible, namely t & max¹2n � s�; 0º. Therefore, the range of p; q is

p <
2n

nCmax¹2n � s�; 0º

�
1C

max¹s� � 2n; 0º
2.d � s�/

�
D

´
2n

3n�s�
; s� < 2n;

2C
s��2n

d�s�
; s� � 2n;

q <
2s�

max¹2n � s�; 0º

�
1C

max¹s� � 2n; 0º
2.d � s�/

�
D

´
2s�
2n�s�

; s� < 2n;

1; s� � 2n:

When s� � 2d � 2n, both p; q are increasing in t , so for large p; q we should take t
as large as possible, that is, t % s� . Therefore, the range of p; q is

p <
2n

nC s�

�
1C

s� C s� � 2n

2.d � s�/

�
; q < 2C

s� C s� � 2n

d � s�
�

When 2d � 3n < s� < 2d � 2n, p is increasing in t , while q is decreasing in t , so
there is a relation between p and q. By solving for t from (9.3), we end up with the region
enclosed by

1 � p <
2n

nC s�

�
1C

s� C s� � 2n

2.d � s�/

�
;

1 � q <
2s�

max¹2n � s�; 0º

�
1C

max¹s� � 2n; 0º
2.d � s�/

�
D

´
2s�
2n�s�

; s� < 2n;

1; s� � 2n;

and
s� � 2d C 3n

1 �
d�s�
n
p

< nC
2d � 2n � s�
d�s�
s�

q � 1
�

10. An alternative proof of Dabrowski–Orponen–Villa

When � D � and p D q, Orponen’s formula saysZ
k�y�k

p

Lp.G.d;n//
d�.y/ D

Z
k�V�k

pC1

LpC1.Hn/
dd;n.V /:

Then it is natural to ask whether Proposition 7.1 covers (1.3). The answer is unfortunately
no, due to the constraint 0 < t < n. In general, this condition 0 < t < n cannot be relaxed.
Technically, we need (5.8) and (6.9) to come back to the physical space and integrate in V .
Geometrically, if our results hold for some t > n, then s is allowed to be<n, contradicting
the visibility problem in RnC1.

Despite this, it does not mean our method is not strong enough. In fact, when � D �,
there are extra symmetries. With ideas from previous sections, it is straightforward to
recover (1.3), with a more delicate upper bound.

Proposition 10.1. Suppose � is a compactly supported measure on Rd , and let 0 < s,
˛ < d and 2 � q <1 be such that

(10.1) s D nC .q � 2/.d � ˛/:
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Then

(10.2)
Z
k�V�k

q

Lq.Hn/
dd;n.V / .d;n;q Is.�/ � A˛.�/q�2:

Moreover, for every 2 � q < p � 1,

(10.3)
Z
k�V�k

q

Lp.Hn/
dd;n.V / .d;n;p;q Is.�/ � A˛.�/q�2;

with

(10.4) s D nC .q � 2/.d � ˛/C n
�
1 �

q

p

�
:

When s D ˛, the condition (10.1) becomes

q D 2C
s � n

d � s
D
2d � n � s

d � s
;

that coincides with (1.3).
There are two ways to obtain (10.3) from (10.2): run interpolation on p; q with (1.7)

as in the introduction, or invoke the Sobolev embedding directly:

(10.5)
Z
k�V�k

q

Lp.Hn/
dd;n.V / .

Z
k.��/

n
2 .1=q�1=p/�V�k

q

Lq.Hn/
dd;n.V /

and then run the argument below. We leave details to readers. From now, we only consider
the case p D q.

As the idea is already explained clearly in Section 7, we decide to skip computations
on the scratch paper and present the rigorous proof directly. Readers can follow the expla-
nation in Section 7 to figure out where the exponents below come from.

Now we start the proof. It suffices to consider“
�V�.u/ � f .V; u/ dHn.u/ dd;n.V /; for kf kLq0 D 1:

For every z 2 C, let

sz D s C 2z; ˛z D ˛ C z and qz D 2C
sz � n

d � ˛z
D
2.d � ˛/C s � n

d � ˛ � z
:

Observe that
• s0 D s, ˛0 D ˛, q0 D q;
• For all z 2 C,

sz D nC .qz � 2/.d � ˛z/;

and particularly,

(10.6) sRe z D nC 2.k � 1/.d � ˛Re z/; if qz D 2k 2 2ZCI

• 1=qz is linear in z.
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Now take

ˆ.z/ D

“
�V�z.u/ � fz.V; u/ dHn.u/ dd;n.V /

as an analytic function, where �z is defined as (2.4), and

fz.V; y/ WD sgn.f / � jf .V; y/jq
0.1�1=qRe z/:

Since 1=qz is linear in z,

kfzkL.qRe z/0 D
jf jq0.1�1=qRe z/


L.qRe z/0 D 1:

When Re z D �.s � n/=2 < 0, we have qRe z D 2. Then by Cauchy–Schwarz, the
classical L2-estimate of orthogonal projections, (3.3) and (10.6), it follows that

jˆ.z/j2 � k�V�zk
2
L2
D In.�z/ . Is.�/:

For positive Re z, notice that qRe z !1 as Re z! d � ˛ > 0. Therefore there exists
Re z > 0 such that qRe z D 2k � 4 is an even integer. Then

jˆ.z/j2k �

Z
k�V�zk

2k
L2k

dd:n.V / D

“
�V�z � �V�z � � ��V�z � �V�z :

By our definition of �z in (2.4), one can easily see that �z D � Nz .
Fix this z and let

‰z.w1; : : : ; w2k/ WD

“
�V .�zCw1/ � �V .� NzCw2/ � � ��V .�zCw2k�1/ � �V .� NzCw2k /;

that is analytic in .w1; : : : ; w2k/ 2 C2k as z is fixed and the integrand is compactly sup-
ported. For arbitrary but fixed j1; j2 2 ¹1; : : : ; 2kº, take

Rewj1 D Rewj2 D �.k � 1/.d � Re˛z/ and Rewj D d � Re˛z ; for j ¤ j1; j2:

Then, similar to (6.5) and (7.10), for every j ¤ j1; j2,

k�zCwj kL1 ; k� NzCwj kL1 .Re z;Rewj Ad�Re.zCwj /.�/ D A˛.�/:

Therefore, j‰z.w1; : : : ; w2k/j is bounded above by

k�V .�zCwj1 /kL2 � k�V .� NzCwj2 /kL2 � A
2.k�1/
˛ .�/

. I
1=2

n�2Re.zCwj1 /
.�/ � I

1=2

n�2Re.zCwj2 /
.�/ � A2.k�1/˛ .�/ D Is.�/ � A

2.k�1/
˛ .�/:

As j1 and j2 are arbitrary, by Lemma 2.1,

(10.7) jˆ.z/jqRe z D j‰z.0/j . Is.�/ � A
qRe z�2
˛ .�/;

for every even integer qRe z � 4, where the implicit constant is independent in Im z.
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Now we have estimates of jˆ.z/j for both positive and negative Re z, with implicit
constants independent in Im z. Hence, by the Hadamard three-lines lemma,

jˆ.0/jq D j‰z.0/j . Is.�/ � A
q�2
˛ .�/;

that completes the proof.
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