© 2023 Real Sociedad Matemática Española Published by EMS Press and licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

On a reverse Kohler-Jobin inequality

Luca Briani, Giuseppe Buttazzo and Serena Guarino Lo Bianco

Abstract. In this paper, we consider the shape optimization problems for the quantities $\lambda(\Omega) T^{q}(\Omega)$, where Ω varies among open sets of \mathbb{R}^{d} with a prescribed Lebesgue measure. While the characterization of the infimum is completely clear, the same does not happen for the maximization in the case $q > 1$. We prove that for q large enough a maximizing domain exists among quasi-open sets and that the ball is optimal among *nearly spherical domains*.

1. Introduction

In the present paper, we consider two well-known quantities that appear in the study of elliptic equations in the Euclidean space \mathbb{R}^d , $d \geq 2$. The first one is usually called *torsional rigidity*, and is defined, for every nonempty open set $\Omega \subset \mathbb{R}^d$ with finite Lebesgue measure (in the following, a *domain*), as

$$
T(\Omega) = \int w_{\Omega} \, dx,
$$

where w_{Ω} is the unique solution of the PDE

$$
-\Delta u = 1 \quad \text{in } \Omega, \quad u \in H_0^1(\Omega).
$$

Equivalently, we may define $T(\Omega)$ as

$$
T(\Omega) = \max \left\{ \frac{(\int u \, dx)^2}{\int |\nabla u|^2 \, dx} : u \in H_0^1(\Omega) \setminus \{0\} \right\}.
$$

In the integrals above and in the following, we use the convention that integrals without the indicated domain are intended over the entire space \mathbb{R}^d . The quantity $T(\Omega)$ satisfies the scaling property

 $T(t \Omega) = t^{d+2} T(\Omega)$ for every $t > 0$;

in addition, the maximum of $T(\Omega)$ among domains with prescribed measure is reached by the ball (*Saint-Venant's inequality*), which can be written in the scaling free formulation as

$$
|\Omega|^{-(d+2)/d} T(\Omega) \le |B|^{-(d+2)/d} T(B),
$$

for every domain Ω and for every ball $B \subset \mathbb{R}^d$.

Mathematics Subject Classification 2020: 49Q10 (primary); 49J45, 49R05, 35P15, 35J25 (secondary). *Keywords:* torsional rigidity, shape optimization, principal eigenvalue, capacitary measures.

The second quantity is the *first eigenvalue* $\lambda(\Omega)$ of the Dirichlet Laplacian, defined as the smallest λ such that the PDE

$$
-\Delta u = \lambda u \quad \text{in } \Omega, \quad u \in H_0^1(\Omega),
$$

admits a nonzero solution. Equivalently, $\lambda(\Omega)$ can be defined through the minimization of the Rayleigh quotient

$$
\lambda(\Omega) = \min \Big\{ \frac{\int |\nabla u|^2 \, dx}{\int u^2 \, dx} : u \in H_0^1(\Omega) \setminus \{0\} \Big\}.
$$

The quantity $\lambda(\Omega)$ satisfies the scaling property

$$
\lambda(t\,\Omega) = t^{-2}\,\lambda(\Omega) \qquad \text{for every } t > 0;
$$

in addition, the minimum of $\lambda(\Omega)$ among domains with prescribed measure is reached by the ball (the *Faber–Krahn inequality*), which can be written in the scaling free formulation as

$$
|\Omega|^{2/d}\lambda(\Omega) \geq |B|^{2/d}\lambda(B),
$$

for every domain Ω and for every ball $B \subset \mathbb{R}^d$.

The study of relations between $T(\Omega)$ and $\lambda(\Omega)$ was performed in several papers (see for instance $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$ $[1-4, 6, 12, 13, 18, 21-23]$, where some important inequalities were established. In particular,

• the Kohler-Jobin inequality

$$
\lambda(\Omega) T^{q}(\Omega) \geq \lambda(B) T^{q}(B),
$$

valid for every $q \in [0, 2/(d + 2)]$ and for every domain Ω , where B is any ball in \mathbb{R}^d with $|B| = |\Omega|$;

• the Pólya inequality

$$
0 < \frac{\lambda(\Omega) \, T(\Omega)}{|\Omega|} < 1,
$$

valid for every domain Ω of \mathbb{R}^d .

In the present paper, we consider the scaling free shape functional

$$
F_q(\Omega) = \frac{\lambda(\Omega) T^q(\Omega)}{|\Omega|^{a_q}}, \quad \text{with} \quad a_q = \frac{-2 + q(d+2)}{d},
$$

and the two quantities

$$
m_q = \inf \{ F_q(\Omega) : \Omega \text{ domain} \}
$$
 and $M_q = \sup \{ F_q(\Omega) : \Omega \text{ domain} \}.$

While the situation for m_q is fully clear, and by the Kohler-Jobin inequality, together with the Saint-Venant inequality, we have

$$
m_q = \begin{cases} F_q(B) & \text{if } q \le 2/(d+2), \\ 0 & \text{if } q > 2/(d+2), \end{cases}
$$

the characterization of M_q is not yet complete. The results available up to now are the following (see $[1]$ and $[3]$):

- $M_a = \infty$ for every $q < 1$;
- $M_q = 1$ when $q = 1$, with the upper bound 1 not reached by any domain Ω ;
- $M_a < \infty$ for every $q > 1$.

We investigate here this last case. The maximal expectation would be having the following result (the reverse Kohler-Jobin inequality):

- for every $q > 1$, the supremum M_q is attained on an optimal domain Ω_q ;
- for every $q > 1$, the free boundary $\partial \Omega_q$ is a smooth $d 1$ surface;
- there exists a threshold $q^* > 1$ such that for every $q \geq q^*$, the supremum M_q is attained by a ball^{[1](#page-2-0)}.

We are unable to prove the results in the strong form above. We prove here the weaker results below, for which we need to extend the functional F_q to the set of capacitary measures (see Section [2\)](#page-2-1):

- for every $q > 1$, the supremum M_q is reached on a capacitary measure μ_q (Theorem [4.3\)](#page-9-0);
- there exists a threshold $q_0 > 1$ such that, for every $q \ge q_0$, the supremum M_q is reached by a quasi-open set Ω_q (Theorem [5.3\)](#page-11-0);
- there exists another threshold q_1 such that, for every $q \geq q_1$, the ball is a maximizer for the shape functional F_q among *nearly spherical domains* (Theorem [6.2\)](#page-14-0).

2. Capacitary measures

The concept of capacitary measure and the related properties shall be a very useful tool for our purposes. When dealing with sequences of PDEs of the form

$$
-\Delta u = f \quad \text{in } \Omega_n, \quad u \in H_0^1(\Omega_n),
$$

a natural question is to establish if the sequence $u_{n,f}$ of solutions, or a subsequence of it, converges in L^2 to some function u_f , and to determine in this case the PDE that the function u_f solves. Starting from the pioneering papers [\[14,](#page-16-5)[15\]](#page-16-6), it is now well understood that the right framework to treat such a kind of questions is that of capacitary measures. Below we recall the main results and definitions following [\[10\]](#page-16-7) and [\[24\]](#page-16-8). For further information we refer the reader to the monographs [\[8\]](#page-15-4) and [\[20\]](#page-16-9), and references therein.

Definition 2.1. We say that a nonnegative Borel regular measure μ , possibly taking the value ∞ , is a capacitary measure if

 $\mu(E) = 0$ whenever E is a Borel set with cap $(E) = 0$,

being $cap(E)$ the capacity

$$
\operatorname{cap}(E) = \inf \Big\{ \int_{\mathbb{R}^d} |\nabla u|^2 + u^2 dx \, : \, u \in H_0^1(\mathbb{R}^d), \ u = 1 \text{ in a neighborhood of } E \Big\}.
$$

¹After the submission of this paper, we have been informed that D. Bucur and coauthors were working on similar problems. In particular, by proving a new sharp stability inequality for the spectrum of the Dirichlet Laplacian, they are able to show that such a q^* does exist. Their results are now collected in the preprint [\[11\]](#page-16-10).

A property $P(x)$ is said to hold quasi-everywhere (briefly, q.e.) if the set where $P(x)$ does not hold has zero capacity. A Borel set $\Omega \subset \mathbb{R}^d$ is said to be quasi-open if there exists a function $u \in H^1(\mathbb{R}^d)$ such that $\Omega = \{u > 0\}$ up to a set of capacity zero. A function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be quasi-continuous if there is a sequence of open sets $\omega_n \subset \mathbb{R}^d$ such that $\lim_{n\to\infty} \text{cap}(\omega_n) = 0$ and f is continuous when restricted to $\mathbb{R}^d \setminus \omega_n$. It is well known (see for instance [\[19\]](#page-16-11)) that every Sobolev function has a quasi-continuous representative, and that two quasi-continuous representatives coincide quasi-everywhere. We then identify the space $H^1(\mathbb{R}^d)$ with the space of quasi-continuous representatives. We recall that a sequence $u_n \in H^1(\mathbb{R}^d)$ that converges in norm to some $u \in H^1(\mathbb{R}^d)$, converges quasi-everywhere (up to a subsequence) to u .

Given μ a capacitary measure, we denote by H^1_μ the following space:

$$
H^1_{\mu} = H^1(\mathbb{R}^d) \cap L^2_{\mu}(\mathbb{R}^d) = \left\{ u \in H^1(\mathbb{R}^d) : \int u^2 d\mu < \infty \right\}.
$$

The space H^1_μ is a Hilbert space when endowed with $||u||_{H^1_\mu} = ||u||_{H^1(\mathbb{R}^d)} + ||u||_{L^2_\mu(\mathbb{R}^d)}$, where the quantity $||u||_{L^2(\mathbb{R}^d)}$ is well defined, being Sobolev functions defined up to a set of zero capacity. We always identify two capacitary measures μ and ν for which

(2.1)
$$
\int u^2 d\mu = \int u^2 dv, \text{ for every } u \in H^1(\mathbb{R}^d).
$$

If instead [\(2.1\)](#page-3-0) holds with " \leq ", we say that $\mu \leq \nu$, and in this case we have $H_{\nu}^1 \subseteq H_{\mu}^1$. We can associate to any open set (or more generally to any quasi-open set) $\Omega \subset \mathbb{R}^d$ the capacitary measure I_{Ω} defined as follows:

$$
I_{\Omega}(E) := \begin{cases} 0 & \text{if } \text{cap}(E \setminus \Omega) = 0, \\ \infty & \text{if } \text{cap}(E \setminus \Omega) > 0. \end{cases}
$$

Notice that, if $\mu = I_{\Omega}$ for some open set $\Omega \subset \mathbb{R}^d$, then $H^1_{\mu} = H^1_0(\Omega)$.

To extend the notion of torsional rigidity to a capacitary measure μ , we need to carefully deal with the fact that the embedding $H^1_\mu \hookrightarrow L^1(\mathbb{R}^d)$ can be noncompact, and even noncontinuous. Nevertheless, we can follow an approximation argument: for every $R > 0$, let w_R be the solution to the minimization problem

$$
\min\Big\{\int|\nabla u|^2\,dx+\int u^2\,d\mu-\int u\,dx\,:\,u\in H^1_\mu\cap H^1_0(B_R)\Big\}.
$$

The torsion function w_{μ} and the torsional rigidity $T(\mu)$ of the capacitary measure μ are defined as

$$
w_{\mu} := \sup_{R>0} w_R
$$
 and $T(\mu) := \int w_{\mu} dx$.

The Dirichlet eigenvalue of μ can be defined through the following Rayleigh-type quotient:

$$
\lambda_1(\mu) = \inf_{u \in H^1_\mu \setminus \{0\}} \frac{\int |\nabla u|^2 \, dx + \int u^2 \, d\mu}{\int u^2 \, dx}.
$$

Clearly, if $\mu = I_{\Omega}$ for some domain $\Omega \subset \mathbb{R}^d$, we have $T(\mu) = T(\Omega)$ and $\lambda(\mu) = \lambda(\Omega)$ (we adopt this notation also if Ω is a quasi-open set). For a general capacitary measure μ , neither $\lambda(\mu)$ is necessarily attained by some function $u \in H^1_\mu$ nor $T(\mu)$ is necessarily finite. However, as shown in [\[9\]](#page-15-5), it holds the following:

$$
w_{\mu} \in L^1(\mathbb{R}^d) \iff T(\mu) < \infty \implies \lambda_1(\mu)
$$
 is attained by some $u \in H^1_{\mu}$.

For every capacitary measure μ with $T(\mu) < \infty$, we define the *set of finiteness* A_{μ} as the quasi-open set

$$
A_{\mu}:=\{w_{\mu}>0\}.
$$

In the case when $\mu = I_{\Omega}$, for some domain $\Omega \subset \mathbb{R}^d$, we have $A_{\mu} = \Omega$. The set of capacitary measures with finite torsion can be endowed with the following notion of distance.

Definition 2.2. Given two capacitary measures μ and ν such that $w_{\mu}, w_{\nu} \in L^1(\mathbb{R}^d)$, we define the γ -distance between them as

$$
d_{\gamma}(\mu,\nu)=\|w_{\mu}-w_{\nu}\|_{L^1(\mathbb{R}^d)}.
$$

We say that a sequence $\mu_n \gamma$ -converges to μ if $d_\gamma(\mu_n, \mu) \to 0$ as $n \to \infty$. When $I_{\Omega_n} \stackrel{\gamma}{\to} \mu$, we simply write $\Omega_n \stackrel{\gamma}{\rightarrow} \mu$.

We summarize the main properties of the γ -distance below:

- The space $(\{\mu : \mu \text{ capacity measure with } w_{\mu} \in L^1(\mathbb{R}^d)\}, d_{\gamma})$ is a complete metric space, and the set $\{I_{\Omega} : \Omega \subset \mathbb{R}^d \text{ open set with } w_{\Omega} \in L^1(\mathbb{R}^d)\}$ is a dense subset of it.
- The functionals $\mu \mapsto \lambda(\mu)$ and $\mu \mapsto T(\mu)$ are y-continuous.
- The map $\mu \mapsto |A_{\mu}|$, or more generally integral functionals as $\int_{A_{\mu}} f(x) dx$ with $f \ge 0$ and measurable, are lower semicontinuous with respect to the γ -convergence.
- The y-convergence of μ_n to μ implies the Γ -convergence in $L^2(\mathbb{R}^d)$ of the functionals $\Vert \cdot \Vert_{H^1_{\mu_n}}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ defined by

$$
||u||_{H_{\mu_n}^1} = \begin{cases} ||u||_{H^1(\mathbb{R}^d)} + \int u^2 d\mu_n & \text{if } u \in H_{\mu_n}^1, \\ \infty & \text{if } u \notin H_{\mu_n}^1, \end{cases}
$$

to the functional $\| \cdot \|_{H^1_\mu}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$,

$$
||u||_{H^1_{\mu}} = \begin{cases} ||u||_{H^1(\mathbb{R}^d)} + \int u^2 d\mu & \text{if } u \in H^1_{\mu}, \\ \infty & \text{if } u \notin H^1_{\mu}. \end{cases}
$$

• For a given capacitary measures μ with finite torsion, we call resolvent of μ the linear compact and self-adjoint operator

$$
R_{\mu}: L^{2}(\mathbb{R}^{d}) \to L^{2}(\mathbb{R}^{d}), \quad R_{\mu}(f) = w_{\mu,f},
$$

where $w_{\mu,f}$ is the solution of the problem

$$
w_{\mu,f} \in H^1_{\mu}, \quad -\Delta w_{\mu,f} + w_{\mu,f}\mu = f,
$$

in the sense that

$$
w_{\mu,f} \in H^1_{\mu}, \quad \int \nabla w_{\mu,f} \cdot \nabla \phi \, dx + \int w_{\mu,f} \phi \, d\mu = \int f \phi \, dx \quad \text{for every } \phi \in H^1_{\mu}.
$$

The γ -convergence of μ_n to μ implies the norm convergence of R_{μ_n} to R_{μ} , i.e.,

$$
\lim_{n\to\infty}||R_{\mu_n}-R_\mu||_{\mathcal{L}(L^2(\mathbb{R}^d),L^2(\mathbb{R}^d))}=0.
$$

• If μ_n is a sequence of capacitary measures whose set of finiteness have uniformly bounded measures $|A_{\mu_n}|$, then

$$
\mu_n \xrightarrow{\gamma} \mu \Longleftrightarrow \|R_{\mu_n} - R_{\mu}\|_{\mathcal{L}(L^2(\mathbb{R}^d), L^2(\mathbb{R}^d))} \to 0 \Longleftrightarrow \|u\|_{H_{\mu_n}^1} \xrightarrow{\Gamma} \|u\|_{H_{\mu}^1} \text{ on } L^2(\mathbb{R}^d).
$$

The classical concentration-compactness principle of P. L. Lions was extended to sequences of open sets in [\[7\]](#page-15-6). Notably, the following result holds.

Theorem 2.3. Let Ω_n be a sequence of open sets (more generally, quasi-open sets) with *uniformly bounded measures. Then there exists a subsequence* (*still denoted with the same indices* n) *such that one of the following situations occurs.*

- (Compactness). There exists a sequence $x_n \subset \mathbb{R}^d$ such that the sequence of capacitary *measures* $x_n + \Omega_n$ *y*-converges.
- (Vanishing). The sequence $R_{I_{\Omega_n}}$ converges in norm to 0. Moreover, we have that $||w_{\Omega_n}||_{L^{\infty}} \to 0$ and $\bar{\lambda}(\Omega_n) \to \infty$, as $n \to \infty$.
- (*Dichotomy*). There exist two sequences of quasi-open sets $\Omega_n^1, \Omega_n^2 \subset \Omega_n$ such that
	- $-$ dist $(\Omega_n^1, \Omega_n^2) \to \infty$, as $n \to \infty$;
	- $d_{\gamma}(I_{\Omega_n}, I_{\Omega_n^1 \cup \Omega_n^2}) \to 0$, as $n \to \infty$;
	- $\liminf_{n\to\infty} T(\Omega_n^1) > 0$ *and* $\liminf_{n\to\infty} T(\Omega_n^2) > 0$.

The proof of the theorem above can be deduced by combining Theorem 2.2 of [\[7\]](#page-15-6) and Theorem 3.5 of [\[10\]](#page-16-7).

3. Relaxation of F_q

In this section, we characterize the relaxation of the functional F_q to the set of capacitary measures. We define the set \mathcal{M}_{ad} of admissible capacitary measures as

$$
\mathcal{M}_{\text{ad}} = \{ \mu : \mu \text{ capacity measure with } 0 < |A_{\mu}| < \infty \}.
$$

For $\mu \in \mathcal{M}_{ad}$, we define the relaxed form of our functional F_q as

$$
F_q(\mu) = \sup \Big\{ \limsup_n F_q(\Omega_n) : \Omega_n \subset \mathbb{R}^d \text{ domain such that } \Omega_n \stackrel{\gamma}{\to} \mu \Big\},\
$$

so that

$$
M_q = \sup \{ F_q(\mu) : \mu \in \mathcal{M}_{ad} \}.
$$

Lemma 3.1. Let $\mu \in \mathcal{M}_{ad}$ and let Ω_n be a sequence of domains such that $\Omega_n \stackrel{\gamma}{\to} \mu$. If $|A_\mu| < \infty$, then $\Omega_n \cap A_\mu \stackrel{\gamma}{\to} \mu$.

Proof. Being the sequence $\Omega_n \cap A_\mu$ of uniformly bounded measure, by the properties of ν -convergence seen above, we have to show that

$$
||u||_{H^1_{\mu_n}} \stackrel{\Gamma}{\longrightarrow} ||u||_{H^1_{\mu}} \quad \text{on } L^2(\mathbb{R}^d),
$$

where we set $\mu_n = I_{\Omega_n \cap A_\mu}$.

The "T-liminf" inequality readily follows from the fact that $H^1_{\mu_n} = H^1_0(\Omega_n \cap A_\mu) \subseteq$ $H_0^1(\Omega_n)$, and from the Γ -convergence of $\|\cdot\|_{H_0^1(\Omega_n)}$ to $\|\cdot\|_{H_\mu^1}$ in $L^2(\mathbb{R}^d)$.

To prove the " Γ -limsup" inequality, we can suppose without loss of generality that $u \in H^1_\mu$. Since $\Omega_n \stackrel{\gamma}{\to} \mu$, there exists a sequence $u_n \in H^1_0(\Omega_n)$ such that

$$
u_n \to u
$$
 strongly $L^2(\mathbb{R}^d)$ and $\lim_{n \to \infty} \left(\int |\nabla u_n|^2 dx \right) = \int |\nabla u|^2 dx + \int |u|^2 d\mu$.

We denote respectively by u_n^+ and u_n^- the positive and negative part of u_n . Since we have

$$
\int |\nabla (u_n^+ - u_n^-)|^2 dx = \int |\nabla u_n^+|^2 dx + \int |\nabla u_n^-|^2 dx,
$$

and $u_n = u_n^+ - u_n^-$, by possibly passing to a subsequence (still indexed by *n*), we can suppose that

(3.1)
$$
\limsup_{n \to \infty} \left(\int |\nabla u_n^+|^2 dx \right) + \limsup_{n \to \infty} \left(\int |\nabla u_n^-|^2 dx \right)
$$

$$
= \lim_{n \to \infty} \left(\int |\nabla (u_n^+ - u_n^-)|^2 dx \right) = \int |\nabla u|^2 dx + \int u^2 d\mu.
$$

We define

$$
v_n^+ = u_n^+ \wedge u^+ \in H^1(\mathbb{R}^d)
$$
 and $v_n^- = u_n^- \wedge u^- \in H^1(\mathbb{R}^d)$.

Since $u \in H^1_\mu$ and $u_n \in H^1_0(\Omega_n)$, we have $u = 0$ q.e. on A^c_μ and $u_n = 0$ q.e. on Ω^c_n . This implies that both v_n^+ and v_n^- vanish q.e. on $(\Omega_n \cap A_\mu)^c$, and consequently that $v_n^+, v_n^- \in$ $H_0^{\bar{1}}(\Omega_n \cap A_\mu)$. Moreover, it is easy to show that

$$
v_n^+ - v_n^- \longrightarrow u \quad \text{strongly } L^2(\mathbb{R}^d).
$$

Therefore the thesis is achieved if we show that

$$
(3.2) \qquad \limsup_{n\to\infty}\Big(\int|\nabla(v_n^+-v_n^-)|^2\,dx\Big)\leq \lim_{n\to\infty}\Big(\int|\nabla(u_n^+-u_n^-)|^2\,dx\Big).
$$

We have

(3.3)
$$
\int |\nabla v_n^+|^2 dx = \int_{\{u_n^+ \le u^+\}} |\nabla u_n^+|^2 dx + \int_{\{u_n^+ > u^+\}} |\nabla u^+|^2 dx
$$

$$
= \int |\nabla u_n^+|^2 dx - \int (|\nabla u_n^+|^2 - |\nabla u|^2) 1_{\{u_n^+ > u^+\}} dx.
$$

By lower semicontinuity, we have

(3.4)
$$
\liminf_{n} \int (|\nabla u_n^+|^2 - |\nabla u^+|^2) 1_{\{u_n^+ > u^+\}} dx \ge 0.
$$

Indeed, to show the inequality above, it is enough to write

$$
\int \left(|\nabla u_n^+|^2 - |\nabla u^+|^2 \right) 1_{\{u_n^+ > u^+\}} dx = \int \left(|\nabla u_n^+|^2 - |\nabla u^+|^2 \right) 1_{\{u_n^+ \ge u^+\}} dx
$$

$$
= \int |\nabla (u_n^+ \vee u^+)|^2 - |\nabla u^+|^2 dx,
$$

and to notice that $u_n^+ \rightharpoonup u^+$ weakly in $H^1(\mathbb{R}^d)$ implies $u_n^+ \vee u^+ \rightharpoonup u^+$ weakly in $H^1(\mathbb{R}^d)$ and so, by lower semicontinuity,

$$
\liminf_{n} \int |\nabla (u_n^+ \vee u^+)|^2 - |\nabla u^+|^2 \, dx \ge 0.
$$

Combining (3.3) and (3.4) , we deduce that

(3.5)
$$
\limsup_{n \to \infty} \left(\int |\nabla v_n^+|^2 dx \right) \leq \limsup_{n \to \infty} \left(\int |\nabla u_n^+|^2 dx \right).
$$

Similarly we have

(3.6)
$$
\limsup_{n\to\infty}\left(\int |\nabla v_n^-|^2 dx\right)\leq \limsup_{n\to\infty}\left(\int |\nabla u_n^-|^2 dx\right).
$$

Combining (3.1) , (3.5) and (3.6) , we finally deduce (3.2) , and this concludes the proof of the lemma.

Remark 3.2. By Lemma [3.1,](#page-5-0) for every measure $\mu \in \mathcal{M}_{ad}$ there exists a sequence of quasiopen sets Ω_n (that can be taken open by a standard approximation procedure) such that $\Omega_n \stackrel{\gamma}{\rightarrow} \mu$ and for which

$$
|\Omega_n| \to |A_\mu| \quad \text{ as } n \to \infty.
$$

To show this fact, we take $\Omega_n = A_\mu \cap O_n$, where O_n is any sequence of domains y-converging to μ . We then have $|\Omega_n| \leq |A_\mu|$ and, by the lower semicontinuity of the Lebesgue measure with respect to γ -convergence (see the properties recalled in Section [2\)](#page-2-1), we have $|A_{\mu}| \leq \liminf_{n} |\Omega_n|$. This in turns implies that the set

$$
\{I_{\Omega}: \ \Omega \subset \mathbb{R}^d \ \text{domain}\}
$$

is γ -dense in \mathcal{M}_{ad} . Furthermore, we can extend the Saint-Venant, Faber–Krahn and Pólya inequalities to any capacitary measure. That is,

$$
(3.7) \qquad |A_{\mu}|^{-(d+2)/d} T(\mu) \leq |B|^{-(d+2)/d} T(B), \quad |A_{\mu}|^{2/d} \lambda(\mu) \geq |B|^{2/d} \lambda(B),
$$

and

(3.8)
$$
0 < |A_{\mu}|^{-1} \lambda(\mu) T(\mu) < 1
$$

for every measure $\mu \in \mathcal{M}_{\text{ad}}$ and every ball $B \subset \mathbb{R}^d$.

Proposition 3.3. Let $\mu \in \mathcal{M}_{ad}$. Then we have

(3.9)
$$
|A_{\mu}| = \inf \left\{ \liminf_{n} |\Omega_n| : \Omega_n \text{ domain}, \Omega_n \stackrel{\gamma}{\to} \mu \right\}.
$$

The quantity $|A_\mu|$ is then the relaxation, in the y-convergence, of the Lebesgue meas*ure* $|\Omega|$ *. As a consequence, if* $\alpha_q > 0$ *, we have*

$$
(3.10) \t\t F_q(\mu) = \frac{\lambda(\mu) T^q(\mu)}{|A_\mu|^{\alpha_q}}.
$$

Proof. The inequality \leq in [\(3.9\)](#page-8-0) follows from the y-lower semicontinuity of the map $\mu \mapsto |A_\mu|$ seen above. The opposite inequality follows at once by Remark [3.2.](#page-7-3) Since $T(\mu)$ and $\lambda(\mu)$ are γ -continuous, the proof of [\(3.10\)](#page-8-1) is achieved by a similar argument.

The scaling properties of the shape functionals $|\Omega|$, $\lambda(\Omega)$, $T(\Omega)$ and $F_q(\Omega)$ extend to their relaxations $|A_\mu|$, $\lambda(\mu)$, $T(\mu)$ and $F_q(\mu)$ in \mathcal{M}_{ad} . More precisely, setting for $t > 0$,

$$
\mu_t(E) = t^{d-2} \mu(E/t),
$$

we have

$$
|A_{\mu_t}| = t^d |A_{\mu}|
$$
, $\lambda(\mu_t) = t^{-2} \lambda(\mu)$, $T(\mu_t) = t^{d+2} T(\mu)$ and $F_q(\mu_t) = F_q(\mu)$.

4. Existence of an optimal measure for $q > 1$

In [\[3\]](#page-15-3), it is proved that the supremum $M_1 = 1$ is not attained in the class of domains. In the next proposition, we point out that the same occurs even in the class \mathcal{M}_{ad} .

Proposition 4.1 (Nonexistence for $q = 1$ of an optimal measure). *The problem*

$$
\sup\{F_1(\mu): \ \mu \in \mathcal{M}_{ad}\}\
$$

does not have a maximizer.

Proof. The proof follows at once by exploiting Theorem 1.1 in [\[3\]](#page-15-3), which asserts that there exists a dimensional constant $c_d > 0$ for which

$$
(4.1) \t\t\t F_1(\Omega) \le 1 - \frac{c_d T(\Omega)}{|\Omega|^{1+2/d}},
$$

for every domain Ω . Then, for every $\mu \in \mathcal{M}_{ad}$, by Remark [3.2](#page-7-3) we can select a sequence $\Omega_n \stackrel{\gamma}{\rightarrow} A_\mu$ for which

$$
F_1(\Omega_n) \to F_1(\mu), \quad T(\Omega_n) \to T(\mu), \quad |\Omega_n| \le |A_\mu| \quad \text{as } n \to \infty.
$$

Thus, using [\(4.1\)](#page-8-2) with $\Omega = \Omega_n$ and then passing to the limit as $n \to \infty$, we get that $F_1(\mu) < 1 = M_1$.

To prove the main result of this section, we need the following elementary lemma.

Lemma 4.2. Let $0 < c_1 < c_2 < \infty$ and $1 < \alpha_1 < \alpha_2 < \infty$. Then there exists $\beta < 1$ such *that, for every* $a, b, c, d \in (c_1, c_2)$ *, it holds*

$$
\frac{(a+b)^{\alpha_1}}{(c+d)^{\alpha_2}} \leq \beta \max \left\{ \frac{a^{\alpha_1}}{c^{\alpha_2}}, \frac{b^{\alpha_1}}{d^{\alpha_2}} \right\}.
$$

Proof. Letting $x = b/a$ and $y = d/c$, is enough to prove that

$$
\frac{(1+x)^{\alpha_1}}{(1+y)^{\alpha_2}} \leq \beta \max\left\{1, \frac{x^{\alpha_1}}{y^{\alpha_2}}\right\}.
$$

Suppose that $x \le y$. Since $x \ge c_1/c_2$, it holds

(4.2)
$$
(1+x)^{\alpha_1} = (1+x)^{\alpha_2}(1+x)^{\alpha_1-\alpha_2} \le (1+y)^{\alpha_2}\left(1+\frac{c_1}{c_2}\right)^{\alpha_1-\alpha_2}.
$$

Similarly, if $x > y$, since $x \leq c_2/c_1$, it holds

$$
(4.3) \qquad \left(1+\frac{1}{x}\right)^{\alpha_1} \le \left(1+\frac{1}{y}\right)^{\alpha_2} \left(1+\frac{1}{x}\right)^{\alpha_1-\alpha_2} \le \left(1+\frac{1}{y}\right)^{\alpha_2} \left(1+\frac{c_1}{c_2}\right)^{\alpha_1-\alpha_2}.
$$

Eventually, we achieve the thesis by letting

$$
\beta = \left(1 + \frac{c_1}{c_2}\right)^{\alpha_1 - \alpha_2}
$$

and combining (4.2) and (4.3) .

Theorem 4.3 (Existence for $q > 1$ of an optimal measure). *For every* $q > 1$ *, there exists a* measure $\mu^{\star} \in M_{ad}$ such that

$$
F_q(\mu^*) = \sup \{ F_q(\mu) : \mu \in \mathcal{M}_{ad} \}.
$$

Proof. We select a sequence $\mu_n \in \mathcal{M}_{ad}$ such that $F_q(\mu_n) \to M_q$, as $n \to \infty$. By density, we can suppose that $\mu_n = I_{\Omega_n}$, for some sequence of open sets Ω_n . Further, being F_q scaling free, we can also assume $|\Omega_n| = 1$. Hence, we can apply Theorem [2.3.](#page-5-1)

If dichotomy occurs, then there exist two sequences of quasi-open sets $\Omega_n^1, \Omega_n^2 \subset \Omega_n$ such that

$$
\Omega_n^1 \cap \Omega_n^2 = \emptyset, \quad d_\gamma(I_{\Omega_n}, I_{\Omega_n^1 \cup \Omega_n^2}) \to 0 \quad \text{ as } n \to \infty.
$$

Taking into account the Saint-Venant inequality and the fact that $|\Omega_n| = 1$, there exist constants $c_1, c_2 > 0$, which depend only on the dimension, such that

$$
c_1 < \inf_n |T(\Omega_n^i)| \le \sup_n |T(\Omega_n^i)| < c_2, \quad c_1 < \inf_n |\Omega_n^i| \le \sup_n |\Omega_n^i| < c_2, \text{ for } i = 1, 2.
$$

Since λ is decreasing with respect to set inclusion, we have

(4.4)
$$
\lambda(\Omega_n) \leq \min\{\lambda(\Omega_n^1), \lambda(\Omega_n^2)\}.
$$

Lemma [4.2](#page-9-3) together with [\(4.4\)](#page-9-4) gives

$$
\frac{\lambda(\Omega_n)(T(\Omega_n^1 \cup \Omega_n^2))^q}{|\Omega_n|^{\alpha_q}} \leq \frac{\lambda(\Omega_n)\big(T(\Omega_n^1) + T(\Omega_n^2)\big)^q}{(|\Omega_n^1| + |\Omega_n^2|)^{\alpha_q}} \leq \beta \max_{i=1,2} \frac{\lambda(\Omega_n^i)T^q(\Omega_n^i)}{|\Omega_n^i|^{\alpha_q}}.
$$

By taking the limit as $n \to \infty$ in the latter inequality, we obtain the contradiction

$$
\sup_{\mu \in \mathcal{M}_{\text{ad}}} F_q(\mu) < \sup_{\mu \in \mathcal{M}_{\text{ad}}} F_q(\mu),
$$

and hence dichotomy cannot occur. Now, the maximality condition on the sequence Ω_n , together with Pólya's inequality, give that for n large enough,

$$
(4.5) \qquad \lambda(B)\frac{T^q(B)}{|B|^{\alpha_q}} \leq \lambda(\Omega_n)T^q(\Omega_n) = \lambda(\Omega_n)T(\Omega_n) \cdot T^{q-1}(\Omega_n) \leq T^{q-1}(\Omega_n),
$$

where B is any ball of \mathbb{R}^d . In particular, it cannot be $\lim_{n\to\infty} T(\Omega_n) = 0$, and this rules out the vanishing case.

Therefore, compactness holds and there exist a capacitary measure μ^* and a sequence $x_n \in \mathbb{R}^d$ such that $I_{x_n + \Omega_n}$ γ -converges to μ^* .

By [\(4.5\)](#page-10-0), we deduce that $T(\mu^*) > 0$, which by [\(3.7\)](#page-7-4) implies $|A_{\mu^*}| > 0$, and hence that μ^* belongs to \mathcal{M}_{ad} . Clearly, the measure μ^* maximizes the functional F_q on \mathcal{M}_{ad} , and this concludes the proof.

5. Optimal measures are quasi-open sets for large q

We are now interested to prove that, when q is large enough, optimal measures μ coming from Theorem [4.3](#page-9-0) can be represented as quasi-open sets. We begin by recalling the following result, see [\[17\]](#page-16-12) and Proposition 3.83 in [\[24\]](#page-16-8).

Theorem 5.1. Let μ be a capacitary measure with finite torsion. Then the eigenfunctions $u \in L^2(\mathbb{R}^d)$ of the operator $-\Delta + \mu$ with unitary L^2 norm are in $L^\infty(\mathbb{R}^d)$, and satisfy

$$
||u||_{\infty} \leq e^{1/(8\pi)} \lambda(\mu)^{d/4}.
$$

We also use the following lemma.

Lemma 5.2. *For every* $q > 1$ *, let* $\mu_q \in \mathcal{M}_{ad}$ *be a maximal measure for the functional* F_q *, such that* $|A_{\mu_q}| = 1$ *. Then*

$$
\liminf_{q \to \infty} T(\mu_q) > 0.
$$

Proof. Let q_n be a diverging sequence and let $B \subset \mathbb{R}^d$ be a ball of unitary measure. By the density of domains among capacitary measures, we can select a sequence $\Omega_n \subset \mathbb{R}^d$ of open sets such that $|\Omega_n| = 1$ for every *n*, and

(5.1)
$$
|F_{q_n}(\Omega_n) - F_{q_n}(\mu_{q_n})| = o(T^{q_n}(B)) \text{ as } n \to \infty.
$$

Notice that $T^{q_n}(B) \to 0$ as $n \to \infty$. Then we can apply Theorem [2.3](#page-5-1) to the sequence Ω_n . Dichotomy can be ruled out by the same argument as that of the proof of Theorem [4.3](#page-9-0) once noticed that [\(3.8\)](#page-7-5) implies

$$
F_{q_n}^{1/q_n}(\mu_{q_n}) \leq T^{(q_n-1)/q_n}(B) \to T(B) \quad \text{as } n \to \infty.
$$

The vanishing case can be excluded too by following again the proof of Theorem [4.3.](#page-9-0) Indeed, for *n* large enough, Pólya's inequality and (5.1) imply

$$
T^{q_n-1}(\Omega_n) \ge F_{q_n}(\Omega_n) \ge F_{q_n}(\mu_{q_n}) - |F_{q_n}(\Omega_n) - F_{q_n}(\mu_{q_n})| \ge F_{q_n}(B) + o(T^{q_n}(B)).
$$

Hence we deduce

$$
\liminf_{n\to\infty} T^{(1-1/q_n)}(\Omega_n)>0,
$$

which implies that it cannot be $T(\Omega_n) \to 0$, as $n \to \infty$. Therefore, compactness holds true and the sequence Ω_n has a subsequence (still denoted by the same indices) that y-converges to some $\mu \in \mathcal{M}_{ad}$ up to translations.

By the maximality of μ_{q_n} , it holds

$$
F_{q_n}^{1/q_n}(B) \le F_{q_n}^{1/q_n}(\mu_{q_n}) = T(\Omega_n) (\lambda(\Omega_n) + o(1))^{1/q_n},
$$

and we deduce, passing to the limit as $n \to \infty$,

$$
T(B) \leq T(\mu) = \lim_{n \to \infty} T(\Omega_n).
$$

Since the sequence q_n was arbitrary, we obtain the conclusion.

Theorem 5.3. Let $\mu \in \mathcal{M}_{ad}$ be an optimal measure for F_a with $q > 1$. There exists $q_0 > 1$ such that for $q > q_0$ we have $\mu = I_{A_{\mu}}$. In particular, the optimal measure can be repres*ented by a quasi-open set.*

Proof. Since F_q is scaling free, we can suppose that $|A_\mu| = 1$. Let $\varepsilon > 0$ be a small parameter, and let μ_{ε} be the capacitary measure defined by

$$
\mu_{\varepsilon}(E) = (1 - \varepsilon)\,\mu(E).
$$

Being $A_{\mu} = A_{\mu_{\varepsilon}}$, we have $\mu_{\varepsilon} \in M_{ad}$. We assume by contradiction that $\mu \neq I_{A_{\mu}}$ (notice that this implies $\mu_{\varepsilon} \neq \mu$). For the sake of brevity, we denote respectively by w and w_{ε} the torsion functions of μ and μ_{ε} . It is easy to verify that, as $\varepsilon \to 0$,

$$
\|\cdot\|_{H^1_{\mu_{\varepsilon}}}\stackrel{\Gamma}{\to}\|\cdot\|_{H^1_{\mu}},\quad\text{ on }L^2(\mathbb{R}^d),
$$

and therefore we have $\mu_{\varepsilon} \stackrel{\gamma}{\to} \mu$ and $w_{\varepsilon} \to w$ in $L^1(\mathbb{R}^d)$, as $\varepsilon \to 0$. Let us denote by $t(\varepsilon)$, $l(\varepsilon)$ and $f_a(\varepsilon)$ the real functions

$$
\varepsilon \mapsto t(\varepsilon) = T(\mu_{\varepsilon}), \quad \varepsilon \mapsto l(\varepsilon) = \lambda(\mu_{\varepsilon}) \quad \text{and} \quad \varepsilon \mapsto f_q(\varepsilon) = F_q(\mu_{\varepsilon}),
$$

and by $t'_{+}(0)$, $l'_{+}(0)$ and $(f_q)'_{+}(0)$ the limits for $\varepsilon \to 0$ of the respective different quotients.

 \blacksquare

By writing $w_{\varepsilon} = w + \varepsilon \xi_{\varepsilon}$ for some $\xi_{\varepsilon} \in L^1(\mathbb{R}^d)$ and using the fact that w and w_{ε} , respectively, weakly solve the PDEs

$$
-\Delta w + w\mu = 1
$$

and

$$
- \Delta w_{\varepsilon} + w_{\varepsilon} \mu_{\varepsilon} = 1,
$$

we deduce that ξ_{ε} weakly solves the PDE

$$
(5.3) \t-\Delta \xi_{\varepsilon} + \xi_{\varepsilon} \mu_{\varepsilon} = w \mu.
$$

This allows us to compute the derivative

$$
t'_{+}(0) = \lim_{\varepsilon \to 0} \Big(\int \xi_{\varepsilon} dx \Big) = \lim_{\varepsilon \to 0} \Big(\int \nabla w_{\varepsilon} \nabla \xi_{\varepsilon} dx + \int w_{\varepsilon} \xi_{\varepsilon} d\mu_{\varepsilon} \Big) = \lim_{\varepsilon \to 0} \Big(\int w w_{\varepsilon} d\mu \Big),
$$

where we test [\(5.2\)](#page-12-0) with ξ_{ε} and we use [\(5.3\)](#page-12-1) tested with w_{ε} . Since as $\varepsilon \to 0$, $w_{\varepsilon} \to w$ in $L^1(\mathbb{R}^d)$, we obtain

(5.4)
$$
t'_{+}(0) = \int w^{2} d\mu.
$$

We can treat with a similar argument the eigenvalue. Let u and u_{ε} be the first eigenfunctions (with unitary L^2 norm), respectively, of the operators $-\Delta + \mu_{\varepsilon}$ and $-\Delta + \mu$, and let $v_{\varepsilon} \in L^2(\mathbb{R}^d)$ be such that $u_{\varepsilon} = u + \varepsilon v_{\varepsilon}$. Since

$$
-\Delta u + u\mu = \lambda(\mu)u \quad \text{and} \quad -\Delta u_{\varepsilon} + u_{\varepsilon}\mu_{\varepsilon} = \lambda(\mu_{\varepsilon})u_{\varepsilon},
$$

we have

$$
-\Delta v_{\varepsilon} + v_{\varepsilon}\mu - u\mu - \varepsilon v_{\varepsilon}\mu = \left(\frac{\lambda(\mu_{\varepsilon}) - \lambda(\mu)}{\varepsilon}\right)u + \lambda(\mu_{\varepsilon})v_{\varepsilon}.
$$

By testing the PDE above with $u \in H^1_{\mu}$, and since $\int u^2 dx = 1$, we obtain

$$
\left(\frac{\lambda(\mu_{\varepsilon}) - \lambda(\mu)}{\varepsilon}\right) = \int \nabla v_{\varepsilon} \nabla u \, dx + \int v_{\varepsilon} u \, d\mu - \int u^2 \, d\mu
$$

$$
- \varepsilon \int v_{\varepsilon} u \, d\mu - \lambda(\mu_{\varepsilon}) \int v_{\varepsilon} u \, dx.
$$

By taking the limit as $\varepsilon \to 0$ and exploiting the fact that $u_{\varepsilon} \to u$ weakly in H^1_μ and $\lambda(\mu_{\varepsilon}) \rightarrow \lambda(\mu)$, we get

(5.5)
$$
l'_{+}(0) = -\int u^{2} d\mu.
$$

By combining (5.4) and (5.5) , we get

$$
(f_q)'_+(0) = l'_+(0)T^q(\mu) + q\lambda(\mu)T^{q-1}(\mu)t'_+(0) = F_q(\mu)\int \left(-\frac{u^2}{\lambda(\mu)} + q\frac{w^2}{T(\mu)}\right)d\mu.
$$

Now, the optimality condition on μ implies $(f_q)'_+(0) \leq 0$, and hence that

(5.6)
$$
\int \left(\frac{u^2}{\lambda(\mu)} - q \frac{w^2}{T(\mu)}\right) d\mu \ge 0.
$$

We claim that

$$
\frac{u^2}{\lambda(\mu)} - q \frac{w^2}{T(\mu)} < 0 \quad \text{q.e. on } \mathbb{R}^d
$$

for q large enough. Indeed, by an application of Theorem [5.1](#page-10-2) together with a comparison principle, we have

$$
u \leq e^{1/(8\pi)} \lambda^{d/4+1}(\mu) w
$$
 q.e. on \mathbb{R}^d ,

and so by the Pólya inequality,

$$
u^2 \leq e^{1/(4\pi)} \lambda^{d/2}(\mu) \frac{\lambda(\mu)}{T(\mu)} w^2
$$
 q.e. on \mathbb{R}^d .

This implies that

$$
\frac{u^2}{\lambda(\mu)} - q \frac{w^2}{T(\mu)} \le \frac{w^2}{T(\mu)} \left(e^{1/(4\pi)} \lambda^{d/2}(\mu) - q \right) \quad \text{q.e. on } \mathbb{R}^d.
$$

Therefore, for every q such that

$$
\sup_{\nu \text{ optimal}} e^{1/(4\pi)} \lambda^{d/2}(\nu) < q,
$$

the inequality (5.7) is satisfied. Notice that the supremum in the inequality above is finite as a consequence of Lemma [5.2](#page-10-3) combined again with Pólya's inequality.

To conclude, it is now enough to notice that (5.7) contradicts (5.6) .

6. Optimality for nearly spherical domains

In the following, we consider the classes $S_{\delta, \gamma}$ of *nearly spherical domains*. Let B_1 be the unitary ball of \mathbb{R}^d . A domain Ω such that

$$
|\Omega| = |B_1|
$$
 and $\int_{\Omega} x \, dx = 0$

belongs to the class $S_{\delta,\gamma}$ if there exists $\phi \in C^{2,\gamma}(\partial B_1)$ with $\|\phi\|_{L^{\infty}(\partial B_1)} \leq 1/2$ and such that

$$
\partial\Omega = \{x \in \mathbb{R}^d : x = (1 + \phi(y))y, y \in \partial B_1\} \text{ and } ||\phi||_{C^{2,y}}(\partial B_1) \le \delta.
$$

We recall the following result.

 \blacksquare

Theorem 6.1. Let $\gamma \in (0, 1)$. There exists $\delta = \delta(d, \gamma) > 0$ such that, if $\Omega \in S_{\delta, \gamma}$, then

$$
T(B_1) - T(\Omega) \ge C_1 \|\phi\|_{H^{1/2}(\partial B_1)}^2 \quad \text{and} \quad \lambda(\Omega) - \lambda(B_1) \le C_2 \|\phi\|_{H^{1/2}(\partial B_1)}^2
$$

for suitable constants C_1 *and* C_2 *depending only on the dimension d.*

Proof. The inequality for the torsional rigidity follows from Theorem 3.3 in [\[5\]](#page-15-7). The in-equality for the eigenvalue follows by combining Theorem 1.4 and Lemma 2.8 of [\[16\]](#page-16-13). \blacksquare

Theorem 6.2. Let $\gamma \in (0, 1)$. There exist $\delta > 0$ and $q_1 > 1$ such that, for every $q \geq q_1$ *and every* $\Omega \in S_{\nu, \delta}$ *, it holds*

$$
\lambda(B_1)T^q(B_1)\geq \lambda(\Omega)T^q(\Omega).
$$

Proof. For every domain Ω we have

$$
\lambda(B_1)T^q(B_1) - \lambda(\Omega)T^q(\Omega) = \lambda(B_1)(T^q(B_1) - T^q(\Omega)) + T^q(\Omega)(\lambda(B_1) - \lambda(\Omega)),
$$

which, by the elementary inequality

$$
x^{q} - y^{q} \ge q y^{q-1} (x - y), \quad \text{for every } x, y \ge 0, q > 1,
$$

implies

(6.1)
$$
\lambda(B_1)T^q(B_1) - \lambda(\Omega)T^q(\Omega)
$$

$$
\geq T^{q-1}(\Omega)[q\lambda(B_1)(T(B_1) - T(\Omega)) - T(\Omega)(\lambda(\Omega) - \lambda(B_1))].
$$

Let δ be the constant determined by Theorem [6.1](#page-14-1) and assume $\Omega \in \mathcal{S}_{\gamma,\delta}$. Since $2^{-1}B_1 \subset$ $\Omega \subset 2B_1$, we get

$$
2^{-(2+d)} T(B_1) \le T(\Omega) \le 2^{2+d} T(B_1).
$$

Combining Theorem 6.1 and inequality (6.1) we get

$$
\lambda(B_1) T^q(B_1) - \lambda(\Omega) T^q(\Omega)
$$

\n
$$
\geq (2^{-(2+d)} T(B_1))^{q-1} (qC_1 - 2^{2+d} C_2 T(B_1)) ||\phi||_{H^{1/2}(\partial B_1)}^2.
$$

Hence, if q is such that

$$
q \ge 2^{d+2} \frac{C_2}{C_1} T(B_1),
$$

we obtain

$$
\lambda(B_1) T^q(B_1) \ge \lambda(\Omega) T^q(\Omega),
$$

and this concludes the proof.

Remark 6.3. Although for large q we expect the ball to be optimal for the functional F_q , it is easy to see that this does not occur when q approaches 1. Indeed, if the ball maximizes F_q for every $q > 1$, passing to the limit as $q \to 1$, this would happen also for $q = 1$, which is not true, even in the class of convex domains. To see this, it is enough to notice that

$$
F_1(B_1) = \frac{\lambda(B_1)}{d(d+2)} \le \frac{d+4}{2(d+2)},
$$

where the last inequality follows simply by taking $u(x) = 1 - |x|^2$ as a test function for $\lambda(B_1)$. On the other hand, taking as Ω_{ε} the thin slab $(0, 1)^{d-1} \times (0, \varepsilon)$ gives

$$
\lim_{\varepsilon \to 0} F_1(\Omega_\varepsilon) = \frac{\pi^2}{12},
$$

and

$$
\frac{\pi^2}{12} > \frac{d+4}{2(d+2)}
$$
 for every $d \ge 2$.

Acknowledgements. S. G. gratefully acknowledges Professor Dorin Bucur for the stimulating discussions and the hospitality, during a research period at Université de Savoie-Mont Blanc.

Funding. The work of G. B. is part of the project 2017TEXA3H *"Gradient flows, optimal transport and metric measure structures"* funded by the Italian Ministry of Research and University. The work of S. G. has been partially supported by project PRIN 2022 *"Nonlinear differential problems with applications to real phenomena"* (Grant number 2022ZXZTN2), funded by the Italian Ministry of University and Research. The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

- [1] Berg, M. van den, Buttazzo, G. and Pratelli, A.: [On relations between principal eigenvalue and](https://doi.org/10.1142/S0219199720500935) [torsional rigidity.](https://doi.org/10.1142/S0219199720500935) *Commun. Contemp. Math.* 23 (2021), no. 8, article no. 2050093, 28 pp.
- [2] Berg, M. van den, Buttazzo, G. and Velichkov, B.: [Optimization problems involving the first](https://doi.org/10.1007/978-3-319-17563-8_2) [Dirichlet eigenvalue and the torsional rigidity.](https://doi.org/10.1007/978-3-319-17563-8_2) In *New trends in shape optimization*, pp. 19–41. Internat. Ser. Numer. Math. 166, Birkhäuser/Springer, Cham, 2015.
- [3] Berg, M. van den, Ferone, V., Nitsch, C. and Trombetti, C.: [On Pólya's inequality for torsional](https://doi.org/10.1007/s00020-016-2334-x) [rigidity and first Dirichlet eigenvalue.](https://doi.org/10.1007/s00020-016-2334-x) *Integral Equations Operator Theory* 86 (2016), no. 4, 579–600.
- [4] Brasco, L.: [On torsional rigidity and principal frequencies: an invitation to the Kohler–Jobin](https://doi.org/10.1051/cocv/2013065) [rearrangement technique.](https://doi.org/10.1051/cocv/2013065) *ESAIM Control Optim. Calc. Var.* 20 (2014), no. 2, 315–338.
- [5] Brasco, L., De Philippis, G. and Velichkov, B.: [Faber–Krahn inequalities in sharp quantitative](https://doi.org/10.1215/00127094-3120167) [form.](https://doi.org/10.1215/00127094-3120167) *Duke Math. J.* 164 (2015), no. 9, 1777–1831.
- [6] Briani, L., Buttazzo, G. and Prinari, F.: [Inequalities between torsional rigidity and principal](https://doi.org/10.1007/s00526-021-02129-9) [eigenvalue of the](https://doi.org/10.1007/s00526-021-02129-9) p-Laplacian. *Calc. Var. Partial Differential Equations* 61 (2022), no. 2, article no. 78, 25 pp.
- [7] Bucur, D.: [Uniform concentration-compactness for Sobolev spaces on variable domains.](https://doi.org/10.1006/jdeq.1999.3726) *J. Differential Equations* 162 (2000), no. 2, 427–450.
- [8] Bucur, D. and Buttazzo, G.: *[Variational methods in shape optimization problems](https://doi.org/10.1007/b137163)*. Progr. Nonlinear Differential Equations Appl. 65, Birkhäuser Boston, Boston, MA, 2005.
- [9] Bucur, D. and Buttazzo, G.: [On the characterization of the compact embedding of Sobolev](https://doi.org/10.1007/s00526-011-0441-8) [spaces.](https://doi.org/10.1007/s00526-011-0441-8) *Calc. Var. Partial Differential Equations* 44 (2012), no. 3-4, 455–475.
- [10] Bucur, D., Buttazzo, G. and Velichkov, B.: [Spectral optimization problems for potentials and](https://doi.org/10.1137/130939808) [measures.](https://doi.org/10.1137/130939808) *SIAM J. Math. Anal.* 46 (2014), no. 4, 2956–2986.
- [11] Bucur, D., Lamboley, J., Nahon, M., Prunier, R.: Sharp quantitative stability of the Dirichlet spectrum near the ball. Preprint arXiv[:2304.10916,](https://arxiv.org/abs/2304.10916) 2023.
- [12] Buttazzo, G., Guarino Lo Bianco, S. and Marini, M.: [Sharp estimates for the anisotropic tor](https://doi.org/10.1016/j.jmaa.2017.03.055)[sional rigidity and the principal frequency.](https://doi.org/10.1016/j.jmaa.2017.03.055) *J. Math. Anal. Appl.* 457 (2018), no. 2, 1153–1172.
- [13] Buttazzo, G. and Pratelli, A.: [An application of the continuous Steiner symmetrization to](https://doi.org/10.1051/cocv/2021038) [Blaschke–Santaló diagrams.](https://doi.org/10.1051/cocv/2021038) *ESAIM Control Optim. Calc. Var.* 27 (2021), article no. 36, 13 pp.
- [14] Dal Maso, G.: Γ -convergence and μ -capacities. *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (4) **14** (1987), no. 3, 423–464 (1988).
- [15] Dal Maso, G. and Mosco, U.: [Wiener's criterion and](https://doi.org/10.1007/BF01442645) Γ -convergence. *Appl. Math. Optim.* 15 (1987), no. 1, 15–63.
- [16] Dambrine, M. and Lamboley, J.: [Stability in shape optimization with second variation.](https://doi.org/10.1016/j.jde.2019.03.033) *J. Differential Equations* 267 (2019), no. 5, 3009–3045.
- [17] Davies, E. B.: *[Heat kernels and spectral theory](https://doi.org/10.1017/CBO9780511566158)*. Cambridge Tracts in Math. 92, Cambridge University Press, Cambridge, 1989.
- [18] Della Pietra, F. and Gavitone, N.: [Sharp bounds for the first eigenvalue and the torsional rigid](https://doi.org/10.1002/mana.201200296)[ity related to some anisotropic operators.](https://doi.org/10.1002/mana.201200296) *Math. Nachr.* 287 (2014), no. 2-3, 194–209.
- [19] Evans, L. C. and Gariepy, R. F.: *Measure theory and fine properties of functions*. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
- [20] Henrot, A. and Pierre, M.: *[Shape variation and optimization](https://doi.org/10.4171/178)*. EMS Tracts Math. 28, European Mathematical Society (EMS), Zürich, 2018.
- [21] Kohler-Jobin, M.-T.: [Une méthode de comparaison isopérimétrique de fonctionnelles de](https://doi.org/10.1007/BF01589287) [domaines de la physique mathématique. I. Une démonstration de la conjecture isopérimétrique](https://doi.org/10.1007/BF01589287) $P\lambda^2 \ge \pi j_0^4/2$ de Pólya et Szegő. *Z. Angew. Math Phys.* **29** (1978), no. 5, 757–766.
- [22] Kohler-Jobin, M.-T.: [Une méthode de comparaison isopérimétrique de fonctionnelles de](https://doi.org/10.1007/BF01589288) [domaines de la physique mathématique. II. Cas inhomogène: une inégalité isopérimétrique](https://doi.org/10.1007/BF01589288) [entre la fréquence fondamentale d'une membrane et l'énergie d'équilibre d'un problème de](https://doi.org/10.1007/BF01589288) [Poisson.](https://doi.org/10.1007/BF01589288) *Z. Angew. Math. Phys.* 29 (1978), no. 5, 767–776.
- [23] Lucardesi, I. and Zucco, D.: [On Blaschke–Santaló diagrams for the torsional rigidity and the](https://doi.org/10.1007/s10231-021-01113-6) [first Dirichlet eigenvalue.](https://doi.org/10.1007/s10231-021-01113-6) *Ann. Mat. Pura Appl. (4)* 201 (2022), no. 1, 175–201.
- [24] Velichkov, B.: *[Existence and regularity results for some shape optimization problems](https://doi.org/10.1007/978-88-7642-527-1)*. Publications of the Scuola Normale Superiore di Pisa (Theses Scuola Normale Superiore) 19, Edizioni della Normale, Pisa, 2015.

Received December 10, 2022; revised November 29, 2023.

Luca Briani

Department of Mathematics, Technische Universität München Boltzmannstraße 3, 85748 Garching b. München, Germany; luca.briani@tum.de

Giuseppe Buttazzo

Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo 5, 56127 Pisa, Italy; giuseppe.buttazzo@dm.unipi.it

Serena Guarino Lo Bianco

Dipartimento di Scienze F.I.M., Università degli Studi di Modena e Reggio Emilia Via Campi 213/B, 41125 Modena, Italy; serena.guarinolobianco@unimore.it