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On the interpolation of the spaces
W l;1.Rd/ and W r;1.Rd/

Eduard Curcă

Abstract. We study some properties of spaces obtained by interpolation of the Sobo-
lev spaces W k;1.Rd / and W l;1.Rd /, where l and r are nonnegative integers, and
d � 2. We are concerned with the standard real and complex methods of interpola-
tion. In the case of the real method, an old result of De Vore and Scherer (1979) gives
that

.W l;1.Rd /;W l;1.Rd //�;p� D W
l;p� .Rd /;

where � 2 .0; 1/ and 1=p� D 1 � � . We complement this result by considering the
case l ¤ r . We prove that, when l ¤ r ,

(?) .W l;1.Rd /;W r;1.Rd //�;q D B
�;q
q .Rd /;

where � WD .1 � �/l C � r and 1=q D 1 � � , if and only if l � r 2 R n Œ1; d �. Also,
we prove a similar fact when W l;1 is replaced in .?/ by a space W s;p where s ¤ r
is a real number and p 2 .1;1/. Several other problems like the boundedness of the
Riesz transforms on interpolation spaces are also considered.

In the case of the complex method, it was proved by M. Milman (1983) that, for
any 1 < p <1,

(??) .W l;1.Rd /;W l;p.Rd //� D W
l;p� .Rd /;

where 1=p� D .1 � �/C �=p. We show by simple arguments that .??/ fails when
p D1 and l � 1, answering a question of P. W. Jones (1984). As an immediate con-
sequence of these arguments, we show that certain closed subspaces of .C.Td //N

(with N 2 N�) that are described by Fourier multipliers are not complemented in
.C.Td //N .
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1. Introduction

In this paper, we study interpolation properties of classical function spaces such as the
Sobolev spaces W l;p.Rd /, where l is a nonnegative integer and p 2 Œ1;1�. Here, as
usual, W l;p.Rd / is the space of all distributions f on Rd for which the quantity

kf kW l;p WD kf kLp C kr
lf kLp

is finite.
We will first consider the real interpolation method (for details, see Chapter 3 of [5] or

Chapter 5 of [4]). Recall that for a compatible couple .X0; X1/ of quasi-normed spaces,
given the parameters �2.0;1/ and q2Œ1;1�, we define the interpolation space .X0;X1/�;q
as being the quasi-normed space of all the elements f 2 X0 CX1 for which the quantity

kf k.X0;X1/�;q WD
� Z 1

0

.t��Kt .f;X0; X1//
q dt

t

�1=q
is finite, where Kt is the K-functional, defined by

Kt .f;X0; X1/ WD inf¹kf0kX0 C tkf1kX1 j f D f0 C f1º;

for any t > 0.
In 1972, De Vore and Scherer [14] explicitly computed the K-functional that corres-

ponds to the couple .W l;1;W l;1/, where l is a nonnegative integer. This allowed them to
interpolate between the Sobolev spaces W lj ;pj in the case where l0 D l1 D l . Indeed, by
reiteration, it suffices to have the interpolation result in the case p0 D 1, p1 D1:

(1.1) .W l;1.Rd /;W l;1.Rd //�;q D W
l;q.Rd /;

where 1=q D 1 � � (see also Corollary 5.13 in [4]). The arguments used by De Vore and
Scherer are based on a careful analysis involving combinatorial ideas and spline-functions
techniques. For a proof based on the Whitney covering lemma, see Section 5 in Chapter 5
of [4]. (For a version of (1.1) on more general domains, see Theorem 9 in [27].) Also,
Bourgain (see Theorem 3 in [6]) gave a short elegant proof of (1.1) using the Calderón–
Zygmund decomposition and elementary interpolation theory.

On the other hand, we have the following result that corresponds to the case l0 ¤ l1,
p0 D p1 D p 2 Œ1;1� (see Theorem 4.17 in [4]):

(1.2) .W l0;p.Rd /;W l1;p.Rd //�;q D B
˛;q
q .Rd /;

for any q 2 Œ1;1�, where ˛ D .1 � �/l0 C �l1 and B˛;qq is a Besov space. The proof of
this result is based on A. Marchaud’s inequalities [4], Theorem 4.4.

Note that the results (1.1) and (1.2) do not cover most of the cases where l0 ¤ l1 and
p0 ¤ p1. In the nonlimiting case, i.e., p0; p1 2 .1;1/, one can use the characterization
of the spaces W lj ;pj provided by the Littlewood–Paley theory and prove that for any two
different nonnegative integers l0 and l1,

(1.3) .W l0;p0.Rd /;W l1;p1.Rd //�;q D B
˛;q
q .Rd /;
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where ˛ D .1� �/l0 C �l1 and 1=q D .1� �/=p0 C �=p1 (see Lemma 2.6 below). This
nonlimiting case is less interesting. More interesting are the limiting cases when at least
one of the parameters p0 or p1 equals 1 or1 (and p0 ¤ p1). Here, one cannot use the
same arguments as for (1.3). This is due to the fact that one cannot describe efficiently
spaces as W l;1 and W l;1 by means of Littlewood–Paley theory.

The interpolation problem in the limiting cases was partially solved in 2003 by Cohen,
Dahmen, Daubechies and De Vore in [11]. (In fact, some partial results were proved
earlier. See, for instance, [12].) They proved that, as long as p 2 .1;1/ and s 2 R n
Œ1 � 1=p0; 1�, we have

(1.4) .BV.Rd /; Bs;pp .Rd //�;q D B
�;q
q .Rd /;

where � D .1� �/C �s and 1=q D 1� � C �=p. It is not hard to see that in this result we
can replace the spaces BV with the Sobolev space W 1;1 and, since Br;22 D W

r;2 when r
is a nonnegative integer, we obtain

.W 1;1.Rd /;W r;2.Rd //�;q D B
�;q
q .Rd /,

where � D .1 � �/C � r and 1=q D 1 � � C �=2 as long as r D 0 or r � 2. With this
we have at least one result in the limiting case p0 D 1 that cannot be covered by (1.1)
and (1.2). The interpolation result (1.4) relies on an “almost” characterization of the space
BV by means of wavelets. Note that unlike the Besov spaces or the Sobolev spaces W r;p ,
for p 2 .1;1/, the space BV does not even have an unconditional basis (see, for instance,
the discussion in the introduction of [11]). Hence, it cannot be completely described via
wavelets. However, the partial description provided by the authors of [11] is sufficient for
establishing the interpolation result in (1.4).

All the above interpolation results remain true in the case of the corresponding homo-
geneous spaces.

In what follows, we will study the interpolation spaces .X0; X1/�;q where at least one
of the spaces Xj is of the form W l;1 or W r;1, where l and r are different integers. As we
have seen, the cases where the differential regularity of X0 coincide with the differential
regularity of X1 are well studied. Hence, we will consider only the case where X0 and X1
are of different differential regularity. We will also consider the homogeneous versions of
the function spaces and in some situations, for the sake of simplicity, we provide proofs
only for the homogeneous version if the situation for the inhomogeneous case is similar.

Note that in all the known situations in which we have an explicit description of the
interpolation space, as in (1.1), (1.2), (1.3) and (1.4), the result of the interpolation is a
Triebel–Lizorkin space. For instance, the interpolation space in (1.1) is the space W l;q D

F
l;q
2 and in (1.2), (1.3) and (1.4), we have the space B�;qq D F

�;q
q . For this reason, it is

natural to compare the spaces obtained by interpolation to Triebel–Lizorkin spaces of the
form F

�;q
� , where the parameters � and q are the “right” ones and � is any number in

the interval Œ1;1�. In the case the interpolation space is not a Triebel–Lizorkin space, we
will call it pathological. The “pathologies” we find while interpolating function spaces
will give rise to some other properties of the classical Sobolev spaces. There are however
some situations in which we prove only the homogeneous versions (see, for instance,
Corollary 3.24).

Throughout the entire paper, the dimension d of Rd will be always at least 2.
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Real interpolation. In the case where both endpoints are in a limiting situation, we prove
the following.

Theorem 1.1. Suppose l and r , with l ¤ r , are some nonnegative integers and fix � 2
.0; 1/. Let � WD .1 � �/l C � r and q WD 1=.1 � �/. Let X be the interpolation space

X WD .W l;1.Rd /;W r;1.Rd //�;q :

If l 2 R n Œr; r C d�, then X D B�;qq .Rd /. In the case l 2 .r; r C d�, no space F �;q� , with
� 2 Œ1;1�, embeds in X . The same result holds for the homogeneous spaces.

Remark 1.2. Suppose that X and Y are two quasi-normed function spaces. When we say
that Y does not embed in X , we also mean that we have the noninequality

kf kX ’ kf kY ;

for f 2 X \ Y . Similar quantitative facts are taken into account when we say X ¤ Y .

In order to prove the above theorem, we will need the following generalization of (1.4)
where the space BV is replaced by W l;1, where l is any integer, possible negative. (See
Section 2.1 for a definition of the spaces W l;1 when l is a negative integer.)

Proposition 1.3. Consider some parameters l 2 Z, s 2 R, with s ¤ l , and p 2 .1;1/,
t 2 Œ1;1�. If l � 1 and s 2 R n Œl � 1=p0; l �, or l � 0 and s 2 R n Œl � d=p0; l �, then for
any � 2 .0; 1/, we have

.W l;1.Rd /; F s;pt .Rd //�;q D B
�;q
q .Rd /,

where � D .1 � �/l C �s and 1=q D 1 � � C �=p. The same result holds for the homo-
geneous spaces.

In the situation F s;pt DB
s;p
p , Proposition 1.3 has been already proven in the case l D 1

(with BV instead of W 1;1) by Cohen, Dahmen, Daubechies and De Vore [11], and in the
case l D 0 by Cohen [10]. We prove Proposition 1.3 by using the technique introduced
in [11] and [10]. We use the “almost” characterization via wavelets of the space PBV andL1

that was given in [11] and [10], respectively, in order to give similar “almost” character-
izations for the spaces PW l;1. When l � 1, we simply deduce our characterization of PW l;1

directly from that of PBV given in [11]. When l D 0, we use instead a result from [10], and
then we easily deduce the characterization of PW l;1 when l � 0.

We mention that, according to equations (16) and (17) on p. 17 of [20], it was proved
(by different methods) by N. Kruglyak in1 1996, see [24], that

(1.5) .L1.Rd /; Bs;pp .Rd //�;q D B
�;q
q .Rd /;

where s > 0, � D .1 � �/C �s and 1=q D 1 � � C �=p. This covers the particular case
l D 0 in Proposition 1.3, when t D p and s > 0. An explicit computation of the K-func-
tional for the couples .Lp; PW k;q/, with p; q 2 Œ1;1/ and k a nonnegative integer, can be

1It seems that this is the first apparition of (1.5) in the literature. See also [25].
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found in Chapter 9, Part II, of [21] (see also [25]). Using the theory in [21], [33], and (1.5),
it is possible to prove Proposition 1.3 in the case l < s, t D p. We do not consider this
approach here.

Unfortunately, we do not know whether or not the condition imposed to s in Propos-
ition 1.3 is sharp, unless we are in the case l � 0 (see Corollary 3.21). This remains an
open question. However, when one of the endpoints is a space of the form W r;1 and the
other one is a Triebel–Lizorkin space, we can identify all the pathological cases.

Theorem 1.4. Consider some parameters s 2R, r 2N, with s ¤ r , and let p;q 2 .1;1/,
� 2 .0; 1/, t 2 Œ1;1� , � 2R be such that 1=q D .1� �/=p and � D .1� �/sC � r . LetX
be the interpolation space

X WD .F
s;p
t .Rd /;W r;1.Rd //�;q :

If s 2 R n .r; r C d=p�, then X D B�;qq . In the case s 2 .r; r C d=p�, no space F �;q� , with
� 2 Œ1;1�, embeds in X . The same result holds for the homogeneous spaces.

Theorem 1.1 and Theorem 1.4 seem to be new even in the nonpathological case. The
nonpathological cases of Theorem 1.1 and Theorem 1.4 are deduced from Proposition 1.3
by simple arguments that involve duality and the celebrated theorem of T. Wolff proved
in [40] concerning the real interpolation method. The proof of Theorem 1.1 and The-
orem 1.4 in the pathological cases rests on trace theory and the interpolation theorem of
Wolff. Roughly speaking, we show that (in the pathological cases) the space obtained by
interpolation is “closer” to have a trace on a particular subset � �Rd than its correspond-
ing Triebel–Lizorkin space F �;q� . For instance, in the case of Theorem 1.1, when r D 0
and l 2 .0; d=p�, the space .W l;1; L1/�;q has a trace on Rd�l ' Rd�l � ¹0ºl , while
F
�;q
� D F

l=q;q
� has no trace on Rd�l .

It is remarkable that this trace argument covers all the pathological cases in The-
orem 1.1 and, combined with Wolff’s theorem, all the pathological cases in Theorem 1.4.
The main point of the paper is this power of the simple trace argument rather than the
result of Proposition 1.3 or the nonpathological parts of Theorem 1.1 and Theorem 1.4.

Theorem 1.1, Proposition 1.3 and Theorem 1.4 above are the subject of Sections 3.2.1
and 3.2.2.

Sums of spaces. One particular property of any interpolation space .X0; X1/�;q , where
.X0;X1/ is a given compatible couple, is that it embeds in the sum of the endpoint spaces.
In other words,

(1.6) .X0; X1/�;q ,! X0 CX1:

In view of this property, one can refine Theorem 1.4. In the most of the pathological
cases, as long as we are dealing with homogeneous spaces, one can prove much more.
Namely, we have that if r , p, q, � , s, � are as in Theorem 1.4 and r < s < r C d=p, then
(see Proposition 3.25),

(1.7) PF �;q� .Rd / 6,! PF
s;p
t .Rd /C PW r;1.Rd /:

This easily follows from Theorem 1.4 and some dilation arguments that are possible
thanks to the fact that we work with the homogeneous version of the spaces. Of a partic-
ular interest is also the inhomogeneous version of this result. Restricting ourselves to the
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case of the inhomogeneous Sobolev–Slobodeckii spaces one can deduce from (1.7) the
following proposition.

Proposition 1.5. Let r be a nonnegative integer and let p;q 2 Œ1;1/, � 2 .0; 1/, s; � 2R
be some parameters such that 1=q D .1 � �/=p and � D .1 � �/s C � r . If r < s <

r C d=p, then
W �;q.Rd / 6,! W s;p.Rd /CW r;1.Rd /:

This is in contrast with the following fact, proved by Mironescu in [30] (see The-
orem 1.4 in [30]). Suppose that s0; s1 > 0, with s0 ¤ s1, 1 � p0 < p1 <1, and 1=q D
.1 � �/=p0 C �=p1, � D .1 � �/s0 C �s1 for some � 2 .0; 1/. Then

W �;q.Rd / ,! W s0;p0.Rd / \W �;q.Rd /CW s1;p1.Rd / \W �;q.Rd /:

In particular, we have

(1.8) W �;q.Rd / ,! W s0;p0.Rd /CW s1;p1.Rd /:

As it was shown in [30], if we drop the condition p1 <1, the embedding (1.8) may
fail. The example given in [30] is the nonembedding

W 1��;1=.1��/.R/ 6,! W 1;1.R/C L1.R/ ,! L1.R/:

Proposition 1.5 above enlarges the number of examples of this kind. In fact, suppos-
ing the condition p1 < 1 fails, Proposition 1.5, together with the nonpathological part
of Theorem 1.4 and formula (1.6), can decide in most of the cases whether or not the
embedding (1.8) holds. More precisely, if p1 D 1, s1 2 N, s0 … ¹s1; d=p0º and � is not
an integer,2 then (1.8) holds if and only if s0 2 R n .s1; s1 C d=p0/. If s0 D s1, then (1.8)
still holds thanks to (1.1) and (1.6). The case s0 D d=p remains open.

The Riesz transforms. There is yet another aspect of the pathological situations that
deserves attention: the boundedness of some common singular integral operators such
as the Riesz transforms on spaces obtained by interpolation. Here, the Riesz transforms
R1; : : : ; Rd on Rd are the operators defined by the equality

bRjf .�/ WD i�j

j�j
yf .�/;

for any Schwartz function f on Rd and any j 2 ¹1; : : : ; dº. (Here, as usual, yf is the Four-
ier transform of f .) We study the Riesz transforms on the interpolation spaces that appear
in the pathological case of Proposition 1.4, when r D 0 and s < d=p. More precisely, we
prove that, as long as s 2 .0; d=p/, none of the Riesz transforms Rj is bounded on the
space

X WD .F
s;p
t .Rd /; L1.Rd //�;q;

where the parameters p, t , � and q are as in the statement of Theorem 1.4 (see Propos-
ition 3.26). Even worse, no Rj is bounded from .F

s;p
t ; L1/�;1 to .F s;pt ; L1/�;1 (see

2Presumably the assertion remains true when � is an integer.
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Proposition 3.30). This is in contrast to the fact that the Riesz transforms are bounded on
the interpolation space

.F
0;p
2 .Rd /; L1.Rd //�;q D .L

p.Rd /; L1.Rd //�;q D L
q.Rd /.

We prove this nonboundedness result by combining Theorem 1.4 with the remarkable
result of Adams and Frazier obtained in 1988, see [1], that

(1.9) BMO \ F s;pt D L1 \ F
s;p
t CR1.L

1
\ F

s;p
t /C � � � CRd .L

1
\ F

s;p
t /;

as long as s > 0 and p; t 2 .1;1/. This in turn rests on a celebrated construction of
Uchiyama and some ideas of Baernstein (see [1] for the references therein), also making
use of the atomic decomposition for the spaces F s;pt .

It is natural to expect that Rj are unbounded on X in the most general pathological
situation described by the statement of Theorem 1.4. However, this problem remains open.

Interpolation functors. Due to the extremal properties of the real interpolation method,
one can easily improve our result concerning the pathological situation of Theorem 1.4.

Proposition 1.6. Consider the parameters s 2R, r 2N, with s¤ r , and let p;q 2 .1;1/,
� 2 .0; 1/, t 2 Œ1;1�, � 2 R be as in the statement of Theorem 1.4. Moreover, suppose
that s 2 .r; r C d=p� and fix some � 2 Œ1;1�. Then F �;q� is not an interpolation space
of exponent � with respect to the couple .F s;pt ; W r;1/. The same result holds for the
homogeneous spaces.

Proposition 1.6 has the following immediate consequence for the homogeneous ver-
sion of the spaces. With the same notation as in Proposition 1.6, if s 2 .r; r C d=p/, then
there exists a linear operator

T W PF
s;p
t C PW r;1

! PF
s;p
t C PW r;1;

that is bounded on PF s;pt and on PW r;1, and not bounded on PF �;q� (see Corollary 3.24).

Complex interpolation. In Section 4 we study some aspects of the complex interpolation
of Sobolev type spaces. (See, for instance, Chapter 4 of [5] for a description of the complex
method.) By means of the Littlewood–Paley theory and the retraction method, it is easy to
obtain that, for any � 2 .0; 1/ and any l 2 N�,

(1.10) .W l;p0 ; W l;p1/� D W
l;p� ;

as long as p0; p1 2 .1;1/ and 1=p� D .1 � �/=p0 C �=p1 (see [5], Chapter 6). We
cannot handle the case p0 D 1 by the Littlewood–Paley theory. However, as it was proved
by Milman in 1983 (see Theorem B in [29]), the equality (1.10) continues to hold even
in the case p0 D 1, p1 2 .1;1/. The main tool used by Milman rests on a result of
Peetre that makes a connection between the complex and the real interpolation method
via the concept of Fourier type of a Banach space. The case where p1 D 1 is also of
interest. Here, neither the Littlewood–Paley theory nor Milman’s method can be applied.
In 1984, P. W. Jones (see Section 8.22 on page 519 of [18]) asked if (1.10) continues to
hold when 1 � p0 < p1 D1. In Section 4.1, we give a negative answer to this question.
The fact that (1.10) fails in this extreme case is a consequence of the following slightly
more general negative result (see Remark 4.2 and Corollary 4.3).
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Proposition 1.7. Let l � 0 be an integer and consider some parameters 1 � p; q <1
and s > 1=p. Fix some � 2 .0; 1/ and define � WD .1 � �/s C �l , � WD p=.1 � �/. Then,
for any 1 � t <1, we have that

F
�;�
t .Rd / 6,! .F s;pq .Rd /;W l;1.Rd //� :

As in the case of the real method, we prove Proposition 1.7 by a simple trace argu-
ment. This time, we show that .F s;pq .Rd /; W l;1.Rd //� has a trace on Rd�1 that is
embedded in a space F ��1=�;��1 .Rd�1/, where �1 < �, while the trace of F �;�t .Rd / is
the space F ��1=�;�� .Rd�1/. It remains to notice that F ��1=�;�� .Rd�1/ is strictly larger
than F ��1=�;��1 .Rd�1/.

Noncomplemented subspaces. The trace technique also allows us to easily see that some
closed subspaces of .C.Td //N (where N is a positive integer) are not complemented.
Recall the following result obtained by G. M. Henkin in 1967, see [16].

Proposition 1.8. Suppose l � 1 and d � 2 are two integers. Then the space C l .Td / is
not an isomorphic copy of a complemented subspace of C.S/, for any compact space S .

This result was improved by S. V. Kislyakov in 1975, see [19], who showed, using the
Grothendieck theorem on absolutely summing operators, that C l .Td / (l � 1) is not an
isomorphic copy of a quotient space of C.S/. Note that Proposition 1.8 implies the fact
that the closed subspaceGl .C / of .C.Td //N (here,N D j¹˛ 2Nd j j˛j D lºj) formed by
the l-gradients (elements of the formrlf ) is not complemented in .C.Td //N . This result
was generalized to other differential expressions (than l-gradients) by the authors of [22]
in 2015, using Grothendieck’s theorem and some Sobolev type embeddings. We will prove
that Gl .C / is not complemented in .C.Td //N using trace theory. In fact, we will prove
in Section 4.2 a more general result (see Proposition 4.5) that involves Fourier multipliers
instead of differential expressions. Our result, Proposition 4.5, has a more restricted range
of applications than the main result of [22]. However, it has a shorter proof and it covers
some cases that are not covered by the results in [22]. We mention that Proposition 4.5 is
not the most general result that can be obtained by our method, however, for simplicity
we do not provide here further generalizations.

General remark. Several general observations are in order. The main point of the paper
is the study of some of the pathological situations that arise in the interpolation theory
of Sobolev type spaces. One of our main tools is trace theory. When we consider traces
on subspaces of Rd , we are using standard trace theory as presented, for instance, in
Section 4.4 of Chapter 4 in [38]. In some cases we need to consider traces on fractal type
subsets of Rd . In these cases we use the more recent trace theory developed (between
others) by Bricchi, Caetano and Haroske (see [8] and the reference therein). We will recall
in Appendix A several results from the trace theory that will be used in the paper.

Apart from the nontrivial results given in [11] and [1] (see (1.4) and (1.9) above), we
use standard facts from the interpolation theory as can be found in [5] and [4]. Also, we
use standard facts from the theory of function spaces as can be found, for instance, in [38],
Chapter 3 of [36], or [15].
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Notation. Throughout the paper, we use mainly standard notation. For example, N D
¹0; 1; 2; : : :º is the set all natural numbers, N� D ¹1; 2; : : :º is the set of the positive natural
numbers and Z is the set of integers.

Often, we use the symbols . and � . For two nonnegative variable quantities a and b
we write a . b if there exists a constant C > 0 such that a � Cb. If a . b and b . a,
then we write a � b. Other notation will be introduced when needed.

Some notation will be used only in one subsection. For instance, we will denote by '
and  some functions related to the wavelets that appear in Section 3.1. Outside of Sec-
tion 3.1, ' and  will have a different meaning. This re-use of the notation should be clear
from the context.

2. Function spaces and interpolation

2.1. Homogeneous and inhomogeneous spaces

We quickly recall here the definition of some standard function spaces. We begin by recall-
ing the definition of the Sobolev spaces. As we have already mentioned, when l � 0 is an
integer and p 2 Œ1;1�, W l;p.Rd / is the space of all distributions f on Rd for which the
quantity

kf kW l;p WD kf kLp C kr
lf kLp

is finite. The homogeneous spaces will be defined here in a slightly nonstandard way.3

Let �] be space of all Schwartz functions f on Rd such that yf vanishes in a neighborhood
of 0. When 1� p <1 the homogeneous space PW l;p.Rd / is obtained by completion of �]
under the norm

kf k PW l;p WD kr
lf kLp :

We can see that we can also define the above homogeneous spaces PW l;p by completing
the normed function spaces PW l;p

c .Rd /. Here, PW l;p
c .Rd / is the space of all the compactly

supported functions whose PW l;p-norm is finite. The spaces PW l;p as defined here are com-
plete. The main advantage of the above definition of the homogeneous Sobolev spaces is
that we have the embedding

(2.1) PW l1;p1.Rd / ,! PW l2;p2.Rd /;

for any l1; l2 2N, p1;p2 2 .1;1/, with l1 > l2 and l1 � d=p1D l1 � d=p1. (This follows,
for instance, from Theorem 4.31 on p. 102 of [2] by a dilation argument.)

In the case where l D �r � 0 and 1 � p <1, we define W l;p.Rd / and PW l;p.Rd /
by completion of �] under the norms

kf kW l;p WD inf
° X
j˛j�r

kf˛kLp
ˇ̌
f D

X
j˛j�r

r
˛f˛

±
; and

kf k PW l;p WD inf
° X
j˛jDr

kf˛kLp
ˇ̌
f D

X
j˛jDr

r
˛f˛

±
;

3Usually the elements of a homogeneous Sobolev space are defined as distributions (factorized to polyno-
mials) whose homogeneous Sobolev seminorms are finite. See also Chapter 6 of [15]. However, most of the
standard properties (as interpolation or duality) translates to our case without difficulties.
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respectively. Note that when l � 0 the spacesW l;p and PW l;p are Banach spaces whose ele-
ments are distributions. When l � 1, we can also define the space PW l;p.Rd / as being iso-
morphic to the dual of PW �l;p.Rd /, where the isomorphism is chosen so that PW l;p

c .Rd / ,!
PW l;p.Rd /. Also, when p 2 Œ1;1/, we have that .W �r;p.Rd //� D W r;p0.Rd / and when
p 2 .1;1/, we have . PW �r;p.Rd //� D PW r;p0.Rd /. When l � 1, we define the space
PW l;1.Rd / as being isomorphic to the dual of PW �l;1.Rd / and the isomorphism is chosen

such that PW l;1
c .Rd / ,! PW l;1.Rd /.

In some situations it will be convenient to use the spaces C l .Rd /, C l0.R
d / and its

homogeneous version PC l0.R
d /. We define C l0.R

d / as being the closure of the space of
Schwartz functions in the W l;1-norm. Similarly, we define PC l0.R

d / as being the closure
of the space of Schwartz functions in the PW l;1-norm.

We continue by briefly recalling the definition of the Triebel–Lizorkin and Besov
spaces (see [38] for details). Consider a radial function ˆ 2 C1c .R

d / such that suppˆ �
B.0; 2/ and ˆ � 1 on B.0; 1/. For k 2 Z, we define the operators Pk , acting on the space
of tempered distributions on Rd , by the relation

bPkf .�/ WD
�
ˆ
� �
2k

�
�ˆ

� �

2k�1

��
yf .�/,

for any Schwartz function f on Rd . We will also consider the operator P�0 defined by

1P�0f .�/ WD ˆ.�/ yf .�/;
for any Schwartz function f on Rd . The operators P�0, Pk will be called Littlewood–
Paley “projections” adapted to Rd . For any Schwartz function f , we have that

f D
X
k2Z

Pkf;

in the sense of tempered distributions. In some cases it is useful to consider another func-
tion Q̂ 2 C1c .R

d /, similar to ˆ, such that supp Q̂ � B.0; 4/ and Q̂ � 1 on B.0; 2/ and,
starting from this to consider some Littlewood–Paley projections QPk and QP�0. We have
the useful identities QPkPk D Pk and QP�0P�0 D P�0.

The inhomogeneous Triebel–Lizorkin space F s;pq .Rd / (with 1 � p; q <1 and s a
real number) is the space consisting of those tempered distributions f on Rd for which
the following norm is finite:

kf kF s;pq WD kP�0f kLp C
�X

k�0

2skq kPkf k
q
�1=q

Lp
:

A remarkable fact is that if l � 0 is an integer and 1 < p < 1, then F l;p2 .Rd / D
W l;p.Rd /with equivalent norms (see, for instance, item (iii) of Theorem on p. 29 of [38]).

The Besov space Bs;pq .Rd / (with 1 � p; q � 1 and s a real number) is the inhomo-
geneous Besov space consisting of those tempered distributions f on Rd for which the
following norm is finite:

kf kBs;pq WD kP�0f kLp C
�X
k�0

2skq kPkf k
q
Lp

�1=q
:
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If s > 0 is not an integer and 1 < p <1, then Bs;pp .Rd /DW s;p.Rd /with equivalent
norms. Here, W s;p is a Sobolev–Slobodeckii space (see, for instance, [35], p. 12, for a
definition).

The homogeneous space PF s;pq .Rd / (with 1 � p; q < 1 and s a real number) is
obtained by completion of �] under the norm

kf k PF s;pq WD
�X

k2Z

2skq kPkf k
q
�1=q

Lp
:

When k� 0 is an integer and 1<p<1, then PF k;p2 .Rd /D PW k;p.Rd /with equivalent
norms.

The space PBs;pq .Rd / (with 1 � p; q �1 and s a real number) is obtained by comple-
tion of �] under the norm

kf k PBs;pq WD
�X
j2Z

2skq kPkf k
q
Lp

�1=q
.

In the above definitions of the Triebel–Lizorkin and Besov spaces, one can use also
the “projections” QPk , QP�0 instead of Pk , P�0 without changing the spaces we obtain.

If s > 0 is not an integer and 1 < p <1, then PBs;pp .Rd /D PW s;p.Rd /with equivalent
norms (for simplicity, we may consider that this is the definition of PW s;p.Rd /). One can
also define PW s;p as being the completion of �] or PW s;p

c .Rd / under the PW s;p.Rd /-norm.
We have that PF 0;12 .Rd / can be identified with the Hardy space H 1.Rd / (see, for

instance, Remark 6.5.2 on p. 70 of [15]). The space PF 0;12 .Rd / is defined as the dual of
PF
0;1
2 .Rd /DH 1.Rd /, i.e., PF 0;12 .Rd /DBMO.Rd /. In the inhomogeneous case, we have

that F 0;12 can be identified with the local Hardy space h1.Rd / (see, for instance, Propos-
ition 2.1.2 on p. 14 of [35]). The space F 0;12 .Rd / is defined as the dual of F 0;12 .Rd / D

h1.Rd /, i.e., F 0;12 .Rd / D bmo.Rd /, the local bounded mean oscillation space (see,
for instance, [35], p. 13, for a definition). We will use several times the embeddings
L1.Rd / ,! BMO.Rd / and L1.Rd / ,! bmo.Rd /.

Notice that for the homogeneous spaces on Rd , we have the following dilation prop-
erties:

(2.2) kf �k PF s;pq � �
s�d=p

kf k PF s;pq ;

for any f 2 PF s;pq .Rd /, respectively, and any � > 0, where f �. �/ WD f .� �/. A similar
equivalence holds for PBs;pq instead of PF s;pq .

Also,

(2.3) kf �k PW l;1 � �
l�d
kf k PW l;1 and kf �k PW l;1 � �

l
kf k PW l;1 ;

when f 2 PW l;1.Rd / or f 2 PW l;1.Rd /, respectively.4

Remark 2.1. The properties of the homogeneous spaces that we define here are in most
cases deduced from the properties of their inhomogeneous versions (see, for instance, (2.1)
or the tool provided by Lemma 2.3 below). Apart from this, we also need some interpola-

4In the case of PW l;1, the linear operator f ! f � is defined by duality.
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tion identities that are similar to those of the standard spaces (see, for instance, Lemma 2.6
and its proof). The standard definition for the Hardy space H 1 coincides with our defin-
ition of PF 0;12 and we can use the well-known properties of H 1 in this case. Other easy
facts can be checked by standard arguments.

Remark 2.2. In fact, we could choose to define the homogeneous spaces only as normed
spaces endowed with the corresponding norm. This is due to the fact that in order to define
a real interpolation space for a compatible couple the completeness of the involved spaces
is not required. However, in order to avoid some technical details appearing in the proofs
of our results, we prefer the definition given in this subsection.

In a similar way we can define Triebel–Lizorkin and Besov spaces on Td . The proper-
ties of the spaces defined on the Td are similar to those of the spaces defined on Rd (see
Chapter 3 of [36] for details). When working on Td , it is sometimes convenient to con-
sider functions whose integral on Td vanishes. In general, if X.Td / is a function space
on Td (in this case all the elements ofX.Td / will be taken to be distributions), we denote
by X].Td / the subspace of X.Td / generated by the distributions f 2 X.Td / for which
yf .0/ D 0.

Let� be a Lipschitz bounded domain in Rd . Then F s;pq .�/ (with 1� p;q <1 and s
a real number) is the space consisting of restrictions to � of elements from F

s;p
q .Rd /,

normed with

kf kF s;pq .�/ WD inf
®
kgkF s;pq .Rd / j g 2 F

s;p
q .Rd /; g D f on �

¯
.

In a similar way, Bs;pq .�/ (with 1 � p; q � 1 and s a real number) is the space
consisting of restrictions to � of elements from B

s;p
q .Rd /, normed with

kf kBs;pq .�/ WD inf
®
kgkBs;pq .Rd / j g 2 B

s;p
q .Rd /; g D f on �

¯
.

Analogously, we can define the spaces PF s;pq .�/, PBs;pq .�/, PW l;1.�/ or other similar
spaces.

When s > 0, we have that F s;pq D Lp \ PF
s;p
q and Bs;pq D Lp \ PB

s;p
q . In what fol-

lows, we will introduce a tool (possibly well-known) that will enable us to make another
connection between the homogeneous spaces and their inhomogeneous counterpart.

Consider the family of open cubes .Qk/k2Zd , where Qk WD k C .�1; 1/d for all
k 2 Zd , and let � 2 C1c ..�1; 1/

d / with � � 1 on Œ�3=2; 3=2�d . For each k 2 Zd , we
define the function �k by

�k.x/ WD
�.x � k/P
�2Zd �.x � �/

;

for any x 2 Rd . We observe that �k 2 C1c .Qk/, �k � 1 on k C Œ�3=2; 3=2�d , andX
k2Zd

�k � 1 on Rd .

By solving a linear system, one can find for each m 2 N a unique single variable
polynomial pm.t/ of degree m such that

(2.4)
Z 1

�1

@
j
t pm.t/ dt D ıjm;
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for any j 2N, where ıjm is the Kronecker symbol. For any multiindex ˛D .˛1; : : : ;˛d /2
Nd , we consider the polynomial p˛.x/ WD p˛1.x1/ � � �p˛d .xd /. By (2.4), we have

(2.5)
Z
Q0

r
ˇp˛.x/ dx D ıˇ˛ for any ˇ 2 Nd .

Fix now some l 2N�. For any Schwartz function f on Rd and any k 2 Zd , we define
some polynomials pl

k
(depending on f ) of degree at most l � 1 by

plk.x/ WD
X
j˛j�l�1

� Z
Qk

r
˛f .y/ dy

�
p˛.x � k/:

Thanks to (2.5), we have Z
Qk

r
ˇ .f � plk/.x/ dx D 0;

for any ˇ 2 Nd with jˇj � l � 1 and any k 2 Zd . Hence, by Poincaré’s inequality (see,
for instance, Chapter 4 of [41]), for any integers a and j satisfying 0 � a � j � l and any
k 2 Zd , we have that

(2.6) kr
a.f � plk//kLp.Qk/ . krj .f � plk//kLp.Qk/;

for any p 2 Œ1;1�.
With this notation, we can now introduce the linear operator

Llf WD
X
k2Zd

�k.f � p
l
k/;

for any Schwartz function f on Rd .
Note that, by introducing a second operator QL,

QLlf WD
X
k2Zd

�kp
l
k ;

we obtain the decomposition
f D Llf C QLlf:

Lemma 2.3. Let p 2 .1;1/, s > 0 be some parameters and let l be the smallest integer
with l � s.

(i) The operator Ll W PW s;p.Rd /! W s;p.Rd / is bounded.

(ii) The operator QLl W PW s;p.Rd /! PW s;p.Rd /\W r;1.Rd / is bounded for any r 2 N.

Proof. First we prove Lemma 2.3 in the case s 2 N�. In this case, we have l D s. For any
Schwartz function f and any integer a with 0 � a � l , we have

kr
aLlf k

p

Lp.Rd /
.
X
k2Zd

kr
a.�k.f � p

l
k//k

p

Lp.Qk/

.
X
k2Zd

aX
jD0

kjr
a�j�kjjr

j .f � plk/jk
p

Lp.Qk/
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.
aX

jD0

X
k2Zd

kr
j .f � plk/k

p

Lp.Qk/

.
X
k2Zd

kr
lf k

p

Lp.Qk/
� kr

lf k
p

Lp.Rd /
;

where we have used the Poincaré inequality (see (2.6)). This proves (i) in the case l D s.
Let us observe that, in the case 0 � a � l � 1, we can also write

kr
aLlf k

p

Lp.Rd /
.

aX
jD0

X
k2Zd

kr
j .f � plk/k

p

Lp.Qk/
(2.7)

.
X
k2Zd

kr
l�1.f � plk/k

p

Lp.Qk/

.
X
k2Zd

kr
l�1f k

p

Lp.Qk/
C

X
k2Zd

kr
l�1plkk

p

Lp.Qk/

. krl�1f kp
Lp.Rd /

C

X
k2Zd

� Z
Qk

jr
l�1f .x/j dx

�p
;

where, in order to pass to the second “.” we have used (2.6).
By Jensen’s inequality, we have� Z

Qk

jr
l�1f .x/j dx

�p
.
Z
Qk

kr
l�1f .x/kp dx;

and from (2.7), we obtain

kr
aLlf k

p

Lp.Rd /
. krl�1f kp

Lp.Rd /
.

We have now thatLl is bounded from PW l;p toW l;p and also from PW l�1;p toW l�1;p .
By real interpolation, one obtains that Ll is bounded from PBs;pp to Bs;pp . In a similar way,
using the complex interpolation, we obtain that Ll is bounded from PF

s;p
2 to F s;p2 . This

proves (i).
In order to prove (ii), one observes that QLl D id � Ll . This proves that QLl is bounded

from PW s;p to PW s;p . On the other hand, we observe that QLl is bounded from PW l;p toW r;1

for any integer r � 0. Indeed, let us consider for each integer a with 0 � a � l � 1, the
parameter pa 2 .1;1/ defined by the relation 1=pa D 1=p � .l � a/=d . Using Jensen’s
inequality and the Sobolev embedding PW l;p ,! PW a;pa (see (2.1)), we can write

kr
jplkkL1.Qk/ .

l�1X
aD0

Z
Qk

jr
af .x/j dx .

l�1X
aD0

� Z
Qk

jr
af .x/jpa dx

�1=pa
�

l�1X
aD0

� Z
Rd

jr
af .x/jpa dx

�1=pa
D

l�1X
aD0

kf k PW a;pa .Rd / . kf k PW l;p.Rd /;

for each integer 0 � j � l � 1. Since pl
k

is a polynomial of degree at most l � 1, we have
rjpl

k
� 0 for any j � l . Hence, we can write

kr
jplkkL1.Qk/ . kf k PW l;p.Rd /;
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for each integer j � 0. Using this we get

kr
r QLlf kL1.Rd / . sup

k2Zd

rX
jD0

kjr
r�j�kjjr

jplkjkL1.Qk/

. sup
k2Zd

rX
jD0

kr
jplkkL1.Qk/ . kf k PW l;p.Rd /:

As in the case of (ii), we can now prove by interpolation that QLl is bounded from PW s;p

to W r;1. This proves Lemma 2.3.

2.2. Some auxiliary interpolation facts

Note that the trace of L1.Rd / on Rd�1 is not well defined. Since we are going to use
trace theory, it is convenient to replace the space L1 with C (and W r;1 with C r ). The
following easy lemma ensures us that, when interpolating the couple .F s;pt ;W r;1/, chan-
ging W r;1 with C r does not affect the result of the interpolation.

Lemma 2.4. Let r be a nonnegative integer and consider the parameters p; t 2 .1;1/,
s > 0. Then, for any fixed � 2 .0; 1/,

(2.8) .F
s;p
t .Rd /;W r;1.Rd //� D .F

s;p
t .Rd /; C r0 .R

d //� ;

with equivalence of norms. Also, for any q 2 Œ1;1�,

(2.9) .F
s;p
t .Rd /;W r;1.Rd //�;q D .F

s;p
t .Rd /; C r0 .R

d //�;q;

with equivalence of norms.
The same fact holds for the homogeneous spaces or for the spaces defined on Td .

Remark 2.5. Since C r0 ,!C r , in the case of the inhomogeneous spaces we have, by (2.8)
and (2.9), that

(2.10) .F
s;p
t .Rd /;W r;1.Rd //� D .F

s;p
t .Rd /; C r .Rd //�

and
.F

s;p
t .Rd /;W r;1.Rd //�;q D .F

s;p
t .Rd /; C r .Rd //�;q ,

respectively.

Proof. Since .C0/� DM, where M is the space of the Radon measures on Rd , we get
that .C r0 /

� DM�r , where M�r is the space of all distributions f of the form

f D
X
j˛j�r

r
˛�˛;

with each�˛ from M (see, for instance, Section 4.3 in [41]). The norm on M�r is given by

kf kM�r WD inf
° X
j˛j�r

k�˛kM j f D
X
j˛j�r

r
˛�˛

±
:
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We have now that (see Corollary 4.5.2 on p. 98 of [5])

(2.11) .F
s;p
t ; C r0 /

�
� D ..F

s;p
t /�; .C r0 /

�/� D .F
�s;p0

t 0 ;M�r /� :

Consider some element g 2 .F �s;p
0

t 0 ;M�r /� and some f 2F .F
�s;p0

t 0 ;M�r / such that
a D f .�/ and

(2.12) kf k
F .F

�s;p0

t 0
;M�r /

� 2kgk
.F
�s;p0

t 0
;M�r /�

:

Consider some ' 2C1c .R
d / of integral 1, and for any " > 0, denote by '" the function

'".x/ D "
�d'."�1x/. Define the function f" by

f".z; x/ WD f .z/ � '".x/;

where the convolution is in the variable x. One can see readily that f" 2F .F
�s;p0

t 0 ;W �r;1/

and
kf"kF .F �s;p

0

t 0
;W �r;1/

� kf k
F .F

�s;p0

t 0
;M�r /

;

for any " > 0. This, together with (2.12), shows that

(2.13) kg"k.F �s;p
0

t 0
;W �r;1/�

� 2kgk
.F
�s;p0

t 0
;M�r /�

;

for any " > 0, where g" WD g � '". Note that, since F �s;p
0

t 0 is reflexive, by Calderón’s
reflexivity theorem (see Paragraph 12.2 on p. 121 of [9]), the space .F �s;p

0

t 0 ; W �r;1/�
is reflexive. One can easily see that .F �s;p

0

t 0 ; W �r;1/� is separable (it suffices to see
that �] is dense in F �s;p

0

t 0 \ W �r;1). Consequently, since .F �s;p
0

t 0 ; W �r;1/�� is reflex-
ive, and its dual is .F �s;p

0

t 0 ; W �r;1/� , we get that .F �s;p
0

t 0 ; W �r;1/�
�

is separable.5 The
space .F �s;p

0

t 0 ;W �r;1/�
�

is also a predual of .F �s;p
0

t 0 ;W �r;1/� . By applying the sequential
Banach–Alaoglu theorem, one can find some Qg 2 .F �s;p

0

t 0 ; W �r;1/� such that g1=n ! Qg
when n!1 in the sense of distributions, up to a subsequence. Since g"! g in the sense
of distributions when "! 0 and Qg;g 2F �s;p

0

t 0 CW �r;1, we get gD Qg 2 .F �s;p
0

t 0 ;W �r;1/� .
Also, by (2.13), one gets

kgk
.F
�s;p0

t 0
;W �r;1/�

� lim inf
"!0

kg"k.F �s;p
0

t 0
;W �r;1/�

� 2kgk
.F
�s;p0

t 0
;M�r /�

:

With this we have

.F
�s;p0

t 0 ;M�r /� ,! .F
�s;p0

t 0 ; W �r;1/� :

Since we also have the trivial embedding

.F
�s;p0

t 0 ;M�r /�  - .F
�s;p0

t 0 ; W �r;1/� ;

we get
.F
�s;p0

t 0 ;M�r /� D .F
�s;p0

t 0 ; W �r;1/� :

5We use here the fact that if the dual X� of a Banach space X is separable, then X is separable (see, for
instance, Theorem 4.6-8 on p. 245 of [23]).



On the interpolation of the spaces W l;1.Rd / and W r;1.Rd / 947

By this and (2.11), we have

.F
s;p
t ; C r0 /

�
� D .F

�s;p0

t 0 ; W �r;1/� :

Calderón’s reflexivity theorem and the duality theorem (see Corollary 4.5.2 on p. 98
of [5]) give now that

.F
s;p
t ; C r0 /� D .F

s;p
t ; C r0 /

��
� D .F

�s;p0

t 0 ; W �r;1/�� D .F
s;p
t ; W r;1/� ;

which proves (2.8).
One can prove equality (2.9) directly, or one can deduce it from (2.8) (see The-

orem 4.7.2 in [5]):

.F
s;p
t ; W r;1/�;q D ..F

s;p
t ; W r;1/1=2; .F

s;p
t ; W r;1/3=2/�;q

D ..F
s;p
t ; C r /1=2; .F

s;p
t ; C r /3=2/�;q

D .F
s;p
t ; C r /�;q;

where � 2 .0; 1/ is such that � D .1 � �/=2C 3�=2.
On the same lines we can prove the corresponding equalities in the case of the homo-

geneous spaces and the spaces on Td .

We will often need the following result concerning the real interpolation of Triebel–
Lizorkin spaces.

Lemma 2.6. Consider some parameters p0; p1 2 Œ1;1/, s0; s1 2 R and t0; t1 2 Œ1;1�
such that p0 ¤ p1 and s0 ¤ s1. Then, for any � 2 .0; 1/,

. PF
s0;p0
t0

; PF
s1;p1
t1

/�;p D PF
s;p
p ;

where s D .1 � �/s0 C �s1 and 1=p D .1 � �/=p0 C �=p1. Supposing p0 2 .1;1/ and
s0 ¤ 0, we also have

. PF
s0;p0
t0

; PF
0;1
2 /�;p D PF

.1��/s0;p
p :

The same result holds for the inhomogeneous version of the Triebel–Lizorkin spaces.

Lemma 2.6 follows from standard facts in interpolation theory. Since it is hard to
localize it in the literature, we give a proof below (however, see Theorem 5 in Chapter 5
of [32] for the case t0 D t1 D 2, and Theorem 6 in Chapter 5 of [32] for the case t0 D p0,
t1 D p1).

Proof. Consider the retraction operator

P W Lp0. P̀
s0
t0
/C Lp1. P̀

s1
t1
/! PF

s0;p0
t0

C PF
s1;p1
t1

and the extension operator

E W PF
s0;p0
t0

C PF
s1;p1
t1

! Lp0. P̀
s0
t0
/C Lp1. P̀

s1
t1
/;

defined formally as

P.fk/k2Z WD
X
k2Z

QPkfk and Ef WD .Pkf /k2Z;
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where Pk and QPk are Littlewood–Paley “projections” such that QPkPk D Pk . We can see
that P ıE D id on PF s0;p0t0

C PF
s1;p1
t1

.
By using the retraction method (see Theorem 6.4.2 in [5]) for P and E, we see that it

suffices to prove that

(2.14) .Lp0. P̀
s0
t0
/; Lp1. P̀

s1
t1
//�;p D L

p. P̀sp/:

Indeed, by applying Theorem 5.7(ii) on p. 129 of [34], we have that

(2.15) .Lp0. P̀
s0
t0
/; Lp1. P̀

s1
t1
//�;p D L

p.. P̀
s0
t0
; P̀
s1
t1
/�;p/;

and now, applying Theorem 5.6.1 on p. 122 of [5],

. P̀
s0
t0
; P̀
s1
t1
/�;p D P̀

s
p;

which, together with (2.15), gives (2.14).
The second assertion follows from the first assertion by duality. Indeed, if t0 > 1, we

have

. PF
s0;p0
t0

; PF
0;1
2 /�;p D . PF

�s0;p
0
0

t 00
; PF

0;1
2 /��;p0 D .

PF
�.1��/s0;p

0

p0 /� D PF .1��/s0;pp :

If t0 D 1, we have
. PF
�s0;p

0
0

.c0/
/� D PF

s0;p0
1 ;

where PF �s0;p
0
0

.c0/
is defined by replacing the `1 space in the definition of PF �s0;p

0
0

1 by the c0
space. We now interpolate the spaces PF �s0;p

0
0

.c0/
, PF 0;12 as above by using the method of

retraction. We get

. PF
s0;p0
1 ; PF

0;1
2 /�;p D . PF

�s0;p
0
0

.c0/
; PF

0;1
2 /��;p0 D .

PF
�.1��/s0;p

0

p0 /� D PF .1��/s0;pp ;

which proves the second identity in Lemma 2.6.

Another useful tool will be the following celebrated theorem of Wolff proved in The-
orem 1 of [40]. Below we give the version that appears in Theorem 2.11, p. 317, of [4].

Theorem 2.7. Suppose .X1; X4/ is a compatible couple of quasi-normed spaces. Con-
sider some parameters �2; �3 2 .0; 1/, q2; q3 2 Œ1;1�, and let X2, X3 be some quasi-
normed spaces such that

X2 D .X1; X3/�2;q2 ; X3 D .X2; X4/�3;q3 :

Then, with equivalence of the quasi-norms, we have

X2 D .X1; X4/�2;q2 ; X3 D .X1; X4/�3;q3 ;

where

�2 WD
�2�3

1 � �2 C �2�3
; �3 WD

�3

1 � �2 C �2�3
�
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3. The real method

3.1. Wavelets and the spaces PW l;1.Rd /

In this section we provide “almost” characterizations via wavelets for PW l;1.Rd /, when
l 2 Z, similar to the ones obtained in [11] in the case of PBV.Rd /.

3.1.1. Some notation related to the wavelet system. Concerning the wavelet system,6

we work essentially in the same setting as the authors of [11], Section 1 (see also Chapter 3
of [28]). Let us recall here some notation used in Section 1 of [11]. Let N 2 N� and let
' 2 CNc .R/ be a scaling function associated with the orthogonal wavelet  2 C1c .R/.
Consider also the setE WD ¹0;1ºd n ¹.0; : : : ; 0/º and for each eD .e1; : : : ; ed / 2E, define
the function  e 2 CNc .R

d / by

 e.x/ WD  e1.x1/ � � � 
ed .xd /;

for any x 2 Rd , where  0 WD ' and  1 WD  . We assume thatZ
Rd

x˛ e.x/ dx D 0;

for any multiindex ˛ 2 Nd with j˛j � N .
Let D be the set of all dyadic cubes in Rd . We can now define the BV-normalized

wavelets as follows. For each e 2 E and each dyadic cube I D 2�j ..k C Œ0; 1�d / (where
j 2 Z and k 2 Zd ), we define the function

 eI .x/ WD 2
j.d�1/ e.2jx � k/;

for any x 2 Rd . We will say that  eI are (“mother”) wavelets of class N .

Remark 3.1. Even when we do not mention explicitly, we will always consider wavelets
of class N sufficiently large. For instance, when we are describing spaces like W l;p via
wavelets, we will consider that the wavelets involved in the description are of classN > jl j.

The family of wavelets . eI /I2D;e2E is a complete orthogonal system in L2.Rd /. We
define also a dual system . Q eI /I2D;e2E ; each Q eI differs to  eI by a scaling factor, i.e.,
keeping the same notation as above,

Q eI .x/ WD 2
j e.2jx � k/;

for any x 2 Rd . We have that

h eI ;
Q e
0

I 0 i D ıe;e0 ıI;I 0 ;

for any e; e0 2 E and any I; I 0 2 D, where ı is the Kronecker symbol.
As in Section 1 of [11], in order to simplify the notation, we use the vector valued

functions
 I WD . 

e
I /e2E and Q I WD . Q 

e
I /e2E :

6We will mainly consider here only the “homogeneous” wavelet systems. In other words, for simplicity, we
give more attention to the “mother” wavelets.
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The wavelets coefficients of a distribution f on Rd are defined by

f eI WD hf;
Q eI i

for each e 2 E and each dyadic cube I . In a more contracted way, we would write

fI WD hf; Q I i D .f
e
I /e2E :

With this notation the corresponding wavelet decomposition of a function f 2L2.Rd /
can be expressed as

f D
X
I2D

fI  I D
X
e2E

X
I2D

f eI  
e
I ;

where the convergence is in the sense of distributions.
One can also use “father” wavelets (see the introduction in [11]) in order to write the

decomposition

(3.1) f D
X
I2DC

f CI  I D
X

e2E[¹0º

X
I2DC

f
C; e
I  eI ;

where DC is the set of the dyadic cubes of side length at most 1 and  0 WD ' ˝ � � � ˝ ',
f CI D fI whenever I 2 DC.

In what follows we restrict to the use of the “mother” wavelets, since in this case the
proofs are cleaner.

3.1.2. Description of PW l;1.Rd / via wavelets. In Definition 1.2 of [11], the authors
introduced the spaces `p.D/ and w`1.D/ by defining the norm

k.cI /I2Dk`p WD
�X
I2D

jI j.1�p/ jcI j
p
�1=p

;

and the quasi-norm
k.cI /I2Dkw`1

WD sup
�>0

�
X

jcI j>�jI j

jI j :

The spaces `p.D/ and w`1.D/ consist of those sequences .cI /I2D that have finite
`

p -norm or w`1 -quasi-norm, respectively.

Note that, in the case of w`1.D/, we have the quasi-triangle inequality

k.c1I C c
2
I /I2Dkw`1

� 2k.c1I /I2Dkw`1
C 2k.c2I /I2Dkw`1

;

for any two sequences .c1I /I2D and .c2I /I2D .
Adapted to the case of PW 1;1.Rd / rather than to PBV.Rd /, the main result in [11] (see

Theorem 1.3 in [11]) reads as follows.

Theorem 3.2. Suppose  2R n Œ1�1=d;1�. If f 2 PW 1;1.Rd /, then the sequence .fI /I2D
belongs to w`1 , and

k.fI /I2Dkw`1
. kf k PW 1;1 :
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Remark 3.3. The proof of Theorem 3.2 (with PBV in place PW 1;1) given in [11] splits in
two cases. First, the authors of [11] show that the result holds in the case where  2 R n
Œ0; 1� (see Section 3 in [11]). Then they prove the result in the case where  2 Œ0; 1� 1=d/,
which requires a more subtle analysis (see Section 4 in [11]).

By slightly adapting the arguments in Section 3 of [11], Cohen proved the following
analogue of Theorem 3.2 for the space L1 (see Théorème 2.1 in [10]). In the case where
the wavelets are BV-normalized, this result reads as follows.

Theorem 3.4. Suppose  2 R n Œ0; 1�. If f 2 L1.Rd /, then the sequence .jI j1=dfI /I2D
belongs to w`1 , and

k.jI j1=dfI /I2Dkw`1
. kf kL1 :

Remark 3.5. By constructing counterexamples, the authors of [11] have shown that the
range of the parameter  in Theorem 3.2 cannot be improved (see Section 6 in [11]). As
mentioned in Remarque 2.2 of [10], the range of  in Theorem 3.4 is also optimal.

Fix a nonnegative integer l 2 N and consider a function g 2 Cc..0; 1/d / such that all
its moments of order l � 1 vanish, i.e.,

(3.2)
Z

Rd

x˛g.x/ dx D 0;

for all ˛ 2 Nd with j˛j � l � 1. (By convention, when l D 0, we impose no vanishing
condition on g.) For any dyadic cube I D 2�j ..0;1/d C k/ 2D, where j 2Z and k 2Zd ,
we define the function gI by

gI .x/ D 2
jg.2jx � k/ for all x 2 Rd :

For any function f 2 L1.Rd / and any dyadic cube I 2 D, we introduce the quantity

cI .f / WD jhf; gI ij:

In [11], the analogue of Theorem 3.2 was derived from the following more general
result (see Theorem 2.5 in [11]):

Lemma 3.6. Suppose  2R n Œ1� 1=d; 1� and let g 2 Cc..0; 1/d / be a function with zero
integral. If f 2 PW 1;1.Rd /, then the sequence .cI .f //I2D belongs to w`1 , and

(3.3) k.cI .f //I2Dkw`1
. kf k PW 1;1 :

We need a version of this result adapted to the case of the Sobolev spaces PW l;1.Rd /
when l is any positive integer. The following version can be easily deduced from the work
in [11].

Lemma 3.7. Suppose l � 1 and  2 R n Œ1 � 1=d; 1�. Consider some r 2 N and let
g 2 C 1c ..0; 1/

d / be a function such that all its moments of order l � 1 are vanishing. If
f 2 PW l;1.Rd /, then the sequence .jI j.1�l/=dcI .f //I2D belongs to w`1 , and

(3.4) k.jI j.1�l/=d cI .f //I2Dkw`1
. kf k PW l;1 :
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In order to prove Lemma 3.7, we need the following (well-known) fact.

Lemma 3.8. Let r � 1 be an integer. Consider some function g 2C 1c ..0;1/
d / such that all

its moments of order r are vanishing. Then there exists a family of functionsGD .G˛/j˛jDr
such that for each ˛, the function G˛ 2 C rc ..0; 1/

d / is of integral zero and

g D rr �G D
X
j˛jDr

r
˛G˛:

This lemma is a direct consequence of standard techniques in elliptic theory. For
instance, we can observe that g belongs to the Hölder space C 1=2 D B1=2;11 , and then we
can apply repeatedly the Bogovskiı̆ formula for the divergence operator (see Remark 4.12
in [13]).

Proof of Lemma 3.7. One can deduce Lemma 3.7 directly from Lemma 3.6. Since the
case l D 1 is covered by Lemma 3.6, it remains to prove the statement in the case l � 2.

By Lemma 3.8, there exists a family of functions G D .G˛/j˛jDl�1 such that for
each ˛, the function G˛ 2 C l�1c ..0; 2/d / is of integral zero, and

g D rl�1 �G D
X
j˛jDl�1

r
˛G˛:

From this we immediately get

(3.5) jI j.1�l/=dgI D
X
j˛jDl�1

r
˛.G˛/I :

Using (3.3) for the functions r˛f 2 PW 1;1.Rd /, we have

k.hf;r˛.G˛/I i/I2Dkw`1
D k.hr˛f; .G˛/I i/I2Dkw`1

. krr˛f kL1 � krlf kL1 ;

for every multiindex ˛ with j˛j D l � 1. Hence, by adding up and using (3.5) together
with the quasi-norm property of w`1 , we get

k.hf; gI i/I2Dkw`1
.

X
j˛jDr�1

k.hf;r˛.G˛/I i/I2Dkw`1
. krlf kL1 ;

which proves Lemma 3.7, when l � 1.

Theorem 3.9. Fix some l 2 Z and let . I /I2D be a wavelet system on Rd of class at
least jl j C 1. If l � 1 and  2 R n Œ1 � 1=d; 1�, or l � 0 and  2 R n Œ0; 1�, we have

(3.6) k.jI j.1�l/=dfI /I2Dkw`1
. kf k PW l;1 . k.jI j.1�l/=dfI /I2Dk`1 ;

for all f 2 PW l;1.Rd /.

Proof. We treat first the case where l � 0. The case l D 0 easily follows from Theorem 3.4.
Suppose l > 0. Consider a positive integer p and some function � 2 C 2c ..0; 2

p/d / such
that all its moments of order at most l � 1 are vanishing. Then there exist M WD 2pdC1
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open cubes Q1; : : : ; QM , each of them being a translation of the unit cube .0; 1/d , and
some functions �1; : : : ; �M 2 C1c .R

d / such that .0; 2p/d � Q1 [ � � � [QM , each �� is
supported in Q� , and

MX
�D1

�� D 1 on Œ0; 2p�d :

Since all the moments of order at most l � 1 of � are vanishing, by Lemma 3.8, we
can find a family ‰ D .‰˛/j˛jDl , with ‰˛ 2 C l�1c ..0; 2p/d / such that

� D rr �‰ D
X
j˛jDl

r
˛‰˛ .

(When l D 0, we take by convention ‰ D �, and the above formula becomes � D r0 �‰,
where r0 is by convention the identity operator.)

We decompose � as

(3.7) � D rl �
� MX
�D1

‰��

�
D

MX
�D1

r
l
� .‰��/ D

MX
�D1

g� ;

where g� WD rl � .‰��/ 2 L1c .Q�/, for all � 2 ¹1; : : : ;M º (here, ‰�� D .‰˛��/j˛jDr ).
Note that each g� satisfy the vanishing moments condition (3.2). Since the inequality (3.4)
is translation invariant, by applying Lemma 3.7, we get

(3.8) k.jI j.1�l/=dc�I .f //I2Dkw`1
� kg�kL1kr

lf kL1 . krlf kL1 ;

for any � 2 ¹1; : : : ; N º, where c�I .f / WD jhf; g
�
I ij.

Let �I be the functions given by

�I .x/ WD 2
j �.2jx � k/,

for each dyadic cube I D 2�j ..0; 1/d C k/. For zcI .f / WD hf; �I i, thanks to (3.7) and the
triangle inequality,

(3.9) jzcI .f /j D jhf; �I ij �

MX
�D1

jhf; g�I ij D

MX
�D1

c�I .f /:

Using (3.9), the quasi-triangle inequality for the w`1 -quasi-norm and formula (3.8),
we get

(3.10) k.jI j.1�l/=d zcI .f //I2Dkw`1
.

MX
�D1

k.jI j.1�l/=dc�I .f //I2Dkw`1
. krlf kL1 :

Let . z e/e2E be the generators of the dual wavelets. Applying (3.10) for � D z e , for
each e 2 E, and using the quasi-triangle inequality for the w`1 -quasi-norm, we obtain

k.jI j.1�l/=dfI /I2Dkw`1
.
X
e2E

k.jI j.1�l/=df eI /I2Dkw`1
. krlf kL1 ;

which proves the first estimate in (3.6) in the case l � 0.
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The second estimate in (3.6) follows immediately from the triangle inequality (by a
limiting argument7)

kf k PW l;1 �

X
I2D

X
e2E

jf eI jk
z eI k PW l;1 ;

and the fact that k z eI k PW l;1 � jI j
.1�l/=d , for all I 2 D.

Now, we treat the case l D �r < 0. Let f 2 PW �r;1.Rd / \ C1c .R
d / and consider a

family F D .F˛/j˛jDr 2 L1.Rd / such that

(3.11) f D ra � F D
X
j˛jDr�1

r
˛F˛;

in the sense of distributions, andX
j˛jDr

kF˛kL1 � 2kf k PW �r;1 :

By (3.11), we have

f eI D hf;
z eI i D .�1/

r
X
j˛jDr

hF˛;r
˛ z eI i D .�1/

r
jI j�r=d

X
j˛jDr

hF˛; .r
˛ z e/I i;

and we get

(3.12) jI j.1Cr/=d jf eI j �
X
j˛jDr

jI j1=d jhF˛; .r
˛ z e/I ij:

Using (3.10) for the function � D r˛ z e (in the case l D 0),

k.jI j1=d hF˛; .r
˛ z e/I i/I2Dkw`1

. kF˛kL1 ;

for each ˛ 2 Nd with j˛j D r . This, together with (3.12), the quasi-triangle inequality
and (3.11), implies that

k.jI j.1Cr/=dfI /I2Dkw`1
.
X
j˛jDr

X
e2E

k.jI j1=d hF˛; .r
˛ z e/I i/I2Dkw`1

.
X
j˛jDr

kF˛kL1 . kf k PW �r;1 ;

which proves the first estimate in (3.6) in the case l D �r < 0.
As in the case l � 0, the second estimate in (3.6) follows immediately from the triangle

inequality. Indeed, by a limiting argument, we have

kf k PW �r;1 �
X
I2D

X
e2E

kf eI kk
z eI k PW �r;1 ;

and it remains to see that k z eI k PW �a;1 . jI j.1Cr/=d , for all I 2 D.

7We first consider functions f with finite wavelet expansion and then we pass to limit.
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In order to estimate k z eI k PW l;1 , we note that, since all the moments of order at most
r � 1 of z e are vanishing, one can use Lemma 3.8 to write

z e D rr �‰ D
X
j˛jDr

r
˛‰˛;

for some family ‰ D .‰˛/j˛jDr 2 C rc . It follows that

z eI D jI j
r=d

X
j˛jDr

r
˛.‰˛/I

and

k z eI k PW �r;1 � jI j
r=d

X
j˛jDr

k.‰˛/IkL1 D jI j
r=d
jI j1=d

X
j˛jDr

k‰˛kL1 . jI j.1Cr/=d ;

for all I 2 D.

Remark 3.10. One can obtain a version of Theorem 3.9 for the inhomogeneous spaces
W l;1 by using essentially the same arguments as above and the decomposition (3.1)
involving the “father” wavelets.

3.2. Interpolation results

3.2.1. The nonpathological case. Fix some parameters s 2R and p 2 .1;1/. According
to Section 10 in Chapter 6 of [28] (see also the discussion in [11], pp. 242–243), we have

(3.13) kf k PBs;pp .Rd / � k.fI /I2Dk`�p ;

for any Schwartz function f on Rd , where � WD 1 C .s � 1/p0=d . (Here, we suppose
that the wavelets involved are of class at least jsj C 1.) We can rewrite the quantity
k.fI /I2Dk`�p using the weights jI j.1�l/=d as follows. For any  2 R and any finitely
supported sequence .cI /I2D , we have

k.jI j.1�l/=dcI /I2Dk`p D
� X
I2Dd

jI j.1�p/ jI j.1�l/p=d jcI j
p
�1=p

D

� X
I2Dd

jI j.1�p/�jcI j
p
�1=p

D k.cI /I2Dk`�p ;

where � D  C .l � 1/p0=d . Hence, from (3.13),

(3.14) kf k PBs;pp .Rd / � k.jI j
.1�l/=dfI /I2Dk`p ;

for any Schwartz function f on Rd , where  WD 1C .s � l/p0=d .
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Let us introduce the weighted spaces `p.D; !l / and w`1.D; !l / by defining their
quasi-norms

k.cI /I2Dk`p .!l / WD k.jI j
.1�l/=d cI /I2Dk`p

and
k.cI /I2Dkw`1 .!l /

WD k.jI j.1�l/=d cI /I2Dkw`1
:

The spaces `p.D; !l / and w`1.D; !l / consist of those sequences .cI /I2D of finite
`

p.!l /-norm or finite w`1.!l /-quasi-norm, respectively.

For simplicity, we will denote the space w`01 by w`1. Notice that w`1.D/ is the dis-
crete Lorentz space L1;1.D/ on the set of the dyadic cubesD endowed with the counting
measure.

Proposition 3.11. Consider some parameters l 2 Z, s 2 R, p 2 .1;1/ and define  WD
1C .s � l/p0=d . If l � 1 and  2 R n Œ1� 1=d; 1�, or l � 0 and  2 R n Œ0; 1�, then, for
any � 2 .0; 1/, we have

. PW l;1.Rd /; PBs;pp .Rd //�;q D PB
�;q
q .Rd /;

where � D .1 � �/l C �s and 1=q D 1 � � C �=p. The same fact holds for the inhomo-
geneous version of the spaces.

(Here, we suppose that the wavelets involved are of class at least jl j C jsj C 1.)

Remark 3.12. Note that the conditions  2 R n Œ1 � 1=d; 1� and  2 R n Œ0; 1� are equi-
valent to the conditions s 2 R n Œl � 1=p0; l � and s 2 R n Œl � d=p0; l �, respectively. In
other words, Proposition 3.11 is a reformulation of Proposition 1.3, in the particular case
t D p, in terms of the parameter  .

Proof. The proof follows the same argument as in Theorem 1.4 of [11]. First, rewriting
the estimates of Theorem 3.9 using the weighted spaces `p.D; !l / and w`p.D; !l /, we
have

(3.15) k.fI /I2Dkw`1 .!l /
. kf k PW l;1 . k.fI /I2Dk`1 .!l /;

provided that l � 1 and  2 R n Œ1 � 1=d; 1�, or l � 0 and  2 R n Œ0; 1�.
Also, from (3.14),

(3.16) kf k PBs;pp � k.fI /I2Dk`

p .!l /

:

Let
P W `


1.!l /C `


p.!l /!

PW l;1
C PBs;pp

and
E W PW l;1

C PBs;pp ! w`

1.!l /C `


p.!l /

be defined formally as

P.cI /I2D WD
X
I2D

cI I and Ef WD .fI /I2D :

(Recall (3.15) and (3.16) in order to see that P and E are well defined.)
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We have P ı E D id on PW l;1 C PB
s;p
p . By the retraction method for P and E (see

Theorem 6.4.2 in [5]), we observe that it suffices to prove that

(3.17) .w`

1.!l /; `


p.!l //�;q D .`


1.!l /; `


p.!l //�;q D `


q .!l /:

Indeed, from (3.15) and (3.16), we have the boundedness of the operatorsP W`1.!l /!
PW l;1, P W `p.!l /! PB

s;p
p and EW PW l;1 ! w`


1.!l /, EW PB

s;p
p ! `


p.!l /. Consequently,

P W .`

1.!l /; `


p.!l //�;q D `


q .!l /! . PW l;1; PBs;pp /�;q

and
E W . PW l;1; PBs;pp /�;q ! .`


1.!l /; `


p.!l //�;q D `


q .!l /;

are bounded operators. This shows that

kf k. PW l;1; PB
s;p
p /�;q

D kP.Ef /k. PW l;1; PB
s;p
p /�;q

. k.fI /I2Dk`q .!l /

and
k.fI /I2Dk`q .!l / D kEf k`


q .!l /

. kf k. PW l;1; PB
s;p
p /�;q

;

i.e., by (3.14),
kf k. PW l;1; PB

s;p
p /�;q

� k.fI /I2Dk`q .!l / � kf k PB
s;p
p
;

for any f 2 �].
Let us see now that (3.17) holds. Note that, in all the sequence spaces we consider, we

have the same weights involved. Hence, (3.17) is equivalent (by the retraction method) to
the equality

.w`1; p̀/�;q D .`1; p̀/�;q D `q;

which is known to hold (see, for instance, Theorem 5.3.1 in [5]).

Using Lemma 2.6 one can prove now Proposition 1.3 in full generality.

Proof of Proposition 1.3. The proof follows from Lemma 2.6 and Proposition 3.11 (see
also Remark 3.12) via an application of Wolff’s theorem (Theorem 2.7). Indeed, with the
notation used in the statement of Proposition 1.3, by Proposition 3.11, we get

(3.18) . PW l;1; PB�;qq /1=2;q1 D
PB�1;q1q1

;

where �1 D l=2C �=2 and 1=q1 D 1=2C 1=.2q/. By Lemma 2.6, we also have

(3.19) . PB�1;q1q1
; PF

s;p
t /�;q D PB

�;q
q ;

where � D �=.2 � �/. Using now (3.18), (3.19) together with Wolff’s theorem (The-
orem 2.7), we conclude the proof of Proposition 1.3.

One can now deduce the nonpathological case of Theorem 1.4 from Proposition 1.3.
Since . PF �s;p

0

t 0 /� ¤ PF
s;p
t , when t D 1, we start with the particular case t D p, and then we

obtain the full Theorem 1.4 by using Lemma 2.6.
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Proposition 3.13. Let r 2 N. Suppose p 2 .1;1/ and � 2 .0; 1/. Then, for any s 2
R n Œr; r C d=p�, we have

. PBs;pp .Rd /; PW r;1.Rd //�;q D PB
�;q
q .Rd /;

where � D .1� �/sC � r and 1=qD .1� �/=p. A similar statement holds for the inhomo-
geneous spaces.

Proof. This follows by duality from Proposition 1.3. Indeed, applying Proposition 1.3
with l D �r � 0 and t D p, we get

. PB
�s;p0

p0 ; PW �r;1/�;q0 D PB
��;q0

q0 ;

and, since the dual of PW �r;1 is PW r;1, we can write

. PBs;pp ; PW r;1/�;q D .. PB
�s;p0

p0 /�; . PW �r;1/�/�;q0

D . PB
�s;p0

p0 ; PW �r;1/��;q0 D .
PB
��;q0

q0 /� D PB�;qq ;

and Proposition 3.13 is proven.

Proof of the nonpathological case of Theorem 1.4. The proof follows from Lemma 2.6
and Proposition 3.13 via Wolff’s interpolation theorem (Theorem 2.7). (See the proof
of Proposition 1.3.)

We can now use Proposition 3.13 in order to prove the following.

Proposition 3.14. Suppose r and l are some nonnegative integers such that l 2 R n
Œr; r C d�. Then, for any � 2 .0; 1/,

. PW l;1.Rd /; PW r;1.Rd //�;q D PB
�;q
q .Rd /;

where � D .1 � �/l C � r and 1=q D 1 � � .

Proof. Suppose l < r ; the case l > r C d being similar. Pick some �1 2 .�; 1/. Proposi-
tion 3.11 gives us that

(3.20) . PW l;1; PB�;qq /�1;p D
PBs;pp ;

where s D .1 � �1/l C �1� and 1=p D 1 � �1.
Consider �2 WD .�1 � �/=.1 � �1/ 2 .0; 1/. Note that 1=q D .1 � �2/=p and � D

.1 � �2/s C �2r , hence, by applying Proposition 3.13, we obtain

(3.21) . PBs;pp ; PW r;1/�2;q D
PB�;qq :

By (3.20), (3.21) and Wolff’s interpolation theorem (Theorem 2.7), we conclude the
proof of Proposition 3.14.

As we did in the case of Proposition 1.3, we can deduce the nonpathological case of
Theorem 1.4 from its particular case t D p.



On the interpolation of the spaces W l;1.Rd / and W r;1.Rd / 959

3.2.2. The pathological case. In this section we deal with the pathological case of The-
orem 1.1 and Theorem 1.4. Our first result in this direction relies on classical trace theory
(see Appendix A).

Proposition 3.15. Suppose r and l are some integers such that r < l � r C d . Fix some
parameters � 2 .0; 1/ and t 2 .1;1/, and let � and q be some numbers such that � D
.1 � �/l C � r and 1=q D 1 � � . Then

B
�;q
t .Rd / 6,! W l;1.Rd /C C r .Rd /:

In particular,
B
�;q
t .Rd / 6,! .W l;1.Rd /;W r;1.Rd //�;q :

Proof. We first consider the case where r D 0. In this case, we have 1 � l � d and
� D .1 � �/l D l=q. We argue by contradiction. Suppose

(3.22) B
�;q
t .Rd / ,! W l;1.Rd /C C.Rd /:

If l D d , then � D d=q, and since W d;1.Rd / ,! L1.Rd /, (3.22) gives

B
d=q;q
t .Rd / ,! L1.Rd /:

However, it is known that there exist functions f 2 Bd=q;qt .Rd / that are not bounded.
This8 disproves (3.22) in the case l D d .

Suppose that l < d . Let Trd�l be the trace operator on the subspace Rd�l � ¹0ºl �Rd .
We have that Trd�l WW l;1.Rd /! L1.Rd�l / boundedly. Indeed, when l D 1, this is clear.
When l � 2, by Uspenskiı̆’s result (see [39] or [31]), we have that Trd�lC1WW l;1.Rd /!
B
1;1
1 .Rd�lC1/, and then we use the fact that Tr WB1;11 .Rd�lC1/! L1.Rd�l /. Moreover,

Trd�l WC.Rd /! C.Rd�l / boundedly, and together with (3.22), we obtain

Trd�l B
�;q
t .Rd / ,! Trd�l W l;1.Rd /C Trd�l C.Rd / ,! L1.Rd�l /C C.Rd�l /:

However, this is contradicted by Proposition A.1 and consequently (3.22) cannot hold.
Suppose now that r > 0 and that

B
�;q
t .Rd / ,! W l;1.Rd /C C r .Rd /:

We introduce the operator
D WD .id; i@1; : : : ; i@d /;

where id is the identity operator.
By means of Calderón–Zygmund theory, for any Schwartz function f , one can find

a family F D .F˛/j˛jDr 2 B
�;q
t .Rd / such that f D Dr � F and kF kB�;qt . kf kB��r;qt

.
Indeed, one can consider F WD .D.id�4/�1/rf , where the operator D.id�4/�1 acts
component-wise. Noticing that Dr WW l;1 ! W l�r;1 and Dr WC r ! C , we can write

kf kW l�r;1CC D kD
r
� F kW l�r;1CC . kF kW l;1CC r . kF kB�;qt . kf kB��r;qt

;

which implies
B
��r;q
t .Rd / ,! W l�r;1.Rd /C C.Rd /:

However, as we have already seen, this embedding is false.

8This argument is based on the example given in [30], p. 2, related to the irregular triples.
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The last assertion of Proposition 3.15 follows from Lemma 2.4 and the intermediate
space property:

.W l;1.Rd /;W r;1.Rd //�;q D .W
l;1.Rd /; C r .Rd //�;q ,! W l;1.Rd /C C r .Rd /:

Proposition 3.15 is proved.

As a corollary of the proof of Proposition 3.15, one can get a similar conclusion if
we replace the Sobolev space W l;1 with the Besov space B l;11 . Moreover, using more
advanced trace theory, one can deal with the spaces Bs;11 when the parameter s is allowed
to be any real (not necessarily integer) number in the interval .r; r C d�.

Proposition 3.16. Suppose r is an integer and s is a real number such that r < s � r C d .
Fix some parameters � 2 .0; 1/, t 2 .1;1/ and let � and q be some numbers such that
� D .1 � �/s C � r and 1=q D 1 � � . Then

B
�;q
t .Rd / 6,! B

s;1
1 .Rd /C C r .Rd /:

In particular,
B
�;q
t .Rd / 6,! .B

s;1
1 .Rd /;W r;1.Rd //�;q :

Proof. The proof follows essentially the same strategy as the proof of Proposition 3.15.
However, we use traces on more general subsets of Rd rather than subspaces. As in the
proof of Proposition 3.15, it suffices to prove Proposition 3.16 only in the case where
r D 0. Assume for contradiction that

(3.23) B
�;q
t .Rd / ,! B

s;1
1 .Rd /C C.Rd /:

Suppose s ¤ d . Otherwise we can easily obtain the contradiction by mentioning that,
sinceBs;11 .Rd / ,! C.Rd /, the right-hand side of (3.23) is embedded in C.Rd /. However,
B
�;q
t .Rd / is not embedded in C.Rd /.

Suppose 0 < s < d . Define the parameter ı WD d � s 2 .0; d/ and consider a ı-full
subset � � Rd (see Appendix A). By (3.23) and Theorem A.2 (i), we have

(3.24) Tr� B
�;q
t .Rd / ,! Tr� B

s;1
1 .Rd /C Tr� C.Rd / ,! L1.�/C L1.�/;

where the Lp spaces on � are considered with the respect to the Hausdorff measure H ı .
However, since � D .d � ı/=q, by applying Theorem A.2 (ii) the space B�;qt .Rd / has no
trace on � . This disproves (3.24) and we have that (3.23) cannot hold.

Proposition 3.16 can be used to give a partial converse to Proposition 1.4. First, we are
concerned with the inhomogeneous version.

Corollary 3.17. Let r be a nonnegative integer and let p;q 2 Œ1;1/, � 2 .0;1/, s;� 2R be
some parameters such that 1=q D .1� �/=p and � D .1� �/sC � r . If r < s � r C d=p,
then

.Bs;pp .Rd /;W r;1.Rd //�;q ¤ B
�;q
q .Rd /:

Proof. The case where p D 1 is already covered by Proposition 3.16, hence, we may take
p 2 .1;1/. Suppose by contradiction that we have

(3.25) .Bs;pp ; W r;1/�;q D B
�;q
q :
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Note that 1=q D .1 � �/=p < 1=p, hence, there exists a unique number �1 2 .0; 1/
such that 1=p D 1 � �1 C �1=q. Define the real number

s0 WD
s � �1�

1 � �1
;

which is positive thanks to the fact that s > � (this follows from the inequality s > r and
the formula � D .1� �/s C � r). Since 1=p D 1� �1 C �1=q and s D .1� �1/s0 C �1� ,

.B
s0;1
1 ; B�;qq /�1;p D B

s;p
p ;

which together with (3.25), implies via Wolff’s theorem (Theorem 2.7) that

(3.26) .B
s0;1
1 ; W r;1/�2;p D B

s;p
p ;

where

�2 WD
�1�

1 � �1 C �1�
�

One can check that 1=p D 1 � �2 and s D .1 � �2/s0 C �2r . From this, as long as
r < s � r C d=p, we have

s0 D
s � �2r

1 � �2
D p

�
s �

r

p0

�
D p

�
s � r C

r

p

�
D p.s � r/C r 2 .r; r C d�:

However, it follows from Proposition 3.16 that (3.26) cannot hold for this range of the
parameter s0.

We can generalize Corollary 3.17 as follows.

Proposition 3.18. Let r be a nonnegative integer and let p; q 2 Œ1;1/, � 2 .0; 1/, t 2
Œ1;1�, s; � 2 R be some parameters such that 1=q D .1� �/=p and � D .1� �/s C � r .
If r < s � r C d=p, then, for any � 2 Œ1;1�,

F �;q� .Rd / 6,! .F
s;p
t .Rd /;W r;1.Rd //�;q :

Proof. Suppose by contradiction that

(3.27) F �;q� ,! .F
s;p
t ; W r;1/�;q :

Introducing the spaces X0 WD F
s;p
t and X1 WD .F

s;p
t ; W r;1/�;q D F

�;q
� , we observe

that X0 is in the class C.0; F
s;p
t ; W r;1/ and X1 is in the class C.�; F

s;p
t ; W r;1/ (see

Definition 3.51 and Theorem 3.5.2 in pp. 48–49 of [5]), and we can apply the reiteration
theorem (see Theorem 3.5.3 on p. 50 of [5]). Therefore, for any � 2 Œ1;1�,

.F
s;p
t ; F �;q� /1=2;� ,! .X0; X1/1=2;� D .F

s;p
t ; W r;1/�;�;

where � D �=2. Setting � 2 .1;1/ such that 1=� D 1=.2p/C 1=.2q/, we have (using
also Lemma 2.6)

B�1;�� D .F
s;p
t ; F �;q� /1=2;�;

and hence

(3.28) B�1;�� ,! .F
s;p
t ; W r;1/�;�;
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where �1D .1��/sC�r . Notice also that from Lemma 2.6, we get (sinceL1 ,! bmoD
F
0;1
2 and W r;1 ,! F

r;1
2 )

.F
s;p
t ; W r;1/�;� ,! .F

s;p
t ; F

r;1
2 /�;� D B

�1;�
� ;

which together with (3.28) gives us the equality

B�1;�� D .F
s;p
t ; W r;1/�;�:

Now, using again the reiteration theorem as above, we have

.B�1;�� ; W r;1/�1;q D ..F
s;p
t ; W r;1/�;�; W

r;1/�1;q(3.29)

D .F
s;p
t ; W r;1/�;q D B

�;q
q ;

where �1 WD �=.2� �/. We can easily check that r < �1 � r C d=�. Hence, Corollary 3.17
shows that (3.29) cannot hold. By this we contradict (3.27).

Let Q be the cube Œ�1; 1�d . With minor modifications, we can prove a version of
Proposition 3.18 for the cube Q (and for C r instead W r;1). More precisely, when the
parameters p, q, t , s, � are as in the statement of Proposition 3.18, then

(3.30) .F
s;p
t .Q/; C r .Q//�;q ¤ B

�;q
q .Q/:

We can use this fact to prove a similar result that concerns the homogeneous version of
the spaces.

Proposition 3.19. Let r be a nonnegative integer and let p; q 2 Œ1;1/, � 2 .0; 1/, t 2
Œ1;1�, s; � 2 R be some parameters such that 1=q D .1� �/=p and � D .1� �/s C � r .
If r < s � r C d=p, then, for any � 2 Œ1;1�,

PF �;q� .Rd / 6,! . PF
s;p
t .Rd /; PW r;1.Rd //�;q :

Before passing to the proof of Proposition 3.19 let us recall some facts from the theory
of subcouples introduced by Pisier in [33] that will be useful in what follows. Let .X0;X1/
be a compatible couple of Banach spaces and let .Y0; Y1/ be a subcouple of .X0; X1/. In
other words, we have that for any j D 0; 1, Yj is a (Banach) subspace of Xj . According
to Pisier [33], we say that .Y0; Y1/ is K-closed in .X0; X1/ if, for any f 2 Y0 C Y1, we
have the equivalence

Kt .f; Y0; Y1/ � Kt .f;X0; X1/;

for any t > 0, where the implicit constants do not depend on t or f . Trivially, we have
that

Kt .f; Y0; Y1/ � Kt .f;X0; X1/;

and hence, in order to verify the K-closedness of the subcouple .Y0; Y1/, it suffices to
check the inequality

Kt .f; Y0; Y1/ . Kt .f;X0; X1/:

In other words, it suffices to verify that for any fixed t > 0 and any decomposition
f D f0 C f1 (depending on t ), where f0 2 X0, f1 2 X1, with

kf0kX0 C tkf1kX1 � 1;
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there exist g0 2 Y0, g1 2 Y1 (depending on t ) such that f D g0 C g1 and

kg0kY0 C tkg1kY1 . 1;

where the implicit constant does not depend on t or f .
The notion of K-closedness was introduced by Pisier in [33] in order to give a short

proof of Bourgain’s result that the disc algebra has the Grothendieck property. Other
authors like Bourgain [6] or Kislyakov and Kruglyak [21] further developed the theory
of K-closed subcouples deriving interpolation properties for the Hardy and the Sobolev
spaces. Here, we only use the notion of K-closedness in a simple situation. We need the
following lemma on quotient spaces that follows from the work of Pisier and Janson.

Lemma 3.20. Let .X0; X1/ be a compatible couple of Banach spaces such that X0 \X1
is dense in X0 and X1. Suppose M is a finite dimensional subspace of X0 \X1.

(i) We have that
.X0=M/ \ .X1=M/ D .X0 \X1/=M:

(ii) For any � 2 .0; 1/ and any q 2 .1;1/, we have

.X0=M;X1=M/�;q D .X0; X1/�;q=M .

Proof. Part (i) follows from the work of Pisier (see, for instance, Theorem 4.1 (i) and (iv)
in [17]), and (ii) is a consequence of Theorem 4.2 in [17]. First, let us recall that, since M
is finite dimensional, any two norms are equivalent on M . It is easy to see that .M;M/ is
a normal subcouple of .X0; X1/ (see Definition on p. 317 of [17]). Note that M is a finite
dimensional subspace of X0 C X1, and consequently M is complemented in X0 C X1.
Therefore, there exists an onto bounded projection PM WX0 CX1 !M . We get

kPMf kM . kf kX0CX1 � min.kf kX0 ; kf kX1/;

for any f 2 X0 \X1. Since

kPMf kM � kPMf kX0 � kPMf kX1 ;

the operator PM WXj ! Xj is bounded for any j D 0; 1.
One can see now that .M;M/ is a K-closed subcouple of .X0; X1/. Indeed, fix some

t > 0. Consider some f 2M and a decomposition f D f0 C f1, with f0 2 X0, f1 2 X1,
such that

(3.31) kf0kX0 C tkf1kX1 � 1:

Observe that
f D PMf D PMf0 C PMf1;

and by the boundedness of PM on Xj , together with (3.31), we get

kPMf0kX0 C tkPMf1kX1 � kPMk <1:

Now, we can apply Theorem 4.1(i) and (iv) in [17] and Theorem 4.2 in [17] to the
subcouple .M;M/ in order to obtain (i) and (ii), respectively.
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Proof of Proposition 3.19. It suffices to prove Proposition 3.19 in the case t D p 2 .1;1/
(or t D 2), � D q, with nonequality instead of nonembedding. One can then prove the gen-
eral case as we deduced Proposition 3.18 from Corollary 3.17. Suppose by contradiction
that

(3.32) . PW s;p.Rd /; PW r;1.Rd //�;q D PB
�;q
q .Rd /:

Using Lemma 2.4, this is equivalent to

(3.33) . PW s;p.Rd /; PC r0 .R
d //�;q D PB

�;q
q .Rd /:

Let l be the smallest integer with l � s and consider k WD max¹l; rº. By the Poincaré
inequality (see, for instance, (2.6)), we have

kf kLp.Q/=P l . kf k PW s;p.Rd /;

for any Schwartz function f , where P l is the space of polynomials of degree at most l � 1.
Now, using this and the trivial inequality

kf k PW s;p.Q/=P l � kf k PW s;p.Q/ � kf k PW s;p.Rd /;

together with Lemma 3.20 (i) (forM D P l ) and the fact thatW s;p D Lp \ PW s;p , we get

kf kW s;p.Q/=P l . kf k PW s;p.Rd /;

for any Schwartz function f . Hence, since k � l ,

(3.34) kf kW s;p.Q/=P k . kf k PW s;p.Rd /;

for any Schwartz function f . By (3.34), the restriction operator RQ (RQf WD f jQ for
any Schwartz f ) is bounded from PW s;p.Rd / to W s;p.Q/=P k . Also, by using the mean
value theorem (see also (2.6)), RQ is bounded from PC r0 .R

d / to C r .Q/=P r . Since k � r ,
RQ is bounded from PC r0 .R

d / to C r .Q/=P k . By interpolation, we get

RQ. PW
s;p.Rd /; PC r0 .R

d //�;q ,! .W s;p.Q/=P k ; C r .Q/=P k/�;q :

Using (3.33), we can rewrite this as

(3.35) RQ. PB
�;q
q .Rd // ,! .W s;p.Q/=P k ; C r .Q/=P k/�;q :

For any element of B�;qq .Q/=P k , there exists a representative f 2 B�;qq .Q/ and there
exists an extension Qf 2 B�;qq .Rd / ,! PB

�;q
q .Rd / such that RQ Qf D f . Hence,

B�;qq .Q/=P k ,! RQ. PB
�;q
q .Rd //;

and combining this with (3.35), we get

B�;qq .Q/=P k ,! .W s;p.Q/=P k ; C r .Q/=P k/�;q :
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Using this and Lemma 3.20 (ii) (for M D P k), we get

(3.36) B�;qq .Q/=P k ,! .W s;p.Q/; C r .Q//�;q=P
k :

Now, by using Lemma 2.6 (and by a standard application of the retraction method),
we have

.W s;p.Q/; C r .Q//�;q ,! .W s;p.Q/; F
r;1
2 .Q//�;q D B

�;q
q .Q/;

and hence, by (3.30), the space .W s;p.Q/; C r .Q//�;q is strictly smaller that B�;qq .Q/. In
other words, re-denoting the spaces as A1 WD B

�;q
q .Q/ and A2 WD .B

s;p
p .Q/; C r .Q//�;q ,

there exists a sequence .fn/n�1 of Schwartz functions on Rd such that

(3.37) kfnkA2 D 1 and kfnkA1 ! 0;

when n ! 1. Consider the sets U1 WD .�2; 1=2/ � .�2; 2/d�1, U2 WD .�1=2; 2/ �

.�2; 2/d�1 that form an open covering ofQ. For these open sets, one can find two smooth
functions �j 2 C1c .Uj /, j D 0; 1, with �1 C �2 D 1 on Q. We can observe that, for any
Schwartz function f on Rd , we have

(3.38) k�jf kA . kf kA;

when A D A1 or A D A2. This is a standard fact when A D A1. To obtain the inequality
for the case AD A2, we observe that (3.38) holds for AD Bs;pp .Q/ and AD C r .Q/, and
then apply the standard real interpolation method. Now we can write

kf kAj � k�1f kAj C k�2f kAj . kf kAj ;

and combining this with (3.37),

k�1fnkA2 C k�2fnkA2 � 1;

uniformly in n and
k�1fnkA1 C k�2fnkA1 ! 0;

when n!1. Considering a subsequence (which for simplicity will be also denoted by
.fn/n�1) we can suppose without loss of generality that

k�1fnkA2 � 1 and k�1fnkA1 ! 0;

when n!1. In other words, introducing the functions gn WD �1fn, we have

(3.39) kgnkA2 � 1 and kgnkA1 ! 0;

when n!1. There exist two sequences .p1n/n�1; .p
2
n/n�1 of polynomials9 in P k such

that, for any j D 1; 2,
kgn � p

j
nkAj � kgnkAj =P k :

9These polynomials are not the same as the polynomials pl
k

introduced in Section 2.1.
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Hence, by (3.36),

(3.40) kgn � p
2
nkA2 . kgn � p1nkA1 � kgnkA1 ;

uniformly in n. Consider some  2 C1c .�/, not identically 0, where � WD Œ2=3; 1� �

Œ�1; 1�d�1. As in (3.38), we get

k p2nkA2 D k .gn � p
2
n/kA2 . kgn � p2nkA2 ;

where we have used the fact that, since supp gn � U1, the sets supp gn and � are dis-
joint. This inequality implies that all the coefficients of the polynomial p2n are uniformly
bounded by kgn � p2nkA2 . Hence, by (3.39) and (3.40), all the coefficients of the poly-
nomial p2n are converging to 0 uniformly. Since P k is finite dimensional, any two norms
are equivalent on P k , and consequently kp2nkA2 is equivalent to the sum of the absolute
values of the coefficients of p2n. By the previous discussion, we get kp2nkA2 ! 0, when
n!1. By this, (3.39) and (3.40), we have

kgnkA2 � kgn � p
2
nkA2 C kp

2
nkA2 . kgnkA1 C kp2nkA2 ! 0;

when n!1. However, this contradicts (3.39). This proves that (3.32) does not hold.

By duality, Proposition 3.18 (or Proposition 3.19 for the homogeneous case) immedi-
ately implies a partial converse to Proposition 1.3 in the case where l � 0.

Corollary 3.21. Consider some parameters l 2 Z, s 2 R, p; t 2 .1;1/. If l � 0 and
l � d=p0 � s < l , then, for any � 2 .0; 1/, we have

.W l;1.Rd /; F s;pt .Rd //�;q ¤ B
�;q
q .Rd /;

where � D .1 � �/l C �s and 1=q D 1 � � C �=p.

Indeed, if for some r D �l � 0 and some s 2 Œ�r � d=p0;�r/, we have

.W �r;1; F
s;p
t /�;q D B

�;q
q ;

then, by duality, we get

(3.41) .W r;1; F
�s;p0

t 0 /�;q0 D B
��;q0

q0 :

However, since r < �s � r C d=p0, by Corollary 3.17 the equality (3.41) cannot be true.

Remark 3.22. A direct consequence of Corollary 3.21 and the proof of Proposition 3.11
is the fact that the range of the parameter  in Theorem 3.9 cannot be improved when
l � 0. In other words, for any  2 Œ0; 1� and any integer l � 0, we have the noninequality

k.fI /Ikw`1 .!l /
’ kf kW l;1 ;

for Schwartz functions f . This is in contrast with the case l � 1, where a larger range of 
is available (see Remark 3.5).

Since we have proved the nonpathological case of Theorem 1.4, Proposition 3.18 and
Proposition 3.19, we have proved Theorem 1.4.

One can observe that Theorem 1.4 implies, via the reiteration theorem, the following
sharpening of the conclusion in the pathological case.
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Proposition 3.23. Consider the parameters s 2 R, r 2 N, with s ¤ r , and let p; q 2
.1;1/, � 2 .0;1/, t 2 Œ1;1�, � 2R be as in the statement of Theorem 1.4. LetX be a space
in the class C.�; F

s;p
t ; C r /. Then, if s 2 .r; r C d=p�, no space F �;q� , with � 2 Œ1;1�,

embedds in X . A similar fact holds in the case of the homogeneous spaces.

Proof. Indeed, suppose by contradiction that F �;q� ,! X: Then, as in the proof of Propos-
ition 3.18, we get, by the reiteration theorem (and Lemma 2.6), that

B�1;�� D .F
s;p
t ; F �;q� /1=2;� ,! .F

s;p
t ; X/1=2;� D .F

s;p
t ; W r;1/�;�;

where � D �=2, �1 D s=2C �=2 and 1=� D 1=.2p/C 1=.2q/. However, this contradicts
Theorem 1.4.

Proof of Proposition 1.6. Suppose by contradiction that F �;q� is an interpolation space of
exponent � with respect to .F s;pt ; W r;1/. By a simple regularization argument, we get
that F �;q� is an interpolation space of exponent � with respect to .F s;pt ; C r /. Then, by the
Aronzajn–Gagliardo theorem (see [3] or Exercise 2.8.4 on p. 33 of [5]), there exists an
interpolation method (functor) G� of exponent � such that

F �;q� D G� .F
s;p
t ; C r /:

However, since F s;pt \ C r is dense in F s;pt and C r , by the extremal property of the
real interpolation method (see Theorem 3.9.1 on p. 58 of [5]), we get

.F
s;p
t ; C r /�;1 ,! G� .F

s;p
t ; C r / ,! .F

s;p
t ; C r /�;1:

In particular, according to Theorem 3.5.2 on p. 49 of [5], G� .F
s;p
t ; C r / is a space of

class C.�; F
s;p
t ; C r /. Hence, by the reiteration theorem (as in the proof of Proposition

3.18 and Proposition 3.23),

B�1;�� D .F
s;p
t ; F �;q� /1=2;� D .F

s;p
t ; G� .F

s;p
t ; C r //1=2;� D .F

s;p
t ; W r;1/�;�;

where � D �=2, �1 D s=2 C �=2 and 1=� D 1=.2p/ C 1=.2q/. This contradicts The-
orem 1.4.

At least in the case of homogeneous spaces Proposition 1.6 can be strengthened as
follows.

Corollary 3.24. Consider the parameters s 2R, r 2N, with s ¤ r , and let p;q 2 .1;1/,
� 2 .0; 1/, t 2 Œ1;1�, � 2 R be as in the statement of Theorem 1.4. Moreover, suppose
that s 2 .r; r C d=p/ and fix some � 2 Œ1;1�. Then there exists a linear operator

T W PF
s;p
t .Rd /C PW r;1.Rd /! PF

s;p
t .Rd /C PW r;1.Rd /;

such that

(i) T is bounded on PF s;pt .Rd /,

(ii) T is bounded on PW r;1.Rd /,

(iii) T is not bounded on PF �;q� .Rd /.

Proof. Suppose by contradiction that any operator

T W PF
s;p
t C PW r;1

! PF
s;p
t C PW r;1;
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that is bounded on PF s;pt and on PW r;1, has to be bounded on PF �;q� . By Theorem 2.4.2
in [5], we have

(3.42) kT k PF �;q� ! PF
�;q
�

. kT k PF s;pt ! PF s;pt C kT k PW r;1! PW r;1 ;

where the implicit constant does not depend on T . Fix such an operator T . For any � > 0,
we introduce the new operator T� formally defined by

T �f D .Tf /�;

where f �. �/ D f .� �/ (see Section 2.1, (2.3)). We can easily verify that

kT �k PF �;q� ! PF
�;q
�
� ���d=qkT k PF �;q� ! PF

�;q
�
;

and get similar relations corresponding to the spaces PF s;pt , PW r;1. From (3.42), we get

kT k PF �;q� ! PF
�;q
�

. ��.s�r�1=p/kT k PF s;pt ! PF
s;p
t
C ��.1��/.s�r�1=p/kT k PW r;1! PW r;1

and, by setting

� D
�kT k PW r;1! PW r;1

kT k PF s;pt ! PF
s;p
t

�1=.s�r�1=p/
;

we obtain
kT k PF �;q� ! PF

�;q
�

. kT k1��
PF
s;p
t !

PF
s;p
t
kT k�

PW r;1! PW r;1
:

However, this implies that PF �;q� is an interpolation space of exponent � with respect to
. PF

s;p
t ; PW r;1/, which by Proposition 1.6 cannot be true.

3.3. Pathological sums of Sobolev spaces on Rd

As we have seen in the previous section, the statement of Proposition 3.16 gives more than
the fact that the space B�;qq is not equal to a space obtained by interpolating B l;11 and C r ,
when l 2 .r; r C d�. Namely, B�;qq cannot be even embedded in the sum B l;11 C C

r . It is
natural to ask if the same phenomenon occurs in the pathological cases described by Pro-
position 3.18 or Proposition 3.19. The homogeneous spaces that appear in the statement of
Proposition 3.19 are in most cases convenient for converting the result of nonequality into
a stronger result of nonembeddability into the sum. More precisely, we have the following
partial result.

Proposition 3.25. Let r be a nonnegative integer and let p; q 2 Œ1;1/, � 2 .0; 1/, t; � 2
Œ1;1�, s; � 2 R be some parameters such that 1=q D .1� �/=p and � D .1� �/s C � r .
If r < s < r C d=p, then

PF �;q� .Rd / 6,! PF
s;p
t .Rd /C PW r;1.Rd /:

Proof. For simplicity, let us denote the spaces as follows: A0 WD PF
s;p
t , A1 WD PW r;1 and

Y WD PF
�;q
� . Suppose for contradiction that we have

Y ,! A0 C A1:

This implies that, for any f 2 Y ,

(3.43) kf �kA0CA1 . kf �kY ;
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for any � > 0, where f �. �/ WD f .� �/. Introducing the number t WD �r�sCd=p (recall that
r � s C d=p ¤ 0 ), one can see by a direct computation that (see (2.2))

(3.44) kf �kA0CA1 D �
s�d=pKt .f; A0; A1/.

Since, kf �kY � ���d=qkf kY , by (3.43) and (3.44), we obtain

kf kY & �.s�d=p/�.��d=q/Kt .f; A0; A1/

D ��.s�d=p�r/Kt .f; A0; A1/ D t
��Kt .f; A0; A1/;

which means that
Y ,! .A0; A1/�;1:

Let us consider the spaces X0 D A0 and X1 D .A0; A1/�;1. Note that X0 is in the
class C.0;A0;A1/ andX1 is in the class C.�;A0;A1/ (again see Definition 3.51 and The-
orem 3.5.2 in pp. 48–49 of [5]). We can apply the reiteration theorem (see Theorem 3.5.3
on p. 50 of [5]) and (3.44) to conclude that, for any � 2 Œ1;1�,

(3.45) .A0; Y /1=2;� ,! .X0; X1/1=2;� D .A0; A1/�;� ;

where � D �=2. Fix � 2 .0; 1/ such that 1=� D 1=.2p/C 1=.2q/. In this case, by Lem-
ma 2.6, we have that

.A0; Y /1=2;� D . PF
s;p
t ; PF �;q� /1=2;� D PB

ˇ;�
� ;

where ˇ WD s=2C �=2, which together with (3.45) gives

PBˇ;�� ,! . PF
s;p
t ; PW r;1/�;�:

By the fact that L1 ,! BMO D PF 0;12 , we have

. PF
s;p
t ; PW r;1/�;� ,! . PF

s;p
t ; PF

r;1
2 /�;� D . PF

�s;p0

t 0 ; PF
�r;1
2 /��;�0(3.46)

D . PB
�ˇ;�0

�0 /��;�0 D
PBˇ;�� ;

where we also have used Lemma 2.6. Hence,

(3.47) PBˇ;�� D . PF
s;p
t ; PW r;1/�;�:

As we can easily check, ˇ D .1� �/s C �r and 1=� D �=p. This shows, via Propos-
ition 3.18, that (3.47) does not hold.

Proof of Proposition 1.5. Suppose by contradiction that

W �;q ,! W s;p
CW r;1:

Since s > 0, from this we get that

W �;q ,! PW s;p
C PW r;1:
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Combining this with Lemma 2.3 (i), we get the estimate

(3.48) kLlf k PW s;pC PW r;1 . kLlf kW �;q . kf k PW �;q ;

for any Schwartz function f , where l is the smallest integer with l � � . By Lemma 2.3 (ii),
we also have

(3.49) k QLlf k PW s;pC PW r;1 . k QLlf kW r;1 . kf k PW �;q :

Now, by the triangle inequality, (3.48) and (3.49) imply

kf k PW s;pC PW r;1 � kLlf k PW s;pC PW r;1 C k QLlf k PW s;pC PW r;1 . kf k PW �;q ;

for any Schwartz function f . However, this implies the embedding

PW �;q ,! PW s;p
C PW r;1;

which, by Proposition 3.25, cannot hold.

Note that we deduced Proposition 1.5 from Proposition 3.25, which is a result of a
global nature. It will be interesting to see if the conclusion of Proposition 1.5 remains true
for spaces defined on compact domains. This can be compared with the situation when the
parameters s, r , p are in the nonpathological case. More precisely, suppose Q is the cube
Œ�1; 1�d and the parameters s > 0, r 2 N, p 2 .1;1/ satisfy s … Œr; r C d=p� (recall that
we always consider s ¤ r). Then

W �;q.Q/ ,! W s;p.Q/CW r;1.Q/;

where the parameters �; q are as in the statement of Proposition 1.5. In fact, we have the
more general embedding

F �;q� .Q/ ,! F
s;p
t .Q/CW r;1.Q/;

where t; � 2 Œ1;1/. Indeed, if s < r , then we can write�
� �

d

q

�
�

�
s �

d

p

�
D �

�
r C

d

p
� s

�
> 0:

We also have that � D .1� �/sC � r > s (since s > r), and we get, from the classical
embedding Theorem 1(3) on p. 82 of [35], that

F �;q� .Q/ ,! F
s;p
t .Q/ ,! F

s;p
t .Q/CW r;1.Q/:

If s > r C d=p, then

� � r �
d

q
D .1 � �/

�
s � r �

d

p

�
> 0;

and this implies (using the classical embedding F ��r;q� ,! L1, when � > r C d=q) that

F �;q� .Q/ ,! W r;1.Q/ ,! F
s;p
t .Q/CW r;1.Q/:
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3.4. The unboundedness of the Riesz transforms

Let us turn the attention to the behavior of some operators given by singular integrals that
act on some “pathological” interpolation spaces. Here, we restrict ourselves to a class of
pathologies that are subject of Proposition 3.19. Let us recall that when � 2 .0; 1/, p 2
.1;1/, t 2 Œ1;1�, s 2R are some parameters such that 0 < s � d=p, by Proposition 3.19
(setting r D 0), we have

(3.50) . PF
s;p
t .Rd /; L1.Rd //�;q ¤ PB

�;q
q .Rd /;

where � D .1 � �/s and 1=q D .1 � �/=p. It turns out that much more is true. Namely,
at least when s ¤ d=p , none of the Riesz transforms is bounded on the space defined by
the left-hand side of (3.50). This can be deduced from (3.50) and the following result.

Proposition 3.26. Consider the function space

X WD . PF
s;p
t .Rd /; L1.Rd //�;q;

where � 2 .0; 1/, p 2 .1;1/, t 2 Œ1;1/, 1=q D .1 � �/=p and s > 0, with s ¤ d=p.
If X ¤ PB�;qq , then none of the Riesz transforms is bounded on X . The same fact holds for
the inhomogeneous spaces.

Remark 3.27. Let us note that, by Proposition 3.26, one can construct in a natural way
function spaces with some special properties. Suppose that X is the space defined in
Proposition 3.26 above and 0 < s < d=p. Suppose also that t 2 .1;1/. Then PF s;pt is
uniformly convex and, by a theorem of Beauzamy (see, for instance, Theorem 2.g.21 on
p. 229 of [26]), the space X is uniformly convex. One can immediately check that X is
translation and rotation invariant. Now, by Proposition 3.26 and (3.50), the space X is a
uniformly convex function space on Rd , translation and rotation invariant, and no Rj is
bounded on X . The same observation applies in the inhomogeneous case.

Remark 3.28. Proposition 3.26 implies, in particular, thatX is never a Besov space. Oth-
erwise, we would get that X D B�;q� for some � 2 Œ1;1�. However, the Riesz transforms
are bounded on B�;q� and not on X .

In order to prove Proposition 3.26, we need the following homogeneous variant of a
result of Adams and Frazier (Theorem 2 in [1]).10

Lemma 3.29. Suppose s > 0 and p 2 .1;1/. For any f 2 PW s;p \ BMO, there exist
f0; f1; : : : ; fd 2 PW

s;p \ L1 such that

f D f0 CR1f1 C � � � CRdfd

and
dX
jD0

kfj k PW s;p\L1 . kf k PW s;p\BMO:

10Lemma 3.29 (that follows) can be proven on the same lines as Theorem 2 in [1]. However, since the proof
in Theorem 2 in [1] is too involved to be outlined here, we prefer to deduce Lemma 3.29 from Theorem 2 in [1].
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Proof. Let l be the smallest integer with l � s and fix some f 2 PW s;p \ BMO. By
Lemma 2.3 (i), we have

kLlf kW s;p . kf k PW s;p . kf k PW s;p\BMO;

and, by Lemma 2.3 (ii),

kLlf kBMO . kf kBMO C k QLlf kBMO . kf kBMO C k QLlf kL1 . kf k PW s;p\BMO:

Hence, we can write

(3.51) kLlf kW s;p\BMO . kf k PW s;p\BMO:

Using the Adams–Frazier theorem, Theorem 2 in [1], we have a decomposition of the
form

Llf D f
0
0 CR1f

0
1 C � � � CRdf

0
d

such that

(3.52)
dX
jD0

kf 0j k PW s;p\L1 .
dX
jD0

kf 0j kW s;p\L1 . kLlf kW s;p\BMO:

Now we can set f0 WD f 00 C QLlf and fj WD f 0j , for any 1 � j � d . Thanks to the
decomposition

f D Llf C QLlf;

we have
f D f0 CR1f1 C � � � CRdfd :

Also, by (3.51) and (3.52),
dX
jD1

kfj k PW s;p\L1 . kf k PW s;p\BMO

and
kf 00k PW s;p\L1 . kf k PW s;p\BMO:

We combine this with the estimate

k QLlf k PW s;p\L1 . kf k PW s;p . kf k PW s;p\BMO

(see Lemma 2.3 (ii)), and we get

kf0k PW s;p\L1 � kf
0
0k PW s;p\L1 C k

QLlf k PW s;p\L1 . kf k PW s;p\BMO;

concluding the proof of Lemma 3.29.

Proof of Proposition 3.26. It suffices to prove Proposition 3.26 in the case t D p or t D 2.
One can then prove the general case by reiteration as in the proof of Proposition 3.18. By
Lemma 3.29, for any g 2 PW s;p \BMO, there exist g0; g1; : : : ; gd 2 PW s;p \L1 such that

(3.53) g D g0 CR1g1 C � � � CRdgd

and

(3.54)
dX
jD0

kgj k PW s;p\L1 . kgk PW s;p\BMO:
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Let f 2 PW �s;p
0

CH 1 and consider some g 2 PW s;p \BMO, with kgk PW s;p\BMO D 1,
such that

(3.55) kf k PW �s;p0CH1 � 2hf; gi:

Using the decomposition (3.53) for this g, and the estimate (3.54), we get

hf; gi D hf; g0i C hR1f; g1i C � � � C hRdf; gd i

. kf kL1C PW �s;p0 C kR1f kL1C PW �s;p0 C � � � C kRdf kL1C PW �s;p0 ;

which, together with (3.55), gives

kf k PW �s;p0CH1 . k QRf k PW �s;p0CL1 ;

where QRf WD .f;R1f; : : : ;Rdf /. Thanks to the fact that the Riesz transforms are bounded
from H 1 to L1 (and hence from PW �s;p

0

CH 1 to PW �s;p
0

C L1), we have

(3.56) kf k PW �s;p0CH1 � k QRf k PW �s;p0CL1 :

Now consider some � > 0 and define f �. �/ WD f .� �/. It is easy to see that for t WD
��sCd=p (see (2.2)),

kf �k PW �s;p0CH1 D �
�dKt .f; PW

�s;p0 ;H 1/;

and in a similar way,

k QRf �k PW �s;p0CL1 D k.
QRf /�k PW �s;p0CL1 D �

�dKt . QRf; PW
�s;p0 ; L1/:

Now, we get from (3.56) that

Kt .f; PW
�s;p0 ;H 1/ � Kt . QRf; PW

�s;p0 ; L1/;

for any t > 0, and consequently

(3.57) kf k. PW �s;p0 ;H1/�;q0
� k QRf k. PW �s;p0 ;L1/�;q0

:

Notice that the dual of the closed subspace

V WD
®
QRf j f 2 . PW �s;p

0

; L1/�;q0
¯
;

of .. PW �s;p
0

;L1/�;q0/
1Cd is the space of all functions g that can be decomposed as in (3.53)

with the norm given by

kgkV � D inf
dX
jD0

kgj kX ;

where the infimum is taken over all decompositions of the form given in (3.53). Schemat-
ically, we can write this as

(3.58) V � D X CR1X C � � � CRdX:
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The dual of . PW �s;p
0

;H 1/�;q0 is (see, for instance, (3.46))

(3.59) . PW s;p;BMO/�;q D . PW s;p; PF
0;1
2 /�;q D PB

�;q
q :

By (3.57), (3.58) and (3.59), we get that

(3.60) PB�;qq D X CR1X C � � � CRdX:

Observe that X ,! PB
�;q
q . If all the Riesz transforms are bounded on X , then by (3.60)

we obtain X D PB�;qq , which is not the case. Hence, at least one of the Riesz transforms,
suppose R1, is not bounded on X . Any Rj can be obtained from R1 by a rotation of the
coordinates and we can immediately see that X is invariant to rotations. It follows that
any Rj is unbounded on X . We have proved Proposition 3.26 in the homogeneous case.

Now, let us prove Proposition 3.26 in the case of the inhomogeneous spaces. Consider
some parameters � > 0, n 2 N� and the operator T n

�
defined by

T n� f WD
� X
�n�k�n

Pkf
��

for any Schwartz function f , where Pkf (k 2 Z) are the Littlewood–Paley pieces of f .
Let ˆ 2 C1c .B.0; 2//, with ˆ � 1 on B.0; 1/, be the function such that (see Section 2.1)

bPkf .�/ D .ˆ.�=2k/ �ˆ.�=2k�1// yf .�/:

We get X
�n�k�n

bPkf .�/ D .ˆ.�=2n/ �ˆ.�=2�n�1// yf .�/.

Hence, we have T n
�
f WD .f � &n/

�, where

&n WD . L̂ /2�n � . L̂ /2nC1 :

(Here, . L̂ /�. �/ D ��d L̂ .� �/.)
Using the Littlewood–Paley square function theorem for Lp , it is easy to see that

kT n� f kF s;pt
D ��d=p kf � &nkLp C �

s�d=p
kf � &nk PF s;pt

(3.61)

. ��d=pCn kf k PF s;pt
C �s�d=p kf � &nk PF s;pt

. �s�d=p.1C ��sCn/ kf k PF s;pt
;

where Cn is a constant depending on n, s, p and t . We also have the estimate

(3.62) kT n� f kL1 D kf � &nkL1 � k&nkL1kf kL1 � 2k
L̂ kL1kf kL1 :

From (3.61), (3.62), we get by interpolation that

(3.63) kT n� f k.F s;pt ;L1/�;q
. .1C ��sCn/

1�� ���d=q kf k. PF s;pt ;L1/�;q
;
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for any Schwartz function f , where the implicit constant does not depend on n or �.
Suppose now that

Rj W .F
s;p
t ; L1/�;q ! .F

s;p
t ; L1/�;q

is bounded. Since .F s;pt ; L1/�;q ,! . PF
s;p
t ; L1/�;q , we get

(3.64) ���Cd=q kRjT
n
� f k. PF s;pt ;L1/�;q

. ���Cd=q kT n� f k.F s;pt ;L1/�;q
;

for any Schwartz function f . It is easy to verify that

���Cd=q kRjT
n
� f k. PF s;pt ;L1/�;q

� kRjT
n
1 f k. PF s;pt ;L1/�;q

:

Also, by (3.63), when �!1, we have

lim inf
�!1

���Cd=q kT n� f k.F s;pt ;L1/�;q
. kf k. PF s;pt ;L1/�;q

;

and now (3.64) implies

(3.65) kRjT
n
1 f k. PF s;pt ;L1/�;q

. kf k. PF s;pt ;L1/�;q
;

where the implicit constant does not depend on n. Since RjT n1 f ! Rjf in the sense of
distributions (when n!1), it remains to observe that

kRjf k. PF s;pt ;L1/�;q
� lim inf

n!1
kRjT

n
1 f k. PF s;pt ;L1/�;q

;

and by (3.65) we have reduced the boundedness of Rj on .F s;pt ; L1/�;q to the bounded-
ness on . PF s;pt ; L1/�;q . Now, we can apply the homogeneous case of Proposition 3.26 in
order to complete the proof.

Recall that we have the embeddings

.F
s;p
t ; L1/�;1 ,! .F

s;p
t ; L1/�;q ,! .F

s;p
t ; L1/�;1;

where all the parameters are as in the statement of Proposition 3.26 above. In view of this
embedding, we can strengthen Proposition 3.26 by observing that Rj is not bounded from
.F

s;p
t ; L1/�;1 to .F s;pt ; L1/�;1. Indeed, if

Rj W .F
s;p
t ; L1/�;1 ! .F

s;p
t ; L1/�;1

were bounded, then, since
Rj W F

s;p
t ! F

s;p
t

is bounded, we would get by interpolation that

Rj W .F
s;p
t ; .F

s;p
t ; L1/�;1/1=2;� ! .F

s;p
t ; .F

s;p
t ; L1/�;1/1=2;�

is bounded, where 1=�D .1� �=2/=p. Since F s;pt is a space of class C.0;F
s;p
t ;L1/ and

.F
s;p
t ; L1/�;1, .F s;pt ; L1/�;1 are spaces of class C.�; F

s;p
t ; L1/, we get by reiteration

that

.F
s;p
t ; .F

s;p
t ; L1/�;1/1=2;� D .F

s;p
t ; .F

s;p
t ; L1/�;1/1=2;� D .F

s;p
t ; L1/�=2;�:
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This combined with (3.65) gives the boundedness of the operator

Rj W .F
s;p
t ; L1/�=2;� ! .F

s;p
t ; L1/�=2;�;

which, as Proposition 3.26 shows, cannot hold.
To summarize, we have obtained the following result.

Proposition 3.30. Let � 2 .0; 1/, p 2 .1;1/, t 2 Œ1;1�, s 2R be such that 0 < s < d=p.
Then, none of the Riesz transforms is bounded from .F

s;p
t ; L1/�;1 to .F s;pt ; L1/�;1.

4. The complex method

4.1. A nonembedding property

We give now a proof of Proposition 1.7 based on standard trace theory and basic embed-
ding properties of Triebel–Lizorkin spaces.

Proof of Proposition 1.7. By Lemma 2.4 (see (2.10)), it suffices to prove that

F
�;�
t .Rd / 6,! .F s;pq .Rd /; C l .Rd //� :

Suppose by contradiction that

(4.1) F
�;�
t .Rd / ,! .F s;pq .Rd /; C l .Rd //� :

By standard trace theory, we have

TrF �;�t .Rd / D B��1=�;�r .Rd�1/:

Also, since the trace operator Tr WF s;pq .Rd /!B
s�1=p;p
p .Rd�1/, Tr WC l .Rd /!C l .Rd�1/

is bounded, (4.1) implies

B��1=�;�� .Rd�1/ D Tr.F �;�t .Rd // ,! Tr.F s;pq .Rd /; C l .Rd //�(4.2)

,! .TrF s;pq .Rd /;TrC l .Rd //�

D .Bs�1=p;pp .Rd�1/; C l .Rd�1//� :

Thanks to the fact thatC l .Rd�1/ ,!F
l;1
2 .Rd�1/ (recall thatC.Rd�1/ ,! bmo.Rd�1/D

F
0;1
2 .Rd�1/), we have

.Bs�1=p;pp .Rd�1/; C l .Rd�1//� ,! .Bs�1=p;pp .Rd�1/; F l;12 .Rd�1//�

D F ��1=�;��1
.Rd�1/;

and from (4.2), one gets

(4.3) B��1=�;�� .Rd�1/ ,! F ��1=�;��1
.Rd�1/;

where 1=�1 D .1 � �/=p C �=2.
However, since �1 < �, the embedding (4.3) is false (see, e.g., Theorem 3.1.1(i)

in [37]).
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Remark 4.1. Since, as long as 1 < p < 1, the spaces W s;p and W �;� are Triebel–
Lizorkin spaces, Proposition 1.7 gives, in particular, that

.W s;p.Rd /;W l;1.Rd //� ¤ W
�;�.Rd /:

Remark 4.2. Note that we get a similar statement if we consider the corresponding spaces
on Td . Namely, as long as l � 0 is an integer and 1 < p;q <1, if s > 1=p, then (keeping
the notation from the statement of Proposition 1.7)

F
�;r
t .Td / 6,! .F s;pq .Td /;W l;1.Td //� :

In particular, we have

.W s;p.Td /;W l;1.Td //� ¤ W
�;�.Td /;

which easily implies that

.W
s;p

]
.Td /;W

l;1
]

.Td //� ¤ W
�;�

]
.Td /:

Corollary 4.3. Let l � 1 be an integer. Fix some � 2 .0; 1/ and define p WD 1=.1 � �/.
We have

.W l;1.Rd /;W l;1.Rd //� ¤ W
l;p.Rd /:

Proof. Suppose by contradiction that

(4.4) .W l;1; W l;1/� D W
l;p:

Since 1 < p <1, by Milman’s result (see Theorem B in [29]), we have

(4.5) .W l;1; W l;p/� D W
l;p1 ;

for some � 2 .0; 1/, where 1=p1 WD 1 � � C �=p. By (4.4) and reiteration, one can
rewrite (4.5) as

(4.6) .W l;1; W l;1/�1 D .W
l;1; .W l;1; W l;1/� /� D W

l;p1 ;

where �1 WD .1� �/�C � . Using now (4.6) and the reiteration theorem (see Theorem 4.6.1
on p. 101 of [5]), we have

(4.7) .W l;p1 ; W l;1/�2 D ..W
l;1; W l;1/�1 ; W

l;1/�2 D .W
l;1; W l;1/� D W

l;p;

where �1 WD �=�1. However, since 1 < p1 <1, according to Proposition 1.7 (see also
Remark 4.1), we cannot have (4.7). This concludes the proof of Corollary 4.3.

4.2. Some noncomplemented subspaces of .C.T d //N

Consider some function m D .m1; : : : ; mN /WZd ! RN and let us denote by kmk the
function

jmj WD .m21 C � � � Cm
2
N /

1=2:
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By m.r/ we mean the Fourier multiplier whose symbol is m. In other words, for any
trigonometric polynomial f , we have

m.r/f WD .m1.r/f; : : : ; mN .r/f /;

where
mj .r/.e

2�ihn;� i/.x/ D mj .n/e
2�ihn;xi;

for any n 2 Zd and any 1 � j � N .
Fix some s > 0. We say that m is s-admissible if:

(i) for any � 2 .1;1/ and any trigonometric polynomial f on Td , we have

km.r/f kL�.Td / �� kjrj
sf kL�.Td /I

(ii) there exists N[ < N such that m[ WD .m1; : : : ; mN[/ depends only on the first d[
coordinates (n1; : : : ; nd[ ) for some d[ < d and, for any trigonometric polynomial f
on Td[ ,

km.r/f kbmo.Td[ /
� kjrj

sf kbmo.Td[ /
:

Given a vector space X of distributions on Td , we denote by Gm.X/ the vector space

Gm.X/ WD
®
m.r/g j g 2 D 0.Td / such that m.r/g 2 XN

¯
� XN :

When X is a Banach function space, we endow Gm.X/ with the norm induced by XN .
The spaces Cm.Td /, W mL�.Td / and bmom[.Td[/ are spaces of distributions f

on Td (or Td[ ), for which the following norms are finite:

kf kCm.Td / WD kf kC.Td / C km.r/f kC.Td /;

kf kW mL�.Td / WD kf kL�.Td / C km.r/f kL�.Td /

and
kf kbmom[ .Td[ /

WD kf kbmo.Td[ /
C km.r/f kbmo.Td[ /

;

respectively.
Note that property (i) implies

(4.8) W mL�.Td / D F
s;�
2 .Td /;

for any � 2 .1;1/. Also, by (ii), we can see that

(4.9) bmom[.Td[/ D F
s;1
2 .Td[/:

Lemma 4.4. For m as above and � 2 .0; 1/, we have

.Cm.Td /;W mLp.Td //� ¤ W
mLq.Td /;

for any p 2 .d[=s;1/ and 1=q D �=p. We also have

.Cm] .T
d /;W mL

p

]
.Td //� ¤ W

mL
q

]
.Td /:
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Proof. The argument is similar to the one used in the proof of Proposition 1.7. Suppose
by contradiction that we have

(4.10) W mL�.Td / D .Cm.Td /;W mLp.Td //� :

Since s > d[=p > d[=q, we can write (using (4.8)),

Bs�.d�d[/=p;pp .Td 0/ D Trd[ F
s;p
2 .Td / D Trd[ W

mLp.Td /

and, similarly,
Bs�.d�d[/=q;qq .Td[/ D Trd[ W

mLq.Td /:

Also, we see directly that

Trd[ C
m.Td / ,! Cm[.Td[/:

Using these considerations and (4.10), (4.9),

Bs�.d�d[/=q;qp .Td[/ D Trd[.C
m.Td /; F

s;p
2 .Td //�

,! .Trd[ C
m.Td /;Trd[ F

s;p
2 .Td //�

,! .Cm[.Td[/; F s�.d�d[/=p;pp .Td[//�

,! .bmom[.Td[/; F s�.d�d[/=p;pp .Td[//�

D .F
s;1
2 .Td[/; F s�.d�d[/=p;pp .Td[//�

D F
s�.d�d[/=q;q
t .Td[/;

where 1=t D .1 � �/=2C �=p > 1=q.
As in the proof of Proposition 1.7, we conclude that this embedding is false, and

hence (4.10) must be false. The first nonequality of Lemma 4.4 is proved. The second
nonequality follows immediately from the first one or by slightly modifying the proof of
the first nonequality.

Using this, we can prove the following.

Theorem 4.5. SupposemD .m1; : : : ;mN / is s-admissible for some s > 0. Then the space
Gm.C / is not complemented in .C.Td //N .

Proof. We will prove it by contradiction. Suppose that there exists a bounded onto pro-
jection P W .C.Td //N ! Gm.C /. Define QP W .C.Td //N ! .C.Td //N by

(4.11) QPf WD

Z
Td

��yP�yf dy;

for any f 2 .C.Td //N , where �y is the translation operator of the vector y (�yf .x/ D
f .x C y/, for any x 2 Td ) and dy is the normalized Haar measure on Td . It is easy to
verify that QP is indeed bounded on .C.Td //N . One can also verify that QP W .C.Td //N !

Gm.C / is an onto projection. Indeed, if f 2 Gm.C /, then �yf 2 Gm.C /, and hence
P�yf D �yf , for all y 2 Td . This and (4.11) give that QPf D f , for every f 2 Gm.C /.
Conversely, if f 2 .C.Td //N , using the boundedness of P , we have QPf 2 Gm.C /.
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Now, one can observe that by (4.11) the projection QP is invariant to translations, and
hence it is a Fourier multiplier. In other words, for each n 2 Zd , there exists a matrix
M.n/ D .Mij .n//i;jD1;:::;N such that

bQPf .n/ DM.n/ yf .n/;
for all n. Thanks to the boundedness of QP on .C.Td //N , one gets

(4.12)
 X
n2Zd

M.n/ yf .n/e2�ihn;� i

L1

. kf kL1 ;

for any f 2 .C.Td //N . Let h 2 C.Td / and fix some indices i; j 2 ¹1; : : : ;N º. By setting
f D .0; : : : ; 0; h; 0; : : : ; 0/, with h on the j -th position, the bound (4.12) implies X
n2Zd

Mij .n/ yh.n/ e
2�ihn;� i


L1
�

NX
kD1

 X
n2Zd

Mkj .n/ yh.n/ e
2�ihn;� i


L1

D

 X
n2Zd

M.n/ yf .n/ e2�ihn;� i

L1

. kf kL1 D khkL1 :

Consequently, each operator Mij .r/ is bounded on C.Td /, and by duality, also on
L1.Td /. Hence, by interpolation, each operator Mij .r/ is bounded on Lp.Td / for any
p 2 .1;1/. For such p, this gives that QP is bounded on .Lp.Td //N . Using some standard
density arguments, it is also easy to verify that QP W .Lp.Td //N ! Gm.L

p/ is onto. Fix
some p 2 .1=s;1/.

Note that each f 2Gm.D/ can be written as f Drrg for some g 2D.Td /. Consider
the operator ‰WGm.D/! D.Td / defined by

‰.m.r/g/ D g � yg.0/:

We have that ‰ maps Gk.C / to Cm] .T
d /, respectively, Gm.Lp/ to W mL

p
] .T

d /, iso-
metrically. Hence, QP‰W .C.Td //N ! Cm] .T

d / and QP‰W .Lp.Td //N ! W mL
p
] .T

d /

are bounded operators. Note that operator E D ‰�1 ı � (where � is the canonical embed-
ding �WGm.C /! .C.Td //N and �WGm.Lp/! .Lp.Td //N ) is bounded from Cm] .T

d /

to .C.Td //N and fromW mL
p
] .T

d / to .Lp.Td //N . Also,E is an extension for QP‰, i.e.,
QP‰ ıE D id on Cm] .T

d /CW mL
p
] .T

d /.
Using this, by the retraction method, we get that, for any � 2 .0; 1/,

.Cm] .T
d /;W mL

p

]
.Td //� D QP‰..C.T

d //N ; .Lp.Td //N /� D QP‰.L
q.Td //N ;

where 1=q D �=p.
Note that, by complex interpolation, QP is bounded on

..C.Td // N ; .Lp.Td //N /� D .L
q.Td //N ;

and E is bounded from W mL
q
] .T

d / to .Lq.Td //N . Also, as above, one can verify that
QP W .Lq.Td //N !Gm.L

q/ is onto. From this, we get that QP‰.Lq.Td //NDW mL
q

]
.Td /,

which combined with (4.12) gives

.Cm] .T
d /;W mL

p

]
.Td //� D W

mL
q

]
.Td /:

However, by Lemma 4.4 (since s > 1=p), this identity is false.
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A. Appendix

We give below some results concerning the existence and the nonexistence of traces of
Besov spaces on some particular subsets of Rd . All the results we give below are known.
We only state them here in a form that is convenient for us. Before proceeding to these
results, we make some conventions in order to simplify the presentation.

Let � � Rd be a Borel set, and denote by Tr� the corresponding trace operator. Let
V.Rd / be a Banach function space on Rd and let V1.Rd / be the normed space of all
smooth compactly supported functions that are in V.Rd /. The norm on V1.Rd / is induced
by the norm of V.Rd /. We say that V.Rd / has no trace on � if for any Banach function
space Y.�/ on � , the trace operator Tr� is not bounded from V1.Rd / to Y.�/.

In the case where � D Rl � ¹0ºd�l ' Rl , we write Trl instead of Tr� and even Tr
when l D d � 1.

We are now interested in some critical situations. Proposition A.1 below is essentially
known (see, for instance, p. 220 in Section 4.4.3 of [38]). In our applications, one can
use instead Theorem A.2; however, the proof we give below of Proposition A.1 is much
easier, and in some applications, Proposition A.1 suffices (see, for instance, the proof of
Theorem 1.1).

Proposition A.1. Let 1 < p; q < 1 be some parameters and let l be an integer with
0 < l < d . Then the space B l=p;pq .Rd / has no trace on Rd�l .

Proof. Note that if l � 2, by the standard theory of traces, we have that

Trd�lC1B l=p;pq .Rd / D B1=p;pq .Rd�lC1/:

Hence, it suffices to prove Proposition A.1 in the case l D d � 1.
As long as 0 < s < 1, we have the following equivalent of the norm of Bs;pq .Rd / (see,

for instance, Theorem 7.47 on p. 242 of [2]):

(A.1) kvkBs;pq .Rd / � kvkLp.Rd / C

� Z
B.0;1/

jhj�sq k�hvk
q

Lp.Rd /

dh

jhjd

�1=q
;

for any Schwartz function v, where B.0; 1/ is the open unit ball in Rd and

�hv.x/ WD v.x C h/ � v.x/:

Consider some Banach function space Y.Rd�1/ and let F 2 C1c .R
d�1/ be a non-

trivial function in Y.Rd�1/. Consider also some  2 C1c .R/. Setting u WD F ˝  , we
see that

(A.2) kuk
B
1=p;p
q .Rd /

. kF k
B
1=p;p
q .Rd�1/

k k
B
1=p;p
q .R/

:

In order to prove (A.2), we apply (A.1) for s D 1=p. We have

(A.3) kukLp.Rd / D kF kLp.Rd�1/ k kLp.R/:
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Also, since

�hu.x
0; xd / D .F.x

0
C h0/ � F.x0// .xd C hd /C F.x

0/. .xd C hd / �  .xd //

D .�h0F.x
0// .xd C hd /C F.x

0/.�hd .xd //;

the triangle inequality allows us to bound the term� Z
B.0;1/

jhj�q=pk�huk
q

Lp.Rd /

dh

jhjd

�1=q
by � Z

B.0;1/

jhj�q=pk�h0F k
q

Lp.Rd�1/

dh

jhjd

�1=q
k kLp.R/(A.4)

C

� Z
B.0;1/

jhj�q=pk�hd k
q

Lp.Rd�1/

dh

jhjd

�1=q
kF kLp.Rd /:

Since Z 1

0

jhj�q=p�d dhd � jh
0
j
�q=p�dC1;

we have� Z
B.0;1/

jhj�q=p k�h0F k
q

Lp.Rd�1/

dh

jhjd

�1=q
(A.5)

.
� Z

B 0.0;1/

� Z 1

0

jhj�q=p�d dhd

�
k�h0F k

q

Lp.Rd�1/
dh0

�1=q
�

� Z
B 0.0;1/

jh0j�q=p�dC1 k�h0F k
q

Lp.Rd�1/
dh0

�1=q
. kF k

B
1=p;p
q .Rd�1/

;

where B 0.0; 1/ is the open unit ball in Rd�1.
In a similar way, using the fact thatZ

B 0.0;1/

jhj�q=p�d dh0 � jhd j
�q=p�1;

we obtain

(A.6)
� Z

B.0;1/

jhj�q=p k�hd k
q

Lp.Rd�1/

dh

jhjd

�1=q
. k k

B
1=p;p
q .R/

:

From (A.4), (A.5) and (A.6), we get� Z
B.0;1/

jhj�q=p k�huk
q

Lp.Rd /

dh

jhjd

�1=q
. kF k

B
1=p;p
q .Rd�1/

k k
B
1=p;p
q .R/

;

which, together with (A.3), gives (A.2).
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Now suppose that the trace operator is bounded from V.Rd / to Y.Rd�1/. Since,
Tru.x0/ D F.x0/ .0/, we can write

kF kY j .0/j . kukB1=p;pq .Rd /
:

Using (A.2) and the fact that kF kY > 0 (note that F is not trivial), we get

j .0/j . k k
B
1=p;p
q .R/

;

for any  2 C1c .R/, where the implicit constant does not depend on  . However, by a
translation argument, this implies the false embedding B1=p;pq .R/ ,! C.R/.

Consider some Borel set � � Rd and some number ı 2 .0; d/. We say that � is ı-full
if it is of Hausdorff dimension ı and there exist two constants c1; c2 > 0 such that

c1R
ı
� H ı.B.x;R/ \ �/ � c2R

ı ;

for any x 2 Rd and any R > 0, where H ı is the ı-Hausdorff measure. It is easy to see
that for any ı 2 .0; d/, there exist full Borel subsets of Rd of Hausdorff dimension ı.

For such subsets we have the following result borrowed from Theorem 3.3.1(ii) in [7]
and Proposition 2.9 in [8].

Theorem A.2. Let � � Rd be a Borel set that is ı-full for some ı 2 .0; d/. Then,

(i) for any 0 < p <1 and 0 < q � min.p; 1/, we have that

Tr�B.d�ı/=p;pq .Rd / D Lp.�/;

where Lp.�/ is considered with respect to the ı-Hausdorff measure.

(ii) If 0 < p < 1 and 1 < q < 1, then C1c .R
d n �/ is dense in B.d�ı/=p;pq .Rd /.

It follows that B.d�ı/=p;pq .Rd / has no trace on � .

Let us justify the last assertion of (ii). Suppose Y.�/ is Banach space of functions on �
and pick some F 2 C1c .R

d / such that Tr�F 2 Y.�/ and Tr�F is not identically 0. Then
we have that the operator Tr� cannot be bounded from B.d�ı/=p;pq .Rd / to Y.�/. Indeed,
since C1c .R

d n �/ is dense in B.d�ı/=p;pq .Rd / and F 2 B.d�ı/=p;pq .Rd /, there exists a
sequence .Fn/n�1 of functions in C1c .R

d n �/ such that

(A.7) kF � FnkB.d�ı/=p;pq .Rd /
! 0 when n!1.

If the operator Tr� is bounded from B
.d�ı/=p;p
q .Rd / to Y.�/, then we must have

kTr�F kY.�/ D kTr�.F � Fn/kY.�/ . kF � FnkB.d�ı/=p;pq .Rd /
;

for any n � 1, and by (A.7), we get that Tr�F � 0, which contradicts the choice of F .
The part (i) of Theorem A.2 is a direct consequence of Theorem 5.9 in [7]. The part (ii)

of Theorem A.2 is a direct consequence of Proposition 3.16 in [8]. We mention that both
parts (i) and (ii) hold in a more general context, namely, when � is assumed to be an h-set
satisfying the porosity condition (see, for instance, Definition 2.8 in [8] for a definition of
porosity and Proposition 2.9 in [8] for a characterization that shows, in particular, that any
ı-full Borel set with ı 2 .0; d/ satisfies the porosity condition).
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