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On a reverse Kohler-Jobin inequality

Luca Briani, Giuseppe Buttazzo and Serena Guarino Lo Bianco

Abstract. In this paper, we consider the shape optimization problems for the quantit-
ies �.�/T q.�/, where� varies among open sets of Rd with a prescribed Lebesgue
measure. While the characterization of the infimum is completely clear, the same
does not happen for the maximization in the case q > 1. We prove that for q large
enough a maximizing domain exists among quasi-open sets and that the ball is opti-
mal among nearly spherical domains.

1. Introduction

In the present paper, we consider two well-known quantities that appear in the study of
elliptic equations in the Euclidean space Rd , d � 2. The first one is usually called torsional
rigidity, and is defined, for every nonempty open set��Rd with finite Lebesgue measure
(in the following, a domain), as

T .�/ D

Z
w� dx;

where w� is the unique solution of the PDE

��u D 1 in �; u 2 H 1
0 .�/:

Equivalently, we may define T .�/ as

T .�/ D max
²
.
R
udx/2R
jruj2 dx

W u 2 H 1
0 .�/ n ¹0º

³
:

In the integrals above and in the following, we use the convention that integrals without
the indicated domain are intended over the entire space Rd . The quantity T .�/ satisfies
the scaling property

T .t�/ D tdC2T .�/ for every t > 0I

in addition, the maximum of T .�/ among domains with prescribed measure is reached by
the ball (Saint-Venant’s inequality), which can be written in the scaling free formulation as

j�j�.dC2/=d T .�/ � jBj�.dC2/=d T .B/;

for every domain � and for every ball B � Rd .
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The second quantity is the first eigenvalue �.�/ of the Dirichlet Laplacian, defined as
the smallest � such that the PDE

��u D �u in �; u 2 H 1
0 .�/;

admits a nonzero solution. Equivalently, �.�/ can be defined through the minimization of
the Rayleigh quotient

�.�/ D min
°R
jruj2 dxR
u2 dx

W u 2 H 1
0 .�/ n ¹0º

±
:

The quantity �.�/ satisfies the scaling property

�.t�/ D t�2 �.�/ for every t > 0I

in addition, the minimum of �.�/ among domains with prescribed measure is reached by
the ball (the Faber–Krahn inequality), which can be written in the scaling free formula-
tion as

j�j2=d �.�/ � jBj2=d �.B/;

for every domain � and for every ball B � Rd .
The study of relations between T .�/ and �.�/ was performed in several papers (see

for instance [1–4, 6, 12, 13, 18, 21–23]), where some important inequalities were estab-
lished. In particular,

• the Kohler-Jobin inequality

�.�/T q.�/ � �.B/T q.B/;

valid for every q 2 Œ0; 2=.d C 2/� and for every domain �, where B is any ball in Rd

with jBj D j�j;
• the Pólya inequality

0 <
�.�/T .�/

j�j
< 1;

valid for every domain � of Rd .
In the present paper, we consider the scaling free shape functional

Fq.�/ D
�.�/T q.�/

j�j˛q
; with ˛q D

�2C q.d C 2/

d
;

and the two quantities

mq D inf
®
Fq.�/ W � domain

¯
and Mq D sup

®
Fq.�/ W � domain

¯
:

While the situation formq is fully clear, and by the Kohler-Jobin inequality, together with
the Saint-Venant inequality, we have

mq D

´
Fq.B/ if q � 2=.d C 2/;
0 if q > 2=.d C 2/;

the characterization of Mq is not yet complete. The results available up to now are the
following (see [1] and [3]):
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• Mq D1 for every q < 1;
• Mq D 1 when q D 1, with the upper bound 1 not reached by any domain �;
• Mq <1 for every q > 1.

We investigate here this last case. The maximal expectation would be having the fol-
lowing result (the reverse Kohler-Jobin inequality):
• for every q > 1, the supremum Mq is attained on an optimal domain �q ;
• for every q > 1, the free boundary @�q is a smooth d � 1 surface;
• there exists a threshold q� >1 such that for every q � q�, the supremumMq is attained

by a ball1.
We are unable to prove the results in the strong form above. We prove here the weaker

results below, for which we need to extend the functional Fq to the set of capacitary
measures (see Section 2):

• for every q > 1, the supremum Mq is reached on a capacitary measure �q (The-
orem 4.3);

• there exists a threshold q0 >1 such that, for every q� q0, the supremumMq is reached
by a quasi-open set �q (Theorem 5.3);

• there exists another threshold q1 such that, for every q � q1, the ball is a maximizer
for the shape functional Fq among nearly spherical domains (Theorem 6.2).

2. Capacitary measures

The concept of capacitary measure and the related properties shall be a very useful tool
for our purposes. When dealing with sequences of PDEs of the form

��u D f in �n; u 2 H 1
0 .�n/;

a natural question is to establish if the sequence un;f of solutions, or a subsequence of it,
converges in L2 to some function uf , and to determine in this case the PDE that the func-
tion uf solves. Starting from the pioneering papers [14,15], it is now well understood that
the right framework to treat such a kind of questions is that of capacitary measures. Below
we recall the main results and definitions following [10] and [24]. For further information
we refer the reader to the monographs [8] and [20], and references therein.

Definition 2.1. We say that a nonnegative Borel regular measure �, possibly taking the
value1, is a capacitary measure if

�.E/ D 0 whenever E is a Borel set with cap.E/ D 0;

being cap.E/ the capacity

cap.E/ D inf
° Z

Rd

jruj2 C u2 dx W u 2 H 1
0 .R

d /; u D 1 in a neighborhood of E
±
:

1After the submission of this paper, we have been informed that D. Bucur and coauthors were working
on similar problems. In particular, by proving a new sharp stability inequality for the spectrum of the Dirichlet
Laplacian, they are able to show that such a q� does exist. Their results are now collected in the preprint [11].
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A property P.x/ is said to hold quasi-everywhere (briefly, q.e.) if the set where P.x/
does not hold has zero capacity. A Borel set � � Rd is said to be quasi-open if there
exists a function u 2 H 1.Rd / such that � D ¹u > 0º up to a set of capacity zero. A
function f WRd ! R is said to be quasi-continuous if there is a sequence of open sets
!n �Rd such that limn!1 cap.!n/D 0 and f is continuous when restricted to Rd n!n.
It is well known (see for instance [19]) that every Sobolev function has a quasi-continuous
representative, and that two quasi-continuous representatives coincide quasi-everywhere.
We then identify the space H 1.Rd / with the space of quasi-continuous representatives.
We recall that a sequence un 2 H 1.Rd / that converges in norm to some u 2 H 1.Rd /,
converges quasi-everywhere (up to a subsequence) to u.

Given � a capacitary measure, we denote by H 1
� the following space:

H 1
� D H

1.Rd / \ L2�.R
d / D

°
u 2 H 1.Rd / W

Z
u2 d� <1

±
:

The space H 1
� is a Hilbert space when endowed with kukH1

�
D kukH1.Rd / C kukL2�.Rd /,

where the quantity kukL2�.Rd / is well defined, being Sobolev functions defined up to a set
of zero capacity. We always identify two capacitary measures � and � for which

(2.1)
Z
u2 d� D

Z
u2 d�; for every u 2 H 1.Rd /:

If instead (2.1) holds with “�”, we say that � � �, and in this case we have H 1
� � H

1
�.

We can associate to any open set (or more generally to any quasi-open set) � � Rd the
capacitary measure I� defined as follows:

I�.E/ WD

´
0 if cap.E n�/ D 0;
1 if cap.E n�/ > 0:

Notice that, if � D I� for some open set � � Rd , then H 1
� D H

1
0 .�/.

To extend the notion of torsional rigidity to a capacitary measure �, we need to care-
fully deal with the fact that the embedding H 1

� ,! L1.Rd / can be noncompact, and even
noncontinuous. Nevertheless, we can follow an approximation argument: for everyR > 0,
let wR be the solution to the minimization problem

min
° Z
jruj2 dx C

Z
u2 d� �

Z
udx W u 2 H 1

� \H
1
0 .BR/

±
:

The torsion function w� and the torsional rigidity T .�/ of the capacitary measure � are
defined as

w� WD sup
R>0

wR and T .�/ WD

Z
w� dx:

The Dirichlet eigenvalue of � can be defined through the following Rayleigh-type quo-
tient:

�1.�/ D inf
u2H1

�n¹0º

R
jruj2 dx C

R
u2 d�R

u2 dx
�
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Clearly, if � D I� for some domain � � Rd , we have T .�/ D T .�/ and �.�/ D �.�/
(we adopt this notation also if � is a quasi-open set). For a general capacitary measure �,
neither �.�/ is necessarily attained by some function u 2 H 1

� nor T .�/ is necessarily
finite. However, as shown in [9], it holds the following:

w� 2 L
1.Rd / ” T .�/ <1 H) �1.�/ is attained by some u 2 H 1

�:

For every capacitary measure � with T .�/ <1, we define the set of finiteness A� as the
quasi-open set

A� WD ¹w� > 0º:

In the case when � D I�, for some domain � � Rd , we have A� D �. The set of capa-
citary measures with finite torsion can be endowed with the following notion of distance.

Definition 2.2. Given two capacitary measures � and � such that w�; w� 2 L1.Rd /, we
define the  -distance between them as

d .�; �/ D kw� � w�kL1.Rd /:

We say that a sequence�n  -converges to� if d .�n;�/! 0 as n!1. When I�n

!�,

we simply write �n

! �.

We summarize the main properties of the  -distance below:
• The space .¹� W � capacitary measure with w� 2 L1.Rd /º; d / is a complete metric

space, and the set ¹I� W � � Rd open set with w� 2 L1.Rd /º is a dense subset of it.
• The functionals � 7! �.�/ and � 7! T .�/ are  -continuous.
• The map � 7! jA�j, or more generally integral functionals as

R
A�
f .x/dx with f � 0

and measurable, are lower semicontinuous with respect to the  -convergence.
• The  -convergence of�n to� implies the �-convergence inL2.Rd / of the functionals
k � kH1

�n
WL2.Rd /! L2.Rd / defined by

kukH1
�n
D

´
kukH1.Rd / C

R
u2 d�n if u 2 H 1

�n
;

1 if u 62 H 1
�n
;

to the functional k � kH1
�
WL2.Rd /! L2.Rd / ,

kukH1
�
D

´
kukH1.Rd / C

R
u2 d� if u 2 H 1

�;

1 if u 62 H 1
�:

• For a given capacitary measures � with finite torsion, we call resolvent of � the linear
compact and self-adjoint operator

R� W L
2.Rd /! L2.Rd /; R�.f / D w�;f ;

where w�;f is the solution of the problem

w�;f 2 H
1
�; ��w�;f C w�;f � D f;
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in the sense that

w�;f 2 H
1
�;

Z
rw�;f � r� dx C

Z
w�;f � d� D

Z
f � dx for every � 2 H 1

�:

The  -convergence of �n to � implies the norm convergence of R�n to R�, i.e.,

lim
n!1

kR�n �R�kL.L2.Rd /;L2.Rd // D 0:

• If �n is a sequence of capacitary measures whose set of finiteness have uniformly
bounded measures jA�n j, then

�n

!�”kR�n�R�kL.L2.Rd /;L2.Rd //! 0”kukH1

�n

�
�!kukH1

�
on L2.Rd /:

The classical concentration-compactness principle of P. L. Lions was extended to se-
quences of open sets in [7]. Notably, the following result holds.

Theorem 2.3. Let �n be a sequence of open sets (more generally, quasi-open sets) with
uniformly bounded measures. Then there exists a subsequence (still denoted with the same
indices n) such that one of the following situations occurs.

• (Compactness). There exists a sequence xn �Rd such that the sequence of capacitary
measures xn C�n  -converges.

• (Vanishing). The sequence RI�n converges in norm to 0. Moreover, we have that
kw�nkL1 ! 0 and �.�n/!1, as n!1.

• (Dichotomy). There exist two sequences of quasi-open sets �1n; �
2
n � �n such that

– dist.�1n; �
2
n/!1, as n!1;

– d .I�n ; I�1n[�2n/! 0, as n!1;

– lim infn!1 T .�1n/ > 0 and lim infn!1 T .�2n/ > 0.

The proof of the theorem above can be deduced by combining Theorem 2.2 of [7] and
Theorem 3.5 of [10].

3. Relaxation of Fq

In this section, we characterize the relaxation of the functional Fq to the set of capacitary
measures. We define the set Mad of admissible capacitary measures as

Mad D ¹� W � capacitary measure with 0 < jA�j <1º:

For � 2Mad, we define the relaxed form of our functional Fq as

Fq.�/ D sup
°

lim sup
n

Fq.�n/ W �n � Rd domain such that �n

! �

±
;

so that
Mq D sup¹Fq.�/ W � 2Madº:

Lemma 3.1. Let � 2 Mad and let �n be a sequence of domains such that �n

! �.

If jA�j <1, then �n \ A�

! �.
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Proof. Being the sequence �n \ A� of uniformly bounded measure, by the properties of
 -convergence seen above, we have to show that

kukH1
�n

�
�! kukH1

�
on L2.Rd /;

where we set �n D I�n\A� .
The “�-liminf” inequality readily follows from the fact thatH 1

�n
D H 1

0 .�n \A�/ �

H 1
0 .�n/, and from the �-convergence of k � kH1

0 .�n/
to k � kH1

�
in L2.Rd /.

To prove the “�-limsup” inequality, we can suppose without loss of generality that
u 2 H 1

�. Since �n

! �, there exists a sequence un 2 H 1

0 .�n/ such that

un ! u strongly L2.Rd / and lim
n!1

� Z
jrunj

2 dx
�
D

Z
jruj2 dx C

Z
juj2 d�:

We denote respectively by uCn and u�n the positive and negative part of un. Since we haveZ
jr.uCn � u

�
n /j

2 dx D

Z
jruCn j

2 dx C

Z
jru�n j

2 dx;

and un D uCn � u
�
n , by possibly passing to a subsequence (still indexed by n), we can

suppose that

lim sup
n!1

� Z
jruCn j

2 dx
�
C lim sup

n!1

� Z
jru�n j

2 dx
�

D lim
n!1

� Z
jr.uCn � u

�
n /j

2 dx
�
D

Z
jruj2 dx C

Z
u2 d�:(3.1)

We define

vCn D u
C
n ^ u

C
2 H 1.Rd / and v�n D u

�
n ^ u

�
2 H 1.Rd /:

Since u 2 H 1
� and un 2 H 1

0 .�n/, we have u D 0 q.e. on Ac� and un D 0 q.e. on�cn. This
implies that both vCn and v�n vanish q.e. on .�n \ A�/c , and consequently that vCn ; v

�
n 2

H 1
0 .�n \ A�/. Moreover, it is easy to show that

vCn � v
�
n �! u strongly L2.Rd /:

Therefore the thesis is achieved if we show that

(3.2) lim sup
n!1

� Z
jr.vCn � v

�
n /j

2 dx
�
� lim
n!1

� Z
jr.uCn � u

�
n /j

2 dx
�
:

We have

(3.3)

Z
jrvCn j

2 dx D

Z
¹uCn �uCº

jruCn j
2 dx C

Z
¹uCn >uCº

jruCj2 dx

D

Z
jruCn j

2 dx �

Z �
jruCn j

2
� jruj2

�
1
¹uCn >uCº

dx:
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By lower semicontinuity, we have

(3.4) lim inf
n

Z �
jruCn j

2
� jruCj2

�
1
¹uCn >uCº

dx � 0:

Indeed, to show the inequality above, it is enough to writeZ �
jruCn j

2
� jruCj2

�
1
¹uCn >uCº

dx D

Z �
jruCn j

2
� jruCj2

�
1
¹uCn �uCº

dx

D

Z
jr.uCn _ u

C/j2 � jruCj2 dx;

and to notice that uCn * uC weakly in H 1.Rd / implies uCn _ u
C * uC weakly in

H 1.Rd / and so, by lower semicontinuity,

lim inf
n

Z
jr.uCn _ u

C/j2 � jruCj2 dx � 0:

Combining (3.3) and (3.4), we deduce that

(3.5) lim sup
n!1

� Z
jrvCn j

2 dx
�
� lim sup

n!1

� Z
jruCn j

2 dx
�
:

Similarly we have

(3.6) lim sup
n!1

� Z
jrv�n j

2 dx
�
� lim sup

n!1

� Z
jru�n j

2 dx
�
:

Combining (3.1), (3.5) and (3.6), we finally deduce (3.2), and this concludes the proof of
the lemma.

Remark 3.2. By Lemma 3.1, for every measure � 2Mad there exists a sequence of quasi-
open sets �n (that can be taken open by a standard approximation procedure) such that
�n


! � and for which

j�nj ! jA�j as n!1:

To show this fact, we take�nDA� \On, whereOn is any sequence of domains  -conver-
ging to �. We then have j�nj � jA�j and, by the lower semicontinuity of the Lebesgue
measure with respect to  -convergence (see the properties recalled in Section 2), we have
jA�j � lim infn j�nj. This in turns implies that the set

¹I� W � � Rd domainº

is  -dense in Mad. Furthermore, we can extend the Saint-Venant, Faber–Krahn and Pólya
inequalities to any capacitary measure. That is,

(3.7) jA�j
�.dC2/=d T .�/ � jBj�.dC2/=d T .B/; jA�j

2=d �.�/ � jBj2=d �.B/;

and

(3.8) 0 < jA�j
�1�.�/T .�/ < 1

for every measure � 2Mad and every ball B � Rd .
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Proposition 3.3. Let � 2Mad. Then we have

(3.9) jA�j D inf
°

lim inf
n
j�nj W �n domain, �n


! �

±
:

The quantity jA�j is then the relaxation, in the  -convergence, of the Lebesgue meas-
ure j�j. As a consequence, if ˛q > 0, we have

(3.10) Fq.�/ D
�.�/T q.�/

jA�j
˛q

�

Proof. The inequality � in (3.9) follows from the  -lower semicontinuity of the map
� 7! jA�j seen above. The opposite inequality follows at once by Remark 3.2. Since T .�/
and �.�/ are  -continuous, the proof of (3.10) is achieved by a similar argument.

The scaling properties of the shape functionals j�j, �.�/, T .�/ and Fq.�/ extend to
their relaxations jA�j, �.�/, T .�/ and Fq.�/ in Mad. More precisely, setting for t > 0,

�t .E/ D t
d�2�.E=t/;

we have

jA�t j D t
d
jA�j; �.�t / D t

�2�.�/; T .�t / D t
dC2T .�/ and Fq.�t / D Fq.�/:

4. Existence of an optimal measure for q > 1

In [3], it is proved that the supremum M1 D 1 is not attained in the class of domains. In
the next proposition, we point out that the same occurs even in the class Mad.

Proposition 4.1 (Nonexistence for q D 1 of an optimal measure). The problem

sup¹F1.�/ W � 2Madº

does not have a maximizer.

Proof. The proof follows at once by exploiting Theorem 1.1 in [3], which asserts that
there exists a dimensional constant cd > 0 for which

(4.1) F1.�/ � 1 �
cdT .�/

j�j1C2=d
;

for every domain �. Then, for every � 2Mad, by Remark 3.2 we can select a sequence
�n


! A� for which

F1.�n/! F1.�/; T .�n/! T .�/; j�nj � jA�j as n!1:

Thus, using (4.1) with � D �n and then passing to the limit as n ! 1, we get that
F1.�/ < 1 DM1.
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To prove the main result of this section, we need the following elementary lemma.

Lemma 4.2. Let 0 < c1 < c2 <1 and 1 < ˛1 < ˛2 <1. Then there exists ˇ < 1 such
that, for every a; b; c; d 2 .c1; c2/, it holds

.aC b/˛1

.c C d/˛2
� ˇmax

°a˛1
c˛2

;
b˛1

d˛2

±
:

Proof. Letting x D b=a and y D d=c, is enough to prove that

.1C x/˛1

.1C y/˛2
� ˇmax

°
1;
x˛1

y˛2

±
:

Suppose that x � y. Since x � c1=c2, it holds

(4.2) .1C x/˛1 D .1C x/˛2.1C x/˛1�˛2 � .1C y/˛2
�
1C

c1

c2

�˛1�˛2
:

Similarly, if x > y, since x � c2=c1, it holds

(4.3)
�
1C

1

x

�˛1
�

�
1C

1

y

�˛2�
1C

1

x

�˛1�˛2
�

�
1C

1

y

�˛2�
1C

c1

c2

�˛1�˛2
:

Eventually, we achieve the thesis by letting

ˇ D
�
1C

c1

c2

�˛1�˛2
and combining (4.2) and (4.3).

Theorem 4.3 (Existence for q > 1 of an optimal measure). For every q > 1, there exists
a measure �? 2Mad such that

Fq.�
?/ D sup¹Fq.�/ W � 2Madº:

Proof. We select a sequence �n 2Mad such that Fq.�n/!Mq , as n!1. By density,
we can suppose that �n D I�n , for some sequence of open sets �n. Further, being Fq
scaling free, we can also assume j�nj D 1. Hence, we can apply Theorem 2.3.

If dichotomy occurs, then there exist two sequences of quasi-open sets �1n; �
2
n � �n

such that
�1n \�

2
n D ;; d .I�n ; I�1n[�2n/! 0 as n!1:

Taking into account the Saint-Venant inequality and the fact that j�nj D 1, there exist
constants c1; c2 > 0, which depend only on the dimension, such that

c1 < inf
n
jT .�in/j � sup

n
jT .�in/j < c2; c1 < inf

n
j�inj � sup

n
j�inj < c2; for i D 1; 2:

Since � is decreasing with respect to set inclusion, we have

(4.4) �.�n/ � min¹�.�1n/; �.�
2
n/º:
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Lemma 4.2 together with (4.4) gives

�.�n/.T .�
1
n [�

2
n//

q

j�nj
˛q

�
�.�n/

�
T .�1n/C T .�

2
n/
�q

.j�1nj C j�
2
nj/

˛q
� ˇ max

iD1;2

�.�in/T
q.�in/

j�inj
˛q

�

By taking the limit as n!1 in the latter inequality, we obtain the contradiction

sup
�2Mad

Fq.�/ < sup
�2Mad

Fq.�/;

and hence dichotomy cannot occur. Now, the maximality condition on the sequence �n,
together with Pólya’s inequality, give that for n large enough,

(4.5) �.B/
T q.B/

jBj˛q
� �.�n/T

q.�n/ D �.�n/T .�n/ � T
q�1.�n/ � T

q�1.�n/;

where B is any ball of Rd . In particular, it cannot be limn!1 T .�n/ D 0, and this rules
out the vanishing case.

Therefore, compactness holds and there exist a capacitary measure �? and a sequence
xn 2 Rd such that IxnC�n  -converges to �?.

By (4.5), we deduce that T .�?/ > 0, which by (3.7) implies jA�? j > 0, and hence
that �? belongs to Mad. Clearly, the measure �? maximizes the functional Fq on Mad,
and this concludes the proof.

5. Optimal measures are quasi-open sets for large q

We are now interested to prove that, when q is large enough, optimal measures � com-
ing from Theorem 4.3 can be represented as quasi-open sets. We begin by recalling the
following result, see [17] and Proposition 3.83 in [24].

Theorem 5.1. Let � be a capacitary measure with finite torsion. Then the eigenfunctions
u 2 L2.Rd / of the operator ��C � with unitary L2 norm are in L1.Rd /, and satisfy

kuk1 � e
1=.8�/�.�/d=4:

We also use the following lemma.

Lemma 5.2. For every q > 1, let �q 2Mad be a maximal measure for the functional Fq ,
such that jA�q j D 1. Then

lim inf
q!1

T .�q/ > 0:

Proof. Let qn be a diverging sequence and let B � Rd be a ball of unitary measure. By
the density of domains among capacitary measures, we can select a sequence �n � Rd

of open sets such that j�nj D 1 for every n, and

(5.1) jFqn.�n/ � Fqn.�qn/j D o.T
qn.B// as n!1:
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Notice that T qn.B/! 0 as n!1. Then we can apply Theorem 2.3 to the sequence�n.
Dichotomy can be ruled out by the same argument as that of the proof of Theorem 4.3
once noticed that (3.8) implies

F 1=qnqn
.�qn/ � T

.qn�1/=qn.B/! T .B/ as n!1:

The vanishing case can be excluded too by following again the proof of Theorem 4.3.
Indeed, for n large enough, Pólya’s inequality and (5.1) imply

T qn�1.�n/ � Fqn.�n/ � Fqn.�qn/ � jFqn.�n/ � Fqn.�qn/j � Fqn.B/C o.T
qn.B//:

Hence we deduce
lim inf
n!1

T .1�1=qn/.�n/ > 0;

which implies that it cannot be T .�n/! 0, as n!1. Therefore, compactness holds true
and the sequence �n has a subsequence (still denoted by the same indices) that  -con-
verges to some � 2Mad up to translations.

By the maximality of �qn , it holds

F 1=qnqn
.B/ � F 1=qnqn

.�qn/ D T .�n/.�.�n/C o.1//
1=qn ;

and we deduce, passing to the limit as n!1,

T .B/ � T .�/ D lim
n!1

T .�n/:

Since the sequence qn was arbitrary, we obtain the conclusion.

Theorem 5.3. Let � 2Mad be an optimal measure for Fq with q > 1. There exists q0 > 1
such that for q > q0 we have � D IA� . In particular, the optimal measure can be repres-
ented by a quasi-open set.

Proof. Since Fq is scaling free, we can suppose that jA�j D 1. Let " > 0 be a small
parameter, and let �" be the capacitary measure defined by

�".E/ D .1 � "/�.E/:

Being A� D A�" , we have �" 2Mad. We assume by contradiction that � ¤ IA� (notice
that this implies �" ¤ �). For the sake of brevity, we denote respectively by w and w" the
torsion functions of � and �". It is easy to verify that, as "! 0,

k � kH1
�"

�
! k � kH1

�
; on L2.Rd /;

and therefore we have �"

! � and w" ! w in L1.Rd /, as "! 0. Let us denote by t ."/,

l."/ and fq."/ the real functions

" 7! t ."/ D T .�"/; " 7! l."/ D �.�"/ and " 7! fq."/ D Fq.�"/;

and by t 0C.0/, l
0
C.0/ and .fq/0C.0/ the limits for "! 0 of the respective different quotients.



On a reverse Kohler-Jobin inequality 925

By writing w" D w C "�" for some �" 2 L1.Rd / and using the fact that w and w",
respectively, weakly solve the PDEs

��w C w� D 1

and

(5.2) ��w" C w"�" D 1;

we deduce that �" weakly solves the PDE

(5.3) ���" C �"�" D w�:

This allows us to compute the derivative

t 0C.0/ D lim
"!0

� Z
�" dx

�
D lim
"!0

� Z
rw"r�"dx C

Z
w" �" d�"

�
D lim
"!0

� Z
ww" d�

�
;

where we test (5.2) with �" and we use (5.3) tested with w". Since as "! 0, w" ! w in
L1.Rd /, we obtain

(5.4) t 0C.0/ D

Z
w2 d�:

We can treat with a similar argument the eigenvalue. Let u and u" be the first eigenfunc-
tions (with unitary L2 norm), respectively, of the operators ��C �" and ��C �, and
let v" 2 L2.Rd / be such that u" D uC "v". Since

��uC u� D �.�/u and ��u" C u"�" D �.�"/u";

we have

��v" C v"� � u� � "v"� D
��.�"/ � �.�/

"

�
uC �.�"/v":

By testing the PDE above with u 2 H 1
�, and since

R
u2 dx D 1, we obtain��.�"/ � �.�/

"

�
D

Z
rv"rudx C

Z
v"ud� �

Z
u2 d�

� "

Z
v"ud� � �.�"/

Z
v"udx:

By taking the limit as " ! 0 and exploiting the fact that u" ! u weakly in H 1
� and

�.�"/! �.�/, we get

(5.5) l 0C.0/ D �

Z
u2 d�:

By combining (5.4) and (5.5), we get

.fq/
0
C.0/ D l

0
C.0/T

q.�/C q�.�/T q�1.�/t 0C.0/ D Fq.�/

Z �
�

u2

�.�/
C q

w2

T .�/

�
d�:
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Now, the optimality condition on � implies .fq/0C.0/ � 0, and hence that

(5.6)
Z � u2

�.�/
� q

w2

T .�/

�
d� � 0:

We claim that

(5.7)
u2

�.�/
� q

w2

T .�/
< 0 q.e. on Rd

for q large enough. Indeed, by an application of Theorem 5.1 together with a comparison
principle, we have

u � e1=.8�/�d=4C1.�/w q.e. on Rd ;

and so by the Pólya inequality,

u2 � e1=.4�/�d=2.�/
�.�/

T .�/
w2 q.e. on Rd :

This implies that

u2

�.�/
� q

w2

T .�/
�

w2

T .�/

�
e1=.4�/�d=2.�/ � q

�
q.e. on Rd :

Therefore, for every q such that

sup
� optimal

e1=.4�/�d=2.�/ < q;

the inequality (5.7) is satisfied. Notice that the supremum in the inequality above is finite
as a consequence of Lemma 5.2 combined again with Pólya’s inequality.

To conclude, it is now enough to notice that (5.7) contradicts (5.6).

6. Optimality for nearly spherical domains

In the following, we consider the classes �ı; of nearly spherical domains. Let B1 be the
unitary ball of Rd . A domain � such that

j�j D jB1j and
Z
�

x dx D 0

belongs to the class �ı; if there exists � 2 C 2; .@B1/ with k�kL1.@B1/ � 1=2 and such
that

@� D ¹x 2 Rd W x D .1C �.y//y; y 2 @B1º and k�kC 2; .@B1/ � ı:

We recall the following result.
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Theorem 6.1. Let  2 .0; 1/. There exists ı D ı.d; / > 0 such that, if � 2 �ı; , then

T .B1/ � T .�/ � C1k�k
2
H1=2.@B1/

and �.�/ � �.B1/ � C2k�k
2
H1=2.@B1/

for suitable constants C1 and C2 depending only on the dimension d .

Proof. The inequality for the torsional rigidity follows from Theorem 3.3 in [5]. The in-
equality for the eigenvalue follows by combining Theorem 1.4 and Lemma 2.8 of [16].

Theorem 6.2. Let  2 .0; 1/. There exist ı > 0 and q1 > 1 such that, for every q � q1
and every � 2 �;ı , it holds

�.B1/T
q.B1/ � �.�/T

q.�/:

Proof. For every domain � we have

�.B1/T
q.B1/ � �.�/T

q.�/ D �.B1/.T
q.B1/ � T

q.�//C T q.�/.�.B1/ � �.�//;

which, by the elementary inequality

xq � yq � qyq�1 .x � y/; for every x; y � 0; q > 1;

implies

�.B1/T
q.B1/ � �.�/T

q.�/(6.1)

� T q�1.�/ Œq�.B1/.T .B1/ � T .�// � T .�/.�.�/ � �.B1//�:

Let ı be the constant determined by Theorem 6.1 and assume�2 �;ı . Since 2�1B1 �
� � 2B1, we get

2�.2Cd/T .B1/ � T .�/ � 2
2Cd T .B1/:

Combining Theorem 6.1 and inequality (6.1) we get

�.B1/T
q.B1/��.�/T

q.�/

� .2�.2Cd/T .B1//
q�1.qC1 � 2

2CdC2T .B1//k�k
2
H1=2.@B1/

:

Hence, if q is such that

q � 2dC2
C2

C1
T .B1/;

we obtain
�.B1/T

q.B1/ � �.�/T
q.�/;

and this concludes the proof.

Remark 6.3. Although for large q we expect the ball to be optimal for the functional Fq ,
it is easy to see that this does not occur when q approaches 1. Indeed, if the ball maxim-
izes Fq for every q > 1, passing to the limit as q ! 1, this would happen also for q D 1,
which is not true, even in the class of convex domains. To see this, it is enough to notice
that

F1.B1/ D
�.B1/

d.d C 2/
�

d C 4

2.d C 2/
;
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where the last inequality follows simply by taking u.x/ D 1 � jxj2 as a test function for
�.B1/. On the other hand, taking as �" the thin slab .0; 1/d�1 � .0; "/ gives

lim
"!0

F1.�"/ D
�2

12
;

and
�2

12
>

d C 4

2.d C 2/
for every d � 2:
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