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Algebras of one-sided subshifts over arbitrary alphabets

Giuliano Boava, Gilles G. de Castro, Daniel Gonçalves and
Daniel W. van Wyk

Abstract. We introduce two algebras associated with a subshift over an arbitrary
alphabet. One is unital, and the other not necessarily. We focus on the unital case and
describe a conjugacy between Ott–Tomforde–Willis subshifts in terms of a homeo-
morphism between the Stone duals of suitable Boolean algebras, and in terms of a
diagonal-preserving isomorphism of the associated unital algebras. For this, we real-
ise the unital algebra associated with a subshift as a groupoid algebra and a partial
skew group ring.

1. Introduction

The rich interplay between non-commutative algebras and symbolic dynamics dates back
to the seminal work of Cuntz and Krieger [15], where a C*-algebra (now called the
Cuntz–Krieger algebra) is associated with a subshift of finite type (given by a finite mat-
rix). Among its applications, these algebras are invariants for shift conjugacy and are
essential in the study of (two-sided) continuous orbit equivalence, see [37]. Moreover,
in [36], Matsumoto shows that two one-sided subshifts associated with irreducible and
non-permutation ¹0; 1º-matrices are topologically conjugate if and only if there is a diago-
nal-preserving isomorphism, that commutes with the diagonal action, between their asso-
ciated C*-algebras.

A subshift of finite type over a finite alphabet can be seen as the edge subshift asso-
ciated with a graph. In [9], one-sided conjugacy of subshifts of finite type is character-
ised in terms of the Cuntz–Krieger algebra’s diagonal and a completely positive map.
Orbit equivalence of subshifts associated with directed graphs is characterised using graph
C*-algebras in [11]. The algebraic analogues of graph C*-algebras, called Leavitt path
algebras, have attracted researchers’ attention from a broad spectrum of mathematics, as
these algebras proved to have close connections with symbolic dynamics and, of course,
their analytical counterparts, graph C*-algebras. Most of the invariance results mentioned
above have algebraic counterparts obtained via groupoid techniques, as in [14]. Moreover,
important problems in symbolic dynamics, such as the Williams problem regarding shift
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equivalence and strong shift equivalence, can be recast as a problem in graph algebras and
their graded theory, [29].

Recently, in [10], Brix and Carlsen characterise conjugacy of subshifts (not necessarily
of finite type) over finite alphabets in terms of the C*-algebras that Carlsen defines in [12].
The critical problem in this setting is that, for a general subshift, the shift map is not a local
homeomorphism. Hence, the established theory of Deaconu–Renault systems (see [39])
does not apply. Brix and Carlsen circumvent this problem by introducing the notion of
a cover space. They describe the conjugacy of subshifts in terms of the conjugacy of
their cover spaces, which in turn are described in terms of the associated groupoids and
C*-algebras.

The main purpose of this paper is to obtain an algebraic description of conjugacy
between subshifts over an arbitrary alphabet (including infinite alphabets). For finite al-
phabets, our conjugacy results may be interpreted as purely algebraic versions of the
C*-algebraic results in [10]. Our approach consists of introducing algebras associated with
subshifts over arbitrary alphabets and suitable topological spaces that, although different
from the cover spaces in [10], play the same role as these spaces.

In the context of a subshift X defined over a finite alphabet, the C*-algebra OX studied
in [10] was originally defined in [12] in terms of a C*-correspondence. In order to for-
mulate a suitable definition for the purely algebraic counterpart, we adapt the universal
property established in Theorem 7.2 of [12]. To accommodate infinite alphabets as well,
we make slight modifications to the relations presented in Theorem 7.2 of [12]. However,
if we were to define a C*-algebra using our resulting relations, as outlined in Defini-
tion 3.1, this definition would subsume OX for finite alphabets. Furthermore, our definition
readily extends to arbitrary alphabets. The authors will explore these C*-algebras for
one-sided subshifts over arbitrary alphabets in an upcoming paper. We decided to first
focus on the purely algebraic setting since, even for finite alphabets, associated algebras
were not yet defined. This decision was motivated by the study of Leavitt path algebras,
which, although connected to the corresponding graph C*-algebras, presents techniques
and results that are often different. For instance, there are graphs with isomorphic graph
C*-algebras, but there does not exist a *-isomorphism between their associated Leavitt
path algebras over the ring of integers [32].

An important step toward our goals is to give a groupoid model for the subshift algebra.
In Theorem 3.12, we prove that our subshift algebra is isomorphic to the Leavitt labelled
path algebra of a certain labelled graph, which can be used in conjunction with [8] to
describe the subshift algebra as a partial skew group ring and as a Steinberg algebra. The
results of [8] are based on [6, 7, 19], and use the theory of inverse semigroups. An altern-
ative approach is to use Boolean dynamical systems and results from [13, 17, 18], which
utilise inverse semigroups and topological correspondences. However, we have decided
to take a more direct and self-contained approach. For the Steinberg algebra description,
we use a groupoid whose unit space is just the Stone dual of the Boolean algebra that
appears in the definition of the subshift algebra. For the partial skew group ring, we define
a topological partial action using the same space and a set-theoretical partial action, which
generalises that of [20] from subshifts of finite alphabets to arbitrary alphabets.

In symbolic dynamics, the study of subshifts over infinite alphabets is the subject of
intense research, with practical applications [34,35]. The main difficulty for infinite alpha-
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bets with the discrete topology is that the infinite product space is not compact (not even
locally compact). This difficulty has motivated several approaches for subshifts over infin-
ite alphabets, such as countable Markov subshifts (where the full shift is the usual shift
with the product topology) or compactifications of subshifts, among others; see [38] for an
overview. In [38], Ott, Tomforde, and Willis (from now on referenced as OTW) introduce
a new subshift associated with an infinite countable alphabet. They show that conjugacy
of subshifts associated with infinite graphs implies isomorphism of the graph C*-algebras.
In [25], ultragraphs are used to propose a notion of subshifts of finite type over infinite
alphabets. This notion is closely related to the ideas of OTW, and [25] shows that con-
jugacy of ultragraph shifts implies isomorphism of their algebras. The relation between
ultragraphs and OTW subshifts is studied in [24], and many results for ultragraphs shifts
are described in [43]. Nevertheless, the connection between the above notions of sub-
shifts over infinite alphabets and their non-commutative algebras is, in general, not fully
described. With our algebras, we describe such a connection. We describe the conjugacy
of OTW subshifts in terms of the conjugacy of our analogues of cover spaces. These, in
turn, imply a diagonal-preserving graded isomorphism of the subshift algebras. There-
fore, we establish a two-way connection between OTW subshifts and non-commutative
algebras.

The problem of topological conjugacy for subshifts over finite alphabet was explored
in [10, 12, 20]. Carlsen proved in Theorem 8.6 of [12] that OX is an invariant for topo-
logical conjugacy, whereas Brix and Carlsen established a complete characterisation of
topological conjugacy in terms of OX in Theorem 4.4 of [10]. One of the main results
of our paper, Theorem 7.6, adds different characterisations of topological conjugacy of
subshifts over finite alphabets to those in Theorem 4.4 of [10]. Our result is also a gen-
eralisation for subshifts over infinite alphabets. As for the results of Dokuchaev and Exel
in [20], they study two C*-algebras associated with a subshift X, namely MX and OX (the
second being the same as the one above by Theorem 10.2 in [20]). The algebra MX is
defined using operators on a Hilbert space. It can be seen as a quotient of OX and there is
no known description of it via a universal property. Dokuchaev and Exel prove that MX is
an invariant for topological conjugacy, but they mention that their method “does not seem
appropriate” to give a different proof for Theorem 8.6 in [12]. In a way, our Theorem 6.4
can be considered the missing piece needed to establish that OX serves as an invariant for
topological conjugacy when employing a partial action approach.

Before we describe the structure of the paper, we point out that we define two algebras
associated with a subshift: one is unital by definition, and the other not necessarily. When
the latter is unital, they coincide. Otherwise, its unitization coincides with a unital subshift
algebra (see Proposition 4.8). We focus on the unital case because it is related to OTW
subshifts (see Proposition 3.17 and Theorem 7.6). The non-unital case is interesting when
studying Leavitt path algebras of graphs with infinite vertices, since these are not unital.
Under certain conditions on the graph, we show that the algebra of the corresponding edge
subshift is isomorphic to the Leavitt path algebra of the graph (see Proposition 4.10). We
also consider the case of Leavitt path algebras of ultragraphs (see Proposition 4.18).

We now give a detailed overview of the paper. In Section 2, we provide the reader
with preliminary definitions and auxiliary results used throughout. In Subsection 2.1,
we present basic elements of symbolic dynamics and define subshifts over an arbitrary



G. Boava, G. G. de Castro, D. Gonçalves and D. W. van Wyk 1048

alphabet. Following [38], we recall the definition of OTW subshifts in Subsection 2.2.
In Subsection 2.3, we develop auxiliary results concerning Boolean algebras, filters, and
algebras generated by idempotents. In Subsection 2.4, we recall the definition of a Leavitt
labelled path algebras, as in [8], which we later connect with subshift algebras.

In Section 3, we define the unital subshift algebra and describe some of its properties,
which include a Z-grading and its realisation as a Leavitt labelled path algebra.

As mentioned before, we define two algebras associated with a subshift. The definition
of the second algebra (which is not necessarily unital) is presented in Section 4. Key
results in this section are the descriptions, under mild conditions, of Leavitt path algebras
associated with graphs or ultragraphs as subshift algebras (Propositions 4.10 and 4.18).

In Section 5, we give two descriptions of the unital subshift algebra as a partial skew
group ring. One description arises from a set-theoretic partial action and the other from a
topological partial action (Theorems 5.9 and 5.21).

From the partial skew group ring characterisation mentioned above, in Section 6,
we define a groupoid and describe unital subshifts algebras as Steinberg algebras (The-
orem 6.5).

Finally, in Section 7, we describe a conjugacy between OTW subshifts in terms of a
homeomorphism between the Stone duals of the Boolean algebras used in the definition
of the unital algebras and in terms of a diagonal-preserving isomorphism of the associated
unital algebras (Theorem 7.6).

2. Preliminaries

In this section, we establish notation and present some results that we require in this paper.
Firstly, we fix basic terminology and notation related to symbolic dynamics. Secondly, we
recall the definition of Ott–Tomforde–Willis (OTW) subshift. Following that, we revisit
the Stone duality theorem, which is used in Section 5. We finish this section stating the
definition of a Leavitt labelled path algebras, as in [8].

Throughout the paper, R stands for a commutative unital ring, N D ¹0; 1; 2; : : :º and
N� D ¹1; 2; : : :º.

2.1. Symbolic dynamics

Let A be a non-empty set, called an alphabet, and let � be the shift map on AN , that
is, � is the map from AN to AN given by �.x/ D .yn/, where x D .xn/ and yn D xnC1.
Elements of A� WD

S1
kD0A

k are called blocks or words, and ! stands for the empty word.
We also set AC D A� n ¹!º. Given ˛ 2 A� [ AN , j˛j denotes the length of ˛, and for
1 � i; j � j˛j, we define ˛i;j WD ˛i � � � j̨ if i � j , and ˛i;j D ! if i > j . If moreover
ˇ 2 A�, then ˇ˛ denotes the usual concatenation. A subset X � AN is invariant for � if
�.X/ � X. For an invariant subset X � AN , we define Ln.X/ as the set of all words of
length n that appear in some sequence of X, that is,

Ln.X/ WD ¹.a0 : : : an�1/ 2 An W 9 x 2 X such that .x0 : : : xn�1/ D .a0 : : : an�1/º:



Algebras of one-sided subshifts over arbitrary alphabets 1049

Clearly, Ln.A
N/ D An, and we always have that L0.X/ D ¹!º. The language of X is the

set LX, which consists of all finite words that appear in some sequence of X, that is,

LX WD

1[
nD0

Ln.X/:

Given F � A�, we define the subshift XF � AN as the set of all sequences x in AN

such that no word of x belongs to F . Usually, the set F will not play a role, so we will
say X is a subshift with the implication that X D XF for some F . We also point out that
subshifts are also called shift spaces in the literature.

Next, we define the key sets that will be used in the definition of the algebra associated
with a subshift and describe some of their properties.

Definition 2.1. Let X be a subshift for an alphabet A. Given ˛; ˇ 2 LX, define

C.˛; ˇ/ WD ¹ˇx 2 X W ˛x 2 Xº:

In particular, we denote C.!; ˇ/ by Zˇ and call it a cylinder set. Moreover, we denote
C.˛; !/ by F˛ and call it a follower set. Notice that X D C.!; !/.

2.2. Ott–Tomforde–Willis subshifts

In this subsection, we briefly recall the construction of subshifts over an arbitrary alphabet
as done in [38].

If A is a finite alphabet, we define†A DAN . If A is an infinite alphabet, define a new
symbol1, not in A, let QA WD A [ ¹1º, and let

†A D ¹.xi /i2N 2
QAN
W xi D1 implies xiC1 D1º:

In both cases,
†inf

A D AN and †fin
A D †A n†

inf
A :

When the alphabet is infinite, the set †fin
A is identified with the finite sequences in A via

the identification

(2.2) .x0x1 : : : xk111 : : : / � .x0x1 : : : xk/:

The sequence .111 : : :/ is denoted by E0, and is called the empty sequence.
Next, we recall the construction of OTW-subshifts (OTW stands for Ott–Tomforde–

Willis).

Definition 2.3. Let F � A�. We define

Xinf
F WD ¹x 2 AN

W no block of x is in F º;

Xfin
F WD ¹x 2 †

fin
A W there are infinitely many a 2 A for which

there exists y 2 AN such that xay 2 Xinf
F º:

The OTW-subshift associated with F is defined as

XOTW
F WD Xinf

F [ Xfin
F :
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The shift map � WXOTW
F ! XOTW

F is defined as

�.x/ D

8̂<̂
:
x1x2 : : : ; if x D x0x1x2 : : : 2 Xinf

F ;

x1 : : : xn�1; if x D x0 : : : xn�1 2 Xfin
F and n � 2;

E0; if x D x0 2 Xfin
F or x D E0:

In the case that F D ;, we have that XOTW
F D †A, which we call the OTW full shift.

Remark 2.4. Notice that Xinf
F coincides with the subshift associated with F in Subsec-

tion 2.1. As in the case of a subshift, we omit the subscript F and write XOTW for XOTW
F .

Similarly to what is done in Section 2.1, we can define the language of an OTW-subshift,
denoted by LXOTW . Note that LX and LXOTW are the same, and therefore there is no ambi-
guity in writing ˛ 2 LX when working in XOTW. Moreover, using the identification given
by (2.2), we may view Xfin as a subset of LX.

We also need the notion of follower and generalised cylinder sets for OTW-subshifts.

Definition 2.5. Let XOTW be an OTW-subshift and ˛ 2LX. The follower set of ˛, denoted
by F .˛/, is defined as the set

F .˛/ WD ¹y2 XOTW
W ˛y2 XOTW

º:

For a finite set F � A and ˛ 2 LX, we define the generalised cylinder set as

Z.˛; F / WD ¹y 2 XOTW
W yi D ˛i 81 � i � j˛j; yj˛jC1 … F º:

To simplify notation, we denote Z.˛;;/ by Z.˛/.

Endowed with the topology generated by the generalised cylinders, XOTW is a compact
totally disconnected Hausdorff; in this topology, the generalised cylinders are compact
and open. We note that the shift map is continuous everywhere, except possibly at E0 (if
E0 2 XOTW). Also, if the alphabet is finite, then XOTW is the usual subshift and the topology
given by the generalised cylinders is the product topology (see Remark 2.26 in [38]).

The following two lemmas will be useful in the upcoming work.

Lemma 2.6. Let XOTW be an OTW-subshift. Let F; G � A be finite sets, let ˛; ˇ 2 LX,
and let n 2 N be such that n � j˛j. Then,

(i) �n.Z.˛; F // D Z.˛nC1;j˛j; F / \ F .˛1;n/;
(ii) Z.˛; F / \ ��n.Z.ˇ; G// is either empty or is equal to Z.
; H/ for some 
 2 LX

and H � A finite.

Proof. (i) This is immediate from the definitions of the generalised cylinders and � .
(ii) Let Y D Z.˛; F / \ ��n.Z.ˇ;G//. We divide the proof into two cases.
First, we suppose that nD j˛j. If ˇ1 2 F or ˛ˇ … LX, then Y D ;, otherwise we have

that Y D Z.˛ˇ;G/.
Secondly, suppose that n < j˛j. If jˇj > j˛j � n, then for Y not to be empty we

must have that ˇ1;j˛j�n D ˛nC1;j˛j and ˇj˛j�nC1 … F . In this case, we have that Y D
Z.˛1;nˇ; G/. If jˇj D j˛j � n and Y is not empty, then ˇ D ˛nC1;j˛j, in which case
Y D Z.˛; F [G/. Finally, if jˇj < j˛j � n and Y is not empty, then ˇ D ˛nC1;nCjˇ j and
˛nCjˇ jC1 … G. In this case, Y D Z.˛; F /.
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In the next lemma, we compare the cylinder and follower sets in the OTW sub-
shift XOTW, denoted by Z and F , as in Definition 2.5, with the cylinder and follower
sets in the subshift X, denoted by Z and F , as in Definition 2.1.

Lemma 2.7. Let XOTW be an OTW-subshift. Let F � A be a finite set and let ˛; ˇ 2 LX.
Then,

(i) Z.˛; F / \ Xinf D Z˛ n .
S
a2F Z˛a/;

(ii) F .˛/ \ Xinf D F˛ ;
(iii) Z.ˇ/ \ ��jˇ j.F .˛// \ Xinf D C.˛; ˇ/.

Proof. The proof is straightforward, and it is left to the reader.

2.3. Stone duality

We define a Boolean algebra as a distributive lattice B with least element and which is
relatively complemented. We do not assume that B has a maximum element, and denote
the join and meet by [ and \, respectively. When B has a maximum element, we say
that B is a unital Boolean algebra.

A filter is a non-empty proper subset � of B such that A \ B 2 � for all A; B 2 �,
and if A; B 2 B are such that A � B and A 2 �, then B 2 �. An ultrafilter is a filter
that is maximal with respect to inclusions. In a Boolean algebra, an ultrafilter is equival-
ently defined as being a prime filter, that is, a filter � such that if A;B 2 B are such that
A [ B 2 �, then A 2 � or B 2 �.

The set of all ultrafilters of B will be denoted by yB. For each A 2 B, we define
OA WD ¹� 2 yB W A 2 �º. We have that OA\B D OA \ OB , OA[B D OA [ OB , and
OAnB D OAnOB for every A; B 2 B. In particular, the family ¹OAºA2B is a basis for
a topology on yB. We will always assume that yB has this topology, and we call yB the
Stone dual of B.

In what follows, for a topological spaceX , we denote by K.X/ the set of all compact-
opens subsets of X . For convenience, we state below the well-known Stone duality the-
orem.

Theorem 2.8 (Stone duality). Let B be a Boolean algebra. Then, yB is a Hausdorff space
and ¹OAºA2B is the set of all compact-open sets of B. Moreover, the map A 2 B 7! OA
2K. yB/ is an isomorphism of Boolean algebras. Reciprocally, if X is a Hausdorff space
such that K.X/ is a basis for its topology, then the map that sends x 2 X to the ultrafilter
�x D ¹A 2K.X/ W x 2Aº is a homeomorphism betweenX and 1K.X/, with inverse given
by � 2 1K.X/ 7!

T
A2� A 2 X . Moreover, if ˆWB1 ! B2 is an isomorphism of Boolean

algebras, then the map ŷ WcB2 !
cB1, given by ŷ .�/ D ��1.�/, is a homeomorphism.

A Hausdorff space with a basis of compact-open sets will be called a Stone space (it is
sometimes called a Boolean space). For a Stone space X , we let Lc.X; R/ denote the
R-algebra of compactly supported locally constant functions, with pointwise operations.
For a non-zero element f 2 Lc.X; R/, its image is a finite set. Let ¹r1; : : : ; rnº be the
set of non-zero elements in the image of f . Then, for each i D 1; : : : ; n, we have that
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Ai D f �1.ri / is compact-open. Moreover, f D
Pn
iD1 ri1Ai , where 1Ai represents the

characteristic function of Ai .
Suppose that A is a commutative R-algebra. The set E.A/ of idempotents of A is a

Boolean algebra, where the order is given by e � f if ef D e for e; f 2 E.A/. In this
case, e \ f D ef and e [ f D e C f � ef for e; f 2 E.A/. The following theorem is
essentially due to Keimel [33].

Theorem 2.9. Let A be a commutative R-algebra generated by its idempotent elements.
Suppose that for r 2 R and e 2 E.A/, re D 0 implies that r D 0 or e D 0. Then, there
is an isomorphism ˆWA! Lc.1E.A/; R/ of R-algebras such that ˆ.e/ D 1Oe for every
e 2 E.A/.

If R and A satisfy the hypothesis of Theorem 2.9 and A ¤ 0, then R must be an
indecomposable ring, that is, 0 and 1 are its only idempotents. Indeed, if r 2 E.R/ n ¹0º
and e 2 E.A/ n ¹0º, then .1 � r/re D 0, from where it follows that r D 1.

Sometimes, it is useful to work with another topological space in place of 1E.A/. We
define the character space of A as the set yA of all R-algebra homomorphisms from A

toR. The topology on yA is the one induced from the productRA, whereR has the discrete
topology. In other words, it is the topology of pointwise convergence. Note that a subbase
for the topology on yA is given by the clopen sets Ua;r WD ¹� 2 yA W �.a/ D rº for a 2 A

and r 2 R.

Proposition 2.10. On the conditions of Theorem 2.9, 1E.A/ is homeomorphic to yA.

Proof. If � 2 yA, it is straightforward to check that �� WD ¹e 2 E.A/ W �.e/ D 1º is a
prime filter and therefore an ultrafilter. We then obtain a map ‰W yA! 1E.A/, given by
‰.�/ D �� , which is injective because A is generated by E.A/. For surjectivity, take
� 2 1E.A/ and let �� WA! R be given by ��.a/ D ˆ.a/.�/, where ˆ is the isomorphism
of Theorem 2.9. Since ˆ.e/ D 1Oe for all e 2 E.A/, we have that ‰.��/ D � .

For each e 2E.A/, we have that‰�1.Oe/DUe;1 and hence‰ is continuous. To show
that ‰ is open, we first observe that U0;r is either the empty set (if r ¤ 0) or yA (if r D 0),
and hence‰.U0;r / is open for every r 2A. Now, given a 2A n ¹0º, we will describe Ua;r
and ‰.Ua;r /. First, we let ¹r1; : : : ; rnº be the distinct non-zero elements of the image
of ˆ.a/. For each i D 1; : : : ; n, we let ei 2 E.A/ be such that Oei D ˆ.a/

�1.ri /. Then
a D

Pn
iD1 riei and eiej D 0 if i ¤ j . As observed above, R must be an indecomposable

ring and, therefore, �.e/ is either 0 or 1 for each e 2 E.A/ and � 2 yA. Hence, for � 2 yA,
�.a/ D 0 or �.a/ D ri for the unique i such that �.ei / D 1. There are a few possibilities
for Ua;r , which we describe next. If r D ri for some i D 1; : : : ; n, then Ua;r D Uei ;1 and
‰.Ua;r /D Oei . If r D 0, then Ua;r D yA n

Sn
iD1Uei ;1 and‰.Ua;r /D1E.A/ nSn

iD1Oei .
Finally, if r … ¹0; r1; : : : ; rnº, then Ua;r D ; and ‰.Ua;r / D ;. We have proved that
‰.Ua;r / is open for every a 2 A and r 2 R, and hence ‰ is an open map.

For indecomposable rings, we can also describe the idempotents of Lc.X; R/ for a
Stone space X .

Lemma 2.11. If R is also an indecomposable ring and X is a Stone space, then the
idempotents of Lc.X;R/ must be of the form 1A for some compact-open subset A of X .
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Proof. Obviously, 0D1;. For a non-zero function f 2Lc.X;R/, we write fD
Pn
iD1 ri1Ai ,

where r1; : : : ; rn are the distinct non-zero elements in the image of f and Ai D f �1.ri /.
Suppose that f is idempotent. Then, f D f 2 D

Pn
iD1 r

2
i 1Ai , which implies that r2i D ri

for each i . Since R is indecomposable and ri ¤ 0 for all i , we have that nD 1 and r1 D 1.
Hence f D 1A1 .

For a homeomorphism hWX ! Y between two Stone spaces, it is easy to see that
�WLc.Y;R/! Lc.X;R/, given by �.f /D f ı h, is an isomorphism of R-algebras, with
inverse given by �.g/ D g ı h�1. We now prove a converse for this result in the case of
indecomposable rings. First, we need a lemma.

Lemma 2.12. Let X be a Stone space, suppose that R is also an indecomposable ring,
and let AD Lc.X;R/. Then, the map that sends x 2X to ¹1A WA2K.X/;x 2Aº 21E.A/
is a homeomorphism.

Proof. Consider the map �WK.X/!E.A/ given by �.A/D 1A. Clearly, it is an injective
homomorphism of Boolean algebras. By Lemma 2.11, this map is also surjective. By the
Stone duality, we have homeomorphisms  WX ! 1K.X/ given by  .x/ D ¹A 2K.X/ W

x 2 Aº and b��1W 1K.X/! 1E.A/ given by b��1.�/ D �.�/. Composing these two maps,
we conclude that the map that sends x 2 X to ¹1A W A 2 K.X/; x 2 Aº 2 1E.A/ is a
homeomorphism.

Proposition 2.13. Let X and Y be Stone spaces and suppose that R is also an indecom-
posable ring. If �W Lc.Y; R/ ! Lc.X; R/ is an isomorphism of R-algebras, then there
exists a homeomorphism hWX ! Y such that �.f / D f ı h for all f 2 Lc.Y;R/.

Proof. Let AX D Lc.X;R/ and AY D Lc.Y;R/. We note that � restricts to an isomorph-
ism of Boolean algebras between E.AY / and E.AX /. We let y�W2E.AX /! 2E.AY / be
the corresponding homeomorphism. We also let hX WX ! 2E.AX / and hY W Y ! 2E.AY /

be the homeomorphisms given by Lemma 2.12. We then define h D h�1Y ı y� ı hX , which
is a homeomorphism between X and Y .

Given x 2 X , let us describe h.x/. First, we let

� D y�.hX .x// D ¹�
�1.1A/ W A 2K.X/; x 2 Aº:

By Lemma 2.11, there is an ultrafilter � of K.Y / such that � D ¹1B W B 2 �º. Then,
h.x/ D

T
B2� B .

Let f 2 Lc.Y; R/. If f D 0, then clearly �.f / D f ı h. Suppose that f ¤ 0 and
write f D

Pn
iD1 ri1Bi , where r1; : : : ; rn are the non-zero elements in the image of f

and Bi D f �1.ri /. For each i , by Lemma 2.11, we have that �.1Bi / D 1Ai for some
Ai 2 K.X/. In this case, �.f / D

Pn
iD1 ri1Ai . It follows from the description of h that

x 2 Ai if and only if h.x/ 2 Bi , for every x 2 X and each i . Hence

.f ı h/.x/ D

nX
iD1

ri1Bi .h.x// D

nX
iD1

ri1Ai .x/ D �.f /.x/;

for each x 2 X . Therefore, �.f / D f ı h for every f 2 Lc.Y;R/.
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2.4. Leavitt labelled path algebras

In this subsection, we recall the definition of Leavitt labelled path algebras, following [8].
A (directed) graph is a quadruple .E0;E1; s; r/ where E0;E1 are sets, sWE1! E0 and

r WE1 ! E0 are maps.
Given a set A, which is thought of as a set of letters, an (edge-)labelling on a graph E

is a surjective map LWE1! A. We call the pair .E;L/ a labelled graph. A path � on E is
a sequence (finite or infinite) of edges � D �1 : : : �n.: : :/ such that r.�i / D s.�iC1/ 8i .
We can extend the map L to any path � by L.�/ D L.�1/ : : :L.�n/.: : :/. An element
˛ D L.�/ is called a labelled path. We also include the empty word ! as a labelled path.
For A � E0, we define L.AE1/ D ¹L.e/ W e 2 E1; s.e/ 2 Aº.

For ˛ 2 A� and A 2 P.E0/ (where P.E0/ denotes the powerset of E0/, the relative
range of ˛ with respect to A is

r.A; ˛/ D ¹r.�/ W � 2 E�; L.�/ D ˛; s.�/ 2 Aº

if ˛ 2 AC, and r.A;˛/D A if ˛ D !. We define r.˛/ WD r.E0; ˛/. Note that r.A; a/¤ ;
if and only if a 2 L.AE1/.

Definition 2.14. A normal labelled space is a triple .E;L;B/, where .E;L/ is a labelled
graph and B � P.E0/ is a Boolean algebra such that

• r.˛/ 2 B and r.A; ˛/ 2 B for all ˛ 2 AC and A 2 B,
• r.A \ B; ˛/ D r.A; ˛/ \ r.B; ˛/ for all ˛ 2 AC and A;B 2 B.

We say that A 2 B is regular if for all B 2 B n ¹;º such that B � A, we have that
0 < jL.BE1/j <1. The set of regular sets is denoted by Breg.

Definition 2.15. Let .E;L;B/ be a normal labelled space. The Leavitt labelled path
algebra associated with .E;L;B/ with coefficients in R, denoted by LR.E;L;B/, is
the universal R-algebra with generators ¹pA W A 2 Bº and ¹sa; s�a W a 2 Aº subject to the
relations

(i) pA\B D pApB , pA[B D pA C pB � pA\B and p; D 0, for every A;B 2 B;
(ii) pAsa D sapr.A;a/ and s�apA D pr.A;a/ s

�
a , for every A 2 B and a 2 A;

(iii) s�a sa D pr.a/ and s�
b
sa D 0 if b ¤ a, for every a; b 2 A;

(iv) sas�a sa D sa and s�a sas
�
a D s

�
a , for every a 2 A;

(v) For every A 2 Breg,
pA D

X
a2L.AE1/

sapr.A;a/ s
�
a :

3. Unital algebras of subshifts

In this section, we define and study a unital algebra associated with a general subshift X.
To define this algebra, we associate a projection with each element in the Boolean algebra
generated by C.˛; ˇ/, ˛; ˇ 2 LX (see Definition 2.1).
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Definition 3.1. Let X be a subshift. Define U to be the Boolean algebra of subsets of X
generated by all C.˛; ˇ/ for ˛; ˇ 2 LX, that is, U is the collection of sets obtained from
finite unions, finite intersections, and complements of the sets C.˛; ˇ/.

Remark 3.2. Notice that each element of U is a finite union of elements of the form

C.˛1; ˇ1/ \ � � � \ C.˛n; ˇn/ \ C.�1; �1/
c
\ � � � \ C.�m; �m/

c :

Next, we define the unital R-algebra associated with the subshift X.

Definition 3.3. Let X be a subshift. We define the unital subshift algebra zAR.X/ as the
universal unital R-algebra with generators ¹pA W A 2 Uº and ¹sa; s�a W a 2 Aº, subject to
the relations:

(i) pXD 1, pA\B D pApB , pA[B D pACpB �pA\B and p;D 0, for everyA;B 2U;
(ii) sas

�
a sa D sa and s�a sas

�
a D s

�
a for all a 2 A;

(iii) sˇ s�˛ s˛ s
�
ˇ
D pC.˛;ˇ/ for all ˛;ˇ 2 LX, where s! WD 1 and, for ˛ D ˛1 : : : ˛n 2 LX,

s˛ WD s˛1 � � � s˛n and s�˛ WD s
�
˛n
� � � s�˛1 .

Remark 3.4. From item (iii) in Definition 3.3, taking ˇ D !, we obtain that s�˛ s˛ D
pC.˛;!/ D pF˛ , for all ˛ 2 LX. Taking ˛ D !, we obtain that sˇ s�ˇ D pC.!;ˇ/ D pZˇ for
all ˇ 2 LX.

Remark 3.5. A unital C*-algebra associated with a subshift X can be defined in the same
manner as we defined zAR.X/, replacing the sentence “universal unital R-algebra” with
“universal unital C*-algebra”. Such a C*-algebra generalises, to the infinite alphabet case,
the C*-algebra associated with a subshift over a finite alphabet defined by Carlsen [12].
Most of the analysis we do regarding zAR.X/ in this paper passes on to the C*-algebraic
version, C �.X/, but usually not automatically. We intend to study C �.X/ (and its non-
unital version) in a follow-up paper.

In the next result, we describe multiplicative properties of elements of zAR.X/.

Proposition 3.6. Let X be a subshift and let zAR.X/ be its associated unital subshift
algebra. Then,

(i) s�a sb D ıa;bpFa , for all a; b 2 A;
(ii) s�˛ s˛ and s�

ˇ
sˇ commute for all ˛; ˇ 2 LX ;

(iii) s�˛ s˛ and sˇ s�ˇ commute for all ˛; ˇ 2 LX ;

(iv) s˛ sˇ D 0 for all ˛; ˇ 2 LX such that ˛ˇ … LX ;

(v) zAR.X/ is generated as an R-algebra by the set ¹sa; s�a W a 2 Aº [ ¹1º.

Proof. For (i), notice that, from Remark 3.4 and item (ii) in Definition 3.3, we can write
s�a sb D s

�
a pZa pZb sb D s

�
a pZa\Zb sb , from where the result follows.

Items (ii) and (iii) follow from Remark 3.4 and item (i) in Definition 3.3.
For (iv), let ˛; ˇ 2 LX be such that ˛ˇ … LX. In this case, F˛ \Zˇ D ;. Then

s˛ sˇ D s˛ s
�
˛ s˛ sˇ s

�
ˇ sˇ D s˛pF˛ pZˇ sˇ D s˛pF˛\Zˇ sˇ D 0:
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For item (v), notice that the projection associated to every generator of the Boolean
algebra U can be written as pC.˛;ˇ/ D sˇ s�˛ s˛ s

�
ˇ

(from item (iii) in Definition 3.3), which
implies that it belongs to the R-algebra generated by the set ¹sa; s�a W a 2 Aº. The result
now follows from item (i) in Definition 3.3.

The grading of a combinatorial algebra (such as the Leavitt path algebra of a graph,
ultragraph, labelled graph, etc.) plays a key role in its study; see [27, 30, 46] for a few
examples. Below we recall the notion of grading and describe a Z-grading of zAR.X/.

Definition 3.7. A Z-graded ring is a ring S with a collection of additive subgroups
¹Snºn2Z of S such that
(1) S D

L
n2Z Sn, and

(2) SmSn � SmCn for all m; n 2 Z.
The subgroup Sn is called the homogeneous component of S of degree n, and the

collection ¹Snºn2Z is called a Z-grading of S .

Definition 3.8. If S is a Z-graded ring, then an ideal I � S is a Z-graded ideal if I DL
n2Z.I \ Sn/. If �WS ! T is a ring homomorphism between Z-graded rings, then � is

Z-graded homomorphism if �.Sn/ � Tn for every n 2 Z.

Proposition 3.9. Let X be a subshift. The unital subshift algebra zAR.X/ is Z-graded, with
grading given by

zAR.X/n D spanR¹s˛pAs
�
ˇ W ˛; ˇ 2 LX; A 2 U and j˛j � jˇj D nº:

Proof. The proof is routine and we omit it (see Corollary 2.1.5 in [1] or Proposition 3.8
in [8] for examples of the techniques employed).

As in [3], we define a normal labelled space .E;L;U/ associated with a subshift X
as follows: the graph E is given by E0 D X, E1 D ¹.x; a; y/ 2 X � A � X W x D ayº,
s.x; a; y/ D x and r.x; a; y/ D y. The labelling map is given by L.x; a; y/ D a, and the
accommodating family U is the Boolean algebra defined above. Then the triple .E;L;U/
is a normal labelled space, see Lemma 5.5 in [3].

We notice that the above graph has no sinks, and forA2U we have L.AE1/D¹a2A W

Za \ A ¤ ;º. This implies that A 2 Ureg if and only if Za \ A ¤ ; for finitely many
a 2A. In particular, if the alphabet is finite, then all elements of U are regular. Also, since
X D

F
a2AZa, we have that if A 2 U, then A D

F
a2L.AE1/Za \ A.

For ˛; ˇ 2 LX such that ˇ ¤ ! and a 2 A, we have from equation (6) in [3] that the
relative range for sets C.˛; ˇ/ is given by

(3.10) r.C.˛; ˇ/; a/ D

´
C.a; !/ \ C.˛; ˇ2 : : : ˇjˇ j/ if ˇ D aˇ2; : : : ; ˇjˇ j;
; otherwise:

Also,

r.C.˛; !/; a/ D

´
C.˛a; !/ if ˛a 2 LX;

; if ˛a … LX:

More generally,
r.A; ˛/ D ¹x 2 X W ˛x 2 Aº:
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This last equality implies that r.˛/ D r.X; ˛/ D F˛ D C.˛;!/. Furthermore, the fol-
lowing holds.

Lemma 3.11. Let X be a subshift, Ai 2 U, i D 1; 2, and a 2 A. Then,

(a) r.A1; a/ \ r.A2; a/ D r.A1 \ A2; a/;
(b) r.A1; a/ [ r.A2; a/ D r.A1 [ A2; a/.

Proof. The proof is straightforward.

Theorem 3.12. Let X be a subshift and let .E;L;U/ be the labelled space defined above.
Then, zAR.X/ Š LR.E;L;U/ as Z-graded R-algebras.

Proof. We use ta and qA for the generators ofLR.E;L;U/. Let us first a build a map from
LR.E;L;U/ to zAR.X/ by showing that the elements ¹pA W A 2 Uº and ¹sa; s�a W a 2 Aº

satisfy the relations defining LR.E;L;U/.
Items (i) and (iv) of the definition of a Leavitt labelled path algebra are immediate.
To check item (iii), notice that we have s�a sa D pFa D pr.a/. If a ¤ b, then

s�b sa D s
�
b sb s

�
b sas

�
a sa D s

�
b pZbpZa sa D s

�
b pZb\Za sa D s

�
b p;sa D 0:

Next, we consider item (ii). We prove it first for elements of U of the form C.˛; ˇ/.
Suppose first that ˇ D !. Then,

pC.˛;!/sa D s
�
˛ s˛ sa D s

�
˛ s˛ sas

�
a sa D sas

�
a s
�
˛ s˛ sa D sapr.C.˛;!/;a/;

where the last equality holds if ˛a 2LX by definition, and if ˛a …LX because in this case
s˛sa D 0 and r.C.˛;!/; a/D ;. Analogously, s�apC.˛;!/ D pr.C.˛;!/;a/s

�
a . Suppose now

that ˇ ¤ !. If a ¤ ˇ1 then, using (iii) and the fact that r.C.˛; ˇ/; a/ D ;, we have that

pC.˛;ˇ/sa D sˇ s
�
˛ s˛ s

�
ˇ sa D 0 D sapr.C.˛;ˇ/;a/:

If a D ˇ1, then using (iii), we have that

pC.˛;ˇ/sa D sˇ s
�
˛ s˛ s

�
ˇ sa D sasˇ2 � � � sˇn s

�
˛ s˛ s

�
ˇn
� � � s�ˇ2 s

�
a sa

D sapC.˛;ˇ2:::ˇn/pC.a;!/ D sapr.C.˛;ˇ/;a/:

Hence, item (ii) is proved for elements of U of the form C.˛; ˇ/. Next, we argue that
it is also valid for any A 2 U. If A is of the form A D

Tn
iD1 C.˛i ; ˇi /, the result follows

from item (i) in Definition 3.3, the fact that (ii) is proved for elements of the form C.˛;ˇ/,
and from item (a) of Lemma 3.11. For elements of U that involve onlyC.˛;ˇ/c , we notice
that pC.˛;ˇ/c sa D .1 � pC.˛;ˇ//sa D sa � sapr.C.˛;ˇ/;a/ D sapr.C.˛;ˇ/;a/c . Finally, the
intersections of terms of the form C.˛;ˇ/ and C.˛;ˇ/c are dealt with in a similar manner,
and their finite unions are dealt with by applying item (i) in Definition 3.3, the fact that (ii)
is proved for elements of the form C.˛; ˇ/, and item (b) of Lemma 3.11.

For (v), we use (ii) and the fact that if A 2 Ureg then A can be decomposed as a finite
disjoint union A D

F
a2L.AE1/A \Za, and hence

pA D
X

a2L.AE1/

pA\Za D
X

a2L.AE1/

pApZa D
X

a2L.AE1/

pAsas
�
a D

X
a2L.AE1/

sapr.A;a/s
�
a :
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This completes the proof that the generating sets of zAR.X/ satisfy the defining relations of
LR.E;L;U/. Thus, by the universal property of LR.E;L;U/, there is a homomorphism
from LR.E;L;U/ into zAR.X/ mapping qA to pA, ta to sa and t�a to s�a .

Now, let us build a map from zAR.X/ to LR.E;L;U/ by showing that the elements
¹qA W A 2 Uº and ¹ta; t�a W a 2 Aº satisfy the relations defining zAR.X/.

For (i), it remains to show that tX D 1. This follows from Corollary 6.5 in [8] since X
is the top element of U and r.X; a/ D r.a/ for all a 2 A. Item (ii) is immediate.

For (iii), we fix ˛ 2 LX and prove that tˇ t�˛ t˛ t
�
ˇ
D qC.˛;ˇ/ using induction on jˇj. If

jˇj D 0, then ˇ D ! and t�˛ t˛ D qr.˛/ D qC.˛;!/. Fix n 2N and suppose that tˇ 0 t�˛ t˛ t
�
ˇ 0
D

qC.˛;ˇ 0/ for all ˇ0 2 LX such that jˇ0j D n. Let ˇ 2 LX be such that jˇj D n C 1. If
C.˛; ˇ/ ¤ ;, by equation (3.10), we have that L.C.˛; ˇ/E1/ D ¹ˇ1º. It follows that

qC.˛;ˇ/ D tˇ1 qr.C.˛;ˇ/;ˇ1/ t
�
ˇ1
D tˇ1 qC.ˇ1;!/qC.˛;ˇ2:::ˇnC1/ t

�
ˇ1

D tˇ1 t
�
ˇ1
tˇ1 tˇ2 � � � tˇnC1 t

�
˛ t˛ t

�
ˇnC1
� � � t�ˇ2 t

�
ˇ1
D tˇ t

�
˛ t˛t

�
ˇ ;

where in the third equality we used the induction hypothesis. If C.˛; ˇ/ D ;, then F˛ \
Fˇ D ; and

tˇ t
�
˛ t˛ t

�
ˇ D tˇ t

�
ˇ tˇ t

�
˛ t˛ t

�
ˇ D tˇ qFˇ qF˛ t

�
ˇ D tˇ qFˇ\F˛ t

�
ˇ D 0 D qC.˛;ˇ/:

By the universal property of zAR.X/, there exists a homomorphism from zAR.X/ into
LR.E;L;U/ that maps pA to qA, sa to ta and s�a to t�a .

It is clear that the maps obtained above are inverses of each other and preserve the
grading.

Remark 3.13. When convenient, we use the above labelled space and the identification
in Theorem 3.12 without further mention. In particular, we use the relations defining
LR.E;L;B/ applied to elements of zAR.X/.

Remark 3.14. In an upcoming paper, the authors will consider the C*-algebraic setting as
in Remark 3.5 and connect it to the C*-algebra of the labelled space .E;L;U/ as defined
by Bates and Pask in [4].

Corollary 3.15 (Graded uniqueness theorem). Let X be a subshift. If S is a Z-graded ring
and �W zAR.X/! S is a graded ring homomorphism with �.rpA/ ¤ 0 for all non-empty
A 2 U and all non-zero r 2 R, then � is injective.

Proof. The result follows from the isomorphism above and Corollary 5.5 in [8].

Corollary 3.16. Let X be subshift and zAR.X/ its unital subshift algebra. If r 2 R n ¹0º
and A 2 U n ¹;º, then rpA ¤ 0.

Proof. Notice that the isomorphism of Theorem 3.12 takes rpA in zAR.X/ to rpA in
LR.E;L;U/, which is non-zero by Lemma 4.12 in [8].

The following proposition relates the unital subshift algebra zAR.X/ of a subshift XF
with the OTW-subshift XOTW

F .
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Proposition 3.17. Let X � AN be the subshift given by a set of forbidden words F , and
let XOTW

F be the corresponding OTW-subshift. Suppose that R is also an indecomposable
ring. Then, spanR¹s˛ s

�
˛ W ˛ 2 LXº Š Lc.XOTW

F ; R/.

Proof. Denote spanR¹s˛ s
�
˛ W ˛ 2 LXº by A, which is unital because 1 D s!s�! . By The-

orem 2.9 and Proposition 2.10, A is isomorphic to Lc. OA;R/, where OA denotes the char-
acter space of A. Note that OA is compact because A is unital. We will define a map ‰
from OA to XOTW

F , but before we prove some properties of elements � in OA. Because R
is indecomposable, �.s˛ s�˛/ 2 ¹0; 1º, for each ˛ 2 LX, since each s˛ s�˛ is a idempotent.
Moreover, we have the following.

Claim. Let � 2 OA. If �.s˛ s�˛/D 1, then �.sˇ s�ˇ /D 0 for every ˇ ¤ ˛ such that jˇj D j˛j.
Moreover, for every initial segment 
 of ˛, we have that �.s
 s�
 / D 1.

To prove this claim, suppose that �.s˛ s�˛/ D 1. Then, �.sˇ s�ˇ / D �.s˛ s
�
˛/�.sˇ s

�
ˇ
/ D

�.s˛ s
�
˛ sˇ s

�
ˇ
/ D �.0/ D 0. Next, let 
 be an initial segment of ˛. Then, 1 D �.s˛ s�˛/ D

�.s
 s
�

 s˛ s

�
˛/ D �.s
 s

�

 /�.s˛ s

�
˛/, and the claim is proved.

We now proceed to define ‰. Let � 2 OA and define N as the supremum of all natural
numbers n for which there exists ˛ 2 LX such that j˛j D n and �.s˛ s�˛/ D 1. Notice
that N is well-defined (and can be equal to1). Indeed, �.s! s�!/ D 1, since otherwise, if
�.s! s

�
!/ D 0, then � D 0.

Suppose thatN D1. In this case, we define‰.�/D y1y2 : : : 2 AN , where for every
i 2 N we have that y1 : : : yi D ˛1 : : : ˛i , and ˛1 : : : ˛i is the unique element of length i
in LX such that �.s˛1::: ˛i s

�
˛1::: ˛i

/ D 1. Using the claim above, it is not hard to check that
‰.�/ 2 XOTW

F .
Next, suppose thatN <1. Let ˛ 2LX be such that j˛j DN and �.s˛ s�˛/D 1. In this

case, we define ‰.�/ D ˛ (with the convention that ! D E0, to include the case N D 0).
We have to check that ˛ 2 Xfin

F .
Let

G˛ D ¹b 2 A W C.˛b; !/ D F˛b ¤ ;º:

If the set G˛ is finite then, since C.!; ˛/ D
F
b2G˛

C.!; ˛b/, we have that pC.!;˛/ DP
b2G˛

pC.!;˛b/. So, �.s˛ s�˛/ D
P
b2G˛

�.s˛b s
�
˛b
/ and hence there is one, and only one,

b 2G˛ such that �.sa˛b s�˛b/D 1. But this contradicts the maximality ofN . Therefore,G˛
must be infinite and this implies that ˛ 2 Xfin

F , as desired.
It remains to prove that ‰ is a homeomorphism.
If �1 ¤ �2 are characters, then they must differ on some generator s˛ s�˛ , where ˛ D

˛1 : : : ˛j˛j. Without loss of generality, suppose that �1.s˛ s�˛/ D 1. Then, for every initial
segment ˇ of ˛, we have that �1.sˇ s�ˇ /D 1. This implies that‰.�1/i D ˛i for 1� i � j˛j.
On the other hand, since �2.s˛s�˛/ D 0, we have that either ‰.�2/ has length less than j˛j
or ‰.�2/j˛j ¤ ˛j˛j. So, ‰ is injective.

To see that ‰ is surjective, let y 2 XOTW
F . For each ˛ 2 LX define �y.s˛ s�˛/ as 1 if ˛ is

an initial segment of y and zero otherwise (again we are identifying ! with E0). Extend �y

linearly to A. Clearly ‰.�y/ D y, but it is necessary to check that �y is well-defined and
multiplicative.

Suppose that
Pn
iD1 �is˛i s

�
˛i
D 0. We have to prove that �y.

Pn
iD1 �is˛i s

�
˛i
/ D 0.
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By the definition of �y , we may assume without loss of generality that each ˛i is an
initial segment of y, and that ˛n has the greatest length among all of them. In this case,
notice that 0 D

Pn
iD1 �i s˛i s

�
˛i
s˛n s

�
˛n
D .

Pn
iD1 �i /s˛n s

�
˛n

. By Corollary 3.16, we obtain
that

Pn
iD1 �i D 0, and hence

�y
� nX
iD1

�i s˛i s
�
˛i

�
D

nX
iD1

�i D 0;

as desired.
By linearity, it is enough to check the multiplicativity of �y on elements of the form

s˛ s
�
˛ , ˛ 2 LX. Notice that, for ˛; ˇ 2 LX, we have that

s˛ s
�
˛ sˇ s

�
ˇ D pC.!;˛/\C.!;ˇ/ D pZ˛\Zˇ :

Suppose, without loss of generality, that j˛j � jˇj. If the product s˛ s�˛ sˇ s
�
ˇ

is zero, this
means that ˇ is not an initial segment of ˛. Hence, either ˛ or ˇ (or both) is not an initial
segment of y, and so �y.s˛ s�˛/D 0 or �y.sˇ s�ˇ /D 0. If s˛ s�˛ sˇ s

�
ˇ
¤ 0, then ˇ is an initial

segment of ˛ and s˛ s�˛ sˇ s
�
ˇ
D s˛ s

�
˛ . If ˛ is an initial segment of y, then ˇ is also an initial

segment of y and �y.s˛ s�˛ sˇ s
�
ˇ
/ D �y.s˛ s

�
˛/ D 1 D �

y.s˛ s
�
˛/�

y.sˇ s
�
ˇ
/. If ˛ is not an

initial segment of y, then �y.s˛ s�˛ sˇ s
�
ˇ
/ D �y.s˛ s

�
˛/ D 0 D �

y.s˛ s
�
˛/�

y.sˇ s
�
ˇ
/. Hence,

the multiplicativity of �y follows.
Next, we prove that ‰ is continuous. Suppose that .�j /j2J is a net converging to �

in OA, that is, .�j /j2J converges pointwise to � (see Subsection 2.3).
Suppose that y WD‰.�/2Xinf

F . Given k >0, let j02J be such that �j .sy1:::yk s
�
y1:::yk

/D

1 D �.sy1:::yk s
�
y1:::yk

/ for every j � j0. So, ‰.�j / agrees with ‰.�/ in the first k letters
for every j � j0, and this implies that .‰.�j //j2J converges to ‰.�/.

We are left with the case where‰.�/2Xfin
F , say‰.�/D y1 : : :ym. LetG�A be finite.

Take j0 2 J such that, for every j � j0, we have �j .sy1:::yms
�
y1:::ym

/D �.sy1:::yms
�
y1:::ym

/

and �j .sy1:::ymas
�
y1:::yma

/D �.sy1:::ymas
�
y1:::yma

/ for every a 2G. It follows that, for j�j0,
the firstm letters of ‰.�j / agree with y1 : : : ym and themC 1 entry of ‰.�j / is not in G,
that is, .‰.�j //j2J converges to ‰.�/ as desired.

Finally, since OA is compact and XOTW
F is Hausdorff, it follows that‰ is a homeomorph-

ism, and the proof is finished.

Definition 3.18. Let X be subshift and zAR.X/ its unital subshift algebra. The diagonal
subalgebra of zAR.X/ is the subalgebra spanR¹s˛pAs

�
˛ W A 2 U; ˛ 2 LXº.

Next, we want to identify the diagonal subalgebra of zAR.X/. For this, recall that yU
represents the Stone dual of the Boolean algebra U (see Subsection 2.3).

Proposition 3.19. Let X � AN be a subshift and suppose that R is also an indecompos-
able ring. Then, spanR¹s˛pAs

�
˛ W A 2 U; ˛ 2 LXº D spanR¹pA W A 2 Uº Š Lc. yU; R/.

Proof. We start observing that for ˛ 2 LX and A; B 2 U, we have that s˛pA\B s�˛ D
s˛pAs

�
˛ s˛pB s

�
˛ , s˛pA[B s�˛ D s˛pAs

�
˛ C s˛pB s

�
˛ � s˛pA\B s

�
˛ and s˛pAnB s�˛ D s˛pAs

�
˛

�s˛pA\B s
�
˛ . Therefore, to prove the required equality, since U is generated by sets of the
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form C.˛;ˇ/, it is sufficient to prove that for ˛;ˇ;
 2LX, we have that s˛pC.ˇ;
/s�˛ D pA
for some A 2 U. Indeed,

s˛pC.ˇ;
/ s
�
˛ D s˛ s
 s

�
ˇ sˇ s

�

 s
�
˛ D

´
pC.ˇ;˛
/; if ˛
 2 LX;

p;; otherwise.

For the isomorphism, by Example 7.8 in [8], Lc. yU;R/ can be seen as a Leavitt labelled
path algebra, with a trivial Z-grading. The universal property of Lc. yU; R/ then implies
that the map that sends 1A 2 Lc. yU; R/ to pA 2 zAR.X/ extends to a graded R-algebra
homomorphism �W Lc. yU; R/ ! zAR.X/, which is injective by Corollary 3.16 and the
graded uniqueness theorem for Leavitt labelled path algebras (Corollary 5.5 in [8]). It is
clear that the image of � is spanR¹pA W A 2Uº, from where the isomorphism spanR¹pA W
A 2 Uº Š Lc. yU; R/ follows.

4. Algebras of subshifts

In this section, we define another R-algebra AR.X/ associated with a subshift X, which
may be non-unital. It coincides with zAR.X/ when it is unital, and its unitization coincides
with zAR.X/ when it is not unital (see Proposition 4.8).

To define AR.X/, we let B be the Boolean algebra of subsets of X generated by all
C.˛; ˇ/, for ˛; ˇ 2 LX not both simultaneously equal to !. Comparing B with U from
Definition 3.1, the only difference is that we are removing X as a generator for the Boolean
algebra B. In some instances, B and U agree. For example, when the alphabet is finite
(since then XD

S
a2AZa), or when there is a letter such that its follower set is the whole X

(see, for instance, Example 4.16). However, there are other instances where they are dif-
ferent, as in Example 4.11.

Definition 4.1. We define the subshift algebra AR.X/ as the universal R-algebra with
generators ¹pA W A 2 Bº and ¹sa; s�a W a 2 Aº subject to the relations:
(i) pA\B D pApB , pA[B D pA C pB � pA\B and p; D 0, for every A;B 2 B;
(ii) sas

�
a sa D sa and s�a sas

�
a D s

�
a , for all a 2 A;

(iii) sˇ s�˛ s˛ s
�
ˇ
D pC.˛;ˇ/, for all ˛; ˇ 2 LX n ¹!º, where for ˛ D ˛1 : : : ˛n 2 LX n ¹!º,

s˛ WD s˛1 � � � s˛n and s�˛ WD s
�
˛n
� � � s�˛1 ;

(iv) s�˛ s˛ D pC.˛;!/, for all ˛ 2 LX n ¹!º;
(v) sˇ s

�
ˇ
D pC.!;ˇ/, for all ˇ 2 LX n ¹!º.

Remark 4.2. Note that s! does not appear in the definition of AR.X/. However, to ease
the notational burden, we often include terms of the form s˛pAs

�
! , s!pAs�ˇ and s!pAs�! ,

which should be interpreted as s˛pA, pAs�ˇ and pA, respectively.

The following results up to Corollary 4.7 are analogues of the unital case. Their proofs
follow the same line of thought, with minor modifications. For Theorem 4.5, as with the
unital case, if .E;L/ is the labelled graph defined in Section 3, then .E;L;B/ is a normal
labelled space.
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Proposition 4.3. Let X be a subshift. Then,

(i) s�a sb D ıa;bpFa , for all a; b 2 A;
(ii) AR.X/ is generated by ¹sa; s�a W a 2 Aº.

Proposition 4.4. Let X be a subshift. The subshift algebra AR.X/ is Z-graded, with grad-
ing given by

AR.X/n D spanR¹s˛pAs
�
ˇ W ˛; ˇ 2 LX; A 2 B and j˛j � jˇj D nº:

Theorem 4.5. Let X be a subshift and let .E;L;B/ be the labelled space as above.
Then, AR.X/ Š LR.E;L;B/ as Z-graded R-algebras. In particular, if r 2 R n ¹0º and
A 2 B n ¹;º, then rpA ¤ 0.

Remark 4.6. As with the unital case, when convenient, we use the above labelled space
and the identification in Theorem 4.5 without further mentioning it.

Corollary 4.7 (Graded uniqueness theorem). Let X be a subshift. If S is a Z-graded ring
and �WAR.X/! S is a graded ring homomorphism with �.rpA/ ¤ 0 for all non-empty
A 2 B and all non-zero r 2 R, then � is injective.

For a non-unital R-algebra A, we understand the unitization of A as the R-algebra
A ˚ R with coordinate-wise addition and multiplication given by .a; r/.b; s/ D .ab C

saC rb; rs/.

Proposition 4.8. Let X be a subshift. If AR.X/ is unital, then it is isomorphic to zAR.X/.
If AR.X/ is not unital, then its unitization is isomorphic to zAR.X/.

Proof. By the definitions of the algebras, Proposition 4.3, Corollary 4.7 and the inclusion
B � U, we have that AR.X/ is isomorphic to the subalgebra of zAR.X/ generated by
¹sa; s

�
a W a 2Aº. Therefore, we do not need to make the distinction between the generators

of AR.X/ and zAR.X/ and we can consider AR.X/ � zAR.X/. Moreover, this inclusion
preserves the grading.

Suppose first that AR.X/ is unital. By Theorem 4.5 and by Corollary 6.5 in [8], B has
a top element I . Suppose that I ¤ X. Then there exists x D .x0x1 � � � / 2 X n I , which
implies that C.!;x0/ 6� I . This is a contradiction, therefore, I D X and B DU. It follows
that AR.X/ D zAR.X/.

We are left with the case in which AR.X/ is not unital. By the universal property of
AR.X/˚ R as an R-module, there exists a linear map ˆWAR.X/˚ R ! zAR.X/ given
byˆ.a; r/D aC r1, which is surjective by Proposition 3.6. It is straightforward to check
that ˆ is multiplicative. To show injectivity, suppose that ˆ.a; r/ D 0 for some .a; r/ 2
AR.X/˚R. Then r1D �a 2AR.X/. Since r1 is of degree 0 in the Z-grading of zAR.X/,
�a is also of degree 0 (in both the Z-gradings of zAR.X/ and AR.X/). Therefore, we can
write

�a D

mX
jD1

�j pBj C

nX
iD1


i s˛i pAi s
�
ˇi
;

where j˛i j D jˇi j > 0, �j ; 
i 2 R n ¹0º and Bj ; Ai 2 B for each i; j . Set A D X n
.
Sn
iD1C.!;ˇi /[

Sm
jD1Bj / and observe thatA¤;, since AR.X/ is not unital. By Defin-
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ition 4.1, items (i) and (v), we have

�apA D
� mX
jD1

�j pBj C

nX
iD1


i s˛i pAi s
�
ˇi

�
pA D 0:

Then rpA D �apA D 0 and by Theorem 4.5, we conclude that r D 0. Since a D �r1, we
have a D 0, proving that ˆ is injective, as desired.

4.1. Graph algebras

In this subsection, we show that a large class of graph algebras can be seen as subshift
algebras. For the reader’s convenience, we recall the definition of the Leavitt path algebra
associated with a graph.

Definition 4.9. Let E D .E0;E1; r; s/ be a directed graph. The Leavitt path algebra asso-
ciated with E with coefficients in R, denoted by LR.E/, is the universal R-algebra with
generators ¹v W v 2 E0º and ¹e; e� W e 2 E1º subject to the relations

(V) vv0 D ıv;v0v, for all v 2 E0;
(E1) s.e/e D er.e/ D e, for all e 2 E1;
(E2) r.e/e� D e�s.e/ D e�, for all e 2 E1;
(CK1) e�e0 D ıe;e0 r.e/, for all e; e0 2 E1;
(CK2) v D

P
e W s.e/Dv ee

�, for all v 2 E0reg, that is, the set of vertices v 2 E0 such that
0 < js�1.v/j <1, called regular vertices.

For a graph E , its associated one-sided edge subshift is the set of all infinite paths,
which is the subshift over the alphabet A D E1 given by the family of forbidden words
¹ef 2 A2 W r.e/ ¤ s.f /º.

Proposition 4.10. Let E be a graph with no sinks and with no vertex that is simultaneously
a source and an infinite emitter. Let X be the associated one-sided edge subshift of E . Then,
AR.X/ Š LR.E/.

Proof. Notice that for e2E1, we have C.e;!/D ¹x2X W s.x/D r.e/º. Hence, for v2E0

that is not a source, there exists e2r�1.v/. In this case, ¹x2X W s.x/ D vº D C.e; !/.
With this in mind, we build a map from LR.E/ to AR.X/ as follows. For e 2 E ,

we set te WD se and te� WD s�e . For v 2 E0 that is not a source, we let e 2 r�1.v/ and
set qv WD pC.e;!/. This does not depend on e since C.e; !/ depends only on r.e/ D v.
If v 2 E0 is a source, then it is not an infinite emitter (by hypothesis), and we define
qv WD

P
e2s�1.v/ ses

�
e . By items (i) and (v) of Definition 4.1, we can also write qv DP

e2s�1.v/ pC.!;e/ D p
S
e2s�1.v/ C.!;e/

.
We prove that the families ¹te; te� W e 2 E1º and ¹qv W v 2 E0º satisfy the relations of

LR.E/ in Definition 4.9.
(V) For v 2 E0, qv qv D qv because pA is idempotent for all A 2 B.
Next, let v;v0 2 E0 be such that v¤ v0 and note that r�1.v/\ r�1.v0/D;. If v and v0

are not sources, then, for e2r�1.v/ and e02r�1.v0/, we have thatC.e; !/ \ C.e0; !/D;,
from where we get qv qv0 D 0. Suppose next that v is a source and v0 is not a source.
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Let e0 2 r�1.v0/. Then, qv qv0 D
P
e2s�1.v/ pC.!;e/pC.e0;!/ D 0, since if e 2 s�1.v/ then

C.e0; !/ \ C.!; e/ D ;, otherwise there exists an element e0ex 2 X, implying v is not a
source. For the last case, suppose that both v and v0 are sources. Since v ¤ v0, the result
follows from items (i) and (v) in Definition 4.1.

(E1) Let e 2 E1. If s.e/ is a source, then it follows from item (ii) in Definition 4.1 and
Proposition 4.3 that qs.e/ te D te . Suppose that s.e/ is not a source. Take f 2 E1 such that
r.f / D s.e/. Notice that C.e; !/ D C.fe; !/. We then have that

qs.e/ te D pC.f;!/ se D sepr.C.f;!/;e/ D sepC.fe;!/ D sepC.e;!/ D se s
�
e se D se D te:

Since qr.e/ D pC.e;!/, the last part of the above computation also shows that te qr.e/ D te .
(E2) This is analogous to (E1).
(CK1) For e; f 2 E1, by Proposition 4.3, we have that

t�e tf D s
�
e sf D ıe;f pC.e;!/ D ıe;f qr.e/:

(CK2) If v 2 E0reg is a source, then (CK2) is clearly satisfied. Suppose that v 2 E0reg

and e 2 r�1.v/. Then C.e; !/ can be written as a finite disjoint union as C.e; !/ DF
f2s�1.v/ C.!; f /. Hence

qv D pC.e;!/ D
X

f2s�1.v/

pC.!;f / D
X

f2s�1.v/

sf s
�
f D

X
f2s�1.v/

tf t
�
f :

By the universal property ofLR.E/, we obtain anR-algebra homomorphismˆWLR.E/!

AR.X/ which is surjective because the set ¹se; s�e W e 2 E1º generates AR.X/ by Proposi-
tion 4.3. It is easy to see that this homomorphism is Z-graded. Moreover, if r 2R n ¹0º and
v 2 E0 is not a source, then rqv D rpC.e;!/ for some e 2 r�1.v/. Because the graph has no
sinks, C.e;!/ ¤ ;, which implies that rqv ¤ 0 by Theorem 4.5. Similarly, if r 2 R n ¹0º
and v 2 E0 is a source, rqv D rpS

e2s�1.v/ C.!;e/
¤ 0. Using the graded uniqueness theorem

for Leavitt path algebras (Theorem 5.3 in [45]), we conclude thatˆ is an isomorphism.

Proposition 4.10 may fail to be true if there is a vertex that is simultaneously a source
and an infinite emitter.

Example 4.11. Let E be a graph such that E0 D ¹v;wº, E1 D ¹enºn2N [ ¹f º, s.en/ D v
and r.en/ D w D s.f / D r.f / for all n 2 N. We have that LR.E/ is unital because E0

is finite [45], Section 4.2. On the other hand, we note that for every ˛; ˇ 2 LX both not
simultaneously the empty word, the setC.˛;ˇ/ is either empty or a singleton. This implies
that B is the family of finite subsets of X, so that X …B. By Proposition 4.8, AR.X/ is not
unital. Therefore, we cannot have that LR.E/ is isomorphic to AR.X/.

4.2. Ultragraph algebras

In this subsection, we focus on ultragraph algebras, which include algebras associated
with infinite matrices (see [31]).

Definition 4.12. An ultragraph is a quadruple G D .G0;G 1; r; s/ consisting of two count-
able sets G0;G 1, a map sWG 1 ! G0, and a map r WG 1 ! P.G0/ n ¹;º, where P.G0/ is
the power set of G0.
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Definition 4.13. Let G be an ultragraph. Define G 0 to be the smallest subset of P.G0/
that contains ¹vº for all v 2 G0, contains r.e/ for all e 2 G 1, contains ;, and is closed
under finite unions and finite intersections. Elements of G 0 are called generalised vertices.

For an ultragraph G , its associated one-sided edge subshift, XG , is the set of all infinite
paths, which is the subshift over the alphabet A D G 1 given by the family of forbidden
words ¹ef 2 A2 W s.f / … r.e/º.

Example 4.14. We can recode the vertex subshift XA associated with a matrix A as the
edge subshift of an ultragraph. Indeed, given a matrixA, let G be the associated ultragraph
(as defined by Tomforde in [44]). Then the map .ei / 2 XG ! .s.ei // 2 XA is a bijective
1-step code between the subshifts, so the shift algebras associated are the same.

The following description of G 0 will be useful.

Lemma 4.15 (Lemma 2.12 in [44]). If G is an ultragraph, then

G 0 D
° \
e2X1

r.e/
S
� � �
S \

e2Xn

r.e/ [ F W X1; : : : ; Xn are finite subsets of G 1

and F is a finite subset of G0
±
:

Furthermore, F may be chosen to be disjoint from
T
e2X1

r.e/ [ � � � [
T
e2Xn

r.e/.

Example 4.16. Let G be the ultragraph associated with the renewal shift (see [40]), that
is, the ultragraph with a countable set of vertices, sayG0 D ¹1; 2; : : :º, and a countable set
of edges, say ¹e1; e2; : : :º, such that s.ei / D i , for all i , r.e1/ D G0 and r.ej / D j � 1
for j > 1. This ultragraph is depicted below. Let XG be the associated subshift and note
that U D B because C.e1; !/ D XG . Hence AR.XG / D zAR.XG / by Proposition 4.8.

1 2 3 4 5 6 7 � � �

Next, we will show that, for an ultragraph with only regular vertices (that is, vertices v
such that 0 < js�1.v/j <1), the subshift algebra associated with its one-sided edge sub-
shift is isomorphic to the associated ultragraph Leavitt path algebra. In particular, this
will include algebras associated with infinite matrices, as the ultragraph associated with
an infinite matrix has only regular vertices. Before we proceed, we recall the definition of
ultragraph Leavitt path algebras below; see [16, 26, 31].

Definition 4.17. Let G be an ultragraph. The Leavitt path algebra of G , denoted by
LR.G /, is the universal R-algebra with generators ¹se; s�e W e 2 G 1º [ ¹pA W A 2 G 0º

and relations
(1) p; D 0; pApB D pA\B ; pA[B D pA C pB � pA\B , for all A;B 2 G 0;
(2) ps.e/ se D sepr.e/ D se and pr.e/ s�e D s

�
eps.e/ D s

�
e , for each e 2 G 1;
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(3) s�e sf D ıe;f pr.e/, for all e;f 2 G ;
(4) pv D

P
s.e/Dv

se s
�
e whenever 0 < js�1.v/j <1.

Proposition 4.18. Let G be an ultragraph such that every vertex is regular, and let XG be
its one-sided edge shift. Then AR.XG / Š LR.G /.

Proof. Notice that for e 2 G 1, we have that Fe D C.e; !/ D ¹x 2 XG W s.x/ 2 r.e/º.
For each A 2 P.G0/, we let A0 D ¹x 2 XG W s.x/ 2 Aº. Clearly, for A;B 2 P.G0/,

we have that .A [ B/0 D A0 [ B 0 and .A \ B/0 D A0 \ B 0. Also, for v 2 G0, because v
is regular, we have ¹vº0 D

S
e2s�1.v/ C.!; e/ 2 B. And for e 2 G 1, we have r.e/0 D

C.e; !/ 2 B. It follows from Lemma 4.15 that A0 2 B for all A 2 G 0.
With this in mind, we build a map from LR.G / to AR.XG / as follows. For e 2 G 1, we

set te WD se and t�e WD s
�
e . For each A 2 G 0, we set qA WD pA0 .

We prove that the families ¹te; t�e W e 2 G 1º and ¹qA W A 2 G 0º satisfy the relations
defining LR.G /.

(1) For the empty set, we have q; D p;0 D p; D 0. If A; B 2 G 0, then qAqB D
pA0 pB 0 D pA0\B 0 D p.A\B/0 D qA\B . Similarly, we see that qA[B D qA C qB � qA\B .

(2) Let e 2 G 1 and set v D s.e/. Then,

qs.e/ te D
X

f2s�1.v/

pC.!;f / se D
X

f2s�1.v/

sf s
�
f se D se D te

and
te qr.e/ D sepC.e;!/ D se s

�
e se D se D te:

The relations involving te� follow analogously.
(3) For e; f 2 G1, using Proposition 4.3, we have that

t�e tf D s
�
e sf D ıe;f pC.e;!/ D ıe;f qr.e/:

(4) If v is a regular vertex, then

qv D
X

f2s�1.v/

pC.!;f / D
X

f2s�1.v/

sf s
�
f D

X
f2s�1.v/

tf t
�
f :

By the universal property ofLR.G /, we obtain anR-algebra homomorphismˆWLR.G /!

AR.XG /which is surjective because the set ¹se; s�e W e 2 G 1º generates AR.XG / by Propos-
ition 4.3. It is easy to see that this homomorphism is Z-graded. Moreover, if r 2 R n ¹0º
and A 2 G 0 is non-empty, then rqA ¤ 0 by Theorem 4.5. Applying the graded uniqueness
theorem for ultragraphs (Theorem 5.4 in [16]), we conclude thatˆ is an isomorphism.

The class of Leavitt path algebras in Proposition 4.18 contains algebras that cannot be
obtained as the Leavitt path algebra of a graph. For example, the ultragraph with vertices
¹vº [ ¹wi W i 2 Nº, and edges ¹eº [ ¹fi W i 2 Nº, with s.e/ D v, r.e/ D ¹wi W i 2 Nº,
and s.fi / D r.fi / D ¹wiº belongs to the aforementioned class and, by Proposition 2.7
in [21], the associated Leavitt path algebra is not isomorphic to the Leavitt path algebra of
any graph.
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5. Unital algebras of subshifts via partial actions

In this section we give two descriptions of zAR.X/ as partial skew group rings, one arising
from a set-theoretic partial action (Subsection 5.1) and the other from a topological partial
action (Subsection 5.2). We refer the reader to [22] for background on partial actions.
See also Definition 4.2 in [23] for the definitions of semi-saturated and orthogonal partial
actions.

Let X be a subshift over an alphabet A.

5.1. The partial skew group ring zDR.X/ Ì� F

Let F .X; R/ denote the R-algebra of functions from X to R with pointwise operations.
Then we let zDR.X/ be the subalgebra of F .X;R/ generated by the characteristic functions
of the sets C.˛; ˇ/, where ˛; ˇ 2 LX. Let F be the free group generated by A with the
empty word ! as the identity of F .

Our goal in this subsection is to show that there is a partial action � of F on zDR.X/
such that zAR.X/ is isomorphic to the partial skew group ring zDR.X/ Ì� F .

For a 2 A, we define y�aWC.a; !/! C.!; a/ by

(5.1) y�a.x/ D ax;

and y�a�1 WC.!; a/! C.a; !/ by

(5.2) y�a�1.ax/ D x:

Proposition 5.3. The maps y�a and y�a�1 , with a 2A, define a unique orthogonal and semi-
saturated partial action y� D .¹Wtºt2F ; ¹y�tºt2F / of F on X such that Wˇ˛�1 D C.˛; ˇ/
and

y�˛ˇ�1.ˇx/ D ˛x

for every ˇx 2 C.˛;ˇ/ and ˛;ˇ 2LX with ˇ˛�1 in reduced form. Moreover, if t ¤ ˛ˇ�1

for every ˛; ˇ 2 LX, then Wt D ;.

Proof. The partial action is essentially that of Section 4 in [20], but for an arbitrary alpha-
bet. We leave the details to the reader.

Next, we associate an algebraic partial action with y� , similar to the dual action of a
topological partial action. For ˛; ˇ 2 LX such that ˛ˇ�1 is in reduced form, let 1˛ˇ�1
denote the characteristic function of W˛ˇ�1 D C.ˇ; ˛/ and D˛ˇ�1 the ideal of zDR.X/

generated by 1˛ˇ�1 . Note that D˛ˇ�1 is the ideal of functions in zDR.X/ that vanish on
C.ˇ; ˛/c and has unit 1˛ˇ�1 . Define �˛ˇ�1 WDˇ˛�1 ! D˛ˇ�1 by �˛ˇ�1.f / D f ı y�ˇ˛�1 ,
where f 2 Dˇ˛�1 . Since y�˛ˇ�1 is a bijection that maps Wˇ˛�1 D C.˛; ˇ/ onto W˛ˇ�1 D
C.ˇ; ˛/, it follows that �˛ˇ�1 is an isomorphism that maps the ideal Dˇ˛�1 onto the ideal
D˛ˇ�1 . In particular, �˛ˇ�1.1ˇ˛�1/ D 1˛ˇ�1 . If t cannot be expressed in the form ˛ˇ�1,
we define Dt D ¹0º and �t equals the zero function. Hence, we have an algebraic partial
action � D .¹Dtºt2F ; ¹�tºt2F / of F on zDR.X/. This partial action is semi-saturated; to
see this, apply Proposition 4.10 in [22] to ¹�a; a 2 Aº, and appeal to the uniqueness of the
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partial action given by Proposition 4.10 in [22]. Moreover, if a; b 2 A and a ¤ b, then
C.!; a/ \ C.!; b/ D ;, which implies that Da \Db D ¹0º. That is, � is an orthogonal
partial action.

Remark 5.4. Note that, for t 2 F , we have that Dt ¤ ¹0º if and only if there exist
˛; ˇ 2 LX such that t D ˛ˇ�1 and C.ˇ; ˛/ ¤ ;.

The partial skew group ring associated with � is defined as

zDR.X/ Ì� F D
M
t2F

Dt D

°X
ft ıt W t 2 F ; ft 2 Dt

±
;

where it is understood that ft is non-zero for finitely many terms and ıt merely serves as
a placeholder to remind us that ft 2 Dt . Multiplication is defined by

(5.5) .fs ıs/.gt ıt / D �s .�
�1
s .fs/gt /ıst :

The following three lemmas describe some products, a Z-grading, and a set of gen-
erators of zDR.X/ Ì� F . Since the techniques used in the proofs are very similar to those
used in [19], we omit them here.

Lemma 5.6. Consider the partial skew group ring zDR.X/ Ì� F . For every ˛ 2 LX n ¹!º,
we have that

(i) .1˛1ı˛1/ � � � .1˛j˛jı˛j˛j/ D 1˛ ı˛ ,

(ii) .1˛�1
j˛j
ı˛�1
j˛j
/ � � � .1˛�11

ı˛�11
/ D 1˛�1 ı˛�1 ,

(iii) .1˛ ı˛/.1˛�1 ı˛�1/ D 1˛ ı! ,

(iv) .1˛�1 ı˛�1/.1˛ ı˛/ D 1˛�1 ı! ,

(v) .1˛ ı˛/.1ˇ�1 ıˇ�1/ D 1˛ˇ�1 ı˛ˇ�1 for ˇ 2 LX such that ˛ˇ�1 is in reduced form.

Lemma 5.7. The algebra zDR.X/Ì�F has a Z-grading, with the homogeneous component
of degree n given by

. zDR.X/ Ì� F/n D spanR¹f˛ˇ�1 ı˛ˇ�1 W ˛; ˇ 2 LX and j˛j � jˇj D nº:

Lemma 5.8. The partial skew group ring zDR.X/ Ì� F is generated as an R-algebra by

¹1aıa; 1a�1 ıa�1 W a 2 A [ ¹!ºº:

Theorem 5.9. Let X be a subshift. Then, zAR.X/ Š zDR.X/ Ì� F via an isomorphism that
sends sa to 1aıa and s�a to 1a�1 ıa�1 .

Proof. We use the universal property of zAR.X/ to build a homomorphism ˆW zAR.X/!
zDR.X/ Ì� F . Let A 2 U. By Lemma 2.2 in [16], we have that 1A 2 zDR.X/. Then, PA WD
1Aı! 2 zDR.X/ Ì� F . For a 2 A, let Sa WD 1aıa 2 zDR.X/ Ì� F and let S�a WD 1a�1ıa�1 2
zDR.X/ Ì� F . We claim that PA and Sa satisfy the relations in Definition 3.3. Indeed,

item (i) follows from basic properties of algebraic operations on characteristic functions,
and item (ii) follows from Lemma 5.6. For item (iii), let ˛;ˇ2LX and put S˛DS˛1 � � �S˛j˛j ,
Sˇ D Sˇ1 � � �Sˇjˇ j , S

�
˛ D S

�
˛j˛j
� � �S�˛1 and S�

ˇ
D S�

ˇjˇ j
� � �S�

ˇ1
. Write ˛ D ˛0
 and ˇ D ˇ0
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in such a way that ˇ0˛0�1 is in reduced form. Note that C.!; ˇ/ \ C.˛0; ˇ0/ D C.˛; ˇ/.
Then, by Lemma 5.6, we have that

Sˇ S
�
˛ S˛S

�
ˇ D .1ˇ ıˇ /.1˛�1 ı˛�1/.1˛ı˛/.1ˇ�1 ıˇ�1/ D .1ˇ ıˇ /.1˛�1 ı!/.1ˇ�1 ıˇ�1/

D �ˇ .1ˇ�11˛�1/ı! D 1ˇ 1ˇ˛�1 ı! D 1ˇ 1ˇ 0˛0�1 ı! D 1C.!;ˇ/1C.˛0;ˇ 0/ ı!

D 1C.˛;ˇ/ ı! D PC.˛;ˇ/;

which shows that item (iii) holds. Then, by the universal property of zAR.X/, there exists
a homomorphism ˆW zAR.X/! zDR.X/ Ì� F taking sa 7! Sa, s�a 7! S�a and pA 7! PA. It
follows from Lemma 5.8 that ˆ is surjective, and it is not hard to see that ˆ is Z-graded.

Also, note that for every non-zero r 2 R and non-empty A 2 U,

ˆ.rpA/ D r 1A ı! ¤ 0;

since 1A is a characteristic function of a non-empty set. By Corollary 3.15, we deduce
that ‰ is injective.

We can use Theorem 5.9 to also characterise AR.X/ as a partial skew group ring. For
that, we let B be the Boolean algebra defined in Section 4 and let DR.X/ be the subalgebra
of zDR.X/ generated by ¹1AºA2B . In fact, DR.X/ is an ideal of zDR.X/, so we can restrict
the partial action � to DR.X/. More precisely, for each t 2 F , we let

D0t D ¹f 2 Dt \DR.X/ W �t�1.f / 2 DR.X/º

and we let � 0t WD
0

t�1
! D0t be the restriction of �t .

Theorem 5.10. Let X be a subshift. Then AR.X/ Š DR.X/ Ì� 0 F .

Proof. The proof follows the same line of thought as Lemma 5.8 and Theorem 5.9. The
main difference is that 1! ı! does not appear as a generator of DR.X/ Ì� 0 F .

5.2. The partial skew group ring Lc. yU; R/ Ì'F

Next, we construct a topological partial action such that its dual algebraic partial action
gives a partial skew ring isomorphic to zDR.X/ Ì� F . Recall from Subsection 2.3 that yU
denotes the Stone dual of U, and that the topology on yU has a basis given by the sets
OAD ¹� 2 yU WA 2 �º, whereA 2U. For each a 2A, we put Va WDOZa and Va�1 WDOFa .
Then we define y'aWVa�1 ! Va by

(5.11) y'a.�/ D ¹A 2 U W r.A; a/ 2 �º;

and we define y'a�1 WVa ! Va�1 by

(5.12) y'a�1.�/ D ¹B 2 U W r.A; a/ � B for some A 2 �º:

We need the following lemma to prove that the maps y'a and y'a�1 are well-defined
homeomorphisms.
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Lemma 5.13. For each a 2 A and A 2 U, let aA D ¹ax 2 X W x 2 Aº. Then, aA 2 U.
Moreover, r.aA; a/�A, and if B2U is such that B�Za and r.B; a/�A, then B�aA.

Proof. Suppose first that A D C.˛; ˇ/. If aˇ 2 LX, then aA D C.˛; aˇ/ 2 U. And if
aˇ … LX, then aAD ; 2U. We claim that aC.˛;ˇ/c D Za nC.˛; aˇ/ if aˇ 2LX. Sup-
pose first that ax 2 aC.˛; ˇ/c ; then clearly ax 2 Za. Supposing that ax 2 C.˛; aˇ/, we
would get ax D aˇy for some y 2 X such that ˛y 2 X. This would imply that x 2 C.˛;ˇ/,
which is a contradiction. Similarly, if ax 2 Za n C.˛; aˇ/, we get that x 2 C.˛; ˇ/c , so
that ax 2 aC.˛; ˇ/c .

It is easy to see that for A1; A2 2 U, we have that a.A1 [ A2/ D aA1 [ aA2 and
a.A1 \ A2/ D aA1 \ aA2.

Since sets of the form C.˛; ˇ/ generate U, the first part of the result follows.
For the second part, we have

r.aA; a/ D ¹x 2 X W ax 2 aAº � A:

Now, let B 2U be such that B � Za and r.B; a/ � A. For x 2 B , we have that x D ax0

for some x0 2 X. Hence x0 2 r.B; a/ � A, so that x D ax0 2 aA.

Proposition 5.14. For every a 2 A, the map y'a is a homeomorphism of Va�1 onto Va,
with inverse y'a�1 .

Proof. We begin by showing y'a�1 is well-defined. Let � 2 Va. Then Za 2 � and, since
r.Za; a/D C.a;!/D Fa, we have that Fa 2 y'a�1.�/. Hence y'a�1.�/ 2 Va�1 . To see that
y'a�1.�/ is a filter, suppose that B1; B2 2 y'a�1.�/. Then, there exist A1 and A2 in � such
that r.Ai ; a/ � Bi , i D 1; 2. Then, r.A1 \A2; a/ D r.A1; a/\ r.A2; a/ � B1 \B2. So,
B1 \ B2 2 y'a�1.�/: It is clear that y'a�1.�/ is upward-closed. For B1; B2 2 U, suppose
that r.A; a/ � B1 [ B2 for some A 2 �. Then, A \ Za � aB1 [ aB2, by Lemma 5.13,
and hence aB1 [ aB2 2 �. Because � is an ultrafilter, either aB1 2 � or aB2 2 �. Note that
r.aBi ; a/ � Bi , i D 1; 2, so that either B1 2 y'a�1.�/ or B2 2 y'a�1.�/. Also, for A 2 �,
because Za 2 �, we have that ; ¤ r.A \ Za; a/ D r.A; a/ so that ; … y'a�1.�/. Hence
y'a�1.�/ is an ultrafilter, which proves that y'a�1 is well-defined.

Next, we show that y'a is well-defined. Let � 2 yU be such that Fa 2 �. Then r.Za; a/
D Fa implies that Za 2 y'a.�/, and thus y'a.�/ 2 OZa . To see that y'a.�/ is an ultrafilter,
notice that ; … y'a.�/, because r.;; a/ D ; … �. Let A;B 2 y'a.�/. Then r.A \ B; a/ D
r.A;a/\ r.B;a/ 2 �, so thatA\B 2 y'a.�/. IfA 2 y'a.�/ andB 2U is such thatA�B ,
then r.A; a/ � r.B; a/, so that r.B; a/ 2 �. Hence B 2 y'a.�/. Finally, if A;B 2 U are
such that A [ B 2 y'a.�/, then r.A; a/ [ r.B; a/ D r.A [ B; a/ 2 �. Because � is an
ultrafilter, r.A; a/ 2 � or r.B; a/ 2 �, from where we get A 2 y'a.�/ or B 2 y'a.�/. Hence
y'a.�/ is an ultrafilter and well-defined.

We show that y'a�1 and y'a are bijections and inverses of each other. First we show
that y'a�1.y'a.�// D �. Because these maps take ultrafilters to ultrafilters, it suffices to
show y'a�1.y'a.�// � �. Let B 2 y'a�1.y'a.�//. Then there exists A 2 y'a.�/ such that
r.A; a/ � B . By the definition of y'a.�/, we have that r.A; a/ 2 � and hence B 2 �, prov-
ing that y'a�1.y'a.�// � �. Secondly, to see that y'a.y'a�1.�// D � for all � 2 Va D OZa ,
let � 2 yU be such that Za 2 �. For A 2 �, we have that r.A; a/ 2 y'a�1.�/ and hence
A 2 y'a.y'a�1.�//, proving that � � y'a.y'a�1.�//. Since these are ultrafilters, it follows that
y'a.y'a�1.�// D �. Hence, y'a�1 and y'a are bijections and inverses of each other.
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Finally, we show that y'a�1 is a homeomorphism of Va D OZa onto Va�1 D OFa . If
A�Za, then y'a�1.OA/DOr.A;a/ �OFa . IfB � Fa, then we claim that y'a.OB/DOaB .
For � 2 OaB , we have that � 2 OZa , because aB � Za. Also, y'a�1.�/ 2 OB , because
r.aB; a/ � B , and hence � D y'a.y'a�1.�// 2 y'a.OB/. On the other hand, let � 2 y'a.OB/
be so that � 2 OZa and y'a�1.�/ 2 OB . Then there exists A 2 � such that r.A; a/ � B .
Also, r.A \Za; a/ D r.A; a/ � B . By Lemma 5.13, aB is the largest subset of Za such
that r.aB; a/ � B , so that A \Za � aB and aB 2 � . Hence � 2 OaB . Therefore, since
the sets OA form a basis for the topology in yU, y'a�1 is a homeomorphism of Va D OZa
onto Va�1 D OFa and the proof is complete.

Proposition 5.15. The maps y'a and y'a�1 , with a 2 A, define an orthogonal semi-satu-
rated topological partial action y' D .¹Vtºt2F ; ¹y'tºt2F / of F on yU such that Vˇ˛�1 D
OC.˛;ˇ/ and

y'˛ˇ�1.�/ D ¹A 2 U W r.B; ˇ/ � r.A; ˛/ for some B 2 �º

for every � 2 Vˇ˛�1 and ˛; ˇ 2 LX such that ˛ˇ�1 is in reduced form.

Proof. Since each y'a, with a 2 A, is a bijection of Va�1 onto Va by Proposition 5.14, it
follows from Proposition 4.10 in [22] that there is a unique semi-saturated set-theoretic
partial action y' D .¹Vtºt2F ; ¹y'tºt2F / of F on yU. Moreover, this partial action is ortho-
gonal, since Va \ Vb D OZa \ OZb D OZa\Zb D O; D ; for a; b 2 A and a ¤ b.
Appealing again to Proposition 5.14 and the fact that y' is semi-saturated, we see that y' is
a topological partial action.

Note that for every ˛; ˇ 2 LX and A 2 U, r.r.A; ˛/; ˇ/ D r.A; ˛ˇ/. By induction,
applying (5.11) and (5.12) iteratively and using that the partial action is semi-saturated, for
every ˛ 2 LX, we have that V˛ D OZ˛ , V˛�1 D OF˛ , and for every � 2 V˛�1 and � 2 V˛ ,
we have that

(5.16) y'˛.�/ D ¹A 2 U W r.A; ˛/ 2 �º

and
y'˛�1.�/ D ¹B 2 U W r.A; ˛/ � B for some A 2 �º:

Thus, for ˛; ˇ 2 LX such that ˛ˇ�1 is in reduced form, again using that the partial action
is semi-saturated, we have that

y'˛ˇ�1.�/ D y'˛ ı y'ˇ�1.�/ D ¹A 2 U W r.B; ˇ/ � r.A; ˛/ for some B 2 �º

for every � 2 Vˇ˛�1 .
We now prove that Vˇ˛�1 DOC.˛;ˇ/. By Proposition 2.6 in [22], we have that Vˇ˛�1 \

Vˇ D y'ˇ .V˛�1 \ Vˇ�1/. Because the partial action is semi-saturated, Vˇ˛�1 � Vˇ , so that
Vˇ˛�1 D y'ˇ .V˛�1 \ Vˇ�1/. Thus,

Vˇ˛�1 D ¹y'ˇ .�/ W � 2 V˛�1 \ Vˇ�1º D ¹y'ˇ .�/ W C.˛; !/ \ C.ˇ; !/ 2 �º:

It follows from (3.10) that r.C.˛;ˇ/;ˇ/D C.˛;!/\C.ˇ;!/. Therefore, y'ˇ .�/ 2 Vˇ˛�1
if and only if r.C.˛; ˇ/; ˇ/ 2 �, which holds if and only if C.˛; ˇ/ 2 y'ˇ .�/, by (5.16).
That is, y'ˇ .�/ 2 Vˇ˛�1 if and only if y'ˇ .�/ 2 OC.˛;ˇ/. This completes the proof.
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The partial action of Proposition 5.15 can be seen as an extension of the partial action
of Proposition 5.3. For that, notice that for each x 2 X, the set �x D ¹A 2 U W x 2 Aº is
an element of yU. We can then define a map �WX! yU by �.x/ D �x .

Proposition 5.17. The map �WX! yU is injective and equivariant with respect to y� and y'.
Moreover, the image of � is dense in yU.

Proof. To see that � is injective, let x; y 2 X be such that x ¤ y. Then, there exists n 2 N
such that x0;n ¤ y0;n and hence Zx0;n 2 �x n �y , which implies that �x ¤ �y .

To show that � is equivariant, it is enough to consider t D ˛ˇ�1 for ˛;ˇ 2LX, where t
is written in reduced form. Let ˇx 2 C.˛; ˇ/. On the one hand, by Proposition 5.15, we
have that

y'˛ˇ�1.�.ˇx// D ¹A 2 U W r.B; ˇ/ � r.A; ˛/ for some B 3 ˇxº:

On the other hand, by Proposition 5.3,

�.y�˛ˇ�1.ˇx// D ¹A 2 U W ˛x 2 Aº:

LetA 2 y'˛ˇ�1.�.ˇx// and letB be such that ˇx 2B and r.B;ˇ/� r.A;˛/. By definition,
we have that x 2 r.B; ˇ/ and hence ˛x 2 A, that is, A 2 �.y�˛ˇ�1.ˇx//. Because we are
dealing with ultrafilters, we conclude that

y'˛ˇ�1.�.ˇx// D �.y�˛ˇ�1.ˇx//:

For the last part, let � 2 yU. A basic open neighbourhood of � is a set of the form OA
for some non-empty A 2 U. Then, for any x 2 A, we have that �.x/ 2 OA.

We now build the dual algebraic partial action of y' as follows. For t 2 F , we let
It D Lc.Vt ; R/. Then It is the unital ideal in Lc. yU; R/ generated by the characteristic
function 1Vt . Define 't W It�1 ! It by

't .g/ D g ı y't�1 for g 2 It�1 .

Then ' D .¹Itºt2F ; ¹'tºt2F / is an algebraic partial action of F on Lc. yU; R/. Our next
goal is to prove that AR.X/ is isomorphic to the partial skew group ring Lc. yU; R/ Ì' F
associated with '.

If Y is a set and C � P .Y /, then we let FC denote the subalgebra of F .Y;R/ gener-
ated by ¹1C ºC2C .

Lemma 5.18. The algebras zDR.X/ and FU coincide.

Proof. Since U is the algebra of sets generated by ¹C.˛; ˇ/ W ˛; ˇ 2 LXº, it follows from
Lemma 2.2 in [16] that zDR.X/ is generated as an algebra by ¹1A W A 2 Uº.

Lemma 5.19. Let ˛; ˇ; 
; ı 2 LX be such that ı D ˇı0 for some ı0 2 LX and ˛ˇ�1 is in
reduced form in F . Then,

(i) y�˛ˇ�1.C.
; ı/ \ C.˛; ˇ// D C.
; ˛ı0/ \ C.ˇ; ˛/,
(ii) y'˛ˇ�1.OC.
;ı/\C.˛;ˇ// D OC.
;˛ı 0/\C.ˇ;˛/.
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Proof. (i) Let x 2 C.
; ı/ \ C.˛; ˇ/. Then x D ıy D ˇı0y for some y 2 X such that

y; ˛ı0y 2 X. Applying y�˛ˇ�1 , we have that

y�˛ˇ�1.x/ D ˛ı
0y 2 C.
; ˛ı0/ \ C.ˇ; ˛/:

Hence, y�˛ˇ�1.C.
; ı/\C.˛;ˇ//� C.
;˛ı0/\C.ˇ;˛/. Analogously, y�ˇ˛�1.C.
;˛ı0/\
C.ˇ;˛//�C.
;ı/\C.˛;ˇ/. Applying y�˛ˇ�1 to both sides of the latter inclusion, we have
that C.
; ˛ı0/ \ C.ˇ; ˛/ � y�˛ˇ�1.C.
; ı/ \ C.˛; ˇ//, which proves that y�˛ˇ�1.C.
; ı/ \
C.˛; ˇ// D C.
; ˛ı0/ \ C.ˇ; ˛/.

(ii) Let � 2 OC.
;ı/\C.˛;ˇ/. Then,

y'˛ˇ�1.�/ D ¹A 2 U W r.B; ˇ/ � r.A; ˛/ for some B 2 �º;

by Proposition 5.15. Note that C.
; ı/ \ C.˛; ˇ/ 2 �. Thus, to demonstrate that

y'˛ˇ�1.OC.
;ı/\C.˛;ˇ// � OC.
;˛ı 0/\C.ˇ;˛/;

it suffices to show that

r.C.
; ı/ \ C.˛; ˇ/; ˇ/ � r.C.
; ˛ı0/ \ C.ˇ; ˛/; ˛/:

Applying equation (3.10), we obtain

r.C.
; ı/ \ C.˛; ˇ/; ˇ/ D C.
; ı0/ \ C.˛; !/ \ C.ˇ; !/ D r.C.
; ˛ı0/ \ C.ˇ; ˛/; ˛/:

Therefore, we have that C.
; ˛ı0/ \ C.ˇ; ˛/ 2 y'˛ˇ�1.OC.
;ı/\C.˛;ˇ//, which implies
that y'˛ˇ�1.OC.
;ı/\C.˛;ˇ// � OC.
;˛ı 0/\C.ˇ;˛/. For the reverse inclusion, it suffices to
see that y'ˇ˛�1.OC.
;˛ı 0/\C.ˇ;˛// � OC.
;ı/\C.˛;ˇ/. For this it is sufficient to see that
r.C.
;˛ı0/\C.ˇ;˛/;˛/� r.C.
; ı/\C.˛;ˇ/;ˇ/. But, this latter inclusion also follows
from the observation that r.C.
; ı/ \ C.˛; ˇ/; ˇ/ D r.C.
; ˛ı0/ \ C.ˇ; ˛/; ˛/. Hence,
y'˛ˇ�1.OC.
;ı/\C.˛;ˇ// D OC.
;˛ı 0/\C.ˇ;˛/.

Proposition 5.20. There exists an isomorphismˆW zDR.X/! Lc. yU;R/ defined byˆ.1A/
D 1OA for every A 2 U. Moreover, this isomorphism is equivariant with respect to the
partial actions � on zDR.X/ and ' on Lc. yU; R/.

Proof. Recall that K. yU/ denotes the set of all compact-open subsets of yU and note that
Lc. yU; R/ D F

K. yU/
. By the Stone duality (Theorem 2.8), the map A 7! OA is a Boolean

algebra isomorphism of U onto K. yU/. Thus, FU is isomorphic to F
K. yU/

D Lc. yU;R/ as

R-algebras, with the isomorphism given byˆ.1A/D 1OA , for each A 2U. But zDR.X/D
FU, by Lemma 5.18. Hence, ˆ is an isomorphism of zDR.X/ onto Lc. yU; R/.

We now prove thatˆ is equivariant. By Remark 5.4, it is enough to consider t D ˛ˇ�1

for ˛;ˇ 2LX such thatC.ˇ;˛/¤;. We may also assume that t is written in reduced form.
For f 2 Dˇ˛�1 , we need to prove that ˆ.f / 2 Iˇ˛�1 and ˆ.�˛ˇ�1.f // D '˛ˇ�1.ˆ.f //.
By the definition of zDR.X/, we have that Dˇ˛�1 is generated by functions of the form
1C.˛;ˇ/\C.
;ı/ for 
; ı 2 LX. Because ˆ is an isomorphism and I˛ˇ�1 is an ideal, it is
enough to consider f D 1C.˛;ˇ/\C.
;ı/ for some 
; ı 2 LX. If C.˛; ˇ/ \ C.
; ı/ D ;,
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then f D 0 and the result is trivial. We may then assume that C.˛; ˇ/ \ C.
; ı/ ¤ ;. In
this case, notice that either ˇ D ıˇ0 for some ˇ0 2 LX or ı D ˇı0 for some ı0 2 LX. In
the first case, we have that C.˛; ˇ/ \ C.
; ı/ D C.˛; ˇ/ \ C.
ˇ0; ˇ/, so we may assume
without loss of generality that ı D ˇı0 for some ı0 2 LX. Firstly,

ˆ.f / D ˆ.1C.˛;ˇ/\C.
;ı// D 1OC.˛;ˇ/\C.
;ı/ 2 Iˇ˛�1 :

Secondly, by Lemma 5.19, we have that

ˆ.�˛ˇ�1.f // D ˆ.1C.˛;ˇ/\C.
;ı/ ı y�ˇ˛�1/ D ˆ.1y�˛ˇ�1 .C.˛;ˇ/\C.
;ı///

D ˆ.1C.ˇ;˛/\C.
;˛ı 0// D 1OC.ˇ;˛/\C.
;˛ı0/ D 1y'˛ˇ�1 .OC.˛;ˇ/\C.
;ı//

D 1OC.˛;ˇ/\C.
;ı/ ı y'ˇ˛�1 D '˛ˇ�1.1OC.˛;ˇ/\C.
;ı//

D '˛ˇ�1.ˆ.1C.˛;ˇ/\C.
;ı/// D '˛ˇ�1.ˆ.f //:

Hence, ˆ is equivariant with respect to � and ', and the proof is complete.

Theorem 5.21. The partial skew group rings zDR.X/ Ì� F and Lc. yU; R/ Ì' F are iso-
morphic. In particular, zAR.X/ Š Lc. yU; R/ Ì' F via an isomorphism that sends sa to
1OC.!;a/ıa and s�a to 1OC.a;!/ıa�1 .

Proof. The first part follows immediately from Proposition 5.20, and the second from
Theorem 5.9 and the isomorphism found in Proposition 5.20.

Remark 5.22. Since B is an ideal of U, in the sense of Boolean algebras, there exists an
embedding of yB into yU, whose image is open in yU. We can then restrict y' to a partial
action on yB, which in turn gives a restriction of ' to a partial action '0 on Lc. yB; R/.
One can then show that AR.X/ Š Lc. yB; R/ Ì'0 F . Since our main focus is on the unital
algebra zAR.X/, we will not go through the details of the proof.

6. Groupoid models for unital subshift algebras

In this section, we study the unital subshift algebra as a Steinberg algebra of a group-
oid. We define two (isomorphic) groupoids associated with a subshift. The first is the
transformation groupoid of the partial action defined in Section 5.2. The second is the
Deaconu–Renault groupoid associated with a singly generated dynamical system [39].
The latter is used in Section 7 to study conjugacy of subshifts.

Recall that a Hausdorff topological groupoid G is an ample groupoid if its topology
has a basis of compact-open bisections. Then the Steinberg algebra associated with G

(see [41]) is defined as

AR.G / D spanR¹1U W U � G is a compact-open setº:

Equivalently, AR.G / consists of all locally constant functions f W G ! R with compact
support. Multiplication in AR.G / is defined by the convolution product

f � g.
/ D
X

s.�/Ds.
/

f .�/ g.��1
/:
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Having realised zAR.X/ as the partial skew group ring Lc. yU;R/ Ì' F (Theorem 5.21),
we now have a groupoid model for zAR.X/, given by the transformation groupoid

F Ë' yU D ¹.�; t; �/ 2 yU � F � yU W � 2 Vt�1 and � D y't .�/º;

where multiplication and inverses are defined by

.�; s; �/.�; t; 
/ D .�; st; 
/ and .�; t; �/�1 D .�; t�1; �/;

respectively. Note that F Ëy' yU is an ample groupoid, since the topology on yU has a basis
of compact-open sets.

Next, we describe a Deaconu–Renault groupoid associated with a subshift. For the
reader’s convenience, we recall the key definitions first.

Definition 6.1. A singly generated dynamical system is a pair .X; y�/ consisting of a loc-
ally compact Hausdorff space X , and a local homeomorphism y� W dom.y�/! Im.y�/ from
an open set dom.y�/ � X onto an open set Im.y�/ � X . Inductively, define D0 D X and
Dn WD dom.y�n/ D y��1.Dn�1/ for n > 0. The Deaconu–Renault groupoid associated
with .X; y�/ is defined as

G .X; y�/ D
[

n;m2N

®
.x; n �m; y/ 2 Dn � ¹n �mº �Dm W y�

n.x/ D y�m.y/
¯
;

equipped with the topology with basic open sets

Z.U; V; n;m/ WD
®
.x; n �m; y/ W x 2 U; y 2 V; and y�n.x/ D y�m.y/

¯
;

indexed by quadruples .U; V; n;m/, where n;m 2 N, U �Dn and V �Dm are open and
y�njU and y�mjV are homeomorphisms. The operations are given by .x; k; y/.y; l; z/ D
.x; k C l; z/ and .x; k; y/�1 D .y;�k; x/, for .x; k; y/; .y; l; z/ 2 G .X; y�/. Note that
r.x; k; y/ D .x; 0; x/ and s.x; k; y/ D .y; 0; y/. Therefore, we identify the unit space
G .X; y�/.0/ with X as topological spaces. Also, there is a one-cocycle cW G .X; y�/! Z
given by c.x; k; y/ D k.

Given a singly generated dynamical system .X; y�/, its Steinberg algebra AR.G .X; y�//

has a natural Z-grading given by AR.G .X; y�//n WD ¹f 2 AR.G .X; y�// W supp.f / �
c�1.n/º, see [14].

In our case, we consider the pair . yU; y�/, where yU is the Stone dual of U (see Sec-
tion 2.3), and y� has domain dom.y�/ WD

S
a2A Va D

S
a2A OZa and, for � 2 Va, is

defined by
y�.�/ WD ¹B 2 U W r.A; a/ � B for some A 2 �º:

Before studying the groupoid G . yU; y�/, we first show how the map y� relates to the
shift map on the OTW subshift XOTW. For that we define a map � W yU! XOTW by

�.�/ D

8̂<̂
:
˛; if ˛ 2 LX is such that Z˛ 2 � and Z˛b … � for all b 2 AI

˛; if ˛ 2 Xinf and Z˛1;n 2 � for all n � 1I
E0; if Za … � for all a 2 A:
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To show that � is well-defined we need to show that, in the first case, �.�/ D ˛ indeed
belongs to XOTW (the other cases are straightforward). Let L D ¹b 2 A W 9� 2 X such that
˛b� 2 Xº and note that L ¤ ; because ˛ 2 LX. Suppose that L is finite. Then we can
writeZ˛ as the finite unionZ˛ D

S
b2LZ˛b . Because � is an ultrafilter, there exists b 2A

such that Z˛b 2 �, which contradicts the definition of �.�/. This means that L is infinite,
that is, ˛ 2 Xfin.

Remark 6.2. In zAR.X/, there is an inclusion of commutative subalgebras generated by
idempotents spanR¹s˛ s

�
˛º � spanR¹s˛pAs

�
˛º D spanR¹pAº. When R is an indecompos-

able ring, via the isomorphisms of Propositions 3.17 and 3.19, we obtain a map as follows.
Given � 2 yU, there is corresponding character �� on spanR¹pAº such ��.pA/D 1 if A 2 �
and 0 otherwise. When we restrict �� to spanR¹s˛ s

�
˛º, using that s˛ s�˛ D pZ˛ and the iso-

morphism of Proposition 3.17, we see that this map is the same as � defined above. We
point out that the definition of � itself does not depend on R.

Proposition 6.3. For all � 2 dom.y�/, we have that � ı y�.�/ D � ı �.�/. Moreover, � is
surjective.

Proof. Let � 2 dom.y�/ and ˛ D �.�/. Notice that ˛ ¤ E0, otherwise � … dom.y�/. Suppose
that j˛j D 1. Then, for every n 2N�, we have that r.Z˛1;n ; ˛1/D F˛1 \Z˛2;n � Z˛2;n,
by equation (3.10). HenceZ˛2;n 2 y�.�/ for all n2N�, that is, �.y�.�//D˛2;1D �.�.�//.

Suppose now that j˛j <1. The above argument shows that Z˛2;j˛j 2 y�.�/. Suppose
that for some b 2 A, we have that Z˛2;j˛jb 2 y�.�/. This would imply that there exists
A 2 U such that r.A; ˛1/ � Z˛2;j˛jb so that A � Z˛b . In this case, Z˛b 2 �, which is a
contradiction, since �.�/ D ˛. It follows that �.y�.�// D ˛2;j˛j D �.�.�//.

Next, we show that � is surjective. Let ˛ 2 XOTW. If ˛ 2 Xinf, then ˛ D �.�/, where
� D ¹A 2 U W ˛ 2 Aº. If ˛ 2 Xfin, then ˛ is the image of an ultrafilter that contains the
upper set " ¹Z˛ \Zc˛b1 \ � � � \Z

c
˛bn
W bi 2 A; n 2 Nº (which exists because the family

¹Z˛ \Z
c
˛b1
\ � � � \Zc

˛bn
W bi 2A;n2Nº is closed under intersection and does not contain

the empty set).

We now prove that the transformation groupoid of the partial action of Section 5.2 and
the Deaconu–Renault groupoid of y� are isomorphic. As a consequence, we describe the
subshift algebra as a Steinberg algebra.

Theorem 6.4. Let X be a subshift. Then the map ‚W F Ëy' yU ! G . yU; y�/ defined by
‚.�; ˛ˇ�1; �/D .�; j˛j � jˇj; �/ is an isomorphism of topological groupoids.

Proof. Notice that y'a�1 (see equation (5.12)) is the restriction of y� to Va. The remainder
of the proof is straightforward and follows the same steps of Theorem 5.5 in [19], The-
orem 5.12 in [43], and Theorem 4.4 in [18].

Theorem 6.5. Let X be a subshift. Then, zAR.X/ Š AR.G . yU; y�// as Z-graded algebras
via an isomorphism that takes sa to Sa WD 1Z.OZa ;OFa ;1;0/

and s�a to S�a WD1Z.OFa ;OZa ;0;1/
.

Moreover, this isomorphism sends the diagonal subalgebra of zAR.X/ to AR.G . yU; y�/
.0//.

Proof. From Theorem 5.21 and from Theorem 3.2 in [5], we get an isomorphism between
zAR.X/ and AR.F Ëy' yU/ that sends sa to 1Va�¹aº�Va�1 and s�a to 1Va�1�¹a�1º�Va . Applying
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the map ‚ from Theorem 6.4, we see that ‚.Va � ¹aº � Va�1/ D Z.OZa ; OFa ; 1; 0/ and
similarly,‚.Va�1 � ¹a�1º � Va/DZ.OFa ;OZa ; 0;1/. The result the follows from the fact
that we have an isomorphism from AR.F Ëy' yU/ to AR.G . yU; y�// that sends f to f ı‚�1.

The last part follows from Proposition 3.19 and the fact that AR.G . yU; y�/
.0// Š

Lc. yU; R/.

Next, we define a map "W dom."/ � G . yU; y�/! G . yU; y�/ that will play a important
role when discussing conjugacy of OTW-subshifts in Section 7. This map is inspired by
the one found in [10] and is defined as follows. The domain of " is given by

dom."/ D ¹.�; n; �/ 2 G . yU; y�/ W �; � 2 dom.y�/º

and, for .�; n; �/ 2 dom."/, set

".�; n; �/ D .y�.�/; n; y�.�//:

We would like an analogue of Lemma 4.2 in [10], in the sense that we want to define
a map � WAR.G . yU; y�//!AR.G . yU; y�// by �.f / D f ı ". However, if the alphabet A is
infinite, then there are a few problems that we need to overcome. The first is that dom."/
is not necessarily all G . yU; y�/ and, secondly, may fail to be clopen in G . yU; y�/, so that
we cannot continuously extend f ı " to be zero outside dom."/. Lastly, even if dom."/ is
clopen, there is no guarantee that f ı " has compact support. To overcome these issues,
we will work with restrictions of ".

FixM �A finite and let VM D
S
a2M Va. Note that VM is compact-open in yU. We let

(6.6) dom."M / D ¹.�; n; �/ 2 G . yU; y�/ W �; � 2 VM º D s
�1.VM / \ r

�1.VM /;

which is clopen in G . yU; y�/, and we define "M as the restriction of " to dom."M /.

Lemma 6.7. The map "M is continuous and proper.

Proof. Consider a basic open set Z.U; V; k; l/ of G . yU; y�/, where U and V are compact-
open subsets of yU. Then,

"�1M .Z.U; V; k; l//

D ¹.�;m; �/ 2 dom."M / W y�.�/ 2 U; y�.�/ 2 V;m D k � l; y�kC1.�/ D y� lC1.�/º

D

[
a;b2M

®
.�;m; �/ 2 dom."M / W � 2 y'a.OFa \ U/; � 2 y'b.OFb \ V /;

m D k � l; y�kC1.�/ D y� lC1.�/
¯

D

[
a;b2M

Z.y'a.OFa \ U/; y'b.OFb \ V /; k C 1; l C 1/:

This shows that the preimage of each basic compact-open is a finite union of basic
compact-open sets. We immediately get that "M is continuous. And because G . yU; y�/ is
Hausdorff and "M is continuous, the above equality also implies that "M is proper. Indeed
the preimage of a compact set K by "M is then a closed subset contained in a finite union
of compact-open basics open sets and therefore "�1M .K/ is compact.
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Lemma 6.8. The map �M WAR.G . yU; y�//! AR.G . yU; y�// defined by

�M .f /.�;m; �/ D

´
f ."M .�;m; �//; if .�;m; �/ 2 dom."M /;
0; otherwise,

where f 2AR.G . yU; y�// and .�;m; �/ 2 G . yU; y�/, is a well-defined R-linear map. More-
over, for every f 2 AR.G . yU; y�//, we have that

�M .f / D
X
a;b2M

Sa � f � S
�
b ;

where the product � is the convolution product in AR.G . yU; y�//, Sa D 1Z.OZa ;OFa ;1;0/
,

and S�a D 1Z.OFa ;OZa ;0;1/
.

Proof. Because dom."M / is clopen in G . yU; y�/, "M is continuous (by Lemma 6.7) and f
is locally constant, we have that �M .f / is locally constant. Moreover, Lemma 6.7 says
that "M is proper, so that supp.�M .f //D "�1M .supp.f // is compact. This implies that �M
is well-defined. That �M is R-linear follows from the fact that addition and scalar multi-
plication in AR.G . yU; y�// are defined pointwise.

For the second part, let .�;m; �/ 2 G . yU; y�/. ThenX
a;b2M

Sa � f � S
�
b .�;m; �/ D

X
a;b2M

X
Sa.�; k; �/f .�; l; �/ S

�
b .�; n; �/;

where the second summation is over all triples .�; k; �/; .�; l; �/; .�; n; �/ 2 G . yU; y�/ such
that .�; k; �/.�; l; �/.�; n; �/ D .�; m; �/. If .�; m; �/ … dom."M /, then either � … VM or
� … VM . In the first case, we have that Sa.�; k; �/ D 0 for all a 2 M independently of k
and �. Similarly, in the second case S�

b
.�; n; �/ D 0 for all b 2 M independently of n

and � . This means that if .�;m; �/ … dom."M /, and thusX
a;b2M

Sa � f � S
�
b .�;m; �/ D 0 D �M .f /.�;m; �/:

Suppose now that .�;m; �/ 2 dom."M /. In this case, there are a unique a0 2M such that
� 2 Va0 and a unique b0 2M such that � 2 Vb0 . In this case, we haveX
a;b2M

Sa � f � S
�
b .�;m; �/ D

X
a;b2M

X
Sa.�; k; �/f .�; l; �/ S

�
b .�; n; �/

D

X
Sa0.�; k; �/f .�; l; �/ S

�
b0
.�; n; �/

D Sa0.�; 1; y�.�//f .y�.�/;m; y�.�// S
�
b0
.y�.�/;�1; �/

D f .y�.�/;m; y�.�// D f ."M .�;m; �// D �M .f /.�;m; �/;

and the result then follows.

Proposition 6.9. Let X1 and X2 be two subshifts. Consider the corresponding groupoids
G . yUi ; y�i / with maps "i as constructed above, for i D 1; 2. Also, let ˆW G . yU1; y�1/ !

G . yU2; y�2/ be an isomorphism of topological groupoids. The following are equivalent:
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(i) ˆ.dom."1// � dom."2/ and "2.ˆ.�; m; �// D ˆ."1.�; m; �// for all .�; m; �/ 2
dom."1/.

(ii) For every M � A1 finite, there exists N � A2 finite such that ˆ.dom."1M // �
dom."2N / and "2N .ˆ.�;m; �// D ˆ."

1
M .�;m; �// for all .�;m; �/ 2 dom."1M /.

Proof. (i))(ii). Note that for each i D 1; 2, using the identification G . yUi ; y�i /
.0/ D yUi ,

we have that [
a2Ai

V ia D dom."i / \ G . yUi ; y�i /
.0/:

The above equality and the hypothesis thatˆ.dom."1//� dom."2/ imply that forM �A1
finite, we have that ˆ.V 1M / �

S
b2A2

V 2
b

. Because V 1M is compact and ˆ is a homeo-
morphism, there exists a finite set N � A2 such that ˆ.V 1M / � V

2
N . Also, because ˆ

preserves s and r , by equation (6.6), we get ˆ.dom."1M // � dom."2N /. For .�; m; �/ 2
dom."1M /, we have that

"2N .ˆ.�;m; �// D "
2.ˆ.�;m; �// D ˆ."1.�;m; �// D ˆ."1M .�;m; �//:

(ii))(i). Let .�; m; �/ 2 dom."1/. Then there exist a; b 2 A1 such that � 2 Va and
� 2 Vb . Take M D ¹a; bº and let N � A2 be as in the hypothesis. Then

ˆ.�;m; �/ 2 dom."2N / � dom."2/

and
"2.ˆ.�;m; �// D "2N .ˆ.�;m; �// D ˆ."

1
M .�;m; �// D ˆ."

1.�;m; �//;

as claimed.

7. Conjugacy of OTW subshifts

In this section, we describe a conjugacy of OTW-subshifts in terms of an isomorphism
of the associated groupoids and in terms of an isomorphism of the associated subshift
algebras, see Theorem 7.6. We retain the notation of Section 6 and start recalling the
definition of a conjugacy between OTW-subshifts.

Definition 7.1. Let XOTW
1 and XOTW

2 be OTW-subshifts over alphabets A1 and A2, respect-
ively. A map hW XOTW

1 ! XOTW
2 is a conjugacy if it is a homeomorphism, commutes with

the shift, and is length-preserving.

We point out that because a conjugacy hWXOTW
1 ! XOTW

2 is length-preserving, we can
restrict it to a bijection between the corresponding subshifts X1 and X2, which we also
denote by h, see Remark 2.4.

Remark 7.2. Notice that for OTW-subshifts, a conjugacy is not necessarily given by a
usual sliding block code. Instead, one has to use the notion of a generalised sliding block
code, see [28].

Before we prove the main theorem of the section, we need a few auxiliary results.
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Lemma 7.3. Let hWXOTW
1 ! XOTW

2 be a conjugacy. Let ˛ 2 LX1 and F � A1 a finite set.
Then,

(i) h.Z1.˛;F //D
Sm
iD1Z2.�

i ;M i / for some �i 2LX2 with j�i j � j˛j andM i �A2
finite, for all i D 1; : : : ; m. Moreover, if ˛ 2 Xfin

1 , then there exists j 2 ¹1; : : : ; nº
such that �j D h.˛/, and for all i D 1; : : : ; m such that j�i j D j˛j and �i 2 Xfin

2 ,
we have that �i D h.˛/.

(ii) h.F1.˛// D
Sm
iD1 Z2.�

i ; M i / \ F2.�
i / for some �i ; �i 2 LX2 and M i � A2

finite, for all i D 1; : : : ; m.

(iii) h.Z1˛/ �
Sm
iD1 Z

2
�i

for some �i 2 LX2 with j�i j � j˛j, for all i D 1; : : : ; m.

Moreover, if ˛ 2 Xfin
1 , then there exists j 2 ¹1; : : : ; nº such that �j D h.˛/, and

for all i D 1; : : : ; m such that j�i j D j˛j and �i 2 Xfin
2 , we have that �i D h.˛/.

Proof. (i) Since Z1.˛;F / is compact-open and h is a conjugacy, we have that h.Z1.˛;F //
is compact-open in XOTW

2 . The result follows from the fact that h is length-preserving
and by the description of a neighbourhood base for a point in XOTW

2 given in [38] (see
Theorem 2.15 and Remark 3.24). For the second part, suppose that ˛ 2 Xfin

1 . In this case,
if �i 2 Xfin

2 and j�i j D jh�1.�i /j D j˛j, then we must have h�1.�i / D ˛ because ˛
is the only element in Z1.˛; F / with length j˛j. Hence �i D h.˛/. On the other hand,
˛ 2 Z1.˛; F / and hence h.˛/ 2 Z2.�

j ;M j / for some j . Because jh.˛/j D j˛j � j�j j,
the only possibility for �j is that it is equal to h.˛/.

(ii) Notice that F1.˛/ D �
j˛j.Z1.˛//. Because h commutes with the shift, the result

follows from item (i) and Lemma 2.6.
(iii) Using item (i) with F D ;, the fact that h preserves length, and Lemma 2.7(i), we

obtain that

h.Z1˛/ D h.Z1.˛/ \ Xinf
1 / D

m[
iD1

Z2.�
i ;M i / \ Xinf

2 �

m[
iD1

Z2
�i

for some �i 2 LX2 with j�i j � j˛j and M i � A2 finite, for all i D 1; : : : ;m. The second
part follows immediately from item (i) and the above computation.

Proposition 7.4. Let hW XOTW
1 ! XOTW

2 be a conjugacy. The map hWU1 ! U2 given by
h.A/ D h.A/ is an isomorphism of Boolean algebras.

Proof. Because h is a bijection, it preserves unions, intersections, and relative comple-
ments. To prove that h is a homomorphism, it is then sufficient to show that h.C1.˛;ˇ// 2
U2 for every ˛; ˇ 2 LX1 . Because h is length-preserving, by Lemma 2.7, we have that

h.C1.˛; ˇ// D h.Z1.ˇ/ \ �
�jˇ j.F1.˛// \ Xinf

1 / D h.Z1.ˇ// \ h.�
�jˇ j.F1.˛/// \ Xinf

2 :

Using that h commutes with the shift and Lemma 7.3, we conclude that h.C1.˛; ˇ// is a
union of sets of the form

Z2.�;M/ \ ��jˇ j.Z2.�;N / \ F2.�// \ Xinf
2 ;

where �; �; � 2 LX2 with j�j � jˇj, and M;N � A2 are finite sets.
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By Lemmas 2.6 and 2.7, for some � 2 LX2 and P � A2 finite, we have that

Z2.�;M/ \ ��jˇ j.Z2.�;N / \ F2.�// \ Xinf
2

D Z2.�;M/ \ ��jˇ j.Z2.�;N // \Z2.�1;jˇ j/ \ �
�jˇ j.F2.�// \ Xinf

2

D Z2.�; P / \Z2.�1;jˇ j/ \ �
�jˇ j.F2.�// \ Xinf

2

D

�
C2.!; �/ n

[
p2P

C2.!; �p/
�
\ C2.�; �1;jˇ j/;

which is an element of U2. It follows that h.C1.˛; ˇ// is a union of element of U2, and
therefore it is also in U2.

To see that h is an isomorphism, just apply the above argument to h�1 so that we
obtain h�1 D h�1.

Next, we show that a conjugacy between OTW-subshifts lifts to a homeomorphism
between the Stone dual of the associated Boolean algebras which commute with the cor-
responding y� .

Proposition 7.5. Let hW XOTW
1 ! XOTW

2 be a conjugacy. The map yhW bU1 !
bU2 given by

yh.�/ D ¹h.A/ W A 2 �º is a homeomorphism such that yh.dom.y�1// D dom.y�2/, yh ı y�1 D
y�2 ı yhjdom.y�1/, and h ı �1 D �2 ı yh.

Proof. By Proposition 7.4 and the Stone duality (Theorem 2.8), we have that yh is a well-
defined homeomorphism.

Given � 2 bU1, we claim that �1.�/ and �2 ı yh.�/ have the same length. By item (iii)
of Lemma 7.3, the fact that ultrafilters are prime filters in Boolean algebras and the defin-
itions of �1 and �2, we have that j�1.�/j � j�2 ı yh.�/j. Similarly, since � D ¹h�1.B/ W
B 2 yh.�/º, using the same argument, we obtain that j�1.�/j � j�2 ı yh.�/j. It follows that
�2 dom.y�1/ if and only if yh.�/ 2 dom.y�2/.

We show that yh ı y�1D y�2 ı yhjdom.y�1/. Let � 2 dom.y�1/ and a 2A1 be such thatZ1a 2 � ,
and let b 2 A2 be such that Z2

b
2 yh.�/. Then

yh.y�1.�// D ¹h.B/ W B 2 U1 and r.A; a/ � B for some A 2 �º

and
y�2.yh.�// D ¹C 2 U2 W r.h.A/; b/ � C for some A 2 �º:

Take B 2 U1 such that r.A; a/ � B for some A 2 � . Note that A \Z1a \ h
�1.Z2

b
/ 2 � ,

so we may assume without loss of generality that A � Z1a \ h
�1.Z2

b
/. In this case, we

have that r.A; a/D �1.A/ and r.h.A/; b/D �2.h.A//. Because h is shift commuting, we
conclude that

r.h.A/; b/ D �2.h.A// D h.�1.A// D h.r.A; a// � h.B/;

and hence h.B/ 2 y�2.yh.�//. Since we are dealing with ultrafilters, it follows that yh.y�1.�//
D y�2.yh.�//.
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Finally, we prove that h ı �1 D �2 ı yh. Let � 2 bU1. As proved above, �1.�/ and
�2 ı yh.�/ have the same length. Since E02 is the only element of XOTW

2 with length zero, if
�1.�/ D E01 then h.�1.�// D h.E01/ D E02 D �2.yh.�//. Suppose now that �1.�/ D ˛ with
0 < j˛j<1. Then, by Lemma 7.3(iii), the fact that yh.�/ is an ultrafilter, and the definition
of �2, we have that �2.yh.�// D h.˛/. Lastly, suppose that �1.�/ D ˛ with j˛j D 1, so
that ˇD �2.yh.�// is such that jˇj D1. By the definition of �1, we have thatZ1˛1;n 2 � for
each n 2N�. By Lemma 7.3(iii), h.Z1˛1;n/�

Sm
iD1Z

2
�i

for some �i 2LX2 with j�i j � n,

for all i D 1; : : : ; m. Because yh.�/ is an ultrafilter, by the definition of �2, there exists
j 2 ¹1; : : : ;mº such that �j is a beginning of ˇ. This implies that for mn WD j�j j � n we
can find xn 2 Xinf

1 and yn 2 Xinf
2 such that h.˛1;nxn/ D ˇ1;mny

n. By the continuity of h,
taking the limit as n goes to infinity, we get h.�1.�// D h.˛/ D ˇ D �2.yh.�//.

For a subshift X over an alphabet A and M � A finite, we define

eM D
X
a2M

sa s
�
a 2
zAR.X/:

Observe that eM is idempotent and, via the isomorphism given in Theorem 6.5, it cor-
responds to the characteristic function 1VM , where VM is the same as in Section 6. Using
Theorem 6.5 and �M of Lemma 6.8, we obtain a map from zAR.X/ to zAR.X/, also denoted
by �M , given by

�M .f / D
X
a;b2M

saf s
�
b :

Both eM and �M will play an important role in the algebraic characterisation of conjugacy
for OTW-subshifts, as we see below.

In order to simplify notation, we use the isomorphism of Theorem 6.5 as an equality
in the next theorem. Also, recall that an isomorphism ‰WAR.G1/ ! AR.G2/ between
Steinberg algebras is said to be diagonal-preserving if ‰.AR.G

.0/
1 // D AR.G

.0/
2 /.

Theorem 7.6. Let hWXOTW
1 ! XOTW

2 be a homeomorphism and suppose that R is also an
indecomposable ring. The following are equivalent.

(i) h is a conjugacy.

(ii) There exists a homeomorphism yhW bU1!
bU2 such that h ı �1D�2 ı yh, yh.dom.y�1//

D dom.y�2/ and yh ı y�1 D y�2 ı yhjdom.y�1/.

(iii) There exists an isomorphism of topological groupoids ˆWG . yU1; y�1/! G . yU2; y�2/

such that c2 ıˆDc1, �2 ıˆ.0/Dh ı�1,ˆ.dom."1//D dom."2/ and "2 ıˆjdom."1/

D ˆ ı "1, where ˆ.0/ is the restriction of ˆ to the unit spaces, and c1 and c2 are
the one-cocycles from Definition 6.1.

(iv) There exists an isomorphism of topological groupoids ˆWG . yU1; y�1/! G . yU2; y�2/

such that �2 ıˆ.0/ D h ı �1,ˆ.dom."1//D dom."2/ and "2 ıˆjdom."1/ D ˆ ı "
1,

where ˆ.0/ is the restriction of ˆ to the unit spaces.

(v) There exists a Z-graded diagonal-preserving isomorphism ‰W zAR.X1/! zAR.X2/
such that
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• ‰.f ı �1/ D f ı h
�1 ı �2 for all f 2 Lc.XOTW

1 ; R/,

• for all finiteM �A1, there exists a finiteN �A2 such that‰.eM /eN D‰.eM /
and

‰.�M .f // D ‰.eM /�N .‰.f //‰.eM /

for every f 2 zAR.X1/,

• for all N 0 � A2 finite, there exists M 0 � A1 finite such that ‰�1.eN 0/eM 0 D
‰�1.eN 0/.

(vi) There exists a diagonal-preserving isomorphism ‰W zAR.X1/! zAR.X2/ such that

• ‰.f ı �1/ D f ı h
�1 ı �2 for all f 2 Lc.XOTW

1 ; R/,

• for all finiteM �A1, there exists a finiteN �A2 such that‰.eM /eN D‰.eM /
and

‰.�M .f // D ‰.eM /�N .‰.f //‰.eM /

for every f 2 zAR.X1/,

• for all N 0 � A2 finite, there exists M 0 � A1 finite such that ‰�1.eN 0/eM 0 D
‰�1.eN 0/.

Proof. (i))(ii). This follows from Proposition 7.5.
(ii))(iii). Supposing the existence of yh as in (ii), it is straightforward to check that the

map ˆWG . yU1; y�1/! G . yU2; y�2/ given by ˆ.�;m; �/ D .yh.�/;m; yh.�// is a well-defined
isomorphism of topological groupoids satisfying the conditions of (iii).

(iii)) (iv). It is immediate.
(iv)) (i). Let x 2 XOTW

1 . Using the surjectivity of �1 given by Proposition 6.3, choose
� 2 yU1 such that �1.�/ D x. By the definitions of �1 and y�1, we see that jxj is exactly
the number of times we can apply "1 to � (via the identification with .�; 0; �/). Analog-
ously, j�2.ˆ.0/.�//j is the number of times we can apply "2 to ˆ.0/.�/. By hypothesis,
j�2.ˆ

.0/.�//j D jh.�1.�//j D jh.x/j. Sinceˆ.dom."1//D dom."2/ and "2 ıˆjdom."1/ D

ˆ ı "1, the number of times we can apply "1 to � is the same as the number of times we
can apply "2 to ˆ.0/.�/. Hence jxj D jh.x/j.

Now suppose that x ¤ E01. In this case, � 2 dom.y�1/ and .�; 0; �/ 2 dom."1/. With
the identification of yUi and the unit space of G . yUi ; y�i /, for i D 1; 2, we see that the
hypothesis on "i implies that y�2.ˆ.0/.�// D ˆ.0/.y�1.�//. Then

�2.h.x// D �2.h.�1.�/// D �2.�2.ˆ
.0/.�/// D �2.y�2.ˆ

.0/.�///

D �2.ˆ
.0/.y�1.�/// D h.�1.y�1.�/// D h.�1.�1.�/// D h.�1.x//:

Hence h is a length-preserving, shift-commuting homeomorphism, that is, h is a con-
jugacy.

(iii))(v). We use the Steinberg algebra picture for the subshift algebras as in The-
orem 6.5. Below, we use � for the convolution product and � for the pointwise product. Ifˆ
is an isomorphism of the groupoids, then it is easy to see that the map‰W zAR.X1/! zA.X2/
given by‰.f /D f ıˆ�1 is a diagonal-preserving algebra isomorphism. By Theorem 6.5
and the hypothesis that c2 ı ˆ D c1, we have that this isomorphism is Z-graded. As
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explained in the beginning of Section 6, we view Lc.XOTW
i ; R/ inside zAR.Xi / via the

map �i , for i D 1; 2. Then, because ˆ.0/ and h are homeomorphisms, we have that

‰.f ı �1/ D f ı �1 ıˆ
�1
D f ı �1 ı .ˆ

.0//�1 D f ı h�1 ı �2:

Now, let M � A1 be finite and let N � A2 be as in Proposition 6.9. Notice that
eM D 1V 1M

and eN D 1V 2N . Also, V 1M D s.dom."1M //D r.dom."1M //, and similarly for V 2N .
Then

‰.eM /eN D .1V 1M
ıˆ�1/1V 2N

D 1ˆ.V 1M /
1V 2N
D 1ˆ.V 1M /

D ‰.eM /;

where the second to last equality follows from the fact that ˆ.dom."1M // � dom."2N /.
Because dom."1M /D s

�1.V 1M /\ r
�1.V 1M /, for any g2 zAR.X2/ and .�;m;�/2G . yU2; y�2/,

we have that

‰.eM / � g �‰.eM /.�;m; �/ D 1ˆ.V 1M /
� g � 1ˆ.V 1M /

.�;m; �/

D 1ˆ.V 1M /
.�/g.�;m; �/ 1ˆ.V 1M /

.�/ D g.�;m; �/1ˆ.dom."1M //
.�;m; �/;

that is,‰.eM / � g �‰.eM /D g � 1ˆ.dom."1M //
, where multiplication on the right-hand side

is pointwise. Consider now f 2 zAR.X1/. On the one hand, we have

‰.�M .f // D .f ı "
1
M ıˆ

�1/ � 1ˆ.dom."1M //
:

On the other hand,

‰.eM / � .�N .‰.f // �‰.eM / D ‰.eM / � ..f ıˆ
�1
ı "2N / � 1dom."2N /

/ �‰.eM /

D .f ıˆ�1 ı "2N / � 1dom."2N /
/ � 1ˆ.dom."1M //

D .f ıˆ�1 ı "2N / � 1ˆ.dom."1M //
;

where the last equality follows from the inclusion ˆ.dom."1M // � dom."2N /.
(v))(vi). It is immediate.
(vi))(ii). By hypothesis, the isomorphism ‰ restricts to an isomorphism between

its diagonal subalgebras, which in turn, and by Proposition 3.19, gives an isomorph-
ism ‰W Lc. yU1; R/ ! Lc. yU2; R/. By Proposition 2.13, there exists a homeomorphism
yhW yU1 !

yU2 such that ‰.f / D f ı yh�1 for all f 2 Lc. yU1; R/. Then we have that, for
all g 2 Lc.XOTW

1 ; R/,

g ı h�1 ı �2 D ‰.g ı �1/ D g ı �1 ı yh
�1:

This implies that h�1 ı �2 D �1 ı yh�1 because Lc.XOTW
1 ;R/ separates the points of XOTW

1 .
Let M � A1 finite and choose N � A2 finite such that ‰.eM /eN D ‰.eM /. As

observed above, eM D 1V 1M
, so that ‰.eM / D 1V 1M

ı yh�1 D 1yh.V 1M /
. We then get that

yh.V 1M /� V
2
N and hence yh.dom.y�1//� dom y�2. Similarly, we prove that yh�1.dom.y�2//�

dom.y�1/, so that yh.dom.y�1// D dom.y�2/.
For each a 2 A1, f 2 Lc. yU1; R/ and � 2 yU1, we have that

�¹aº.f /.�/ D sa � f � s
�
a .�; 0; �/ D sa.�; 1; y�1.�//f .y�1.�// s

�
a .y�1.�/;�1; �/

D 1V 1a .�/ � f .y�1.�//:
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Hence

(7.7) ‰.�¹aº.f // D .f ı y�1 ı yh
�1/1yh.V 1a /

:

On the other hand, there exists N � A2 finite such that

‰.�¹aº.f // D ‰.e¹aº/ �N .‰.f //‰.e¹aº/ D 1yh.V 1a /
� .f ı yh�1 ı "2N / � 1yh.V 1a /

D .f ı yh�1 ı y�2/ � 1yh.V 1a /
:

(7.8)

By comparing (7.7) and (7.8), and using that Lc. yU1; R/ separates the points of yU1, we
conclude that y�1 ı yh�1jyh.V 1a / D

yh�1 ı y�2jyh.V 1a /
, or equivalently, yh ı y�1jV 1a D y�2 ı hjV 1a .

Taking the union over all a 2 A1, we then obtain yh ı y�1 D y�2 ı yhjdom.y�1/.

Remark 7.9. Steinberg proved in Theorem 5.6 of [42] that for graded groupoids G1
and G2 satisfying the local bisection hypothesis and for R an indecomposable ring, there
is a graded isomorphism between G1 and G2 if, and only if, there is a diagonal-preserving
graded isomorphism between AR.G1/ and AR.G2/. That the groupoid G . yU; y�/ associated
with a subshift satisfies the local bisection hypothesis follows from Corollary 9.4 in [2].
Although the equivalences (iii),(v)and (iv),(vi) of Theorem 7.6 are certainly connec-
ted with Steinberg’s result, we need more than the existence of isomorphisms to obtain our
results, since we need to keep track of the map h and the subalgebras Lc.XOTW

1 ; R/ and
Lc.XOTW

2 ; R/, which might be smaller than the diagonals of G . yU1; y�1/ and G . yU2; y�2/,
respectively (see Propositions 3.17 and 3.19).
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