Rev. Mat. Iberoam. 40 (2024), no. 3, 913-930
DOI 10.4171/RMI/1455

©2023 Real Sociedad Matemética Espaiiola
Published by EMS Press and licensed under a CC BY 4.0 license

On a reverse Kohler-Jobin inequality

Luca Briani, Giuseppe Buttazzo and Serena Guarino Lo Bianco

Abstract. In this paper, we consider the shape optimization problems for the quantit-
ies A(2)T4(S2), where Q varies among open sets of R4 with a prescribed Lebesgue
measure. While the characterization of the infimum is completely clear, the same
does not happen for the maximization in the case ¢ > 1. We prove that for ¢ large
enough a maximizing domain exists among quasi-open sets and that the ball is opti-
mal among nearly spherical domains.

1. Introduction

In the present paper, we consider two well-known quantities that appear in the study of
elliptic equations in the Euclidean space R?, d > 2. The first one is usually called rorsional
rigidity, and is defined, for every nonempty open set @ C R¢ with finite Lebesgue measure
(in the following, a domain), as

T(Q) = /wgz dx,
where wgq is the unique solution of the PDE
—~Au=1 inQ, ueHQ).
Equivalently, we may define 7'(2) as

(fudx)? |

————— 1uc Hy(2)\ {0};.

f|vu|2dx 0( )\{}

In the integrals above and in the following, we use the convention that integrals without
the indicated domain are intended over the entire space R?. The quantity 7'(S2) satisfies
the scaling property

T(2) = max {

TtQ) = 14+2 T(R2) foreveryt > 0;

in addition, the maximum of 7'(£2) among domains with prescribed measure is reached by
the ball (Saint-Venant’s inequality), which can be written in the scaling free formulation as

Q7@+ T(Q) < |B|"@FD/AT(B),

for every domain 2 and for every ball B C R¥.
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The second quantity is the first eigenvalue A(2) of the Dirichlet Laplacian, defined as
the smallest A such that the PDE

—Au=2u inQ, ueH(Q),

admits a nonzero solution. Equivalently, A(£2) can be defined through the minimization of
the Rayleigh quotient

Vuld
Q) :min{flf;;#

The quantity A(£2) satisfies the scaling property

‘ue H(}(Q)\{O}}.

AIRQ) =172 AQ) for every t > 0;

in addition, the minimum of A(£2) among domains with prescribed measure is reached by
the ball (the Faber—Krahn inequality), which can be written in the scaling free formula-

tion as
12124 1(R) = | B> A(B),

for every domain €2 and for every ball B C R,

The study of relations between 7'(2) and A(€2) was performed in several papers (see
for instance [1-4, 6, 12, 13, 18, 21-23]), where some important inequalities were estab-
lished. In particular,

¢ the Kohler-Jobin inequality
AMQ)T4(R2) = A(B)T(B),

valid for every ¢ € [0,2/(d + 2)] and for every domain 2, where B is any ball in R¢

with |B| = |Q];
* the Pdlya inequality

AQ)T(Q)
0< ——= <1,
€2
valid for every domain Q of R?.
In the present paper, we consider the scaling free shape functional

A(RQ)TI(R2) with o _ —2+¢q(d +2)
ST T d

Fy () =
and the two quantities
mg = inf{Fq(Q) 1 Q domain} and M, = sup {Fq(Q) 1 Q domain}.

While the situation for m, is fully clear, and by the Kohler-Jobin inequality, together with
the Saint-Venant inequality, we have

. — ) Fa(B) ifq =2/(d +2),
77 1o ifg>2/(d +2),

the characterization of M, is not yet complete. The results available up to now are the
following (see [1] and [3]):
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* My = ooforevery g < 1;
* M, =1 when g = 1, with the upper bound 1 not reached by any domain £2;
* M, < ooforevery g > 1.

We investigate here this last case. The maximal expectation would be having the fol-
lowing result (the reverse Kohler-Jobin inequality):

 forevery ¢ > 1, the supremum M, is attained on an optimal domain £24;
» forevery g > 1, the free boundary 0€2, is a smooth d — 1 surface;

* there exists a threshold ¢* > 1 such that for every ¢ > g™, the supremum M, is attained
by a ball'.

We are unable to prove the results in the strong form above. We prove here the weaker
results below, for which we need to extend the functional F, to the set of capacitary
measures (see Section 2):

 for every g > 1, the supremum M, is reached on a capacitary measure p, (The-
orem 4.3);

* there exists a threshold go > 1 such that, for every g > g9, the supremum M, is reached
by a quasi-open set 2, (Theorem 5.3);

* there exists another threshold ¢, such that, for every ¢ > ¢y, the ball is a maximizer
for the shape functional F; among nearly spherical domains (Theorem 6.2).

2. Capacitary measures

The concept of capacitary measure and the related properties shall be a very useful tool
for our purposes. When dealing with sequences of PDEs of the form

—Au=f inQ,, uecH;Q),

a natural question is to establish if the sequence u, ¢ of solutions, or a subsequence of it,
converges in L? to some function u ', and to determine in this case the PDE that the func-
tion u s solves. Starting from the pioneering papers [14,15], it is now well understood that
the right framework to treat such a kind of questions is that of capacitary measures. Below
we recall the main results and definitions following [10] and [24]. For further information
we refer the reader to the monographs [8] and [20], and references therein.

Definition 2.1. We say that a nonnegative Borel regular measure p, possibly taking the
value oo, is a capacitary measure if

W(E) = 0 whenever E is a Borel set with cap(E) = 0,
being cap(FE) the capacity

cap =1n ul“t+u“dx 1 ue , u = 1 1n a neighborhood o .
(E) = inf Vul?> +u?d H!(R?) li ighborhood of E
R4

! After the submission of this paper, we have been informed that D. Bucur and coauthors were working
on similar problems. In particular, by proving a new sharp stability inequality for the spectrum of the Dirichlet
Laplacian, they are able to show that such a ¢* does exist. Their results are now collected in the preprint [11].
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A property P(x) is said to hold quasi-everywhere (briefly, g.e.) if the set where P (x)
does not hold has zero capacity. A Borel set 2 C R is said to be quasi-open if there
exists a function u € H'(R?) such that Q = {u > 0} up to a set of capacity zero. A
function f:R? — R is said to be quasi-continuous if there is a sequence of open sets
wn C R¥ such that lim,_, o, cap(w,) = 0 and f is continuous when restricted to R? \ w,,.
It is well known (see for instance [19]) that every Sobolev function has a quasi-continuous
representative, and that two quasi-continuous representatives coincide quasi-everywhere.
We then identify the space H'(R?) with the space of quasi-continuous representatives.
We recall that a sequence u, € H'(R?) that converges in norm to some u € H'(R?),
converges quasi-everywhere (up to a subsequence) to u.

Given u a capacitary measure, we denote by H ;1 the following space:

H! = H'®RY) N L2RY) = {u e H'(RY): /uzdu < oo}.

The space Hli is a Hilbert space when endowed with ||”||H¢ = |[ull g1 ray + llu ||L%L(Rd),
where the quantity ||u|| L2 (RY) is well defined, being Sobolev functions defined up to a set
of zero capacity. We always identify two capacitary measures i and v for which

2.1 /uzdu = /uzd\), for every u € Hl(]Rd).

If instead (2.1) holds with “<”, we say that 4 < v, and in this case we have H! C H&.

We can associate to any open set (or more generally to any quasi-open set) 2 C R¢ the
capacitary measure /g defined as follows:

Io(E) = {0 ?fcap(E\Q)—O,
oo ifcap(E \ ) > 0.
Notice that, if u = I for some open set Q2 C R4, then H’& = HO1 ().

To extend the notion of torsional rigidity to a capacitary measure w, we need to care-
fully deal with the fact that the embedding H xi < L'(R%) can be noncompact, and even
noncontinuous. Nevertheless, we can follow an approximation argument: for every R > 0,
let wg be the solution to the minimization problem

min{/|Vu|2dx+/u2du—/udx TS HI}LHHOI(BR)}.

The torsion function w,, and the torsional rigidity 7 (u) of the capacitary measure u are
defined as

wy :=supwgr and T (u):= /wu dx.
R>0

The Dirichlet eigenvalue of p can be defined through the following Rayleigh-type quo-
tient:

Vul?>d 24
ey = e LV _x2+f” I’
ueH}\{0} Ju?dx
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Clearly, if 1 = Iq for some domain Q C R¥, we have T'(1) = T(R2) and A() = A(Q)
(we adopt this notation also if €2 is a quasi-open set). For a general capacitary measure [,
neither A(u) is necessarily attained by some function u € H 11 nor 7'(u) is necessarily
finite. However, as shown in [9], it holds the following:

wy € Ll(Rd) < T(u) <oo = A(w) is attained by some u € H/i.

For every capacitary measure p with 7'(1t) < oo, we define the set of finiteness A,, as the
quasi-open set
Ay = {w, > 0}.

In the case when u = Igq, for some domain Q C R4, we have A w = 2. The set of capa-
citary measures with finite torsion can be endowed with the following notion of distance.

Definition 2.2. Given two capacitary measures p and v such that w,,, w, € L! (R%), we
define the y-distance between them as

dy (1.9) = 1wy =y |1 -

We say that a sequence (i, y-converges to u if dy, (i,, 0) — 0asn — co. When I, EA L,

we simply write €2, i u.

‘We summarize the main properties of the y-distance below:

* The space ({4 : it capacitary measure with w,, € L'(R9)}, d,) is a complete metric
space, and the set {Ig : © C R¥ open set with wg € L'(R?)} is a dense subset of it.

¢ The functionals u — A(u) and u — T'(u) are y-continuous.

* The map p > |A4,,|, or more generally integral functionals as |, A, f(x)dx with f >0
and measurable, are lower semicontinuous with respect to the y-convergence.

* The y-convergence of j, to u implies the T'-convergence in L2(R¢) of the functionals
(RF* : L2(R?) — L2(R?) defined by

lullgigay + [ u? dpn  ifueH,
Il = ifu g H
Mn?

to the functional | - |3 L2(R?) > L2(RY),
2 : 1
full gy = { "o+t i i e Hy.
K 00 ifu¢ Hli.

» For a given capacitary measures p with finite torsion, we call resolvent of u the linear
compact and self-adjoint operator

Ry : L*(R?) — L2(RY), Ru(f) = wy s,
where w7 is the solution of the problem

Wy, 5 € Hli, —Awy, £+ wy = f,
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in the sense that

Wy, 5 € H:L, /un’f -Vodx +/wu,f¢du = /f¢dx for every ¢ € H;1~

The y-convergence of 1, to u implies the norm convergence of R, to R, i.e.,
Jim (R, — Rullge@ay,L2may = 0-

e If u, is a sequence of capacitary measures whose set of finiteness have uniformly
bounded measures |4, |, then

4 r 2 md
pn = = | Ry, = Rpull g (12Rd), L2RaY) = 0= lullgy — llullgy on L7(RT).
The classical concentration-compactness principle of P. L. Lions was extended to se-

quences of open sets in [7]. Notably, the following result holds.

Theorem 2.3. Let 2, be a sequence of open sets (more generally, quasi-open sets) with
uniformly bounded measures. Then there exists a subsequence (still denoted with the same
indices n) such that one of the following situations occurs.

o (Compactness). There exists a sequence x, C R? such that the sequence of capacitary
measures X, + Q, y-converges.

* (Vanishing). The sequence Ry, converges in norm to 0. Moreover, we have that
lwe, |l — 0 and A(2,) — oo, as n — oo.

* (Dichotomy). There exist two sequences of quasi-open sets Q) , Q2 C Q, such that
- dist(Q},Q2) > o0, asn — oo;
- dy(lflwlsz},usz%) — 0, asn — oo;
- liminf, 00 T(R2)) > 0 and liminf, o T(22) > 0.

The proof of the theorem above can be deduced by combining Theorem 2.2 of [7] and
Theorem 3.5 of [10].

3. Relaxation of F,

In this section, we characterize the relaxation of the functional Fy to the set of capacitary
measures. We define the set M, 4 of admissible capacitary measures as

Mag = {0 : p capacitary measure with 0 < |A4,| < oo}.

For 1 € M4, we define the relaxed form of our functional Fy as
Fy(p) = sup { limsup F;(2,) : 2, C R? domain such that §2,, X /L},
n

so that
My = sup{Fg(p) : p € Maa}.

Lemma 3.1. Let . € My and let 2, be a sequence of domains such that Q2 RN A
If |A,| < oo, then Q, N Ay X M.
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Proof. Being the sequence €2, N A, of uniformly bounded measure, by the properties of
y-convergence seen above, we have to show that

r 2md
gy, —> gy on L2®Y),

where we set u, = Ig,n4,-

The “T"-liminf” inequality readily follows from the fact that H /in =HJ(Q,NA4,)C
H{ (S2y,), and from the I'-convergence of || - I to I Il in L2(RY).

To prove the “I"-limsup” inequality, we can suppose without loss of generality that
u € H). Since Q % 1, there exists a sequence u, € H{ (S2,) such that

u, — u strongly L>(R?) and lim (/ [Vu,|? dx) = / |Vul?>dx + / lu|* du.
n—oo
We denote respectively by u;" and u;, the positive and negative part of u,. Since we have
/lV(un+ —u;))*dx = / |Vut 12 dx + / |V, |? dx,

and u, = u;} —u;, by possibly passing to a subsequence (still indexed by 1), we can
suppose that

limsup(/ |Vut|? dx) —i—limsup(/ [Vu, 2 dx)

n—o00 n—>oo

(3.1) = lim (/lV(uI—u;)Fdx) =/|Vu|2dx+/u2d,u.
n—00
We define

v =ul Aut e Hl(]Rd) and v,

B b ~=u, Au~ € H'(RY).

Since u € Hli and u, € HO1 (€2,), we have u = 0 q.e. on A, and u, = 0 q.e. on ;. This
implies that both v;" and v, vanish g.e. on (€2, N A,,)¢, and consequently that v;", v, €
Hy (R, N Ay). Moreover, it is easy to show that

+

vl —v; — u strongly L2(R9).

Therefore the thesis is achieved if we show that

(3.2) limsup(/ IV,f —v,)|? dx) fnlgrgo(/ IV, —u;)? dx).

n—oo

‘We have

Vo 12dx = Va2 dx + |Vut|?dx
{ud <ut} {ud >ut}

(3.3)
:/|Vu:[|2dx—/(|Vu,T|2—|Vu|2)1{u;>u+}dx.
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By lower semicontinuity, we have
(3.4) lin}linf/ (Vi 2 = [Vut P) L+ L iy dx = 0.
Indeed, to show the inequality above, it is enough to write
/ (Ve 12 = [VuF ) Ly vy dox = / (Vi P = VUt P) Lt vy dx
_ / VG v ) — [Vut P dx,

and to notice that u;} — ut weakly in H'(R?) implies u;} v ut — ut weakly in
H1 (Rd) and so, by lower semicontinuity,

liminf/ [V, vut)> — |Vut|?dx > 0.
n

Combining (3.3) and (3.4), we deduce that

(3.5 limsup</ |Vv,‘l"|2 dx) < lim sup (/ |Vu:[|2 dx).
n—o00 n—oo

Similarly we have

(3.6) lim sup (/ |V, | dx) < lim sup (/ |V, |? dx).
n—00 n—oo

Combining (3.1), (3.5) and (3.6), we finally deduce (3.2), and this concludes the proof of
the lemma. u

Remark 3.2. By Lemma 3.1, for every measure y € M,q there exists a sequence of quasi-
open sets €2, (that can be taken open by a standard approximation procedure) such that

Q, BN 1 and for which
|2, = |Ax] asn — oo.

To show this fact, we take 2, = A, N O, where Oy, is any sequence of domains y-conver-
ging to p. We then have |Q,| < |A4,| and, by the lower semicontinuity of the Lebesgue
measure with respect to y-convergence (see the properties recalled in Section 2), we have
|A,| <liminf, |Q2,|. This in turns implies that the set

{Ig : Q c R domain}

is y-dense in M,q. Furthermore, we can extend the Saint-Venant, Faber—Krahn and Pélya
inequalities to any capacitary measure. That is,

G AT AT () < BT (B), A2 M) > | B A(B),
and
(3.8) 0 <|AplT" AW T(R) <1

for every measure u € M,q and every ball B C R<.
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Proposition 3.3. Let . € M,q. Then we have
(3.9) 14, = inf{liminf|§2n| - Q, domain, 2y, > M}.
n

The quantity |A,,| is then the relaxation, in the y-convergence, of the Lebesgue meas-
ure |Q2|. As a consequence, if og > 0, we have

)t q
(3.10) Fy(p) = w
"

Proof. The inequality < in (3.9) follows from the y-lower semicontinuity of the map
= | A, | seen above. The opposite inequality follows at once by Remark 3.2. Since 7'(1)
and A(u) are y-continuous, the proof of (3.10) is achieved by a similar argument. |

The scaling properties of the shape functionals |2|, A(2), T(€2) and F,(£2) extend to
their relaxations |4, |, A(w), T (1) and F, () in M,q. More precisely, setting for ¢ > 0,

e (E) = t972u(E/1),

we have

Al = 04,0 Ao = 7220, Ty = 92T and  Fy(uo) = Fy(w).

4. Existence of an optimal measure for ¢ > 1

In [3], it is proved that the supremum M; = 1 is not attained in the class of domains. In
the next proposition, we point out that the same occurs even in the class M.

Proposition 4.1 (Nonexistence for ¢ = 1 of an optimal measure). The problem

sup{F1(n) : p € Maa}

does not have a maximizer.

Proof. The proof follows at once by exploiting Theorem 1.1 in [3], which asserts that
there exists a dimensional constant ¢; > 0 for which

Cd T(Q)

.1 R =1- g

for every domain 2. Then, for every u € M,q, by Remark 3.2 we can select a sequence
¥ .
2, — A, for which
Fi(Qp) = Fi(w), T(Qy) — T, Q] =<|Aul asn— oo.

Thus, using (4.1) with 2 = 2, and then passing to the limit as n — oo, we get that
F1 (/.L) <1l= M]. |
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To prove the main result of this section, we need the following elementary lemma.

Lemmad4.2. Let 0 <c; <cz <00 and 1 <ay < ay < o0o. Then there exists B < 1 such
that, for every a,b,c,d € (c1, cp), it holds

(a + by

a% b
(c+d)> }

< B max {— -
=F c® d*

Proof. Letting x = b/a and y = d/c, is enough to prove that

1 31 o1
A+0% ﬂmax{l,x_}.
(14 y)« ye

Suppose that x < y. Since x > ¢1/c3, it holds
o1 —
42 (0T =1+0m0 0" < 4= (14 2)7T
C2

Similarly, if x > y, since x < ¢3/cy, it holds

1\« 1\ 1\o1—a2 1\ C1\%1—a2
@3 (o) =(+o) (1+o) =) ()
X y X y c

Eventually, we achieve the thesis by letting
C o] —o2
P=(+2)
C2

and combining (4.2) and (4.3). ]

Theorem 4.3 (Existence for ¢ > 1 of an optimal measure). For every q > 1, there exists
a measure (1* € My such that

Faq(n*) = sup{Fy (i) : o € Maa}.

Proof. We select a sequence (, € My such that Fy(i,) — Mg, as n — oo. By density,
we can suppose that u, = Ig,, for some sequence of open sets £2,. Further, being Fy,
scaling free, we can also assume |2, | = 1. Hence, we can apply Theorem 2.3.
If dichotomy occurs, then there exist two sequences of quasi-open sets Q}, Q2 C Q,
such that
Q}, N Q% =0, dy(IQn’IQ},uszg) —0 asn — oo.

Taking into account the Saint-Venant inequality and the fact that |2, | = 1, there exist
constants ¢y, ¢, > 0, which depend only on the dimension, such that

1 < inf|T(Qf,)| < sup|T(Q£,)| <cy, 1< inf|52;| < sup|§2f1| < ¢, fori =1,2.
n n n n

Since A is decreasing with respect to set inclusion, we have

(4.4) AM(Qn) < minf{A(Q)). A(Q2)}.
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Lemma 4.2 together with (4.4) gives

MRT (@)U _ M2)(T(@D) +T@D)' _,  A@)TR))
|2, | R (T T Y B o T R i & S oA

By taking the limit as n — oo in the latter inequality, we obtain the contradiction

sup Fy(p) < sup Fy(u),
MEMyq HEMag

and hence dichotomy cannot occur. Now, the maximality condition on the sequence €2,
together with Pélya’s inequality, give that for n large enough,
T(B)
| B|%

4.5) A(B) < A(2n) Tq(Qn) = A(Q2) T (2) - T (Qn) < Tq_l(Qn),
where B is any ball of R?. In particular, it cannot be lim, o, T(£2,) = 0, and this rules
out the vanishing case.

Therefore, compactness holds and there exist a capacitary measure u* and a sequence
Xp € R¥ such that I, +q, v-converges to u*.

By (4.5), we deduce that T'(u*) > 0, which by (3.7) implies |A,+| > 0, and hence
that u* belongs to M,q. Clearly, the measure ™ maximizes the functional F; on Mg,
and this concludes the proof. ]

5. Optimal measures are quasi-open sets for large ¢

We are now interested to prove that, when ¢ is large enough, optimal measures ;& com-
ing from Theorem 4.3 can be represented as quasi-open sets. We begin by recalling the
following result, see [17] and Proposition 3.83 in [24].

Theorem 5.1. Let i be a capacitary measure with finite torsion. Then the eigenfunctions
u € L2(R?) of the operator —A +  with unitary L? norm are in L>(R?), and satisfy

lulloo < €/ ()4,

We also use the following lemma.

Lemma 5.2. Forevery q > 1, let pg € Myq be a maximal measure for the functional Fy,
such that |Ay,| = 1. Then

liminf T'(ug) > 0.

q—>0

Proof. Let g, be a diverging sequence and let B C R be a ball of unitary measure. By
the density of domains among capacitary measures, we can select a sequence 2, C R?
of open sets such that |2, | = 1 for every n, and

.1) |Fy, Q) — Fy, (1tq,)| = o(T9"(B)) asn — oo.
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Notice that 79" (B) — 0 as n — oo. Then we can apply Theorem 2.3 to the sequence $2,,.
Dichotomy can be ruled out by the same argument as that of the proof of Theorem 4.3
once noticed that (3.8) implies

Fqln/q" (jtg,) < T@=V/an(B)y > T(B) asn — oo.

The vanishing case can be excluded too by following again the proof of Theorem 4.3.
Indeed, for n large enough, PSlya’s inequality and (5.1) imply

an_l(Qn) 2 Fqn (Qn) 2 Fqn (l‘lﬂn) - |Fqn (Qn) - FQn (/"LQn)| 2 Fqn (B) + O(an (B))
Hence we deduce

liminf 7U=Y4)(Q,) > 0,

n—>oo

which implies that it cannot be 7'(£2,,) — 0, as n — oo. Therefore, compactness holds true
and the sequence €2, has a subsequence (still denoted by the same indices) that y-con-
verges to some [ € M,q up to translations.

By the maximality of p4,, it holds

Foln(B) < Fil9 (1g,) = T(R4) A(Qn) + (1)1,
and we deduce, passing to the limit as n — oo,

T(B) =T = lim T(Qy).

Since the sequence ¢, was arbitrary, we obtain the conclusion. ]

Theorem 5.3. Let ( € M,q be an optimal measure for Fy with q > 1. There exists qo > 1
such that for q > qo we have u = 1,,. In particular; the optimal measure can be repres-
ented by a quasi-open set.

Proof. Since F; is scaling free, we can suppose that [4,| = 1. Let € > 0 be a small
parameter, and let u, be the capacitary measure defined by

pe(E) = (1 =) u(E).

Being A;, = A,,,, we have € M,q. We assume by contradiction that u # 14, (notice
that this implies . # w). For the sake of brevity, we denote respectively by w and w, the
torsion functions of w and p.. It is easy to verify that, as ¢ — 0,

r 2 md
Iy, S 0 llye on L2@),

and therefore we have p, 5 wand wy — w in L' (R?), as ¢ — 0. Let us denote by (¢),
[(e) and f;(¢) the real functions

er>1(e) =T(ne), er>1(e) =A(us) and e fy(e) = Fa(ue),

and by #/, (0), I/_(0) and ( f4)’, (0) the limits for & — 0 of the respective different quotients.
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By writing w, = w + &£, for some & € L'(R?) and using the fact that w and w,,
respectively, weakly solve the PDEs

—Aw+wu =1
and
(5.2) —Awg + we e = 1,
we deduce that &, weakly solves the PDE
(5.3) —AE + £ e = Wit

This allows us to compute the derivative

1,0 = tim ([ 6eax) = tim ([ Vwovear+ [ w.gdne) = tim ([ wwedp),

where we test (5.2) with & and we use (5.3) tested with w,. Since as ¢ — 0, w, — w in
L'(R%), we obtain

(54 £,(0) = / w2 d.

We can treat with a similar argument the eigenvalue. Let v and u, be the first eigenfunc-
tions (with unitary L2 norm), respectively, of the operators —A + . and —A + 1, and
let v, € L2(R9) be such that u, = u + ev,. Since

—Au+up =A(w)u and  — Aug + ugpe = A(Ue) Ue,

we have

Ape) — A(p)
f) U + A(fe) Ve-

—AVs + Ve U — UL —EVs U = (

By testing the PDE above withu € H 1 and since f u?dx = 1, we obtain

(M) =/Vv€Vudx+/vsudu—/u2d/L
—e [weudp—agu) [ v

By taking the limit as ¢ — 0 and exploiting the fact that u, — u weakly in H ,1 and
Alpe) = A(p), we get

(5.5) I'.(0) = —/uzd,u.
By combining (5.4) and (5.5), we get

2 2
() 0) = OG0+ T (0O = o [ (= 0=+ a7 ) du.
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Now, the optimality condition on  implies ( f;)’, (0) < 0, and hence that

.6 ./(ﬁ;YﬂqﬁiQd”zo

We claim that

u? w?

g T

for ¢ large enough. Indeed, by an application of Theorem 5.1 together with a comparison
principle, we have

6.7 <0 q.e.on R

u < eV/@M Ay ge. on RY,
and so by the Pélya inequality,

u? < VM di2 ) M) w?  g.e.onRY.
T(w)

This implies that

u? w?

w T = Tw

Therefore, for every ¢ such that

(eV@4m 2421y —q) qe.onRY.

sup e/ 4201y < g,

v optimal

the inequality (5.7) is satisfied. Notice that the supremum in the inequality above is finite
as a consequence of Lemma 5.2 combined again with Pélya’s inequality.
To conclude, it is now enough to notice that (5.7) contradicts (5.6). [

6. Optimality for nearly spherical domains

In the following, we consider the classes S5 ,, of nearly spherical domains. Let By be the
unitary ball of R?. A domain 2 such that

|2| = |B1| and /xdx:O
Q

belongs to the class S, if there exists ¢ € C2¥(3By) with ||¢||Lp,) < 1/2 and such
that

I={xeR?: x=(1+¢(»)y, y€dB} and |¢|lc2,(3By) <.

We recall the following result.
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Theorem 6.1. Let y € (0, 1). There exists § = 8(d,y) > 0 such that, if Q € S5, then
T(B) ~T(R) = Cillpl 5, and M) —AB) < C2ll$1213,)

for suitable constants Cy and C, depending only on the dimension d.

Proof. The inequality for the torsional rigidity follows from Theorem 3.3 in [5]. The in-
equality for the eigenvalue follows by combining Theorem 1.4 and Lemma 2.8 of [16]. m

Theorem 6.2. Let y € (0, 1). There exist § > 0 and q1 > 1 such that, for every q > ¢,
and every Q € 8,5, it holds

A(B1)T4(B1) = A(Q)T(R).
Proof. For every domain Q we have
AB)TY(B1) — MQ)TI(Q) = A(B1)(T4(B1) — T1(Q)) + T(Q)(A(B1) — M(Q)),
which, by the elementary inequality
x?—y9 =gy (x—y), foreveryx,y>0,q>1,
implies
6.1)  A(B)T9(By) — A(Q)TI(Q)
> T971(Q) [g A(B) (T(B1) — T(R)) — T(R)(A(R) — A(B))].

Let § be the constant determined by Theorem 6.1 and assume 2 € S, 5. Since 27! By C
Q C 2By, we get
27D T(By) < T(Q) < 22T T(By).

Combining Theorem 6.1 and inequality (6.1) we get
AB) T4 (B1)—A(Q) T (R)
> 27D T (BN (gCr — 22T CT(B))ISIy120,-

Hence, if ¢ is such that
C
g >27%2 22 7(By).
Cy

we obtain
AB)TY(By) > M) TY(RQ),

and this concludes the proof. ]

Remark 6.3. Although for large ¢ we expect the ball to be optimal for the functional F,,
it is easy to see that this does not occur when g approaches 1. Indeed, if the ball maxim-
izes F, for every g > 1, passing to the limit as ¢ — 1, this would happen also for g = 1,
which is not true, even in the class of convex domains. To see this, it is enough to notice
that

MB) _ d+4

Fi(B1) = dd+2) —2d +2)
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where the last inequality follows simply by taking u(x) = 1 — |x|? as a test function for
A(B1). On the other hand, taking as Q2 the thin slab (0, 1)~ x (0, €) gives

2
bid
lim F () = —
amy F1(€2e) = 77
and ) J
4
ﬂ—>L for every d > 2.
12 2(d+2)
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