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Hölder estimate for a tug-of-war game with 1 < p < 2

from Krylov–Safonov regularity theory

Ángel Arroyo and Mikko Parviainen

Abstract. We propose a new version of the tug-of-war game and a corresponding
dynamic programming principle related to the p-Laplacian with 1 < p < 2. For this
version, the asymptotic Hölder continuity of solutions can be directly derived from
recent Krylov–Safonov type regularity results in the singular case. Moreover, exist-
ence of a measurable solution can be obtained without using boundary corrections.
We also establish a comparison principle.

1. Introduction

In Section 7 of [3], we show that a solution to the dynamic programming principle

(1.1) u.x/ D
˛

2

�
sup
h2B1

u.x C "h/C inf
h2B1

u.x C "h/
�
C ˇ

Z
B1

u.x C "h/ dhC "2f .x/;

with ˇ D 1� ˛ 2 .0; 1� and x 2 � � RN , satisfies certain extremal inequalities, and thus
has asymptotic Hölder regularity directly by the Krylov–Safonov theory developed in that
paper. This dynamic programming principle corresponds to a version of the tug-of-war
game with noise as explained in [19], and it is linked to the p-Laplacian when p � 2
with suitable choice of probabilities ˛ D ˛.N; p/ and ˇ D ˇ.N; p/. Interested readers
can consult the references [5,12,20,22] for more information about the tug-of-war games.

In the case 1 < p < 2, one usually considers a variant of the game known as the tug-
of-war game with orthogonal noise as in [22], although there is also other recent variant
covering this range and not using orthogonal noise but measures absolutely continuous
with respect to the N -dimensional Lebesgue measure, see [13]. An inconvenience of the
“orthogonal noise” approach of [22] is that the uniform part of the measure is supported
in .N � 1/-dimensional balls. Thus we do not expect that solutions to the corresponding
dynamic programming principle satisfy the extremal inequalities required for the Krylov–
Safonov type regularity estimates obtained in [2, 3].
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Second, there are some deep measurability issues related to the corresponding dy-
namic programming principles, and this introduces some difficulties in the existence and
measurability proofs in the case 1 < p < 2, as explained at the beginning of Section 3.2.
As a matter of fact, in [8] and [4] a modification near the boundary was necessary in order
to guarantee the measurability. See also [1], where a modification of the usual tug-of-war
is made near the boundary.

For these reasons, and with the purpose of covering the case 1 < p < 2, we propose a
different variant of the tug-of-war game that can be described by a dynamic programming
principle having a uniform part in a N -dimensional ball in (2.4) below. For this variant,
no boundary modifications are needed in the existence proof (Theorem 3.7) because of
better continuity properties that are addressed in Section 3. We also establish a comparison
principle and thus uniqueness of solutions (Theorem 3.8). Moreover, the solutions to this
dynamic programming principle are asymptotically Hölder continuous (Corollary 4.3) and
converge, passing to a subsequence if necessary, to a solution of the normalized p-Laplace
equation (Theorem 5.3).

2. Preliminaries

We denote byB1 the open unit ball of RN centered at the origin. For jzj D 1, we introduce
the following notation:

(2.1) Iz"u.x/ WD
1


N;p

Z
B1

u.x C "h/.z � h/
p�2
C dh;

for each Borel measurable bounded function u, where 
N;p is the normalization constant

(2.2) 
N;p WD

Z
B1

.z � h/
p�2
C dh D

1

2

Z
B1

jh1j
p�2 dh;

which is independent of the choice of jzj D 1. Here, we have used the following notation:

(2.3) .t/
p�2
C D

´
tp�2 if t > 0;
0 if t � 0:

We remark that t 7! .t/
p�2
C is a continuous function in R when p > 2, but it presents a

discontinuity at t D 0 when 1 < p � 2. We observe, integrating for example over a cube
containing B1, that 
N;p <1 for any p > 1. Later we compute the precise value of 
N;p
in (A.4), but we immediately observe that 
N;p > 1=2 if 1 < p < 2, since

2
N;p D

Z
B1

jz � hjp�2 dh �

Z
B1

jhjp�2 dh > 1:

Throughout the paper, � � RN denotes a bounded domain. For " > 0, we define the
"-neighborhood of � as

�" D ¹x 2 RN W dist.x;�/ < "º:
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Let f W�!R be a Borel measurable bounded function. We consider a dynamic program-
ming principle (DPP)

(2.4) u.x/ D
1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�
C "2f .x/

for x 2 �, with prescribed Borel measurable bounded boundary values gW�" n�! R.
The parameter p above is linked to the p-Laplace operator as explained in Section 5.

Next, we recall the asymptotic Hölder continuity result derived in [3] and [2]. The
results there apply to a quite general class of discrete stochastic processes with bounded
and measurable increments and their expectations, or equivalently functions satisfying the
corresponding dynamic programming principles. Moreover, the results actually hold for
functions merely satisfying inequalities given in terms of extremal operators, which we
recall below. This can be compared with the Hölder result for PDEs given in terms of
Pucci operators (see for example [6] and [10, 11, 23]).

For ƒ � 1, let M.Bƒ/, as in those papers, denote the set of symmetric unit Radon
measures with support in Bƒ, and let �WRN !M.Bƒ/ be such that

x 7!

Z
Bƒ

u.x C h/ d�x.h/

defines a Borel measurable function for every Borel measurable uWRN ! R. By symmet-
ric we mean that

�x.E/ D �x.�E/

holds for every measurable set E � RN .

Definition 2.1 (Extremal operators). Let uWRN ! R be a Borel measurable bounded
function. For ˇ D 1 � ˛ 2 .0; 1�, we define the extremal Pucci type operators

LC" u.x/ WD
1

2"2

�
˛ sup
�2M.Bƒ/

Z
Bƒ

ıu.x; "h/ d�.h/C ˇ

Z
B1

ıu.x; "h/ dh
�

D
1

2"2

�
˛ sup
h2Bƒ

ıu.x; "h/C ˇ

Z
B1

ıu.x; "h/ dh
�

and

L�" u.x/ WD
1

2"2

�
˛ inf
�2M.Bƒ/

Z
Bƒ

ıu.x; "h/ d�.h/C ˇ

Z
B1

ıu.x; "h/ dh
�

D
1

2"2

�
˛ inf
h2Bƒ

ıu.x; "h/C ˇ

Z
B1

ıu.x; "h/ dh
�
;

where
ıu.x; "h/ D u.x C "h/C u.x � "h/ � 2u.x/

for every h 2 Bƒ.

Naturally, also other domains of definition are possible instead of RN above.
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Theorem 2.2 (Asymptotic Hölder, [2, 3]). There exists "0 > 0 such that if u satisfies
LC" u � �� and L�" u � � in BR for some 1 � ˛ D ˇ > 0, where " < "0R, there exist
C; 
 > 0 such that

ju.x/ � u.y/j �
C

R


�
sup
BR

juj CR2�
��
jx � yj
 C "


�
for every x; y 2 BR=2.

It is worth remarking that the constants C and 
 are independent of ", and depend
exclusively on N , ƒ � 1 and ˇ D 1 � ˛ 2 .0; 1�. Also a version of Harnack’s inequality
(see Theorem 5.5 in [2]) holds if the extremal inequalities are satisfied for some ˇ > 0.
For a different approach for regularity in the case of tug-of-war games, see [16] (p > 2)
and [15] (p > 1).

3. Existence of measurable solutions with 1 < p < 1

In this section, we prove existence and uniqueness of solutions to the DPP (2.4). In addi-
tion, when 1 < p < 2, such DPP satisfies the requirements to get the asymptotic Hölder
estimate from Theorem 2.2. The regularity result and the connection of such a DPP (as
well as the corresponding tug-of-war game) to the p-Laplacian are addressed in Sections 4
and 5, respectively.

Remark 3.1. Observe that the operator Iz" defined in (2.1) is a linear average for each
jzj D 1, in the sense that Iz" satisfies the following:
(i) stability: infB".x/ u � Iz"u.x/ � supB".x/ u;
(ii) monotonicity: Iz"u � Iz" v for u � v;
(iii) linearity: Iz" .auC bv/ D aIz"uC bIz" v for a; b 2 R.

3.1. Continuity estimates for Iz
"u

Given a Borel measurable bounded function uW�"!R, we show that the function Iz"u.x/

is continuous with respect to x 2 � and jzj D 1. In fact, we prove that .x; z/ 7! Iz"u.x/

is uniformly continuous. As a consequence of this, the function

x 7�!
1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�

is continuous in �, as shown in Lemma 3.4.

Lemma 3.2. Let� � RN . For uW�"! R a Borel measurable bounded function and for
x 2 �, the function

z 7�! Iz"u.x/

is continuous on jzj D 1. Moreover, the family ¹z 7! Iz"u.x/ W x 2 �º is equicontinuous
on jzj D 1.
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Proof. For jzj D jwj D 1, we haveˇ̌
Iz"u.x/ � Iw" u.x/

ˇ̌
�
kuk1

N;p

Z
B1

ˇ̌
.z � h/

p�2
C � .w � h/

p�2
C

ˇ̌
dh

uniformly for every x 2 �. We claim that the limit

(3.1) lim
jz�wj!0

Z
B1

ˇ̌
.z � h/

p�2
C � .w � h/

p�2
C

ˇ̌
dh D 0

holds for every 1 < p <1. Observe that the limit in (3.1) is independent of x and u, and
thus it holds uniformly for every x 2 �; then, the (uniform) equicontinuity of Iz"u in �
follows.

(i) Case p D 2. Since .t/0C D �.0;1/.t/, we haveZ
B1

ˇ̌
.z � h/0C � .w � h/

0
C

ˇ̌
dh D

jB1 \ .¹z � h > 0º4¹w � h > 0º/j

jB1j
� C jz � wj

for some explicit constant C > 0 depending only on N , so (3.1) follows. Here, 4 stands
for the symmetric difference A4B D .A n B/ [ .B n A/.

(ii) Case p > 2. We observe that the function t 7! .t/
p�2
C is continuous in R. In

addition, given any jzj D jwj D 1, it holds that

j.z � h/
p�2
C � .w � h/

p�2
C j � 1

for each h 2 B1. Then (3.1) follows by the dominated convergence theorem.
(iii) Case 1 < p < 2. This case requires a bit care, since obtaining an integrable upper

bound needed for the dominated convergence theorem is not as straightforward. To this
end, we observe the inequality

ja � bj � .aC b/
�
1 �

min¹a; bº
max¹a; bº

�
for every a; b > 0. Thus

j.z � h/
p�2
C � .w � h/

p�2
C j �

�
.z � h/

p�2
C C .w � h/

p�2
C

��
1�

min¹.z � h/p�2C ; .w � h/
p�2
C º

max¹.z � h/p�2C ; .w � h/
p�2
C º

�
:

In that way, applying Hölder’s inequality with q D 1
2
p�3
p�2

and recalling the definition
of 
N;.pC1/=2, we can estimateZ

B1

j.z � h/
p�2
C � .w � h/

p�2
C j dh

� 2

2
p�2
p�3

N;.pC1/=2

� Z
B1

�
1 �

min¹.z � h/p�2C ; .w � h/
p�2
C º

max¹.z � h/p�2C ; .w � h/
p�2
C º

�� p�3p�1
dh
�� p�1p�3

:

Observe that .pC 1/=2 > 1, and thus 
N;.pC1/=2 <1. Now, since t 7! .t/
p�2
C is continu-

ous in .0;C1/ (and we set other values identically to 0 in (2.3)), and so, for any given
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jzj D 1 and for each h 2 B1 such that z � h > 0, it holds that .w � h/p�2C ! .z � h/
p�2
C as

w ! z with jwj D 1. Then, we see that the function in the integral on the right-hand side
is bounded between 0 and 1 and converges to 0 as w! z for each h 2 B1, so the assump-
tions in the dominated convergence theorem are fulfilled, yielding that the right-hand side
above converges to 0 as w ! z, and thus (3.1) follows.

Lemma 3.3. Let � � RN . For jzj D 1, the function

x 7�! Iz"u.x/

is continuous in � for every Borel measurable bounded function uW�" ! R. Moreover,
¹Iz"u W jzj D 1º is equicontinuous in �.

Proof. Let uW�"! R be a Borel measurable bounded function defined in�". Our aim is
to show that

lim
x;y2� s.t. jx�yj!0

ˇ̌
Iz"u.x/ � Iz"u.y/

ˇ̌
D 0:

We can write

Iz"u.x/ D
1


N;p jB1j

Z
RN

u.x C "h/ �B1.h/ .z � h/
p�2
C dh;

Iz"u.y/ D
1


N;p jB1j

Z
RN

u.x C "h/ �B1.� x�y" /.h/ .z � .hC
x�y
"
//
p�2
C dh;

so it follows immediately thatˇ̌
Iz"u.x/ � Iz"u.y/

ˇ̌
�
kuk1

N;p jB1j

Z
RN

ˇ̌
�
B1.h/.z � h/

p�2
C � �B1.� x�y" /.h/ .z � .hC

x�y
"
//
p�2
C

ˇ̌
dh:

We focus on the integral above. We can assume without loss of generality that z D e1, oth-
erwise we could perform a change of variables. In addition, and for the sake of simplicity,
we denote � D �.x � y/=". Then the result follows from the following claim:

(3.2) lim
�!0

Z
RN

ˇ̌
�
B1.h/ .h1/

p�2
C � �B1.�/.h/ .h1 � �1/

p�2
C

ˇ̌
dh D 0:

To see this we need to distinguish two cases depending on the value of p.
(i) Case p � 2. The integrand in (3.2) converges to zero as � ! 0 for almost every

h 2 RN . Moreover, it is bounded by 2 and zero outside a bounded set. Then the claim
follows by the dominated convergence theorem as � ! 0.

(ii) Case 1 < p < 2. In order to apply the dominated convergence theorem when 1 <
p < 2, we observe similarly as in the proof of Lemma 3.2 thatˇ̌

�
B1.h/ .h1/

p�2
C � �B1.�/.h/ .h1 � �1/

p�2
C

ˇ̌
�
�
�
B1.h/ .h1/

p�2
C C �B1.�/.h/ .h1 � �1/

p�2
C

�
�

�
1 �

min¹�B1.h/ .h1/
p�2
C ; �B1.�/.h/ .h1 � �1/

p�2
C º

max¹�B1.h/ .h1/
p�2
C ; �B1.�/.h/ .h1 � �1/

p�2
C º

�
:
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In that way, applying Hölder’s inequality with q D 1
2
p�3
p�2

,Z
D0

ˇ̌
�
B1.h/ .h1/

p�2
C � �B1.�/.h/ .h1 � �1/

p�2
C

ˇ̌
dh

� C
� Z

RN

�
1 �

min¹�B1.h/ .h1/
p�2
C ; �B1.�/.h/ .h1 � �1/

p�2
C º

max¹�B1.h/ .h1/
p�2
C ; �B1.�/.h/ .h1 � �1/

p�2
C º

�� p�3p�1
dh
�� p�1p�3

for every small enough �, where C > 0 only depends on N and p. Now again, the right-
hand side in the integral above is bounded between 0 and 1. Moreover, the integrand
converges to 0 as � ! 0 for almost every h 2 RN , so that the dominated convergence the-
orem implies (3.2). Moreover, since the estimates obtained in this proof hold uniformly for
every x 2� and jzj D 1, this implies the uniform equicontinuity of the family x 7! Iz"u.x/

with respect to jzj D 1.

As a direct consequence of the continuity estimate from the previous lemma, we get
the following result.

Lemma 3.4. Let � � RN and let uW�" ! R be a Borel measurable bounded function.
Then the function

x 7�!
1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�

is continuous in �.

Proof. The result follows directly from the equicontinuity in � of the set of functions
¹Iz"u W jzj D 1º (Lemma 3.3) and the elementary inequalities

sup
jzjD1

Iz"u.x/ � sup
jzjD1

Iz"u.y/ � sup
jzjD1

®
Iz"u.x/ � Iz"u.y/

¯
;

inf
jzjD1

Iz"u.x/ � inf
jzjD1

Iz"u.y/ � sup
jzjD1

®
Iz"u.x/ � Iz"u.y/

¯
:

3.2. Existence and uniqueness

Next we show the existence of Borel measurable solutions to the DPP (2.4). We also
establish a comparison principle and thus uniqueness of solutions.

We remark that, contrary to the existence proofs in [4, 8], no boundary correction is
needed as in those references, since Lemma 3.3 guarantees that u � "2f is continuous
in�, and the solutions to (2.4) are measurable. Also recall that measurability of operators
containing sup and inf is not completely trivial, as shown by Example 2.4 in [17].

The proof of existence of solutions to the DPP (2.4) with prescribed values in

�" D �" n�

is based on Perron’s method.
For that, given Borel measurable bounded functions f W�! R and gW �" ! R, we

consider the family �f;g of Borel measurable functions uW�" ! R such that u � "2f is
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continuous in � and

(3.3)

8<:u �
1

2

�
sup
jzjD1

Iz"uC inf
jzjD1

Iz"u
�
C "2f in �;

u � g in �":

In the PDE literature, the corresponding class would be the class of subsolutions with
suitable boundary conditions. In the following lemmas, we prove that �f;g is non-empty
and uniformly bounded.

Lemma 3.5. Let f and g be Borel measurable bounded functions in � and �", respect-
ively. There exists a Borel measurable function uW�"!R such that u� "2f is continuous
in � and u satisfies (3.3) with u D g in �".

Proof. Let C > 0 be a constant to be fixed later, fix R D supx2�" jxj, and define

u.x/ D

´
C.jxj2 �R2/C "2f .x/ if x 2 �;
g.x/ if x 2 �":

Then u � "2f is clearly continuous in �. To see that u satisfies (3.3), let

u0.x/ D C.jxj
2
�R2/ � "2kf k1 � kgk1

for every x 2 �". Then u0 � u in �". By the linearity and the monotonicity of the oper-
ator Iz" (see Remark 3.1),

1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�
�
1

2

�
sup
jzjD1

Iz"u0.x/C inf
jzjD1

Iz"u0.x/
�

�
1

2
inf
jzjD1

®
Iz"u0.x/C I�z" u0.x/

¯
D C inf

jzjD1

° 1

2
N;p

Z
B1

jx C "hj2jz � hjp�2 dh
±

� CR2 � "2kf k1 � kgk1:

By the symmetry properties and the identity (A.5), it turns out that

1

2
N;p

Z
B1

jx C "hj2 jz � hjp�2 dh D jxj2 C "2
N C p � 2

N C p
� jxj2 C

"2

3

holds for any jzj D 1, N � 2 and p > 1. Therefore,

1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�
� C

�
jxj2 C

"2

3

�
� CR2 � "2kf k1 � kgk1

D u.x/ � "2f .x/C
�C"2
3
� "2kf k1 � kgk1

�
:

Then (3.3) follows for C D 3.kf k1 C "�2kgk1/, since then the expression in the par-
enthesis right above equals zero.
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Lemma 3.6. Let f be a Borel measurable bounded function in �. If uW�" ! R is a
Borel measurable function satisfying (3.3) in �, then

sup
�

u � C"2kf k1 C kgk1

for some constant C > 0 depending only on � and ".

Proof. We start by extending the function u as kgk1 outside �". For each x 2 �, let

Sx D ¹h 2 B1 W 1=2 � jhj < 1 and x � h � 0º:

Then we define the constant

# D #.N; p/ D
1

2
N;p jB1j

Z
Sx

jz � hjp�2 dh;

which is independent of x 2 � and jzj D 1. Indeed, sinceZ
Sx\¹z �h<0º

jz � hjp�2 dh D

Z
S�x\¹z �h>0º

jz � hjp�2 dh;

we can writeZ
Sx

jz � hjp�2 dh D

Z
Sx\¹z �h>0º

jz � hjp�2 dhC

Z
Sx\¹z �h<0º

jz � hjp�2 dh

D

Z
Sx\¹z �h>0º

jz � hjp�2 dhC

Z
S�x\¹z �h>0º

jz � hjp�2 dh:

Using this and the fact that Sx [ S�x D B1 n B1=2, we getZ
Sx

jz � hjp�2 dh D

Z
B1nB1=2

.z � h/
p�2
C dh D 
N;p jB1j

�
1 �

1

2NCp�2

�
:

In the last equality, we used the definition of 
N;p and a change of variables asZ
B1nB1=2

.z � h/
p�2
C dh D

Z
B1

.z � h/
p�2
C dh �

Z
B1=2

.z � h/
p�2
C dh

D

Z
B1

.z � h/
p�2
C dh � 2�.NCp�2/

Z
B1

.z � h/
p�2
C dh:

Thus we obtain

# D
1

2
�

1

2NCp�1
2

�1
4
;
1

2

�
for any N � 2 and 1 < p <1.

Let x 2�. By Lemma 3.2, there exists jz0j D 1maximizing Iz"u.x/ among all jzj D 1.
Then

u.x/ � "2f .x/ �
1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�
�
1

2

�
Iz0" u.x/C I�z0" u.x/

�
D

1

2
N;p

Z
B1

u.x C "h/ jz0 � hj
p�2 dh � # sup

h2B1\Sx

¹u.x C "h/º C .1 � #/ sup
RN

u:
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For each k 2 N, let Vk D RN n Bp
k"=2

. Since

jx C "hj2 � jxj2 C
"2

4

for every h 2 B1 \ Sx , it turns out that xC "h 2 VkC1 for every h 2 B1 \ Sx and x 2 Vk .
Therefore,

sup
Vk

u � # sup
VkC1

uC .1 � #/ sup
RN

uC "2kf k1:

Iterating this inequality starting from V0 D RN , we obtain

sup
RN

u � #k sup
Vk

uC
� k�1X
jD0

#j
� �
.1 � #/ sup

RN

uC "2kf k1

�
;

and rearranging terms,

sup
RN

u � sup
Vk

uC
1 � #k

#k.1 � #/
"2kf k1:

Since � is bounded, choosing large enough k0 D k0.";�/ we ensure that � � Bpk0"=2,
and thus Vk0 � RN n �. Thus there is necessarily a step k � k0 so that supVk u �
supRN n� u � kgk1. Using also that # 2 .1=4; 1=2/, we get

sup
�

u � sup
RN

u � kgk1 C 2
2kC1 "2kf k1:

Now we have the necessary lemmas to work out the existence through Perron’s method.
The idea is to take the pointwise supremum of functions in �f;g , the family of Borel
measurable functions u with u � "2f 2 C.�/ satisfying (3.3) (this would be subsolu-
tions in corresponding PDE context), and to show that this is the desired solution. Here
we also utilize the continuity of u � "2f in �, so that the supremum of functions in the
uncountable set �f;g is measurable. Indeed, otherwise to the best of our knowledge, Per-
ron’s method does not work as such (unless p D 1 [14]), but one needs to construct a
countable sequence of functions as in [17] to guarantee the measurability.

Theorem 3.7. Let f and g be Borel measurable bounded functions in� and �", respect-
ively. There exists a Borel measurable function uW�" ! R satisfying

(3.4)

8̂<̂
:u D

1

2

�
sup
jzjD1

Iz"uC inf
jzjD1

Iz"u
�
C "2f in �;

u D g in �":

Proof. In view of Lemmas 3.5 and 3.6, the set �f;g is non-empty and uniformly bounded.
Thus, we can define u as the pointwise supremum of functions in �f;g , that is,

u.x/ D sup
u2�f;g

u.x/

for each x 2 �". The boundedness of u is immediate. Moreover, u is Borel measurable.
Indeed, since u � "2f can be expressed as the pointwise supremum of continuous func-
tions u � "2f with u 2 �f;g , it turns out that u � "2f is lower semicontinuous in �, and
thus measurable, so the measurability of u follows.
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By Lemma 3.5, there exists at least one function u in �f;g such that u D g in �", so u
agrees with g in �". On the other hand, since u � u for every u 2 �f;g , then

u � "2f �
1

2

�
sup
jzjD1

Iz"uC inf
jzjD1

Iz"u
�
�
1

2

�
sup
jzjD1

Iz"uC inf
jzjD1

Iz"u
�

in �. Taking the pointwise supremum in �f;g , we have that

u � "2f �
1

2

�
sup
jzjD1

Iz"uC inf
jzjD1

Iz"u
�
:(3.5)

Hence u is a Borel measurable bounded subsolution to (3.3) with u D g in �". Next
we show that u � "2f is indeed continuous in �. For this, let zuW�" ! R be the Borel
measurable function defined by

zu D

8<:
1

2

�
sup
jzjD1

Iz"uC inf
jzjD1

Iz"u
�
C "2f in �;

g in �":

Then u � zu in � by (3.5), so zu is a subsolution to (3.3), since the right-hand side above
can be estimated from above by 1

2

�
supjzjD1 Iz" zuC infjzjD1 Iz" zu

�
C "2f . Observe also that

zu� "2f is continuous in � by Lemma 3.3, so zu 2 �f;g . Thus zu � u, and in consequence,
u D zu 2 �f;g . Moreover,

u D
1

2

�
sup
jzjD1

Iz"uC inf
jzjD1

Iz"u
�
C "2f

in �, and the proof is finished.

The uniqueness of solutions to (3.4) is directly deduced from the following comparison
principle.

Theorem 3.8. Let f be a Borel measurable bounded function in�, and let u;v W�"!R
be two Borel measurable solutions to the DPP (2.4) in� such that u� v in �". Then u� v
in �.

Proof. For simplicity, we define w D u � v. Then w is continuous in � by Lemma 3.4
and w � 0 in �". Furthermore, w is uniformly continuous in �, and thus we can define
zw W�" ! R by

zw.x/ D

8<: lim
�3y!x

w.y/ if x 2 @�;

w.x/ otherwise,

so that zw 2 C.�/. Let us suppose thriving for a contradiction that

M D sup
�"

w D max
�

zw > 0;

where the fact that w � 0 in �" is used above.



Á. Arroyo and M. Parviainen 1034

By continuity, the set A D ¹x 2 � W zw.x/ D M º is non-empty and closed. Indeed,
since � is bounded, then A is compact. For any fixed y 2 �, by Lemma 3.2 there exist
jz1j D jz2j D 1 such that

Iz1" u.y/ D sup
jzjD1

Iz"u.y/ and Iz2" v.y/ D inf
jzjD1

Iz" v.y/:

Then

w.y/ D u.y/ � v.y/

D
1

2

�
sup
jzjD1

Iz"u.y/C inf
jzjD1

Iz"u.y/
�
�
1

2

�
sup
jzjD1

Iz" v.y/C inf
jzjD1

Iz" v.y/
�

�
1

2

�
Iz1" u.y/C Iz2" u.y/

�
�
1

2

�
Iz1" v.y/C Iz2" v.y/

�
D
1

2

�
Iz1" w.y/C Iz2" w.y/

�
� sup
jzjD1

Iz"w.y/:

Using this, for any x 2 A,

M D zw.x/ D lim
�3y!x

w.y/ � lim
�3y!x

�
sup
jzjD1

Iz"w.y/
�
D sup
jzjD1

Iz"w.x/ �M;

where the continuity of x 7! supjzjD1 Iz"w.x/ by Lemma 3.3 has been used in the last
equality. That is, supjzjD1 Iz"w.x/ D M , and again by Lemma 3.2, there exists jz0j D 1
such that

1


N;p

Z
B1

w.x C "h/.z0 � h/
p�2
C dh DM:

By the definition of 
N;p and the fact that w �M , this implies that w.x C "h/ DM for
a.e. jhj< 1 such that z0 � h > 0. Then xC "h 2 A�� for a.e. jhj< 1 such that z0 � h > 0.
Moreover, by the continuity of zw in�, it turns out that x C "h 2 A for every jhj � 1 with
z0 � h � 0. In particular, taking any jhj D 1 such that z0 � hD 0, we have that x ˙ "h 2 A,
so x D 1

2
.x C "h/C 1

2
.x � "h/. That is, any point x 2 A is the midpoint between two

different points x1;x2 2A. The contradiction follows by choosing x 2 A to be an extremal
point of A, i.e., a point which cannot be written as a convex combination �x1C .1� �/x2
of points x1; x2 2 A with � 2 .0; 1/ (take for instance any point x 2 A maximizing the
Euclidean norm among all points in A). Then M � 0, and the proof is finished.

4. Regularity for the tug-of-war game with 1 < p < 2

The above DPP can also be stochastically interpreted. It is related to a two-player zero-
sum game played in a bounded domain � � RN . When the players are at x 2 �, they
toss a fair coin and the winner of the toss may choose z 2 RN ; jzj D 1, so the next point
is chosen according to the probability measure

A 7!
1


N;p

1

jB".x/j

Z
A\B".x/

�
z �
h � x

"

�p�2
C

dh:

Then the players play a new round starting from the current position. When the game exits
the domain and the first point outside the domain is denoted by x� , Player II pays Player I
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the amount given by F.x� /, where F WRN n � ! R is a given payoff function. Since
Player I gets the payoff at the end, she tries (heuristically speaking) to maximize the
outcome, and since Player II has to pay it, he tries to minimize it. This is a variant of a
so called tug-of-war game considered for example in [19, 21, 22]. As explained in more
detail in those references, u denotes the value of the game, i.e., the expected payoff of
the game when players are optimizing over their strategies. Then for this u, the DPP
holds and it can be heuristically interpreted by considering one round of the game and
summing up the different outcomes (either Player I or Player II wins the toss) with the
corresponding probabilities.

Next we show that if u is a solution to the DPP (2.4), then it satisfies the extremal
inequalities (when 1 < p < 2 and also p D 2) needed in order to apply the Hölder result
in Theorem 2.2. However, in the case 2 < p <1, the DPP (2.4) does not have any Pucci
bounds, as we explain later in Remark 4.2.

Proposition 4.1. Let 1 < p < 2 and let u be a bounded Borel measurable function satis-
fying

u.x/ D
1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�
C "2f .x/:

Then LC" uC f � 0 and L�" uC f � 0 for some 1� ˛ D ˇ > 0 depending on N and p,
where LC" and L�" are the extremal operators as in Definition 2.1.

Proof. Let

1 � ˛ D ˇ D
1

2
N;p
2 .0; 1/

and, for jzj D 1, consider the measure defined as

�.E/ D
1

jB1j

Z
B1\E

jz � hjp�2 � 1

2
N;p � 1
dh

for every Borel measurable set. Then � 2M.B1/. Indeed, by the definition of 
N;p and
the fact that 
N;p > 1=2 for 1 < p < 2, we have that � is a positive measure such that
�.B1/ D 1. Therefore,

˛

Z
Bƒ

u.x C "h/ d�.h/C ˇ

Z
B1

u.x C "h/ dh D
1

2
N;p

Z
B1

u.x C "h/jz � hjp�2 dh

D
1

2

�
Iz"u.x/C I�z" u.x/

�
;

so

L�" u.x/ �
Iz"u.x/C I�z" u.x/ � 2u.x/

2"2
� LC" u.x/

for every jzj D 1. Now, if u is a solution to the DPP, then

�f .x/ D
1

2"2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/ � 2u.x/
�

� sup
jzjD1

°Iz"u.x/C I�z" u.x/ � 2u.x/

2"2

±
� LC" u.x/;

and similarly for L�" u.x/ � �f .x/.
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Remark 4.2. The extremal inequalities do not hold for 2 < p <1. Indeed, the map

E 7!
1

2
N;pjB1j

Z
B1\E

jz � hjp�2 dh

defines a probability measure inB1 which is absolutely continuous with respect the Lebes-
gue measure, and whose density function vanishes as h approaches an orthogonal direction
to z when p > 2. Thus, it is not possible to decompose the measure as a convex combina-
tion of the uniform probability measure on B1 and any probability measure �, which is an
essential step in the proof of the Hölder estimate in [3] and [2].

By Proposition 4.1, a solution u to the DPP (2.4) satisfies the conditions of The-
orem 2.2. Thus it immediately follows that u is asymptotically Hölder continuous.

Corollary 4.3. There exists "0 > 0 such that if u is a solution to the DPP (2.4) in BR,
where " < "0R, there exist C; 
 > 0 (independent of "/ such that

ju.x/ � u.y/j �
C

R


�
sup
BR

juj CR2 sup
BR

jf j
��
jx � yj
 C "


�
for every x; y 2 BR=2.

5. A connection to the p-Laplacian

In this section, we consider a connection of solutions to the DPP (2.4) to the viscosity
solutions to

�N
p u D �f;(5.1)

where we now assume f 2 C.�/. Here �N
p u stands for the normalized p-Laplacian,

which is the non-divergence form operator

�N
p u D �uC .p � 2/

hD2uru;rui

jruj2
�

In Section 7 of [3], it was already pointed out that in the case 2 � p <1 this follows (up
to a multiplicative constant) for the dynamic programming principle describing the usual
tug-of-war game (1.1), so here the main interest lies in the case 1 < p < 2.

First, to establish the connection to the p-Laplace equation, we need to derive asymp-
totic expansions related to the DPP (2.4) for C 2-functions. The expansion below holds for
the full range 1 < p <1.

Proposition 5.1. Let u 2 C 2.�/. If 1 < p <1, then

(5.2)

Iz"u.x/ D u.x/C "

N;pC1

N;p

ru.x/ � z

C
"2

2.N C p/

�
�u.x/C .p � 2/hD2u.x/z; zi

�
C o."2/:
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In particular, if ru.x/ ¤ 0 and z� D ru.x/=jru.x/j, then

lim
"!0

Iz
�

" u.x/C I�z
�

" u.x/ � 2u.x/

2"2
D

1

2.N C p/
�N
pu.x/:

Proof. For the sake of simplicity, we use the notation for the tensor product of (column)
vectors in RN , v ˝ w D vwT, which allows to write hMv; vi D Tr¹Mv ˝ vº. Using the
second order Taylor’s expansion of u, we obtain

Iz"u.x/ � u.x/

"
D

1


N;p

Z
B1

�
ru.x/ � hC

"

2
Tr
®
D2u.x/h˝ h

¯
C o."/

�
.z � h/

p�2
C dh

D ru.x/ �
� 1


N;p

Z
B1

h.z � h/
p�2
C dh

�
C
"

2
Tr
°
D2u.x/

� 1


N;p

Z
B1

h˝ h.z � h/
p�2
C dh

�±
C o."/:(5.3)

In order to compute the first integral in the right-hand side of the previous identity,
let R be any orthogonal transformation such that Re1 D z, i.e., e1 D RTz. Then a change
of variables Rw D h yieldsZ

B1

h.z � h/
p�2
C dh D R

Z
B1

w.w1/
p�2
C dw

using
z �Rw D zTRw D .RTz/Tw D eT

1w D w1:

Going back to the original notation, and observing by symmetry that

Z
B1

hi .h1/
p�2
C dh D

8<:
Z
B1

.h1/
p�1
C dh D 
N;pC1 if i D 1;

0 if i ¤ 1;

we get Z
B1

h.z � h/
p�2
C dh D R

Z
B1

h.h1/
p�2
C dh D 
N;pC1Re1 D 
N;pC1 z:

Next we repeat the change of variables in the second integral on the right-hand side of (5.3)
to get

1


N;p

Z
B1

h˝ h.z � h/
p�2
C dh D R

� 1


N;p

Z
B1

h˝ h.h1/
p�2
C dh

�
RT:

Observe that the integral in the parenthesis above is a diagonal matrix. Indeed, for i ¤ j ,
by symmetry,

1


N;p

Z
B1

hihj .h1/
p�2
C dh D 0:
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In order to compute the diagonal elements, we utilize the explicit values of the normaliz-
ation constants from Lemma A.2. Then

1


N;p

Z
B1

h2i .h1/
p�2
C dh D

1

2
N;p

Z
B1

h2i jh1j
p�2 dh D

8<:
p�1
NCp

; i D 1;

1
NCp

; i D 2; : : : ; n:

Combining, we get

1


N;p

Z
B1

h˝ h.z � h/
p�2
C dh D R

� 1

N C p
.I � e1 ˝ e1/C

p � 1

N C p
e1 ˝ e1

�
RT

D
1

N C p
.I C .p � 2/z ˝ z/:

The proof is concluded after replacing these integrals in the expansion for Iz"u.x/.

Next we show that the solutions to the DPP (2.4) converge uniformly as "! 0 to a
viscosity solution of

�N
p u D �2.N C p/f:

But before, we recall the definition of viscosity solutions for the convenience of the reader.
Below �max.D

2�.x0// and �min.D
2�.x0// refer to the largest and smallest eigenvalues,

respectively, of D2�.x0/. This definition is equivalent to the standard way of defining
viscosity solutions through convex envelopes. Different definitions of viscosity solutions
in this context are analyzed for example in Section 2 of [9].

Definition 5.2. Let� � RN be a bounded domain and let 1 < p <1. A lower semicon-
tinuous function u is a viscosity supersolution of (5.1) if for all x0 2 � and � 2 C 2.�/
such that u � � attains a local minimum at x0, one has8̂̂<̂
:̂
�N
p�.x0/ � �f .x0/ if r�.x0/ ¤ 0;

��.x0/C .p � 2/ �max.D
2�.x0// � �f .x0/ if r�.x0/ D 0 and p � 2;

��.x0/C .p � 2/ �min.D
2�.x0// � �f .x0/ if r�.x0/ D 0 and 1 < p < 2:

An upper semicontinuous function u is a viscosity subsolution of (5.1) if �u is a super-
solution. We say that u is a viscosity solution of (5.1) in � if it is both a viscosity sub-
and supersolution.

Theorem 5.3. Let 1 < p < 2 and let ¹u"º be a family of uniformly bounded Borel meas-
urable solutions to the DPP (2.4). Then there are a subsequence and a Hölder continuous
function u such that

u" ! u locally uniformly.

Moreover, u is a viscosity solution to �N
p u D �2.N C p/f .

Proof. First we can use the asymptotic Arzelà–Ascoli theorem (see Lemma 4.2 in [19])
in connection to Theorem 2.2 to find a locally uniformly converging subsequence to a
Hölder continuous function. Then it remains to verify that the limit is a viscosity solution
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to the p-Laplace equation. For � 2C 2.�/, fix x 2�. By Lemma 3.2, there exists jz"1j D 1
such that

I
z"1
" �.x/ D inf

jzjD1
Iz"�.x/:

By Proposition 5.1,

supjzjD1 Iz"�.x/C infjzjD1 Iz"�.x/ � 2�.x/

2"2
(5.4)

�
I
z"1
" �.x/C I

�z"1
" �.x/ � 2�.x/

2"2

D
1

2.N C p/

�
��.x/C .p � 2/Tr

®
D2�.x/z"1 ˝ z

"
1

¯�
C
o."2/

"2
�

Let u be the Hölder continuous limit obtained as a uniform limit of the solutions to
the DPP. Choose a point x0 2 � and a C 2-function � defined in a neighborhood of x0
touching u at x0 from below. By the uniform convergence, there exists a sequence x"
converging to x0 such that u" � � has a minimum at x" (see Section 10.1.1 in [7]) up to
an error �" > 0, that is, there exists x" such that

u".y/ � �.y/ � u".x"/ � �.x"/ � �"

at the vicinity of x". The arbitrary error �" is due to the fact that u" may be discontinuous
and we might not attain the infimum. Moreover, by adding a constant, we may assume
that �.x"/ D u".x"/, so that � approximately touches u" from below. Recalling the fact
that u" is a solution to the DPP (2.4) and that Iz" is monotone and linear (see Remark 3.1),
we have that

Iz"u".x"/ � Iz"�.x"/C u".x"/ � �.x"/ � �":

Thus, by choosing �" D o."2/, we obtain

o."2/

"2
�

supjzjD1 Iz"�.x"/C infjzjD1 Iz"�.x"/ � 2�.x"/C 2"
2f .x"/

2"2
�

Using (5.4) at x" and combining this with the previous estimate, we obtain

�f .x"/C
o."2/

"2
�

1

2.N C p/

�
��.x"/C .p � 2/Tr

®
D2�.x"/z

"
1 ˝ z

"
1

¯�
:(5.5)

Let us assume first that r�.x0/ ¤ 0. By (5.2), we see that

lim
"!0

z"1 D �
r�.x0/

jr�.x0/j
;

and thus we end up with

�f .x0/ �
1

2.N C p/
�N
p�.x0/:
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Finally, we consider the case r�.x0/ D 0. Similarly as above, (5.5) follows. Even if
we now have no information on the convergence of z"1, since

�min.M/ � Tr¹Mz ˝ zº � �max.M/

for every jzj D 1, we still can deduce´
��.x0/C .p � 2/ �min.D

2�.x0// � �2.N C p/f .x0/ if p � 2;
��.x0/C .p � 2/ �max.D

2�.x0// � �2.N C p/f .x0/ if 1 < p < 2:

Thus we have shown that u is a viscosity supersolution to the p-Laplace equation.
Similarly, starting with sup instead of inf, we can show that u is a subsolution, and thus a
solution.

Remark 5.4. For 1 < p <1, u 2 C 2.�/ and x 2� such that ru.x/¤ 0, we could also
show that

1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�
D u.x/C

"2

2.N C p/
�N
pu.x/C o."

2/:

Indeed, by working carefully through the estimates similarly as in Lemmas 2.1 and 2.2
of [22], we could show that

1

2

�
sup
jzjD1

Iz"u.x/C inf
jzjD1

Iz"u.x/
�
D

Iz
�

" u.x/C I�z
�

" u.x/

2
C o."2/

for z� D ru.x/=jru.x/j. By Proposition 5.1, we have

Iz
�

" u.x/C I�z
�

" u.x/

2
C o."2/ D u.x/C

"2

2.N C p/
�N
pu.x/C o."

2/;

and combining these estimates we obtain the desired estimate. This would give an altern-
ative way to write down the proof that the limit is a p-harmonic function. Reading this
expansion in a viscosity sense gives a different characterization of p-harmonic functions
as in [18] and [9] by the same proof as above.

A. Some useful integrals

In this appendix, we record some useful integrals that, no doubt, are known to the experts
but are hard to find in the literature.

Lemma A.1. Let ˛1; : : : ; ˛N > �1. Then

(A.1)
Z
B1

jh1j
˛1 � � � jhN j

˛N dh1 � � � dhN D
1

�N=2
�
�
�
N
2
C 1

�
�
�
˛1C1
2

�
� � ��

�
˛NC1
2

�
�
�
NC˛1C���C˛NC2

2

� �
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Proof. For convenience, we denote by BN1 the N -dimensional unit ball centered at the
origin. We decompose the integral over BN1 by integrating in the first place with respect
to t D hN , that is,Z

BN1

jh1j
˛1 � � � jhN j

˛N dh1 � � � dhN

D

Z 1

�1

jt j˛N
� Z
p
1�t2BN�11

jh1j
˛1 � � � jhN�1j

˛N�1 dh1 � � � dhN�1

�
dt:

Then the change of variables
p
1 � t2 .w1; : : : ; wN�1/ D .h1; : : : ; hN�1/ and returning

to the original notation givesZ
BN1

jh1j
˛1 � � � jhN j

˛N dh1 � � � dhN

D

Z 1

�1

jt j˛N .1� t2/.NC˛1C���C˛N�1�1/=2 dt �

Z
BN�11

jh1j
˛1 � � � jhN�1j

˛N�1 dh1 � � � dhN�1:

Next we focus on the first integral in the right-hand side. Using the symmetry proper-
ties and performing a change of variables, we getZ 1

�1

jt j˛N .1 � t2/.NC˛1C���C˛N�1�1/=2 dt D 2

Z 1

0

t˛N .1 � t2/.NC˛1C���C˛N�1�1/=2 dt

D

Z 1

0

t .˛N�1/=2 .1 � t /.NC˛1C���C˛N�1�1/=2 dt D
�
�
˛NC1
2

�
�
�
NC˛1C���C˛N�1C1

2

�
�
�
NC˛1C���C˛N�1C˛NC2

2

� ;

where for the last equality we have recalled the well-known formula arising in connection
to the ˇ-function Z 1

0

tx�1.1 � t /y�1 dt D
�.x/�.y/

�.x C y/

for x; y > 0. In the same way, we in general obtainZ
BN�k1

jh1j
˛1 � � � jhN�kj

˛N�k dh1 � � � dhN�k

D

Z 1

�1

jt j˛N�k .1 � t2/.˛1C���C˛N�k�1CN�k�1/=2 dt

�

Z
BN�k�11

jh1j
˛1 � � � jhN�k�1j

˛N�k�1 dh1 � � � dhN�k�1

D

Z 1

0

jt j.˛N�kC1/=2�1 .1 � t /.˛1C���C˛N�k�1CN�kC1/=2�1 dt

�

Z
BN�k�11

jh1j
˛1 � � � jhN�k�1j

˛N�k�1 dh1 � � � dhN�k�1:
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Iterating the above formula, and dividing out the repeating terms, we getZ
BN1

jh1j
˛1 � � � jhN j

˛N dh1 � � � dhN

D
1

�
�
˛1C���C˛NCNC2

2

� ��˛NC12

�
� � ��

�
˛2C1
2

�
�
�
˛1C3
2

� Z 1

�1

jh1j
˛1 dh1:

Then using the definition of the Gamma function and integration by parts, we get

�
�
˛1C3
2

� Z 1

�1

jh1j
˛1 dh1 D �

�
˛1C1
2
C 1

� 2

˛1 C 1
D �

�
˛1C1
2

�
:

Finally, the result follows by recalling that

jBN1 j D
�N=2

�.N=2C 1/
�

The next lemma follows as a special case of the previous result. This lemma is the one
we actually use in the proofs.

Lemma A.2. Let 1 < p <1. Then

(A.2)
1

2
N;p

Z
B1

jh1j
p dh D

p � 1

N C p

and

(A.3)
1

2
N;p

Z
B1

jh1j
p�2
jh2j

2 dh D
1

N C p
�

Proof. First we recall the definition of 
N;p in (2.2) and use (A.1) to obtain

(A.4) 
N;p D

Z
B1

.z � h/
p�2
C dh D

1

2

Z
B1

jh1j
p�2 dh D

1

2
p
�
�
�
�
N
2
C 1

�
�
�
p�1
2

�
�
�
NCp
2

� :

Since �.sC 1/D s �.s/ and �.1=2/D
p
� , applying the identity (A.1) with ˛1 D p and

˛2 D � � � D ˛N D 0, we haveZ
B1

jh1j
p dh D

1
p
�
�
�.N

2
C 1/�.pC1

2
/

�.NCpC2
2

/
D

p � 1

N C p
�
1
p
�
�
�.N

2
C 1/�.p�1

2
/

�.NCp
2
/

;

and (A.2) follows by combining the previous formulas. Similarly, since �.3=2/D
p
�=2,Z

B1

jh1j
p�2
jh2j

2 dh D
1

�
�
�
�
N
2
C 1

�
�
�
p�1
2

�
�
�
3
2

�
�
�
NCpC2

2

�
D

1

N C p
�
1
p
�
�
�
�
N
2
C 1

�
�
�
p�1
2

�
�
�
NCp
2

� ;

and (A.3) follows.



Tug-of-war and Krylov–Safonov 1043

Corollary A.3. Let 1 < p <1 and jzj D 1. Then

(A.5)
1

2
N;p

Z
B1

jhj2jz � hjp�2 dh D
N C p � 2

N C p
�

Proof. By symmetry, we can take z D e1, so z � h D h1. Then

jhj2jh1j
p�2
D jh1j

p
C jh1j

p�2
jh2j

2
C � � � C jh1j

p�2
jhN j

2;

so Z
B1

jhj2jz � hjp�2 dh D

Z
B1

jh1j
p dhC .N � 1/

Z
B1

jh1j
p�2
jh2j dh;

and thus (A.5) follows from (A.2) and (A.3).
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