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The angular derivative problem
for petals of one-parameter semigroups in the unit disk

Pavel Gumenyuk, Maria Kourou and Oliver Roth

Abstract. We study the angular derivative problem for petals of one-parameter semi-
groups of holomorphic self-maps of the unit disk. For hyperbolic petals, we prove
a necessary and sufficient condition for the conformality of the petal in terms of
the intrinsic hyperbolic geometry of the petal and the backward dynamics of the
semigroup. For parabolic petals, we characterize conformality of the petal in terms
of the asymptotic behaviour of the Koenigs function at the Denjoy—Wolff point.

Dedicated to the memory of Professor Larry Zalcman

1. Introduction

One-parameter semigroups of holomorphic self-maps of the unit disk D := {z eC : |z| < 1}
have been studied for more than a century, but many key properties regarding their bound-
ary and asymptotic behaviour have been established only in the last two decades. Apart
from being interesting in their own right, one-parameter semigroups in the unit disk act
as pivotal role models for other complex dynamical systems involving holomorphic func-
tions of one or several complex variables —in the continuous as well as the discrete setting.
A comprehensive overview of one-parameter semigroups in the unit disk spanning from
the basic theory to the numerous recent achievements can be found in the monograph [14].

Traditionally, understanding the forward dynamics of the orbits of a dynamical sys-
tem has been of particular interest. However, in recent years the study of the backward
dynamics of one-parameter semigroups, see e.g. [15, 26, 32], as well of discrete com-
plex dynamical systems (in one and several complex variables), see e.g. [2,5, 12,35], has
become another focal point of research.

One of the most striking results about the forward dynamics of one-parameter semig-
roups of the unit disk D is the continuous version of the celebrated Denjoy—Wolff theorem.
It guarantees that all forward orbits of the semigroup converge to the same point 7€ DUJID),
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the Denjoy—Wolff point of the semigroup, or DW-point, for short. In contrast, the back-
ward flow of a one-parameter semigroup is defined only on a proper subset ‘W of D,
the so-called backward invariant set. The connected components of the interior of ‘W
are simply connected domains, and are referred to as the perals of the semigroup. Each
petal A is associated to a specific boundary point o € dD. This boundary point o plays
a similar role for the backward dynamics of the semigroup as the DW-point plays for
the forward dynamics: o is the common limit of all backward orbits starting inside the
petal A. Bearing in mind the conventional terminology in dynamical systems (see, e.g.,
p- 225 in Section 17, Chapter IV, of [4]), we call o the a-point of the petal A. We refer to
Section 2 for the precise definition of these concepts, and in particular to the pioneering
papers [15, 18,26].

The goal of this paper is to study the angular derivative problem for the petals A
of one-parameter semigroups at their c-points o. The corresponding angular derivative
problem related to the forward dynamics has recently been studied in [8, 10,22,31].

The angular derivative problem for general simply connected domains G is concerned
with the existence of a finite non-zero angular derivative of a Riemann map f from the
unit disk D onto G at a given boundary point £ € 0. It can be shown that the existence of
the angular derivative of f* does not depend on the choice of the conformal map f but only
on the domain G itself. Accordingly, when this angular derivative condition is satisfied at a
boundary point £, we say that the domain G is conformal at f(£). In his thesis [3], Ahlfors
raised the question' of finding necessary and sufficient geometric conditions on G near the
boundary point £, so that G is conformal at f(§). This is the angular derivative problem. It
has attracted much interest, and continues to do so. Seminal contributions have been given
by Rodin and Warschawski [40,41], Jenkins and Oikawa [30], followed by many others,
e.g., Burdzy [16], Carroll [17], as well as very recently by Betsakos and Karamanlis [11].

We can now state our main result. It is concerned with hyperbolic petals, i.e., petals A
for which the a-point o is different from the Denjoy—Wolff point. The simpler case
of parabolic petals, i.e., petals for which the a-point coincides with the Denjoy—Wolff
point, will be discussed in Section 5. We denote the density of the hyperbolic metric
of a domain G by Ag. We adopt the convention from [6, 33], so the hyperbolic metric
of a domain G is the unique complete conformal metric on G with constant negative
curvature —1. In particular, the density of the hyperbolic metric of the unit disk D is

2
Ap(z) = T—F

Theorem 1.1. Let A be a hyperbolic petal of a non-trivial one-parameter semigroup (¢;)
in the unit disk, and let zy € A. Then the petal A is conformal at its o-point o if and

only if

0 Aa(zo)
(1) / R Ceresy |¢;<zO>|> A < oo

In this case, the integral (1.1) converges for every zo € A; in fact, locally uniformly in A.

“Welche geometrischen Eigenschaften sollen das Gebiet G kennzeichnen, um dass die so bestimmte Funk-
tion im Punkt £ eine von Null und Unendlich verschiedene Winkelableitung besitze?”, page 47 in [3].
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We note that the second named author and Zarvalis showed recently, see Theorem 1.3
in [32], that as t — —o0,

(1.2) Ap(¢:(2)) 1¢,(2)| /" Aa(z) locally uniformly in A.
So Theorem 1.1 relates the rate of convergence in (1.2) with the conformality of A at o.

Remark 1.2. It is easy to construct examples of hyperbolic petals A such that dA coin-
cides in a neighbourhood of its a-point o with dD, see e.g. Examples 7.4 and 7.8 in [15];
clearly, in such a case, A is conformal at 0. An example of a non-conformal hyperbolic
petal based on certain subtle properties of the hyperbolic distance was given in Section 8
of [15]. In Remark 2.22, we will describe a simple device which allows a painless con-
struction of numerous examples of conformal as well as non-conformal hyperbolic petals.

The proof of Theorem 1.1 is long and is therefore divided into several steps. We
shall require various tools from the general theory of one-parameter semigroups of the
unit disk, in particular the Berkson—Porta theory, holomorphic models and pre-models
and basic properties of petals. These tools are collected and explained in a preliminary
Section 2. This section also thoroughly introduces the angular derivative problem. In Sec-
tion 3, we state and prove two technical, but crucial auxiliary results: an integral criterion
for conformality of domains which are starlike at infinity, and a lemma on convergence of
conformal mappings on the boundary. The proof of Theorem 1.1 is given in Section 4, and
is divided into several steps. In Subsection 4.1, we state a conformality criterion for the
Koenigs domain €2 of the semigroup (Theorem 4.1), and show how it implies Theorem 1.1.
In Subsection 4.2, we prove the if-part of Theorem 4.1 by establishing in Theorem 4.2 a
pointwise lower bound, given in Euclidean terms, for the quotient of the hyperbolic dens-
ities of a domain €2 which is starlike at infinity and a maximal strip contained in £2. The
proof of this lower bound uses a mixture of tools from geometric function theory such as
monotonicity of hyperbolic densities, Green’s function, harmonic measure and kernel con-
vergence. The only-if part of Theorem 4.1 is proved in Subsection 4.3 by comparing the
Koenigs domain 2 of (¢;) with carefully chosen slit domains and using potential-theoretic
tools. The proof of Theorem 4.1 is finished in Subsection 4.4, where we show that the pre-
viously obtained pointwise estimates in fact hold locally uniformly. In Section 5, we state
and prove a conformality criterion for the case of a parabolic petal, see Theorem 5.1. In
the concluding Section 6, we discuss how the results of this paper are related to several
other recent results, in particular the conformality conditions obtained by Betsakos and
Karamanlis [11]. In addition, we indicate some potential alternative approaches to the
conformality problem for petals, and raise several questions that remain open.

2. Preliminaries

2.1. One-parameter semigroups in the unit disk

Here we briefly recall the main definitions and basic facts concerning one-parameter
semigroups of holomorphic functions. For more details and proofs of the statements cited
in this section, we refer interested readers to the monographs [14, 25, 42], to Chapter 4
in [1], and to Chapter 4 in [24].
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For a domain D C C and a set £ C C, we denote by Hol(D, E) the set of all holo-
morphic functions in D with values in E. As usual, we endow Hol(D, E) with the topology
of locally uniform convergence. Then Hol(D, D) becomes a topological semigroup with
respect to the composition operation (¢, 1) + ¢ o .

Definition 2.1. A one-parameter semigroup in the unit disk D is a continuous semigroup
homomorphism [0, +00) > ¢ + ¢; € Hol(D, D) from the semigroup ([0, +-00), +) with
the Euclidean topology to the semigroup Hol(D, D).

Equivalently, a family (¢;);>0 C Hol(ID, D) is a one-parameter semigroup if and only
if it satisfies the following three conditions: (i) ¢9 = idp; (i1) ¢s © ¢ = P54, for any
s,t = 0; (iii) ¢; — idp in Hol(D, D) as t — 0*. Thanks to Montel’s normality criterion,
see e.g. Theorem 1 in Section I1.7 of [27], the continuity condition (iii) is equivalent to the
pointwise convergence: ¢;(z) — z as t — 0T for each z € D. At the same time, in the
presence of (i) and (ii), condition (iii) is equivalent to a much stronger property: the map
(z,t) > ¢;(z) is jointly real-analytic in D x [0, +00). Moreover, every one-parameter
semigroup in D represents the semiflow of a (uniquely defined) holomorphic vector field
G:D — C, known as the infinitesimal generator of (¢;). This means that for each fixed
z € D, the function t > ¢(z) is the unique solution to the initial value problem

d
2.1 adn(Z) =G(¢i(2)), t=20; ¢o(z) =1z.
Using conditions (i) and (ii), one can easily deduce from (2.1) the following PDE:

0
2.2) % =G@)(z). =0, zeD.
Remark 2.2. It follows from the standard uniqueness results for solutions of ODEs that

every element of a one-parameter semigroup is an injective map.

Remark 2.3. The definition of a one-parameter semigroup can be literally extended to an
arbitrary domain D C C. However, this yields an interesting class of objects only if D
is conformally equivalent to D or to D* := DD \ {0}, with the latter case easily reduced
to the former one; see e.g. [14], Section 8.4. Clearly, given that D admits a conformal
mapping f onto D, a family (¢;);=0 C Hol(D, D) is a one-parameter semigroup in D if
and only if the mappings f o ¢; o ! form a one-parameter semigroup in ID.

Another way to modify the definition of a one-parameter semigroup is to allow negat-
ive values of the parameter ¢. In such a case, we have ¢; o ¢_; = idp for any ¢ € R, and
hence we end up with a one-parameter group of automorphisms (¢)seRr-

The classical representation formula due to Berkson and Porta [7] characterizes infin-
itesimal generators in [D as functions of the form

2.3) Giz)=(t—-2z2)(1—-72)p(z), zeD,

where p is a holomorphic function in D with Re p = 0 and 7 is a point in the closure of D.
The function p is uniquely determined by G. The same concerns t unless G = 0.

In order to exclude from consideration certain degenerate cases, we accept the follow-
ing assumption.
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Assumption. The one-parameter semigroups (¢;) we consider in this paper do not extend
to one-parameter groups of automorphisms.

This assumption is equivalent to requiring that there exists no ¢ > 0 such that ¢, is an
automorphism.

The distinguished point t in the Berkson—Porta representation formula (2.3) has a very
clear dynamic meaning: ¢;(z) — 7 locally uniformly in D as t — 4oc0. If € D, then

(2.4) d(t) =71, P/(x)=eM, A:=G'(r), forall 1 =0,

withRe A < 0.

If T € 0D, then (2.4) holds in the sense of angular limits. Here and in what follows,
given a holomorphic function f:D — C and a point ¢ € dD, by f(¢) we denote the
angular limit Zlim;_,¢ f(z) € C := C U {oo}. Similarly, if f(¢) does exist finitely, then
by f'(¢) we denote the angular derivative

f@ = 1@
z—¢

Remark 2.4. One special important case, in which the existence of the angular derivative
is guaranteed, is when f € Hol(D, D) and f(¢) exists and belongs to dD, see e.g. Propo-
sition 4.13 on p. 82 of [37]. In this case, { is called a contact point for the self-map f; the
angular derivative f'({) at a contact point does not vanish, but it can be infinite.

1) =< fim,

A boundary fixed point of f € Hol(ID, D) is a contact point { such that f({) = ¢.
A boundary fixed point (or more generally, a contact point) ¢ is said to be regular if
f'(¢) # oo. Boundary fixed points which are not regular are also called super-repulsive
(or super-repelling) fixed points of f. The angular derivative f”(¢) at a boundary regular
fixed point ¢ is a positive real number, and further, two subcases are distinguished: the
boundary fixed point ¢ is repulsive (or repelling) if f’({) > 1, while for f/(¢) € (0, 1], it
is called attracting.

Remark 2.5. It is worth mentioning that for elements of one-parameter semigroups, the
angular limit ¢, (¢) exists at every point ¢ € 9D, see [20,28]. Moreover, the orbit ¢ — ¢, ()
is continuous for each ¢ € dD. At the same time, the extensions of the holomorphic maps
¢:(+) to 0D by angular limits are not necessarily continuous on dD.

According to the Denjoy—Wolff theorem, a self-map f € Hol(ID, D) \ {idp} either has
an attracting fixed point 7 € dD and no fixed points in D, or it has a fixed point € D and
no attracting fixed points on dD. In both cases, 7 is unique and it is called the Denjoy—Wolff
point (or DW-point for short) of the self-map f.

From (2.4), it is clear that 7 in the Berkson—Porta representation formula (2.3) is the
DW-point for each ¢, with ¢t > 0. If T € D, then (¢, ) is said to be elliptic. If t € dD, then
A <0, and depending on whether A < 0 or A = 0, the one-parameter semigroup (¢,) is
said to be hyperbolic or parabolic, respectively. By the continuous version of the Denjoy—
Wolff theorem, ¢; (z) — t locally uniformly in D as t — +o0.

Similarly to the DW-point, repulsive (and super-repulsive) fixed points are common
for all elements of a one-parameter semigroup. More precisely, o € dD is a repulsive (or
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super-repulsive) fixed point of ¢, for some ¢ > 0 if and only if it is a repulsive (respective-
ly, super-repulsive) fixed point of ¢, for all r > 0; see e.g. [20].

Fixed points of a one-parameter semigroup can be characterized in terms of the infin-
itesimal generator. It is known [19] that o € D is a boundary regular fixed point of (¢;)
if and only if G(0) = 0 and A := G'(0) exists finitely; see also Section 12.2 in [14]. In
such a case, A € R and ¢/ (0) = e*" forall ¢ > 0. Clearly, if A > 0, then o is a repulsive
fixed point; otherwise, i.e., if A < 0, then o is the DW-point of (¢;).

The following remark contains a useful construction indicating that every elliptic one-
parameter semigroup, which is not a group, is correlated with a unique non-elliptic one
parameter-semigroup.

Remark 2.6. Suppose that (¢;) is an elliptic semigroup with the DW-point 7 € . Then
(¢¢) can be regarded as a one-parameter semigroup in D \ {z}. Consider the covering map
ToC:D— D\ {r}, where C(z) := exp(— }J_FZ) and T(w) := (w + v)/(1 + Tw). Itis
known, see Section 2 in [28], that there is a (unique) one-parameter semigroup (¢;) which
is a lifting of (¢;) with respect to C o T, i.e., such that ¢ o T o C =T o C o ¢, for
all + = 0. Further details and application of the above construction follow in the proof of
Theorem 1.1.

2.2. Holomorphic models and Koenigs function

It is known, see e.g. Section 9.2 of [14] or [13], that any one-parameter semigroup admits
a holomorphic model (29, h, L;). This means that Q¢ C C is a simply connected domain,
referred to as the base space, h:ID — Qg is a injective holomorphic map, and (L;) is a
one-parameter group of holomorphic automorphisms of €2¢ with the following two prop-
erties:

2.5) ho¢, =L;oh, forallt=0;
(2.6) | L/(@) = Q0. where Q := h(D).

t<0

Up to a naturally defined isomorphism, a holomorphic model for a given one-parameter
semigroup is unique.

The theory which shall be presented in the current and the upcoming sections can also
be generalized (with appropriate modifications) to the case of an elliptic one-parameter
semigroup, which is not an elliptic group. Taking Remark 2.6 into consideration, from
this point onward, we can safely consider only non-elliptic one-parameter semigroups
(i.e., hyperbolic or parabolic).

Non-elliptic one-parameter semigroups admit holomorphic models for which L,(z) =
z+t,t € R, and Q is the whole C, or a half-plane, or a strip with €2y composed of one
or two lines parallel to R. For such holomorphic models, equation (2.5) becomes Abel’s
functional equation

2.7 h(¢:(z)) = h(z) +t forallz e Dandallt = 0.

The function # is called the Koenigs function of (¢;), and it is unique up to an additive
constant. The set Q := h(ID) C Qg is called the Koenigs (or sometimes, planar) domain
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of (¢¢). Abel’s equation implies an important property of Q2: for every of its points w, the
Koenigs domain contains the ray {w + ¢:¢ = 0}. Such domains are said to be starlike at
infinity.

Many dynamical properties of (¢;) are encoded in the geometry of the corresponding
Koenigs domain 2. Moreover, any starlike-at-infinity domain 2 different from the whole
plane is the Koenigs domain of a non-elliptic one-parameter semigroup. This is often
used to construct examples of one-parameter semigroups with given behaviour, see e.g.
Remark 2.22 below.

Definition 2.7. We denote by S the “standard” horizontal strip {z : |Imz| < 7/2}, and
more generally we denote S(a,b) :={z:a <Imz < b} fora,b € R witha < b. Let Q
be the Koenigs domain of a non-elliptic one-parameter semigroup (¢;). A strip S(a, b)
contained in € is said to be a maximal strip for (¢,) if S(a,b) C S(a’,b’) C 2 holds only
for (a’,b’) = (a, b).

It is easy to see that the maximal strips defined above are connected components of
the interior of (7,5 2 + 7.

Remark 2.8. It is known [18] that there exists a one-to-one correspondence between
the repulsive fixed points o € dD of (¢,) and the maximal strips in the Koenigs domain
of (¢;). If S is a maximal strip for (¢;) and w € S, then h~!(w + t) tends, as t — —oo0,
to the corresponding repulsive fixed point o. Moreover, the width v(S) of the maximal
strip S is related to the angular derivative at o: namely, v(S)G'(0) = 7.

2.3. Backward orbits, invariant petals, and pre-models

In this section, we follow the terminology from [15]. For the proofs of statements quoted
below, we refer the reader to the same source. Let us denote by dp the hyperbolic distance
in a hyperbolic domain D.

Definition 2.9 (Definition 3.1 in [15]). A continuous curve y: [0, +00) is called a back-
ward orbit of a one-parameter semigroup (¢, ) if for any ¢ > 0 and any s € (0, ¢), we have
¢s(y(t)) = y(t —s). A backward orbit y is said to be regular if

limsup dp(y(2), y(t + 1)) < 4o00.

t—>—+o00
Remark 2.10. Let (¢;) be a non-elliptic one-parameter semigroup in D. Fix z € D. It is
easy to see that the following three conditions are equivalent:

(i) there exists a backward orbit y with y(0) = z;
(i) zeW:=[);59¢:(D);
(iii) the line {h(z) 4+ ¢ : t € R}, where & is the Koenigs function of (¢;), is contained in
the Koenigs domain 2 of (¢;).
If the above conditions are satisfied, then the backward orbit y in (i) is unique and it is
given by y(1) := ¢; 1(z) = h=1(h(z) — 1) for all t = 0. Moreover, this backward orbit y
is regular if and only if z e W°.

Remark 2.11. The negative iterates ¢—, := ¢; ', t >0, are well-defined and holomorphic
in ‘W°. Thus, for z € W°, the differential equations (2.1) and (2.2) are valid for all ¢ < 0.
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Definition 2.12. The set W in Remark 2.10 is called the backward invariant set of (¢;).
Each non-empty connected component of 'W° is called a petal.

Every petal A is a simply connected domain and (¢;|A)rer is a one-parameter group
of automorphisms of A. The boundary of A contains the DW-point t of (¢;). All regular
backward orbits that lie in a petal A converge to the same boundary fixed point of (¢;),
which lies on the boundary of the petal. We call this unique limit point the a-point of the
petal A. The following dichotomy holds:

(P) either the a-point of the petal A coincides with t and it is the only fixed point of (¢);)
contained in dA;

(H) or dA contains exactly two fixed points of the semigroup: the DW-point t and a
repulsive fixed point o, which is the o-point of the petal A.

The case (P) arises only if the one-parameter semigroup is parabolic. In this case, the
image h(A) of the petal A with respect to the Koenigs function 4 is a half-plane bounded
by a line parallel to R; it is maximal in the sense that there exist no half-plane H # h(A)
such that i(A) C H C Q.

In case (H), the petal A is said to be hyperbolic and h(A) coincides with the maximal
strip corresponding to the repulsive fixed point ¢ in the sense of Remark 2.8. Moreover,
there is a one-to-one correspondence’ between the repulsive fixed points and the hyper-
bolic petals, as the pre-image #~!(S) of any maximal strip S is a hyperbolic petal. In
what follows, the hyperbolic petal corresponding to a given repulsive fixed point o will be
denoted by A(0).

The Koenigs function can be regarded as a global change of variables reducing the
dynamics of (¢;) to the canonical form w — w + ¢. When studying dynamics of the one-
parameter semigroup in a petal A, instead of the holomorphic model, it is more convenient
to work with the so-called pre-model. This notion has been introduced for discrete itera-
tion in [34]. The definition below is a slight modification of that from Definition 3.8 in [15]
combined with Remark 3.9 in [15]. We denote by H the right half-plane {z € C : Rez > 0}.

Definition 2.13. Let o € dD be a repulsive fixed point of a one-parameter semigroup (¢;)
with associated infinitesimal generator G. The triple (H, v, Q) is called a pre-model
for (¢;) at o if the following conditions are met:

(i) foreacht =0, Q; is the automorphism of H given by Q;(z) := e*'z, where A :=
G'(0);

(i1) the map ¥: H — D is holomorphic and injective, Z limy,_,o ¥ (w) = o, and ¥ is
isogonal at 0, i.e.,

(2.8) Z lim Arg

w—0

1 -0y (w) _o:
w - ’

(iii) Yo Q; = ¢y oy forall t = 0.

2In the case of non-elliptic one-parameter semigroups, this one-to-one correspondence was discovered by
Contreras and Diaz-Madrigal [18]. Similar results for elliptic and hyperbolic one-parameter semigroups were
independently established by Elin, Shoikhet and Zalcman in [26]. A proof covering all the cases and more
details can be found in Section 4 of [15].
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Remark 2.14. It is known (Theorem 3.10 in [15]) that every one-parameter semigroup, at
each repulsive fixed point o, admits a pre-model unique up to the transformation v (w)
¥ (cw), where ¢ is an arbitrary positive constant. Moreover, ¥ (H) is the hyperbolic petal
A(o) with a-point 0. The map ¥ can be expressed via the Koenigs function & of (¢;).
Namely, if the strip #(A(0)) = S(a, b), then the map ¥ in the pre-model for (¢;) at o is
given by

Y(w) = h_l(bz;ﬂalogw + liz‘li +s), w € H,

where s is an arbitrary real constant.

Remark 2.15. One important consequence of the facts mentioned in Remark 2.14 is that
every backward orbit y starting from a point z in a hyperbolic petal A(o) converges to o
non-tangentially and with a definite slope, i.e., there exists the limit

0(z) :=  Jm Arg(l — 0oy (1)),

with 8(z) € (—n/2,7/2).

2.4. Conformality of a domain at a boundary point

The geometry of Koenigs domains of non-elliptic one-parameter semigroups is strongly
affiliated to the notion of conformality in the “strip normalization” studied in detail, e.g.,
in [41].

Definition 2.16. Let S := S(a, b) be a maximal strip contained in a domain €2, and let g
be a conformal mapping of 2 onto S(a, b) such that

2.9) Reg(t +iyp) = —o0, ast — —o0,

for some and hence all yo € (a, b). The domain €2 is said to have an angular derivative

or to be conformal at —oo with respect to S if for any € € (0, b — a) there exists the finite

real limit

(2.10) lim g(z)—z, where D(g):={z € S:Rez <0,dist(z,dS) = ¢/2}.
D(g)>z—00

Remark 2.17. Clearly, the map g above is not uniquely defined. However, it is easy to see

that if condition (2.10) holds for one conformal map g of € onto S(a, b) satisfying (2.9),

then (2.10) holds for all such mappings g.

In a different geometric setting, it is natural to consider a similar and closely related
notion of conformality with respect to the unit disk . In this case, we restrict ourselves
to subdomains of D.

Definition 2.18. A simply connected domain U C D is said to be conformal at a point
o € dU N dD with respect to D if there exists a conformal mapping ¢ of D onto U such
that ¢(1) = o in the sense of angular limits and the angular derivative ¢’(1) is finite.

Note that the condition ¢ (1) = ¢ in the above definition means that { = 1 is a contact
point of ¢; hence, the angular derivative ¢’(1) exists and does not vanish, but in general,
can be infinite; see Remark 2.4. To simplify the terminology in the case when U is a petal,
we make the following definition.
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Definition 2.19. Let A(o) be a hyperbolic petal of a one-parameter semigroup (¢p;) with
a-point o. We say that A(o) is conformal if A(o) is conformal at o with respect to D.

Remark 2.20. Note that, in general, there can exist two conformal mappings ¢g, k = 1,2,
of D onto the same domain U C ID such that ¢ (1) = o, k = 1,2, for some o € dD, but
with ¢} (1) = oo while ¢}(1) is finite. This phenomenon may happen if the geometric
point o corresponds to at least two different accessible boundary points of U. However,
this is never the case for petals, see Proposition 4.15 in [15]. Therefore, in order to determ-
ine whether a petal A(o) is conformal it is sufficient to construct just one conformal map ¢
of D onto A(o) with ¢(1) = o in the sense of angular limits and check whether the angu-
lar derivative ¢’(1) is finite. According to Remark 2.14, every one-parameter semigroup
admits a pre-model (H, v, Q,) at each repulsive fixed point o. A conformal map of D
onto A(o) taking 1 to o is given by ¢(z) := ( 1147-2 ) Therefore, a hyperbolic petal A(o)
is conformal if and only if the pre-model (H, v, Q) is regular in the sense that the angular
derivative ¥'(0) is finite. Note that this condition is stronger than the isogonality condi-
tion (2.8), which is also sometimes called semi-conformality; see e.g. Section 4.3 in [37].
Condition (2.8) is satisfied in our context by the very definition of a pre-model.

For a non-elliptic one-parameter semigroup (¢ ), the two versions of the angular deriv-
ative problem introduced above turn out to be equivalent.

Proposition 2.21. In the above notation, a hyperbolic petal A(o) is conformal if and only
if the Koenigs domain 2 is conformal at —oo w.r.t. the maximal strip S(0) := h(A(0)).

Proof. Using conformal automorphisms of D, we may assume that 0 = —1 and 7 = 1.
Denote S := S(0), a := inf,es Imz and b := sup,gImz. Let

L& —(b i/2
e . where L(Z) =7 Z(bﬂ
—d

1= e
The function ¢ maps S conformally onto the disk D in such a way that g(z) — v = 1 as
Rez - +o00,and ¢(z) - 0 = —1 asRez — —o0.

Then g := (h o g)~! is a conformal mapping of £ onto S. Moreover, by Remarks 2.8
and 2.10, for any yg € (a, b), the curve [0, +00) >t — h™!(—t + iyg) is a backward
orbit in A(o) and hence it converges to o as ¢ — +o00. Therefore, g satisfies the normal-
ization (2.9). By the very definition, it follows that Q2 is conformal at —oo with respect
to S if and only if g satisfies condition (2.10).

It is elementary to see that (2.10) is in turn equivalent to the existence of finite angular
derivative at o = — 1 for the holomorphic self-map ¢:D — D defined by ¢ :=q o g o g~ !.
At the same time, we have

¢p=qo(hogq) tog™ =hlog™".
Hence ¢ maps D conformally onto the hyperbolic petal A(c). Using again Remark 2.8,
we see that the radial limit of ¢ at 0 = —1 equals 0. By Lindel6f’s theorem (see e.g.
Theorem 1.5.7 on p. 27 of [14]), the latter means that ¢(0) = o in the sense of angular
limits. According to Remark 2.20, the existence of the finite angular derivative of z
¢(—z) at z = 1 implies that A(c) = ¢(ID) is conformal at o with respect to D, and hence
we obtain the desired result. ]
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Remark 2.22 (Examples of non-conformal hyperbolic petals). With some efforts, an
example of a non-conformal hyperbolic petal was constructed in Section 8 of [15]. We
briefly indicate how one can easily obtain many other examples of conformal and non-
conformal hyperbolic petals. Lemma 3.2, which we prove in the next section, allows one
to construct starlike-at-infinity domains €2 containing a maximal strip S with respect to
which Q is conformal (or non-conformal) at —oco. Let & be a conformal mapping of D
onto . Then A := h~1(S) is a hyperbolic petal for the non-elliptic semigroup (¢, ) given
by ¢, :=h™'o(h+1),t = 0. By Proposition 2.21, the petal A is conformal (respect-
ively, non-conformal). Note that, using the trick described in Remark 2.6, this technique
can be extended to elliptic semigroups as well.

3. Auxiliary results

3.1. Strong Markov property for the Green function

Let D ¢ C be a simply connected domain. Let Gp and wp denote the (positive) Green
function and the harmonic measure for the domain D, respectively; see, e.g., Chapter 4
in [39]. In the course of the proofs, we make use of the following remarkable property of
the Green function Gp, see [38], p. 111.

Lemma 3.1 (Strong Markov property for the Green function). Let Dy and D, be two
simply connected domains with Dy C Dy & C. Then forall z, w € Dy, z # w,

3.1 Gp,(z,w) —Gp,(z,w) = / Gp,(a,z) wp, (w,da),
A

where A == D, N dD;.

In the proof of the main results, we occasionally replace the hyperbolic density with
the conformal radius; the reader may refer to Section 2.1 in [23]. For simply connected
domains D & C, the conformal radius R(zo, D) of D with respect to the point zg € D is
just the reciprocal of the hyperbolic density Ap(zo); namely, R(zo, D) = 2/Ap(20)-

It is further known that Gp(z, w) + log |w — z| — log R(w, D) as z — w € D.
Therefore, (3.1) implies

R(w, D
(w—Z) —/GDZ(a, w) wp, (w,da), w e Dy.

G2 °¢ Rw. D1) Iy

3.2. An integral criterion for conformality of domains starlike at infinity

Let Q be a domain which is starlike at infinity, and let us denote by S = S(a, b) =
{x +iy:a < y < b} a maximal horizontal strip contained in 2.

One of the ingredients of the proof of Theorem 4.1 is a characterization of con-
formality of 2 at the boundary point —oo with respect to S in Euclidean terms. Such
a characterization can easily be deduced from the work of Rodin and Warschawski [41]
and Jenkins and Oikawa [30] as follows.

Fix a point wg = iyg € S, yo € (a, b), and denote

00.1():=a—infl(t) and 68q(¢) :=supl(t)—Db,
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where /(¢) is the connected component of {y:¢ + iy € Q} containing y¢. It is clear that
8q.j(t) =0forallz € R, j = 1,2, because S C 2. We denote

(3.3) Sq(r) :=max{dq,1(1),0e,2(1)} .

Note that 8g 1 (f), 8g,2(¢) and 6 () do not depend on the choice of the base point wy. We
should also note that there might exist # € R such that §g(#) = +o00. Due to maximality
of the strip S inside €2, there always exists a #p € R such that g (¢) < +oo forall ¢t < 1.
In fact, starlikeness of 2 at infinity assures that g is monotonically non-decreasing in
(—o00, tp] and that g (1) — O as t — —o0.

Since the Koenigs function % is defined modulo an additive constant, by shifting the
domain €2 along the real axis, in our proofs we may assume without loss of generality that
to = 1. The following lemma relates the conformality of the starlike-at-infinity domain 2
at —oo with respect to the strip S’ with the integrability of the Euclidean quantity §g.

Lemma 3.2. In the above notation, 2 is conformal at —oo w.r.t. the strip S if and only if

0
(3.4) / S0 (t)d < +oo.

Proof. Suppose that (3.4) holds. Let (Q5,)n=0 be a sequence of pairwise disjoint squares
contained in (2 \ §) N {z:Rez < 0} and such that for each Q, one of the sides is con-
tained on 0S. From (3.4), it follows easily that ), _, area(Q,) < +o00. Hence, by The-
orem 2 in [41], Q is conformal at —oo with respect to S

Now suppose that 2 is conformal at —oo with respect to S. Since 2 + x C Q for
any x = 0, the functions 6; := dq,;, j = 1,2, are monotonically non-decreasing. There-
fore, by the implication (i) = (iii) of Theorem 2 in [41], there is an increasing sequence
0=wug <uj; <+ <uy <---, tending to +o00, such that

oo o0
Z(M,H_l —up)? <oo and ZSJ(—unH)z <400, j=1,2.

n=0 n=0
With the help of the Cauchy—Schwarz—Bunyakovsky inequality, it follows that

—Uu

0 o0 n (o)
[ s0a=3 [ 7 50 <> i —ua) 8 i) < 4.
—0o0 n=0 Y "Un+1

n=0

by the monotonicity of §;. |

3.3. A lemma on convergence of Riemann mappings on the boundary

Let (D,) be a sequence of simply connected domains in C and B an open subarc of dD
with the following properties: D C D, and 8 C dD, for each n € N. Denote by oy,
k =1, 2, the end-points of the arc 5.

Lemma 3.3. In the above notation, suppose additionally that each Dy, is a Jordan domain.
Foreachn € N, let f, denote the conformal map of D onto D, normalized by f,(0) =0,
£,/(0) > 0 and extended by continuity to a homeomorphism between the closures. If (D)
converges to D with respect to 0 in the sense of kernel convergence, then f, ' (o}) — o,
k=1,2,asn — +oo.
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Remark 3.4. Requiring that each of the domains D,, is a Jordan domain is not really
essential in the above lemma, but this condition is satisfied in the setting for which we
will apply Lemma 3.3. For more general domains, both the statement of the lemma and its
proof would become more technical. On the other hand, the assumption that D C D, for
all n € N seems to play an important role. Again, in our setting this assumption holds, but
without it the conclusion of Lemma 3.3 may fail as the following example demonstrates.
The sequence of Jordan domains
Dp:={zeC:|z|<l-1}U{zeD:|argz|< L }U{zeD:Rez>0,|z|>1—5} CD
converges to D with respect to O in the sense of kernel convergence. Although the arc
B := {z € dD : Rez > 0} lies on the boundary of D,, for all n € N, and although the
functions f, defined as above converge locally uniformly in D to the identity map, the
pre-images fn_1 (B) shrink as n — + o0 to the point oy = 1 rather than converge to 8.

Proof of Lemma 3.3. Denote g, := f, |, where D denotes the closure of ID. By Cara-
théodory’s kernel convergence theorem (Theorem 1.8 in [37]), (f,) and (g,) converge
locally uniformly in D to the identity mapping. Moreover, the restrictions g,|p can be
extended by the Schwarz reflection principle to conformal mappings g;; of Dg :={z € C:
|z] # 1} U B into C. Recall that g, (0) = 0 for all n € N. Moreover, by the locally uniform
convergence of (g,) in D, the sequence |g;,(0)| is bounded. It follows that the exten-
ded functions g;; form a normal family in Dg and hence g;; — idp locally uniformly
in D g. This fact, however, does not imply on its own the conclusion of the lemma, because
ox & Dg. On the other hand, g,(w) = g, (w) forallw € B and all n € N, and hence we
may conclude that (g,) converges uniformly on any closed subarc of B to the identity
mapping.

Consider the sequence /1, (w) := 09gn (w)/gn(00), w € D, where oy is the midpoint of
the arc 8. Note that 1, (D) C D, h, (8) C dD, and h, (0¢9) = 0¢. Therefore, by Loewner’s
lemma (Proposition 4.15 in [37]), B C h,(B). Since g, (09) — 0y, it is enough to show
that hy, (o) — o as n — 400, k = 1, 2. Suppose this is not the case. Then, passing if
necessary to a subsequence, we may assume that there exists an open arc € on 0D such
that € ¢ B, and

(3.5) € C h,(B) foralln e N.

In particular, &, 1 (€) C D for any n € N. The functions /! are restrictions of the maps
Z + fu(2gn(00)/00) to D. Therefore, arguing as above, we see that h,;! — ide on €.
Since € ¢ B, it follows that 4,1 (€) ¢ B for n € N large enough. To complete the proof,
it remains to notice that the latter conclusion contradicts (3.5). ]

4. Proof of the main result

4.1. Reformulation of the problem

In this section, we reduce Theorem 1.1 to showing that if a domain €2 is starlike at
infinity, then its conformality at —oo with respect to a maximal strip S(a, b) C 2 is equi-
valent to a certain condition on how fast Ao approaches Ag(4,p) along a horizontal ray
{t +iyg:t <0} C S(a,b) ast — —oo. The precise statement of this result is as follows.
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Theorem 4.1. Let @ C C, Q # C, be a domain starlike at infinity and let S := S(a, b)
be a maximal strip contained in Q2. Fix a point wo € S. Then Q2 is conformal at —oo with
respect to S if and only if

A.1) dr < +oo.

/ 0 o As(t + wo)
—00 Aa(f + wo)
In this case, the integral (4.1) converges for every wqy € S'; in fact, locally uniformly in S.

In this subsection, we show that Theorem 4.1 implies Theorem 1.1. This is not difficult
for non-elliptic semigroups (¢b;) in D, but less obvious in the elliptic case. The proof of
Theorem 4.1 will be given in Subsections 4.2 and 4.3.

Proof of Theorem 1.1. First we prove Theorem 1.1 for the case of a non-elliptic semig-
roup (¢;) in D. Differentiating Abel’s equation (2.7) with respect to z, we obtain
(4.2) h'($:(2)) ¢;(2) = h'(2)

for all z € D, t = 0. Moreover, in view of Remark 2.11, the identity (4.2) holds also for
allt < 0if zeWwe.

Denote by €2 the Koenigs domain of (¢;) and by S = S(a, b) the maximal strip in
associated to the a-point o of a hyperbolic petal A = A(o), see Remark 2.8. Then Q
is starlike at infinity and the Koenigs function 4 maps D conformally onto €2 and A(o)
onto S, see Theorem 13.5.5 in [14]. Fix z¢ € A(o). Taking into account that the hyper-
bolic metric is invariant under conformal mappings and using equality (4.2), we see that
the integrand in (1.1) can be written as

Aa(2o) ~log |h'(z0)| s (h(z0)) —log As (h(zo))
AD (91 (20)) |97 (20)| |1 (¢1(20))| A (h (¢ (20))) ¢ (z0)| Ao (h(¢:(20)))’

which is equal for any ¢ € R, according to Abel’s equation (2.7) and Remark 2.11, to

As(h(z0))
Aq(h(zo) +1)

log

log

Furthermore, obviously Ags(%(z¢)) = As(h(z9) + t) for any ¢ € R. Consequently, for
wo := h(zyp), the integral in (1.1) is identical to the integral in (4.1). Thus, for non-elliptic
semigroups, Theorem 1.1 follows from Theorem 4.1 and Proposition 2.21.

Now we show how the elliptic case can be reduced to the non-elliptic case. Consider
a semigroup (¢;) in D with DW-point 7 € . According to Remark 2.6, there exists a
parabolic semigroup (¢;) in D such that for all # = 0,

1
43) ¢psoF=Fogp;, where F:=ToC, C(z):= exp(— +Z), T(w) := w—}:r .
1-— 14+7w

Note that F(¢1) = F(&) if and only if L°"(¢;) = ¢, for some n € Z, where L is the
automorphism of D given by L(¢) := H Y (H(¢) + 2mi), H(z) := (1 + 2)/(1 — z),
and L°" denotes the n-th iterate of L. The semigroup (¢;) satisfies for each ¢ = 0 the
functional equation ¢; o L = L o ¢;. This is clear from the construction given in Section 2
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of [28]. Therefore, if ¢ € ¢, (D) for some ¢t = 0, then ¢, (D) contains all the points ' € D
satisfying F () = F({). With the notation

Wi= (@), U:=[)g:(D),

=0 =0

it follows that

FU) = [ Flg:D) = [ $(FD) = [ ¢ (D \ {x}) = W\ {z}.
= 120 120
Note that A(o) is a simply connected domain and t € dA(0); see Proposition 13.4.2
in [14]. Moreover, by the definition of a petal, A(c) is a connected component of the
interior of ‘W. Since F:D — D \ {t} is a covering map, it follows that there exists a
connected component D of the interior of U such that F maps D conformally (and in
particular, injectively) onto A(c). By the very definition, D is a petal for (¢;).

Moreover, by Proposition 13.4.9 in [14], D is a Jordan domain and dA(c) is locally
connected. It follows, see e.g. Section 2.2 in [37], that Fy := F|p extends continuously
to dD and that F,(dD) = dA(0). Recall that 0 € dA(0). Therefore, there exists a point
¢ € dD such that F,(¢) = 0. Since F is continuous with | F| < 1 in D and since o € 9D,
we have ¢ € 0. We claim that, ¢ # 1. Indeed, let I" be a Jordan arc in D U {1} with one
of the end-points at 1. Since F is continuous in the closure of D, we have F(z) — Fy(1)
as I' 3 z — 1. Taking into account that the only asymptotic value of H 5 ¢ + e~ at oo
is 0, it follows that Fi (1) =t # 0.

Note that F' extends holomorphically to any point of dD \ {1}. Hence F(¢) = 0. As
a consequence, using Remark 2.5, it is easy to see that ¢ is a repulsive fixed point of (¢;).

Thus we have constructed a hyperbolic petal D for (¢;) with a-point ¢ such that F
maps D conformally onto A(c), with F(¢) = o. Since F is holomorphic at ¢ and
F’(g) # 0, the petal D is conformal if and only if the petal A(o) is conformal.

It remains to show that condition (1.1) for (¢;) and a point zo € A(o) is equivalent
to (1.1) with (¢;), A(c), and z¢ replaced by (¢;), D, and &y := F, !(zo), respectively.

First of all since F maps D conformally onto A(c), with F({y) = zo, we have
Ap(¢o) = | F'(¢0)| Aa(o)(20). Furthermore, by (4.3),

F/
Bio) = Flpueo)) and g]Go) = 6](Go) oo
for all # € R. Using these relations, we obtain
Ap (§o) _ 1F'Go)[Maw)(20) _[F'(@: (%))
Ap (¢ (80)) lg: (z0)| A (@:(%0))  1¢7(z0) F' (o)l

_ Ma(o)(Zo) [F'(¢:(50))| Mp (¢¢(20))
A (¢:(20)) |97 (20)] Ap (91 (S0))

_ Ma(o)(Zo) [F' (91 (8o)| Mp (F (91 (80)))
AD (¢:(20)) |97 (z0)] Ap (91 (o))

for all # € R. The backward orbit y(t) := ¢—; (o) of (¢;) converges to ¢ at an exponential
rate, that is,

“4.4)

1
4.5) Jim n log (1 = S¢: (o)) = A € (0, +00),
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see Proposition 13.4.14 in [14], and non-tangentially, see Remark 2.15. Moreover, for any
weD,

Flho(F@) _  [C'@)hoCw) _  pw) _ pw)?

0=1 >
°8 o () g o () 8 Sinh p(w) 6

)

where pu(w) := (1 — |w|?)/(]1 — w|?). The first equality holds because F = T o C with
T € Aut(D), the second one comes from (4.3) by direct calculation, and the inequality
sign can be established by comparing the Maclaurin expansion of sinh(x)/x with that
of e**/6. Note that 1 — |¢; (¢o)|? < 2|1 — Sy (&o)| for all £ < 0, and that |1 — ¢ (¢o)| —
|1 —¢| # 0ast — —oo. Hence, it follows from (4.5) that ffoou(got@o))z dt < +o00, and
so we can conclude that the integral

/0 oy [P @G0 | A (F (01 (60)))
g

. "o (@1 ) a

converges.

In fact, the above integral converges locally uniformly with respect to £y € D because
the limit (4.5) is attained locally uniformly in D, which in turn follows from the fact that
the values of the holomorphic functions

1
D> —log(l=Spi(©). 1<-1.

lie in the strip S, and hence these functions form a normal family in D. In view of (4.4), the
proof that Theorem 4.1 implies Theorem 1.1 for elliptic semigroups is therefore reduced
to the previous case of non-elliptic semigroups. ]

4.2. Proof of the if-part of Theorem 4.1: Condition (4.1) implies conformality

As a matter of taste, we prefer to work with the conformal radius instead of the density of
the hyperbolic metric. Therefore, condition (4.1) in Theorem 4.1 can be rewritten as

/01 R(t + wo, Q)

4.6
(46) o P R(t + w0, S)

dt < +00, wg € S.

In order to simplify notation, throughout the current and the following section we
restrict ourselves to the case Re wg = 0. The following theorem is the key result of this
section. It shows that the integrand in (4.6) can be estimated from below by the Euclidean
quantity §g (¢) introduced in (3.3).

Theorem 4.2. Let Q2 be a proper subdomain of C which is starlike at infinity and such
that the standard strip S = {z € C : |Imz| < 7 /2} is a maximal horizontal strip contained
in Q. Then for any compact set K C (—n/2,7/2), there are constants ¢ > 0and T <0
such that forany y € K,

R(t +iy, Q)

4.7 log ————"——= = c8qlt t<T
4.7) ° R Fiy.S) cda(t)  fora
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It is clear from our previous considerations that Theorem 4.2 implies the “if-part” of
Theorem 4.1. Indeed, if condition (4.1) holds for some wg = iyg € S, yo € (—7/2,7/2),
then Theorem 4.2 and Lemma 3.2 imply that €2 is conformal at —oo.

The proof of Theorem 4.2 is quite long and will be broken into several steps. The idea
of the proof is as follows.

Remark 4.3 (Idea of proof of Theorem 4.2). Recall that H = {z : Rez > 0} denotes the
right half-plane. For § > 0, we consider the enlarged strip

Ss :={z:—g<lmz<%+8}
and the “half-widened” standard strip
S5 := S U (Ss N H).

Fix a point iyg € 2, yo € (—n/2, 7/2). By definition of 62(¢) := 8g 2(¢), see Sub-
section 3.2, and since €2 is starlike at infinity, it follows at once that

S5, T1 C Q.
Thus, by domain monotonicity of the conformal radius,

R(t +iy0.Q) _ oz R(t +1y0, S5,y + 1) — log R(iyo. S5, 1))
R(t +iyo.S) ~ R(t +iyo.S) R(iyo,S)

(4.8) log t <0.
The crux of the proof is to show that the expression on the right-hand side of (4.8) is
bounded below by

R(iyo, Ss,(1))

4.9) log R(v0.5)

at least up to a positive multiplicative constant which depends only on yg but in a fairly
controllable way. The quantity occurring in (4.9) is explicitly computable in terms of §, (¢)
(and yo), and as we shall see, in fact comparable to 6, (¢) locally uniformly with respect
to yo. This provides a lower bound also for the left-hand side in (4.8) in terms of 8, () =
8¢ ,2(t) and then, by symmetry, in terms of 8q (#) = max{dq,1(?), 8q,2(?)}, and (4.7) fol-
lows.

Proposition 4.4. For § > 0, let Og5: (—m/2,7/2) — (0, +00) be defined by

R(y.S7) [ Ry, Sp)\!
4.10 ®s(y) =1 1 .
(4.10) s0) = log 20 (0 Jz(iy,S))
Then
, 1
@.11) lim ;5 = ~
§—0t 2

locally uniformly on (—m /2, 1 /2).
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Remark 4.5. The two quantities R (-, S) and R (-, Sg) occurring in (4.10) do have simple
explicit expressions. In principle, the third quantity R(:, Sy) does also have an explicit
expression, since the conformal map of the unit disk D onto Sy is “explicitly” known, see
formula (5.2.15) in p. 272 of [43]. However, this explicit formula is fairly involved and
seems quite unsuitable for obtaining precise information about R(-, S), which is needed
for proving Proposition 4.4. The proof of Proposition 4.4 below circumvents this difficulty
by making use of the strong Markov property for the Green function, see Section 3.1.

In order to prove Proposition 4.4, we further need several auxiliary lemmas.

Lemma 4.6. Fix some B € (—n/2, m/2), some positive ag < %(7‘[/2 — B), and some
o € (0,ap), and let

h(x):=Gs(if.x+i(%—-a)), xeR.

Then
1 —
(4.12) h(0) = h(x) = h(0) — 2%
cosh x — cos o
forall x € R.

Proof. Letz := x +i(m/2 — «). Using the formula for the Green function of S (see [39],
p- 109), we find

e? + eiP
eZ — eiB =

u —sin(f — a)
u—sin(f + a)
The proof of (4.12) is now elementary. For convenience, we provide the main steps. As
q(1,0) = q(u,) > 1 for any u = 1, we see that the left inequality in (4.12) holds. Since
u — o(u) := (u —sin(B + o)) log g (u, &) is concave with limy ., 0’ (1) = 0, the func-
tion p(u) is increasing and we have

1 —sin(B + «) 1 —sin(B + o)

h(x) =Gs(if,z) =log

%logq(coshx,oz), qu,a) =

1 o) 2 ——— logg(l, ) > . 1 1,
ogq(u.o) = - — sn(p + ) gq(l.a) > —— sin(B + ao) ogq(l.a)
1—
= _ 0% logqg(1,a).
U — Ccos g
The right inequality in (4.12) follows easily. ]

Lemmad4.7. Let B :={e!? :a <0 < BYand B’ :={'? 1o/ <0 < p'}. Let z, z' € D.
Then
lo' —a| + |8 — B| + 2|z — ]

4.13) lop(z, B) —wp(z', B)| <
a(l—r)

3

where r :== max{|z|, |Z/|}.

Proof. Recall that 2rwp (0, -) coincides with one-dimensional Lebesgue measure on the
unit circle dD. Hence

o' —a| + 18"~ Bl
2

(4.14) lop (0, B) — wp (0, B')] <
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To prove (4.13) in the case z’ = z # 0, it is sufficient to apply (4.14) to the arcs T'(8, z)
and T'(8’, z), where T(0,z) := (0 — z)/(1 — 0Z), and take into account that

‘BT(O‘,Z) - 1+ |z| 2

< < for any o € dD.
do I1—|z| 1-—r Y
Finally, to prove (4.13) in the general case, we notice that for any o € dD and 6 € R,

2
1—r

‘ AT (0, z + te'?)

daT (o, z) n ‘BT(O', z)
ot

0z 0z

ol <] <

Hence, |arg T(0,2")/ T (0, z)| < 2|z — z|/(1 — r) for any o € dD. As a consequence,
27 lop (2, B)) —wp(z, B)| < 4|z —z|/(1 —r),

and the general case for the estimate (4.13) follows immediately. ]

Proof of Proposition 4.4. Applying formula (3.2), we immediately get

4.15) M _[GSg(lyvz)wS(ly’dz)»

® RS~ a
where A := {z:Imz = n/2}, and

R(iy.Ss) _

4.16 — =
®-10) R(iy.5})

/ Gs; iy, z) wsy (iy. dz),
BUCy

where B :={z € A:Rez <0}and Cs :={iy : /2 <y <m/2+ 68}
Clearly, we may restrict consideration to small § > 0; namely, we will suppose that

8 €(0,80), where 8 := ;nelllg 1HZ-y).

Fix temporarily y € K and § € (0, §p). By Lemma 4.6 applied with

we have that
h(x) = h(x;y,8) := Gs,(iy,x + in/2)

satisfies inequality (4.12). On the one hand, in combination with the explicit formula from
Table 4.1 in p. 100 of [39]

ws(iy,dz) = 2x) cosy (coshx —siny) 'dx, z=x+in/2€A,
this allows us to estimate the right-hand side of (4.15) from below:

(1 —cosdp) sin 25¢
X
X —cosdp)(coshx + 1)

. . h(O;y,S)f
G dz) =
jf; 530y, 2) ws(iy. dz) 27 r (cosh

4.17) = m(8o) h(0; y,9),
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for all § € (0,8¢) and all y € K, where m(3y) is a positive constant depending only on &p.
On the other hand, in view of (4.12), we have

1
[ Gty 05(5.02) < h0:3.8) [ wsiv.az) = 0. (2 +3)
A A T 2

(4.18) < h(0:y, ) (1 - znﬁ)

The main ingredient of the proof is the following:

Claim 1. As§ — 0T,

1 1
4.19) sup —— Gs, (iy,z) wg*(iy,dz) — = | Gs,(iy,z)ws(iy,dz)| — 0.
@19 swp s | [ G2 0s;iv.0) 3 [ Gay(iv. s .0

To prove this claim we first notice that, due to symmetry, one can remove the factor 1/2
in (4.19) if the set A in the second integral is replaced by B. Moreover, by the monotonicity
property of harmonic measure, see e.g. Corollary 4.3.9 on p. 102 of [39],

Kys = os:(iy.-)|p — os(iy,")|s

is a non-negative bounded measure on B. Recall also that 0 < &(x; y,8) < h(0; y, §) for
all x € R, see (4.12). Therefore, in order to prove (4.19), it is sufficient to show that

(4.20) sup iy 5(B) -0 as$— 0T,
yek

To this end, we will take advantage of conformal invariance of harmonic measure.
Denote by Fj, for § € (0,80), and by F the conformal mappings of S§ and S, respectively,
onto D with the normalization F(0) = F3(0) = 0, F’(0) > 0, and F§(0) > 0. Clearly, the
map F(z) = (e — 1)/(e* + 1) extends holomorphically and injectively to the wider strip
|Im z| < 7, and hence we can write F5 = f{l o F, where f;s is the conformal mapping
of D onto the Jordan domain Ds := F(Sy) with f5(0) = 0 and f;(0) > 0.

Denote B:=F(B) = {z€dD : n/2 < argz <m}. By conformal invariance of harmo-
nic measure, ws(iy, B) = wp(F(iy), B) and ws; (iy, B) = wp (fs ' (FGy)). f5 1(B)).

Note that D C Dy for any § € (0, §p) and that Dg — I with respect to O in the sense
of kernel convergence when § — 0%, Denote z = z(y) := F(iy) and z/ = 2/(y,§) :=
Fs(iy) = f; '(z(y)). As § - 0T, by the Carathéodory kernel convergence theorem,
we have that z'(y, §) — z(y) uniformly with respect to y € K. Note also that by the
Schwarz lemma, for any y € K and any § € (0, §) the estimate |z'(y,8)| < |z(¥)| < rp :=
maxyex |F(iy)| < 1 holds. Therefore, (4.20) and hence (4.19) follow from Lemmas 3.3
and 4.7.

Taking into account (4.15)—(4.19), we see that it remains to estimate in (4.16) the part
of the integral over Cs. We claim that:

Claim?2. As§ — 0T,

1
421 - —‘/G iy. ) ws(iy.dz)| = 0.
(4.21) ydr; 70y | Je, 55 (1Y, 2) wgr (iy,dz)
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Fix some § € (0,8¢) and y € K. Clearly, 0 < Gs;(iy,z) < h(0; y,6) for any z € Cs.
Therefore, it is sufficient to show that

(4.22) sup wg*(iy,Cs) = 0 as§ — 0%,
yeK 8

Consider again the mappings Fs introduced above. As we have shown in the proof of
Claim 1, | F5(iy)| < ro, where rg € [0, 1) depends only on the compact set K. Therefore,
to prove (4.22) we only need to check that the linear Lebesgue measure of F5(Cs) tends
to zero as § — 0. Suppose this is not the case. Then there exist a sequence (8,) C
(0, 80) converging to 0 and a non-degenerate closed arc € C dD such that foreachn € N,
gn = F5:15 D — Sg‘n extends continuously to €, with g, (€) C Cs, .

Since g, is continuous on the compact set {or : 0 € €, r € [0, 1]}, there exists r,, €
(0, 1) with the property that g, (€,,), where €, := {or, : 0 € €}, lies in the 1/n-neighbour-
hood of Cs, . Thus, diam g,(€,;) — 0. Note that the functions g, are “uniformly normal”
in D in the sense that

|gn ()1 —|z]*)

4.23)
zed 1+ 1gn(2)I?

<M forallneN

and some constant M > 0 independent of n. Indeed, ng C Sg‘o. Therefore, g, = F, 8;1 o ¢n,
where ¢, is a holomorphic self-map of D. Taking into account that F, 5;1 is univalent
in D and hence normal (see Lemma 9.3 on p. 262 of [36]), the desired conclusion (4.23)
follows from the Schwarz—Pick lemma. Now by the no-Koebe-arcs theorem for sequences
of holomorphic functions (see Theorem 9.2 and the subsequent remark on p. 265 of [36]),
it follows that (g,) converges locally uniformly in D to a constant, which is impossible
because g, — F~! by construction. This contradiction proves Claim 2.

The conclusion of the proposition follows easily from (4.15)—(4.19) and (4.21). ]

We are now in a position to prove Theorem 4.2.

Proof of Theorem 4.2. Let §;(t) := 6g ;(t) and let K be a compact subset of the inter-
val (—m/2, /2). It suffices to prove that there exist 7; < 0 and ¢; > 0, j = 1,2, such
that

R(t + iy, Q)

4.24) log R(y.S)

= cj6;(t) forallt <T;andall yeK.
Further, it clearly suffices to consider the case j = 2. Fix # < 0. Since Sg‘z o TtC Q, we
have

R(t +iy, Q) = R(t +iy, S5,y +1) = R(iy,S;,(,y) forall ye(—n/2,7/2).
Hence Proposition 4.4 implies that

. eR : ,S*
=‘R(t+ly,9)]>lo [ (i, S5,

R(iy, SSz(Z))]
R(iy,S) R(iy,S)

4.25) log [ R o)

] = O,y () - 10%[
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forany t <0 and any y € (—x/2, m/2), where ®g converges to 1/2 uniformly on K as
8§ — 0. By employing the well-known explicit expression (see e.g. Example 7.9 in [6])

2 n+SCs(n.2y—5)

4 =
2 w7+

R(iy.Ss) = o)

for the conformal radius of the strip Sg, it is easily checked that

.1
lim < log

[mm&q_g (r +2y)tany
§—0 6

= — € (0,+0
Riy.S) )= 22 (0. +-00)
holds uniformly with respect to y € K. Combining this fact with &5 — 1/2 uniformly
on K as § — 07 and lim;_, _, 82(¢) = 0 shows that inequality (4.25) implies the estim-
ate (4.24) for j = 2. As noted above, this concludes the proof of Theorem 4.2. ]

4.3. Necessity of condition (4.1)

In this subsection, we prove the necessity of the condition (4.1). The proof relies on the fact
that the integral in (4.6) can be estimated from above by the integral over the function 8g.
This is the content of the following theorem.

Theorem 4.8. Let Q2 be a proper subdomain of C which is starlike at infinity and such
that the standard strip S = {z € C : |Imz| < 7 /2} is a maximal horizontal strip contained
in Q. Then for any compact set K C (—m /2, w/2) there are constants ¢ > 0 and C > 0
such that, for any y € K,

0 R(t +iy, Q)
log—.
oo R +1iy,S)

Hence Theorem 4.8 in conjunction with Lemma 3.2 implies that the integral of the
ratio of conformal radii in (4.26) converges, when the domain €2 is conformal at —oo with
respect to S.

In order to prove Theorem 4.8, we construct a family of two-slit domains D¢ (¢) that
all contain the Koenigs domain 2. For the sake of brevity, denote

0
(4.26) dte<C + 2c/ da(t)de.
—0o0

§:=38(1+1/2), & :=68q,;(1+1/2), j=12, t<0.
Due to €2 being starlike at infinity, it is easy to see that
Do(t):=C\{zeC:Rez<1+¢t/2and Imze{—n/2—381,7/2+682}}, t <0,
indeed contains Q2. Let y € (—n /2, 7/2). Then

ﬁU+J%Q)<l R(1 +1iy. Do(1))

427 <
(4.27) RG+0.S) = 2T R4 +1y.5)

Furthermore, let S(¢) := S(—n/2 — 81, 7/2 + &), the maximal strip between the two
slits of the domain Dg(), and let

D(#t):=Do(t)—(1+1t/2)=C\{zeC:Rez<0and Imze{—n/2—381,7/2+ 82}}.
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Bearing in mind that the hyperbolic metric in a strip remains invariant under horizontal
translations, it follows that
R(t +1iy,Q) <1 R(t/2—1+iy, D(1)) I Ry, S(1))
X 10 0g ————.
RE+iv.S) -~ CRE/2—1+iy.50) " ETR>y,S)

(4.28) log

The idea for the proof of Theorem 4.8 is to analyze the asymptotic behavior of the
summands in (4.28). This task is rather elementary for the second term, while the first
term requires a bit more delicate work making use of an estimate of the Green function,
which we establish in the following lemma. Denote by D, the “standard” two-slit domain
C\{weC:Rew <0, |Imw| =n/2}.

Lemma 4.9. Forall w € S withRew < 0andall s € D, N 03S, we have

1 + eRew

(429) GD* (w, S) < log W'

Proof. Using the explicit formula for the Green function of S, we have

1 cosh(xz — x1) 4+ cos(y2 + 1)
Gs(z1,22) =  log
2 cosh(xz — x1) + cos(y2 + y1)
1+e—|x2—x1\

1 — e—lx2—x1l’

(4.30) < log Xk :=Rezg, yp :i=Imzg, k =1,2,
for any pair of points z1,2z, € S.
In order to apply the above formula for estimating Gp,, we notice that

1+e22

g@)=z+—

maps S conformally onto D.. Indeed,

14¢2
2

J(©) = g(log&) = log(¢) +

is the Schwarz—Christoffel map of the right-half plane onto D, with the normalization
f(0) = o0, f(£i) = xin/2, as follows from the equality

O 1o
S©Q) T t—i i ¢

Letw € U := {w € S:Rew < 0}. Itis easy to see that g(U) D U. Therefore, z := g~ (w)
€ U. It follows that

Rel > 0.

4.31) Reg '(w) = Rew — (1 + Ree?’)/2 <Rew forallw € U.

Moreover, it is easy to see that g({w € S:Rew > 0}) contains the set A := D, N 3S.
Hence,

(4.32) Reg !(s) >0 foralls e A.
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Combining now (4.30), (4.31) and (4.32), we obtain

1 . 1+eRew
Gp. (w.s) = Gs(g™ (w). g™ (s)) < log 5

— eRew
forany w € U and any s € A, as desired. ]
Lemma 4.10. Forany w € U := {w € S:Rew < 0}, we have

R(w, Dy) < log 1 + eRew _
Rw,S) ] —eRew

4.33) log
Proof. According to (3.2), for any w € S, the left-hand side of (4.33) equals
/ Gp,(w,s)ws(w,ds), A:= D,NaS,
A

and inequality (4.33) follows immediately from (4.29), taken into account that wg(w, -) is
a probability measure. ]

Proof of Theorem 4.8. Using the explicit formula for the conformal radius of a strip, it is
easy to see that there exists a constant ¢ > 0, depending only on the compact set K C
(=m/2,m/2), such that

Ry, S(1))

4.34 1
@39 leais)

<cd=céq(l+1/2) forallt <Oandall y € K.

Moreover, recall that the function §g is finite and monotonic on (—oo, 1]. In particular, it
is integrable on [0, 1]. Therefore, in view of inequality (4.28), it remains to show that

0 R/2—1+1iy,D(t))
4.35 su lo dr < +o0.
(*:3) N | o R s
The linear function 5 s
T .01 — 02
F, = ,
(2) 7T+51+82(Z+l 2 )

maps the strip S(¢) conformally onto the standard strip S, and the two-slit domain D(t)
onto D,. Therefore, the integrand in (4.35) equals
R(w(t), D)

g Rw().S) where w(t) := F,(t/2—1+1iy).

By the monotonicity of 8g,;, j = 1.2,

T t
Rew(r) < ——1 forany ¢t <0,
@) 7+ 8q,1(1) +da,.2(1) (2 ) y

and we are done because now (4.35) follows from Lemma 4.10. [

Proof of necessity in Theorem 4.1. Suppose that €2 is conformal at —oco with respect to S.
By Lemma 3.2, 8g is integrable over (—oo, 0]. Hence, Theorem 4.8 shows that condi-
tion (4.1) holds. ]



The angular derivative problem for petals of one-parameter semigroups 1173

4.4. Completion of the proof of Theorem 4.1: Locally uniform convergence of (4.1)

We are left to prove that if (4.6) holds for one point wg € S, then it holds for all wg € S
and the integral in (4.6) converges locally uniformly with respect to wg € S. Clearly, we
may assume that § = S.

Let S(z) and D(¢) be defined as in Subsection 4.3. Fort <0, y € (—n/2,7/2), and
k = 1,2 we denote

R(/2—1+1iy,D(1))

R(iy,S(1))
ERU2—1+1iy.500)

R(iy,S) '

Fi(t,y):=1lo Fa(t,y) :=log

0
Jie(y) 3=/ Fi(t,y)dt.

—00
The function §g is monotonic on (—oo, 1], and hence integrable on any compact inter-
val contained in (—oo, 1]. Therefore, from Theorem 4.2 it follows that if (4.6) holds for at
least one point wgy € S, then the function §g, is integrable on (—oo, 1].
Thanks to inequality (4.34), the integrability of ég on (—oo, 1] implies that the integ-
ral J>(y) above converges uniformly with respect to y on any compact interval [y1, y2] C
(—m/2, m/2). Moreover, the argument used in the proof of Theorem 4.8 shows that the
integral J;(y) converges uniformly on the whole interval (—m/2, 7/2).
Now let wg := x + iy € S. By inequality (4.28), for all # < min{—x, 0} we have
0 < log R(t + wo, Q)
R + wo,S)
Thus, for each rectangle R := [x1, x3] X [y1, y2] contained in S, the integral in (4.6)
converges uniformly with respect to wg € R. This completes the proof. ]

S F(t+x,9)+ F(t+x,p).

5. The angular derivative problem for parabolic petals

In this section, we study conformality of parabolic petals at the Denjoy—Wolff point. An
important role is played by the so-called hyperbolic step

4z 5) = Tim_dp(@irs(2). i),

where dp stands for the hyperbolic distance in D. If g(z,s) = 0 for some z € D and s > 0,
then ¢ = 0 on D x (0, +00), and the one-parameter semigroup (¢, ) is said to be of zero
hyperbolic step. Otherwise, i.e., if ¢(z, s) > 0 for some (and hence all) z € D and s > 0,
we say that (¢;) is of positive hyperbolic step.

Theorem 5.1. Let A be a parabolic petal of a one-parameter semigroup (¢,) with Denjoy—
Wolff point T and associated Koenigs function h. The following statements hold.
(A) The petal A is conformal at T with respect to D if and only if the angular limit

L:=Zlim(z—1)h(z)
zZ—>T
is finite.

(B) If (¢¢) is of positive hyperbolic step, then A is conformal at t with respect to D
(and hence L # 00).



P. Gumenyuk, M. Kourou and O. Roth 1174

Remark 5.2. The angular limit L in statement (A) above was previously considered by
Contreras, Diaz-Madrigal and Pommerenke in a more general context of discrete iter-
ation, see Theorems 4.1 and 6.2 in [22]. Moreover, this limit is directly related to the
conformality problem considered by Betsakos (Theorem 3 in [8]) and Karamanlis (The-
orem 2 in [31]) for parabolic one-parameter semigroups of positive hyperbolic step. As
we will see in the proof of Theorem 5.1, the presence of a parabolic petal ensures that
the angular limit L exists and does not vanish, but it can be infinite. In fact, as illustrated
by Example 5.4 given after the proof, for semigroups of zero hyperbolic step, both cases
L eC\{0} and L = oo are possible.

Proof of Theorem 5.1. First of all, recall that the existence of a parabolic petal A implies
that the one-parameter semigroup (¢; ) is parabolic. Moreover, the image of A with respect
to the Koenigs function & of (¢;) is a half-plane bounded by a line parallel to R.

If (¢;) is of positive hyperbolic step, then Q := h(ID) is contained in some half-
plane U with 0U parallel to R, see Theorem 9.3.5 in [14]. Let T be a linear-fractional
transformation of D onto U with T(1) = co. Choose a number ¢ € C such that w +—
w + ¢ maps U onto i(A). Then

o) =h"Y(T(z)+¢), zeD,

is a conformal mapping of D onto A with ¢(1) = 7 in the sense of the angular limit.
Further, denote ¥ := T 1 oh : D — . Since ¥ o9 = T~ ! o (T + ¢) has a regular
contact point at { = 1, by the chain rule for angular derivatives, see e.g. Lemma 2 in [21]
or Lemma 5.1 in [29], ¢ also has a regular contact point at { = 1, which means that A is
conformal at v with respect to D. This proves statement (B).

To prove (A), fix some wg € C \ Q2 and denote g := 1/(h — wy). Further denote by D
the image of the half-plane h(A) with respect to the map w +— 1/(w — wyp). Clearly,
D is a disk contained in g(ID), with 0 € dD. Let f be the linear function mapping D
onto D and normalized by f(r) = 0. Then for a suitably chosen circular arc ' C D with
the end-point at 7, g~ '(f(I")) is the forward orbit of some point zg € A with respect
to the semigroup (¢;). In particular, g~'( f(z)) — 7 as I' > z — . Therefore, by the
comparison theorem, see e.g. Theorem 10.6 on p. 307 of [36], there exists a finite angu-
lar derivative g’(t). In turn, this implies that L := Zlim,_,.(z — 7)h(z) exists, with
L=1/g'(r)eC \ {0}.

Note that ¢(¢) := g~ !(f(r{)) is a conformal mapping of D onto A, and that by
Lindel6f’s theorem, see e.g. Theorem 9.3 on p. 268 of [36], Zlim;_,; ¢({) = 7. Recall
that since ¢ € Hol(D, D) and since { = 1 is a contact point for ¢, the angular derivative

p(f)—t
t—1

does exist, finite or infinite, and ¢’(1) # 0. The following simple calculation,

¢'(1) ;== £ lim
{—>1

f (M) =(gop)(1) =

im (g@@D'¢00—r)
©0,D3x>1\p(x)—1 x—-1/

shows that
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has at z = 7 a finite asymptotic value 7 f'(t)/¢’(1). Taking into account that g is univalent
and does not vanish in D, and arguing as in the proof of Theorem 10.5 on pp. 305-306
of [36], we see that g'(7) = Zlim,—; R(z) = 7/'(7)/¢'(1). It follows that L = 1/g’'(t)
# oo if and only if ¢'(1) # oo. This completes the proof of (A). |

Remark 5.3. Note that the centre of the disk D considered in the above proof lies on
the imaginary axis. It follows that under the hypothesis of Theorem 5.1, if L # oo then
Re(tL) = 0.

Example 5.4. Let h;(z) := z/(1 — z)? be the classical Koebe function, and let

ha(z) ;= w(z) —ivw(z), where w(z):=i(1+z2)/(1—2), zeD,

and /w stands for the branch of the square root that maps the upper half-plane onto the
first quadrant. It is not difficult to see that Re(1 — 2)211;c (z) >0forallzeD, k =1,2.
Therefore, see e.g. Theorem 9.4.11 in p. 257 of [14], the A ’s are univalent in DD, and the
formula
ok =nto(hy +1), 120, k=12,

defines two parabolic one-parameter semigroups with the DW-point at 7 = 1. Note that
hi(D) = C\ (—o0,—1/4] and hy(D) = {¢ :Rel > f(Im¢)}, where f(n) := —oo if
n>0, £(0) :=1/4, and f(n) := n? if n < 0. Since the image domains &y (D) are not
contained in any half-plane, both semigroups (qﬁgc ), k = 1,2, are of zero hyperbolic step.
Clearly, lim;—,1(z — 1) h1(z) = oo. The corresponding semigroup (¢} ) has two non-con-
formal parabolic petals {z € D : £ Imz > 0}. At the same time, Zlim;_1(z — 1) h,(2)
= —2i # oc0. Since {¢ : Im¢ > 0} C h»(D), the semigroup (¢?) has a parabolic petal. By
Theorem 5.1 (A), this parabolic petal is conformal at t with respect to D.

6. Concluding remarks and open questions

6.1. Rate of convergence of regular backward orbits
If o0 € dD is a repulsive fixed point of a one-parameter semigroup of (¢;), then as it was
proved in Proposition 4.20 of [15],
1
, lim n log|¢:(z) —o| = A := G'(0) foranyzeA(0),
——00

where G stands for the infinitesimal generator of (¢, ). It is therefore natural to ask whether
the limit

©6.1) Cloz) = lim_e™M|¢(2) — o]

does exist for z€ A(o). The answer is immediate if we recall that (¢,) admits at o a
pre-model (H, ¥, z — e*'z), where ¥ is a conformal mapping of H onto A(c) with
¥ (0) = o; see Remark 2.14. We have ¢;(z) = (e y~1(2)) for any z € A(o) and
any ¢t € R. Hence, for all z € A(o),

Clo.z) = lim e |y(y~' (@) —ol = [y~ ) ¥
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If the hyperbolic petal A(o) is conformal, then by Remark 2.20, ¥/(0) € C \ {0}, and
hence the limit (6.1) exists finitely and does not vanish for all points z in A(o). If A(0) is
not conformal, then v/'(0) = oo and hence C(z,0) = +o0 for all z € A(0).

Thus, for zg € A(o), condition (1.1) in Theorem 1.1 is equivalent to having that
C(zp,0) € (0, +00). Since the backward orbits in A(c’) converge to o non-tangentially,
see Remark 2.15, C(zp, o) € (0, +00) if and only if % log(e ™ (1 — |¢:(20)|?)) tends to
a finite limit as t — —oo. In turn, since by Remark 2.11, in A(c’) the ODE (2.1) holds for
all r € R, the latter condition can be restated as the convergence of the integral

0 PR
(6.2) «M@:/ @+Mwwmmmmbw

—o0 2 1 —¢:(z0)

At the same time, combining (2.1) and (2.2), we get ¢} (zo) = G(¢¢(20))/ G(2). It follows
that condition (1.1) in Theorem 1.1 is equivalent to the convergence of

[ (Ao |G(i(20))
© e = [ (S5 -1 R e
where A(zo) = lim;——co |G (¢ (20))| Mp (¢ (20)) = |G (20)| hao)(Z0)-

6.2. Boundary behaviour of the Koenigs function

For a non-elliptic one-parameter semigroup (¢;), the conformality of hyperbolic petals is
related to the boundary behaviour of the Koenigs function /. Let o € dD be a repulsive
fixed point of (¢;). Since S := h(A(0)) is a maximal strip in Q := h(DD), by a result of
Betsakos [9], the angular limit

v:i=Zlim(z — o)k (z) € (0, +00)
Z—>0

exists and equals the width of the strip S divided by 7. (Since &' = 1/G, the existence of
the above limit follows also from [21, Theorem 1].)

For a suitable b € C, the function ¥ ({) := hfl(b + vlog ¢) maps the right half-
plane H onto A(o). Hence, the conformality of the hyperbolic petal A(c) is equivalent to
¥’ (0) # oo. Thanks to the isogonality property (2.8), one can use the change of variables
¢ := ¥~ 1(2) to obtain

(6.4) Z Zlgrgy[h(z) —vlog(l —5z)] = b — v log(—ay’'(0)).

The above limit exists, and is finite or infinite, because ¥’(0) exists with —ay'(0) €
(0, 400) U {+o0}. Thus, A(o) is conformal if and only if the limit in the left-hand side
of (6.4) is finite.

6.3. Semigroups with symmetry with respect to the real line

Consider a one-parameter semigroup (¢;) in D with a repulsive fixed pointat ¢ = —1 and
such that ¢, ((—1, 1)) C (=1, 1) forall# = 0. Fix some zg € A(—1) N R. In this rather spe-
cial case, Theorem 1.1 (excluding the part concerning uniformity of convergence) admits
a simple proof based on the following elementary lemma.
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Lemma 6.1. Let f be a function continuous on [0, +00) and of class C? on (0, 4+00).
Suppose that

(i) f() =0and f'(x) > 0 forall x € (0, +00);
(i) g(x) := f(x)/(xf'(x)) = 1 forall x € (0, +00).
Fix§y > 0.If f'(x) —> A as x — +0o0o for some A € (0, +00), then

& 1
(6.5) I = [ 1088 4 - 4oo.
0 X

If f(x)/x — 400 as x — 400, then | = 4o00.

Proof. Suppose that f/(x) — A€ (0,+00) as x — + 00. Then f(x)/x— Aand g(x)—1
as x — +o0. Therefore, taking into account (ii), we see that the improper integral / con-
verges because

fo 1 \d fo 1 f =&
/ (1——)—x=/ (——f(x)>dx=limlog X TR
0 gx)/ x o X f(x) a0t = f(x)lx=a
Similarly, if f(x)/x — +o00 as x — +00, then
o 1 \dx x x=fo
1= l———)— = lim 1 = .
/0 ( g(x)) x a—lg)lJr °8 f(x)lx=a oo .

Proof of Theorem 1.1 in the symmetric case. Passing from the unit disk D to H with the
help of the Cayley map

14z

1-z’

we get a one-parameter semigroup (¢;) in H with a repulsive fixed point at 0 and such
that ¢; ((0, +00)) C (0, +00) for all ¢ = 0. It follows that the hyperbolic petal D of (¢;)
with the a-point at 0 is symmetric with respect to the real line. Therefore, for all ¢ € R,
all z € D, and a suitable A > 0, we have

0i(z) = fe f71(2)).

where f is a conformal mapping of H onto D with £(0) = 0 and f((0,400)) C (0, +00).
As aresult, for zg € A(—1) N R, the integral in (1.1) equals

0 f(ekté_-o) _ 1 b f(x) \ dx
(66 [ oz = 3l (7o) 5

where & = f~1(H(zo)).

Applying the Schwarz—Pick lemma, see e.g. Theorem 6.4 in [6], to f: H — H, it is
easy to see that the restriction of f to [0, +00) satisfies the hypothesis of Lemma 6.1. If
A(—1) is conformal, then f’(x) — f/(0) € (0, +00) as (0, +00) 2 x — 0, and hence by
Lemma 6.1, the integral (6.6) converges.

Similarly, if A(—1) is not conformal, then f(x)/x — +o00 as (0, +00) > x — 0. In
this case, Lemma 6.1 guarantees that the integral (6.6) diverges. ]

H(z):=
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The above proof of Theorem 1.1 for the symmetric case is based on the observation
that (¢;)seR is a one-parameter group of hyperbolic automorphisms of A(o). In contrast to
our proof for the general case, the fact that for # > 0, the ¢,’s are well-defined holomorphic
functions in the whole unit disk is not essential for the proof in the symmetric case.

Attempting to adapt the method used in this section to the general case, instead of the
integral (6.5), one would need to consider

s Re f(pe'?) dp _
6.7) 1,(6) ._/0 (1°g|f/(pei0)|pcos9> e e/ m/2),

where po > 01is fixed. Since f isisogonal at 0, Re f(pe’?)/| f(pe'?)| — cosh as p — 0.
Hence it would be also reasonable to consider

o i0 d
(6.8) L(6) = /0 log % ?”.

Note that the argument of log | - | in (6.8) tends to 1 as p — 0%, because by Proposition 4.11
on p. 81 of [37], the conformal map f o H;, with H;(z) := (1 — z)/(1 + z), satisfies at
¢ = 1 the Visser—Ostrowski condition.

6.4. Hyperbolic length of backward orbits

For a hyperbolic domain D C C and a rectifiable curve y: [0, T] — D, we denote by
()= [ )iz
¥

the hyperbolic length of y. It is easily checked that Theorem 1.1 can be restated as follows:
a hyperbolic petal A of a one-parameter semigroup (¢;) in D is conformal if and only if

(6.9) TEIEOO [€a(yzl10,17) — tp (Vz][0,17)] < 400

for any backward orbit y,(t) := ¢—;(z), z € A, in the petal A. Note that the above limit
always exists, finite or infinite, because A C D and hence Aa(z) = Ap(z) forall z € A.

6.5. The angular derivative problem and hyperbolic length

Theorem 1.1 is closely related to a recent conformality condition due to Betsakos and
Karamanlis [11]. We briefly discuss this issue. The conformality conditions obtained
in [11] are valid for any simply connected domain 2 & C containing the real line R.
In order to compare the results of [11] with our Theorem 4.1, we additionally assume
that €2 contains the standard strip S. Taking into account Ostrowski’s characterization of
semi-conformality, see e.g. Theorem A in [11], we see that in this case, Theorem 1 in [11]
says that Q2 is conformal at —oo with respect to S if and only if

(6.10) dist(z,0Q) := inf |[z—w|—>0 as Rez - —o0,z € 7S,
weIR
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and
(6.11) ds(iy +a,iy +b) —dg(iy +a,iy+b) -0 asa,b - —o0,a,b € R,

for some and hence any y € (—x/2,7/2). In fact, in [11] the conformality condition (6.11)
is stated only for y = 0, but in our case we additonally have S C €2, and the proof in [11]
also works for y € (—7/2,7/2).

If Q is the Koenigs domain of a one-parameter semigroup (¢;) and S is a maximal
strip contained in €2, then condition (6.10) is automatically satisfied.

On the other hand, it is easy to see that Theorem 4.1 says that €2 is conformal at —oco
with respect to S if and only if for some and hence all y € (—x/2, 7/2),

b
(6.12) [()\S(iy+x)—>\g(iy+x))dx—>0 as a,b > —o0, a,beR.
a

Let us compare conditions (6.11) and (6.12).

Since [” As(x)dx = b—a = dg(a,b) and [” Aq(x) dx = dg(a, b) for any a < b,
a,b € R, condition (6.11) for y = 0 implies condition (6.12) for y = 0. Thus, if Q2 is
conformal at —oo with respect to S and if S C €2, then regardless of whether €2 is starlike
at infinity or not, our condition (6.12) holds for y = 0.

A similar remark applies to the relation between (6.12) and the following necessary
and sufficient condition for conformality established by Bracci et al. (see equation (8.2)
in [15]):

(6.13) limsup [ds(iy, iy + x) —dq(iy, iy + x)] < 400

X—>—00
for some and hence all y € (—n/2, 7/2). Arguing as above, one can see that (6.13)
implies (6.12), but apparently, only for y = 0. Although Section 8 in [15] addresses the
angular derivative problem in the context of one-parameter semigroups, the proof of (6.13)
does not depend on the fact that 2 is starlike at infinity; it actually works for any simply
connected domain 2 ¢ C containing S.

6.6. Open questions

To conclude, we state several open questions. Let (¢;) be a non-elliptic one-parameter
semigroup with associated infinitesimal generator G, Koenigs function %, and Koenigs
domain 2 := h(D). Further, let A(o) be a hyperbolic petal of (¢;) with «-point 0. As
above, for simplicity we suppose that #(A(c)) = S.

Question 1. Similarly to Theorem 1 in [11] by Betsakos and Karamanlis, our condi-
tion (1.1), as well as its restatements (4.1) and (6.12), uses hyperbolic geometry. However,
in the proof we make use of Euclidean quantities related to the Koenigs domain 2. Is it
possible to prove one (or even both) of the implications in Theorem 1.1 without employing
criteria for conformality in terms of Euclidean geometry?

One possible way to answer the above question would be to study in detail the relations
between the convergence of the integrals /(z¢) and J(z¢) introduced in Section 6.1. An
alternative direction is indicated in the next question.
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Question 2. If 2 is starlike at infinity, then the conformality condition (6.11) due to Bet-
sakos and Karamanlis and our condition (6.12) are equivalent in terms of Theorem 4.1 and
Theorem 1 in [11]. Is there a more direct way to prove the equivalence (6.11) and (6.12) for
such domains? How are conditions (6.11) and (6.12) related, when €2 is semi-conformal
at —oo in the sense of Ostrowski, see e.g. Theorem A in [11], but not necessarily starlike
at infinity?

In the elementary proof of Theorem 1.1 for the symmetric case, given in Section 6.3,
we consider a generic injective holomorphic self-map isogonal at a contact point. In con-
trast to the general (non-symmetric) case, the argument does not depend on the fact that
the image of the self-map is a hyperbolic petal of a one-parameter semigroup in D.

On the one hand, the argument in Section 6.3 works only for the backward orbits
contained in (—1, 7). This is similar to the situation in Section 6.5, where restricting to the
symmetry line y = 0 apparently becomes necessary at some point.

On the other hand, motivated by the symmetric case, it is natural to ask whether even in
the general case, Theorem 1.1 remains valid for a semigroup of hyperbolic automorphisms
(¢¢) =0 C Aut(A) of a simply connected domain A C D, provided that all the backward
orbits converge to the point g € dID at which A is isogonal, but we do not assume that (¢;)
extends to a one-parameter semigroup of holomorphic self-maps of the whole unit disk D.
This leads to the following problem.

Question 3. Let f:H — H be an injective holomorphic self-map with a boundary fixed
point at { = 0. Suppose that f is isogonal at { = 0. Is there any relation between the
convergence of the integrals (6.7) and (6.8) introduced in Section 6.3 and the finiteness of
the angular derivative f’(0)?

A closely related question is as follows. Let ¢ be a conformal mapping of D onto
the hyperbolic petal A(o) satisfying ¢(—1) = o and ¢(1) = t. According to Theorems 1
and 3 in [26], the mapping ¢ is a solution to the non-linear ODE

(6.14) G'(0)(1 —22) ¢'(z) = 2G(p(z2)), z € D.

Question 4. What kind of non-trivial conclusion about the infinitesimal generator G can
be drawn from the equation (6.14), if we suppose that the petal A(o) is conformal?

The next open question concerns the geometry of hyperbolic petals near the Denjoy—
Wolff point t of (¢;).

Question 5. Recall that 7 € JA(0). Let ¢ be a conformal mapping of D onto A(o) with
¢(1) = 7. What is the asymptotic behaviour of ¢(z) as z — 1 within a Stolz angle? In
particular, if (¢, ) is hyperbolic, then using results of Contreras and Diaz-Madrigal [18], it
is possible to show that dA (o) has a corner of opening ax at T, with & := |G'(z)|/ G/ (o).
Is it always true (and if not always, then under which conditions) that the function

/@)= (@@ -0 zeD.
is conformal at z = 1, i.e., f has angular derivative f'(1)e C*:=C \ {0}?

We conclude the paper with a question on parabolic petals. Theorem 5.1, in case of
semigroups of zero hyperbolic step, reduces the angular derivative problem for parabolic
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petals to another problem of similar nature for the Koenigs function /. Although the limit
relation (1.2) holds for parabolic petals as well, our Theorem 1.1 does not seem to extend
to this case. So it is natural to raise the following question.

Question 6. Is it possible to characterize conformality of parabolic petals in terms of the
intrinsic hyperbolic geometry of the petal and the backward (or forward) dynamics of the
semigroup, without involving the Koenigs function of the semigroup?
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