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Algebras of one-sided subshifts over arbitrary alphabets

Giuliano Boava, Gilles G. de Castro, Daniel Gong¢alves and
Daniel W. van Wyk

Abstract. We introduce two algebras associated with a subshift over an arbitrary
alphabet. One is unital, and the other not necessarily. We focus on the unital case and
describe a conjugacy between Ott—Tomforde—Willis subshifts in terms of a homeo-
morphism between the Stone duals of suitable Boolean algebras, and in terms of a
diagonal-preserving isomorphism of the associated unital algebras. For this, we real-
ise the unital algebra associated with a subshift as a groupoid algebra and a partial
skew group ring.

1. Introduction

The rich interplay between non-commutative algebras and symbolic dynamics dates back
to the seminal work of Cuntz and Krieger [15], where a C*-algebra (now called the
Cuntz—Krieger algebra) is associated with a subshift of finite type (given by a finite mat-
rix). Among its applications, these algebras are invariants for shift conjugacy and are
essential in the study of (two-sided) continuous orbit equivalence, see [37]. Moreover,
in [36], Matsumoto shows that two one-sided subshifts associated with irreducible and
non-permutation {0, 1}-matrices are topologically conjugate if and only if there is a diago-
nal-preserving isomorphism, that commutes with the diagonal action, between their asso-
ciated C*-algebras.

A subshift of finite type over a finite alphabet can be seen as the edge subshift asso-
ciated with a graph. In [9], one-sided conjugacy of subshifts of finite type is character-
ised in terms of the Cuntz—Krieger algebra’s diagonal and a completely positive map.
Orbit equivalence of subshifts associated with directed graphs is characterised using graph
C*-algebras in [11]. The algebraic analogues of graph C*-algebras, called Leavitt path
algebras, have attracted researchers’ attention from a broad spectrum of mathematics, as
these algebras proved to have close connections with symbolic dynamics and, of course,
their analytical counterparts, graph C*-algebras. Most of the invariance results mentioned
above have algebraic counterparts obtained via groupoid techniques, as in [14]. Moreover,
important problems in symbolic dynamics, such as the Williams problem regarding shift
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equivalence and strong shift equivalence, can be recast as a problem in graph algebras and
their graded theory, [29].

Recently, in [10], Brix and Carlsen characterise conjugacy of subshifts (not necessarily
of finite type) over finite alphabets in terms of the C*-algebras that Carlsen defines in [12].
The critical problem in this setting is that, for a general subshift, the shift map is not a local
homeomorphism. Hence, the established theory of Deaconu—Renault systems (see [39])
does not apply. Brix and Carlsen circumvent this problem by introducing the notion of
a cover space. They describe the conjugacy of subshifts in terms of the conjugacy of
their cover spaces, which in turn are described in terms of the associated groupoids and
C*-algebras.

The main purpose of this paper is to obtain an algebraic description of conjugacy
between subshifts over an arbitrary alphabet (including infinite alphabets). For finite al-
phabets, our conjugacy results may be interpreted as purely algebraic versions of the
C*-algebraic results in [10]. Our approach consists of introducing algebras associated with
subshifts over arbitrary alphabets and suitable topological spaces that, although different
from the cover spaces in [10], play the same role as these spaces.

In the context of a subshift X defined over a finite alphabet, the C*-algebra Oy studied
in [10] was originally defined in [12] in terms of a C*-correspondence. In order to for-
mulate a suitable definition for the purely algebraic counterpart, we adapt the universal
property established in Theorem 7.2 of [12]. To accommodate infinite alphabets as well,
we make slight modifications to the relations presented in Theorem 7.2 of [12]. However,
if we were to define a C*-algebra using our resulting relations, as outlined in Defini-
tion 3.1, this definition would subsume O for finite alphabets. Furthermore, our definition
readily extends to arbitrary alphabets. The authors will explore these C*-algebras for
one-sided subshifts over arbitrary alphabets in an upcoming paper. We decided to first
focus on the purely algebraic setting since, even for finite alphabets, associated algebras
were not yet defined. This decision was motivated by the study of Leavitt path algebras,
which, although connected to the corresponding graph C*-algebras, presents techniques
and results that are often different. For instance, there are graphs with isomorphic graph
C*-algebras, but there does not exist a *-isomorphism between their associated Leavitt
path algebras over the ring of integers [32].

An important step toward our goals is to give a groupoid model for the subshift algebra.
In Theorem 3.12, we prove that our subshift algebra is isomorphic to the Leavitt labelled
path algebra of a certain labelled graph, which can be used in conjunction with [8] to
describe the subshift algebra as a partial skew group ring and as a Steinberg algebra. The
results of [8] are based on [6, 7, 19], and use the theory of inverse semigroups. An altern-
ative approach is to use Boolean dynamical systems and results from [13, 17, 18], which
utilise inverse semigroups and topological correspondences. However, we have decided
to take a more direct and self-contained approach. For the Steinberg algebra description,
we use a groupoid whose unit space is just the Stone dual of the Boolean algebra that
appears in the definition of the subshift algebra. For the partial skew group ring, we define
a topological partial action using the same space and a set-theoretical partial action, which
generalises that of [20] from subshifts of finite alphabets to arbitrary alphabets.

In symbolic dynamics, the study of subshifts over infinite alphabets is the subject of
intense research, with practical applications [34,35]. The main difficulty for infinite alpha-
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bets with the discrete topology is that the infinite product space is not compact (not even
locally compact). This difficulty has motivated several approaches for subshifts over infin-
ite alphabets, such as countable Markov subshifts (where the full shift is the usual shift
with the product topology) or compactifications of subshifts, among others; see [38] for an
overview. In [38], Ott, Tomforde, and Willis (from now on referenced as OTW) introduce
a new subshift associated with an infinite countable alphabet. They show that conjugacy
of subshifts associated with infinite graphs implies isomorphism of the graph C*-algebras.
In [25], ultragraphs are used to propose a notion of subshifts of finite type over infinite
alphabets. This notion is closely related to the ideas of OTW, and [25] shows that con-
jugacy of ultragraph shifts implies isomorphism of their algebras. The relation between
ultragraphs and OTW subshifts is studied in [24], and many results for ultragraphs shifts
are described in [43]. Nevertheless, the connection between the above notions of sub-
shifts over infinite alphabets and their non-commutative algebras is, in general, not fully
described. With our algebras, we describe such a connection. We describe the conjugacy
of OTW subshifts in terms of the conjugacy of our analogues of cover spaces. These, in
turn, imply a diagonal-preserving graded isomorphism of the subshift algebras. There-
fore, we establish a two-way connection between OTW subshifts and non-commutative
algebras.

The problem of topological conjugacy for subshifts over finite alphabet was explored
in [10, 12, 20]. Carlsen proved in Theorem 8.6 of [12] that O is an invariant for topo-
logical conjugacy, whereas Brix and Carlsen established a complete characterisation of
topological conjugacy in terms of Oy in Theorem 4.4 of [10]. One of the main results
of our paper, Theorem 7.6, adds different characterisations of topological conjugacy of
subshifts over finite alphabets to those in Theorem 4.4 of [10]. Our result is also a gen-
eralisation for subshifts over infinite alphabets. As for the results of Dokuchaev and Exel
in [20], they study two C*-algebras associated with a subshift X, namely My and Oy (the
second being the same as the one above by Theorem 10.2 in [20]). The algebra My is
defined using operators on a Hilbert space. It can be seen as a quotient of Ox and there is
no known description of it via a universal property. Dokuchaev and Exel prove that My is
an invariant for topological conjugacy, but they mention that their method “does not seem
appropriate” to give a different proof for Theorem 8.6 in [12]. In a way, our Theorem 6.4
can be considered the missing piece needed to establish that Oy serves as an invariant for
topological conjugacy when employing a partial action approach.

Before we describe the structure of the paper, we point out that we define two algebras
associated with a subshift: one is unital by definition, and the other not necessarily. When
the latter is unital, they coincide. Otherwise, its unitization coincides with a unital subshift
algebra (see Proposition 4.8). We focus on the unital case because it is related to OTW
subshifts (see Proposition 3.17 and Theorem 7.6). The non-unital case is interesting when
studying Leavitt path algebras of graphs with infinite vertices, since these are not unital.
Under certain conditions on the graph, we show that the algebra of the corresponding edge
subshift is isomorphic to the Leavitt path algebra of the graph (see Proposition 4.10). We
also consider the case of Leavitt path algebras of ultragraphs (see Proposition 4.18).

We now give a detailed overview of the paper. In Section 2, we provide the reader
with preliminary definitions and auxiliary results used throughout. In Subsection 2.1,
we present basic elements of symbolic dynamics and define subshifts over an arbitrary
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alphabet. Following [38], we recall the definition of OTW subshifts in Subsection 2.2.
In Subsection 2.3, we develop auxiliary results concerning Boolean algebras, filters, and
algebras generated by idempotents. In Subsection 2.4, we recall the definition of a Leavitt
labelled path algebras, as in [8], which we later connect with subshift algebras.

In Section 3, we define the unital subshift algebra and describe some of its properties,
which include a Z-grading and its realisation as a Leavitt labelled path algebra.

As mentioned before, we define two algebras associated with a subshift. The definition
of the second algebra (which is not necessarily unital) is presented in Section 4. Key
results in this section are the descriptions, under mild conditions, of Leavitt path algebras
associated with graphs or ultragraphs as subshift algebras (Propositions 4.10 and 4.18).

In Section 5, we give two descriptions of the unital subshift algebra as a partial skew
group ring. One description arises from a set-theoretic partial action and the other from a
topological partial action (Theorems 5.9 and 5.21).

From the partial skew group ring characterisation mentioned above, in Section 0,
we define a groupoid and describe unital subshifts algebras as Steinberg algebras (The-
orem 6.5).

Finally, in Section 7, we describe a conjugacy between OTW subshifts in terms of a
homeomorphism between the Stone duals of the Boolean algebras used in the definition
of the unital algebras and in terms of a diagonal-preserving isomorphism of the associated
unital algebras (Theorem 7.6).

2. Preliminaries

In this section, we establish notation and present some results that we require in this paper.
Firstly, we fix basic terminology and notation related to symbolic dynamics. Secondly, we
recall the definition of Ott—-Tomforde—Willis (OTW) subshift. Following that, we revisit
the Stone duality theorem, which is used in Section 5. We finish this section stating the
definition of a Leavitt labelled path algebras, as in [8].

Throughout the paper, R stands for a commutative unital ring, N = {0, 1,2, ...} and
N*={1,2,...}.

2.1. Symbolic dynamics

Let A be a non-empty set, called an alphabet, and let o be the shift map on AN that
is, o is the map from AN to AN given by o(x) = (y,), where x = (x,) and y, = X,41.
Elements of A* := [ J32, AX are called blocks or words, and w stands for the empty word.
We also set AT = A* \ {w}. Given « € A* UAN, || denotes the length of «, and for
1 <i,j<|a|, wedefine o j ;=0 ---j ifi < j,and o ; = w if i > j. If moreover
B € A*, then Sa denotes the usual concatenation. A subset X C AN is invariant for o if
o (X) C X. For an invariant subset X C AN we define £, (X) as the set of all words of
length n that appear in some sequence of X, that is,

£,(X) :={(ag...an—1) € A" : I x € Xsuchthat (xg...x,—1) = (ag...an-1)}.
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Clearly, £, (AN) = A”, and we always have that £¢(X) = {w}. The language of X is the
set Lx, which consists of all finite words that appear in some sequence of X, that is,

Ex = £a(X).

n=0

Given F C A*, we define the subshift Xg C AN ag the set of all sequences X in AN
such that no word of x belongs to F. Usually, the set F' will not play a role, so we will
say X is a subshift with the implication that X = X for some F. We also point out that
subshifts are also called shift spaces in the literature.

Next, we define the key sets that will be used in the definition of the algebra associated
with a subshift and describe some of their properties.

Definition 2.1. Let X be a subshift for an alphabet A. Given «, 8 € £y, define
C(a,pB) :={Bx € X:ax € X}.

In particular, we denote C(w, B) by Zg and call it a cylinder set. Moreover, we denote
C(o, w) by Fy and call it a follower set. Notice that X = C(w, w).

2.2. Ott—Tomforde—Willis subshifts

In this subsection, we briefly recall the construction of subshifts over an arbitrary alphabet
as done in [38].

If A is a finite alphabe~t, we define X 4 = AN If A is an infinite alphabet, define a new
symbol oo, not in A, let A := A U {oo}, and let

Y4 = {(xi)ien € AN : x; = oo implies x; 1 = oo}

In both cases,

S =AN and T =34\ T
When the alphabet is infinite, the set Eif is identified with the finite sequences in A via
the identification

2.2) (XoX1...X,000000...) = (XgX1...XE).

The sequence (0000 00...) is denoted by 0, and is called the empty sequence.
Next, we recall the construction of OTW-subshifts (OTW stands for Ott—-Tomforde—
Willis).

Definition 2.3. Let F € A*. We define
Xinf.= {x € AN no block of x is in F},
X .= {x € I : there are infinitely many a € A for which
there exists y € AN such that xay € Xi}lf}.

The OTW-subshift associated with F is defined as

OTW . _ ysinf fi
XYW = xinf y xfin,
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The shift map o: X — X9™ is defined as

X1X3 ..., if x = xox1x2... € X,
o(x) =19 X1...Xn_1, ifx:xo...x,,_lexgl‘ andn > 2,
0, ifx:xOEX'}P orx = 0.

In the case that F = @, we have that X%TW = X 4, which we call the OTW full shift.

Remark 2.4. Notice that Xi};f coincides with the subshift associated with F in Subsec-
tion 2.1. As in the case of a subshift, we omit the subscript F and write X°™V for X3TW.
Similarly to what is done in Section 2.1, we can define the language of an OTW-subshift,
denoted by &£yorw. Note that £x and Lyorw are the same, and therefore there is no ambi-
guity in writing @ € £x when working in X°T™W. Moreover, using the identification given
by (2.2), we may view X" as a subset of £x.

We also need the notion of follower and generalised cylinder sets for OTW-subshifts.

Definition 2.5. Let X°™V be an OTW-subshift and o € £x. The follower set of ., denoted
by ¥ («), is defined as the set

F(a) = {ye X :aye xOT™WV}.
For a finite set F € A and o € £y, we define the generalised cylinder set as
Z(, F):={y eXO™ .y, =0a; VI <i <|at|, yjai+1 & F}.
To simplify notation, we denote Z(«, @) by Z(«).

Endowed with the topology generated by the generalised cylinders, X°TW is a compact
totally disconnected Hausdorff; in this topology, the generalised cylinders are compact
and open. We note that the shift map is continuous everywhere, except possibly at 0 af
0 € XO™W)_ Also, if the alphabet is finite, then X°™V is the usual subshift and the topology
given by the generalised cylinders is the product topology (see Remark 2.26 in [38]).

The following two lemmas will be useful in the upcoming work.

Lemma 2.6. Let X°T™V be an OTW-subshift. Let F, G € A be finite sets, let a, B € £Lx,
and let n € N be such that n < |a|. Then,

(i) 0"(Z(a, F)) = Z(otn+1,al- F) N F(ot1,n);
(i) Z(a, F) N o ™(Z(B, G)) is either empty or is equal to Z(y, H) for some y € Lx
and H C A finite.

Proof. (i) This is immediate from the definitions of the generalised cylinders and o.

(i) Let Y = Z(a, F) No™"(Z(B, G)). We divide the proof into two cases.

First, we suppose thatn = |«|. If 81 € F oraf ¢ £x, then Y = @, otherwise we have
that Y = Z(af, G).

Secondly, suppose that n < |«|. If || > |a| — n, then for Y not to be empty we
must have that By 4|—n = Ap41,je) and Big|—n+1 ¢ F. In this case, we have that ¥ =
Z(a1,,B,G). If |B] = |e| —n and Y is not empty, then B = 0,414, in Which case
Y = Z(a, F U G). Finally, if | 8| < || —n and Y is not empty, then B = 0, 41,»+|g| and
Qpyi8)+1 £ G. Inthis case, Y = Z(a, F). L
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In the next lemma, we compare the cylinder and follower sets in the OTW sub-
shift XOTV denoted by Z and ¥, as in Definition 2.5, with the cylinder and follower
sets in the subshift X, denoted by Z and F, as in Definition 2.1.

Lemma 2.7. Let XO™V be an OTW-subshift. Let F C A be a finite set and let o, B € £x.
Then,

(i) Z@, F)NX" = Zu \ (User Zaa);
(i) F(x)NX = Fy;
(i) Z(B) N o BI(F (a)) N X" = C(a, ).

Proof. The proof is straightforward, and it is left to the reader. |

2.3. Stone duality

We define a Boolean algebra as a distributive lattice B with least element and which is
relatively complemented. We do not assume that $ has a maximum element, and denote
the join and meet by U and N, respectively. When B has a maximum element, we say
that B is a unital Boolean algebra.

A filter is a non-empty proper subset £ of 8 such that AN B € £ for all A, B € &,
and if A, B € B are such that A C B and A € &, then B € £. An ultrafilter is a filter
that is maximal with respect to inclusions. In a Boolean algebra, an ultrafilter is equival-
ently defined as being a prime filter, that is, a filter £ such that if A, B € 8B are such that
AUBeé thenAdeéor B ek. R

The set of all ultrafilters of B will be denoted by B. For each A4 € B, we define
Ogq =1 € B:Acé&}. We have that Og4np = O4 N Op, Oqup = O4 U Op, and
Oa\B = O4\ Op for every A, B € B. In particular, the family {O4}4cg is a basis for
a topology on B. We will always assume that B has this topology, and we call B the
Stone dual of B.

In what follows, for a topological space X, we denote by K (X) the set of all compact-
opens subsets of X. For convenience, we state below the well-known Stone duality the-
orem.

Theorem 2.8 (Stone duality). Let B be a Boolean algebra. Then, Bisa Hausdorff space
and {Oa}seg is the set of all compact-open sets of B. Moreover, the map A € B + Oy
€ K (B) is an isomorphism of Boolean algebras. Reciprocally, if X is a Hausdorff space
such that K (X) is a basis for its topology, then the map that sends x € X to the ultrafilter
Ex ={A € K(X):x € A} is a homeomorphism between X and JT(Y) with inverse given
by e J?(Y) — ﬂAes A € X. Moreover, if ©: 81 — B, is an isomorphism of Boolean

algebras, then the map P fa’\z — :T)’\l given by &D(é) = ¢~ 1(&), is a homeomorphism.

A Hausdorff space with a basis of compact-open sets will be called a Stone space (it is
sometimes called a Boolean space). For a Stone space X, we let Lc(X, R) denote the
R-algebra of compactly supported locally constant functions, with pointwise operations.
For a non-zero element f € Lc(X, R), its image is a finite set. Let {r;, ..., 7,} be the
set of non-zero elements in the image of f. Then, for each i = 1,...,n, we have that
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A; = f~1(r;) is compact-open. Moreover, f = >, ril4;, where 14, represents the
characteristic function of A;.

Suppose that 4 is a commutative R-algebra. The set E () of idempotents of #4 is a
Boolean algebra, where the order is given by e < f if ef = e for e, f € E(s). In this
case,eN f =ef andeU f =e+ f —ef fore, f € E(A). The following theorem is
essentially due to Keimel [33].

Theorem 2.9. Let A be a commutative R-algebra generated by its idempotent elements.
Suppose that for r € R and e € E(A), re = 0 implies that r = 0 or e = 0. Then, there
is an isomorphism ®: A — Lc(E(A), R) of R-algebras such that ®(e) = 1o, for every
e € E(A).

If R and A satisfy the hypothesis of Theorem 2.9 and 4 # 0, then R must be an
indecomposable ring, that is, 0 and 1 are its only idempotents. Indeed, if r € E(R) \ {0}
and e € E(4) \ {0}, then (1 — r)re = 0, from where it follows that r = 1.

Sometimes, it is useful to work with another topological space in place of E/(X) We
define the character space of 4 as the set A of all R- -algebra homomorphisms from #4
to R. The topology on A is the one induced from the product R*, where R has the discrete
topology. In other words, it is the topology of pointwise convergence. Note that a subbase
for the topology on A is given by the clopen sets U, , := {¢ € A ¢(a) =r}fora e A
andr € R.

Proposition 2.10. On the conditions of Theorem 2.9, E/(\,Au) is homeomorphic to A.

Proof. If ¢ € A, it is straightforward to check that £ := {e € E(A) : ¢(e) =1} is a
prime filter and therefore an ultrafilter. We then obtain a map W: A — E/(X), given by
W(¢) = &4, which is injective because «+ is generated by E(+4). For surjectivity, take
e E/(\A) and let ¢¢: A — R be given by ¢¢(a) = ®(a)(§), where ® is the isomorphism
of Theorem 2.9. Since ®(e) = 1o, for all e € E(+), we have that W(¢g) = §.

For each e € E (), we have that W~!(0,) = U, ; and hence W is continuous. To show
that W is open, we first observe that Uy , is either the empty set (if r # 0) or A (ifr =0),
and hence W (U, ) is open for every r € A. Now, given a € +4 \ {0}, we will describe U, ,
and W(U,,,). First, we let {ry, ..., r,} be the distinct non-zero elements of the image
of ®(a). Foreachi = 1,...,n, we lete; € E(A) be such that O,; = ®(a)~!(r;). Then
a=Y"_,rie;andeje; = 0if i # j.As observed above, R must be an indecomposable
ring and, therefore, ¢ (e) is either 0 or 1 for each e € E(+A) and ¢ € A. Hence, for ¢p € JI
¢(a) = 0or ¢p(a) = r; for the unique i such that ¢(e;) = 1. There are a few possibilities
for Ug,,, which we describe next. If r = r; forsomei = 1,...,n, then U, , = U, 1 and
W(Uyy) = Op, It r =0, then Uy p = A\ U'_, U1 and W(Uy,,) = E(A)\ U, Oe
Finally, if r ¢ {0, 71, ..., rn}, then Uy, = @ and W(U,,,) = @. We have proved that
W (U,,r) is open for every a € + and r € R, and hence W is an open map. ]

For indecomposable rings, we can also describe the idempotents of Lc(X, R) for a
Stone space X.

Lemma 2.11. If R is also an indecomposable ring and X is a Stone space, then the
idempotents of Lc(X, R) must be of the form 14 for some compact-open subset A of X .
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Proof. Obviously, 0= 1g. For a non-zero function f € Lc(X, R), we write f= Z;’zl rilya;,
where rq, ..., r, are the distinct non-zero elements in the image of fand A; = f ().
Suppose that f isidempotent. Then, f = f2 = Y[, r?14,, which implies that r? = r;
for each i. Since R is indecomposable and r; # O for all i, we have thatn = 1 and r; = 1.
Hence f = ly,. ]

For a homeomorphism 4: X — Y between two Stone spaces, it is easy to see that
¢:Le(Y, R) — Le(X, R), given by ¢(f) = f o h, is an isomorphism of R-algebras, with
inverse given by ¢(g) = g o h~'. We now prove a converse for this result in the case of
indecomposable rings. First, we need a lemma.

Lemma 2.12. Let X be a Stone space, suppose that R is also an indecomposable ring,

and let A = Lc(X, R). Then, the map that sends x € X to{ly: A€ K(X),x € A} € E@
is a homeomorphism.

Proof. Consider the map ¢: K (X) — E(+4A) givenby ¢ (A) = 14. Clearly, it is an injective
homomorphism of Boolean algebras. By Lemma 2. l 1, this map is also surjective. By the
Stone duahty, we have homeomorphlsms v X — K (X (X) givenby ¥ (x) = {4 € KX(X):
x € A} and (;5 JC(X) — E(A) given by ¢~ 1(S) ¢ (£). Composing these two maps,

we conclude that the map that sends x € X to {14 : 4 € K(X),x € A} € E/(E) is a
homeomorphism. L]

Proposition 2.13. Let X and Y be Stone spaces and suppose that R is also an indecom-
posable ring. If ¢:Lc(Y, R) — Le(X, R) is an isomorphism of R-algebras, then there
exists a homeomorphism h: X — Y such that ¢(f) = f o h forall f € Le(Y, R).

Proof. Let Ax = Lc(X, R) and Ay = Lc(Y, R). We note that ¢ restricts to an 1som0rph-
ism of Boolean algebras between E(Ay) and E(Ay). We let ¢ m — E(Ay) be
the corresponding homeomorphism. We also let ix: X — E(AX) and hy: Y — E(eA)Y)
be the homeomorphisms given by Lemma 2.12. We then define 1 = h}! o $ o hy, which
is a homeomorphism between X and Y.

Given x € X, let us describe /(x). First, we let

E=¢hx(x) ={¢p7"(la) : A € K(X),x € A}.

By Lemma 2.11, there is an ultrafilter n of J((Y) such that ¢ = {1 : B € n}. Then,

h(x) = ﬂBen B
Let f e Le(Y, R). If f =0, then clearly ¢(f) = f o h. Suppose that f # 0 and
write f = Z?=1 ri1p,, where rq, ..., r, are the non-zero elements in the image of f

and B; = f~!(r;). For each i, by Lemma 2.11, we have that ¢(1p,) = 14, for some
A; € KX(X). In this case, ¢(f) = > ;_, rila,. It follows from the description of / that
x € A; if and only if h(x) € B;, for every x € X and each i. Hence

(f ol)(x) = Zrzlg(h(x))—Zr,u (x) = (),

i=1

for each x € X. Therefore, ¢(f) = f o h forevery f € Lc(Y, R). |
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2.4. Leavitt labelled path algebras

In this subsection, we recall the definition of Leavitt labelled path algebras, following [8].

A (directed) graph is a quadruple (6°, &1, s, r) where 2, &1 are sets, s: €1 — €% and
r: &1 — &9 are maps.

Given a set A, which is thought of as a set of letters, an (edge-)labelling on a graph &
is a surjective map £: &' — A. We call the pair (&, £) a labelled graph. A path A on & is
a sequence (finite or infinite) of edges A = A;...4,(...) such that r(4;) = s(A;4+1) Vi.
We can extend the map £ to any path A by £(1) = £(X1) ... £(A,)(...). An element
o = £(A) is called a labelled path. We also include the empty word w as a labelled path.
For A C &°, we define £(48') = {£(e) : e € &, s(e) € A).

For @ € A* and A € P(&°) (where P(&°) denotes the powerset of §°), the relative
range of o with respect to A is

r(A,a) ={r(A): L € &*, L(A) =«a, s(A) € 4}

ifa e AT, and r(4, @) = Aif o = w. We define r () := r(&°, ). Note that r (4, a) # 0
ifand only ifa € £(A&Y).
Definition 2.14. A normal labelled space is a triple (&, £, 8), where (&, £) is a labelled
graph and 8 € P(&°) is a Boolean algebra such that

e r(@)e Bandr(A,a) e Bforalla € AT and 4 € B,

e r(ANB,a)=r(A,a)Nr(B,a)foralla € AT and 4, B € B.

We say that A € B is regular if for all B € B8 \ {@} such that B € A, we have that
0 < |£(B&")| < oco. The set of regular sets is denoted by Bie,.

Definition 2.15. Let (&, £, 8) be a normal labelled space. The Leavitt labelled path
algebra associated with (&, £, B) with coefficients in R, denoted by Lg(&, £, B), is
the universal R-algebra with generators {p4 : A € 8} and {s,, s, : a € A} subject to the
relations

()  panB = papPB, PaUB = pa + PB — panp and py = 0, forevery 4, B € B;
(i) paSe = SaPr(A,a) and S} P4 = DPr(4,a)Sa, forevery A € Banda € A;

(iil) s;82 = pr(a) and s, s, = 0if b # a, forevery a,b € A;

(V) Sas)sq = Sq and s} sgs; = 55, forevery a € A;

(v) Forevery A € B,

pA = Z Sa Pr(A,a)Sq-
acL(A8Y)

3. Unital algebras of subshifts

In this section, we define and study a unital algebra associated with a general subshift X.
To define this algebra, we associate a projection with each element in the Boolean algebra
generated by C(«, B), a, B € £x (see Definition 2.1).
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Definition 3.1. Let X be a subshift. Define U to be the Boolean algebra of subsets of X
generated by all C(«, B) for o, § € Ly, that is, U is the collection of sets obtained from
finite unions, finite intersections, and complements of the sets C(«, B).

Remark 3.2. Notice that each element of U is a finite union of elements of the form

Cloey, f1) NN Clan, fn) N C(1,v1) NN C(ms vim)© -

Next, we define the unital R-algebra associated with the subshift X.

Definition 3.3. Let X be a subshift. We define the unital subshift algebra AR (X) as the
universal unital R-algebra with generators {p4 : A € U} and {s4. s : a € A}, subject to
the relations:

() px=1, panB = PAPB, PaUB = PA + PB — panp and pg =0, forevery A, B € U;

(i) $q8)8q = Sqg and s} 5,5, = s; foralla € A;

(iii) sﬂs;sas; = pc(.p) foralla, B € £x, where s, :=1and, fora = oy ..., € £y,

So 1= Sqy t v Sa, And Sy 1= sy Sy,

Remark 3.4. From item (iii) in Definition 3.3, taking 8 = w, we obtain that s} 5, =
DC(a,w) = DF,, foralla € £x. Taking @ = w, we obtain that sg s; = PC(w.p) = Pz, for
all ,3 € ;Cx.

Remark 3.5. A unital C*-algebra associated with a subshift X can be defined in the same
manner as we defined Ag(X), replacing the sentence “universal unital R-algebra” with
“universal unital C*-algebra”. Such a C*-algebra generalises, to the infinite alphabet case,
the C*-algebra associated with a subshift over a finite alphabet defined by Carlsen [12].
Most of the analysis we do regarding 4 g(X) in this paper passes on to the C*-algebraic
version, C*(X), but usually not automatically. We intend to study C*(X) (and its non-
unital version) in a follow-up paper.

In the next result, we describe multiplicative properties of elements of A r(X).

Proposition 3.6. Let X be a subshift and let AR (X) be its associated unital subshift
algebra. Then,

(i) sysp =08appF, foralla,beA;

(ii) sysq and s; sg commute for all a, B € &£x;

(iii) s8¢ and sg sE commute forall a, B € Lx;

(iv) sq5g =0 forall a, B € £Lx such that af ¢ Lx;

(v) AR (X) is generated as an R-algebra by the set {sq.s) :a € A} U {1}.
Proof. For (i), notice that, from Remark 3.4 and item (ii) in Definition 3.3, we can write
SxSh = Sn Pz, PZySb = S, DZ.NZ, Sb, from where the result follows.

Items (ii) and (iii) follow from Remark 3.4 and item (i) in Definition 3.3.
For (iv), let o, B € £x be such that o ¢ £Lx. In this case, Fy N Zg = @. Then

SaSB = SaSoSuSBSESE = Sa PFy PZySp = Sa PFunzysp = 0.
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For item (v), notice that the projection associated to every generator of the Boolean
algebra U can be written as pc(q,g) = Sg Sq Sa s;; (from item (iii) in Definition 3.3), which
implies that it belongs to the R-algebra generated by the set {s,, s) : a € A}. The result
now follows from item (i) in Definition 3.3. [

The grading of a combinatorial algebra (such as the Leavitt path algebra of a graph,
ultragraph, labelled graph, etc.) plays a key role in its study; see [27, 30, 46] for a few
examples. Below we recall the notion of grading and describe a Z-grading of A g (X).

Definition 3.7. A Z-graded ring is a ring § with a collection of additive subgroups
{8y }nez of S such that

(1) S =6p,cz Sn.and
(2) SuSn € Suqn forallm,n € Z.

The subgroup S, is called the homogeneous component of S of degree n, and the
collection {Sy }nez is called a Z-grading of S.

Definition 3.8. If S is a Z-graded ring, then an ideal I C S is a Z-graded ideal if I =
D,z (I NSy). I ¢p: S — T is aring homomorphism between Z-graded rings, then ¢ is
Z-graded homomorphism if ¢(S,) € T, for every n € Z.

Proposition 3.9. Let X be a subshift. The unital subshift algebra A R(X) is Z-graded, with
grading given by

AR(X)n = spang{sqpash : . p € Lx. A € Uand |a] — |B| = n}.

Proof. The proof is routine and we omit it (see Corollary 2.1.5 in [1] or Proposition 3.8
in [8] for examples of the techniques employed). ]

As in [3], we define a normal labelled space (&, £, U) associated with a subshift X
as follows: the graph & is given by €% = X, 6! = {(x,a,y) e X x A x X : x = ay},
s(x,a,y) = x and r(x,a,y) = y. The labelling map is given by £(x,a, y) = a, and the
accommodating family U is the Boolean algebra defined above. Then the triple (&, £, U)
is a normal labelled space, see Lemma 5.5 in [3].

We notice that the above graph has no sinks, and for 4 € U we have £(4&') = {acA:
Z, N A # @}. This implies that A € U, if and only if Z, N A # @ for finitely many
a € A. In particular, if the alphabet is finite, then all elements of U are regular. Also, since
X =|l,en Za, we have thatif A € U, then A = | |,cpae1) Za N A.

For o, B € Lx such that 8 # w and a € A, we have from equation (6) in [3] that the
relative range for sets C(a, B) is given by

Cla,w)ynCla,fz...pip) ifp=apa....Bg.

[ otherwise.

(3.10) r(C(a, B),a) = {

Also,
if
F(Cla. ). a) = C(aa,w) 1 aa € Ly,
@ if va ¢ Lx.

More generally,
r(A,a) ={x e X:ax € A}.
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This last equality implies that r (o) = r(X,®) = Fy = C(«, w). Furthermore, the fol-
lowing holds.
Lemma 3.11. Let X be a subshift, A; € U, i = 1,2, and a € A. Then,
(@ r(Ai,a)Nr(Az,a) =r(A; N Az, a);
(b) r(A1,a)Ur(A,a) =r(A; U Ay, a).

Proof. The proof is straightforward. ]

Theorem 3.12. Let X be a subshift and let (€, £, U) be the labelled space defined above.
Then, ArR(X) = Lr(&,£,U) as Z-graded R-algebras.

Proof. We use , and g4 for the generators of Lg(&, £, U). Let us first a build a map from
Lg(E, £, U) to Ar(X) by showing that the elements {p4 : A € U} and {s4, 5, :a € A}
satisfy the relations defining Lz (&, £, U).
Items (i) and (iv) of the definition of a Leavitt labelled path algebra are immediate.
To check item (iii), notice that we have s} s, = pr, = Pr(q)- If a # b, then

* * * * * * *
SpSa = SpSpSpSaSySa = Sp PZy PZySa = Sp PZynZaSa = Sp Pesa = 0.

Next, we consider item (ii). We prove it first for elements of U of the form C(«, ).
Suppose first that 8 = w. Then,

* * * * %
PC(a,w)Sa = Sy SaSa = Sy SaSaSySa = SaS4Sq¢SaSa = Sa Pr(C(a,w),a);

where the last equality holds if «a € £ by definition, and if «a ¢ £x because in this case
SaSq = 0and r (C(a, w),a) = @. Analogously, 5} PC(a,0) = Pr(Cla,0),a)Ss- SUPPOSE NOW
that 8 # w. If a # B then, using (iii) and the fact that r (C(«, 8), a) = @, we have that

PC@p)Sa = 5BSqSaSgSa = 0 =S4 Pr(C(.B).a)-

If a = B, then using (iii), we have that

PC(a,B)Sa = s,gs;‘sas;sa = 5458, " 5B, s;saszn ---sz2s:sa
= SaPC(a.Bz...Bn) PCla,w) = Sa Pr(C(a.B).a)-

Hence, item (ii) is proved for elements of U of the form C(«, 8). Next, we argue that
it is also valid for any A € U. If A is of the form 4 = ﬂ?:l C(wj, Bi), the result follows
from item (i) in Definition 3.3, the fact that (ii) is proved for elements of the form C(«, ),
and from item (a) of Lemma 3.1 1. For elements of U that involve only C (¢, 8)¢, we notice
that pc,g)esa = (1 = pc(@.p))Sa = Sa = Sa Pr(C(a.p).a) = SaPr(C(a.p).a)c- Finally, the
intersections of terms of the form C(«, 8) and C(«, B)€ are dealt with in a similar manner,
and their finite unions are dealt with by applying item (i) in Definition 3.3, the fact that (ii)
is proved for elements of the form C(«, 8), and item (b) of Lemma 3.11.

For (v), we use (ii) and the fact that if A € U, then A can be decomposed as a finite
disjoint union A = | |,c¢(4g1y 4 N Za, and hence

PA= ), Panz,= Y. DAPZ.= Y, DASaSa= ) SaPr(Aa)Se-

ac¥(AEY) act(A&Y) ack(A&Y) ac(AEY)
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This completes the proof that the generating sets of AR (X) satisfy the defining relations of
Lg(€,£,U). Thus, by the universal property of Lg(€, £, U), there is a homomorphism
from L (€, £, U) into + g(X) mapping g4 to pa, t, to s and £ to 5.

Now, let us build a map from AR (X) to Lr(&, £, U) by showing that the elements
{4 : A € U} and {t,,1) : a € A} satisfy the relations defining 4 g(X).

For (i), it remains to show that 7x = 1. This follows from Corollary 6.5 in [8] since X
is the top element of U and r (X, a) = r(a) for all a € A. Item (ii) is immediate.

For (iii), we fix & € £x and prove that tg1; t4 t; = qc(q,p) Using induction on |B|. If
|8l =0,then B = w and 1} t4 = Gr(4) = 9C(a,w)- Fix n € N and suppose that tg:#; to tg/ =
dca,pry for all B’ € £x such that || = n. Let B € £x be such that |f| =n + 1. If
C(a, B) # 0, by equation (3.10), we have that £(C(a, B)&') = {B1}. It follows that

qc(@.B) = 11 4r(C@p).p1) Lg, = 181 9C(B1,0) 4C(@.Ba-rBur) 15,
= tp g tpitps B lataly,, 1,5 = tplalaly,

where in the third equality we used the induction hypothesis. If C(«, ) = @, then F, N
Fg =@ and

ttytaly = tgtgtptytaly =1tpqF,qF,tg = 1pqF,nF, 15 = 0= qC(a.p)-

By the universal property of AR (X), there exists a homomorphism from AR (X) into
Lg(8,&£,U) that maps py to g4, Sq to tg and s to 1.

It is clear that the maps obtained above are inverses of each other and preserve the
grading. ]

Remark 3.13. When convenient, we use the above labelled space and the identification
in Theorem 3.12 without further mention. In particular, we use the relations defining
LRr(&, £, B) applied to elements of A g (X).

Remark 3.14. In an upcoming paper, the authors will consider the C*-algebraic setting as
in Remark 3.5 and connect it to the C*-algebra of the labelled space (&, £, U) as defined
by Bates and Pask in [4].

Corollary 3.15 (Graded uniqueness theorem). Let X be a subshift. If S is a Z-graded ring
and n: AR(X) — S is a graded ring homomorphism with n(rp4) # 0 for all non-empty
A € U and all non-zero r € R, then 1 is injective.

Proof. The result follows from the isomorphism above and Corollary 5.5 in [8]. ]

Corollary 3.16. Let X be subshift and AR (X) its unital subshift algebra. If r € R \ {0}
and A € U \ {0}, then rpyg # 0.

Proof. Notice that the isomorphism of Theorem 3.12 takes rp4 in AR (X) to rpy in
Lgr(&, £, U), which is non-zero by Lemma 4.12 in [8]. |

The following proposition relates the unital subshift algebra AR (X) of a subshift Xg
with the OTW-subshift X¢™.
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Proposition 3.17. Let X € AN be the subshift given by a set of forbidden words F, and
let XOTW be the corresponding OTW-subshift. Suppose that R is also an indecomposable
ring. Then spang{sasy 1 a € £x} = Le(XP™V, R).

Proof. Denote spang{sqy sy : @ € £x} by A, which is unital because 1 = 545, . By The-

orem 2.9 and Proposition 2.10, A is isomorphic to Lc(/f R), where A denotes the char-
acter space of A. Note that Ais compact because A is unital. We will define a map ¥
from A to XOTW but before we prove some properties of elements ¢ in A. Because R
is 1ndecomposable ¢ (sasy) € {0, 1}, for each a € Ly, since each sy s, is a idempotent.
Moreover, we have the following.

Claim. Let ¢ € A If ¢(sqsy) = 1, then ¢(sﬂs;) = 0 for every 8 # « such that | 8| = |«|.
Moreover, for every initial segment y of o, we have that ¢ (s, s;,‘) =1.

To prove this claim, suppose that ¢ (sqs5) = 1. Then, ¢(sp s;) = P (sasy)P(sp s;) =
D (saSysp s;) = ¢(0) = 0. Next, let y be an initial segment of . Then, 1 = ¢(so5;) =
B (sysy5aSy) = P(sysy)P(sasy), and the claim is proved.

We now proceed to define W. Let ¢ € A and define N as the supremum of all natural
numbers n for which there exists a € £x such that |¢| = n and ¢(sqs;) = 1. Notice
that NV is well-defined (and can be equal to co). Indeed, ¢ (s, 5,;) = 1, since otherwise, if
¢ (Swsy) =0, then ¢ = 0.

Suppose that N = oo. In this case, we define U(¢) = y; ... € AN, where for every
i € N we have that y; . yl =0y ...0,and o ...q; is the unique element of length i
in &£x such that ¢ (sq, .. o) = 1 Using the clalm above, it is not hard to check that
W(gp) € XZV.

Next, suppose that N < oo. Let o € £x be such that || = N and ¢(ses;) = 1. In this
case, we define W(¢) = « (with the convention that w = 6, to include the case N = 0).
We have to check that o € X",

Let

L0 Cl]

Gy = {b e A: Clab,w) = Fyp # 0.

If the set G, is finite then, since C(w, @) = |_|b€Ga C(w, ab), we have that pc(y,q) =
Y beGy PC.ab)- SO, 9 (Sasy) = D _peg, P (SabSy,) and hence there is one, and only one,
b € Gy such that ¢ (sqqp5,;,) = 1. But this contradicts the maximality of N. Therefore, G4
must be infinite and this implies that « € X‘}“, as desired.

It remains to prove that W is a homeomorphism.

If ¢1 # ¢, are characters, then they must differ on some generator so s, where o =
Qi . ..oy Without loss of generality, suppose that ¢;(sesy) = 1. Then, for every initial
segment f of «, we have that ¢; (sg sg) = 1. This implies that W (¢ ); = @; for 1 <i <|«|.
On the other hand, since ¢, (sqs;) = 0, we have that either W(¢,) has length less than |«|
or W(h2)|a| # e|- So, Y is injective.

To see that W is surjective, let y € X?,TW. For each o € £x define ¢” (s 5) as 1 if a is

an initial segment of y and zero otherwise (again we are identifying @ with 6). Extend ¢”
linearly to A. Clearly W(¢”) = y, but it is necessary to check that ¢” is well-defined and
multiplicative.

Suppose that Y 7_; A; e Sq, = 0. We have to prove that ¢ (3_/_; Aisa,5;,) = 0.
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By the definition of ¢, we may assume without loss of generality that each «; is an
initial segment of y, and that «, has the greatest length among all of them. In this case,
notice that 0 = Y7, AiSa, S5 Sa, S, = (Xj—=1 Ai) Sa, 53, - By Corollary 3.16, we obtain
that Y7 _; A; = 0, and hence

¢y(2njma,.s:;.) ~Y =0,
i=1

i=1

*
On

as desired.
By linearity, it is enough to check the multiplicativity of ¢ on elements of the form
SaSy, o € £x. Notice that, for o, B € £x, we have that

SaSaSBSE = PCw.)NC@.f) = PZaNZ-

Suppose, without loss of generality, that |«| > |B]. If the product sq s S8 s; is zero, this
means that § is not an initial segment of «. Hence, either « or 8 (or both) is not an initial
segment of y, and so ¢~ (so55) = 0 or ¢~ (s SE) =0.If 55558 sz # 0, then B is an initial
segment of & and 545 S8 S5 = SaSg- If o is an initial segment of y, then B is also an initial
segment of y and ¢~ (sq 5558 s;) =@V (sasy) =1 = qby(sasz)qby(s/gs;). If « is not an
initial segment of y, then ¢~ (sq 55 58 SE) =Y (5a55) = 0= (5055) P (s s;). Hence,
the multiplicativity of ¢ follows.

Next, we prove that W is continuous. Suppose that (¢;);es is a net converging to ¢
in A, that is, (¢;);es converges pointwise to ¢ (see Subsection 2.3).

Suppose that y := W(¢) € X". Given k > 0, let jo €J be such that ¢; (sy, ..y, 53, 5, ) =
1= ¢(sy,...9.5y,..y,) forevery j > jo. So, W(¢;) agrees with W(¢) in the first k letters
for every j > jo, and this implies that (W (¢;));es converges to W(¢).

We are left with the case where W(¢) € X, say W(¢p) = y1 ... ym.Let G C A be finite.
Take jo € J such that, for every j > jo, we have ¢; (sy, ...y, 55, y,) = P Sy1.ymSy, . y)
and @; (Sy,..ymaSy, . yma) = P(Sy1...ymaSy, . y,.a) fOrevery a € G. It follows that, for j > jo,
the first m letters of W(¢;) agree with y; ...y, and the m 4 1 entry of W(¢;) isnotin G,
that is, (W(¢;)) ey converges to W(¢) as desired.

Finally, since Ais compact and XC}TW is Hausdorf, it follows that W is a homeomorph-
ism, and the proof is finished. u

Definition 3.18. Let X be subshift and AR (X) its unital subshift algebra. The diagonal
subalgebra of AR (X) is the subalgebra spang{sq pasy : A € U, a € £x}.

Next, we want to identify the diagonal subalgebra of AR (X). For this, recall that U
represents the Stone dual of the Boolean algebra U (see Subsection 2.3).

Proposition 3.19. Let X € AN be a subshift and suppose that R is also an indecompos-
able ring. Then, spang{sqpasy 1 A € U, o € £x} = spang{ps : A € U} = Lc(U, R).

Proof. We start observing that for @ € £x and A, B € U, we have that sy panps, =

Sa PASySa PBSq» Sa PAUBSq = Sa PASq T Sa PBSy — Sa PANB Sy ANd Sa PA\BSq = Sa PAS,
—Sq panB S, - Therefore, to prove the required equality, since U is generated by sets of the
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form C(«, B), it is sufficient to prove that for o, 8,y € £x, we have that Sq pc(8,y)Sa = P4
for some A € U. Indeed,

, if ay € £y,

Sa PC(B.y)Sq = SaSy S; Sg s; sk = { igc’(ﬂ,ay) Othe)r’Wise'x
For the isomorphism, by Example 7.8 in [8], Lc(‘a, R) can be seen as a Leavitt labelled
path algebra, with a trivial Z-grading. The universal property of Lc(U, R) then implies
that the map that sends 14 € Le(U, R) to pg € ARr(X) extends to a graded R-algebra
homomorphism ¢: Lc(U, R) — ARg(X), which is injective by Corollary 3.16 and the
graded uniqueness theorem for Leavitt labelled path algebras (Corollary 5.5 in [8]). It is
clear that the image of ¢ is spang{p4 : A € U}, from where the isomorphism spang{p4 :
A€ U} = Le(U, R) follows. "

4. Algebras of subshifts

In this section, we define another R—glgebra AR (X) associated with a subshift X, which
may be non-unital. It coincides with 4 g(X) when it is unital, and its unitization coincides
with 4 g (X) when it is not unital (see Proposition 4.8).

To define AR (X), we let B be the Boolean algebra of subsets of X generated by all
C(a, B), for o, B € £x not both simultaneously equal to w. Comparing B with U from
Definition 3.1, the only difference is that we are removing X as a generator for the Boolean
algebra B. In some instances, B and U agree. For example, when the alphabet is finite
(since then X = | J,c 4 Za), or when there is a letter such that its follower set is the whole X
(see, for instance, Example 4.16). However, there are other instances where they are dif-
ferent, as in Example 4.11.

Definition 4.1. We define the subshift algebra Ag(X) as the universal R-algebra with
generators {p4 : A € B} and {54, s) : a € A} subject to the relations:

(1)  pAnB = PAPB, PAUB = pA + PB — panB and pg = 0, forevery A, B € 8B;

(i) SqaS;8q = Sqand s, sgs,; =s;,foralla € A;

(iii) sﬂs;‘sasg = pc,p). foralla, B € £x \ {w}, where fora = a; ..., € £x\ {0},
* *

S = Say "+ Sa, AN Sg 1= Sg Sy

(iv) SpSa = PC(a.w)> forall o € £x \ {w};
v) s,gsg = PC(w.p), forall B € £x \ {w}.

Remark 4.2. Note that s, does not appear in the definition of + g(X). However, to ease
the notational burden, we often include terms of the form sq pa s}, So P4 s; and S¢ pa sy,
which should be interpreted as sy pa, pa sg and pg4, respectively.

The following results up to Corollary 4.7 are analogues of the unital case. Their proofs
follow the same line of thought, with minor modifications. For Theorem 4.5, as with the
unital case, if (&, £) is the labelled graph defined in Section 3, then (&, £, 8B) is a normal
labelled space.
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Proposition 4.3. Let X be a subshift. Then,
(i) s;sp = 084b PF,, foralla,b e A,
(ii) ARr(X) is generated by {sq. s, : a € A}.

Proposition 4.4. Let X be a subshift. The subshift algebra AR (X) is Z-graded, with grad-
ing given by

ARX)n = spang{sapasg i o, € £x, A€ B and |a| —|B| = n}.

Theorem 4.5. Let X be a subshift and let (8, £, B) be the labelled space as above.
Then, ArR(X) = Lg(&, %, B) as Z-graded R-algebras. In particular, if r € R \ {0} and
A€ B\{0@}, thenrpg # 0.

Remark 4.6. As with the unital case, when convenient, we use the above labelled space
and the identification in Theorem 4.5 without further mentioning it.

Corollary 4.7 (Graded uniqueness theorem). Let X be a subshift. If S is a Z.-graded ring
and n: AR(X) — S is a graded ring homomorphism with n(rpa) # 0 for all non-empty
A € B and all non-zero r € R, then 1 is injective.

For a non-unital R-algebra A, we understand the unitization of A as the R-algebra
A & R with coordinate-wise addition and multiplication given by (a, r)(b, s) = (ab +
sa +rb,rs).

Proposition 4.8. Let X be a subshift. If AR(X) is unital, then it is isomorphic to AR (X).
If Ar(X) is not unital, then its unitization is isomorphic to 4 g(X).

Proof. By the definitions of the algebras, Proposition 4.3, Corollary 4.7 and the inclusion
B C U, we have that AR (X) is isomorphic to the subalgebra of Ag(X) generated by
{s4.s} : a € A}. Therefore, we do not need to make the distinction between the generators
of AR(X) and AR (X) and we can consider Ag(X) C AR (X). Moreover, this inclusion
preserves the grading.

Suppose first that 4 g (X) is unital. By Theorem 4.5 and by Corollary 6.5 in [8], 8B has
a top element /. Suppose that / # X. Then there exists x = (xox;---) € X\ I, which
implies that C ((‘i ,Xo) € I.This is a contradiction, therefore, I = X and 8 = U. It follows
that AR (X) = AR(X).

We are left with the case in which 4 g(X) is not unital. By the universal property of
AR(X) ® R as an R-module, there exists a linear map ®: Ar(X) & R — Ag(X) given
by ®(a,r) = a + rl, which is surjective by Proposition 3.6. It is straightforward to check
that @ is multiplicative. To show injectivity, suppose that ®(a, r) = 0 for some (a,r) €
AR(X) ® R. Then r1 = —a € Ag(X). Since r1 is of degree 0 in the Z-grading of Ag(X),
—a is also of degree O (in both the Z-gradings of # r(X) and 4 g (X)). Therefore, we can
write

m n
—a= le PB; + Z%‘ Sa; PA; S,
=1 i=1

where |o;| = |Bi] > 0, Aj,y; € R\ {0} and B;, A; € B for each i, j. Set A = X\
(U=, C(w,Bi) UUJjZ, B;) and observe that A # @, since Ag(X) is not unital. By Defin-
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ition 4.1, items (i) and (v), we have

m n
_apA = (Z}LJ ij + Zy,'sai pAi S;i)pA = O
j=1 i=1

Then rpgy = —ap4 = 0 and by Theorem 4.5, we conclude that r = 0. Since a = —r1, we
have a = 0, proving that ® is injective, as desired. ]

4.1. Graph algebras

In this subsection, we show that a large class of graph algebras can be seen as subshift
algebras. For the reader’s convenience, we recall the definition of the Leavitt path algebra
associated with a graph.

Definition 4.9. Let & = (€%, &, r,s) be a directed graph. The Leavitt path algebra asso-
ciated with & with coefficients in R, denoted by Lg(&), is the universal R-algebra with
generators {v : v € £%} and {e,e* : e € &'} subject to the relations

(V) v =8y v, forallv e 8%
(El) s(e)e =er(e) =e, foralle € &'
(E2) r(e)e* =e*s(e) =e*, foralle € &1;

(CK1) e*e’ =8, orr(e), foralle, e’ € &1;
(CK2) v =3, . )=y €€, forallv e 8r°eg, that is, the set of vertices v € &° such that

0 < |s71(v)| < oo, called regular vertices.

For a graph &, its associated one-sided edge subshift is the set of all infinite paths,
which is the subshift over the alphabet A = &' given by the family of forbidden words

{ef € A2 r(e) # s()}

Proposition 4.10. Let & be a graph with no sinks and with no vertex that is simultaneously
a source and an infinite emitter. Let X be the associated one-sided edge subshift of &. Then,
AR(X) = Lg(8).

Proof. Notice that for e € &1, we have C(e,w) = {x€X : s(x) = r(e)}. Hence, for v e &°
that is not a source, there exists e €7~ (v). In this case, {x€X : s(x) = v} = C(e, 0).

With this in mind, we build a map from Lg(&) to Agr(X) as follows. For e € &,
we set fe =S, and t,« 1= s, . For v € &9 that is not a source, we let e € r~!(v) and
set ¢y := PC(e,w)- This does not depend on e since C(e, w) depends only on r(e) = v.
If v € &% is a source, then it is not an infinite emitter (by hypothesis), and we define
qy = Zeerl(v) Sesy. By items (i) and (v) of Definition 4.1, we can also write g, =
ZeES*I(v) PCw.e) = PU, -1y Clese):

We prove that the families {Z,, .+ : ¢ € &'} and {g, : v € §°} satisfy the relations of
L (&) in Definition 4.9.

(V) For v € €°, ¢, qy = ¢y because p4 is idempotent for all A € B.

Next, let v, v” € €% be such that v # v’ and note that 7! (v) N r~!(v') = @. If v and v’
are not sources, then, for e € ¥~ (v) and e’ € ¥ =1 (v"), we have that C(e, w) N C (e, w) =@,
from where we get ¢, ¢y = 0. Suppose next that v is a source and v’ is not a source.
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Lete’ € r=1(v'). Then, gy gy = Zeerl(v) PCw.e) PCle' w) = 0, since if e € s71(v) then
C(e/,w) N C(w, e) = @, otherwise there exists an element ¢’ex € X, implying v is not a
source. For the last case, suppose that both v and v’ are sources. Since v # v’, the result
follows from items (i) and (v) in Definition 4.1.

(E1) Let e € &1.1f s(e) is a source, then it follows from item (ii) in Definition 4.1 and
Proposition 4.3 that g(c) e = t.. Suppose that s(e) is not a source. Take f € &! such that
r(f) = s(e). Notice that C(e, w) = C( fe, w). We then have that

qs(e)le = DPC(f,w)Se = Se Pr(C(f,w),e) = Se PC(fe,w) = Se PC(e,w) = Se S:Se = Se = Ie.

Since gr(e) = Pc(e,w)- the last part of the above computation also shows that . g, () = fe.
(E2) This is analogous to (E1).
(CK1) For e, f € &', by Proposition 4.3, we have that

toty = 5;.5¢ = 8e.f PCle.w) = Se.f Gr(e)-

0
reg

(CK2) If v € 8°

reg
and e € r~!(v). Then C(e, w) can be written as a finite disjoint union as C(e, w) =

UfES_l(U) C(Cl), f) Hence

G = PClew) = Y, PCw)= D, SFSp= D Iftf.
fes—1(v) fes~1(v) fes—1(v)

is a source, then (CK2) is clearly satisfied. Suppose that v € &

By the universal property of L g(&), we obtain an R-algebra homomorphism ®: Lg(&) —
4R (X) which is surjective because the set {s, s : e € &'} generates 4 g(X) by Proposi-
tion 4.3. It is easy to see that this homomorphism is Z-graded. Moreover, if r € R \ {0} and
v € &% is not a source, then gy = rpc(e,«) for some e € r~! (v). Because the graph has no
sinks, C(e, w) # @, which implies that rq, # 0 by Theorem 4.5. Similarly, if r € R \ {0}
and v € % is a source, rq, = TPU pey-10) C(@,0) # 0. Using the graded uniqueness theorem
for Leavitt path algebras (Theorem 5.3 in [45]), we conclude that ® is an isomorphism. =

Proposition 4.10 may fail to be true if there is a vertex that is simultaneously a source
and an infinite emitter.

Example 4.11. Let & be a graph such that §° = {v,w}, 8! = {e,}nen U { [}, s(en) = v
and r(e;) = w = s(f) = r(f) for all n € N. We have that Lg(&) is unital because &°
is finite [45], Section 4.2. On the other hand, we note that for every «, 8 € £x both not
simultaneously the empty word, the set C(«, ) is either empty or a singleton. This implies
that B is the family of finite subsets of X, so that X ¢ 8. By Proposition 4.8, A r(X) is not
unital. Therefore, we cannot have that L g(&) is isomorphic to +4 g (X).

4.2. Ultragraph algebras

In this subsection, we focus on ultragraph algebras, which include algebras associated
with infinite matrices (see [31]).

Definition 4.12. An ultragraph is a quadruple § = (G°, ¢!, r, s) consisting of two count-
able sets G°, ¢, amap s: ¢! — G° andamapr: 9! — P(G°)\ {0}, where P(G?) is
the power set of G°.
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Definition 4.13. Let ¢ be an ultragraph. Define §° to be the smallest subset of P(G?)
that contains {v} for all v € G°, contains r(e) for all e € €', contains @, and is closed
under finite unions and finite intersections. Elements of §° are called generalised vertices.

For an ultragraph , its associated one-sided edge subshift, Xg, is the set of all infinite
paths, which is the subshift over the alphabet A = §! given by the family of forbidden

words {ef € A% : s(f) & r(e)}).

Example 4.14. We can recode the vertex subshift X4 associated with a matrix A as the
edge subshift of an ultragraph. Indeed, given a matrix A, let § be the associated ultragraph
(as defined by Tomforde in [44]). Then the map (e;) € Xg — (s(e;)) € X4 is a bijective
1-step code between the subshifts, so the shift algebras associated are the same.

The following description of §° will be useful.

Lemma 4.15 (Lemma 2.12 in [44]). If § is an ultragraph, then

g0 = { ﬂ re) -y ﬂ r(e) U F : X1,..., X, are finite subsets of §!
eeX eeXy,

and F is a finite subset of G° }

Furthermore, F may be chosen to be disjoint from ﬂeeXl r(e)u---u ﬂeeXn r(e).

Example 4.16. Let § be the ultragraph associated with the renewal shift (see [40]), that
is, the ultragraph with a countable set of vertices, say G® = {1,2, ...}, and a countable set
of edges, say {e1, ez, ...}, such that s(¢;) = i, forall i, r(e;) = G® and r(e;) = j — 1
for j > 1. This ultragraph is depicted below. Let Xg be the associated subshift and note
that U = B because C(e1,w) = Xg. Hence Ag(Xg) = Ag(Xg) by Proposition 4.8.

©

@ BD—E—0—D

Next, we will show that, for an ultragraph with only regular vertices (that is, vertices v
such that 0 < |s~!(v)| < 00), the subshift algebra associated with its one-sided edge sub-
shift is isomorphic to the associated ultragraph Leavitt path algebra. In particular, this
will include algebras associated with infinite matrices, as the ultragraph associated with
an infinite matrix has only regular vertices. Before we proceed, we recall the definition of
ultragraph Leavitt path algebras below; see [16,26,31].

Definition 4.17. Let § be an ultragraph. The Leavitt path algebra of &, denoted by
LR(%), is the universal R-algebra with generators {se, s’ : e € §1} U {ps: A € §°}
and relations

(1) pp =0, papp = panB. pauB = pa + pp — pans, forall 4, B € §°;

(2) Ps(e)Se = SePr(e) = Se and py(e) Sy = X ps(e) = i, foreache € §1;
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(3) s)Sf =6, f Pree), foralle, f € §;
(4) py= Y. Sses} whenever 0 < [s~1(v)| < oo.
s(e)=v

Proposition 4.18. Let S be an ultragraph such that every vertex is regular, and let Xg be
its one-sided edge shift. Then Ar(Xg) = Lr(9).

Proof. Notice that for e € !, we have that F, = C(e,w) = {x € Xg : 5(x) € r(e)}.

For each A € P(G®), welet A’ = {x € Xg : s(x) € A}. Clearly, for 4, B € P(G"),
we have that (AU B) = AU B’ and (A N B) = A’ N B’. Also, for v € G°, because v
is regular, we have {v}’ = {J,e5-1(y) C(@,€) € B. And for e € g, we have r(e) =
C(e,w) € B. It follows from Lemma 4.15 that A’ € B forall 4 € §°.

With this in mind, we build a map from L g (&) to g (Xg) as follows. For e € §1, we
sett, := s and 1) := s¥. For each A € §°, we set g4 := pu.

We prove that the families {z,, 7} : e € §'} and {g4 : A € §°} satisfy the relations
defining Lr(9).

(1) For the empty set, we have ¢y = py = py = 0. If A, B € §°, then q4qp =
DA’ DB = PA'NB’ = P(AnBy = qAng. Similarly, we see that g4uB = g4 + B — gans.

(2)Lete € €' and set v = s(e). Then,

qse)le = Z PC(w,f)Se = Z Sfo*Se =S¢ = 1Ie
fes—1(v) fes—1(v)

and
leqr(e) = Se PC(e,w) = Se S: Se = Se = le.
The relations involving #.+ follow analogously.
(3) For e, f € §;, using Proposition 4.3, we have that

toty =5.5f = 8e.f PCle.w) = Se.f Gr(e)-

(4) If v is a regular vertex, then

qv = Z PClw,f) = Z st;z Z tfl‘;.

fes~1(v) fes~1(v) fes~1(v)

By the universal property of L gr(¥), we obtain an R-algebra homomorphism ®: Lr(§) —
4R (Xg) which is surjective because the set {s, s} : e € §1} generates 4 g(Xg) by Propos-
ition 4.3. It is easy to see that this homomorphism is Z-graded. Moreover, if r € R \ {0}
and A € §° is non-empty, then rq4 # 0 by Theorem 4.5. Applying the graded uniqueness
theorem for ultragraphs (Theorem 5.4 in [16]), we conclude that ® is an isomorphism. =

The class of Leavitt path algebras in Proposition 4.18 contains algebras that cannot be
obtained as the Leavitt path algebra of a graph. For example, the ultragraph with vertices
{v} U{w; :i € N}, and edges {e} U {f; : i € N}, with s(e) = v, r(e) = {w; : i € N},
and s(f;) = r(fi) = {w;} belongs to the aforementioned class and, by Proposition 2.7
in [21], the associated Leavitt path algebra is not isomorphic to the Leavitt path algebra of
any graph.
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5. Unital algebras of subshifts via partial actions

In this section we give two descriptions of AR (X) as partial skew group rings, one arising
from a set-theoretic partial action (Subsection 5.1) and the other from a topological partial
action (Subsection 5.2). We refer the reader to [22] for background on partial actions.
See also Definition 4.2 in [23] for the definitions of semi-saturated and orthogonal partial
actions.

Let X be a subshift over an alphabet A.

5.1. The partial skew group ring D R(X) % F

Let ¥ (X, R) denote the R-algebra of functions from X to R with pointwise operations.
Then we let Dg(X) be the subalgebra of ¥ (X, R) generated by the characteristic functions
of the sets C(«, ), where o, B € £x. Let F be the free group generated by A with the
empty word o as the identity of F. 5

Our goal in this subsection is to show that there is a partial action t of F on Dg(X)
such that A g(X) is isomorphic to the partial skew group ring Dg (X) . F.

For a € A, we define 7,: C(a, w) — C(w, a) by

(5.1) Ta(x) = ax,
and 7,-1: C(w,a) — C(a,w) by
(5.2) T,-1(ax) = x.

Proposition 5.3. The maps T, and T,-1, with a € A, define a unique orthogonal and semi-
saturated partial action T = ({W;}ier . {71 }1eF) of F on X such that Wge—1 = C(a, B)
and

Tap-1(BX) = ax

forevery Bx € C(a, B) and a, B € £x with Ba™" in reduced form. Moreover, if t # af~!
foreverya, B € Ly, then W, = 0.

Proof. The partial action is essentially that of Section 4 in [20], but for an arbitrary alpha-
bet. We leave the details to the reader. ]

Next, we associate an algebraic partial action with 7, similar to the dual action of a
topological partial action. For o, 8 € £x such that «8~! is in reduced form, let lop-1

denote the characteristic function of Wyg-1 = C(B, @) and D,g-1 the ideal of Dr X)

generated by 1,g-1. Note that D,g-1 is the ideal of functions in Dr (X) that vanish on
C(B.a) and has unit 1g-1. Define t,g-1: Dgg-1 — Dgg-1 by 14p-1(f) = f 0 Tgg-1,
where f € Dgy-1. Since T,g-1 is a bijection that maps Wg,-1 = C(a, B) onto Wyg-1 =
C(B, a), it follows that 7,g-1 is an isomorphism that maps the ideal Dg,-1 onto the ideal
Dgyp-1. In particular, 7,g-1(1gg-1) = 14g-1. If ¢ cannot be expressed in the form af™!,
we define D; = {0} and 7, equals the zero function. Hence, we have an algebraic partial
action T = ({Dy}ser, {1t }rer) of F on Dg(X). This partial action is semi-saturated; to
see this, apply Proposition 4.10 in [22] to {z,4,a € A}, and appeal to the uniqueness of the
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partial action given by Proposition 4.10 in [22]. Moreover, if a, b € A and a # b, then
C(w,a) N C(w,b) = @, which implies that D, N D, = {0}. That is, 7 is an orthogonal
partial action.

Remark 5.4. Note that, for r € F, we have that D, # {0} if and only if there exist
a, B € &y such thatt = af~! and C(B,a) # 0.

The partial skew group ring associated with t is defined as

f)R(X)x,IF=@Dt={2ﬁ8t:teﬁ,fteD,},

telF

where it is understood that f; is non-zero for finitely many terms and §; merely serves as
a placeholder to remind us that f; € D;. Multiplication is defined by

(5.5) (f585)(8:8¢) = 5 (t; 1 (f5) §1) 85t

The following three lemmas describe some products, a Z-grading, and a set of gen-
erators of Dr(X) »; F. Since the techniques used in the proofs are very similar to those
used in [19], we omit them here.

Lemma 5.6. Consider the partial skew group ring Dr (X) % F. Forevery a € £x \ {w},
we have that

@) (laISal)"‘(la‘u|5a‘a‘) = lada,

(D) (Ig1851) - (Igp18471) = o180,

(i)  (loda)(1g-184-1) = ladw,

i) (g1 ) (laba) = Iyt 8o,

(V) (1ad8a)(1g-18g-1) = 1yg-184p-1 for B € Lx such that aB ™ is in reduced form.

Lemma5.7. The algebra D R(X) . F has a Z-grading, with the homogeneous component
of degree n given by

(55R(X) % [F), = spang{ fop-1084p-1 : ¢, B € Lx and |a| — |B| = n}.
Lemma 5.8. The partial skew group ring iAjR (X) % I is generated as an R-algebra by
{1484,1,-18,-1 :a € AU {w}}.

Theorem 5.9. Let X be a subshift. Then, AR (X) =~ Dr (X) % F via an isomorphism that
sends Sq 10 1484 and s} t0 1,-18,-1.

Proof. We use the universal property of AR (X) to build a homomorphism ®: AR X) —
Dr(X) % [F. Let A € U. By Lemma 2.2 in [16], we have that 14 € Dg(X). Then, P4 :=
146, € Dr(X) % F.Fora € A, let S, := 1,8, € Dr(X) x, F and let S := 1,-16,-1 €
SISR (X) %, F. We claim that P4 and S, satisfy the relations in Definition 3.3. Indeed,
item (i) follows from basic properties of algebraic operations on characteristic functions,
and item (ii) follows from Lemma 5.6. For item (iii), let o, € £x and put S¢ =Sq, - - - S%l,

Sg=Sp " SBy» S = Sag "+ Sary and S = S;‘ﬁl---Sgl.Writeoz =o'yand f = p'y
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in such a way that 8’a’~! is in reduced form. Note that C(w, ) N C(a’, ') = C(a, B).
Then, by Lemma 5.6, we have that

(1g8p) (14-184-1) (16a) (1g-18g-1) = (1g88) (14-180) (15-185-1)

= ‘Cﬂ(lﬂ—l 1y-1)8p = Ig lﬂa—l 8 = 1g 1ﬂ/a/*18w = lcw.p) lcw,p) 8o
lc@.p)do = Pc.p),

Sp Sk SaS)

which shows that item (iii) holds. Then, by the universal property of A R(X), there exists

a homomorphism &: =A)R(X) — JDR(X) x F taking s, = Sq, s; — S and pg = Py. It

follows from Lemma 5.8 that @ is surjective, and it is not hard to see that ® is Z-graded.
Also, note that for every non-zero r € R and non-empty A € U,

q’("PA) =rl4by 7é 0,

since 14 is a characteristic function of a non-empty set. By Corollary 3.15, we deduce
that W is injective. n

We can use Theorem 5.9 to also characterise A r(X) as a partial skew group ring. For
that, we let B be the Boolean algebra defined in Section 4 and let Dg (X) be the subalgebra
of Dr (X) generated by {14}4eg- In fact, Dg(X) is an ideal of Dr (X), so we can restrict
the partial action t to Dg(X). More precisely, for each t € F, we let

Dy ={f€DiNDR(X) : ;-1 (f) € Dr(X)}
and we let 7;: D}_; — D; be the restriction of ;.
Theorem 5.10. Let X be a subshift. Then Ar(X) = Dr(X) X/ F.

Proof. The proof follows the same line of thought as Lemma 5.8 and Theorem 5.9. The
main difference is that 1,8, does not appear as a generator of Dg(X) x/ F. [ ]

5.2. The partial skew group ring Lc(‘&, R) %, FF

Next, we construct a topological partial action such that its dual algebraic partial action
gives a partial skew ring isomorphic to Dg(X) x; F. Recall from Subsection 2.3 that U
denotes the Stone dual of U, and that the topology on U has a basis given by the sets
Oy4={¢€ U:Ae &}, where A € U.Foreacha e A, weputV, := Oz, and V-1 := OF,.
Then we define @,: V,-1 — V, by

(5.11) Pa(m) ={A € U:r(A,a) €n},
and we define ¢,-1: V, — V-1 by
(5.12) @a—1() ={B € U:r(A,a) C B forsome A € £}.

We need the following lemma to prove that the maps @, and @,-1 are well-defined
homeomorphisms.
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Lemma 5.13. Foreacha € Aand A € U, letaA = {ax € X: x € A}. Then, aA € U.
Moreover, r(aA,a) C A, and if B€ U is such that BC Z, and r(B,a)C A, then B CaA.

Proof. Suppose first that A = C(«, B). If af € Ly, then a4 = C(a,aff) € U. And if
aPp ¢ L£x,thenad =0 € U. We claim that aC(«, )¢ = Z, \ C(a,ap) if af € £x. Sup-
pose first that ax € aC(«, B)¢; then clearly ax € Z,. Supposing that ax € C(x,af}), we
would get ax = afy for some y € X such that «y € X. This would imply that x € C(«, B),
which is a contradiction. Similarly, if ax € Z,; \ C(«, aB), we get that x € C(«, B)¢, so
thatax € aC(w, B)°.

It is easy to see that for Ay, A, € U, we have that a(4A; U A3) = aA; UaA, and
Cl(Al n A2) = aA1 n aA2.

Since sets of the form C(w, B) generate U, the first part of the result follows.

For the second part, we have

r(@ad,a) ={x eX:ax €aAd} C A.

Now, let B € U be such that B € Z, and r(B,a) C A. For x € B, we have that x = ax’
for some x’ € X. Hence x’ € r(B,a) C A, sothat x = ax’ € aA. ]

Proposition 5.14. For every a € A, the map @, is a homeomorphism of V,-1 onto V,
with inverse @ 1.

Proof. We begin by showing @,-1 is well-defined. Let £ € V,. Then Z, € § and, since
r(Z4,a) = C(a,w) = F,, we have that F, € ¢,-1(§). Hence @ -1 (€) € V,-1. To see that
@q—1(&) is a filter, suppose that By, B, € @,-1(£). Then, there exist A; and A, in £ such
that r(A4;,a) C B;,i = 1,2. Then, r(4, N Az,a) =r(Ay,a) Nr(Az,a) € B; N Bs,. So,
B N By € @g—1(§). Tt is clear that @,—1(§) is upward-closed. For By, B € U, suppose
that r(A,a) € By U B, for some A € £&. Then, AN Z, C aB; UaB,, by Lemma 5.13,
and hence a By U a B, € £. Because £ is an ultrafilter, either a By € £ or a B, € £€. Note that
r(aB;i,a) € Bj,i = 1,2, so that either By € ¢,-1(§) or By € @,-1(£). Also, for 4 € &,
because Z, € &, we have that @ # r(A N Z,,a) = r(A, a) so that @ ¢ @,—1(§). Hence
@q-1(£) is an ultrafilter, which proves that @,-1 is well-defined.

Next, we show that @, is well-defined. Let n € U be such that F, €n.Thenr(Z,,a)
= F, implies that Z, € @,(n), and thus @, (1) € Oz,. To see that ¢, (n) is an ultrafilter,
notice that @ ¢ @, (1), because r(@#,a) = @ ¢ n. Let A, B € ¢,(n). Then r(AN B,a) =
r(A,a)Nr(B,a)en,sothat AN B € §q(n).If A € §,(n) and B € U issuchthat A C B,
then r(A,a) C r(B,a), so that r(B,a) € n. Hence B € ¢,(n). Finally, if A, B € U are
such that A U B € @,(n), then r(A,a) U r(B,a) = r(A U B, a) € n. Because 7 is an
ultrafilter, r (A4, a) € nor r(B,a) € n, from where we get A € ¢,(n) or B € §,(n). Hence
@a(n) is an ultrafilter and well-defined.

We show that ¢,-1 and @, are bijections and inverses of each other. First we show
that @,-1(¢, (7)) = 1. Because these maps take ultrafilters to ultrafilters, it suffices to
show @,-1(@a(n)) € n. Let B € $,-1(@a(n)). Then there exists A € ¢,(n) such that
r(A,a) € B. By the definition of @, (), we have that r (A, a) € n and hence B € 1, prov-
ing that @,-1(@4(n)) € 1. Secondly, to see that ¢,(@,-1(§)) = & forall § € V, = Oz,
let £ € U be such that Z, € E. For A € &, we have that r(A4,a) € ¢,-1(§) and hence
A € §u(@4-1(€)), proving that £ C @, (@,-1(£)). Since these are ultrafilters, it follows that
@a(@a-1(§)) = £. Hence, @,-1 and @, are bijections and inverses of each other.
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Finally, we show that §,-1 is a homeomorphism of V, = Oz, onto V,-1 = Op,. If
AC Z,, then §,-1(04) = Or(4,0) € OF,. If B C F,, then we claim that ¢, (Op) = Og5.
For £ € Ogp, we have that § € Oz, because aB C Z,. Also, §,-1(§) € Op, because
r(aB,a) C B, and hence § = @,(@,-1(£)) € @(0p). On the other hand, let § € ¢,(Op)
be so that £ € Oz, and ¢,-1(§) € Op. Then there exists A € & such that r(4,a) € B.
Also,r(AN Z,,a) =r(A,a) C B.By Lemma 5.13, a B is the largest subset of Z, such
that r(aB,a) € B,sothat AN Z, CaB andAaB € £. Hence £ € O, p. Therefore, since
the sets Oy4 form a basis for the topology in U, @,-1 is a homeomorphism of V, = O,
onto V,-1 = OF, and the proof is complete. ]

Proposition 5.15. The maps ¢, and @ -1, with a € A, define an orthogonal semi-satu-
rated topological partial action ¢ = ({V;}1eF. @1 }teF) of F on U such that Vgg—1 =
OC(a,ﬂ) and

Pap-1(§) ={A € U:r(B,B) S r(A, a) for some B € £}
forevery & € Vgo—1 and o, B € Lx such that af~! is in reduced form.

Proof. Since each ¢,, with a € A, is a bijection of V,—1 onto V, by Proposition 5.14, it
follows from Proposition 4.10 in [22] that there is a unique semi-saturated set-theoretic
partial action ¢ = ({V;}ser. {@:}rer) of F on U. Moreover, this partial action is ortho-
gonal, since V, NV = Oz, N Oz, = Oz,nz, = Og = 0 for a,b € A and a # b.
Appealing again to Proposition 5.14 and the fact that ¢ is semi-saturated, we see that @ is
a topological partial action.

Note that for every o, 8 € £x and A € U, r(r(A4,a), B) = r(A, af). By induction,
applying (5.11) and (5.12) iteratively and using that the partial action is semi-saturated, for
every a € £x, we have that V,, = Oz, V,-1 = OF,, and forevery n € V-1 and § € V,,
we have that

(5.16) Ga(mM)={A€U:r(A,a) € n}

and
Po-1() ={B € U :r(A,a) C B forsome A € &}.

Thus, for «, B € £ such that ¢B~! is in reduced form, again using that the partial action
is semi-saturated, we have that

Pap-1(E) = @o 0 Ppg-1(§) ={A € U:r(B,B) S r(A, a) for some B € £}

for every £ € Vgg-1.

We now prove that Vg1 = Oc(q,)- By Proposition 2.6 in [22], we have that Vg1 N
Vg = @g(Vy—1 N Vg-1). Because the partial action is semi-saturated, Vg,-1 € Vg, so that
Va1 = (’ﬁﬂ(Va—l N Vﬂ—l). Thus,

Va-t ={0p(m) :n € Vo N Vg1} = {@p(n) : Ca.0) N C(B,w) € n}.

It follows from (3.10) that 7 (C(a, B), B) = C(a,w) N C(B. ). Therefore, Pg(n) € Vg1
if and only if r(C(e, B), B) € n, which holds if and only if C(«, B) € @g(n), by (5.16).
That is, @g(1) € Vo1 if and only if Pg (1) € Oc(a,p)- This completes the proof. [
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The partial action of Proposition 5.15 can be seen as an extension of the partial action
of Proposition 5.3. For that, notice that for each x € X, the set {x = {A € U : x € A} is
an element of U. We can then define a map ¢: X — U by t(x) = &.

Proposition 5.17. The map 1: X — U is injective and equivariant with respect to T and .
Moreover, the image of t is dense in U.

Proof. To see that ¢ is injective, let x, y € X be such that x # y. Then, there exists n € N
such that xo, # yo,» and hence Zy,, € & \ &y, which implies that &x # &).

To show that ¢ is equivariant, it is enough to consider ¢ = af~! fora, B € £x, where t
is written in reduced form. Let fx € C(«, ). On the one hand, by Proposition 5.15, we
have that

Pap-1(L(Bx)) ={A € U:r(B,pB) Cr(A,a) for some B > Bx}.
On the other hand, by Proposition 5.3,
1(Tgp-1(Bx)) ={A € U:ax € A}.

Let A € @up-1(t(Bx)) and let B be such that Bx € B and r (B, B) € r (A, ). By definition,
we have that x € r(B, B) and hence ax € A, that is, A € 1(7,4-1(Bx)). Because we are
dealing with ultrafilters, we conclude that

Pop-1(L(Bx)) = t(Tap-1(Bx)).

For the last part, let £ € U. A basic open neighbourhood of £ is a set of the form Oy
for some non-empty A € U. Then, for any x € A, we have that ((x) € Oy4. |

We now build the dual algebraic partial action of ¢ as follows. For t € F, we let
I; = Le(Vy, R). Then [, is the unital ideal in Le(U, R) generated by the characteristic
function ly,. Define ¢;: I,-1 — I; by

¢1(g) =go @1 forge I

Then ¢ = ({It}teF, {¢:}rer) is an algebraic partial action of F on Lc(ﬁ, R). Our next
goal is to prove that A g (X) is isomorphic to the partial skew group ring Lc(U, R) », F
associated with ¢.

IfY isasetand € C P (Y), then we let Fe denote the subalgebra of ¥ (Y, R) gener-

ated by {I¢}cee.
Lemma 5.18. The algebras 5R (X) and F4 coincide.

Proof. Since U is the algebra of sets generated by {C(«, B) : a, B € £Lx}, it follows from
Lemma 2.2 in [16] that Dg(X) is generated as an algebra by {14 : 4 € U}. |

Lemma 5.19. Leta, B8, y,8 € £x be such that § = B8’ for some §' € £x and af™' is in
reduced form in F. Then,

(i) Tap-1(C(r.8) N Cla, B)) = Cy. ") NC(B, ),

(i) @p1(Oc@.5)nC@B)) = Oc(ras)nC(Ba)-
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Proof. (i) Let x € C(y,8) N C(a, B). Then x = §y = B4’y for some y € X such that
yy.ad'y € X. Applying T,g-1, we have that

Tap-1(x) = a8’y € C(y,a8) N C(B, ).

Hence, 7,5-1(C(y.8) N C(e, B)) S C(y.ad’) N C(B, ). Analogously, Tgo-1(C(y,ad’) N
C(B.a)) S C(y,8) N C(a, B). Applying T,z-1 to both sides of the latter inclusion, we have
that C(y, a8’) N C(B, ) C Tup-1(C(y.8) N C(a, B)), which proves that Z,g-1(C(y,8) N
C(a. p)) = C(y.ad) N C(B, ).

(i) Let £ € Oc(y.5)nC(e.p)- Then,

Pap-1(§) ={A € U:r(B,B) Sr(A, a) forsome B € &},
by Proposition 5.15. Note that C(y, §) N C(«, B) € &. Thus, to demonstrate that

Pap-1(Ocy.8)nc@,p)) S Ocras)nCBa)

it suffices to show that
r(C(y.8)NC(a,p),p) S r(Cy,ad) NC(B.a),a).
Applying equation (3.10), we obtain
r(C(y.8) N C(a, B). B) = C(y.8") N Ca, ) N C(B,w) = r(C(y.a8") N C(B, ). ).

Therefore, we have that C(y, a8’) N C(B, @) € @p-1(Oc(y,5)nC(a,p))» Which implies
that @og-1(Oc(y.8)nC(@.8) S Oc(r.as)nC(B.a)- For the reverse inclusion, it suffices to
see that ¢gy-1(Oc(as)nC(B.a) S Ocy.8)nC,p)- For this it is sufficient to see that
r(C(y,adyNC(B,a),a) Cr(C(y,8) N C(a, B), B). But, this latter inclusion also follows
from the observation that r(C(y,8) N C(a, B), B) = r(C(y,ad’) N C(B, @), a). Hence,

Pap-1(Oc.8)nc@p)) = Ocras)nC(B.a)- "

Proposition 5.20. There exists an isomorphism ®: Dr X) — Lc(ﬁ, R) defined by ®(1,4)
= 1o, for every A € U. Moreover, this isomorphism is equivariant with respect to the
partial actions T on Dgr(X) and ¢ on Lc(U, R).

Proof. Recall that K (ﬂ) denotes the set of all compact-open subsets of U and note that
Le(U, R) = 37J<(ﬁ)' By the Stone duality (Theorem 2.8), the map A +— O« is a Boolean
algebra isomorphism of U onto Jf(ﬂ). Thus, £ is isomorphic to 517,7((‘12) = Lc(‘a, R) as
R-algebras, with the isomorphism given by ®(14) = 1¢,, foreach A € U. But isR(X) =
Fu, by Lemma 5.18. Hence, ® is an isomorphism of Dr (X) onto Lc(ﬁ, R).

We now prove that ® is equivariant. By Remark 5.4, it is enough to consider t = o ~!
for «, B € £x such that C(B, o) # @. We may also assume that 7 is written in reduced form.
For f € Dgq-1, we need to prove that ®(f) € Igg-1 and D(typ-1(f)) = @ap-1(P(f)).
By the definition of Dr (X), we have that Dg,_, is generated by functions of the form
lc@,p)yncy,s) for y, 8 € £x. Because ® is an isomorphism and /,g-1 is an ideal, it is
enough to consider f = lc(,g)nc(,s) for some y, 6 € £x. If C(a, B) N C(y,8) = 0,
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then f = 0 and the result is trivial. We may then assume that C(o, 8) N C(y,8) # 9. In
this case, notice that either § = 88’ for some 8’ € £x or § = B4’ for some §' € £x. In
the first case, we have that C(«, 8) N C(y,8) = C(a, B) N C(yf’, B), so we may assume
without loss of generality that § = B8’ for some 8’ € £Ly. Firstly,

O(f) = Pc@pnce.) = 10cwpncms € 1pa-t-
Secondly, by Lemma 5.19, we have that

P(tap-1(f) = 2l c@pnc.s) © Tpat) = Pz c@pnce.s))
= ®(c@.ancyas)) = Locgwncas = léag—l(OC(a,ﬂ)nC(y,s))

= locwpncos © PBa-1 = Pap-1 (IOC(a,ﬂ)ﬂC(y,b‘))
= @ap-1 (P(lc@,p)ncr.8)) = Pap-1 (P(f)).

Hence, ® is equivariant with respect to T and ¢, and the proof is complete. ]

Theorem 5.21. The pamal skew group rings Dr X) % F and Lc(‘u R) %, F are iso-

morphic. In particular, AR(X) ~ LC(‘L( R) %, IF via an isomorphism that sends s, to
10¢(.ay0a and sz to 10¢(, ) 8a-1-

Proof. The first part follows immediately from Proposition 5.20, and the second from
Theorem 5.9 and the isomorphism found in Proposition 5.20. ]

Remark 5.22. Since 38 is an ideal of U, in the sense of Boolean algebras, there exists an
embedding of B into U, whose i image is open in U. We can then restrict ¢ to a partial
action on B, which in turn gives a restriction of ¢ to a partial action ¢’ on Lc(o‘B R).
One can then show that Ag(X) =~ Lc(JB R) x4 F. Since our main focus is on the unital

algebra AR (X), we will not go through the details of the proof.

6. Groupoid models for unital subshift algebras

In this section, we study the unital subshift algebra as a Steinberg algebra of a group-
oid. We define two (isomorphic) groupoids associated with a subshift. The first is the
transformation groupoid of the partial action defined in Section 5.2. The second is the
Deaconu—Renault groupoid associated with a singly generated dynamical system [39].
The latter is used in Section 7 to study conjugacy of subshifts.

Recall that a Hausdorff topological groupoid § is an ample groupoid if its topology
has a basis of compact-open bisections. Then the Steinberg algebra associated with §
(see [41]) is defined as

AR(F) = spang{ly : U € § is a compact-open set}.

Equivalently, /A r (&) consists of all locally constant functions f:§ — R with compact
support. Multiplication in 4 g (&) is defined by the convolution product

fregn =Y. f)gh 'y,
s(m)=s(y)
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Having realised AR (X) as the partial skew group ring Lc(‘a, R) %, F (Theorem 5.21),
we now have a groupoid model for # g (X), given by the transformation groupoid

Fo,U=1{(E1n)€UxFxU:neVoiand§ =)
where multiplication and inverses are defined by

E.s.p(nty) = (Est,y) and (52,7 =17 6),

respectively. Note that [ x5 U is an ample groupoid, since the topology on U has a basis
of compact-open sets.

Next, we describe a Deaconu—Renault groupoid associated with a subshift. For the
reader’s convenience, we recall the key definitions first.

Definition 6.1. A singly generated dynamical system is a pair (X, &) consisting of a loc-
ally compact Hausdorff space X, and a local homeomorphism 6: dom(6) — Im(6) from
an open set dom(G) € X onto an open set Im(6) € X. Inductively, define Dy = X and
D, = dom(6") = 6~Y(D,_1) for n > 0. The Deaconu—Renault groupoid associated
with (X, 6) is defined as

9(X,0) = U {(x.n—m,y) € Dy x{n—m}x Dy, : 5"(x) =6"(y)},

n,meN
equipped with the topology with basic open sets
ZU,V,n,m) = {(x,n —m,y):x€UyeV, and6"(x) = 8m(y)},

indexed by quadruples (U, V,n,m), where n,m e N,U C D, and V C D,, are open and
6"|y and 6™|y are homeomorphisms. The operations are given by (x, k, y)(y,[,z) =
(x,k +1,z) and (x, k, y)_1 = (y,—k, x), for (x,k,y), (y,l,z) € §(X, ). Note that
r(x,k,y) = (x,0,x) and s(x, k, y) = (»,0, y). Therefore, we identify the unit space
9(X,6)©® with X as topological spaces. Also, there is a one-cocycle ¢: §(X,5) — Z
given by c(x, k,y) = k.

Given a singly generated dynamical system (X, &), its Steinberg algebra A (§(X,0))
has a natural Z-grading given by Ar(§(X,0)), ;= {f € Ar(E(X,0)) : supp(f) <
¢ Y(n)}, see [14]. R ~

In our case, we consider the pair (U, &), where U is the Stone dual of U (see Sec-
tion 2.3), and ¢ has domain dom(d) := Uyey Vo = Ugeq Oz, and, for & € V,, is
defined by

0():={BeU:r(A,a) C Bforsome A € &}.

Before studying the groupoid ﬁ(‘a, o), we first show how the map & relates to the
shift map on the OTW subshift X°™V. For that we define a map m: U — X°TV by

o, ifae Lyissuchthat Zy € £and Zyy, ¢ & forall b € A;
() =qa ifaeX™andZ,,, €§foralln > I;
0, if Z, ¢ &foralla € A.
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To show that 7 is well-defined we need to show that, in the first case, 7(§) = « indeed
belongs to X°TW (the other cases are straightforward). Let L = {b € A : 3n € X such that
abn € X} and note that L # @ because o € £x. Suppose that L is finite. Then we can
write Z,, as the finite union Z, = | J,c;, Zgp- Because & is an ultrafilter, there exists b € A
such that Z,p € &, which contradicts the definition of 7 (§). This means that L is infinite,
that is, o € Xfin,

Remark 6.2. In Ag (X), there is an inclusion of commutative subalgebras generated by
idempotents spang{sq sy} < spang{sq pasy} = spang{pa}. When R is an indecompos-
able ring, via the isomorphisms of Propositions 3.17 and 3.19, we obtain a map as follows.
Given £ € U, there is corresponding character ¢¢ on spanp{p4} such ¢g(pg) = 1if A € §
and 0 otherwise. When we restrict ¢ to spang{sq s} }, using that s 55 = pz, and the iso-
morphism of Proposition 3.17, we see that this map is the same as & defined above. We
point out that the definition of = itself does not depend on R.

Proposition 6.3. For all £ € dom(G), we have that w 0 6(§) = o o (€). Moreover, 7 is
surjective.

Proof. Let& € dom(6) and o = 7 (§). Notice that o # 0, otherwise & ¢ dom(d). Suppose
that || = oco. Then, for every n € N*, we have that r(Zy, ,. 1) = Foy N Zay.n € Zayn»
by equation (3.10). Hence Z, , € 6 (£) forall n € N*, thatis, 7 (G (§)) = a2,00 = 0 (7 (§)).

Suppose now that |a| < oo. The above argument shows that Z, ,, € 5(§). Suppose
that for some b € A, we have that Zy, ,» € 6 (£). This would imply that there exists
A € U such that r(A,01) € Zg, b s0 that A © Zyyp. In this case, Zyp € §, which is a
contradiction, since 7(£) = «. It follows that 7 (G (§)) = a o) = o (7(£)).

Next, we show that 7 is surjective. Let o € XOTW If ¢ € X, then o = 7 (), where
E={AecU:aec A} If a € X", then « is the image of an ultrafilter that contains the
upper set 1 {Zy N Zébl N---N Zébn : b; € A, n € N} (which exists because the family
{ZyN Zébl N---N Z;bn :b; € A,n € N}is closed under intersection and does not contain
the empty set). ]

We now prove that the transformation groupoid of the partial action of Section 5.2 and
the Deaconu—Renault groupoid of ¢ are isomorphic. As a consequence, we describe the
subshift algebra as a Steinberg algebra.

Theorem 6.4. Let X be a subshift. Then the map O:F x5 U — ﬁ(ﬁ, 0) defined by
O, af™, n) = (& |a| — |Bl, n) is an isomorphism of topological groupoids.

Proof. Notice that ¢,-1 (see equation (5.12)) is the restriction of & to V. The remainder
of the proof is straightforward and follows the same steps of Theorem 5.5 in [19], The-
orem 5.12 in [43], and Theorem 4.4 in [18]. [

Theorem 6.5. Let X be a subshift. Then, AR X) = A R(ﬁ(ﬁ, 0)) as Z-graded algebras
via an isomorphism that takes sq t0 S *= 17(04,,0r, 1,0 and sytoSyi= 12(05,.02,.0.1)-

Moreover, this isomorphism sends the diagonal subalgebra of AR (X) to AR(S (‘a, 5)@).

Proof. From Theorem 5.21 and from Theorem 3.2 in [5], we get an isomorphism between
AR(X) and AR (F xzU) that sends 54 t0 1y, x{a}xv,_, and s, to 1Va_1 x{a-1yxVv, - Applying
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the map ® from Theorem 6.4, we see that ©(V, x {a} x V,-1) = Z(0Ogz,, OF,,1,0) and
similarly, ®(V,-1 x {a™1} x V) = Z(OF,, Oz,,0, 1). The result the follows from the fact
that we have an isomorphism from A g (IF x; U) to Ar(§(U,0)) that sends f to f o e~

The last part follows from Proposition 3.19 and the fact that Ag(¥ (‘a, 5)@) ~
Le(U, R). [ ]

Next, we define a map &: dom(e) € §(U, ) — (U, &) that will play a important
role when discussing conjugacy of OTW-subshifts in Section 7. This map is inspired by
the one found in [10] and is defined as follows. The domain of ¢ is given by

dom(s) = {(£.n,n) € §(U,5) : £.1 € dom(5)}
and, for (¢,n,n) € dom(e), set

e n.n) = @().n.c(n).

We would hke an analogue of Lemma 4.2 in [10], in the sense that we want to define
amap T: AR (ﬁ(‘u 0)) — AR(;?(U 0)) by ©(f) = f o &. However, if the alphabet A is
infinite, then there are a few problems that we need to overcome. The first is that dom(g)
is not necessarily all ﬁ(‘u 0) and, secondly, may fail to be clopen in g(‘u 0), so that
we cannot continuously extend f o ¢ to be zero outside dom(g). Lastly, even if dom(e) is
clopen, there is no guarantee that f o ¢ has compact support. To overcome these issues,
we will work with restrictions of ¢. R

Fix M C A finite and let Vs = J aem Va. Note that Vps is compact-open in U. We let

66)  dom(enr) = {(E.n.m) € §(U.B) £.n € Vi) =57 (Va) N7 (Vag),
which is clopen in 5(‘&, 0), and we define ¢y as the restriction of € to dom(epy).

Lemma 6.7. The map ey is continuous and proper.

Proof. Consideril basic open set Z(U, V, k,I) of ﬁ(ﬂ, 0), where U and V are compact-
open subsets of U. Then,

w (Z(U.V.k. 1))
= {(E.m.n) € dom(eps) : 5(€) € U.G(n) € Vom =k —1,6%T1(§) = 6" ()}
= |J {Em.n) edom(en) : & € 3a(Or, NU).n € (O, N V),
a,beM m=k — Ak+1(5) _ Al+1(n)}

| Z(@a(0F, NU).35(0r, NV).k+ 1.1+ 1).
a,beM

This shows that the preimage of each basic compact-open is a finite union of basic
compact-open sets. We immediately get that )7 is continuous. And because (U, &) is
Hausdorff and ¢4 is continuous, the above equality also implies that €7 is proper. Indeed
the preimage of a compact set K by e is then a closed subset contained in a finite union
of compact-open basics open sets and therefore &5, 1(K) is compact. ]
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Lemma 6.8. The map ty: Ar(§(U,5)) — Ar(§(U,5)) defined by

f(gM(E»ms n))s lf (%‘vm» 77) € dom(gM),

0, otherwise,

v (f)E m.n) = {

where f € Ar(§(U.5)) and (§,m,n) € §(U.5), is a well-defined R-linear map. More-
over, for every [ € Ar(§(U,d)), we have that

wm(f) = Z Sax f xSy,

a,beM

where the product x is the convolution product in Ag(§(U,5)), Sq = 12(02,,0r,1.0
and Sg = 1z(0p,,02,.0.1)-

Proof. Because dom(gyy) is clopen in ﬁ(ﬂ, 0), ey is continuous (by Lemma 6.7) and f
is locally constant, we have that tps( f') is locally constant. Moreover, Lemma 6.7 says
that e)7 is proper, so that supp(tas (f)) = 8;41 (supp( f)) is compact. This implies that tas
is well-defined. ThatA Tp 1s R-linear follows from the fact that addition and scalar multi-
plication in Ag(§ (U, 5)) are defined pointwise.

For the second part, let (§,m, n) € §(U, o). Then

Do Sax fSpEm) = Y D SaE k) fE1,0)S560,n,1),

a,beM a,beM

where the second summation is over all triples (¢, k, (), (£,1,0),(6,n,n) € g(ﬁ, o) such
that (§,k,0)(¢,1,0)(0,n,n) = (§,m,n). If (§,m,n) ¢ dom(eps), then either § ¢ Vjy or
n ¢ Var. In the first case, we have that S, (&, k, ) = 0 for all @ € M independently of k
and ¢. Similarly, in the second case S, (6,n,n) = 0 for all » € M independently of n
and 6. This means that if (£, m, n) ¢ dom(eys), and thus

Z Sa*x f* Sy (E,;m,n) =0=wm(f)E m,n).
a,beM

Suppose now that (&, m, n) € dom(epy). In this case, there are a unique ag € M such that
& € Vg, and a unique by € M such that n € V},. In this case, we have

Yo Sax frSpEmm =Y Y SaE k.0 f(&1,0)S;(0,n,1)

abeM a,beM

=) Say(E.k.0) f(£.1.6) Sy (6.n.7)

= Say(€.1,6(§)) f(6(§).m.5(m) Sp, (6 (n).—1.71)

= f(@©&).m.am) = flem(E.m.n) = (/). m,m),
and the result then follows. ]

Proposmon 6.9. Let X1 and X, be two subshifts. Consider the corresponding groupotds

ﬁ(‘u,,o,) with maps & as constructed above, for i = 1,2. Also, let ®: ‘5(‘1,(1 01) —
ﬁ(‘uz, 02) be an isomorphism of topological groupoids. The following are equivalent:
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(i) ®(dom(el)) € dom(e?) and (P (E, m, n)) = ®(e' (£, m, n)) for all (., m,n) €
dom(el).

(ii) For every M C A; finite, there exists N C A, finite such that CD(dom(sllw)) C
dom(s%v) and 8%\, (P, m,n)) = CD(S}M(é, m,n)) forall (§,m,n) € dom(s}u).

Proof. (i)=>(ii). Note that for each i = 1,2, using the identification §(U;,5;)©@ = U;,
we have that R

U Vai = dom(¢') N (U;,5:)?.

acA;
The above equality and the hypothesis that ®(dom(e!)) € dom(s?) imply that for M < A,
finite, we have that (V) S Upen, V2. Because V,y is compact and @ is a homeo-
morphism, there exists a finite set N € A, such that @(VA}I) - Vﬁ. Also, because ®
preserves s and r, by equation (6.6), we get db(dom(a}w)) - dom(s%v). For (¢§,m,n) €
dom(e}u), we have that

ey (P(E m, ) = 2(P(E,m, ) = B! (€,m,m) = Pley (€,m, ).

(i))=>(i). Let (£, m, n) € dom(e'). Then there exist a, b € A; such that £ € V, and
n eV, Take M = {a,b} and let N C A, be as in the hypothesis. Then

D&, m,n) e dom(s?\,) C dom(e?)

and
(P&, m.n) = ey (P, m.n) = Ve (6.m. ) = (' (.m. 7)),

as claimed. [

7. Conjugacy of OTW subshifts

In this section, we describe a conjugacy of OTW-subshifts in terms of an isomorphism
of the associated groupoids and in terms of an isomorphism of the associated subshift
algebras, see Theorem 7.6. We retain the notation of Section 6 and start recalling the
definition of a conjugacy between OTW-subshifts.

Definition 7.1. Let X{™ and X§™ be OTW-subshifts over alphabets A; and A, respect-
ively. A map h: X§™ — X9V is a conjugacy if it is a homeomorphism, commutes with
the shift, and is length-preserving.

We point out that because a conjugacy h: X(l)TW — X(z)TW is length-preserving, we can
restrict it to a bijection between the corresponding subshifts X; and X, which we also

denote by /, see Remark 2.4.

Remark 7.2. Notice that for OTW-subshifts, a conjugacy is not necessarily given by a
usual sliding block code. Instead, one has to use the notion of a generalised sliding block
code, see [28].

Before we prove the main theorem of the section, we need a few auxiliary results.
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Lemma 7.3. Let h: X?TW — XgTW be a conjugacy. Let a € £x, and F C A, a finite set.
Then,

i) h(Zi(e, F)=U'L, Zo (', MY) for some ' € Ex, with || > |a| and M* C A,
finite, for al{ i =1,...,m. Moreover, if @ € X‘}“, then the@ exists j € {l .., n)
such that ) = h(a), and for all i = 1,...,m such that |u'| = |a| and ' € Xfin
we have that u* = h(a).

(i) h(F1(a)) = UL, Zy (i, M) N Fo(vh) for some pt, vt € £y, and M C A,

finite, foralli = 1,...,m.

(i) h(z)) < UL, ZZ,. for some ' € Ly, with |u'| > |al, foralli =1,...,m.
Moreover, if o € Xfli“, then there exists j € {1,...,n} such that //,j = h(a), and
foralli =1,...,m such that |i'| = |a| and u* € X8, we have that i* = h(e).

Proof. (i) Since Z; (o, F) is compact-open and % is a conjugacy, we have that h(Z; («, F))
is compact-open in XgTW. The result follows from the fact that 4 is length-preserving
and by the description of a neighbourhood base for a point in X9™ given in [38] (see
Theorem 2.15 and Remark 3.24). For the second part, suppose that o € X‘}“. In this case,
if u' e X" and |uf| = |h~1(u?)| = |«|, then we must have 2~!(u’) = & because o
is the only element in Z;(«, F) with length |«|. Hence ' = h(a). On the other hand,
o € Zy(a, F) and hence h(a) € Z(uu/, M7) for some j. Because |h(at)| = || < ||,
the only possibility for 4/ is that it is equal to & (c).

(ii) Notice that #1(«) = ¢/*(Z(«)). Because & commutes with the shift, the result
follows from item (i) and Lemma 2.6.

(iii) Using item (i) with F' = @, the fact that & preserves length, and Lemma 2.7 (i), we
obtain that

h(Zy) = h(Zy(@) N XY = | Zo(u!. M) N X3 < | ) 22,
i=1 i=1

for some u' € £x, with [u'| > |a| and M! C A, finite, foralli = 1,...,m. The second
part follows immediately from item (i) and the above computation. ]

Proposition 7.4. Let h: XO™ — X§™ be a conjugacy. The map h: Uy — U, given by
h(A) = h(A) is an isomorphism of Boolean algebras.

Proof. Because h is a bijection, it preserves unions, intersections, and relative comple-
ments. To prove that /2 is a homomorphism, it is then sufficient to show that 2(C; («, B)) €
U, for every o, B € £x,. Because £ is length-preserving, by Lemma 2.7, we have that

h(Ci(, B)) = h(Z1(B) N o™ Pl(Fi () N X = h(Z1(B)) N h(o™PI(F1 () N XE.

Using that 4 commutes with the shift and Lemma 7.3, we conclude that #(Cy (e, B)) is a
union of sets of the form

Zo(w, M) N o~ BI(Z, (v, N) N Fa(p)) N XL,

where w1, v, p € £x, with || > |B|,and M, N C A, are finite sets.
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By Lemmas 2.6 and 2.7, for some 7 € £x, and P C A, finite, we have that

Za (i, M) N o7 B1(Zy (v, N) N Fa(p)) N XEE
= Zo (1, M) N a7 BU(Z, (v, N)) N Z2(p1,) N o Bl (F2(p)) N X
= Z5(t, P) N Za(ur 18 N o BI(F(p)) N X

= (Cz(w,r)\ U Cz(ULTP)) N Ca(p, pa,ip))

pPEP

which is an element of U,. It follows that #(Cy (o, B)) is a union of element of U,, and
therefore it is also in U,.

To see that / is an isomorphism, just apply the above argument to 2~! so that we
obtain h~! = A1, n

Next, we show that a conjugacy between OTW-subshifts lifts to a homeomorphism
between the Stone dual of the associated Boolean algebras which commute with the cor-
responding .

Proposition 7.5. Let h: X{™ — X9™ be a conjugacy. The map h: Uy — U, given by
h(€) = {h(A) : A € £} is a homeomorphism such that h(dom(61)) = dom(63), h o 61 =
62 © hlgom@,), and h o wy = a3 0 h.

Proof. By Proposition 7.4 and the Stone duality (Theorem 2.8), we have that h is a well-
defined homeomorphism.

Given § € ?71, we claim that 771 (§) and 75 o ﬁ(é) have the same length. By item (iii)
of Lemma 7.3, the fact that ultrafilters are prime filters in Boolean algebras and the defin-
itions of 7r; and 7, we have that |7y (§)| < |7 0 ﬁ(§)|. Similarly, since £ = {h~'(B) :
B e ﬁ(é)}, using the same argument, we obtain that |y (§)| > |2 o ﬁ(§)| It follows that
& € dom(d7) if and only if iz\(é) € dom(63).

We show that /1 0 1 = 5, o ﬁ|d0m(31). Let§ € dom(67) and a € A; be such that Z! € €,
and let b € A; be such that Z} € h(£). Then

2(81(5)) ={h(B): B e U;andr(A,a) € B forsome A € &}
and R
62(h(§)) ={C € Uy : r(h(A),b) C C for some A € £}.

Take B € U; such that r(A,a) € B for some A € £. Note that A N Z} N h_l(ZZ) eé,
so we may assume without loss of generality that A € Z! nh=1(Z g) In this case, we
have that r (4, a) = 01(A) and r(h(A),b) = 02(h(A)). Because & is shift commuting, we
conclude that

r(h(A4).b) = 02(h(A4)) = h(01(A)) = h(r(A.a)) < h(B),

and hence i (B) € 6, (E (§)). Since we are dealing with ultrafilters, it follows that h (61(8))

= &,(h(§)).
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Finally, we prove that h oy = 75 o h. Let £ e Uy. As proved above, 1 (§) and
T oh (&) have the same length. Since 0, is the only element of XS™ with length zero, if
71(€) = 07 then h(rr1(£)) = h(01) = 0, = m>(h(£)). Suppose now that 1 (£§) = & with
0 < || < co. Then, by Lemma 7.3 (iii), the fact that A (&) is an ultrafilter, and the definition
of m,, we have that nz(ﬁ(g)) = h(«x). Lastly, suppose that 71 (§) = « with |o| = o0, so
that 8 = 75 (l;(é)) is such that | | = oco. By the definition of 71, we have that Zolq,n € & for
eachn € N*. By Lemma 7.3 (iii), h(Z,, ) € Ui, Z;ZU' for some u’ € Lx, with |u’| > n,
foralli =1,...,m. Becapse h (&) is an ultrafilter, by the definition of 75, thgre exists
j€{l,...,m} such that u/ is a beginning of 8. This implies that for m, := |u’/| > n we
can find x" € X" and y" € X such that h(a1,,X") = B1,m,»". By the continuity of /,
taking the limit as n goes to infinity, we get h(7r1(§)) = h(a) = = nz(iz\(“g‘)). L]

For a subshift X over an alphabet A and M C A finite, we define

emM = Z sas; IS e;‘;R(X).
aeM

Observe that eps is idempotent and, via the isomorphism given in Theorem 6.5, it cor-
responds to the characteristic function 1y,,, where V) is the same as in Section 6. Using
Theorem 6.5 and 137 of Lemma 6.8, we obtain a map from +4 g (X) to 4 g(X), also denoted
by ta, given by
()= safsi.
a,beM

Both eps and 1) will play an important role in the algebraic characterisation of conjugacy
for OTW-subshifts, as we see below.

In order to simplify notation, we use the isomorphism of Theorem 6.5 as an equality
in the next theorem. Also, recall that an isomorphism W: Ag(§;) — ARr(§2) between
Steinberg algebras is said to be diagonal-preserving if ¥ (A g (gl("))) = AR (‘52(0)).
Theorem 7.6. Let h: X§™ — X§™ be a homeomorphism and suppose that R is also an
indecomposable ring. The following are equivalent.

(1) h is a conjugacy.

(ii) There exists a homeomorphism h: ‘171 — ?72 suchthathom =m0 h, ﬁ(dom(&l))
= dom(62) and h 0 6y = 02 © h|gom@s,)-

(iii) There exists an isomorphism of topological groupoids ®: g(ﬁl, 01) = g(‘&z, 02)
such that c; 0 ®=cy, 150 ®© =h o 7y, d(dom(e!)) = dom(e?) and &2 o ®|gom(ery

= doel, where ®O) s the restriction of ® to the unit spaces, and cy and c, are
the one-cocycles from Definition 6.1.

(iv) There exists an isomorphism of topological groupoids ®: 5(‘111, 01) —> g(ﬂz, 02)
such that wy 0 ®© = h o 7y, ®(dom(e!)) = dom(e?) and &2 o @lgomery = Po el
where ®©) is the restriction of ® to the unit spaces.

(v) There exists a Z.-graded diagonal-preserving isomorphism V: A rR(Xy) — A R(X2)
such that
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s U(fom)=foh Yomn forall f€Lc(X{T™V,R),
 forall finite M C Ay, there exists a finite N C Aj such that V(epr)eny = V(ep)
and

Y(tp () = Wlem)tn (W(f))W(enm)

for every f € E;ER(XI),
o forall N' C A, finite, there exists M' C A finite such that ¥~ (en/)ey =
Wl (enr).
(vi) There exists a diagonal-preserving isomorphism V: A rR(X1) — A R(X2) such that
s U(fom)=foh Yom forall f€Lc(X{T™V,R),
e forall finite M C Ay, there exists a finite N  Aj such that V(epr)eny = V(enr)
and

U(tar (f)) = Wlem)tn (Y(f))¥(enm)

for every f € JA\:R(XI),
 for all N' C A, finite, there exists M' C A, finite such that V"' (ey/)ep =
(7 (en).

Proof. ()= (ii). This follows from Proposition 7.5.

(ii)= (iii). Supposing the existence of h asin (ii), it is straightforward to check that the
map ®:6(Uy,61) — §(Uz,62) given by ®(&,m,n) = (iz\(é)m h(n)) is a well-defined
isomorphism of topological groupoids satisfying the conditions of (iii).

>iii))= (iv). It is immediate.

@iv)= (i).Letx € X?TW. Using the surjectivity of r; given by Proposition 6.3, choose
£ e U; such that (§) = x. By the definitions of 7r; and 67, we see that |x| is exactly
the number of times we can apply &; to £ (via the identification with (£, 0, £)). Analog-
ously, |72 (®© (£))| is the number of times we can apply &, to ®© (&). By hypothesis,
|72(@@(€))] = [h(71(£))] = [h(x)|. Since D(dom(e")) = dom(e?) and &2 0 Pyom(e) =
® o ¢!, the number of times we can apply &; to £ is the same as the number of times we
can apply &, to @@ (&). Hence |x| = |h(x)].

Now suppose that x # 61. In this case, § € dom(67) and (£,0,§) € dom(ey). With
the identification of U; and the unit space of §(U;, 6;), for i = 1,2, we see that the
hypothesis on &; implies that 5,(®® (£)) = ®© (G, (£)). Then

02 (h(x)) = 02(h(11(§))) = 02(m2(P?(£))) = 72(62(®D (§)))
= 12(®© (61 (%)) = h(71(61(£))) = h(o1(1(8))) = h(o1(x)).

Hence / is a length-preserving, shift-commuting homeomorphism, that is, & is a con-
jugacy.

(iii)=>(v). We use the Steinberg algebra picture for the subshift algebras as in The-
orem 6.5. Below, we use * for the convolution product and - for the pointwise product. If ®
is an isomorphism of the group01ds then it is easy to see that the map W: A g (X1) = A(X3)
givenby W( f) = f o ® ! is a diagonal-preserving algebra isomorphism. By Theorem 6.5
and the hypothesis that c; o & = ¢y, we have that this isomorphism is Z-graded. As
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explained in the beginning of Section 6, we view Lc(XP™, R) inside ARr(X;) via the
map m;, for i = 1,2. Then, because ®© and & are homeomorphisms, we have that
U(fom)=fomo® ! = fomo (@) = foh™

Now, let M C A, be finite and let N € A, be as in Proposition 6.9. Notice that
eM = IVA} andey = lVﬁ' Also, VA}, = s(dom(ellu)) = r(dom(s}u)), and similarly for VAZ,.
Then

-1

where the second to last equality follows from the fact that dD(dom(e}W)) - dom(sjzv).

Because dom(sllw) = s_l(VA}I) Nnr-t (VAIJ), forany ge e;qu(Xz) and (&,m,n) e‘g(ﬂz, 02),
we have that

Wiem) * g * W(em)(§,m,n) = 1‘1>(V1\14) * g *x 1<1>(VA14)(§,m, n)
= 1q>(VA14)(€)g(§,mv n) lcp(VAll)(U) =g, m,n) 1q>(dom(811u))(§,m7 .

thatis, W(ey ) x g« V(ey) =g - lq,(dom(s}w »)» Where multiplication on the right-hand side

is pointwise. Consider now f € AR (X1). On the one hand, we have
W(tm (/) = (foep 027 Toomesl, )
On the other hand,
Wlen) * (o (P(f)) * Wlen) = Wem) * ((f 0 @7 o ek) - L)) * Ylem)
= (o7 0 eR)  laomez)  Latomtel,n = (F © @71 0 £8)  Togamel, -

where the last equality follows from the inclusion @(dom(a}u)) C dom(s%v).

(v)=(vi). It is immediate.

(vi)=(ii). By hypothesis, the isomorphism W restricts to an isomorphism between
its diagonal subalgebras, which in turn, and by Proposition 3.19, gives an isomorph-
1sm v Lc(‘ul R) — Lc(‘uz, R). By Proposition 2.13, there exists a homeomorphism
h: U; — Uy such that U(f)y=fo h= for all fe Lc(‘ul, R). Then we have that, for
allg € Lc(XOTW, R),

gohlom=W(gom)=gomoh !

This implies that /! o 7, = my o h~! because Lc(X9™V, R) separates the points of XOTV.
Let M C A, finite and choose N C A, finite such that W(epr)exy = W(epr). As

observed above, ey = lVA14’ so that W(ep) = IVAll oh™! = lh(Vl We then get that

h (V4y) € V3 and hence h(dom(G1)) C dom5,. Similarly, we prove that 7~ ! (dom(55)) <
dom(6), so that h (dom(61)) = dom(53).
Foreacha € Ay, f € Lc(Uq, R) and £ € Uy, we have that

Uy (1) = S0 [ #55(5.0.8) = 5a(£.1.51(8)) (31 () 5361 (6). ~1.6)
= 1) fG1(0)).
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Hence
(7.7) W (tay () = (f 0810 h™H1pg.
On the other hand, there exists N C A, finite such that

(7.8)  W(tia)(f)) = Uleway) N (V) Wleray) = Ly * (f o R 0 d) x 1)

=(foh'o5,)- vy
By comparing (7.7) and (7.8), and using that Lc(ﬂl, R) separates the points of Uy, we
conclude that &; o h_1|};(V1) =hlo 025y)» Or equivalently, i 0 G1ly1 = G2 0 hly,.

Taking the union over all @ € Aj, we then obtain /1 0 51 = G2 © h|gom(s,)- L]

Remark 7.9. Steinberg proved in Theorem 5.6 of [42] that for graded groupoids §;
and §, satisfying the local bisection hypothesis and for R an indecomposable ring, there
is a graded isomorphism between §; and % if, and only if, there is a diagonal-preserving
graded isomorphism between 4 g (§1) and A g (§5). That the groupoid € (U, 6) associated
with a subshift satisfies the local bisection hypothesis follows from Corollary 9.4 in [2].
Although the equivalences (iii) < (v)and (iv) < (vi) of Theorem 7.6 are certainly connec-
ted with Steinberg’s result, we need more than the existence of isomorphisms to obtain our
results, since we need to keep track of the map 4 and the subalgebras Lc(X{™V, R) and
Lc(XS™, R), which might be smaller than the diagonals of (Ui, 61) and §(Us, 5>),
respectively (see Propositions 3.17 and 3.19).
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