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Control of the Schrödinger equation by slow deformations
of the domain

Alessandro Duca, Romain Joly, and Dmitry Turaev

Abstract. The aim of this work is to study the controllability of the Schrödinger equation i@tu.t/D
��u.t/ on �.t/ with Dirichlet boundary conditions, where �.t/ � RN is a time-varying domain.
We prove the global approximate controllability of the equation in L2.�/, via an adiabatic defor-
mation �.t/ � RN (t 2 Œ0; T �) such that �.0/ D �.T / D �. This control is strongly based on the
Hamiltonian structure of the equation provided by Duca and Joly [Ann. Henri Poincaré 22 (2021),
2029–2063], which enables the use of adiabatic motions. We also discuss several explicit interesting
controls that we perform in the specific framework of rectangular domains.

1. Introduction

We consider a quantum state confined in a time-varying domain ¹�.t/ºt2I with I D
.0; T /. Its dynamics is modeled by the Schrödinger equation´

i@tu D ��u; .x; t/ 2 �.t/ � I;

uj@�.t/ D 0; .x; t/ 2 @�.t/ � I:
(1.1)

The aim of this work is to study the controllability of the Schrödinger equation (1.1) by
considering the time-varying domain �.t/ as a control. To be able to consider shapes as
rectangular domains, we allow �.t/ to admit some corners or edges but no degenerate
features such as cusps. Let us denote by “C2-curved polyhedron” the image of a (non-
degenerate) polyhedron via a C2-diffeomorphism. Our main result is as follows.

Theorem 1.1. Let d � 2 and�0 � Rd be a connected open bounded set with C2 bound-
aries or a C2-curved polyhedron. Let u0 and u1 be in L2.�0/ with ku0kL2 D ku1kL2 .
For any " > 0, there exist T > 0 and a smooth family of domains .�.t//t2Œ0;T � such that

�.0/ D �.T / D �0

and such that the solution of (1.1) with initial data u.t D 0/ D u0 satisfies

ku.t D T / � u1kL2 � ":
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Notice that the result of Theorem 1.1 should stay true for more general domains, as
long as the properties of the Dirichlet Laplacian operator in �0 are not too exotic. How-
ever, we stick to the above formulation, as it is sufficient for the examples we consider in
this paper.

We recall that (1.1) models the evolution of a quantum particle of Rd confined by infi-
nite potential walls, for example generated by electric potentials. The above result shows
that one can control the quantum state of the particle by changing the shape of the domain
enclosed by these walls. We emphasize that our process follows a quasi-adiabatic motion
and the energy of the particle changes uniformly slowly on the control interval. It pro-
vides a new method for driving the system from the ground state to an excited state (or
a superposition of excited states), and vice versa, in a soft way, without instantaneous
energy changes and without using resonant interactions. The control protocol provided
by our proof is ready to use in many situations. In the simplest cases, the deformations
of the domain are either explicit or based on generic motions, which could be chosen
“randomly”. The main non-explicit parameter is the deformation speed, which can be
calibrated tentatively in actual/numerical experiments (moving slowly enough in the adi-
abatic parts or finding a suitable intermediate speed in the non-adiabatic parts).

Well-posed unitary flow for the Schrödinger equation in a moving domain. The pecu-
liarity of equation (1.1) is that the phase space L2.�.t/;C/ depends on time. The exis-
tence and uniqueness of solutions for this type of problem was recently studied in [18].
There, it was shown how to formalize the definition of solutions for the Schrödinger equa-
tion in time-varying domains by only assuming that the deformation is sufficiently smooth.
More precisely, we consider a bounded reference domain �0 � Rd and a specific family
of unitary transformations h].t/WL2.�.t/;C/! L2.�0;C/ with inverse h].t/ such that
equation (1.1) is the following equation in L2.�0;C/:

i@tv D h
].t/H.t/h].t/v; .x; t/ 2 �0 � I; (1.2)

where the Hamiltonian H.t/ is the magnetic Laplacian operator

H.t/ D �.divx CiA/ ı .rx C iA/ � jAj2;

with some explicit magnetic potential A depending on the deformation of the domain
�.t/. More details are recalled in Section 2.

The new formulation (1.2) provides a natural framework for the study of the evolution
of the Schrödinger equation (1.1) and for ensuring the existence and uniqueness of solu-
tions. The Hamiltonian structure of (1.2) plays a central role in our work as it allows us to
use different features of Hamiltonian dynamics, such as the conservation of the L2-norm
or the adiabaticity of motion; see Section 2.

Control of the quantum system by deformation of the domain. Our strategy for control
is based on specific quasi-adiabatic deformations .�.t//t2Œ0;T � of the initial domain �0.
Recall that a deformation of � is adiabatic when, for any initial state with a definite



Control of the Schrödinger equation by slow deformations of the domain 513

energy, the motion is sufficiently slow that the system during its evolution stays close to
the state defined by the same quantum numbers. It is a well-known fact (the so-called
“avoided level crossing theorem”) that for a typical adiabatic deformation of the domain,
if u0 is the ground state in the domain �.0/, then the solution u.t/ of (1.1) remains close
to the ground state of �.t/. See Section 2.2 for a more precise statement. However, we
prove Theorem 1.1 by using a special type of deformation .�.t//t2Œ0;T � which drives the
system close to energy level crossings and, thus, allows for an adiabatic transition from the
ground state to excited states. In our control protocol, the speed of the domain deformation
is uniformly slow; we just slightly adjust the speed at the moments near the level crossings
in order to distribute the energy between the modes. A typical example is as follows.

(1) Start with u0 being the ground state of �0. First, we adiabatically deform �0
into a dumbbell-shaped domain�: from a smooth part of the boundary of�0, we
slowly grow an attached ball �L linked by a thin channel to the other part, �R,
which stays close to the initial shape �0; see Figure 1. We do the deformation
sufficiently slowly to be adiabatic, so the state u.t/, eventually, gets close to the
ground state of the dumbbell-shaped domain, which, if the channel is sufficiently
thin and the attached ball �L is sufficiently large, is mostly localized in �L.

(2) At the second step, we adiabatically contract the ball �L. The modes mostly sup-
ported by �L increase their energy during the deformation, while the ones that
are mostly localized in �R stay unaffected. This provides the “almost crossings”
of the eigenvalues: at certain moments of time, we have two states, one local-
ized mostly in �L and the other in �R, with sufficiently close energies. From the
physical point of view, this allows for a tunneling effect. If we suitably adapt the
velocity of the deformation around these critical times, then we can control how
much energy is transferred from the modes in �L to the modes in �R. The main
difficulties of the proof of Theorem 1.1 consist in controlling this tunneling effect.

(3) Once the desired state has been obtained in �R, we adiabatically deform the
domain back to its initial shape �0 by preserving the simplicity of the spectrum.

�L
�R

!�

Figure 1. The key idea is to use a dumbbell-shaped domain as pictured here: a ball �L is linked to
a domain �R, close to the original reference domain �0, via a very thin channel !� . At the start,
almost all the energy is contained in the left ball �L. When we reduce the size of the ball �L, the
energy flows to the right-hand part�R, by the tunneling effect. The technical issue is to control this
transfer of energy to create the target state in �R.
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This final phase preserves the distribution of energies obtained at the previous
step.

The detailed arguments are provided in Section 4.

Explicit controls on rectangular domains. In Section 5 we study a different type of
domain deformation for the specific case where�0 is a rectangle. In a rectangular domain
of size a � b, the spectrum of the Laplacian operator is completely known: the eigenmode
�j;k D sin.j�=ax1/ sin.k�=bx2/ has total energy �j;k D �2.j 2=a2 C k2=b/. Any adi-
abatic variation of the sizes a and b of the rectangle preserves both the horizontal and
vertical quantum numbers j and k, hence the position of �j;k in the spectrum linearly
ordered by the increase of the energy can be easily switched by a slow change in a or b.
For example, for any k2 > k1 and j2 > j1, when a grows from very small to very large
values while keeping b constant, we have �j2;k1 > �j1;k2 at the beginning of the process
and �j2;k1 < �j1;k2 at the end.

We exploit this explicit eigenvalue crossing at rectangular deformations and obtain
another strategy for the global approximate controllability, as described in the proof of
Proposition 5.5. Starting with any state, we move it adiabatically to the vicinity of a decou-
pled state (a function of x times a function of y). After that, we stop doing an adiabatic
control and, instead, move the decoupled state to the ground state of the rectangle (see
Proposition 5.5) by a higher-dimensional version of the technique that was developed in
[4] for the control of the Schrödinger equation in one-dimensional domains.

Adiabatic permutations of eigenstates. Finally, in Section 5.6 we discuss how simple
and explicitly defined deformations permute the excited states of a particle in a rectangle.
With a simple and purely adiabatic periodic motion of one side of a rectangle, we create
a non-trivial permutation of the energy eigenstates. The trick is that, for a part of each
perturbation cycle, we keep the rectangular shape of the domain, and for the rest of the
cycle, we make the domain shape “generic”. This means that, when the boundary motion
is slow enough, the process is adiabatic, hence it preserves two quantum numbers (j and
k) in the first part of the cycle, leading to eigenvalue crossings, while in the rest of the cycle
no crossing occurs but the quantum numbers j and k are no longer defined. Altogether
this means that, at the end of the cycle, the system can find itself at an energy eigenstate
with a different pair of quantum numbers. We provide heuristic arguments and numerical
evidence which suggest that iteration of such permutation of eigenstates leads, typically,
to an exponential Fermi acceleration.

The same effect should be observed for adiabatic perturbations of general domains
which are periodically transformed to a dumbbell shape and back. For the part of the
perturbation cycle when the domain has a dumbbell shape, the system has an additional
(approximate) quantum number, which indicates whether the eigenfunction is supported
mostly on the left- or the right-hand part of the domain. For the part of the cycle when
the domain has a generic form, this quantum number is destroyed. Similarly to the case
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of the rectangle, such a process can lead to a non-trivial permutation of eigenstates and to
exponential energy growth; see [37].

In general, the eigenstate permutations due to the cyclic adiabatic processes described
here (when different sets of quantum numbers are preserved on different parts of the cycle)
provide an interesting class of number-theoretical games. The analysis of the dynamics of
such permutations should be different from the famous Collatz problem [35], as our per-
mutations are automatically bijections N!N, but could be similarly difficult. In addition
to dumbbell shapes and rectangles, one can use integrable domains (ellipses and rings) and
domains with discrete symmetries in order to create additional quantum numbers for a part
of the adiabatic cycle. Another possibility is to consider a pair of quantum-mechanical
oscillators cyclically perturbed in such a way that they interact only for a part of the cycle.
In all such processes, physical intuition suggests that the eigenstate permutations which
they generate are well approximated by a positively biased geometric Brownian motion;
see Section 5.6. Providing a rigorous proof for such a claim is a challenging number-
theoretical problem, and the results can be applicable beyond quantum mechanics, for
example for the wave equation and Maxwell equation in moving domains.

Previous works. The origin of our article is the work [37] where the idea was introduced
that the adiabatic separation of the domain into non-symmetric parts with a consecutive
reconnection of the parts can create eigenvalue crossings in an unavoidable way, leading to
a non-trivial permutation of the eigenstates. Before being able to obtain the results of the
present paper, we implemented the adiabatic separation/reconnection technique on a sim-
ple one-dimensional model where the control is provided by a moving potential [19]. This
was the first step to understand how to completely and rigorously obtain global approxi-
mate controllability with these techniques. Then, in [18], the first two authors introduced
the framework of the Cauchy problem related to the Schrödinger equation in moving
domains. Thus, it is now possible to implement the original ideas for equation (1.1).

Notice that the use of eigenvalue crossings to construct controls has also recently been
proposed in [8, 9]. In [13, 14], the authors consider very slow motions to construct a con-
trol, these motions being “quasi-static” because they follow curves of steady states. Even
if the PDEs considered in [13, 14] are not Hamiltonian, this type of control is in the same
spirit as our “quasi-adiabatic” motions.

The control of PDEs by deformation of the domain is a difficult task and there are
very few results in this direction. In [3], the authors study an adiabatic deformation of the
domain �.t/ in (1.1) in dimension d D 1 and for a specific case of deformation. Articles
[4–6,34] also consider the case d D 1. They investigate the exact controllability problem,
but only in the neighborhood of some specific solutions (for comparison: our Theorem
1.1 is a global result, but it does not yield an exact control since we allow a small error
" > 0). Finally, in [27] the strategy of [4–6, 34] is followed for higher space dimensions.
However, due to an assumption of radial symmetry, the techniques of [27] remain mostly
one-dimensional.



A. Duca, R. Joly, and D. Turaev 516

2. Moving domains

The Schrödinger equation in domains depending on time was studied in several articles,
see [3, 4, 6, 22, 23, 27, 32], but often in the case of simple deformations. A general theory
was developed in [18]. In this section we recall the basic tools introduced in this work and
also give some new estimates.

2.1. The basic setting

The first step adopted in order to deal with moving domains consists in pulling back the
equation in a fixed domain �0. As it is classical, we use a family of Ck-diffeomorphisms
h.t; �/ such that h.t; �0/ D �.t/ for every t in time interval I (see for example [21,
28] for an introduction to the subject). We need to introduce a topology associated to
these deformations via diffeomorphisms. For this purpose, it is more convenient to extend
hW�0 ! �.t/ into a diffeomorphism from B to B where B � Rd is a large closed ball
containing all the domains we are interested in.

Definition 2.1. Let B � Rd be a large closed ball. We set

kf kCk.B/ D max.kf kL1.B/; : : : ; kDkf kL1.B//

to be the classical Ck-norm. We denote by Diffk.B/ the set of Ck-diffeomorphisms h on
B such that h � id on @B. We endow it with the Ck-topology, considering Diffk.B/ as a
submanifold of Ck.B;B/.

We recall that if h 2 Diffk.B/, then any g 2 Ck.B;B/ that satisfies g � id on @B
and which is close enough to h for the Ck-norm, also belongs to Diffk.B/. This is the
reason why Diffk.B/ is a submanifold of Ck.B;B/ and it can be locally endowed with
its topology. Now we introduce the space of paths of diffeomorphisms in the same way.

Definition 2.2. If I is a time interval, we introduce the space Pathk.I;B/ of Ck-paths of
diffeomorphisms h 2 Ck.I �B;B/ with h.t/ 2 Diffk.B/ for all t 2 I . We consider it as
a submanifold of Ck.I �B;B/ and we endow it with the inherited topology.

In this paper, we will always consider the following framework: B � Rd is a large
closed ball and �0 � B is a reference domain, regular enough to be able to define a
Dirichlet Laplacian operator with the classical properties that we may be interested in.
Typically, we can consider a smooth reference domain or a polyhedral reference domain,
but even a Lipschitz domain should be sufficient to ensure several of our statements. We
consider the moving domain �.t/ with t 2 I as the images �.t/ D h.t; �0/, where h 2
Pathk.I;B/ for some k � 1. To preserve the Hamiltonian structure of the Schrödinger
equation, it is natural to introduce a unitary version of the pull-back operator h�W� 7! � ı h

by considering h].t/ defined by

h].t/W� 2 L2.�.t/;C/ 7�!
p
jJ.t; �/j.� ı h/.t/ 2 L2.�0;C/;
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where J.t; x/ WDDh.t;x/ is the Jacobian of h and jJ j (or jDh.t;x/j) denotes the absolute
value of its determinant. We also introduce its inverse h].t/ with t 2 I , the push-forward
operator

h].t/ D .h
].t//�1W 2 L2.�0;C/ 7�! . =

p
jJ.�; t /j/ ı h�1 2 L2.�.t/;C/:

In the current work, we adopt the notation from [18]. We denote by x the points in �.t/
and by y the ones in �0. The notation h� j �i denotes the scalar product in CN with the
convention

hvjwi D

dX
kD1

vkwk 8v;w 2 Cd :

We set v.t/ D h].t/u.t/ and we pull back equation (1.1) in the fixed domain �0. The
straightforward computation yields an equation for which the Hamiltonian structure is not
obvious at first sight. This structure was made more explicit in [18], by proving that the
equation satisfied by v is8̂̂<̂
:̂
i@tv.t; y/ D �h

]
�
.divx CiAh/ ı .rx C iAh/

CjAhj
2
�
h]v.t; y/; .y; t/ 2 �0 � I;

vj@�0 D 0; .y; t/ 2 @�0 � I;

(2.1)

where the magnetic potential Ah is given by

Ah.t; x/ D �
1

2
.h�@th/.t; x/ WD �

1

2
.@th.t; h

�1.t; x///:

Using the equation above, we may define a flow for the Schrödinger equation in the mov-
ing domain �.t/. The following result is proved in [18]:

Theorem 2.3 ([18, Theorem 1.1]). Let B � Rd be a large ball and let �0 � B be a
reference domain, either a domain of class C2 or a polyhedron. Let I be a time interval
and let h 2 Path2.I;B/. We set �.t/ D h.t;�0/.

Then equation (2.1) generates a unitary flow zU.t; s/ on L2.�0/ and we may define
weak solutions of the Schrödinger equation (1.1) by transporting this flow via h] to a
unitary flow U.t; s/WL2.�.s//! L2.�.t//.

Assume in addition that the path of diffeomorphisms h belongs to Path3.I;B/. Then,
for any u0 2H 2.�.t0//\H

1
0 .�.t0//with t0 2 I , the flow above defines a solution u.t/D

U.t; t0/u0 in C0.I; H 2.�.t// \H 1
0 .�.t/// \ C1.I; L2.�.t/// solving (1.1) in the L2-

sense.

A similar result for Neumann-type boundary conditions or for more general linear
Schrödinger equations was also obtained in [18]. The gauge invariance, additional phase
shifts, or a suitable version of Moser’s trick may be used to simplify (2.1) in particular
situations, as presented in [18].
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Theorem 2.3 shows that a relevant notion of a solution of the Schrödinger equation in
�.t/ can be obtained for C2-paths of domains �.t/ and that this notion corresponds to
the natural strong one in the path of domains of class C3. Notice that the Ck-smoothness
does not refer to the reference domain �.0/ D �.t0/, which may have corners.

Also notice that defining h outside �0 and equal to the identity on @B is not too con-
straining. If we start from a family of diffeomorphisms .h.t; �//t2I 2 Ck.I � �0;Rd /,
then it may be impossible to embed it in Pathk.B/ for some ball B due to topological rea-
sons. If for instance we consider �0 � R2 as an annulus and h reverses it inside out, then
we cannot extend h into a diffeomorphism of a ball. However, we may consider �.t0/ as
a new reference domain and Qh.t/ D h.t/ ı h.t0/�1 as another family of diffeomorphisms.
For all the simple and smooth examples discussed in this paper, using the Whitney exten-
sion theorem [39] and standard results of globalization of local diffeomorphisms (see [24]
and also [18]), we can then extend Qh from �.t0/ into some large ball B in order to embed
it in Diffk.B/.

2.2. Adiabatic motions

The aim of this section is to present the adiabatic result for the Schrödinger equation (2.1)
on moving domains under suitable assumptions on the deformation. For this purpose, we
refer to [18, Sections 1 and 5.1], where a very similar result is presented and proved.

We consider a family of domains ¹�.�/º�2Œ0;1� with the framework of Theorem 2.3.
We denote by P.�/ 2 L.L2.�.�/// with � 2 Œ0; 1� a family of spectral projectors asso-
ciated to the Dirichlet Laplacian operator �� on �.�/. The classical adiabatic principle
occurs when the deformation of the family of domains is sufficiently slow. We represent
the slowness of the motion by a parameter � > 0 and we consider deformations between
the times 0 and 1=�, i.e., the Schrödinger equation8̂̂<̂

:̂
i@tu�.t; x/ D ��u�.t; x/; t 2 Œ0; 1=��; x 2 �.�t/;

u�.t/ � 0 on @�.�t/;

u�.t D 0/ D u0 2 L
2.�.0//:

(2.2)

The classical adiabatic principle say that, if we move very slowly, then the energy con-
tained in a level of energy is almost preserved. Many versions of adiabatic results exist; see
for example [29]. In [18], we checked the adaptation of this argument to the framework of
moving domains.

Proposition 2.4 ([18, Corollary 1.5]). Let N > 0. Then consider a family of domains
¹�.�/º�2Œ0;1� such that, for all � 2 Œ0; 1�, the first N eigenvalues .�j .�//jD1;:::;N of
the Dirichlet Laplacian operator on �.�/ are simple. Denote by .'j /jD1;:::;N and
. j /jD1;:::;N some corresponding orthonormal eigenfunctions for � D 0 and � D 1 respec-
tively. Then the solution of (2.2) with

u0 D

NX
jD1

cj'j
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satisfies

u".1=�/ D

NX
jD1

Qcj j CR with j Qcj j ���!
�!0

jcj j and kRkL2 ���!
�!0

0:

Notice that it is also possible to extend the above result to some cases with multiple
eigenvalues; see [29, Remarks 3–4, p. 16]. We will need this extension in the case of a
rectangular shape. This case is simple enough to be computed explicitly and, in the present
paper, we will restrict the extension to such a case (see the statement of Proposition 5.1
below).

2.3. Continuity estimates

We need to estimate the continuity of the solutions of (2.1) with respect to the different
deformations of the domain. By Theorem 2.3, we know that (2.1) generates a unitary
semigroup and the L2-norm of v.t/ is constant. Since we do not want to involve Poincaré
estimates that depend on the domain, we consider

kvkH1.�/ D krvkL2.�/ C kvkL2.�/;

even if the term krvkL2.�/ is sufficient to define an equivalent norm in H 1
0 .�/. Notice

that if � � B and v 2 H 1
0 .�/, then the extension of v by zero belongs to H 1

0 .B/ and
has the same H 1- and L2-norms. We first bound the growth of the H 1-norm during the
dynamics.

Proposition 2.5. Let I be a time interval and t0 2 I . For all R > 0, there exists C > 0

such that the following holds: Let h 2 Path3.I;B/ be a family of diffeomorphisms such
that khkC3.I�B;B/ C kh

�1kC3.I�B;B/ � R. Let �0 � B be any reference domain. Let v
be the corresponding solution of (2.1) with an initial data v.t0/D v0 2H 1

0 .�0/, as given
by Theorem (2.3). There holds

8t 2 I; kv.t/kH1.�0/ � Ce
C jt�t0jkv.t0/kH1.�0/:

Proof. First notice that, arguing by density, it is sufficient to prove the estimate when
v0 2 H

2.�0/ \H
1
0 .�0/. In this case, the corresponding solution v.t/ is differentiable

with respect to time and (2.1) holds in the L2-sense.
A direct computation (see [21, 28] or [18, Proposition 2.1]) shows that

.h]rxh]/v.t; y/ D
p
jJ.t; y/j.J.t; y/�1/T � ry

� v.t; y/p
jJ.t; y/j

�
: (2.3)

In particular,

h].rx C iAh/h]v.t; y/

D h]rxh]v.t; y/ �
i

2
@th.t; y/v.t; y/
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D .J.t; y/�1/Tryv.t; y/

�
1

2

�
jJ.t; y/j�1.J.t; y/�1/Try.jJ.t; y/j/C i@th.t; y/

�
v.t; y/: (2.4)

It yields the equivalence

1

C1.R/
kvkH1.�0/ � kh

].rx C iAh/h]vkL2.�0/ C kvkL2.�0/

� C1.R/kvkH1.�0/; (2.5)

where C1.R/ only depends on the bounds on h and its derivatives, and not on �0. The
L2-norm of v.t/ is constant in time. So, thanks to the relation (2.4), we have

@t
�
kh].rx C iAh/h]v.t/k

2
L2
C kv.t/k2

L2

�
D 2Re

˝
@t .h

].rx C iAh/h]v.t//
ˇ̌
h].rx C iAh/h]v.t/

˛
L2

D 2Re
˝
h].rx C iAh/h]@tv.t/

ˇ̌
h].rx C iAh/h]v.t/

˛
L2

C 2Re
˝
@t .J.t; y/

�1/Tryv.t/
ˇ̌
h].rx C iAh/h]v.t/

˛
L2

� Re
˝
@t
�
jJ.t/j�1.J.t/�1/Try.jJ.t/j/C i.J.t/

�1/T@th.t/
�
v.t/ˇ̌

h].rx C iAh/h]v.t/
˛
L2
:

Using the above estimates and the fact that v.t/ is the solution of (2.1), we obtain

@t .kh
].rx C iAh/h]v.t/k

2
L2
C kv.t/k2

L2
/

� �2Re
˝
ih]
�
.rx C iAh/

2
C jAhj

2
�
h]v.t/

ˇ̌
h].rx C iAh/

2h]v.t/
˛
L2

C C2.R/kv.t/k
2
H1.�0/

� 2 Im.kh].rx C iAh/2h]v.t/k2L2/C C3.R/kv.t/k
2
H1.�0/

� C3.R/kv.t/k
2
H1.�0/

� C4.R/.kh
].rx C iAh/h]v.t/k

2
L2
C kv.t/k2

L2
/;

where the Ci .R/ with i D 1; : : : ; 4 are constants only depending on the first three deriva-
tives of h and h�1, and then on the parameter R. It remains to apply Grönwall’s lemma
and the equivalence (2.5).

From the previous estimate we can deduce a uniform estimation of the continuity at
t D 0.

Proposition 2.6. For any T > 0 and R � 0, there exists C > 0 such that the follow-
ing holds: Let h 2 Path3..�T; T /;B/ be a family of diffeomorphisms such that we have
khkC3..�T;T /�B;B/ C kh

�1kC3..�T;T /�B;B/ � R. Let �0 be any reference domain in B.
Then any solution v.t/ of (2.1) corresponding to h with initial data v.t0/ D v0 2

H 1
0 .�0;C/ satisfies

8t 2 .�T; T /; kv.t/ � v0kL2 � C
p
jt jkv0kH1 :
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Proof. As in the proof of Proposition 2.5, h is smooth enough to be able to argue by
density and by assuming that v0 belongs to H 2 \ H 1

0 . Using the same arguments as
above, we write

@tkv.t/ � v0k
2
L2.�0/

D 2Re
˝
@tv.t/

ˇ̌
v.t/ � v0

˛
L2

D �2 Im
˝
h]
�
.rx C iAh/

2
C jAhj

2
�
h]v.t/

ˇ̌
v.t/ � v0

˛
L2

D 2 Im
˝
h]
�
.rx C iAh/C jAhj

�
h]v.t/ˇ̌

h]
�
.rx C iAh/ � jAhj

�
h].v.t/ � v0/

˛
L2

� C.R/kv.t/kH1.kv.t/kH1 C kv0kH1/;

with C.R/ > 0 only depending on R. Finally, we obtain a uniform bound for @tkv.t/ �
v0k

2
L2.�0/

by using Proposition 2.5 and the claim is ensured since kv.t/ � v0k2L2.�0/ �
t supt2.�T;T / j@tkv.t/ � v0k

2
L2.�0/

j:

We can also estimate the continuity of the solutions with respect to the deformations
of the domain.

Proposition 2.7. Let I be a time interval and t0 2 I . For any R � 0, there exists C > 0

such that the following holds: Let h 2 Path3.I;B/ and g 2 Path3.I;B/ be two families
of diffeomorphisms such that

khkC3.I�B;B/ C kh
�1
kC3.I�B;B/ � R

and

kgkC3.I�B;B/ C kg
�1
kC3.I�B;B/ � R:

Let �0 be any reference domain in B. Let v.t/ be the solutions of (2.1) corresponding to
h with initial data v.t0/ D v0 2 H 1

0 .�0;C/ and w be another solution corresponding to
g with initial data w.t0/ D w0 2 H 1

0 .�0;C/, as given by Theorem 2.3. Then

kv.t/ � w.t/k2
L2
� kv0 � w0k

2
L2
C C.eC jt�t0j � 1/kh � gkC2.I�B;B/kv0kH1kw0kH1 :

Proof. We use the same arguments leading to the previous propositions. First, we notice
that h and g are smooth enough to be able to argue by density and by assuming that v0
and w0 belong to H 2 \H 1

0 .�0;C/. Then, since the flow is unitary,

@tkv.t/ � w.t/k
2
L2
D �2Re

�
h@tv.t/jw.t/iL2 C hv.t/j@tw.t/iL2

�
D �2Im

˝
h]
�
.rx C iAh/

2
C jAhj

2
�
h]v.t/

ˇ̌
w.t/

˛
L2

C 2Im
˝
v.t/

ˇ̌
g]
�
.rx C iAg/

2
C jAg j

2
�
g]w.t/

˛
L2

D �2Im
˝
h].rx C iAh/h]v.t/

ˇ̌
h].rx C iAh/h]w.t/

˛
L2

C 2Im
˝
g].rx C iAg/g]v.t/

ˇ̌
g].rx C iAg/g]w.t/

˛
L2

� 2Im
˝
h]jAhj

2h]v.t/
ˇ̌
w.t/

˛
L2
C 2Im

˝
v.t/

ˇ̌
g]jAg j

2g]w.t/
˛
L2
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D �2Im
˝
h].rx C iAh/h]v.t/

ˇ̌
.h].rx C iAh/h] � g

].rx C iAg/g]/w.t/
˛
L2

� 2Im
˝
.h].rx C iAh/h] � g

].rx C iAg/g]/v.t/
ˇ̌
g].rx C iAg/g]w.t/

˛
L2

C 2Im
˝
.g]jAg j

2g] � h
]
jAhj

2h]/v.t/
ˇ̌
w.t/

˛
L2
: (2.6)

We study the objects appearing in (2.6). First, since h]jAhj2h] D 1
4
.@th/

2 and g]jAg j2h]
D

1
4
.@tg/

2, we easily bound the last term byˇ̌˝
.g]jAg j

2g] � h
]
jAhj

2h]/v.t/
ˇ̌
w.t/

˛
L2

ˇ̌
� C1.R/kh � gkC1.I�B;B/kv0kL2kw0kL2 :

Second, as shown by (2.5),

kh].rx C iAh/h]v.t/kL2 � C2.R/kv.t/kH1

and

kg].rx C iAg/g]w.t/kL2 � C2.R/kw.t/kH1 :

Then we write

k.h].rx C iAh/h] � g
].rx C iAg/g]/w.t/kL2

D k.h]rxh] � g
]
rxg]/w.t/C

i
2
.@th � @tg/w.t/kL2

� k.h]rxh] � g
]
rxg]/w.t/kL2 C kh � gkC1.I�B;B/kw0kL2 :

It remains to estimate terms of the type k.h]rxh] � g]rxg]/w.t/kL2 . By using (2.3), we
obtain

k.h]rxh] � g
]
rxg]/w.t/kL2

�
pjDhjh�rxh�.pjDhj�1/ �pjDgjg�rxg�.pjDgj�1/L1kw.t/kL2
C k..Dh�1/T � .Dg�1/T/kL1kryw.t/kL2

� C3.R/kh � gkC2.I�B;B/kw.t/kH1 :

Again, we underline that the constants Ci .R/ with i D 1; 2; 3 do not depend on �0 or the
initial data. By using the Cauchy–Schwarz inequality in (2.6) and the above estimates, we
obtain a constant C4.R/ > 0, only depending on R, such that

@tkv.t/ � w.t/k
2
L2
� C4.R/kh � gkC2.I�B;B/kv.t/kH1kw.t/kH1 :

Finally, we apply Proposition 2.5 to get that there exist C5.R/;C6.R/ > 0, only depending
on R, such that

@tkv.t/ � w.t/k
2
L2
� C5.R/e

C6.R/jt�t0jkh � gkC2.I�B;B/kv0kH1kw0kH1

and it remains to integrate this last estimate in order to ensure the claim.
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3. Moving domains and the spectrum of the Dirichlet Laplacian

3.1. Generic properties

Micheletti [25] was one of the first to show that the spectrum of the Laplacian operator
is simple, generically with respect to the geometry of the domain. See also the work of
Uhlenbeck [38] and the very complete book of Henry [21]. They consider fixed domains
� D h.�0/, with h a Ck-diffeomorphism in Diffk.B/ as in Definition 2.1. By a generic
set of domains, we mean a generic subset of the Banach manifold Diffk.B/. We recall that
a subset of a Banach manifold X is called generic if it contains a countable intersection
of dense open subsets of X .

Theorem 3.1 ([25, 38], [21, Chapter 6]). Let B be a closed ball and let �0 be an open
C2-domain, or a polyhedron, with �0 � VB. For any k � 2, there is a generic set of
diffeomorphisms h 2 Diffk.B/ such that the Laplacian operator � in h.�0/ has only
simple eigenvalues.

In this paper we need to follow paths of domains�.t/without meeting multiple eigen-
values. The genericity result above is not sufficient: we need to know that the domains with
multiple eigenvalues belong to a set of codimension at least 2. To study the codimension
of this set, [12] introduces the strong Arnold hypothesis. As noticed in [36], when we
only want to obtain a codimension larger than 2, we may consider a weaker hypothesis:
(SAH2) presented below. Teytel [36] shows that for any pair of diffeomorphic domains
�.0/ and �.1/, we can find an analytic path .�.�//�2Œ0;1� linking them, such that, for all
� 2 .0; 1/, the Laplacian operator on�.�/ has a simple spectrum. In fact, the proof yields
a stronger result. First, this path can be made as close as wanted to a target path. Second,
it is possible to consider a subfamily of possible domains as soon as this family satisfies
hypothesis (SAH2) explicitly stated in [36]. Lastly, even if this is not useful for us, notice
that [36] states abstract results with many other applications than the paths of domains.

Theorem 3.2 ([36, Theorem 6.4]). Let B be a closed ball and let �0 be a connected
open C2-domain, or a polyhedron, with �0 � VB. Let k � 2 and let h 2 Pathk.Œ0; 1�;B/
representing a path of domains �.�/ D h.�;�0/. Then, for all " > 0, there exists a path
g 2 Pathk.Œ0; 1�;B/ such that the spectrum of the Dirichlet Laplacian operator �� in
z�.�/ D g.�;�0/ is simple for all � 2 .0; 1/ and

g.0/ D h.0/; g.1/ D h.1/; kg � hkCk.Œ0;1��B;B/ < ":

There are a few differences from the original statement of Teytel, which are discussed
in the proof below. We also would like to restrict the possible domains to stay, for example,
in the class of polygonal domains. To this end, we restrict the possible diffeomorphisms
to a submanifold H of Diffk.B/. At each h 2 H , the tangent space ThH is a subspace
of Ck.B;Rd /. In this framework, hypothesis (SAH2) is as follows (see [36, Sections 1
and 6]):
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(SAH2) Let h 2 H � Diffk.B/ and N 2 N. We say that (SAH2) is satisfied at h
along the submanifold H for the first N eigenvalues when the following
property is verified: if the Dirichlet Laplacian operator �� in � D h.�0/
has a multiple eigenvalue � among its firstN eigenvalues, then there are two
orthogonal eigenfunctions '1 and '2 corresponding to the eigenvalue � such
that the three linear functionals

g 2 ThH 7�!

Z
@�

@'i

@�

@'j

@�
h.h�g/.�/j�.�/i d�

with .i; j / D .1; 1/, .2; 2/, or .1; 2/, are linearly independent, where �.�/
denotes the normal vector to @� at � .

We can state a modified version of the result of Teytel.

Theorem 3.3. Let k� 2,N 2N, and let h2 Pathk.Œ0;1�;B/ be a path of domains�.�/D
h.�;�0/. Assume that, for all � 2 Œ0; 1�, h.�/ belongs to the subclass H � Diffk.B/ and
that hypothesis (SAH2) holds at h.�/ along H for the first N eigenvalues. Then, for
all " > 0, there exists a path g 2 Pathk.Œ0; 1�;B/ such that g.�/ 2 H and the first N
eigenvalues of the Dirichlet Laplacian operator �� in z�.�/ D g.�; �0/ are simple for
all � 2 .0; 1/, and

g.0/ D h.0/; g.1/ D h.1/; kg � hkCk.Œ0;1��B;B/ < ":

Proof. All the arguments for proving both previous results are contained in [36], but since
the statements are different from those of Teytel, we emphasize here some key points.
First, [36, Theorem 6.4] considers two domains�.0/ and�.1/ homotopic to the ball. This
hypothesis is assumed to ensure that there exists at least a path connecting both domains.
In our case, the existence of such a path is part of the hypotheses so we can be more general
concerning the topology of these domains (this was already noticed in the erratum of
[33]). Second, [36, Theorem 6.4] does not consider a subclass H of domains and directly
proves that (SAH2) is satisfied with respect to the whole class of diffeomorphic domains.
However, assumption (SAH2) and the main result [36, Theorem B] are stated in a very
general way, including the possibility of few degrees of freedom. In [36, Section 6], Teytel
considers the case of domain perturbations and computes (SAH2) as stated above. He also
checks that it is satisfied when H is the whole class of deformations of the domain as in
Theorem 3.2. Notice that (SAH2) is obviously not satisfied for '1 and '2 supported in
different parts of the domain and this is why the connectedness requested in Theorem 3.2
above is mandatory.

We would also like to underline that the arguments of [36] are local ones and that is
why we can state Theorems 3.2 and 3.3 in a perturbative form. If (SAH2) is satisfied at
some point h 2 H , then it yields local information in a neighborhood of h as is classical
when applying the transversality theorems; see for example [36, Lemma 3.2]. Since in
Theorem 3.3 we aim to stay close to a compact path � 2 Œ0; 1� 7! h.�/ and since we only
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consider a finite number of eigenvalues, it is sufficient to check (SAH2) at each point h.�/
and to apply the arguments in a tubular neighborhood of the original path.

It remains to emphasize that the path constructed in the proof of [36, Theorem B]
is actually constructed as the perturbation of a first path. Teytel’s original path is piece-
wise linear and it is difficult to control the derivatives of the constructed perturbation.
To be complete, let us show how to adapt Teytel’s local argument to our purpose. Let
h.t/ be a given path. We perturb it locally close to a time t0. There exist a small � > 0,
a tubular neighborhood T 2 Diffk.B/ of ¹h.t/; t0 � � < t < t0 C �º, and a smooth
function  2 C1.Œt0 � �; t0 C ��/, with  and all its derivative vanishing at t0 ˙ � ,
such that the following holds: There is a hyperspace D 2 Diffk.B/, complementary
to span.@th.t0//, such that any function g in T is uniquely represented by coordinates
.t; ı/ 2 .t0 � �; t0C �/�D via g.y/D h.t; y/C .t/ı.y/. The function g 2 T 7! ı 2D

is a “nonlinear projection”, i.e., a Fredholm map of index 1. Due to (SAH2), the set
of diffeomorphisms in Diffk.B/ such that the Dirichlet Laplacian operator has multiple
eigenvalues is of codimension at least 2. Thus, its projection by g 2 T 7! ı 2D has a mea-
ger image. Thus, there exists ı as small as wanted such that, for all t 2 .t0 � �; t0 C �/,
the path t 7! h.t/ C .t/ı avoids the diffeomorphisms providing multiple eigenvalues.
We can repeat this local perturbation a finite number of times. It is sufficient to cover the
whole time interval Œ0; 1� because the length � is uniform with respect to the second time
derivative of h, which is bounded by assumption.

We will also need domains without rational resonances in the spectrum. Actually, it
is a generic property, as can be proved by the techniques of Henry [21]. It is stated as a
consequence of a more general result in [33].

Theorem 3.4 ([33, Corollary 8]). Let B be a closed ball and �0 a Lipschitz domain with
�0 � VB. For any k � 2, there is a generic set of diffeomorphisms h 2 Diffk.B/ such
that the Laplacian operator �� in h.�0/ has only simple eigenvalues .�j / � R that are
rationally independent.

3.2. Singular convergence

In this section we consider the case of singular convergence of domains. For all � 2 Œ0; 1�,
let �� � Rd be bounded domains with Lipschitz boundaries. Let .��j /j2N� be the eigen-
values of the corresponding Dirichlet Laplacian operators in �� , ordered and counted by
multiplicity. For � 62 ¹��j º, we denote by R�.�/ 2 L.L1.Rd // the corresponding resol-
vent operator defined as follows. Any function f 2 L1.Rd / is first truncated inside �� ,
then we apply the classical resolvent .���/�1 to obtain a function in L1.��/, which is
extended by zero to go back to L1.R/d afterwards. This extension enables us to compare
the resolvent in a space independent of � and it is sufficient to obtain the convergence of
the spectrum.

Arendt and Daners [1, 15] show the following result:
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Theorem 3.5 ([1, Theorem 5.10 and Section 7] and [15, Theorem 7.5]). Assume that for
all compact K � �0, there is �0 > 0 such that for all � 2 .0; �0/, K � �� . Assume the
same for the exteriors: for all compact K � Rd n �0, there is �0 > 0 such that for all
� 2 .0; �0/, K � Rd n�� .

Then the spectrum of the Dirichlet Laplacian operators converges when � goes to zero
in the following sense:

(i) For all j � 1, ��j ! �0j when �! 0.

(ii) For all � 62 ¹�0j º,R
�.�/ is well defined for � small enough andR�.�/ converges

to R0.�/ in L.L1.Rd //. In particular, the spectral projectors of the Dirichlet
Laplacian operators converge when � goes to zero. If �0j is a simple eigenvalue
with an eigenfunction '0j , then there exist eigenfunctions '�j such that '�j ! '0j
in H 1

0 .R
d / when �! 0.

For further details, we refer to [1, Theorem 5.10 and Section 7], and [15, Theorem 7.5]
(see also [2]). We notice that the domains considered in this paper are “strongly regular”
in the sense of [1] because they have Lipschitz boundaries. We intend to use Theorem 3.5
in the case of dumbbell-shaped domains, which is a very classical example.

4. Proof of Theorem 1.1

4.1. Preliminaries

A first important remark is that, since the flow is unitary, the smallness of the errors in
L2.�.t// is preserved by the flow for all t 0 > t . Thus, we may simply count the accumu-
lated errors at each time that an approximation is made, without wondering what happens
to the neglected term in the future.

Let �0 � Rd be the reference domain of Theorem 1.1 and B a large ball containing
it. Let u0 and u1 respectively be the starting and aimed states in L2.�0/. Let " > 0 be
the accepted error. Using the generic simplicity stated in Theorem 3.1, we can find a
homotopic domain �00 in which the associated Dirichlet Laplacian operator has a simple
spectrum with a Hilbert basis of eigenfunctions .'j /j�1. Let h 2 Pathk.Œ0; 1�;B/ be such
that h.0;�0/ D �0 and h.1;�0/ D �00.

We notice that if u.t/ is the solution of the Schrödinger equation (1.1) in �.t/ D
h.t; �0/ with ui D u.t D 0/ and uf D u.t D 1/, then v.t/ D Nu.1 � t / is the solution
of the same equation (1.1) in �.1 � t / with initial data v.t D 0/ D Nuf and endpoint
v.t D 1/ D Nui . This time reversibility of the Schrödinger equation allows us to define the
solutions of (1.1) when we “reverse” the deformation of the domain. Notice that the roles
of the initial and final states are swapped, up to conjugation.

Let u0.t/ be the solution of (1.1) in �.t/ D h.t; �0/ with initial data u.t D 0/ D u0
and set u00 D u0.t D 1/. Let v.t/ be another solution of the Schrödinger equation (1.1) in
�.t/with initial data v.t D 0/D u1 and set v0D v.t D 1/. Thanks to the time reversibility
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of the equation, u1.t/ WD Nv.1 � t / is the solution of (1.1) in �.1 � t / steering u01 WD Nv
0

in u1.
There exist N 2 N and some coefficients .cj /jD1;:::;N and .dj /jD1;:::;N such that

NX
jD1

jcj j
2
D

NX
jD1

jdj j
2;

u00 � NX
jD1

cj'j


L2.�00/

�
"

4
; and

u01 � NX
jD1

dj'j


L2.�00/

�
"

4
;

where we use ku00k D ku
0
1k because the flow given by Theorem 2.3 is unitary and ku0k D

ku1k by assumption. Assume that the following claim holds:

Claim 4.1. Let N 2 N and " > 0 be given and let A D .
PN
jD1 jbj j

2/1=2. Then there
exist T > 0 and a path h0.t/ 2 Pathk.Œ0; T �;B/ such that the following holds: The motion
is a loop in the sense that h0.0/ D h0.T / D id. Moreover, if u0.t/ is the solution of the
Schrödinger equation (1.1) in �0.t/ D h0.t;�00/ with initial data u0.0/ D A'1, thenu0.T / � NX

jD1

bj'j


L2.�00/

�
"

4
:

Denote by h00 and h01 the deformations driving A'1 to
PN
jD1 cj'j and

PN
jD1 dj'j

respectively, up to an error "=4. We concatenate h.t/, h00.T � t / ı h.1/, h
0
1.t/ ı h.1/,

and h.1 � t / to obtain, thanks to the time reversibility, a motion of the domains steering
approximately u0 in u1. Indeed, this deformation drives u0 successively to u00 which is
close to

PN
jD1 cj'j (up to an error "=4), then to A' D A'1 (up to an error "=2), then toPN

jD1 dj'j (up to an error 3"=4) which is close to u01 (up to an error "), and finally to u1
(up to an error ").

To summarize, these preliminaries reduce the whole proof of Theorem 1.1 to the above
claim (which is a particular case of Theorem 1.1). Proving Claim 4.1 is the purpose of the
remaining part of this section.

4.2. Sketch of the global strategy

One of the main ideas of our strategy was introduced in [37]. Assume that the spectrum
of our operator splits into two separated parts that belong to two separated subspaces of
the phase space: domain with two disconnected parts, separation between even and odd
eigenfunctions, between states not depending on x1 and states not depending on x2 . . .
Then, when we make adiabatic motions, the distribution of energy follows the curves
of eigenvalues, even when eigenvalues of one part cross eigenvalues of the other part,
due to their independence. Following this idea, we can shuffle the energy carried by the
eigenfunctions and drive a state

PN
jD1 bj'j to another state

PN
jD1 b�.j /'j , where � is a

permutation of the indices.
In [19], we studied the simple situation of the Schrödinger equation on Œ0; 1� with a

potential V.x/. When V.x/ is a very high and localized wall, the segment is almost split
into two parts, but not perfectly. We showed that the idea of [37] can still be used, up to
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carefully avoiding the tunneling effect when both parts of the segment have a resonance.
Moreover, a new observation was made in comparison with [37]: we showed that one, in
fact, can use this tunneling effect to distribute the energy between two eigenmodes when
they (almost) cross.

Here we use the same strategy. We intend to create a situation where the spectrum of
the Dirichlet Laplacian operator on the domains �.t/ behaves as in Figure 2. We separate
the spectrum between two parts, the left and the right ones. The right eigenvalues �Rj are
almost constant. The lowest left eigenvalue �L1 corresponds to the ground state A'1 at t D
0 which is our starting state. Then we deform the domain to increase the eigenvalue �L0 ;
see Figure 2. If we do this in an adiabatic way, the distribution of energy is not modified
(see Lemma 4.4 below). But when �L1 meets �R1 , a tunneling effect appears and, by tuning
the speed with which the domain boundary moves, we are able to distribute the energy
between the levels �L1 and �R1 , following the method of [19]. This is the key argument of
the proof of Theorem 1.1 which is ensured in Lemma 4.2 below. We continue to increase
the left-hand part of the spectrum until �L1 has crossed all the desired levels �Rj to distribute
the energy as in our aimed state

u1 D

NX
jD1

aj'j :

crossings where we can distribute
the energy between two levels

t
�L1

�L2

�L3

�R1

�R2

�R3

�R4

Figure 2. The “ideal” behavior of the spectrum during our control process. The eigenvalues are split
between two groups �Lj and �Rj . We deform the domain to ensure that the eigenvalue �L1 crosses
a suitable number of eigenvalues �Rj of the other group. At each crossing point, an accurate use of
the tunneling effect enables us to distribute the desired part of the energy carried by �L1 to �Rj . The
actual deformation of the domain used in our proof mimics this “ideal” situation, except that the
crossing of the eigenvalues will be broken into an “almost crossing”, which still yields a tunneling
effect.

Indeed, in our proof, we will not be able to reproduce the “ideal” situation of Figure 2.
To perform the strategy above, we approximate Figure 2 via the classical dumbbell-shaped
domains. Other frameworks are possible (see Section 5 for example), but the dumbbell-
shaped domains yield a simple and general proof. By assumption, our initial reference
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domain �0 provides a simple spectrum. This domain, denoted by �R, corresponds to the
right-hand part of the spectrum .�Rj /j2N� . From a smooth part of the boundary, we grow
an attached ball �L linked with a thin channel !�; see Figure 1. The spectrum of the
Dirichlet Laplacian �� on this ball is denoted .�Lj /j2N� . The interest of this dumbbell-
shaped domain is that, if the channel is very thin, then the spectrum of the whole domain
can be approximated by .�Lj /j2N� [ .�

R
j /j2N� . During this deformation, if we move adi-

abatically as in Proposition 2.4 and if�L is sufficiently large, then the ground state of the
initial domain is mainly supported by the ball �L, because �L1 is the lowest eigenvalue.

Afterwards, we reduce the size of the ball �L in order to obtain the behavior of the
spectrum as described above (Figure 2). We use the tunneling effect when the ground
energy level �L1 of the left ball is equal to an eigenvalue �R

k
of the right-hand domain.

In these resonant moments, it is then possible to distribute a part of the energy contained
in the left ball to the kth energy level of the right-hand part. Notice that, for the actual
eigenvalues of the Laplacian operator in the dumbbell domain with the thin channel, the
crossing of the “ideal” eigenvalues �L1 and �R

k
becomes an “almost crossing” because the

exact crossing is not a generic situation (see Section 3.1). However, they will be close
enough to observe a tunneling effect.

4.3. The basic step: Distribution of energy during the (almost) crossing of
eigenvalues

The purpose of this section is to rigorously obtain the key step of the strategy described in
Section 4.2: the distribution of the energy via the tunneling effect. In the following lemma
we make precise the situation of Figure 1 and analyze the evolution of the state during the
deformation. In what follows, �0 denotes the starting domain of Theorem 1.1 and B is a
large ball containing it.

Lemma 4.2. Let cj 2 R, j D 1; : : : ; K be given, let ˛ 2 Œ0; 1�, and let ı > 0. There exist
a time interval I D Œt0; t1� and a family of diffeomorphisms h.t/ 2 Path3.I;B/ such that
the following holds:

The spectrum of the Dirichlet Laplacian operator is simple on �.t0/ D h.t0;�0/ and
�.t1/D h.t1;�0/ respectively. Denote by .'j /j2N� and . j /j2N� two respective Hilbert
bases of eigenfunctions in these domains. Let u.t/ be the solution of the Schrödinger
equation on the moving domain �.t/ D h.t; �0/ with initial data u.t0/ D

PK
jD1 cj'j .

Then at time t1, there exist phase shifts �j 2 R such thatu.t1/ � �˛ei�K cK K Cp1 � ˛2ei�KC1cK KC1 C K�1X
jD1

ei�j cj j

�
L2.�.t1//

� ı:

Proof. We set ı0 D ı=.4.K C 1/.max jcj j//. Consider first a domain �00 D �R [ �L

split into two parts. The right-hand side is a smooth domain �R diffeomorphic to the
starting domain of Theorem 1.1 (possibly with holes and corners). Up to using Theorem
3.1, we can assume that the spectrum of the Dirichlet Laplacian operator on �R is simple
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and we denote by .�Rj /j2N� its ordered eigenvalues and by .'Rj /j2N� a corresponding
Hilbert basis of eigenfunctions. The left-hand side �L is a simple domain, typically a
ball. Its size is chosen such that the first eigenvalue �L1 of the Dirichlet Laplacian operator
is precisely equal to �RK , with a corresponding eigenfunction 'L1 . Choose a large ball B

containing both parts of the domain. We consider a family of diffeomorphisms h.t/ 2
Path3.Œ��; ��;B/ for some small � > 0 such that h.t D 0/ D id, the right-hand part is
never modified, i.e., h.t/j�R D id for all t 2 Œ��; ��, and the left-hand part is simply
homothetically transformed by h.t/j�L D .1 � t /id for all t 2 Œ��; ��. We set �0.t/ D
h.t;�00/. For small � > 0, this construction yields the following properties for the spectrum
of the Dirichlet Laplacian operator in �0.t/:

(i) For all t , its first K � 1 eigenvalues are �Rj with j D 1; : : : ; K � 1, with eigen-
functions 'Rj .

(ii) For t <0, theKth eigenvalue of�0.t/ is .1� t /�2�L1 with eigenfunction h].t/'L1
and the .K C 1/th eigenvalue is �RK with eigenfunction 'RK . For t > 0, the situa-
tion is symmetric with �RK < .1 � t /

�2�L1 .

(iii) At t D 0, the Kth eigenvalue is the double one created by the crossing of the
spectral curves above.

To complete this non-connected domain �00, we add a small channel !� smoothly
connecting its left- and right-hand parts. The parameter � belongs to .0; 1� and describes
the thickness of the channel. We set��0 D�

0
0 [!

� and we assume that it is diffeomorphic
to the reference domain of Theorem 1.1 (the connection with !� is smooth, but it does
not remove the possible corners and holes of the starting domain). When � goes to zero,
the domain ��0 converges to �00 in a singular way, as is classical for dumbbell-shaped
domains. More precisely, we need that the spectrum of the Dirichlet Laplacian operator in
�
�
0 converges to the corresponding one in �00 in the sense of [1, 15]; see also references

therein. It is sufficient to satisfy the hypotheses of Theorem 3.5 and it is the case for any
natural choice of shape for the thin channels !� . We refer to Figure 1 to convince the
reader that all the required properties can be satisfied by ��0 .

Now we consider the evolution of a solution of the Schrödinger equation when we
move the domain from �� to � . We denote by��.t/ the domains h.t;��0/ for t 2 .��; �/
and � 2 Œ0; 1�. For � > 0, these are dumbbell-shaped domains. The variation of t changes
the size of the left-hand part and also slightly deforms the connecting channel. When
� goes to 0, the connecting channel disappears. By abuse of notation, we still denote
by 'Rj the extensions by zero of the eigenfunctions of the right-hand part to the whole
domain ��.t/. We set 'L.t/ D h].t/'

L
1 , where we use the same notation again, for

the eigenfunction of the left-hand part and its extension. Notice that these extensions
by zero still belong to H 1

0 .�
�.t//. Moreover, since we consider only a finite number

of energy levels, their H 1
0 -norms, related to the corresponding eigenvalues, are bounded

by a constant M , independent of t 2 .��; �/ or � 2 .0; 1�. We apply Proposition 2.7
with R D 2.khkC3 C kh

�1kC3/ and T D � , and we fix � > 0 small enough such that
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2C
p
�M � ı0. Since the estimation of Proposition 2.7 is independent of the domain and

thus of �, it ensures the following property:

(iv) For all � 2 .0; 1�, if u.t/ is the solution of the Schrödinger equation in the moving
domain ��.t/ with initial data u.��/ D 'Rj with j � K or u.��/ D 'L.��/,
then, for all t 2 Œ��; ��, we have

ku.t/ � u.��/kL2 � ı
0:

In addition, this property is also true when the motion h.t/ is slightly modified or
when � is smaller.

Since 'L.t/ is a homothetic transformation of 'L1 , up to choosing � even smaller, we can
also assume that

k'L.t/ � 'L.��/kL2 � ı
0
8t 2 Œ��; ��:

Properties (i)–(iii) hold for the split domain�0.t/. We now choose �> 0 small enough
to approximate these properties by the corresponding ones for the domain ��.t/. More
precisely, for all j < K, the j th eigenvalue of the Dirichlet Laplacian operator on �0.0/
is simple; see property (i). By the convergence of the spectrum recalled in Theorem 3.5,
we can choose �0 > 0 and � > 0 small enough such that for all t 2 .��; �/ and � 2 Œ0; �0�,
the j th eigenvalue of the Dirichlet Laplacian operator on��.t/ is also simple. In addition,
we can choose a smooth curve 'j .t/ of corresponding eigenfunctions such that

(v) for all j � .K � 1/ and t 2 Œ��; ��, the eigenfunction 'j .t/ satisfies the identity

k'j .t/ � '
R
j kL2 � ı

0:

We now fix � > 0 small enough such that (iv) and (v) hold, and we restrict the deforma-
tions of the domains h.t/ to this time interval. Due to property (ii) above, by choosing �
smaller if necessary, we can also assume that the Kth and .K C 1/th eigenvalues of the
Dirichlet Laplacian operator on ��.t/ are also simple at t D ˙� and that the correspond-
ing eigenfunctions are close to 'RK and 'L.˙�/. Of course, due to the crossing stated in
(iii), we cannot hope to have the convergence for all t between �� and � . However, we
can also assume that the two-dimensional spectral projector corresponding to theKth and
.K C 1/th eigenvalues together are close up to an error ı0. To simplify the notation, as a
final adjustment, we allow a small perturbation of h.t/ given by Theorem 3.2 such that
the Kth and .K C 1/th eigenvalues of the Laplacian operator on ��.t/ are simple for all
t 2 .��; �/. We let the reader check that we were careful to make all the arguments above
uniform in a small neighborhood of h. Due to this simplicity, we can choose smooth curves
of eigenfunctions 'K.t/ and 'KC1.t/ corresponding to theKth and .KC 1/th eigenvalues
of the Laplacian operator on ��.t/ such that the following relations are verified:

(vi) At t D�� , we have k'K.��/� 'L.��/kL2 � ı0 and k'KC1.��/� 'RKkL2 � ı
0.

(vii) At t D � , we have k'K.�/ � 'RKkL2 � ı
0 and k'KC1.�/ � 'L.�/kL2 � ı0.
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Notice that 'L.��/ belongs to the limit eigenspace span.'L.t/; 'RK / for all t 2 Œ��; ��,
up to a small error ı0; see the remark below (iv). Applying the convergence of the two-
dimensional spectral projector corresponding to the Kth and .K C 1/th eigenvalues (see
Theorem 3.5), we can also ensure the following property up to taking a thinner channel!� .

(viii) For all t 2 Œ��; ��, we have jh'L.��/j'K.t/ij2 C jh'L.��/j'KC1.t/ij2 D
1˙ 2ı0 where we use the notation˙˛ to denote an error term of size at most ˛.

Now the global setting is finally defined. It remains to check that it fulfills Lemma
4.2. To recover the notation of its statement, we set t0 WD �� , �.t0/ D ��.t0/, with �
as small as required above, and 'j WD 'j .��/ for j � K C 1. Let uj .t/ be the solution
of the Schrödinger equation with the chosen moving domains and with the initial data
uj .t0/ D 'j . By linearity, we have u.t/ D

P
cjuj .t/. For all j < K, by (iv) and (v), we

get for all t 2 Œ��; ��,

kuj .t/� 'j .t/kL2 � kuj .t/� 'j .��/kL2 Ck'j .��/� '
R
j kL2 Ck'

R
j � 'j .t/kL2 � 3ı

0:

Since, by (vi) and (vii), h'K.��/j'L.��/i D 1˙ ı0 and h'K.�/j'L.��/i D 0˙ ı0, there
is an intermediate time t 2 Œ��; �� such that jh'K.t/j'L.��/ij D ˛˙ ı0. Due to (viii), we
also have jh'KC1.t/j'L.��/ij D

p
1 � ˛2 ˙ 3ı0. Using (iv), we obtain

jh'K.t/juK.t/ij D jh'K.t/j'
L.��/ij ˙ ı0 D ˛ ˙ 2ı0;

and in the same way,

jh'KC1.t/juK.t/ij D
p

1 � ˛2 ˙ 4ı0:

Thus, at this precise time t , we can choose �K and �KC1 in R such thatu.t/ � �˛ei�K cK'K.t/Cp1 � ˛2ei�KC1cK'KC1.t/C K�1X
jD1

cj'j .t/

�
L2

� 4.K C 1/.max jcj j/ı0 D ı:

Set t1 WD t and �.t1/ WD ��.t/. It simply remains to notice that, due to the simplicity of
the spectrum, the eigenfunctions  j correspond to 'j .t/ up to a phase shift �j .

Remark. The strategy behind Lemma 4.2 is robust and can be performed in different
ways. For example, we may consider other types of domains than the dumbbell-shaped
one. We can also allow crossings of ��K.t/ and ��KC1.t/ since the arguments should still
hold once we are able to define continuous branches of eigenfunctions 'K.t/ and 'KC1.t/
satisfying the exchange stated in (vi) and (vii). As a different strategy, we can replace, in
some situations, the brief deformation in the small interval .��; �/ by a slow and long
adiabatic deformation or use conical intersections as in [9]. We refer to Section 5.5 for
further discussions.
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4.4. Adjusting the phases

The arguments above allow us to distribute the energy between the different eigenmodes.
However, to drive the solution close to a given state, we also need to produce the correct
phases. This is a classical issue with a classical simple solution.

Lemma 4.3. Let �0 � B be a domain in which the Dirichlet Laplacian operator has a
simple spectrum .�j /j2N� with a corresponding Hilbert basis of eigenfunctions .'j /j2N� .
Let N � 1 and let u0 D

PN
jD1 cj'j with cj 2 C. For any real phases .�j /jD1;:::;N and

ı > 0, there exists a time T and a motion of domains h 2 Path3.Œ0; T �;B/ such that the
following holds. We have h.0/ D h.T / D id and if u.t/ is the solution of the Schrödinger
equation in the moving domains �.t/ D h.t;�0/, thenu.T / � NX

jD1

cj e
i�j 'j


L2
� ı:

Proof. Due to the generic rational independence stated in Theorem 3.4, we can find a
domain �1 diffeomorphic to �0 with a corresponding Laplacian operator having ratio-
nally independent eigenvalues. Denote by .�j /j2N� this spectrum and by . j /j2N� the
corresponding eigenfunctions. We consider a deformation of the domain going from �0
to�1, staying equal to�1 for a short time and then going back to�0. We would like that
the corresponding solution u.t/ has the same distribution of energy on the eigenmodes at
the beginning and at the end up to a small error. This is possible, either by choosing �1
very close to �0 and using the continuity stated in Proposition 2.7, or by traveling from
both domains very slowly and using the adiabatic result stated in Lemma 4.4 below. Once
we know how this back-and-forth motion modifies the phases, we can stop the dynam-
ics at �1 for longer time. Here, the solution evolves as

PN
jD1 cj e

i.�j tC j̨ / j . Due to the
rational independence of the �j ’s, the trajectory t 7! .�j t C j̨ /jD1;:::;N 2 TN is dense
in the torus and we can find a time such that u.t/ has the suitable phases, up to a small
error. Going back to �0 changes these phases but in a way that has been anticipated.

4.5. Proof of Claim 4.1

In this section we complete the proof of Theorem 1.1 by combining the arguments above
in order to prove Claim 4.1. It could be useful to keep in mind the insight provided by
Section 4.2 and Figures 1 and 2.

Fix an error ı > 0 equal to "=.2N /. Using Lemma 4.3 we know that the problem of
the phases can be repaired at the end, up to an error ı. To simplify the notation, from
now on a state will be represented by its distribution of energy when it will be defined on
a domain � where the spectrum of the associated Laplacian operator is simple. In other
words, .a1; a2; : : : ; aN / stands for a state

PN
jD1 e

i�j aj'j where 'j is a Hilbert basis of
eigenfunctions of L2.�/ and �j 2 R. Following this convention, we start with the state
.A; 0; 0; : : :/ in the domain�00 � B � Rd . We denote by aj D jbj j the coefficients of the
aimed distribution of energy when the phases are neglected.
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By Lemma 4.2, there exists a deformation between two domains �1 and �2 that
drives the state .A; 0; : : :/ to .a1;

p
A2 � a21; 0; : : :/ up to an error ı > 0. To go from our

first domain �00 to �1 without changing the distribution of energy, we use an adiabatic
motion as given by the following result.

Lemma 4.4. Let�0 and�1 �B be two homotopic domains in which the spectrum of the
Dirichlet Laplacian operator is simple. Denote by .'j /j2N� and . j /j2N� two respective
Hilbert bases of eigenfunctions in these domains. Let u0 D

PN
jD1 cj'j be given. For all

ı > 0, there exist T > 0 and a deformation of domains h 2 Path3.Œ0; T �;B/ such that
h.0;�0/ D �0 and h.T;�0/ D �1. Moreover, if u.t/ is the solution of the Schrödinger
equation in�.t/D h.t;�0/ with initial data u.0/D u0 2L2.�0/, then there exist �j 2R
such that u.T / � NX

jD1

cj e
i�j j


L2.�1/

� ı:

Proof. It is sufficient to combine the existence of a path avoiding multiples eigenvalues as
given by Theorem 3.2 and an adiabatic dynamics as given by Proposition 2.4.

First, we use Lemma 4.4 to go from .A; 0; 0; : : :/ in �00 to .A; 0; 0; : : :/ in �1 up to an
error ı. Second, we use Lemma 4.2 to arrive in�2 with the state .a1;

p
A2 � a21; 0; : : :/ up

to an error 2ı > 0. Third, Lemma 4.2 provides a deformation between two new domains
�3 and �4 driving the state .a1;

p
A2 � a21; 0; : : :/ to the state .a1; a2;

p
A2 � a21 � a

2
2/

up to an error ı > 0. Hence, starting with our state .a1;
p
A2 � a21; 0; : : :/ in �2 (up to

an error 2ı), we use Lemma 4.4 to drive the state to .a1;
p
A2 � a21; 0; : : :/ in �3 (up

to an error 3ı). Then we use the foreseen application of Lemma 4.2 to obtain the state
.a1; a2;

p
A2 � a21 � a

2
2/ in �4 up to an error 4ı > 0 . . .

We use this argument iteratively: Lemma 4.2 constructs the distribution of the energy
level by level and Lemma 4.4 enables us to travel between the different domains required
by Lemma 4.2. After .N � 1/ repetitions of this strategy, we obtain the distribution of
energy .a1; : : : ; aN / in a domain �2N�2 up to an error .2N � 2/ı. Then we use an adia-
batic motion of Lemma 4.4 in order to go back to the initial domain�00 with a distribution
.a1; : : : ; aN / up to an error .2N � 1/ı. Finally, it remains to use Lemma 4.3 to adjust the
phases and to obtain the precise state

PN
jD1 bj'j up to an error 2Nı D ".

5. Study of a particular example: Rectangular and quasi-rectangular
domains

In this section we explore the case of rectangles in R2 with moving boundaries. In this par-
ticular framework, several arguments of our strategy can be made more explicit. To follow
a motion where the spectrum of the Laplacian operator stays simple, as in Section 3.1, we
need to leave the family of rectangular domains. However, the rectangular shape makes
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hypothesis (SAH2) easy to check and we can find the perturbations explicitly, enabling us
to break the double eigenvalues.

In this section we even design a control by a deformation different from the dumb-
bell shape adopted in the proof of Theorem 1.1. It shows how our general arguments are
robust and may be applied for various control strategies. We consider the two-dimensional
framework, but the results of this section can be easily extended to the multi-dimensional
case.

5.1. Rectangular domains: The basic motion

We act on the quantum state by moving the sizes of a family of rectangles

�.t/ D .0; f1.t// � .0; f2.t//; (5.1)

where fi 2 C2.Œ0;T �;RC/with j D 1;2. If we need to transport (1.1) from�.t/ to a fixed
domain, the simplest way is as follows. Consider the square�0 D .0; 1/ � .0; 1/ � R2 as
the reference domain. We set

h.t/Wy D .y1; y2/ 2 �0 7! .f1.t/y1; f2.t/y2/ 2 �.t/;

which defines a family of diffeomorphisms h.t/ such that �.t/ D h.t;�0/. As presented
in [18, Section 5.2], instead of directly using the transformations of Section 2, it is simpler
to perform a gauge transformation. We set

 .t; x/ D
1

4

�f 01.t/
f1.t/

x21 C
f 02.t/

f2.t/
x22

�
:

Then u solves (1.1) if and only if w D h]e�i u satisfies the equation

i@twD�
1

f1.t/2
@2y1y1w�

1

f2.t/2
@2y2y2wC

1

4
.f 001 .t/f1.t/y

2
1 C f

00
2 .t/f2.t/y

2
2/w: (5.2)

One of the useful features of rectangular domains is the fact that the spectrum is com-
pletely known and the eigenmodes are decoupled. More precisely, we set

�k1;k2.t/ D '
1
k1
.t; x1/'

2
k2
.t; x2/ with 'j

k
.t; �/ D

r
2

fj .t/
sin
� k�

fj .t/
�

�
: (5.3)

The eigenmode �k1;k2 corresponds to the eigenvalue

�k1;k2 D
�2k21
f 21
C
�2k22
f 22

:

Notice that these eigenvalues may intersect, but always in a smooth way, in the sense that
the spectral projection on �k1;k2.t/ depends smoothly on t . In this case, it is expected that
adiabatic theory applies as in the case of a simple spectrum, considered in Proposition 2.4.
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Proposition 5.1 (Adiabatic motion of rectangles). Let �.�/ be a family of rectangles
defined as above with f1; f2 2 C2.Œ0; 1�; �0/. For every family of eigenmodes �k1;k2.�/,
kj 2 N� and every u0 2 L2.�.0//, we have

jhu�.1=�/j�k1;k2.1=�/ij D jhu0j�k1;k2.0/ij CO�!0.�/;

where u�.t/ is the solution of (2.2) with initial state u0.

In particular, an adiabatic deformation of the rectangle drives �k1;k2.0/ close to the
mode �k1;k2.1/. The ordering of the sequence of eigenvalues �k1;k2 depends on the lengths
fj .�/, and the rank of �k1;k2.1/might not be the same as that of �k1;k2.0/. In other words,
the adiabatic deformation of the rectangle allows us to pass through the eigenvalue cross-
ings that appear during the deformation of the rectangle and to perform the permutations
of eigenmodes.

Proof of Proposition 5.1. We did not find any accurate reference for a version of the adia-
batic theorem with crossing of eigenvalues, which directly applies in the general situation
of a moving domain �.�/ (the corresponding Hamiltonian depends on the time in a not-
so-classical way). However, the proof in the case of rectangular shapes is not difficult (in
particular thanks to the gauge transformation, which is not always possible; see [18]). We
provide it below for the sake of completeness.

We adapt the gauge transform above: we set

 �.�; x/ D
�

4

�f 01.�/
f1.�/

x21 C
f 02.�/

f2.�/
x22

�
and w�.t/ D h

].�t/e�i �.�t/u�.t/:

Again, u�.t/ is the solution of (2.2) if and only if w� satisfies the equation

i@tw�.t/ D �
1

f1.�t/2
@2y1y1w� �

1

f2.�t/2
@2y2y2w�

C
�2

4
.f 001 .�t/f1.�t/y

2
1 C f

00
2 .�t/f2.�t/y

2
2/w� (5.4)

in the square .0; 1/2. Up to a multiplicative constant, the eigenmode �k1;k2.x/ in �.�/
becomes  .y/ WD sin.k1�y1/ sin.k2�y2/ in the square and is independent of t . We also
notice that the phase e�i �.�t/ behaves as 1CO.�/ for small � > 0. Thus, proving Propo-
sition 5.1 comes down to showing that

jhw�.1=�/j ij D jhw�.0/j ij CO�!0.�/

for any solution of (5.4). First notice that, due to the Hamiltonian structure of (5.4), the
L2-norm of w� is constant and the last term of (5.4) is of order O.�2/. Thus, we get that

@t hw�.t/j i D i
D� 1

f1.�t/2
@2y1y1 C

1

f2.�t/2
@2y2y2

�
w�

ˇ̌̌
 
E
CO.�2/

D i
D
w�

ˇ̌̌� 1

f1.�t/2
@2y1y1 C

1

f2.�t/2
@2y2y2

�
 
E
CO.�2/
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D �i
� �2k21
f1.�t/2

C
�2k22
f2.�t/2

�
hw�.t/j i CO.�2/

WD �i�k1;k2.�t/hw�.t/j i CO.�2/:

Thus, if we set ƒ.�/ D
R �
0
�k1;k2.�/ d� , then we obtain

hw�.1=�/j i D e
�iƒ.1/=�

hw�.0/j i CO.�/:

This concludes the proof of Proposition 5.1 (even providing the exact phase shift).

5.2. Decoupling: Application of the one-dimensional bilinear control

The main feature of the family of rectangular domains is the possibility of decoupling the
horizontal and vertical coordinates. If u is decomposed as u.t;x1;x2/D u1.t;x1/u2.t;x2/
for .x1; x2/ 2 �.t/, then w D h]e�i u is also a product of functions

w.t; y1; y2/ D w1.t; y1/w2.t; y2/

with wj .t; yj / D
1p
fj
e�

i
4f
0
j fj y

2
j uj .t; fj .t/yj /: (5.5)

It is straightforward to split (5.2) and to check that w1 and w2 are respectively solutions
of the equations

i@tw1 D �
1

f1.t/2
@2y1y1w1 C

1

4
f 001 .t/f1.t/y

2
1w1 in .0; 1/;

i@tw2 D �
1

f2.t/2
@2y2y2w2 C

1

4
f 002 .t/f2.t/y

2
2w2 in .0; 1/:

(5.6)

Vice versa, if w1 and w2 are solutions of (5.6), then w D w1w2 is a solution of (5.2),
which provides a solution u of (1.1). We can exploit this decoupling as follows. First,
we simplify the expressions in (5.6) in order to eliminate the time dependence of the main
operator. We use the following change of variables appearing in [4,27] (see also [3,6,34]):

�j D

Z t

0

1

fj .s/2
ds and Uj .�j / D

f 0j .t/fj .t/

4
; j D 1; 2: (5.7)

We substitute these elements in the corresponding equation in (5.6). We obtain two
completely decoupled bilinear Schrödinger equations

i@�jwj D �@
2
yj yj

wj C .U
0
j .�j / � 4Uj .�j //y

2
j wj in .0; 1/, j D 1; 2: (5.8)

We can now use the well-known results concerning bilinear control of the one-dimensional
Schrödinger equation to obtain the following control. Notice that similar approaches for
the one-dimensional case are used in [4, 6, 27, 34].
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Proposition 5.2 (Approximate control for decoupled data). Let �i D .0; a/ � .0; b/ with
a; b > 0. Let ui; uf 2 L2.�i/ satisfy kuikL2 D ku

fkL2 and admit a decoupling

ui.y1; y2/ D u
i
1.y1/u

i
2.y2/ and uf.y1; y2/ D u

f
1.y1/u

f
2.y2/:

For every " > 0, there exist T > 0 and a family of moving rectangles ¹�.t/ºt2.0;T / as
in (5.1) such that �.0/ D �.T / D �i and such that the solution of the corresponding
dynamics (1.1) with initial data u.t D 0/ D ui satisfies

ku.t D T / � uf
kL2 � ":

Proof. Up to rescaling the components, we can assume that kui
j kL2 D ku

f
j kL2 D 1 for

j D 1; 2. To prove the result, it is sufficient to provide deformations of the lengths fj .t/
enabling us to control equations (5.8). Due to the decoupling, we can apply the one-
dimensional results. The bilinear equation

i@�w D �@
2
yyw C V.�/y

2w; y 2 .0; 1/ (5.9)

is globally approximately controllable in L2.0; 1/ (and inH 3) thanks to [16, Example 2.2
and Theorem 4.4] (see also [7,10,11,17,26,30]). Notice that the cited result is stated with
V 2L2, but the control can actually be in C1. The controllability ensures the existence of
two times � f

j > 0, j D 1; 2 and two controls Vj .�/ 2 C1.0; � f
j / such that the dynamics of

i@�wj D �@
2
yj yj

wj C Vj .�/y
2
j wj steers wi

j close to wf
j with respect to the L2-norm in a

time � f
j . Moreover, the gauge transformation (5.5) is independent of fj when the rectangle

is not moved, thus wi
j and wf

j are determined explicitly from ui and uf.
The main problem here is to construct functions fj .t/ providing the aimed controls

Vj .�/. To simplify the notation, we omit the index j in this part. We choose a solution
U.t/ of

U 0.�/ D 4U.�/C V.�/ for � 2 Œ0; � f�

with an initial data U.0/ sufficiently large such that U.�/ > 0 for � 2 Œ0; � f�. Since the
above ODE is linear, this step is easy. Finding f satisfying (5.7) is instead more subtle.
We consider �.t/ a local solution of the nonlinear second-order ODE8̂̂<̂

:̂
� 00.t/ D �8.� 0.t//2U.�.t//;

�.0/ D 0;

� 0.0/ D 1=a2:

(5.10)

The Cauchy–Lipschitz theorem obviously applies to (5.10) but it provides only the local
existence and uniqueness. The solution �.t/ of (5.10) exists until �.t/ leaves Œ0; � f� or
until � 0.t/ blows up. We first notice that � 00.t/ < 0 and thus � 0.t/ is decreasing. Moreover,
.c; 0/ is a solution of (5.10) for all c 2 Œ0; � f�. Since � 0.0/ ¤ 0, � 0.t/ never vanishes.
Both remarks imply that � 0.t/ stays in .0; 1=a2� and thus it cannot blow up. Since �.t/
is increasing, there are two possibilities: either the solution � exists for all t > 0, or �.t/
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reaches � f at a time T . This last possibility is the one we need to control (5.9) since � has
to describe the whole interval Œ0; � f�. But

d
dt

� 1

� 0.t/

�
D �

� 00.t/

.� 0.t//2
D 8U.�.t// 2 .0; 8kU k1�:

Thus,

1=� 0.t/ � 1=a2 C 8kU k1t and �.t/ �
1

8kU k1
.ln.1=a2 C 8kU k1t /C 2 ln a/;

which imply that � must reach � f in a finite time T . We can finally set f .t/D 1=
p
� 0.t/ for

all t 2 Œ0;T � (recall that � 0.t/ > 0). It is then straightforward to check that, by construction,
the change of variables (5.7) effectively transforms (5.8) to (5.9) with V.�/ the suitable
control.

The above arguments show that we can drive ui
1 to uf

1 in a time T1 and ui
2 to uf

2 in
a time T2. A priori T1 ¤ T2 and we let one of the components evolve following the free
Schrödinger equation during the time jT1 � T2j. Moreover, it is possible that the final rect-
angle does not have dimensions a � b. In this case, we adiabatically deform the rectangle
to obtain the aimed-for dimensions. Both associated evolutions do not change the distribu-
tion of energy of the modes, but add phases. Thus, we obtain a state

P
k cke

i�k'k instead
of uf D

P
k ck'k (where .'k/k2N denotes a Hilbert basis of eigenfunctions). Since we

are interested in approximate controllability, it is sufficient to consider a finite sum on the
first eigenfunctions 'k , k D 0; : : : ;N . If a and b are rationally independent, then it is suf-
ficient to wait and let the evolution of the free Schrödinger equation unfold the considered
first phases up to a sufficiently small error. When a and b are not rationally independent,
we first adiabatically deform the initial rectangle �0 into a new one z�0 satisfying such a
hypothesis. Now we rotate the states as in the previous point and we finally come back adi-
abatically to �0. The adiabatic back-and-forth deformations of �0 in z�0 also add some
phases but we can program the intermediate rotations in order to also remove these new
phases (see the arguments of Lemma 4.3).

Notice that the controllability result from Proposition 5.5 is only valid for the very
specific class of states which are separable in the variables. In Section 5.4 we use this
specific control to obtain the global approximate controllability for general quantum states
defined on a rectangle.

5.3. Breaking symmetries: Adiabatic motions without crossing of eigenvalues

In this subsection we investigate the existence of deformations of a rectangle in another
one, avoiding all the possible crossings of the first N modes. We can preserve the rect-
angular shape of the domain as in (5.1) as soon as the first N eigenmodes are simple.
Each time we approach the shape of a rectangle admitting a double eigenvalue, we need to
break the rectangular structure with a short deformation given by Theorem 3.3 in order to
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avoid it. After that, we come back to the rectangular shape and we iterate this process until
we reach the final domain. The key point here is the use of Theorem 3.3 to preserve the
simplicity of the spectrum. Any generic perturbation of the shape would work. However,
we show that very specific and simple perturbations are sufficient to break the symme-
tries. To this end, we need to show the validity of hypothesis (SAH2) of Section 3.1 along
a deformation of rectangular shapes defined as in (5.1).

Let �0 D .0; 1/ � .0; 1/ and h be a diffeomorphism hW .y1; y2/ 2 �0 7! .ay1; by2/

with a; b > 0. The spectrum of the Dirichlet Laplacian in � D h.�0/ can present double
eigenvalues according to the lengths a and b. We consider the parameters a and b so that
there is a double eigenvalue

� D
�2k21
a2
C
�2k22
b2
D
�2l21
a2
C
�2l22
b2

(5.11)

with suitable different k1; k2; l1; l2 2 N�. We denote by �k1;k2 and �l1;l2 two correspond-
ing orthonormal eigenfunctions defined as in (5.3). To bypass this double eigenvalue, we
use the strategy of Theorem 3.3 in the class of deformations H consisting of diffeomor-
phisms of the form .y1;y2/ 7! .f1.y2/y1;f2.y1/y2/with fj >0 polynomials of degree 2.
The class H contains the rectangular deformations as well as tilting or bending of edges
(see Table 1). Since we argue by locally perturbing a straight path of rectangles, we only
need to verify the conditions (SAH2) for the eigenvalue � of the rectangular shape, with
perturbations in the tangent space ThH . We compute in Table 1 the corresponding inte-
grals considered in the conditions (SAH2) by using the notation

Im1;m2;n1;n2.g/ D

ˇ̌̌̌Z
@�

@�m1;m2
@�

@�n1;n2
@�

hh�gj�i d�
ˇ̌̌̌
;

where .m1; m2/; .n1; n2/ 2 ¹.k1; k2/; .l1; l2/º.
Let us consider now the expressions provided in Table 1. Both ratios Ik1;k2;k1;k2=

Il1;l2;l1;l2 associated to g1 and g2 (the rectangular deformations) are different since

Ik1;k2;k1;k2
Il1;l2;l1;l2

.g1/ D
2k21�

2

a3
a3

2l21�
2
D
k21
l21
¤
k22
l22
D
Ik1;k2;k1;k2
Il1;l2;l1;l2

.g2/: (5.12)

Indeed, we must have k21=l
2
1 ¤ k

2
2=l

2
2 otherwise (5.11) would imply .k1; k2/ D .l1; l2/.

The inequality (5.12) yields that the functionals corresponding to Ik1;k2;k1;k2 and Il1;l2;l1;l2
(the first two rows of Table 1) are linearly independent, even with simple rectangular
deformations. In order to show that the third functional is also linearly independent, we
need to consider non-rectangular transformations g3 and g4. The first ensures the property
for g 2 ThH 7! Ik1;k2;l1;l2 when k2 6� l2 mod 2, and the second when k2 � l2 mod 2. The
use of simple deformations g1, g2, g3, and g4 (Table 1) is sufficient to ensure hypothesis
(SAH2). However, it is also possible to combine g3 and g4 in the transformation g5, which
always works but does not preserve any symmetry at all.

The linear independence of the three functionals yields the validity of conditions
(SAH2) and allows us to use Theorem 3.3 in order to avoid multiple eigenvalues.
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h�g Figure Ik1;k2;k1;k2 Il1;l2;l1;l2 Ik1;k2;l1;l2

h�g1 D .x1; 0/
2k21�

2

a3
2l21�

2

a3
0

h�g2 D .0; x2/
2k22�

2

b3
2l22�

2

b3
0

h�g3 D
��x2

b
�
1

2

�
x1; 0

�
0 0

8̂<̂
:
0 if k2 � l2 mod 2;
16bk1l1k2l2

a3.k22 � l
2
2 /
2

otherwise

h�g4 D
�x2
b

�
1 �

x2

b

�
x1; 0

� k21.k
2
2�

2 C 3/

3a3k22

l21 .l
2
2�

2 C 3/

3a3l22

8̂<̂
:
16b2k1l1k2l2

a3.k22 � l
2
2 /
2

otherwise;

0 if k2 6� l2 mod 2

h�g5 D
�x22
b2
x1; 0

� k21.2k
2
2�

2 � 3/

3k22a
3

l21 .2l
2
2�

2 � 3/

3l22a
3

16k1l1k2l2

a3.k22 � l
2
2 /
2

Table 1. The family of rectangular deformations is too symmetric to make it possible to avoid double eigenvalues. We look for additional deformations
enabling us to bypass the double eigenvalues. In this table, we consider several simple perturbations h�g of a rectangle .0; a/ � .0; b/ and we compute
the integrals required to check hypothesis (SAH2) of Section 3.1.
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Proposition 5.3. Let N 2 N and �0 D .0; 1/ � .0; 1/: Let h 2 Pathk Œ0; 1� be defined as
in (5.1) and represent a family of moving rectangles �.�/ D h.�;�0/ such that

�.0/ D .0; a/ � .0; b/; �.1/ D .0; a0/ � .0; b0/:

For all " > 0, there exists a path g 2 Pathk Œ0; 1� such that

• g.0/ D h.0/, g.1/ D h.1/, and for all � 2 .0; 1/, g.�/ belongs to H , i.e., it is a
combination of the first four transformations g1; : : : ; g4 of Table 1,

• g is a small perturbation of the initial rectangular path, i.e., kg � hkCk.Œ0;1��0/ < ",

• the first N eigenvalues of the Dirichlet Laplacian operator �� in z�.�/ D g.�; �0/
are simple for all � 2 .0; 1/.

In our framework, it is noteworthy that g2 can be recovered by g1 composed by a
homothety. Since this last transformation preserves the simplicity of the spectrum, we can
always make the spectrum simple by perturbing only one edge of a rectangular shape: it is
not necessary to deform two sides of the rectangle in order to avoid the eigenvalue cross-
ings. We state this result in the following corollary, where we denote by zH the manifold
of the diffeomorphisms .y1; y2/ 7! .f1.y2/y1; y2/ with f1 > 0 a polynomial of degree 2.

Corollary 5.4. In Proposition 5.3, if b D b0, we can strengthen the fact that g belongs to
zH by constructing g with suitable time-varying coefficients ˛, ˇ, and  such that

g.�/W .y1; y2/ 7!
�
.˛.�/C ˇ.�/y2 C .�/y

2
2/y1; y2

�
:

5.4. Global approximate controllability

In this section we present how to approximately control quantum states defined on a two-
dimensional rectangle by moving its borders. The control is obtained by coupling the two
arguments presented above:

• It is possible to drive a decoupled state to another decoupled state by changing the
dimensions of the rectangle (Proposition 5.2).

• Adiabatic motions of the rectangle, including slight deformations of a side, preserve
the distribution of the energy (Section 5.3).

It is noteworthy that the result of this section is a particular case of Theorem 1.1. However,
the strategy of control presented here is different from that of the proof in Section 4.
It underlines that our arguments are generally robust and they provide useful tools for
different situations and aims.

Proposition 5.5. Let �i D .0; a/ � .0; b/ with a; b > 0. Let ui; uf 2 L2.�i/ satisfy
kuikL2 D ku

f kL2 . For every " > 0, there exist T > 0 and a family of moving domains
¹�tºt2.0;T / such that�.0/D�.T /D�i and such that the solution of the corresponding
dynamics (1.1) with initial data u.t D 0/ D ui satisfies

ku.t D T / � uf
kL2 � ":
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Proof. In what follows, we denote by '�j the j th eigenmode of the Dirichlet Laplacian
on domain �. In order to control any couple of states in L2.�0/, it is sufficient to drive
the ground state '�01 close to any state with norm 1. Without loss of the generality, we
can assume that the target state u 2 L2.�0/ is a linear combination of a finite number of
eigenmodes such that

u D

NX
jD1

cj'
�0
j ; ¹cj ºj�N � C;

NX
jD1

jcj j
2
D 1:

In the first step, we adiabatically deform �0 in a rectangle �1 D .0; a1/ � .0; b1/. It
preserves the energy of the ground state as the first eigenvalue of a Dirichlet Laplacian on
a connected domain is always simple. We choose a1 � b1 so that the first N modes of
the Dirichlet Laplacian in �1 have the form

'
�1
j .x1; x2/ D

2
p
a1b1

sin
�j�
a1
x1

�
sin
� �
b1
x2

�
; .x1; x2/ 2 �1; 8j � N:

This first motion steers '�01 close to ei�'�11 . In the second step, we use Proposition 5.5 to
drive

ei�'
�1
1 D

2
p
a1b1

ei� sin
� �
a1
x1

�
sin
� �
b1
x2

�
close to

NX
jD1

cj e
i�j '

�1
j .x1; x2/ D

NX
jD1

cj
2

p
a1b1

ei�j sin
�j�
a1
x1

�
sin
� �
b1
x2

�
D

r
2

b1
sin
� �
b1
x2

�� NX
jD1

cj

r
2

a1
ei�j sin

�j�
a1
x1

��
;

where the phases ¹�j ºj�N will be defined later. Notice that the states above are decoupled
so Proposition 5.5 may apply. In fact, we only need to control the horizontal part of the
state, so it is mainly a one-dimensional result. The trick is to choose �1 sufficiently close
to a horizontal segment to ensure that the relevant modes are all “horizontal”. Finally,
we can adiabatically deform �1 back in �0 by avoiding all the crossings of the first
N eigenvalues. This last motion is defined by applying the adiabatic regime to the path
provided in Proposition 5.3. This allows us to preserve the distribution of the energy (up
to a small error) but it adds some phases to the modes and we obtain (approximately) the
state

u D

NX
jD1

cj e
i�j ei�j '

�0
j ;

where �j do not depend on ¹�j ºj�N . The values ¹�j ºj�N are well known in advance and
then we can program ¹�j ºj�N in order to remove all the phases appearing at the end of
the motion.
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5.5. Examples of applications to simple transformations of the states

In this subsection we present some explicit examples of controls and permutations of
modes due to the techniques developed in this work. In what follows, we denote � D
.0; a/ � .0; b/ with a > b > 0.

Switching the quantum numbers. The following is a completely adiabatic deformation
of � steering any mode �j;k to �k;j . First, we adiabatically deform the rectangle .0; a/ �
.0; b/ into .0; b/ � .0; a/. Proposition 5.1 ensures that we follow the mode �j;k . Then
we simply adiabatically rotate the rectangle .0; b/ � .0; a/ in .0; a/ � .0; b/ and the state
becomes �k;j . See Figure 3.

Figure 3. The figure represents an adiabatic deformation of a rectangle steering �2;1 into �1;2.

Transforming one eigenstate into another. Here, we provide an adiabatic deformation
of .0; a/ � .0; b/ steering the mode �j;k into �j 0;k0 as soon as neither mode is the ground
state. Assume that our aimed state �j 0;k0 corresponds to the pth mode.

(i) First, we modify the horizontal edge .0; a/ in .0; a0/ such that in the rectangle
.0; a0/ � .0; b/, the mode �j;k corresponds to the pth eigenvalue. This is always
possible as soon as .j; k/ ¤ .1; 1/ and p > 1. Proposition 5.1 shows that, if the
motion is sufficiently slow, then we actually drive the mode �j;k of the rectangle
.0; a/ � .0; b/ to the mode �j;k of the rectangle .0; a0/ � .0; b/.

(ii) Second, we deform back the domain in .0; a/ � .0; b/ by breaking the rectan-
gular shape of the domain in order to avoid all the eigenvalue crossings. To this
purpose, we use Proposition 5.3 or even Corollary 5.4 and we can stay very
close to the family of rectangles of height b. Due to Proposition 2.4, the pth
mode �j;k of the rectangle .0; a0/ � .0; b/ is transformed into the pth mode of
the rectangle .0; a/ � .0; b/, which is �j 0;k0 by assumption.

Figure 4 illustrates the change of �2;1 into �1;2. Notice that for concrete applications,
when we deform the domain back to the original rectangle, it could be simpler to break
the symmetry by adding a generic electric potential rather than tilting or bending the edges.

Creating a superposition of excited states. As we have noticed in the previous exam-
ples, different adiabatic deformations of the initial rectangle � yield different results,
depending on whether we allow the eigenvalues to cross or not. For example, consider
again the mode �2;1 in a domain .0; a/ � .0; b/ where a > b. We observe the following
phenomena:
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�2;1

�1;2

�2;1

�1;2 �1;2

�2;1

eigenvalues

�1;1

Figure 4. The figure represents a deformation of a rectangle steering �2;1 into �1;2. We start with
a rectangle .0; a/ � .0; b/ with a > b and we reduce the length a to a0 < b. The energy levels of
the states �2;1 and �1;2 cross and during an adiabatic motion, the state follows the eigenstate �2;1.
Then we go back to the original rectangle with a slight deformation of the edge. Here, we break
the symmetry allowing us to preserve the order of the modes. During an adiabatic motion, the state
follows the third eigenstate which is �1;2 at the end of the motion. Notice that if a and a0 are close
enough to b, then the only possible energy crossing (which we need to avoid when we go back)
concerns �2;1 in �1;2. Table 1 shows that a slight tilt of the right-hand edge is sufficient.

(i) If we adiabatically contract the domain by preserving its rectangular shape, then
the mode �2;1 is double when � becomes the square .0; b/ � .0; b/. If we con-
tinue the reduction slowly to obtain a rectangle .0; a0/� .0; b/ with a0 < b, then
the final mode is still �2;1 due to Proposition 5.1.

(ii) When we suitably modify this dynamics by breaking the rectangular symmetry
of �, using Corollary 5.4, the rank of �2;1 is preserved, and then it is steered
into the second eigenmode of the new domain, which is not �2;1 anymore but
�1;2 if a0 < b.

From a spectral point of view, both motions follow the spectral curve associated to the
mode �2;1 until we reach the eigenvalue crossing involving �2;1 and �1;2. If we continue
to adiabatically contract the rectangle, then we pass through the crossing by pursuing
the mode �2;1. When we adiabatically modify the shape of � in order to preserve the
simplicity of the spectrum, we follow �1;2 instead.

Now assume that we choose an intermediate deformation interpolating motions (i) and
(ii) above. Then, by the intermediate value theorem, it is possible to distribute the initial
energy of �2;1 between the modes �2;1 and �1;2; see Figure 5. This idea permits us to
steer �2;1 into any superposition of �2;1 and �1;2. Notice that the speed of the intermediate
motion is obviously not adiabatic for this regime but has been set to be slow enough so that
both pure motions (i) and (ii) are adiabatic. The same technique, applied to a finite number
of modes, allows us to control any superposition of excited states in any other (similarly
to what happens in Figure 2). Notice that the ground state �1;1 cannot be adiabatically
controlled in this way as it is always simple. A possible solution is to deal with the ground
state via the control method used in Propositions 5.2 and 5.5.
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�1;2 �2;1 �1;2 �2;1 �1;2 �2;1

�2;1 �1;2 �2;1 �1;2 �2;1 �1;2

tunneling
effect

Adiabatic rectangular deformation
preserving quantum numbers

Interpolated motion
sharing the energy

Adiabatic break of rectangular shape
preserving the rank of the mode

Figure 5. The figure shows how to use the tunneling effect to create superposed states. On the left,
we adiabatically pass an eigenvalue crossing with a rectangular deformation and the quantum num-
bers of the state do not change thanks to Proposition 5.1. On the right, we break the symmetry and
there is no real crossing of eigenvalues anymore. Here, Corollary 5.4 yields that an adiabatic motion
preserves the position in the spectrum and it switches the pure states. In the middle, we follow an
interpolated deformation with the same speed, which produces an interpolated state. Physically, we
use the tunneling effect to create a superposed state.

Let us also discuss the possibility of using the conical intersections of eigenvalues, fol-
lowing the method introduced in [9]. Consider a family of shapes �.˛; ˇ/ parametrized
by two real parameters. Assume that, in the domain�.0; 0/, the Laplacian operator has an
eigenvalue �j D �jC1 of multiplicity two. This intersection is conical if the local depen-
dence of the eigenvalues with respect to the parameters satisfies

9C; " > 0; 8.˛; ˇ/ 2 BR2.0; "/; �jC1.˛; ˇ/ � �j .˛; ˇ/ > C.j˛j C jˇj/ (5.13)

(it is in fact possible to deal with an intersection of more eigenvalues by considering
more parameters). In [9], the authors provide a way to approximately control the state
inside the j and .j C 1/ level sets by using adiabatic deformations of the parameters ˛
and ˇ. The conical intersections are generic patterns and we can use this type of idea to
realize the exchange of energy between different levels, even in the proof of our Theorem
1.1. However, it is noteworthy that (5.13) cannot hold for rectangular shapes with ˛ and
ˇ being the size of the rectangle: due to the homothetic invariance, the degeneracy �j D
�jC1 remains true in a direction .˛;ˇ/. In other words, the family of rectangles behaves as
a one-parameter family of domains from the point of view of crossing of the eigenvalues.
It means that, similarly to all the previous proposed strategies, we have to seek conical
intersections by slightly breaking the symmetry of the rectangle to obtain a more generic
shape and one parameter has to deform the shape away from the family of rectangular
shapes. Then the problem of checking (5.13) is equivalent to computations as those of
Table 1.

Controls on quasi-rectangular domains. Every result presented above is not only guar-
anteed for the rectangles, but also for domains which are very close to it in the meaning
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of Theorem 3.5. In this situation, the spectral behavior of the Hamiltonian generating the
dynamics is very close to the one on a rectangle, and then all the techniques above are still
valid, up to a small error depending on the domain.

To apply one of these control processes to a general domain, we can proceed as fol-
lows. We can deform the domain adiabatically back and forth to an almost rectangular one
by preserving the simplicity of the spectrum. While the domain is quasi-rectangular, we
apply the prescribed control (see Figure 6).

Adiabatic deformation avoiding

all the eigenvalues crossings

Adiabatic deformation avoiding

all the eigenvalues crossings

Control process on a

quasi-rectangular domain

Adiabatic deformation avoiding
all the eigenvalue crossings

Control process on a
quasi-rectangular domain

Adiabatic deformation avoiding
all the eigenvalue crossings

Figure 6. The figure represents how to apply the controls discussed before to the case of general
domains. The first and the last motions are back-and-forth adiabatic deformations of the domain in
a quasi-rectangular one. In the intermediate step instead, we apply the chosen control process.

5.6. Pumping motion and Fermi acceleration

In this section we discuss in more detail the pumping motion introduced above and repre-
sented in Figure 4.

Consider a free quantum-mechanical particle in a rectangular box Œ0; a� � Œ0; 1�. The
eigenfunctions and their corresponding energies are respectively

�m;n D sin
�
�m

x

a

�
sin.�ny/ and E.m; n/ D �2

�m2
a2
C n2

�
;

where m; n � 1. We slowly change the length of the rectangular box until we reach the
shape Œ0; Qa� � Œ0; 1�, where the eigenfunctions and energies are now

Q�m;n D sin
�
�m

x

Qa

�
sin.�ny/ and zE.m; n/ D �2

�m2
Qa2
C n2

�
During the deformation, in the adiabatic limit, the quantum numbers m and n are pre-
served, i.e., if the process is slow enough, then by starting with the state �m;n, the system
will find itself close to the state Q�m;n. Next, we return the box to its original size and, on
the way back, we slowly deform the boundary of the box in such a manner that it has a
generic non-rectangular shape all the time, except at the start and at the end of the pro-
cess. The genericity means no crossing of the energy levels, i.e., the instantaneous energy
spectrum stays simple; see Section 5.3. As already noticed, this break of symmetry can
also be performed by keeping the rectangular shape and adding a generic non-symmetric
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potential, which could be simpler in practice. Assume that a and Qa are irrational, so that
both corresponding spectra in the boxes are simple. Thus, following the total ordering
according to the increase of energy, we can define the number Qk.m; n/ such that Q�m;n is
the Qk.m; n/th eigenfunction of the Laplacian in Œ0; Qa� � Œ0; 1�. This number is adiabati-
cally preserved when we return the box to its original shape, meaning that the quantum
state finishes close to �m0;n0 such that k.m0; n0/ D Qk.m; n/ (where k.m0; n0/ is similarly
defined by the fact that �m0;n0 is the k.m0; n0/th eigenfunction of the Laplacian operator in
Œ0; a� � Œ0; 1�).

We obtain a cyclic process such that at its first stage the quantum numbersm and n are
preserved, while at the second stage the ordering k of the energy is preserved. Hence the
values ofm and n at the end of the cycle do not need to be the same as at the beginning. It
generates a permutation � WN ! N defined by

�.k/ D Qk.m.k/; n.k//

with the obvious (abusive) notation that the numbers m.k/ and n.k/ are uniquely deter-
mined by k.m.k/; n.k// D k.

It would be interesting to understand the dynamics of the iterations of this permuta-
tion. Indeed, if the pumping motion is slow enough, the quantum state will be successively
transformed in the �j .k/th eigenmode, j D 1; 2; 3; : : : for as many cycles as we want. In
simpler one-dimensional models, a similar permutation process can be explicitly studied;
see [19, 37]. Here, the existence of two quantum numbers m and n makes the rigorous
study much more involved. However, we conjecture that typically, �j .k/ grows exponen-
tially with the number of iterations, i.e., the corresponding physical process should exhibit
an exponential energy growth.

There can only be two types of dynamics for bijections of the set of natural numbers:
the orbit is either periodic (looped), or it tends to infinity at forward and backward itera-
tions. This depends on initial conditions; however, we conjecture that for a generic choice
of a and Qa, only a small set of initial conditions produce looped orbits. Moreover, for a
typical non-looped orbit, we have

lim inf
j!C1

1

j
ln.�j .k// > 0:

Physical justification of this claim is given by the second law of thermodynamics: the
entropy cannot decrease. Indeed, by definition, the Gibbs volume entropy is the logarithm
of the number of states below the given energy level, i.e., it is ln k (see also [20, 31]). We,
therefore, expect that the increment of lnk (the entropy) after each cycle should, typically,
be strictly positive. The resulting exponential growth of the energy generated by a periodic
motion of a wall is the quantum version of the famous Fermi acceleration.

To substantiate the growth of entropy claim, we present the following computation.
Consider m; n � 1. In the starting rectangle Œ0; a� � Œ0; 1�, the numbers .m0; n0/ 2 .N�/2

related to an eigenmode �m0;n0 with energy E.m0; n0/ less that E.m; n/ are exactly the
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integer points contained in the ellipse ¹.x; y/; �2.x2=a2 C y2/ � E.m; n/º. Up to a
lower-order term, this number is a quarter of the surface of the ellipse and thus

k.m; n/ D
�a

4

�m2
a2
C n2

�
C o.m2 C n2/:

In the same way, in the intermediate rectangle Œ0; Qa�� Œ0; 1�, we have Qk.m;n/� � Qa
4
.m

2

Qa2
C

n2/. This provides a good estimation for Qk.m; n/ and thus a good estimation for �.k/ if
.m.k/; n.k// is known. But obtaining .m.k/; n.k// from k is very complicated. Thus, we
would rather consider the mean value of the entropy increase

ıE.K/ WD
1

K

KX
kD1

ln.�.k// � ln.k/

for the first K states. Let E0 WD E.m.K/; n.K// be the energy of the Kth mode in the
rectangle Œ0; a�� Œ0; 1�. The arguments above show that it can be estimated as follows. Let
Q D ¹.x; y/ 2 R2C; �

2.x2=a2 C y2/ � E0º be the quarter of the ellipse corresponding
to E0 and Q0 D ¹.x0; y/ 2 R2C; �

2.x0
2
C y2/ � E0º the quarter of the disk. We have

ıE.K/ D
1

Vol.Q/

Z
Q

ln
�� Qa
4

�x2
Qa2
C y2

��
� ln

��a
4

�x2
a2
C y2

��
dx dy C o.1/

D
1

Vol.Q0/

Z
Q0

ln
�a
Qa
x0
2
C
Qa

a
y2
�
� ln.x02 C y2/ dx0 dy C o.1/

D
4�

E0

Z pE0=�
0

r dr
Z �=2

0

ln
�a
Qa

cos2 � C
Qa

a
sin2 �

�
� ln.cos2 � C sin2 �/ d� C o.1/

D
2

�

Z �=2

0

ln
�a
Qa

cos2 � C
Qa

a
sin2 �

�
d� C o.1/:

This growth of the mean of the entropy can be estimated numerically. In any case, we
know that it is positive. Indeed, the strict concavity of the logarithm ensures thatZ �=2

0

ln
�a
Qa

cos2 � C
Qa

a
sin2 �

�
d� >

Z �=2

0

cos2 � ln
a

Qa
C sin2 � ln

Qa

a
d�

D ln
a

Qa

Z �=2

0

cos2 � � sin2 � d� D 0:

One should note that the positivity of lim infK!1 ıE.K/ is not enough to conclude
that � generates long growing orbits. For example, if we consider the pumping that alter-
nates the lengths a and Qa D 1=a, then this will only lead to transpositions, i.e., every orbit
will loop after the second iteration. Still, we believe that for generic values of a and Qa, the
iterations of � have the same characteristic as that of a random process with fast decay-
ing correlations. In the random case, the limit of ıE is the expectation of the increase of
the random sequence i 7! ln.� i .k//, and a Chebyshev-like inequality shows that, almost
surely, i 7! � i .k/ grows exponentially.
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We did numerical experiments to test this prediction. For a D �=2 and Qa D a=3, we
computed the energies of the first modes and thus built a table of the values of �.k/ for
all k � 370;800. The computed value of ıE.105/ is 0:28713, whereas the above integral
estimation predicts 0:28768. An illustration of some orbits of the permutation is given in
Figure 7. To investigate our conjecture that periodic orbits are very rare and perhaps only
finitely many, we looked for periodic orbits starting with k � 105, with period less than
30 and never growing above the rank 370;800 (the limit of our computed permutation).
We only found 9 periodic orbits, and only 2 that are more complicated than transpositions
(see Figure 7).

Figure 7. Some trajectories j 7! �j .k/ generated by the permutation associated to the pumping
motion with a D �=2 and the ratio of compression a= Qa D 3. The horizontal axis indicates the
“time” index j and the vertical one displays log10.�

j .k//. Several randomly chosen trajectories
are represented in color (until they reach the bound 370;800, above which our permutation is not
computed). Two examples of periodic orbits .19 44 110 39 52/ and .528 1491 1429 2152 3969 1407/
are enhanced with diamonds. The dotted line represents the mean exponential growth rate, which is
approximately 0:28. We notice that the randomly chosen orbits present a variety of growth rates but
are overall compatible with the mean one.
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