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Barycenters and a law of large numbers
in Gromov hyperbolic spaces

Shin-ichi Ohta

Abstract. We investigate barycenters of probability measures on Gromov hyper-
bolic spaces, toward development of convex optimization in this class of metric
spaces. We establish a contraction property (the Wasserstein distance between prob-
ability measures provides an upper bound of the distance between their barycenters),
a deterministic approximation of barycenters of uniform distributions on finite points,
and a kind of law of large numbers. These generalize the corresponding results on
CAT(0)-spaces, up to additional terms depending on the hyperbolicity constant.

1. Introduction

This article is a continuation of [27], in which we studied discrete-time gradient flows
for geodesically convex functions on (geodesic, proper) Gromov hyperbolic spaces. The
theory of gradient flows for convex functions possesses fundamental importance in ana-
lysis, geometry and optimization theory, and has been well investigated in some classes
of “Riemannian” metric spaces including CAT.0/-spaces (nonpositively curved metric
spaces in the sense of triangle comparison; we refer to [4]). For “non-Riemannian” metric
spaces such as normed spaces and Finsler manifolds, however, much less is known and, in
fact, there is a large gap between properties of gradient flows in Riemannian and Finsler
manifolds (see [27, 30] for further discussions).

Intending to develop optimization theory in possibly non-Riemannian spaces, in [27]
we studied discrete-time gradient flows for geodesically convex functions on Gromov
hyperbolic spaces, and showed some contraction estimates. Gromov hyperbolic spaces are
metric spaces negatively curved in large-scale, and it is known that some non-Riemannian
Finsler manifolds can be Gromov hyperbolic (see Example 2.2). The class of geodesically
convex functions seems, however, restrictive when one has in mind the local flexibility
of the Gromov hyperbolicity condition. Thereby, it is desirable to generalize the theory
of gradient flows to a wider class of “convex functions” (we refer to Section 3.4 in [27]
for related discussions). As an initial step toward such a generalization, in this article, we
study the (squared) distance function on a Gromov hyperbolic space, which should be
included in the class of generalized convex functions (in view of Lemmas 3.2 and 4.2).
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Given a probability measure � on a metric space .X; d/ with finite second moment,
its barycenter is defined as a minimizer of the function x 7!

R
X
d2.x; z/ �.dz/. If the

(squared) distance function is sufficiently convex, then barycenters enjoy a number of
fine properties. Specifically, in a CAT.0/-space .X; d/, for which d2 is strictly convex by
definition, every � admits a unique barycenter ˇ� 2X and we have a contraction property
d.ˇ�; ˇ�/ � W1.�; �/ in terms of the L1-Wasserstein distance W1 (see [32]). Moreover,
a kind of law of large numbers providing the almost sure convergence to barycenters by
recursive applications of the proximal (resolvent) operator was established in [32] (we
refer to [28, 38] for some generalizations).

A metric space .X; d/ is said to be Gromov hyperbolic (attributed to [16]) if it is
ı-hyperbolic for some ı � 0 in the sense that

.xjz/p � min¹.xjy/p; .yjz/pº � ı

holds for all p; x; y; z 2 X , where

.xjy/p WD
1

2
¹d.p; x/C d.p; y/ � d.x; y/º

is the Gromov product. This is a large-scale notion of negative curvature and hence, on the
one hand, it is natural to expect some variants of the aforementioned results in CAT.0/-
spaces. On the other hand, since the Gromov hyperbolicity provides no local control (up
to the hyperbolicity constant ı), one cannot expect very sharp estimates as in the case of
CAT.0/-spaces. Accordingly, our results will have additional terms (compared with the
case of CAT.0/-spaces) that tend to 0 as ı ! 0.

For a probability measure � on a (geodesic) ı-hyperbolic space .X; d/, its barycen-
ter is not unique but lives in a bounded set (whose diameter tends to 0 as ı ! 0; see
Proposition 3.3). For this reason, we introduce the set

B.�; "/ WD
°
x 2 X

ˇ̌̌ Z
X

d2.x; z/ �.dz/ � inf
y2X

Z
X

d2.y; z/ �.dz/C "
±

for "� 0, and call it a barycentric set (here we consider only probability measures of finite
second moment for simplicity). Then, we show a contraction property of the form

d.x; y/ � W1.�; �/C
p
6"CO.ı1=4/

for x 2 B.�; "/ and y 2 B.�; "/; see Theorem 4.5 for the precise statement.
How to find (or approximate) a barycenter of a given probability measure � is a

fundamental problem. In this respect, we show the following law of large numbers (see
Theorem 6.1 for the precise statement): given a sequence .Zi /i�1 of independent, identic-
ally distributed random variables with distribution �, and an arbitrary initial point S0 2X ,
we consider a sequence .Sk/k�0 recursively chosen as SkC1 D 
..2� C 1/�1/ for a min-
imal geodesic 
 W Œ0; 1�! X from ZkC1 to Sk . Then, for any " > 0, we have

EŒd2.p; Sk0/� � "CO.
p
ı /

for some k0�C=."
p
ı/ by taking � proportional to

p
ı, where p 2B.�;0/ is a barycenter

of �. We remark that the construction of SkC1 from Sk is written by the proximal operator
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SkC1 2 Jfk� .Sk/ for the distance function fk D d2.ZkC1; �/ (see (5.1)), and that such
an operation is meaningful only for large � compared with ı due to the local flexibility
of ı-hyperbolic spaces. By a similar analysis, we prove in Theorem 5.2 a deterministic
approximation of barycenters of uniform distributions on finite points, as a generalization
of [23] in CAT.0/-spaces (we refer to [2, 3, 17, 28] for some related results).

We briefly mention related results on hyperbolic groups (discrete groups whose Cay-
ley graphs are Gromov hyperbolic). Laws of large numbers can be formulated in terms
of the behavior of the distance function d.g1g2 � � � gk.x0/; x0/ for a sequence .gi /i�1 of
independent, identically distributed random variables taking values in the group of iso-
metric transformations acting on a metric space .X; d/ and a base point x0 2 X . Indeed,
Kingman’s subadditive ergodic theorem [21, 22] ensures that

lim
k!1

d.g1g2 � � �gk.x0/; x0/

k

exists almost surely and is constant almost everywhere. We refer to [19] and the references
therein for more details, as well as for refined results including the case of hyperbolic
groups. In this context, central limit theorems in hyperbolic groups were also established
in [5,7]. Our law of large numbers (Theorem 6.1) associated with a probability measure �
on a Gromov hyperbolic space X is concerned with a more general setting, and provides
a direct approximation of barycenters. In this generality, it is difficult even to formulate
central limit theorems.

This article is organized as follows. In Section 2, we review the basics of Gromov
hyperbolic spaces and some facts on barycenters in CAT.0/-spaces. In Section 3, we intro-
duce and analyze barycentric sets for probability measures on Gromov hyperbolic spaces.
Then we discuss the Wasserstein contraction property, a deterministic approximation, and
a law of large numbers in Sections 4, 5, and 6, respectively.

2. Preliminaries

We review the basics of Gromov hyperbolic spaces, as well as some facts on barycenters
in CAT.0/-spaces related to our results. For a; b 2 R, we set a ^ b WD min¹a; bº and
a _ b WD max¹a; bº.

2.1. Gromov hyperbolic spaces

Besides the original paper [16], we refer to [9, 10, 13, 31, 34] for the basics and various
applications of the Gromov hyperbolicity.

Let .X; d/ be a metric space. For three points x; y; z 2 X , we define the Gromov
product .yjz/x by

.yjz/x WD
1

2
¹d.x; y/C d.x; z/ � d.y; z/º:

Observe from the triangle inequality that 0 � .yjz/x � d.x; y/ ^ d.x; z/. In the Euc-
lidean plane R2, .yjz/x is understood as the distance from x to the intersection of the



S. Ohta 1188

triangle4xyz and its inscribed circle. If x; y; z are the endpoints of a tripod, then .yjz/x
coincides with the distance from x to the branching point.

Definition 2.1 (Gromov hyperbolic spaces). For ı � 0, a metric space .X; d/ is said to be
ı-hyperbolic if

(2.1) .xjz/p � .xjy/p ^ .yjz/p � ı

holds for all p; x; y; z 2 X . We say that .X; d/ is Gromov hyperbolic if it is ı-hyperbolic
for some ı � 0.

Since the Gromov product does not exceed the diameter diam.X/WD supx;y2X d.x;y/,
if diam.X/ � ı, then .X; d/ is ı-hyperbolic. This also means that the local structure of X
(up to size ı) is not influential in the ı-hyperbolicity. Another fact worth mentioning is
that, if (2.1) holds for some p 2 X and all x; y; z 2 X , then .X; d/ is 2ı-hyperbolic (see
Corollary 1.1.B in [16]).

The Gromov hyperbolicity can be regarded as a large-scale notion of negative (sec-
tional) curvature. We recall some fundamental examples (see also Section 1 in [16]).

Example 2.2. (a) Complete, simply connected Riemannian manifolds of sectional curva-
ture � � 1 (or, more generally, CAT.�1/-spaces) are Gromov hyperbolic (see, for exam-
ple, Section 1.5 in [16]).

(b) An important difference between the class of CAT.�1/-spaces and that of Gro-
mov hyperbolic spaces is that the latter admits non-Riemannian Finsler manifolds. For
instance, Hilbert geometry on a bounded convex domain in the Euclidean space is Gro-
mov hyperbolic under mild convexity and smoothness conditions (see [20] and Section 6.5
in [26]).

(c) The definition (2.1) makes sense for discrete spaces. In fact, the Gromov hyper-
bolicity has found rich applications in group theory (a discrete group whose Cayley graph
satisfies the Gromov hyperbolicity is called a hyperbolic group; we refer to [9, 16], and
Part III of [10]). In the sequel, however, we do not consider discrete spaces.

(d) Assume that a metric space .X; dX / admits a map �W T ! X from a tree .T; dT /
such that dX .�.a/; �.b//D dT .a; b/ for all a; b 2 T and the ı-neighborhood B.�.T /; ı/
of �.T / covers X . Then, since .T; dT / is 0-hyperbolic, we can easily see that .X; dX / is
6ı-hyperbolic.

We call .X;d/ a geodesic space if any two points x;y 2X are connected by a minimal
geodesic 
 W Œ0;1�!X satisfying 
.0/D x, 
.1/D y, and d.
.s/;
.t//D js � t j � d.x;y/
for all s; t 2 Œ0; 1�. In this case, there are several characterizations of the Gromov hyperbol-
icity (see, for example, Section 6 in [16] and Section III.H.1 in [10]). We also remark that,
by Theorem 4.1 in [8], every ı-hyperbolic metric space can be isometrically embedded
into a complete, geodesic ı-hyperbolic space.

2.2. CAT.0/-spaces

A geodesic space .X; d/ is called a CAT.0/-space if, for any x; y; z 2 X and any minimal
geodesic 
 W Œ0; 1�! X from x to y,

(2.2) d2.z; 
.t// � .1 � t /d2.z; x/C t d2.z; y/ � .1 � t / t d2.x; y/



Barycenters and a law of large numbers in Gromov hyperbolic spaces 1189

holds for all t 2 .0; 1/. A complete, simply connected Riemannian manifold is a CAT.0/-
space if and only if its sectional curvature is nonpositive everywhere. Moreover, there
are a number of rich classes of non-smooth CAT.0/-spaces such as Euclidean buildings,
trees, phylogenetic tree spaces, and the orthoscheme complexes of modular lattices (see
[4, 6, 12, 18]).

The CAT.0/-inequality (2.2) can be regarded as the uniform strict convexity of the
squared distance function d2.z; �/, and such a convexity is known to be quite useful to
study barycenters. In fact, as we mentioned in the introduction, every probability meas-
ure � on X with finite second (or first) moment admits a unique barycenter ˇ� 2 X , and
the contraction property d.ˇ�; ˇ�/ � W1.�; �/ holds. Moreover, a law of large numbers
was established in [32], followed by many variants and generalizations [3, 17, 23, 28, 38]
(see also [15, 24] for related works on a different notion of barycenter).

3. Barycentric sets

Henceforth, throughout the article, let .X; d/ be a geodesic ı-hyperbolic space. We first
recall the Wasserstein distance between probability measures (we refer to [35] for further
reading).

Denote by P p.X/ (p 2 Œ1;1/) the set of Borel probability measures on X of finite
p-th moment, that is, � 2 P p.X/ ifZ

X

dp.x0; x/ �.dx/ <1

for some (and hence any) x0 2 X . For �; � 2 P p.X/, the Lp-Wasserstein distance (or
the Kantorovich distance) between � and � is defined by

Wp.�; �/ WD inf
�

� Z
X�X

dp.x; y/ �.dx dy/
�1=p

;

where � runs over all couplings of .�; �/ (namely probability measures on X � X with
marginals � and �). A coupling � attaining the above infimum is called an Lp-optimal
coupling of .�; �/. Observe that

Wp.ıx ; �/ D
� Z

X

dp.x; y/�.dy/
�1=p

for all x 2 X and � 2 P p.X/, where ıx denotes the Dirac mass at x.
Note that P 2.X/�P 1.X/ by the Hölder (or Cauchy–Schwarz) inequality. According

to [32], we will consider barycenters of probability measures not only in P 2.X/ but also
in P 1.X/. Fix an arbitrary point x0 2 X . For � 2 P 1.X/, we define

(3.1) Vx0.�/ WD inf
x2X

Z
X

¹d2.x; z/ � d2.x0; z/º�.dz/:

We remark that the integral above is well-defined since, by the triangle inequality,Z
X

jd2.x; z/ � d2.x0; z/j�.dz/ �

Z
X

d.x; x0/¹d.x; z/C d.x0; z/º�.dz/

D d.x; x0/¹W1.ıx ; �/CW1.ıx0 ; �/º <1:
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In a complete CAT.0/-space, every � 2 P 1.X/ admits a unique point x 2 X attaining
the infimum in (3.1). Such a point x is independent of the choice of x0 and called the bary-
center of (or the center of mass for) � (see Proposition 4.3 in [32], and [36] for the case
of CAT.1/-spaces of small radii). More precisely, what we consider is an L2-barycenter
involving the squared distance. We refer to [1, 37] for related works on Lp-barycenters.

In a ı-hyperbolic space, however, we do not have a unique barycenter. For this reason,
we introduce the following set:

(3.2) B.�; "/ WD
°
x 2 X

ˇ̌̌ Z
X

¹d2.x; z/ � d2.x0; z/º�.dz/ � Vx0.�/C "
±

for � 2P 1.X/ and "� 0. We shall call B.�; "/ a barycentric set. We remark that B.�; "/

is independent of the choice of x0. Note also that B.�; 0/ may be empty (unless X is
proper), while B.�; "/ ¤ ; for any " > 0.

Our goal in this section is to estimate the diameter of B.�; "/ in terms of " and ı. To
this end, we first generalize the CAT.0/-inequality (2.2) to ı-hyperbolic spaces, with an
inevitable additional term depending on ı.

Lemma 3.1 (CAT.0/C ı). For any x;y; z 2 X and any midpoint w between x and y, we
have

(3.3) d2.z; w/ �
d2.z; x/

2
C
d2.z; y/

2
�
d2.x; y/

4
C 2ı ¹d.z; x/C d.z; y/º C 4ı2:

Proof. Since w is a midpoint of x and y (namely d.x; w/ D d.w; y/ D d.x; y/=2), we
have .xjy/w D 0. Then the ı-hyperbolicity (2.1) implies

0 � .xjz/w ^ .zjy/w � ı D
1

2

°
d.z; w/C

d.x; y/

2
� d.z; x/ _ d.z; y/

±
� ı:

Hence,

d2.z; w/ �
�
d.z; x/ _ d.z; y/ �

d.x; y/

2
C 2ı

�2
:

Setting a D d.z; x/ _ d.z; y/ and b D d.z; x/ ^ d.z; y/, we observe that�
a �

d.x; y/

2

�2
D a2 C

d2.x; y/

4
� ad.x; y/

D
a2 C b2

2
�
d2.x; y/

4
�
1

2
¹d.x; y/ � .a � b/º ¹.aC b/ � d.x; y/º

�
d2.z; x/

2
C
d2.z; y/

2
�
d2.x; y/

4
;

since aC b � d.x; y/ � a � b by the triangle inequality. Moreover, we find

0 � a �
d.x; y/

2
� a �

a � b

2
D
d.z; x/C d.z; y/

2
�

Combining these, we obtain, as desired,

d2.z; w/ �
�
a �

d.x; y/

2

�2
C 4ı

�
a �

d.x; y/

2

�
C 4ı2

�
d2.z; x/

2
C
d2.z; y/

2
�
d2.x; y/

4
C 2ı ¹d.z; x/C d.z; y/º C 4ı2:
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We also present the corresponding inequality for general intermediate points between x
and y.

Lemma 3.2 (General intermediate points). For any x;y; z 2X and any minimal geodesic

 W Œ0; 1�! X from x to y, we have

d2
�
z; 
.t/

�
� .1 � t / d2.z; x/C td2.z; y/ � .1 � t / t d2.x; y/(3.4)

C 4ı .d.z; x/ _ d.z; y//C 4ı2

for all t 2 .0; 1/.

Proof. Put w D 
.t/ and note that we have .xjy/w D 0 again. Thus, it follows from the
ı-hyperbolicity (2.1) that

0 � .xjz/w ^ .zjy/w � ı

D
1

2

°
d.z; w/C .td.x; y/ � d.z; x// ^ ..1 � t /d.x; y/ � d.z; y//

±
� ı;

and hence

d2.z; w/ �
®
.d.z; x/ � td.x; y// _ .d.z; y/ � .1 � t /d.x; y//C 2ı

¯2
:

Now, we claim that®
.d.z; x/ � td.x; y// _ .d.z; y/ � .1 � t /d.x; y//

¯2(3.5)

� .1 � t /d2.z; x/C td2.z; y/ � .1 � t / td2.x; y/

holds. In fact, the inequality

.d.z; x/ � td.x; y//2 � .1 � t /d2.z; x/C td2.z; y/ � .1 � t / td2.x; y/

can be rearranged as

td2.z; x/ � 2td.z; x/d.x; y/C td2.x; y/ � td2.z; y/;

which holds true by the triangle inequality. We can similarly show

.d.z; y/ � .1 � t /d.x; y//2 � .1 � t /d2.z; x/C td2.z; y/ � .1 � t / td2.x; y/;

thereby we obtain (3.5). Therefore, we deduce that

d2.z; w/ � .1 � t /d2.z; x/C td2.z; y/ � .1 � t / td2.x; y/

C 4ı .d.z; x/ _ d.z; y//C 4ı2:

Note that, in the case of ı D 0, (3.4) boils down to the CAT.0/-inequality (2.2). For
ı D 0, moreover, one can infer (3.4) from (3.3) by the standard subdivision argument
(see, for example, (ii) ) (iii) of Theorem 1.3.3 in [4]). For ı > 0, however, iterating
subdivisions makes the additional term (depending on ı) diverge, thereby we gave a direct
argument to prove Lemma 3.2. We also remark that (3.4) is not meaningful for t close to 0
or 1, since then the triangle inequality could give a better estimate.

We are ready to estimate the diameter of barycentric sets B.�; "/ defined in (3.2).
Recall that x0 2 X is an arbitrary point fixed at the beginning of this section.
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Proposition 3.3 (Diameter of B.�; "/). For any � 2 P 1.X/, x; y 2 X and any midpoint
w between x and y, we haveZ
X

¹d2.w; z/ � d2.x0; z/º�.dz/ �

Z
X

°d2.x; z/
2

C
d2.y; z/

2
� d2.x0; z/

±
�.dz/

�
d2.x; y/

4
C 2ı ¹W1.ıx ; �/CW1.ıy ; �/º C 4ı

2:

In particular, for any x 2 B.�; "1/ and y 2 B.�; "2/ with "1; "2 � 0, we have

(3.6) d.x; y/ �

q
8ı ¹W1.ıx ; �/CW1.ıy ; �/º C 16ı2 C 2."1 C "2/:

Proof. The first assertion is shown by integrating (3.3) in z with respect to �. Then, when
x 2 B.�; "1/ and y 2 B.�; "2/, we find

Vx0.�/ �
Z
X

¹d2.w; z/ � d2.x0; z/º�.dz/

� Vx0.�/C
"1 C "2

2
�
d2.x; y/

4
C 2ı ¹W1.ıx ; �/CW1.ıy ; �/º C 4ı

2:

Therefore, we obtain

d2.x; y/ � 8ı ¹W1.ıx ; �/CW1.ıy ; �/º C 16ı
2
C 2."1 C "2/:

This completes the proof.

The second assertion (3.6) (with "2 D 0) can be regarded as a generalization of the
variance inequality (see Proposition 4.4 in [32]; the reverse inequality under lower cur-
vature bounds can be found in [25, 33]). Note that, when we are interested in the case of
"1 D "2 D 0 (the set of barycenters), (3.6) implies diam.B.�; 0// � O.

p
ı/ as ı ! 0.

Remark 3.4 (When� 2P 2.X/). In the case of� 2P 2.X/, instead of Vx0.�/ as in (3.1),
we can directly consider

inf
x2X

W 2
2 .ıx ; �/ D inf

x2X

Z
X

d2.x; z/ �.dz/;

which is called the variance of �. One can simply write down the first assertion of Pro-
position 3.3 as

W 2
2 .ıw ;�/�

W 2
2 .ıx ; �/

2
C
W 2
2 .ıy ; �/

2
�
d2.x; y/

4
C 2ı ¹W1.ıx ;�/CW1.ıy ;�/ºC 4ı

2

and, if

W 2
2 .ıx ; �/ � inf

p2X
W 2
2 .ıp; �/C "1 and W 2

2 .ıy ; �/ � inf
p2X

W 2
2 .ıp; �/C "2;

then we have (3.6).
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4. Wasserstein contraction property

We next consider a contraction property in terms of the Wasserstein distance, which in the
case of (complete) CAT.0/-spaces means that

d.ˇ�; ˇ�/ � W1.�; �/

holds for�;� 2P 1.X/, where ˇ� and ˇ� are the (unique) barycenters of� and �, respect-
ively (see Theorem 6.3 in [32]). In the current setting of ı-hyperbolic spaces, we shall
estimate the distance between points in the barycentric sets.

We begin with a generalization of the Busemann nonpositive curvature (Busemann
NPC for short). We say that a geodesic space .Z; dZ/ has the Busemann NPC (or that
.Z; dZ/ is convex) if, for any geodesics �; �W Œ0; 1�! Z with �.0/ D �.0/, we have that
dZ.�.t/; �.t// � tdZ.�.1/; �.1// for all t 2 Œ0; 1�. Then, by the triangle inequality,

dZ.�.t/; �.t// � .1 � t / dZ.�.0/; �.0//C t dZ.�.1/; �.1//

holds for any geodesics �; �W Œ0; 1�! Z (regardless of whether �.0/ D �.0/ or not). We
refer to [10, 18] for further reading.

Remark 4.1 (Busemann NPC versus CAT.0/). In his celebrated paper [11], Busemann
showed that a complete, simply connected Riemannian manifold has the Busemann NPC
if and only if its sectional curvature is nonpositive everywhere. Nonetheless, in general,
the Busemann NPC is a weaker condition than the CAT.0/-property. On the one hand, it is
easily seen that CAT.0/-spaces have the Busemann NPC. On the other hand, every strictly
convex Banach space has the Busemann NPC, whereas it is a CAT.0/-space if and only if
it is a Hilbert space.

Recall that .X; d/ will always denote a geodesic ı-hyperbolic space. It is known that
ı-hyperbolic spaces have the Busemann NPC up to an additive constant depending only
on ı (see Section 7.4 in [16]). We give an outline of the proof for completeness.

Lemma 4.2 (Busemann NPCC ı). Let x; y;p; q 2 X . For any pair of minimal geodesics

 W Œ0; 1�! X from x to p and �W Œ0; 1�! X from y to q, we have

(4.1) d.
.t/; �.t// � .1 � t / d.x; y/C t d.p; q/C 8ı

for all t 2 .0; 1/.

Proof. Let �W Œ0; 1�! X and �W Œ0; 1�! X be minimal geodesics from x to q and from p

to q, respectively. Denote by 4xpq the triangle formed by (the image of) 
; � and �.
We can construct a map T W 4xpq ! Y to a tripod .Y; dY / with three edges of lengths
.pjq/x , .xjq/p and .xjp/q from the branching point such that the restrictions T j
 , T j�
and T j� are isometric (see Figure 1, where T .a/D T .b/D T .c/ is the branching pointO
of the tripod). We set Qx WD T .x/, Qp WD T .p/ and Qq WD T .q/. Then T is 1-Lipschitz (non-
expanding) and

dY .T .u/; T .v// � d.u; v/ � 4ı
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T

�!
a

b

c

x

p

q

.xjq/p

.pjq/x

�
�
�

�
�
O

Qx

Qp

Qq

.pjq/x

.xjq/p

.xjp/q

Figure 1. A 1-Lipschitz map from a triangle to a tripod

holds for all u;v 24xpq by the triangle inequality and the tripod lemma (see, for instance,
Lemma 2.15 in [34] and Lemma 2.3 in [27]). Together with the Busemann NPC of .Y;dY /,
we deduce that

d.
.t/; �.t// � dY .T
�

.t//; T .�.t///C 4ı � tdY . Qp; Qq/C 4ı D td.p; q/C 4ı:

We similarly obtain d.�.t/; �.t//� .1� t /d.x;y/C 4ı, and hence the triangle inequality
yields (4.1).

We remark that, similarly to (3.4) in Lemma 3.2, the inequality (4.1) does not give a
meaningful estimate for t close to 0 or 1. One can use a 1-Lipschitz map to a tripod also
for showing a variant of the CAT.0/-inequality, whereas then the additional term seems to
be necessarily dependent on the size of a triangle (as in (3.4)), since we take the square of
the distance.

Now, let d be the L2-distance function on X �X �R, namely

d..x; y; r/; .p; q; s// WD
p
d2.x; p/C d2.y; q/C .r � s/2:

The following subset will play a role:

A WD ¹.x; y; r/ 2 X �X �R j d.x; y/ � rº:

If .X;d/ is a CAT.0/-space, then A is a (geodesically) convex set thanks to the Busemann
NPC.

We will make use of the nearest point projection to A to prove the Wasserstein con-
traction property. We remark that .X �X �R; d/ is not a Gromov hyperbolic space (it is
a CAT.0/-space if so is .X; d/), thereby the contraction property of projection maps as in
Lemma 7.3.D of [16] does not directly apply.

Lemma 4.3. For .x; y; r/ 2 .X �X � Œ0;1// n A, we have

d..x; y; r/; A/ D
d.x; y/ � r
p
3

�
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Proof. We first show d..x; y; r/; A/ � .d.x; y/ � r/=
p
3. Given .p; q; s/ 2 A, if s < r ,

then .p; q; r/ 2 A and

d..x; y; r/; .p; q; r// < d..x; y; r/; .p; q; s//:

Hence, to show d..x; y; r/; .p; q; s// � .d.x; y/ � r/=
p
3, we can assume s � r without

loss of generality (otherwise we replace .p; q; s/ with .p; q; r/). Then we have, together
with the triangle inequality,

d..x; y; r/; .p; q; s// D
p
d2.x; p/C d2.y; q/C .r � s/2

�
1
p
3
¹d.x; p/C d.y; q/C .s � r/º

�
1
p
3
¹d.x; y/ � d.p; q/C .s � r/º �

1
p
3
¹d.x; y/ � rº:

This implies d..x; y; r/; A/ � .d.x; y/ � r/=
p
3.

To see the reverse inequality, we consider a minimal geodesic 
 W Œ0; 1�! X from x

to y and put

.p; q; s/ WD
�


� �

d.x; y/

�
; 

�
1�

�

d.x; y/

�
; r C �

�
; � WD

d.x; y/ � r

3
2

�
0;
d.x; y/

3

i
:

Then .p; q; s/ 2 A, since

d.p; q/ D d.x; y/ � 2� D
d.x; y/C 2r

3
D s;

and we have d..x; y; r/; .p; q; s// D
p
3 �. This completes the proof.

The next lemma is an essential step for our contraction result.

Lemma 4.4. For .x; y; r/ 2 .X �X � Œ0;1// n A such that

(4.2) d
�
.x; y; r/; A

�
�

8
p
3
ı;

let . Qx; Qy; Qr/ 2 A be a point attaining d..x; y; r/; A/ given as in the proof of Lemma 4.3.
Then, for any .p; q; d.p; q// 2 A, we have

d2.. Qx; Qy; Qr/; .p; q; d.p; q///

� d2..x; y; r/; .p; q; d.p; q/// � d2..x; y; r/; A/C 18D1
p
D1 C ı �

p
ı;

where we set
D1 D D1.x; y; p; q/ WD diam

�
.¹x; y; p; qº; d /

�
:

Observe that, if ı D 0, then the assumption (4.2) is void, and the assertion shows that
d.. Qx; Qy; Qr/; .p; q; d.p; q/// is strictly smaller than d..x; y; r/; .p; q; d.p; q///.
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Proof. Put s WD d.p; q/ for brevity, and let 
 W Œ0; 1�! X and �W Œ0; 1�! X be minimal
geodesics from Qx to p and from Qy to q, respectively. Note that Lemma 4.2 yields

d.
.t/; �.t// � .1 � t / d. Qx; Qy/C td.p; q/C 8ı

for any t 2 Œ0; 1�. Then we deduce from Lemma 4.3 that

d
�
.
.t/; �.t/; .1 � t / Qr C ts/; A

�
�

1
p
3

®
.1 � t / .d. Qx; Qy/ � Qr/C t .d.p; q/ � s/

¯
C
8ı
p
3
D

8
p
3
ı:

Therefore, on the one hand,

d
�
.x; y; r/; .
.t/; �.t/; .1 � t / Qr C ts/

�
� d..x; y; r/; A/ � d..
.t/; �.t/; .1 � t / Qr C ts/; A/ � d..x; y; r/; A/ �

8
p
3
ı:

This implies that, since the right-hand side is nonnegative by the assumption (4.2) and
d..x; y; r/; A/ � D1=

p
3 by Lemma 4.3 and r � 0,

(4.3) d2
�
.x; y; r/; .
.t/; �.t/; .1 � t / Qr C ts/

�
� d2..x; y; r/; A/ �

16

3
D1ı C

64

3
ı2:

On the other hand, observe from (3.4) that

d2.x; 
.t// � .1 � t /d2.x; Qx/C td2.x; p/ � .1 � t / td2. Qx; p/C 4D1ı C 4ı
2;

d2.y; �.t// � .1 � t /d2.y; Qy/C td2.y; q/ � .1 � t / td2. Qy; q/C 4D1ı C 4ı
2

(recall that Qx and Qy are on a minimal geodesic between x and y). Summing up, we obtain

d2
�
.x; y; r/; .
.t/; �.t/; .1 � t / Qr C ts/

�
� .1 � t /d2..x; y; r/; . Qx; Qy; Qr//C t d2..x; y; r/; .p; q; s//

� .1 � t / t d2.. Qx; Qy; Qr/; .p; q; s//C 8D1ı C 8ı
2:

Combining this with (4.3) shows

t d2..x; y; r/; .p; q; s// � .1 � t / t d2.. Qx; Qy; Qr/; .p; q; s//

� t d2..x; y; r/; A/ �
40

3
D1ı C

40

3
ı2:

By rearrangement, we find

d2.. Qx; Qy; Qr/; .p; q; s// � d2..x; y; r/; .p; q; s// � d2..x; y; r/; A/

C t d2.. Qx; Qy; Qr/; .p; q; s//C
40

3

D1ı

t
�

Moreover, it follows from d.x; Qx/ D d.y; Qy/ � d.x; y/=3, Qr D d. Qx; Qy/ < d.x; y/ and
s D d.p; q/ that

d2.. Qx; Qy; Qr/; .p; q; s// �
16

9
D2
1 C

16

9
D2
1 CD

2
1 D

41

9
D2
1 :
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Finally, letting t D
p
ı=.D1 C ı/ 2 .0; 1/, we obtain

d2.. Qx; Qy; Qr/; .p; q; s//

� d2..x; y; r/; .p; q; s// � d2..x; y; r/; A/C
� 41D2

1

9
p
D1Cı

C
40

3
D1
p
D1Cı

�p
ı

� d2..x; y; r/; .p; q; s// � d2..x; y; r/; A/C 18D1
p
D1 C ı �

p
ı:

We remark that, as is natural from the local flexibility of scale � ı, the following
contraction property is nontrivial only when ı is sufficiently small (ı�D2), and then we
have d.x; y/ � W1.�; �/CO.ı1=4/ for "1 D "2 D 0.

Theorem 4.5 (Wasserstein contraction). For any �; � 2 P 1.X/, x 2 B.�; "1/ and y 2
B.�; "2/ with "1; "2 � 0, we have

d.x; y/ � W1.�; �/C 8ı _

q
54D2

p
D2 C ı

p
ı C 3."1 C "2/;

where
D2 D D2.x; y; �; �/ WD diam

�
.¹x; yº [ supp� [ supp �; d/

�
:

Proof. For arbitrary ˛ > 0, let � 2 P .X �X/ be a coupling of .�; �/ with

r WD

Z
X�X

d.p; q/ �.dp dq/ � W1.�; �/C ˛:

We define a map

ˆ W X �X 3 .p; q/ 7�! .p; q; d.p; q// 2 X �X �R;

and put … WD ˆ�� (the push-forward of � by ˆ). Note that supp… � ˆ.supp�/ � A.
Since x 2 B.�; "1/ and y 2 B.�; "2/, together with the choice of r , we findZ
X�X�R

®
d2..x; y; r/; .p; q; s// � d2.x0; p/ � d

2.x0; q/ � s
2
¯
….dp dq ds/

D

Z
X

¹d2.x; p/ � d2.x0; p/º�.dp/C

Z
X

¹d2.y; q/ � d2.x0; q/º �.dq/

C

Z
X�X

®
.r � d.p; q//2 � d2.p; q/

¯
�.dp dq/

� inf
Nx; Ny2X; Nr2R

Z
X�X�R

¹d2.. Nx; Ny; Nr/; .p; q; s//�d2.x0; p/�d
2.x0; q/ � s

2
º….dp dq ds/

C "1 C "2:

That is to say, .x; y; r/ lives in the barycentric set B.…; "1 C "2/ in .X �X �R; d/.
Then we deduce from Lemma 4.4 that .x; y; r/ necessarily satisfies

d2..x; y; r/; A/ �
64

3
ı2 _

�
18D2

p
D2 C ı

p
ı C "1 C "2

�
:
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Indeed, if not, then (4.2) is fulfilled and, for any .p; q/ 2 supp� , . Qx; Qy; Qr/ 2 A (given as
in the proof of Lemma 4.3) satisfies

d2.. Qx; Qy; Qr/; .p; q; d.p; q///

� d2..x; y; r/; .p; q; d.p; q/// � d2..x; y; r/; A/C 18D2
p
D2 C ı

p
ı

< d2..x; y; r/; .p; q; d.p; q/// � ."1 C "2/:

Integrating in .p;q/with respect to � , we find a contradiction to .x;y;r/2B.…;"1C "2/.
Hence, it follows from Lemma 4.3 that

d.x; y/ �W1.�; �/ � d.x; y/ � r C ˛

� 8ı _

q
54D2

p
D2 C ı

p
ı C 3."1 C "2/C ˛:

Letting ˛ ! 0 completes the proof.

5. Deterministic approximations of barycenters

We next discuss an approximation of barycenters of uniform distributions on finite points
by the gradient flow method. Given a function f WX!R, we define the proximal operator
(also called the resolvent operator) by

(5.1) Jf� .x/ WD arg min
y2X

°
f .y/C

d2.x; y/

2�

±
for x 2 X and � > 0 (that is, y 2 Jf� .x/ if y attains the above minimum). Roughly speak-
ing, an element in Jf� .x/ can be regarded as an approximation of a point on the gradient
curve of f at time � from x. Thus the iteration of the proximal operator can be regarded
as discrete-time gradient flow for f , which is expected to lead us to a minimizer of f . We
refer to [27] for some contraction properties of discrete-time gradient flows for geodesic-
ally convex functions on Gromov hyperbolic spaces.

We will apply the proximal operator only to squared distance functions f D d2.z; �/.
In this case, each y 2 Jf� .x/ is explicitly given as y D 
..2� C 1/�1/ for some minimal
geodesic 
 W Œ0; 1�! X from z to x.

The next lemma (corresponding to Lemma 3.2 in [3] and Lemma 4.6(I) in [28])
provides a key estimate. Precisely, those in [3,28] are concerned with y 2 Jf� .x/ for a con-
vex function f , and we shall generalize it to Gromov hyperbolic spaces for the squared
distance function f D d2.z; �/.

Lemma 5.1 (Key estimate). For any � > 0, w; x; z 2 X and y D 
..2� C 1/�1/ on a
minimal geodesic 
 W Œ0; 1�! X from z to x, we have

(5.2) d2.w; y/ � d2.w; x/ � 2� ¹d2.z; y/ � d2.z; w/º C‚�ı;

where

‚ WD
®
8d.z; w/C 8ı

¯
_

h®
4d.w; y/C 8� d.z; y/

¯�1
�
^
2d.z; y/

ı

�i
:
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Proof. First of all, it follows from y 2 Jf� .x/ with f D d2.z; �/ that

d2.x; y/ � d2.x; w/ � 2� ¹d2.z; y/ � d2.z; w/º:

Hence, if d.w; y/ � d.x; y/, then (5.2) holds (without the additional term ‚�ı).
We assume d.w; y/ > d.x; y/ in the sequel. Note that the ı-hyperbolicity implies

0 D .xjz/y � .xjw/y ^ .zjw/y � ı:

If .zjw/y � ı, then we find

¹d.z; w/C 2ıº2 � ¹d.z; y/C d.w; y/º2 � d2.z; y/C 2d.z; y/ d.w; y/:

Combining this with the triangle inequality jd.w; y/� d.x; y/j � d.w; x/ and d.x; y/D
2�d.z; y/, we obtain

d2.w; y/ � d2.w; x/C 2d.x; y/ d.w; y/ � d2.x; y/

� d2.w; x/C 4� d.z; y/ d.w; y/

� d2.w; x/C 2� ¹d2.z; w/ � d2.z; y/º C 2� ¹4ı d.z; w/C 4ı2º:

In the other case of .xjw/y � ı, together with the triangle inequality, we have

d.x; y/C d.w; y/ � d.w; x/ � .2ı/ ^ .2d.x; y//:

Thus we obtain
d.w; x/ � d.w; y/C d.x; y/ � 2.ı ^ d.x; y//;

and observe that the right-hand side is positive by the hypothesis d.w; y/ > d.x; y/.
Therefore, we deduce that

d2.w;x/� d2.w;y/Cd2.x;y/C2d.w;y/d.x;y/� 4¹d.w;y/Cd.x;y/º.ı^d.x;y//:

Substituting d.x; y/ D 2� d.z; y/ and d.w; y/ � d.z; y/ � d.z; w/ yields

d2.w; x/ � d2.w; y/C 4�.� C 1/ d2.z; y/ � 4� d.z; w/ d.z; y/

� 4¹d.w; y/C d.x; y/º.ı ^ 2�d.z; y//:

Then we apply the elementary inequality 2.� C 1/a2 � 2ab � a2 � b2 with a D d.z; y/
and b D d.z; w/ to see

d2.w; x/ � d2.w; y/C 2� ¹d2.z; y/ � d2.z; w/º

� 4¹d.w; y/C d.x; y/º.ı ^ 2�d.z; y//:

This completes the proof.

In the CAT.0/-case (see [3, 28]), we have

d2.w; y/ � d2.w; x/ � 2� ¹d2.z; y/ � d2.z; w/º
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without the additional term ‚�ı. Note that ‚�ı in (5.2) tends to 0 not only as ı ! 0 but
also as � ! 0. This is the natural behavior, since y tends to x as � ! 0.

We also remark that, in the proof of Lemma 4.6(I) in [28], the Riemannian nature
of CAT.0/-spaces plays an essential role. Precisely, the inequality (4.2) in [28] is a con-
sequence of a Riemannian property called the commutativity as in equations (1.2) and (3.1)
in [29].

By using Lemma 5.1, we establish the following deterministic approximation of bary-
centers by the iterative application of the proximal operator in the spirit of [17, 23] (so-
called the no dice theorem). We also refer to Theorem 3.4 in [3] and Theorem 5.5 in [28]
for generalizations to the sum of convex functions.

Theorem 5.2 (Deterministic approximation). Fix a finite sequence .zi /niD1 inX , put fi WD
d2.zi ; �/, and let p 2 X be a minimizer of the function f W D

Pn
iD1 fi . Given � > 0 and

an arbitrary initial point y0 2 X , we recursively choose

yknCi 2 Jfi� .yknCi�1/ for k � 0; 1 � i � n;

and assume that p, .zi / and .yknCi / are all included in a bounded set � � X . Then, for
any " > 0, there exists some k0 < d2.p; y0/=.2�"/ such that

(5.3) f .yk0n/ � f .p/C
n‚� ı

2
C 2n.nC 1/D2

�� C ";

where we set

D� WD diam.�/ and ‚� WD .8D� C 8ı/ _
h
.4C 8�/D�

�1
�
^
2D�

ı

�i
:

Moreover, we have

(5.4) d.p; yk0n/ �

q
.16D� C‚�/ı C 16ı2 C 4.nC 1/D

2
�� C 2"=n:

We remark that, in a CAT.0/-space, we can employ as � a ball including .zi /niD1
and y0. This is because balls are convex by the CAT.0/-inequality (or the Busemann
NPC). In a ı-hyperbolic space, however, balls are not necessarily convex, and it is unclear
to the author how to control (the sum of) the additional terms in (3.4) (or (4.1)) during the
recursive scheme yknCi 2 Jfi� .yknCi�1/.

Proof. It follows from Lemma 5.1 that

d2.p; yknCi / � d
2.p; yknCi�1/ � 2� ¹d

2.zi ; yknCi / � d
2.zi ; p/º C‚� � ı:

Summing up for 1 � i � n, we have

d2.p; y.kC1/n/ � d
2.p; ykn/ � 2� ¹f .ykn/ � f .p/º

C 2�
°
f .ykn/ �

nX
iD1

d2.zi ; yknCi /
±
C n‚� � ı:(5.5)
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Concerning the third term in the right-hand side, we infer from the triangle inequality that

nX
iD1

¹d2.zi ; ykn/ � d
2.zi ; yknCi /º D

nX
iD1

iX
lD1

¹d2.zi ; yknCl�1/ � d
2.zi ; yknCl /º

� 2D�

nX
iD1

iX
lD1

d.yknCl�1; yknCl /:

Then, by the choice of yknCl 2 Jfl� .yknCl�1/ with fl D d2.zl ; �/, we find

(5.6) d.yknCl�1; yknCl / D
2�

2� C 1
d.zl ; yknCl�1/ � 2D��:

Hence, we obtain

nX
iD1

¹d2.zi ; ykn/ � d
2.zi ; yknCi /º � 4D

2
� �

nX
iD1

i D 2n.nC 1/D2
� �:

Plugging this into (5.5) yields

(5.7) d2.p; y.kC1/n/ � d2.p; ykn/� 2�
°
f .ykn/� f .p/�

n‚�ı

2
� 2n.nC 1/D2

��
±
:

It immediately follows from (5.7) that

f .yk0n/ � f .p/ �
n‚�ı

2
� 2n.nC 1/D2

�� � "

necessarily holds for some k0 < d2.p; y0/=.2�"/. Indeed, otherwise we have

d2.p; y Nkn/ < d
2.p; y0/ � 2� Nk" � 0

with Nk the minimum integer not smaller than d2.p; y0/=.2�"/, a contradiction.
Finally, the second assertion (5.4) is a consequence of Proposition 3.3. Putting � D

n�1
Pn
iD1 ızi , we deduce from (5.3) that

W 2
2 .ıyk0n ; �/ � W

2
2 .ıp; �/C

‚� ı

2
C 2.nC 1/D2

�� C
"

n
�

Hence, (3.6) (with "1 D 0) yields

d.p; yk0n/ �
q
8ı ¹W1.ıp; �/CW1.ıyk0n ; �/ºC16ı

2 C‚�ıC4.nC 1/D
2
�� C 2"=n

�

q
16D� ı C 16ı2 C‚� ı C 4.nC 1/D

2
�� C 2"=n:

Thanks to (5.3), up to d2.p; y0/=.2�"/ iterations, f .ykn/ nearly achieves minXf and
ykn passes close to p as in (5.4). We remark that the sublinear rate " < d2.p; y0/=.2�k0/
(following from k0 < d

2.p; y0/=.2�"/) could be compared with Proposition 5.7 in [28].
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Note also that we have an effective estimate on the resolvent operator only when � is
larger than ı (so-called “giant steps”; see [27] for a further discussion), thereby we did not
consider .�k/k�0 converging to 0 (compare this with Theorem 5.5 in [28]). If we assume
ı � D�=2 and take � D

p
ı=D�, then we have ‚� D .4

p
D�=ı C 8/D�, and (5.4)

shows

d.p; yk0n/ �

r
2"

n
CO.ı1=4/:

6. A law of large numbers

We next consider a law of large numbers in our setting. Our formulation follows Sturm’s
Theorem 4.7 in [32] for CAT.0/-spaces. We refer to Theorem 6.7 in [28] and Theorem 3
in [38] for some generalizations to other (upper and lower) curvature bounds.

Theorem 6.1 (Law of large numbers). Let .Zi /i�1 be a sequence of independent, identic-
ally distributed random variables on a probability space taking values in X with distribu-
tion � 2 P .X/, and take p 2B.�; 0/. Given � > 0 and an arbitrary initial point S0 2 X ,
we define a sequence .Sk/k�0 in X recursively by

SkC1 2 Jfk� .Sk/; fk WD d
2.ZkC1; �/:

Assume that p, supp� and .Sk/k�0 are all included in a bounded set � � X . Then, for
any " > 0, we have

(6.1) EŒd2.p; Sk0/� � 8D
2
� � C .‚� C 16D� C 16ı/ı C "

for some k0 < d2.p; S0/=.�"/, where D� WD diam.�/ and ‚� is defined as in The-
orem 5.2.

Proof. We can apply a calculation similar to the proof of Theorem 5.2. It follows from
Lemma 5.1 that

d2.p; SkC1/ � d
2.p; Sk/ � 2� ¹d

2.ZkC1; SkC1/ � d
2.ZkC1; p/º C‚��ı

D d2.p; Sk/ � 2� ¹d
2.ZkC1; Sk/ � d

2.ZkC1; p/º

C 2� ¹d2.ZkC1; Sk/ � d
2.ZkC1; SkC1/º C‚��ı

� d2.p; Sk/ � 2� ¹d
2.ZkC1; Sk/ � d

2.ZkC1; p/º C 8D
2
��

2
C‚��ı;

where we used

d2.ZkC1; Sk/ � d
2.ZkC1; SkC1/ � 2D� d.Sk ; SkC1/ � 4D

2
��

in the latter inequality (recall also (5.6)). Taking the expectations in ZkC1 conditioned
on Fk WD ¹Z1; : : : ; Zkº and applying the variance inequality (3.6) (with x D p, y D Sk ,
"1 D 0), we obtain

EŒd2.p;SkC1/ jFk
�

� d2.p; Sk/ � 2�EŒd2.ZkC1; Sk/ � d
2.ZkC1; p/�C 8D

2
��

2
C‚�ı�

� d2.p; Sk/ � � ¹d
2.p; Sk/ � 16D�ı � 16ı

2
º C 8D2

��
2
C‚�ı�

D .1 � �/ d2.p; Sk/C 8D
2
� �

2
C .‚� C 16D� C 16ı/ı�:
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Taking the expectations once again, we arrive at

(6.2) EŒd2.p; SkC1/� � .1 � �/EŒd2.p; Sk/�C 8D
2
� �

2
C .‚� C 16D� C 16ı/ı�:

In the same way as in the proof of Theorem 5.2, we infer from (6.2) that

EŒd2.p; Sk0/� � 8D
2
�� C .‚� C 16D� C 16ı/ı C "

necessarily holds for some k0 < d2.p; S0/=.�"/. This completes the proof.

When we assume ı � D�=2 and choose � D
p
ı=D� as in the discussion after The-

orem 5.2, (6.1) yields
EŒd2.p; Sk0/� � "CO.

p
ı /:

An advantage of the above recursive choice of .Sk/k�0 is that SkC1 is concretely
given as a point on a geodesic between Sk and ZkC1 without any knowledge about the
construction of barycenters of probability measures (though minimal geodesics are not
unique in Gromov hyperbolic spaces).

Employing “empirical means” instead of .Sk/k�0, one can also show the following
version of law of large numbers (see Proposition 6.6 in [32]).

Proposition 6.2 (Empirical law of large numbers). Let .X;d/ be complete and separable,
let .Zi /i�1 be a sequence of independent, identically distributed random variables on a
probability space taking values inX with distribution � 2 P .X/ of bounded support, and
take p 2 B.�; 0/. Then,

�k 2 B
� 1
k

kX
iD1

ıZi ; 0
�

satisfies

lim sup
k!1

d.p; �k/ � 8ı _

q
54D

p
D C ı

p
ı

almost surely, where we set D WD 3 diam.supp�/.

Proof. It follows from Varadarajan’s theorem (see Theorem 11.4.1 in [14]) that

�k WD
1

k

kX
iD1

ıZi

weakly converges to � almost surely, therebyW1.�; �k/! 0 (see Theorem 7.12 in [35]).
Observe that d.p; supp�/ � diam.supp�/ necessarily holds, and similarly,

d.�k ; supp�/ � d.�k ; supp �k/ � diam.supp �k/ � diam.supp�/:

Hence, we have diam..¹p; �kº [ supp�; d// � D and Theorem 4.5 (with "1 D "2 D 0)
yields

lim sup
k!1

d.p; �k/ � 8ı _

q
54D

p
D C ı

p
ı

by the choices of p and �k .
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We finally discuss two possible directions of further research.

Remark 6.3 (Further problems). (a) We studied in [27] discrete-time gradient flows for
geodesically convex functions (namely, they are convex along geodesics). However, des-
pite the negative curvature nature, distance functions on Gromov hyperbolic spaces are
not geodesically convex due to the local flexibility. Therefore, it is an intriguing problem
to introduce an appropriate notion of “roughly convex functions” on Gromov hyperbolic
spaces, including the distance function d.z; �/ or its square.

(b) Compared with the contraction estimates in [27] directly akin to trees, the results in
the present article are generalizations from CAT.0/-spaces to ı-hyperbolic spaces. There-
fore, on the one hand, it may be possible to improve our estimates (for example, the order
of ı) via an analysis closer to the case of trees. Specifically, it is desirable that we can
reduce the dependence on D2 and D� in Theorems 4.5, 5.2 and 6.1. On the other hand,
there seems a room for further generalizations to metric spaces satisfying the CAT.0/-
inequality with small perturbations in some way (cf. Lemma 3.2).

Funding. This work was supported in part by JSPS Grant-in-Aid for Scientific Research
(KAKENHI) 19H01786, 22H04942.
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