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A quantitative stability result for the Prékopa–Leindler
inequality for arbitrary measurable functions

Károly J. Böröczky, Alessio Figalli, and João P. G. Ramos

Abstract. We prove that if a triplet of functions satisfies almost-equality in the Prékopa–Leindler
inequality, then these functions are close to a common log-concave function, up to multiplication
and rescaling. Our result holds for general measurable functions in all dimensions, and provides a
quantitative stability estimate with computable constants.

1. Introduction

1.1. Brunn–Minkowski and Prékopa–Leindler inequalities

Writing jX j to denote Lebesgue measure of a measurable subset X of Rn (with j;j D
0), the Brunn–Minkowski–Lusternik inequality states that if ˛; ˇ > 0 and A, B , C are
bounded measurable subsets of Rn with ˛AC ˇB � C (by convention, if one of the sets
A or B is empty, then ˛AC ˇB WD ;), then

jC j
1
n � ˛jAj

1
n C ˇjBj

1
n : (1.1)

Also, in the case when jAj > 0 and jBj > 0, equality holds if and only if there exist a
convex bodyK (that is, a convex compact set with nonempty interior), constants a; b > 0,
and vectors x; y 2 Rn, such that ˛aC ˇb D 1, ˛x C ˇy D 0, and

A� aKCx; B � bKCy; j.aKCx/ nAj D 0; j.bKCy/ nBj D 0; and jK�C j D 0;

where K�C stands for the symmetric difference between K and C . We note that even
if A and B are Lebesgue measurable, the Minkowski linear combination ˛AC ˇB may
not be measurable (while ˛AC ˇB is measurable if A and B are Borel). We refer to the
monograph [44] for a detailed exposition on this beautiful topic.

The Prékopa–Leindler inequality is a functional generalization of the classical Brunn–
Minkowski inequality. In order to state it precisely, we recall that a function f WRn!R�0
is said to be log-concave if f ..1 � �/x C �y/ � f .x/1��f .y/� for all x; y 2 Rn and
� 2 .0; 1/; in other words, f is log-concave if it can be written as f D e�' for some
convex function 'WRn ! .�1;1�.
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Theorem 1.1 (Prékopa, Leindler; Dubuc). Let � 2 .0; 1/ and f; g; hWRn! R�0 be mea-
surable functions such that

h..1 � �/x C �y/ � f .x/1��g.y/� 8x; y 2 Rn: (1.2)

Then Z
R
h �

�Z
R
f

�1���Z
R
g

��
:

Also, equality holds if and only if there exist a > 0, w 2 Rn, and a log-concave function
Qh, such that h D Qh, f D a�� Qh. � � �w/, g D a1�� Qh. � C .1 � �/w/ almost everywhere.

Note that, if f , g, h are the indicator functions of some setsA,B ,C , then Theorem 1.1
corresponds exactly to the Brunn–Minkowski inequality.

The Prékopa–Leindler inequality, due to Prékopa [40] and Leindler [35] in one dimen-
sion, was generalized in Prékopa [41] and Borell [8] to any dimension (cf. Marsiglietti
[37], Pivovarov, Rebollo Bueno [39], Brascamp, Lieb [10], Kolesnikov, Werner [34],
Bobkov, Colesanti, Fragalà [7]). The case of equality is characterized by Dubuc [16].
Various applications are provided and surveyed in Gardner [29].

1.2. Stability questions

As discussed above, optimizers are known for both the Brunn–Minkowski and Prékopa–
Leindler inequalities. However, in spite of knowing the equality cases for these inequal-
ities, one might ask what geometric properties can be deduced if one knows that the
equality is “almost” attained. This is what one usually refers to as stability estimates.

Recently, various important stability results about geometric and functional inequal-
ities have been obtained. For example, Fusco, Maggi, Pratelli [28] proved an optimal
stability version of the isoperimetric inequality. This result was extended to the anisotropic
isoperimetric inequality and to the Brunn–Minkowski inequality for convex sets by Figalli,
Maggi, Pratelli [23, 24] (for the latter problem, the current best estimate is due to Koles-
nikov, Milman [33]). One can further mention, for instance, stronger versions of the func-
tional Blaschke–Santaló inequality, provided by the work of Barthe, Böröczky, Fradelizi
[5]; of the Borell–Brascamp–Lieb inequality, provided by Ghilli, Salani [30], Rossi, Salani
[42,43], and Balogh, Kristály [3]; of the Sobolev inequality by Figalli, Zhang [26] (extend-
ing Bianchi, Egnell [6] and Figalli, Neumayer [25]), Nguyen [38], and Wang [47]; of
the log-Sobolev inequality by Gozlan [31]; and of some related inequalities by Caglar,
Werner [12], Cordero-Erausquin [15], and Kolesnikov, Kosov [32]. An “isomorphic” sta-
bility result for the Prékopa–Leindler inequality for log-concave functions in terms of the
transportation distance has been obtained by Eldan [17, Lemma 5.2].

1.2.1. Stability for Brunn–Minkowski. For the specific case of the Brunn–Minkowski
inequality (1.1), the stability question is rather delicate. The first contribution in the direc-
tion of stability was made by Freı̆man [27], although indirectly, as a consequence of his
celebrated 3k � 4 theorem in dimension n D 1 (see also Christ [14]):
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Theorem 1.2 (Freı̆man). Let A; B; C � R be bounded measurable sets satisfying A C
B � C and jC j < jAj C jBj C " for some " � min¹jAj; jBjº. Then there exist intervals
I; J � R such that A � I , B � J , jI n Aj < ", and jJ n Bj < ".

In the planar case, van Hintum, Spink, Tiba [46] have found the optimal stability ver-
sion of (1.1).

Theorem 1.3 (Van Hintum, Spink, Tiba). For � 2 .0; 1
2
� and � 2 Œ�; 1 � ��, let A, B , C

be bounded measurable subsets of R2 satisfying .1 � �/AC �B � C andˇ̌
jAj � 1

ˇ̌
C
ˇ̌
jBj � 1

ˇ̌
C
ˇ̌
jC j � 1

ˇ̌
< "

for some "� e�M.�/, withM.�/ > 0 depending only on � . Then there exists a convex body
K, with A � K C x and B � K C y for some x; y 2 R2, such that

j.K C x/ n Aj C j.K C y/ n Bj C jK�C j < c��
1
2 "

1
2 (1.3)

for an absolute constant c > 0.

We note that, for n � 2, in (1.3) one cannot have an estimate with better error term,
in terms of the order of both � and ". In higher dimensions, the only available quantita-
tive stability version of the Brunn–Minkowski inequality has been established by Figalli,
Jerison [19].

Theorem 1.4 (Figalli, Jerison). For � 2 .0; 1
2
� and � 2 Œ�; 1� ��, let A, B , C be bounded

measurable subsets of Rn, n � 3, with .1 � �/AC �B � C andˇ̌
jAj � 1

ˇ̌
C
ˇ̌
jBj � 1

ˇ̌
C
ˇ̌
jC j � 1

ˇ̌
< "

for some " < e�An.�/, with An.�/ WD .23
nC2
n3

n
jlog � j3

n
/=�3

n
. Then there exists a convex

body K, with A � K C x and B � K C y for some x; y 2 Rn, such that

j.K C x/ n Aj C j.K C y/ n Bj C jK�C j < ��Nn"
n.�/; (1.4)

where 
n.�/ D �3
n
=.23

nC1
n3

n
jlog � j3

n
/ and Nn > 0 depends only on n.

Remark 1.5. We list here some results for particular cases of Theorem 1.4.

• When A D B , van Hintum, Spink, Tiba [45] obtained the optimal stability version,
where the error term in (1.4) is of the form cn�

� 12 "
1
2 with cn > 0 depending only on

n. Their result improves the previous contributions [18, 20, 21].

When at least one of the sets A or B is convex, several results have been obtained, as
described below. However, it is important to observe that all these results measure stability
by controlling the symmetric difference between A and a translate of B . This is weaker
than the statement in Theorem 1.4, where one finds a convex set K that contains both A
and B (up to a translation) with a control on the missing volume. Here are some important
results.
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• When either A or B is convex, an optimal stability estimate has been proved by
Barchiesi, Julin [4]. This extends earlier results about the case when both A and B
are convex [23, 24], or when either A or B is the unit ball [22].

• If A and B are convex and n is large, then Kolesnikov, Milman [33] provided an
estimate on jA�.x C B/j with a bound of the form cn2:75��

1
2 "

1
2 , for some absolute

constant c. Actually, we note that the term n2:75 can be improved to n2:5Co.1/ by
combining the general estimates of Kolesnikov, Milman [33, Section 12] with the
bound no.1/ on the Cheeger constant of a convex body in isotropic position, which
follows from Chen’s work [13] on the Kannan–Lovasz–Simonovits conjecture.

1.2.2. Stability for Prékopa–Leindler. With respect to the Brunn–Minkowski inequal-
ity, before now much less was known about stability for the Prékopa–Leindler inequality,
except for some results in the case of log-concave functions (see the discussion below). In
this paper, we prove the first quantitative stability result for the Prékopa–Leindler inequal-
ity on arbitrary functions.

Theorem 1.6. Given � 2 .0; 1
2
� and � 2 Œ�; 1 � ��, let f; g; hWRn ! R�0 be measurable

functions such that h..1 � �/x C �y/ � f .x/1��g.y/� for all x; y 2 Rn, andZ
Rn

h < .1C "/

�Z
Rn

f

�1���Z
Rn

g

��
for some " > 0: (1.5)

There are a computable dimensional constant ‚n and computable constants Qn.�/ and
Mn.�/ depending only on n and � ,1 such that the following holds: if 0 < " < e�Mn.�/,
then there exist Qh log-concave and w 2 Rn such thatZ

Rn

jh� Qhj C

Z
Rn

ja�f � Qh. � C �w/j C

Z
Rn

ja��1g � Qh. � C .�� 1/w/j<
"Qn.�/

�‚n

Z
Rn

h;

where a D
R

Rn g=
R

Rn f .

Remark 1.7. For f , g, h a priori assumed to be log-concave, Theorem 1.6 was estab-
lished by Ball, Böröczky [2] and Böröczky, De [9] in the case n D 1 (in this case,
"Qn.�/=�‚n in Theorem 1.6 can be essentially replaced by ."=�/

1
3 ; see also Theorem 2.1),

and by Böröczky, De [9] in the case n� 2 (in that case, "Qn.�/=�‚n in Theorem 1.6 can be
replaced by ."=�/

1
19 ). Further, we note that Bucur, Fragalà [11] proved another interesting

stability version of the Prékopa–Leindler inequality for log-concave functions, bounding
the distance of all one-dimensional projections.

Theorem 1.6 is probably quite far from the optimal version, which one could con-
jecture to provide a bound of the form C.n; �/"

1
2 . In this direction, even for n D 1,

Example 1.8 below shows that the error term in Theorem 1.6 is at least c"
1
2 .

1At the end of the proof of Theorem 1.6 (see (5.34)), we indicate explicit values for the constants
Mn.�/, Qn.�/, ‚n.
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At first sight, this is perhaps surprising, because in the case of Freı̆man’s result (Theo-
rem 1.2) the error is of order ", which shows that the Brunn–Minkowski and Prékopa–
Leindler inequalities exhibit different behaviors for n D 1. Nonetheless, our proof of
Theorem 1.6 shows that the Prékopa–Leindler inequality in dimension n shares some –
but not all – of the geometric aspects of the Brunn–Minkowski inequality in dimension
nC 1, which explains, at least partially, the difference between the two exponents.

Another important difference between the stability version of the Prékopa–Leindler
and the Brunn–Minkowski inequalities is shown by the following observation: when A D
B , the convex setK in Theorem 1.4 coincides with the convex hull ofA; on the other hand,
for f D g, the function Qh in Theorem 1.6 can be quite far from the log-concave hull of f
(see Example 1.9 below). In other words, there is no direct geometric characterization of
the function Qh (see also Remark 1.10 below).

As mentioned above, the following example shows that the error term in Theorem 1.6
is at least c"

1
2 .

Example 1.8. There is an absolute constant c 2 .0; 1/ such that the following holds. For
any "� 1, there exist log-concave probability densities f , g on R such thatZ

R
sup

zD 1
2xC

1
2y

f .x/
1
2 g.y/

1
2 dz < 1C ";

while Z
R
jg.x/ � f .x C w/j dx � c"

1
2 for any w 2 R:

Proof. We fix f .x/ D e��x
2

and an odd C 2 function ' on R satisfying supp' � Œ�1; 1�
and max' D 1. Note that, since ' is odd,

R
R f ' D 0.

Given �� 1 to be fixed later, we consider g D .1C �'/f so that
R

R g D 1. We note
that there exists a constant Qc � 2 such that

jŒlog.1C �'/�0j D
ˇ̌̌
� �

'0

1C �'

ˇ̌̌
� Qc�; (1.6)

jŒlog.1C �'/�00j D
ˇ̌̌
� �
'00.1C �'/ � �.'0/2

.1C �'/2

ˇ̌̌
� Qc� (1.7)

for any � 2 .0; 1
2
/. In particular, since .log f /00 D �2� , it follows that g is log-concave

provided �� 1= Qc.
Note now that, since g.x/D f .x/D e��x

2
for jxj � 1, there exists a constant c0 > 0

such that Z
R
jg.x/ � f .x C w/j dx �

Z 1
1

je��x
2

� e��.xCw/
2

j dx

� c0 min¹jwj; 1º: (1.8)
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On the other hand, we haveZ
R
jg.x/ � f .x C w/j dx �

Z
R
jg.x/ � f .x/j � jf .x/ � f .x C w/j dx

� �

Z
R
f .x/j'.x/j dx � Ncjwj:

Hence, combining this last estimate with (1.8), we deduce the existence of a constant
c1 > 0 such that Z

R
jg.x/ � f .x C w/j dx � c1� 8w 2 R: (1.9)

Finally, we estimate
R

R h for h.z/ D sup2zDxCy
p
f .x/g.y/. To this aim, consider

the auxiliary function Qh.z/ D
p
f .z/g.z/. Thanks to the Hölder inequality, this satisfiesR

R
Qh � 1.
Since f and g are log-concave and g.x/ D f .x/ for jxj � 1, for any z 2 R, there

exists a point yz 2 R such that h.z/ D
p
f .2z � yz/g.yz/. Also, yz D z if jzj � 1, and

jyzj � 1 if jzj � 1.
We now observe that, for any z 2R, the function  z.y/D log

p
f .2z � y/g.y/ satis-

fies  z.z/ D log Qh.z/,  z.yz/ D logh.z/ , and  z has a maximum at yz . Then, recalling
(1.6), we have

0 D  0z.yz/ D 2�.z � yz/C
1

2
Œlog.1C �'/�0.yz/ ) jz � yzj � Qc�:

Hence, since j 00z j is bounded, a Taylor expansion yields (recall that  0z.yz/ D 0)

log
h.z/

Qh.z/
D  z.yz/ �  z.z/ � c2�

2
8z 2 R;

for some constant c2 > 1, and we conclude thatZ
R
h � ec2�

2

Z
R

Qh � ec2�
2

< 1C 2c2�
2 for �� 1:

Choosing � WD .2c2/�
1
2 "

1
2 , (1.9) and the equation above prove the result.

The next example shows that, even in the case f D g, the function Qh provided by
Theorem 1.6 cannot be chosen to be the log-concave hull of f (i.e., the smallest log-
concave function above f ).

Example 1.9. For any " > 0 there exist f; hWR! R�0 measurable functions such that
h.1
2
x C 1

2
y/ � f .x/

1
2 f .y/

1
2 for all x; y 2 Rn,Z

R
h < .1C "/

Z
R
f;

but Z
R
.F � f / �

1

2

Z
R
f;

where F denotes the log-concave hull of f .
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Proof. Given A� 1, let f be defined as

f .x/ D

´
e�x on Œ0; 1� [ Œ2A; 2AC 1�;

0 otherwise;

and set h.z/ WD supzD 1
2xC

1
2y
f .x/

1
2 f .y/

1
2 . Then

h.x/ D

´
e�x on Œ0; 1� [ ŒA;AC 1� [ Œ2A; 2AC 1�;

0 otherwise;

and therefore Z
R
h < .1C "/

Z
R
f

with " ' e�A � 1. On the other hand, the log-concave hull of f is given by

F.x/ D

´
e�x on Œ0; 2AC 1�;

0 otherwise:

Hence, for A� 1,Z
R
.F � f / D

Z 2A

1

e�x dx D e�1 � e�2A �
1

2
.1 � e�1/ D

1

2

Z
R
f;

as desired.

Remark 1.10. The argument used in Example 1.9 emphasizes a key difference between
the Brunn–Minkowski inequality and the Prékopa–Leindler inequality: while in the
Brunn–Minkowski inequality only arithmetic means of points are considered, in Prékopa–
Leindler one considers points z that are the arithmetic mean of x and y, but then the
value of h.z/ is obtained as a geometric mean of the values of f .x/ and g.y/. This
key difference is the source of many new challenges when proving stability results for
Prékopa–Leindler.

1.3. Outline of the proof of Theorem 1.6

We now sketch the structure of the proof of Theorem 1.6, which is split into four main
steps. The first three steps deal with the one-dimensional case. Then, in Step 4, we exploit
both the one-dimensional case and Theorem 1.4 to obtain the higher-dimensional result.

(1) We first deal with the case of symmetrically rearranged functions, and prove the
result in this case. Note that, if f , g, h satisfy (1.2) and (1.5), then their rearrange-
ments f �, g�, h� also satisfy the same estimates.

(2) With the knowledge that the result holds for f �, g�, h�, we deduce conditions on
the distribution functions t 7!H1.¹f > tº/;H1.¹g > tº/. In particular, from (1.5)
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applied to f , g, h, we use a stability version of the Brunn–Minkowski inequality
in one dimension in order to prove that f and g are close to “bubble-shaped”
functions (i.e., that are nondecreasing on an interval .�1; a/ and nonincreasing
on .a;C1/).

Calling � and  such bubble-shaped functions, we define

�.z/ D sup
.1��/xC�yDz

�.x/1�� .y/�:

This function is measurable (thanks to the fact that � and  are bubble shaped),
and an analysis similar to the proof of Proposition 2.6 shows that �,  , � satisfy
both (1.2) and (1.5) (but for some smaller power of ").

(3) Denote®
x 2 RW�.x/ > t

¯
D .af .t/; bf .t//;

®
x 2 RW .x/ > t

¯
D .ag.t/; bg.t//:

Then we use the almost-optimality of �,  , � to prove that, on a large set, a four-
point inequality (in the same spirit as [19, Lemma 3.6 and Remark 4.1]) is satisfied
by the functions Bf .T /D bf .e

T / and Bg.T /D bg.e
T /, and a “reversed” version

of such a four-point inequality holds for Af .T /D af .e
T / and Ag.T /D ag.e

T /.
As a consequence, we are able to prove that Af , Ag are both L1-close to

convex functions mf , mg on a large interval. Analogously, Bf , Bg are L1-close
to concave functions nf , ng on the same large interval. Thanks to these facts,
we show that there exist log-concave function Q� and Q such that ¹ Q� > tº D

.mf .log t /; nf .log t // and ¹ Q > tº D .mg.log t /; ng.log t // on a large interval.
Finally, we translate the properties of Af , Ag , Bf , Bg , mf , mg , nf , ng into

a bound on k� � Q�k1, which can thus be made small. By Proposition 2.6, we
conclude the one-dimensional case of Theorem 1.6.

(4) In order to obtain the result in higher dimensions as well, we consider the hypo-
graphs of the logarithms of f , g, h. Denoting these sets by �f , �g , �h, respec-
tively, we show that they satisfy the Brunn–Minkowski condition �h�.1��/�fC

��g . In particular, due to the one-dimensional case, we can estimate how level
sets of f , g, h are close to each other, in terms of volume. This enables us to use
the main theorem in [19] on the sets �f , �g , �h, which in turn produces a natural
algorithm to construct log-concave functions close to f , g, h.

The rest of the manuscript is organized as follows: In Section 2, we prove tail estimates
that allow us to suitably truncate the functions under consideration, as well as to estimate
the size of level sets. This allows us to perform a set of preliminary reductions of the
one-dimensional problem. In Section 3 we prove Theorem 1.6 in the case when n D 1

and f , g, h are symmetrically decreasing, while in Section 4 we deal with the general
one-dimensional case. Finally, in Section 5 we prove the theorem in arbitrary dimension.

Throughout the manuscript, we shall use the notation Hk for the k-dimensional Haus-
dorff measure of a set. Sometimes we shall use c > 0 to denote an absolute (computable)
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constant, whose exact value might change from one part of the paper to the next, and even
from line to line. We shall also occasionally use a subscript, e.g. cn, to indicate depen-
dence of the constant on a dimensional parameter. Moreover, we write a . b whenever
a=b is bounded from above by an absolute and explicitly computable constant, and we
shall use a subscript a .n b to emphasize the dependence of the bound on the dimension
considered. Finally, we write a ' b if both a . b and b . a hold.

2. Tail estimates in the case of almost-equality in the one-dimensional
Prékopa–Leindler inequality

A useful tool for our study is the symmetric decreasing rearrangement. For a bounded
function 'WR! R�0 with 0 <

R
R ' <1, we define its symmetric decreasing rearrange-

ment '�WR! R�0 by

'�.t/ D inf
®
˛WH1.¹' � ˛º/ � 2jt j

¯
:

In particular, '� is an even function that is monotone decreasing on Œ0;1/, '�.0/ is the
essential supremum of ', and

H1.¹' � ˛º/ D H1.¹'� � ˛º/

for any ˛ > 0 with H1.¹' � ˛º/ > 0. In particular, the level sets ¹'� � ˛º are symmetric
segments, and the layer-cake representation yields

R
R ' D

R
R '
�.

Symmetric decreasing rearrangement works very well for the Prékopa–Leindler
inequality. For � 2 .0; 1/ and bounded functions f; g; hWR! R�0 with positive integral,
if h..1� �/xC �y/� f .x/1��g.y/� for any x;y 2R, then the one-dimensional Brunn–
Minkowski inequality yields h�..1 � �/x C �y/ � f �.x/1��g�.y/� for any x; y 2 R.
Also, if ' is log-concave, then the same holds for '�.

The main goal of this section is to show that if we have almost-equality in the one-
dimensional Prékopa–Leindler equality, then the functions f , g, h in (1.5) with positive
integral satisfy similar tail estimates like log-concave functions (here 'WR ! R�0 has
positive integral if 0 <

R
' <1). First we review the related properties of log-concave

functions. Let us recall the following estimate from [2, 9]:

Theorem 2.1 (Ball, Böröczky, De). For � 2 .0; 1
2
� and � 2 Œ�; 1� ��, let f;g;hWR!R�0

be log-concave functions with positive integral such that

h..1 � �/x C �y/ � f .x/1��g.y/�

for all x; y 2 R, and Z
R
h < .1C "/

�Z
R
f

�1���Z
R
g

��
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for some " 2 .0; 1/. Then there exists w 2 R such thatZ
R
ja�f � h. � C �w/j C

Z
R
ja��1g � h. � C .� � 1/w/j < c

� "
�

� 1
3
jlog "j

4
3

Z
Rn

h;

where a D
R

R g=
R

R f , and c > 1 is an absolute constant.

Next we prove some basic properties of log-concave functions. We observe that if '
is log-concave and 0 <

R
R ' <1, then the level sets are segments, ' is bounded, and its

essential supremum coincides with its supremum k'k1.

Lemma 2.2. Let ' be a log-concave function with 0 <
R

R ' <1. Then

(i) H1.¹' > k'k1 � sº/ �
k'k1
k'k21

s provided 0 < s < k'k1;

(ii) H1.¹' > tº/ � 2k'k1
k'k1
jlog t

k'k1
j provided 0 < t � 1

2
k'k1;

(iii)
R
¹'<tº

' � 2k'k1
k'k1

t provided 0 < t � 1
2
k'k1.

Proof. Using symmetric decreasing rearrangement we can assume that ' is even. Also,
by scaling, we may also suppose that '.0/ D k'k1 D

R
R ' D 1.

For (i), let x0 D sup¹xW '.x/ > 1 � sº D 1
2
H1.¹' > 1 � sº/, and choose 
 > 0 such

that 1� s D e�
x0 . It follows from the log-concavity and the evenness of ' that '.x/ � 1
if jxj � jx0j, and '.x/ � e�
 jxj if jxj � jx0j. Also, since e�
x0 > 1� 
x0 we get 1



< x0

s
,

thus

1 D

Z
R
' � 2x0 C 2

Z 1
x0

e�
x dx D 2x0 C
2e�
x0



< 2x0

�
1C

1 � s

s

�
D
2x0

s
:

For (ii) and (iii), let x1 D sup¹xW'.x/ > tº D 1
2
H1.¹' > tº/, and choose ı > 0 such

that t D e�ıx1 . It follows again by log-concavity and evenness that '.x/ � e�ıjxj if jxj �
jx1j, and '.x/ � e�ıjxj if jxj � jx1j.

Then, on the one hand, we have

1

2
�

Z x1

0

e�ıx dx D
1 � e�ıx1

ı
D
1 � t

ı
�
1

2ı
D

x1

2jlog t j
; (2.1)

verifying (ii). On the other hand, using (2.1) we getZ
¹'<tº

' � 2

Z 1
x1

e�ıx dx D
2e�ıx1

ı
D

2tx1

jlog t j
� 2t;

verifying (iii).

Given " 2 .0; 1�, � 2 .0; 1
2
�, and � 2 Œ�; 1� ��, we now consider measurable functions

f; g; hWR! R�0 with positive integral satisfying

h..1 � �/x C �y/ � f .x/1��g.y/� for x; y 2 R; (2.2)Z
R
h < .1C "/

�Z
R
f

�1���Z
R
g

��
: (2.3)
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For t > 0, we set

At D ¹f � tº; Bt D ¹g � tº; and Ct D ¹h � tº; (2.4)

so that
At D

\
0<s<t

As; Bt D
\
0<s<t

Bs; and Ct D
\
0<s<t

Cs :

It follows from (2.2) that if At ; Bs ¤ ; for t; s > 0, then

.1 � �/At C �Bs � Ct1��s� : (2.5)

Lemma 2.3. Let f , g, h satisfy (2.2) and (2.3). Then f and g are bounded.

Proof. For any x0 2 R with f .x0/ > 0, we have

2

�Z
R
f

�1���Z
R
g

��
>

Z
R
h �

Z
R
f .x0/

1��g
� 1
�
z �

1 � �

�
x0

��
dz

D f .x0/
1���

Z
R
g�I

therefore, f is bounded. Similarly, g is bounded as well.

We use the following stability version of the inequality between the arithmetic and
geometric means. It follows from Aldaz [1, Lemma 2.1] that if a; b > 0 and � 2 Œ�; 1� ��
for � 2 .0; 1

2
�, then

.1 � �/aC �b � a1��b� � �.
p
a �
p
b/2: (2.6)

According to Lemma 2.3, we can speak about kf k1 and kgk1.

Lemma 2.4. Let f , g, h satisfy (2.2) and (2.3). If " < 2�6�3, thenˇ̌̌̌
kf k1

kgk1
�
kgk1

kf k1
� 1

ˇ̌̌̌
� 4��

3
2 "

1
2 :

Proof. We may assume that
R

R f D
R

R g D 1.
We set � D kf k1=kgk1. Using the notation (2.4), it follows from (2.2) that if 0 <

t < kf k1��1 kgk
�
1, then

.1 � �/A��t C �B���1t � Ct :

We deduce from (2.5) and the one-dimensional Brunn–Minkowski inequality that

1C " �

Z
R
h �

Z kf k1��1 kgk�1

0

H1.Ct / dt

� .1 � �/

Z kf k1��1 kgk�1

0

H1.A��t / dt C �

Z kf k1��1 kgk�1

0

H1.B���1t / dt

D
1 � �

��

Z kf k1
0

H1.As/ ds C ��
1��

Z kgk1
0

H1.Bs/ ds D
1 � �

��
C ��1��:
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We conclude from (2.6) that

j��
�
2 � �

1��
2 j < ��

1
2 "

1
2 ;

which in turn yields that

��
1
2 "

1
2 > e

� jlog � j
2 � 1 >

� jlog � j
2

:

Since jlog � j < 2��
3
2 "

1
2 �

1
4

provided " � �3=64, we have j� � 1j < 4��
3
2 "

1
2 .

Lemma 2.5. Let f , g, h satisfy (2.2) and (2.3). If "
1
2 � � < 1, then

H1
�®
f � �kf k1

¯�
.
��

5
2 kf k1

kf k1
� jlog "j

4
� ;

H1
�®
g � �kgk1

¯�
.
��

5
2 kgk1

kgk1
� jlog "j

4
� ;

(2.7)

and Z
¹f <�º

f . ��
5
2 kf k1 � �jlog "j

4
� ;

Z
¹g<�º

g . ��
5
2 kgk1 � �jlog "j

4
� :

Proof. We may assume that kf k1 D kgk1 D 1 and min¹
R

R f;
R

R gº D 1, so that Lem-
ma 2.4 yields

1 D min
®R

R f;
R

R g
¯
� max

®R
R f;

R
R g

¯
� 1C 4��

3
2 "

1
2 < 2: (2.8)

For t > 0, it follows from (2.5) that if % 2 .0; 1/, then

C%t �
�
.1 � �/At1=.1��/ C �B%1=�

�
[
�
.1 � �/A%1=.1��/ C �Bt1=�

�
; (2.9)

thus the one-dimensional Brunn–Minkowski inequality yields that H1.C%t / is at least
the arithmetic mean of .1 � �/H1.At1=.1��//C �H1.B%1=�/ and .1 � �/H1.A%1=.1��//C

�H1.Bt1=�/, and hence letting % tend to 1 implies

H1.Ct / �
1

2

�
.1 � �/H1.At1=.1��//C �H1.Bt1=�/

�
: (2.10)

In addition, H1.Ct / � .1 � �/H
1.At / � �H1.Bt / � 0 holds for any t > 0, thanks to

(2.5) and the one-dimensional Brunn–Minkowski inequality.
Therefore, using the near optimality (2.3) for the Prékopa–Leindler inequality, (2.8),

and (2.10), we deduce that for any ˛ 2 .0; 1�, we have

8��
3
2 "

1
2 �

Z ˛

0

�
H1.Ct / � .1 � �/H

1.At / � �H1.Bt /
�
dt

�

Z ˛

0

�1
2

�
.1 � �/H1.At1=.1��//C �H1.Bt1=�/

�
� .1 � �/H1.At / � �H1.Bt /

�
dt: (2.11)
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We now define

�.˛/ WD

Z ˛

0

�
.1 � �/H1.At /C �H1.Bt /

�
dt:

Note that � is an increasing function bounded by 2. Also, through a change of variables,
it satisfiesZ ˛

0

�
.1 � �/H1.At1=s /C �H1.Bt1=s /

�
dt � s˛1�

1
s �.˛

1
s / 8s 2 .0; 1/:

Hence, assuming with no loss of generality that � � 1=2, it follows from (2.11) that

8��
3
2 "

1
2 �

1 � �

2
� ˛�

�
1���.˛

1
1�� / � �.˛/: (2.12)

As 1 � � � 1=2, using the substitution ˇ D ˛
1
1�� 2 .0; 1/, (2.12) leads to

�.ˇ/

ˇ
�
32��

3
2 "

1
2

ˇ1��
C 4

�.ˇ1��/

ˇ1��
;

and, by iteration,

�.ˇ/

ˇ
� 32��

3
2 "

1
2

kX
iD1

4i�1

ˇ.1��/
i
C 4k

�.ˇ.1��/
k
/

ˇ.1��/
k

� c
�
1C ��

3
2
"
1
2

ˇ1��

� 4k

ˇ.1��/
k
8k � 1: (2.13)

Hence, if "
1
2 � ˇ, then (2.13) yields

�.ˇ/

ˇ
� c��

3
2

4k

ˇ.1��/
k
:

Choosing k 2 Œ jlogjlogˇ jj
jlog.1��/j ; 2

jlogjlogˇ jj
jlog.1��/j � so that ˇ.1��/

k
' 1, then the bound above gives

(recall that � � � and that jlog.1 � �/j ' � )

�.ˇ/

ˇ
� c��

3
2 42

jlogjlogˇ jj
� � c��

3
2 jlogˇj

4
� 8ˇ 2 Œ"

1
2 ; 1/:

Since
�.ˇ/

ˇ
� .1 � �/H1.Aˇ /C �H1.Bˇ / � �.H

1.At /CH1.Bt //;

this proves (2.7).
Finally, the layer-cake formula yields

R
¹f <�º

f C
R
¹g<�º

g � �.�/=� , and the mono-
tonicity of At and Bt imply H1.¹f � �º/ C H1.¹g � �º/ � �.�/=�, completing the
proof of Lemma 2.5.
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Proposition 2.6. Let f , g, h satisfy (2.2) and (2.3) where � 2 .0; 1
2
� and 0 < " < c�3 for

a certain absolute constant c 2 .0; 2�6/. For � � " with � < 4c�3, we assume that there
exist log-concave functions Qf , Qg such that

kf � Qf k1 < �kf k1 and kg � Qgk1 < �kgk1:

Then, setting a D
R

R g=
R

R f , there exist a log-concave function Qh and a constant w 2 R
such thatZ

R
ja�f .x/ � Qh.x � �w/j dx C

Z
R
ja��1g.x/ � Qh.x C .1 � �/w/j dx

. ��1�
1
12 jlog "j

4
3

Z
R
h;Z

R
jh.x/ � Qh.x/j dx . ��2�

1
4 jlog "j

Z
R
h:

Proof. We may assume that min¹kf k1; kgk1º D 1 and
R

R f D
R

R g D 1, so that Lem-
ma 2.4 yields

1 D min
®
kf k1; kgk1

¯
� max

®
kf k1; kgk1

¯
� 1C 4��

3
2 "

1
2 < 2: (2.14)

It follows from the conditions kf � Qf k1 < � and kg � Qgk1 < � and � < 1
2

that the approx-
imating log-concave functions satisfy

1

2
<

Z
R

Qf ;

Z
R
Qg < 2: (2.15)

The main idea of the proof is to show that, for a suitable log-concave function Qh, the
log-concave functions Qf0 D Qf �

¹ Qf >˛º
and Qg0 D Qg�¹ Qg>˛º satisfy almost-equality in the

Prékopa–Leindler inequality for some value ˛ � �; therefore, the stability version Theo-
rem 2.1 of the Prékopa–Leindler inequality for log-concave functions implies that Qf0 and
Qg0 can be expressed in terms of shifts and multiples of Qh.

As a first step, we claim that

jk Qf k1 � kf k1j � 32�
� 32 �

1
2 and jk Qgk1 � kgk1j � 32�

� 32 �
1
2 : (2.16)

As the roles of f and g are symmetric, we only prove the statement about f .
First, we assume that k Qf k1 > kf k1, hence kf k1 D k Qf k1 � ˛ for some ˛ > 0.

In this case, Lemma 2.2 (i) and (2.15) imply that H1.¹ Qf > k Qf k1 � sº/ �
s
2
k Qf k�21 for

s 2 .0; ˛/; thus the layer-cake representation gives

� �

Z k Qf k1
kf k1

H1.¹ Qf > tº/ dt >
˛2

4k Qf k21
:

Therefore, kf k1 D k Qf k1 � ˛ � k Qf k1.1 � 2
p
�/, and we deduce that

k Qf k1 � kf k1 � kf k1
�
.1 � 2

p
�/�1 � 1

�
< 8�

1
2 :
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Next we assume that k Qf k1 < kf k1. We consider the function

f1 D f � �¹f�k Qf k1º
C k Qf k1 � �¹f >k Qf k1º

;

which satisfies

1 �

�Z
R
f1

��1
�

�Z
R
f �

Z
R
jf � Qf j

��1
< 1C 2�:

As f1 � f , we have h..1 � �/x C �y/ � f1.x/1��g.y/� for any x; y 2 R whereZ
R
h � .1C "/

�Z
R
f

�1���Z
R
g

��
� .1C 4�/

�Z
R
f1

�1���Z
R
g

��
:

We deduce from Lemma 2.4 applied to f and g on the one hand, and to f1 and g on the
other hand that

kf k1

k Qf k1
D
kf k1

kgk1
�
kgk1

kf1k1
� .1C 4��

3
2 "

1
2 / � .1C 4��

3
2 �

1
2 /.1C 4�/ < 1C 16��

3
2 �

1
2 :

Recalling (2.14), this proves claim (2.16). In turn, combining (2.14) and (2.16) leads to

1

2
< kf k1; kgk1; k Qf k1; k Qgk1 < 2: (2.17)

For any r > 0, we define

Ar D ¹f > rº; QAr D ¹ Qf > rº; Br D ¹g > rº; QBr D ¹ Qg > rº:

According to the layer-cake representation (representing k' �  k1 for nonnegative
';  2 L1.R/ as the area of the symmetric difference of the parts between the graphs
and the first axis), Z 1

0

H1.Ar� QAr / dr D kf � Qf k1 � �;Z 1
0

H1.Br� QBr / dr D kg � Qgk1 � �:

In particular, the set S � .0;1/ defined by the property

H1.Ar� QAr /CH1.Br� QBr / � �
1
2 for r 2 S (2.18)

satisfies that
H1..0;1/ n S/ < 4�

1
2 : (2.19)

It follows from (2.18) that if r; s 2 S and x 2 R, then H1..1 � �/Ar�.1 � �/ QAr / �

.1 � �/�
1
2 and H1..x � �Bs/�.x � � QBs// � ��

1
2 ; therefore,ˇ̌

H1..1 � �/Ar \ .x � �Bs// �H1..1 � �/ QAr \ .x � � QBs//
ˇ̌
� �

1
2 : (2.20)
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Consider
r0 D k Qf k1 � 32�

�1�
1
4 and s0 D k Qgk1 � 32�

�1�
1
4 : (2.21)

Using (2.15) and (2.17), we deduce from Lemma 2.2 (i) that

H1. QAr0/;H
1. QBs0/ � 4�

�1�
1
4 :

Possibly after shifting f and Qf together on the one hand, and g and Qg together on the
other hand, we may assume that zero is the common midpoint of the segments QAr0 and
QBs0 . In particular, setting

cl QAr D Œa1.r/; a2.r/� and cl QBs D Œb1.s/; b2.s/� for 0 < r < k Qf k1, 0 < s < k Qgk1;

using that a1.r/, b1.r/ are monotone increasing and a2.r/, b2.r/ are monotone decreasing
provided 0 < r < min¹k Qf k1; k Qgk1º, we have

a2.r/; b2.s/ � 2�
�1�

1
4 and a1.r/; b1.s/ � �2�

�1�
1
4 for r 2 .0; r0�, s 2 .0; s0�:

We deduce that if r 2 S \ .0; r0/, s 2 S \ .0; s0/ and

x 2 .1C 2�
1
4 /�1..1 � �/ QAr C .� QBs// � .1 � �

1
4 /..1 � �/ QAr C .� QBs//;

then .1 � �/ai .r/; �bi .s/ � 2�
1
4 for i D 1; 2, and x � � QBs D Œx � �b2.s/; x C �b1.s/�

satisfies x � �b2.s/ � .1 � �/a2.r/ � �
1
4�b2.s/ and x C �b1.s/ � �.1 � �/a1.r/ C

�
1
4�b1.s/; therefore,

H1..1 � �/ QAr \ .x � � QBs// � 2�
1
2 :

In turn, (2.20) yields that if x 2 .1C 2�
1
4 /�1..1 � �/ QAr C .� QBs//, then

x 2 .1 � �/Ar C .�Bs/:

In other words, if r 2 S \ .0; r0/ and s 2 S \ .0; s0/, then

.1 � �/ QAr C � QBs � .1C 2�
1
4 /..1 � �/Ar C �Bs/ � .1C 2�

1
4 /
®
h > r1��s�

¯
: (2.22)

On the other hand, for any r 2 .�
1
4 ;k Qf k1/ and s 2 .�

1
4 ;k Qgk1/, (2.19) and the definitions

of r0, s0 yield the existence of some Qr 2 S \ .0;min¹r; r0º/ and Qs 2 S \ .0;min¹s; s0º/
with

Qr � r � �.r/ and Qs � s � �.s/;

where �.t/ D 26��1�
1
4 if t � 1

2
, and �.t/ D 4�

1
2 if t 2 .0; 1

2
/. In particular,

Qr � .1 � 27��1�
1
4 /r and Qs � .1 � 27��1�

1
4 /s for r; s � �

1
4 ;

thus setting t D r1��s�, we have

Qr1�� Qs� � .1 � 27��1�
1
4 /t � t � 28��1�

1
4 :
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Therefore, if we define
˛ D 28��1�

1
4 ;

then, for any r 2 .˛; k Qf k1/ and s 2 .˛; k Qgk1/, we deduce from (2.22) that t D r1��s�

satisfies

.1 � �/ QAr C � QBs � .1 � �/ QAQr C � QBQs � .1C 2�
1
4 /
®
h > Qr1�� Qs�

¯
� .1C 2�

1
4 /
®
h > t � ˛

¯
: (2.23)

Next we replace Qf by Qf0 D Qf �
¹ Qf >˛º

and Qg by Qg0 D Qg�¹ Qg>˛º. Then Lemma 2.2, (2.15),

and 1
2
< k Qf k1; k Qgk1 < 2 (cf. (2.16)), yield

k Qf � Qf0k1 C k Qg � Qg0k1 � 32˛; (2.24)

H1.supp Qf0/CH1.supp Qg0/ � 32jlog˛j: (2.25)

In particular, we deduce from (2.24) that

kf � Qf0k1 C kg � Qg0k1 � 2
6˛; (2.26)

hence Z
R

Qf0;

Z
R
Qg0 � 1 � 2

6
� ˛: (2.27)

Consider now the log-concave function Qh defined as

Qh.z/ D sup
zD.1��/xC�y

Qf0.x/
1��
Qg0.y/

�;

which satisfies Qh.z/ � ˛ for any z 2 int supp Qh and

H1.supp Qh/ � 32jlog˛j (2.28)

(see (2.25)). According to (2.27) and the Prékopa–Leindler inequality, we haveZ
R

Qh � 1 � 26˛: (2.29)

It follows from the definition of Qh and (2.23) that, for any t > ˛, we have

¹ Qh > tº D
[

tDr1��s�

..1 � �/ QAr C � QBs/ � .1C 2�
1
4 /¹h > t � ˛º: (2.30)

To relate Qh to f and g, we deduce from (2.27) and (2.30) thatZ
R

Qh D

Z 1
˛

H1.¹ Qh > tº/ dt � .1C 2�
1
4 /

Z 1
˛

H1.¹h > t � ˛º/ dt

D .1C 2�
1
4 /

Z
R
h < 1C 4�

1
4

� .1C 29˛/

�Z
R

Qf0

�1���Z
R
Qg0

��
: (2.31)
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Recalling that ˛ D 28��1�
1
4 , thanks to Theorem 2.1 there exists w 2 R such thatZ

Rn

ja�0
Qf0 � Qh. � C �w/j C

Z
Rn

ja��10 Qg0 � Qh. � C .� � 1/w/j . ��
2
3 �

1
12 jlog˛j

4
3

Z
Rn

Qh;

where a0 D
R

Rn Qg0=
R

Rn
Qf0. Also, by (2.27) and the conditions

R
R
Qf ;
R

R Qg � 1 C �, it
holds that

1 � 214��1�
1
4 �

Z
R

Qf0;

Z
R
Qg0 � 1C �;

In particular, ja0 � 1j . ��1�
1
4 ; therefore,Z

Rn

j Qf0 � Qh. � C �w/j C

Z
Rn

j Qg0 � Qh. � C .� � 1/w/j . ��
2
3 �

1
12 jlog˛j

4
3

Z
Rn

Qh:

Recalling (2.26), this proves the first bound in the statement of Proposition 2.6.
To relate Qh to h, consider the auxiliary function

Qh0.x/ D

´
Qh..1C 2�

1
4 /x/ � ˛ if x 2 int supp Qh;

0 otherwise;

so that, if t > ˛, then
¹ Qh > tº D .1C 2�

1
4 /¹ Qh0 > t � ˛º: (2.32)

Comparing (2.32) and (2.30), it follows that Qh0 � h. In addition, (2.29) implies that

1 � 27˛ < .1C 2�
1
4 /�1

Z
R

Qh D

Z
R

Qh0 �

Z
R
h < 1C ";

therefore
kh � Qh0k1 < 2

8˛: (2.33)

Next we claim that

Qh..1C 2�
1
4 /x/ < Qh.x/C 27��2�

1
4 for any x 2 supp Qh. (2.34)

We observe that t0D r1��0 s�0 � 1� 2
6��

3
2 �

1
4 according to (2.14), (2.16), and (2.21). Since

Qf and Qg were translated to ensure Qf0.0/ � r0 and Qg0.0/ � s0, we deduce that Qh.0/ � t0.
Using that Qh is log-concave, we deduce that if Qh.x/ � t0, then Qh..1C 2�

1
4 /x/ � Qh.x/. On

the other hand, if Qh.x/ > t0 then (2.34) follows from k Qhk1 � 1C 32��
3
2 �

1
2 (see (2.14)

and (2.16)) and the bound t0 � 1 � 26��
3
2 �

1
4 .

Thanks to (2.34), since ˛ � 27��2�
1
4 we get

k Qh � Qh0k1 D

Z
supp Qh

ˇ̌
Qh.x/ � Qh..1C 2�

1
4 /x/C ˛

ˇ̌
dx

D

Z
supp Qh

ˇ̌
Qh.x/C 27��2�

1
4 � Qh..1C 2�

1
4 /x/C .˛ � 27��2�

1
4 /
ˇ̌
dx

�

Z
supp Qh

Qh.x/C 27��2�
1
4 � Qh..1C 2�

1
4 /x/ dx C

Z
supp Qh

27��2�
1
4 dx

D

�
1 �

1

1C 2�
1
4

� Z
supp Qh

Qh.x/ dx C 2 �H1.supp Qh/ � 27��2�
1
4 :
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Since
R

R
Qh < 2 and H1.supp Qh/� 32jlog˛j (see (2.31) and (2.28)), we conclude that k Qh�

Qh0k1 < 214��2�
1
4 jlog ˛j. Combining this estimate with (2.33) implies that kh � Qhk1 <

215��2�
1
4 jlog ˛j. As ˛ D 28��1�

1
4 , we have jlog ˛j . max¹jlog � j; jlog "jº . jlog "j.

Plugging this into the statements above, we obtain the original claim, which finishes the
proof.

3. The case of symmetric-rearranged functions

For this part and for the remainder of the paper, we assume that all the reductions and
results from Section 2 hold.

As noticed at the beginning of the previous section, the symmetric decreasing rear-
rangements of functions f , g, h satisfying (1.2) and (1.5), denoted by f �, g�, h�, also
satisfy (1.2) and (1.5) with the same constant, as rearrangements preserve Lp-norms. By
changing these functions on a zero-measure set, we may suppose that their level sets are all
open. The main result of this section Theorem 3.2 lays out the foundation for the analysis
in the following ones. But first we state a lemma that is used in the proof of Theorem 3.2
and also later in the paper.

Lemma 3.1. Let f; g; hWR! R�0 satisfy (1.2) and (1.5) for 0 < " < 2�6�3, kf k1 D
kgk1 D 1, min¹kf k1; kgk1º D 1, and let At D ¹f � tº, Bt D ¹g � tº, Ct D ¹h � tº
be their level sets. Then

(i)
Z

RC

ˇ̌
H1.Ct / � .1 � �/H

1.At / � �H1.Bt /
ˇ̌
dt � 9��

3
2 "

1
2 ;

(ii) there exists a measurable set F � RC such that H1.RC n F / � 9"
1
4 andˇ̌

H1.Ct / � .1 � �/H
1.At / � �H1.Bt /

ˇ̌
� ��

3
2 "

1
4 8t 2 F:

Proof. We may assume that min¹kf k1; kgk1º D kf k1 D 1, and hence Lemma 2.4
yields that

1 � kgk1 � 1C 4�
� 32 "

1
2 :

Let S1 D ¹t � 0IH1.Ct / � .1 � �/H
1.At /C �H1.Bt /º. By the reductions made, we

know that S1 � .0; 1/ as At ¤ ; and Bt ¤ ; if 0 < t < 1 D kf k1 � kgk1, and S1 �
.1C 4��

3
2 ;1/ as At D Bt D ; if t > 1C 4��

3
2 � kgk1 � kf k1. If t 2 S2 for S2 D

RC n S1, then t � 1 and
R

R f D
R

R g �
R

R h � 1C " yield H1.At /;H
1.Bt /;H

1.Ct / �

1C "; therefore,

jH1.Ct / � .1 � �/H
1.At / � �H1.Bt /j � 1C " < 2 8t 2 S2:

Thus,Z
S2

jH1.Ct / � .1 � �/H
1.At / � �H1.Bt /j dt �

Z 1C4�
� 32 "

1
2

1

2 dt D 8��
3
2 "

1
2 :
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By the fact that the integral
R

RC
.H1.Ct /� .1��/H

1.At /��H1.Bt //dt � ", we obtainZ
RC

jH1.Ct / � .1 � �/H
1.At / � �H1.Bt /j dt � 9�

� 32 "
1
2 :

By using Chebyshev’s inequality, we obtain that the set of t � 0 where the integrand is
larger than ��

3
2 "

1
4 has measure at most 9"

1
4 , which finishes the proof of Lemma 3.1.

Theorem 3.2. There is an absolute constant c > 0 such that the following holds. Suppose
f; g; hWR! R�0 satisfy (1.2) and (1.5) for 0 < " < ce�1000jlog � j4=�4 . Then there exist
even log-concave functions Qf , Qg such that

kf � � Qf k1 C kg
�
� Qgk1 . ��!"

�

221 jlog � j ;

where ! is an absolute constant given by ! D 6C 3!0
2

, with !0 as in Lemma 3.3.

Here and henceforth, given a family of sets ¹S˛º, we shall use the notation
S�
˛ S˛ to

denote the union
S
˛WS˛¤;

S˛ .

Proof of Theorem 3.2. First, we may suppose without loss of generality that kf k1 D
kgk1 D 1, and that min¹kf k1; kgk1º D kf k1 D 1. These assumptions, together with
Lemma 2.4, imply that

0 � kgk1 � 1 � 4�
� 32 "

1
2 :

Consider, thus, the functions a; b; cWR! RC defined to satisfy, for any R 2 R,®
f � > eR

¯
D .�a.R/; a.R// DW AR;®

g� > eR
¯
D .�b.R/; b.R// DW BR;®

h� > eR
¯
D .�c.R/; c.R// DW CR:

By (1.2) applied to h�, we have (remember,
S�
˛ S˛ D

S
˛WS˛¤;

S˛ for any sets S˛)

CT �

�[
.1��/RC�SDT

®
.1 � �/AR C �BS

¯
: (3.1)

Thus, as
R
f � D

R
g� D 1, by a change of variables t D eT , we have

" �

Z 1
�1

�
H1.CT / � ..1 � �/H

1.AT /C �H1.BT //
�
eT dT:

Notice that the map T 7! H1.CT / � .1 � �/H
1.AT / � �H1.BT / is, by (3.1) and the

Brunn–Minkowski inequality, nonnegative for all T 2 R for which AT ;BT ¤ ;. We
observe that

AT D AeT ; BT D BeT ; CT D CeT :
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Let F be the set constructed in Lemma 3.1 (ii). In particular, Lemma 3.1 yields that if
AR;BS ¤ ;; .1 � �/RC �S D T , and eT D t 2 F , we have

.1 � �/a.R/C �b.S/ � ..1 � �/aC �b/.T /C ��
3
2 "

1
4 : (3.2)

Fix thus M D � log.1="/, with � > 0 small to be chosen later. Denote FM D F \

Œe�M ; eM �. With this definition, we have that the set

log.FM / D
®
T 2 RW eT 2 FM

¯
has large measure within Œ�M;M�. Indeed, recalling that H1.RC n F / � "

1
4 ,Z

R
�Œ�M;M�nlog.FM /.T / dT � e

M

Z
R
�Œ�M;M�nlog.FM /.T /e

T dT

D "��H1.Œe�M ; eM � n F / � "
1
4�� : (3.3)

Thus, if � < 1=8, then H1.Œ�M;M� n log.FM // � "
1
8 .

Therefore, if T1; T2 2 log.FM /, and additionally

T1;2 D
1

2 � �
T1 C

1 � �

2 � �
T2 2 log.FM /; T2;1 D

1

2 � �
T2 C

1 � �

2 � �
T1 2 log.FM /;

then the reduction in [19, Remark 4.1] and inequality (3.2) show that the following four-
point inequalities hold:

a.T1/C a.T2/ � a.T1;2/C a.T2;1/C
2

�
��

3
2 "

1
4 ;

b.T1/C b.T2/ � b.T1;2/C b.T2;1/C
2

�
��

3
2 "

1
4 :

Inspired by this, we recall the statement of [19, Lemma 3.6] in the one-dimensional case:

Lemma 3.3 ([19, Lemma 3.6]). Let G � R be a measurable subset and  WG ! R be a
function, such that the following properties hold:

(1) The four-point inequality

 .T1/C  .T2/ �  .T1;2/C  .T2;1/C � (3.4)

holds, whenever T1; T2; T1;2; T2;1 2 G.

(2) The convex hull co.G/ D � satisfies H1.� nG/ � �.

(3) There is r 2 .1=2; 2/ with Œ�r; r� D �.

(4) The inequalities �� �  .T / � � hold for all T 2 G for some � � 1.

(5) There is H � R such thatZ
H

H1.co.¹ > sº/ n ¹ > sº/ ds C

Z
RnH

H1.¹ > sº/ � �: (3.5)
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Then there exist a concave function ‰W�! Œ�2�; 2�� and an absolute constant c > 0

such that Z
G

j‰.T / �  .T /j dT � c���!0.� C �/˛� ;

where we let ˛� D �
16jlog � j , and !0 > 0 is an absolute constant.

We are almost ready to apply Lemma 3.3: we change variables and set Qa.T 0/ D
a.MT 0/.

If T 01; T
0
2; T

0
1;2; T

0
2;1 2 log.FM /=M and � 2 Œ�; 1 � ��, then the four-point inequality

(3.4) holds for Qa, with � D 2"1=4

�5=2
. Moreover, the properties of log.FM / (see (3.3)) imply

H1.co.log.FM /=M/ n .log.FM /=M// � "
1
8 :

From that, we see that z�M WD co.log.FM /=M/ is an interval that differs by at most
"
1
8 from the interval Œ�1; 1�, and thus can be written as T0 C I , with I D Œ�r; r� and
jr � 1j � 2"

1
8 , and T0 2 R with jT0j � "

1
8 .

Defining the function Qa0.T 00/ D Qa.T 0 C T0/ preserves conditions (1), (2), (4), and (5),
in Lemma 3.3. In addition, now condition (3) is also fulfilled. Furthermore, by Lemma 2.5,
we have that Qa0 is bounded in absolute value by � D c

�4
jlog "j4=� , with c an absolute

constant.
Finally, as the function a is nonincreasing on R, the level sets of Qa0 are all intervals.

Hence we may take H to be the support of Qa0 in (3.5) and � D 4"
1
8 .

Therefore, by Lemma 3.3, there is a concave function Qa0W z�0M WD z�M � T0 !
Œ�2�; 2�� such thatZ

log.FM /=M�T0
j Qa0.T / � Qa0.T /j dT � ���!0 �

"
˛�
8

�5˛�=2
:

Thus, the function Qa.T / D Qa0.T � T0/ satisfiesZ
log.FM /=M

j Qa.T / � Qa.T /j dT . jlog "j
4
�
"
˛�
8

�4C!0
:

This follows from the definition of � and the fact that �˛� D e��=16, which is bounded from
below and above whenever � 2 .0; 1=2�. Changing variables T D T 0=M above yields that
a.T / D Qa.T=M/ satisfies (recall that M D � log.1="/)Z

log.FM /
ja.T 0/ � a.T 0/j dT 0 . jlog "j1C

4
�
"
˛�
8

�4C!0
: (3.6)

We observe that, if we denote by �M D M z�M the domain of definition of a, then it
follows from the considerations above that H1.Œ�M;M� n�M / . jlog "j"

1
8 .

Notice that the process above can be adapted verbatim to b, and we find a concave
function bW�M ! Œ�2�; 2�� such thatZ

log.FM /
jb.T 0/ � b.T 0/j dT 0 . jlog "j1C

4
�
"
˛�
8

�4C!0
: (3.7)
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For brevity, let !1 WD 4C !0. We must now ensure that a, b satisfy the requirements
of distribution functions. Indeed, in the case that a, b are both nonincreasing on the subin-
terval IM D Œ�3M=4; 3M=4� � �M , we do not change them.

On the other hand, if either a or b are not nonincreasing on such a large interval, we
use Chebyshev’s inequality in conjunction with (3.6) and (3.7).

This implies that there is a set F � log.FM / such that H1.log.FM / nF /� ��
!1
2 "

˛�
32 ,

and
jb.T / � b.T /j C ja.T / � a.T /j . ��

!1
2 "

˛�
32 8T 2 F :

Changing a, b on a zero measure set, we may suppose that both are lower semicontinuous.
Suppose then, without loss of generality, that a attains its maximum at a point T0 2 IM .

As H1.�M n F / . ��
!1
2 "

˛�
32 , there is a point T1 2 F such that

jT0 � T1j . ��
!1
2 "

˛�
32 :

Analogously, there is a point T2 2 F such that jT2 CM j . ��
!1
2 "

˛�
32 , thus,

a.T0/� a.T2/ � ja.T2/� a.T2/j C a.T1/ � a.T2/C ja.T1/� a.T1/j C ja.T1/� a.T0/j

� c��
!1
2 "

˛�
32 C ja.T1/ � a.T0/j: (3.8)

On the other hand, by concavity,

a.T1/ � 
a.T0/C .1 � 
/a.T2/; with 
 2 .0; 1/ such that 
T0 C .1 � 
/T2 D T1:

It follows from the manner we have chosen T0, T1, T2 that

��
!1
2 "

˛�
32 & jT1 � T0j D .1 � 
/jT0 � T2j �

�M
4
� c��

!1
2 "

˛�
32

�
.1 � 
/:

Thus, if " > 0 is sufficiently small, we have


 � 1 � 10��
!1
2 "

˛�
64 :

Also, by boundedness of a, we have

ja.T1/ � a.T0/j . jlog "j
4
� ��

3!1
2 "

˛�
64 : (3.9)

Combining (3.9) and (3.8) implies

a.T0/ � a.T2/C cjlog "j
4
� ��

3!1
2 "

˛�
64 ;

where c > 0 is an absolute constant, and so, by monotonicity,

a.T0/ � a.T /C cjlog "j
4
� ��

3!1
2 "

˛�
64 8T 2 IMT < T0: (3.10)

We thus define

Qa.T / D

´
a.T / if T 2 IM , T � T0;

a.T0/ if T 2 IM , T < T0:
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This new function, besides being concave, is also nonincreasing on IM , and, by (3.6) and
(3.10), Z

log.FM /\IM
j Qa.T / � a.T /j dT . jlog "j1C

4
� ��

3!1
2 "

˛�
64 :

As both a, Qa are bounded by cjlog "j
4
� =�4 on IM and H1.IM n log.FM // � "

1
8 , we con-

clude moreover that Z
IM

j Qa.T / � a.T /j dT . jlog "j1C
4
� ��

3!1
2 "

˛�
64 :

By symmetry, the same method can be applied to the function b. Given the two resulting
concave functions Qa, Qb, they define an almost-everywhere unique pair Qf , Qg of functions
such that®
x 2 RW Qf .x/ > t

¯
D .�Qa.log t /; Qa.log t //;

®
x 2 RW Qg.x/ > t

¯
D .�Qb.log t /; Qb.log t //;

whenever log t 2 IM (that is, t 2 ."
3�
4 ; "�

3�
4 /),

supp. Qf /D
[

t2."
3�
4 ;"
� 3�4 /

.�Qa.log t /; Qa.log t //; supp. Qg/D
[

t2."
3�
4 ;"
� 3�4 /

.�Qb.log t /; Qb.log t //;

and ¹x 2 RW Qf .x/ > tº D ¹x 2 RW Qg.x/ > sº D ; for t; s > "�
3�
4 or whenever Qa.log t / D

0 D Qb.log s/.
We claim that these functions are log-concave. Indeed, if Qf .x1/ > s1 and Qf .x2/ > s2

with s1; s2 2 ."
3�
4 ; "�

3�
4 / then

x1 2 .�Qa.log s1/; Qa.log s1//; x2 2 .�Qa.log s2/; Qa.log s2//:

By concavity, for any t 2 .0; 1/,

tx1 C .1 � t /x2 2 .�t Qa.log s1/ � .1 � t / Qa.log s2/; t Qa.log s1/C .1 � t / Qa.log s2//

� .�Qa.log.st1s
1�t
2 //; Qa.log.st1s

1�t
2 ///:

Thus Qf .tx1 C .1 � t /x2/ > st1s
1�t
2 , which concludes in this case.

The case max¹s1; s2º > "�
3�
4 or Qa.max¹log s1; log s2º/ D 0 is trivial by definition.

Also, if s1 2 .0; "
3�
4 /, then x1 2 .�Qa.log t0/; Qa.log t0//, for t0 2 ."

3�
4 ; "�

3�
4 /, and thus we

reduce to the previous one. By symmetry, the same holds for Qg, and the claim is proved.
Finally, it remains to prove that kf � Qf k1 C kg � Qgk1 is small. By the layer-cake

representation, choosing � D ˛�=100 we have

kf � Qf k1 D

Z 1
0

H1.¹f > tº�¹ Qf > tº/ dt D

Z
R
ja.T / � Qa.T /jeT dT

�

Z "
3�
4

0

�
H1.¹f > tº/CH1.¹ Qf > tº/

�
dt C "�

3�
4

Z
IM

ja.T / � Qa.T /j dT

.
"
3�
4 jlog "j

4
�

�4
C jlog "j1C

4
� "

˛�
64�

3�
4 ��

3!1
2 . "

˛�
128 jlog "j1C

4
� ��

3!1
2 ;
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where we used kf k1; kgk1 � 2 and Lemma 2.5. Naturally, all such considerations hold
in the exact same manner for g, Qg.

We now notice that, if " > 0 satisfies the smallness condition as in the statement of the
result, then we may bound

jlog "j1C
4
� "

˛�
128 � "

˛�
256 :

By Proposition 2.6, this is enough to conclude the case of symmetrically decreasing func-
tions. As we do not need an explicit estimate on the distance between h and a log-concave
function, we omit the final bound one could obtain using that proposition, limiting our-
selves thus to the statement of Theorem 3.2.

4. The general case

We now turn to the general case, assuming the results in the previous subsection. We shall
prove the following result:

Theorem 4.1. There is an explicitly computable constant c0 > 0 such that the following
holds. For � 2 .0; 1

2
� and � 2 Œ�; 1� ��, if f; g; hWR! R�0 are measurable functions for

which (1.2) and (1.5) hold, with 0 < " < c0e�M.�/, then there exist a log-concave function
Qh and w 2 R such thatZ

R
jh � Qhj C

Z
R
ja�f � Qh. � C �w/j C

Z
R
ja��1g � Qh. � C .� � 1/w/j < c0

"Q.�/

�!

Z
R
h;

where ! D 5
2
C

!0
8

, with !0 being the exponent of � in Lemma 3.3, M.�/ D 1040.!0 C
4/
jlog.�/j4

�4
, and Q.�/ D �4

2100jlog � j4 .

As pointed out in the introduction, in order to prove such a result we shall break the
proof into several steps.

Step 1: Finding better behaving functions Nf , Ng, Nh (cf. (4.3)) that satisfy (1.2) and
(1.5) with a possibly smaller power of ". Once more, we assume that the reductions
made in Sections 2 and 3 hold. That is, we have kf k1 D kgk1 D 1, min¹kf k1;kgk1º D
kf k1 D 1. Lemma 2.4 then yields that

kgk1 2 .1; 1C 4�
� 32 "

1
2 /:

Also, as kf k1 D kgk1 D 1, using notation from Lemma 2.5,

" >

Z 1
0

�
H1.Ct / � .1 � �/H

1.At / � �H1.Bt /
�
dt � 0:

Thus Lemma 3.1 implies

��
3
2 "

1
2 &

Z 1
0

ˇ̌
H1.Ct / � .1 � �/H

1.At / � �H1.Bt /
ˇ̌
dt:
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Let F be the set constructed in Lemma 3.1 (ii). Moreover, if t < 1 � c��
3
2 "

1
2 , then we

know that Ct � .1� �/At C �Bt . Thus, Lemma 3.1 and the Brunn–Minkowski inequality
yield

0�H1.Ct /� .1��/H
1.At /��H1.Bt /. ��

3
2 "

1
4 8t 2F \ .0;1� c��

3
2 "

1
2 /: (4.1)

We need one more preliminary result in order to move on with our construction.

Lemma 4.2. Let f; g; hWR! R�0 satisfy (1.2) and (1.5) for 0 < " < 2�6�3, kf k1 D
kgk1 D 1, min¹kf k1; kgk1º D 1, and let At D ¹f � tº, Bt D ¹g � tº, Ct D ¹h � tº
be their level sets. Then there exists a measurable set F 0 � RC such that

(1) H1.RC n F 0/ . "ı ; whenever ı < ˛�=2048;

(2) jH1.Ct / � .1 � �/H
1.At / � �H1.Bt /j . ��

3
2 "

1
4 for all t 2 F 0;

(3) min¹H1.At /;H
1.Bt /º � "

ı for all t 2 .0; 1C c��
3
2 "

1
2 / \ F 0, ı � ˛�=2048,

where, as before, we let ˛� D �
16jlog � j .

Proof. By the considerations in Section 3, we know that there are log-concave functions
Qf �, Qg� such that

kf � � Qf �k1 C kg
�
� Qg�k1 . ��

3!1
2 "

˛�
256 ;

where f �, g� denote the symmetric decreasing rearrangements of f , g, respectively.
By the reductions in the proof of Proposition 2.6, we may suppose that (2.16) holds for
the functions Qf �; Qg�. In particular, applying it in conjunction with Lemma 2.2 to these
functions, we conclude that

H1
�®
t > 0WH1.¹ Qf � > tº/ � "ı

¯�
. "ı ;

for all ı > 0. By writing

kf � � Qf �k1 D

Z 1
0

H1
�
¹f � > tº�¹ Qf � > tº

�
dt . ��

3!1
2 "

˛�
256

and using the argument with Chebyshev’s inequality that we have employed extensively
throughout this manuscript, we obtain

H1
�®
t > 0WH1.¹f � > tº/ � "ı

¯�
. "ı

for all ı 2 .0; ˛�
1024

/, and " > 0 sufficiently small (independently of � > 0). Thus, by
equimeasurability of the rearrangement,

H1
�®
t > 0WH1.¹f > tº/ � "ı

¯�
. "ı

for all ı < ˛�=1024. In particular, we see that

H1.At / > "
˛�
2048 ;
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whenever t 2 F 0 � F \ .0; 1 � c��
3
2 "

1
2 /, where H1.F n F 0/ � "

˛�
2048 . The same holds

for g, and thus we may still denote by F 0 the set where the above properties hold for both
f and g. By the considerations above, the set F 0 thus defined satisfies the assertions in
Lemma 4.2, and we are done.

We now wish to employ Freı̆man’s theorem in order to conclude that the convex hull
of the level sets At , Bt are not too far off from At , Bt themselves. To that extent, notice
that, for " � �4 � 1,

min¹H1.At /;H
1.Bt /º > "

˛�
2048 � ��

3
2 "

1
4 8t 2 F 0;

Thus, thanks to (4.1), we can apply Freı̆man’s theorem. This yields that

H1.co.At / n At /CH1.co.Bt / n Bt / . ��
3
2 "

1
4 (4.2)

for all t 2 F 0. Notice also that, since the sets ¹Atºt>0 are nested, the same property holds
for their convex hulls ¹co.At /ºt>0.

With this in mind, we set

co.At / D .a1f .t/; b
1
f .t//; co.Bt / D .a1g.t/; b

1
g.t//:

The main idea is to slightly change the functions a1
f

, a1g , b1
f

, b1g , in order to construct two
functions Nf , Ng close to f , g respectively, and whose level sets are intervals coinciding
with co.At /, co.Bt / for the vast majority of levels t > "� , where � > 0 will be a small
constant to be chosen later.

By redefining on a set of zero measure, we may assume that the functions a1
f

, a1g ,
b1
f

, b1g are all right continuous. Then we define

bf .t/ D sup
t 0>t;t 02F 0

b1f .t
0/; bg.t/ D sup

t 0>t;t 02F 0
b1g.t

0/;

af .t/ D inf
t 0>t;t 02F 0

a1f .t
0/; ag.t/ D inf

t 0>t;t 02F 0
a1g.t

0/:

The functions af , ag , bf , bg defined in such a way are all, by definition, monotone.
Moreover, modifying on a zero-measure set, we may suppose them to be right continuous
as well.

Now let � > 0 be a fixed parameter, whose exact value we shall determine later. We
define

. Naf ; Nbf / D .af ."
� /; bf ."

� //:

As H1..0; 1� c��
3
2 "

1
2 / n F 0/ � "

˛�
2048 , as long as we choose � < ˛�=212 we may always

find a point t0 2 F 0 so that 1
100
"� < t0 < "

� . Thus, for all t � "� , (4.2) yields

.bf .t/ � af .t// � .bf .t0/ � af .t0// � H1.At0/C c�
� 32 "

1
4 . ��4jlog "j

4
� ;
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where we used Lemma 2.5 in the last inequality. We then build the function Nf supported
in . Naf ; Nbf /, for x � af .1/, as

Nf .x/ D sup¹t W af .t/ < xº:

We further define it to be 1 in the interval .af .1/; bf .1//, and for x � bf .1/ we let

Nf .x/ D sup¹t W x < bf .t/º:

An entirely analogous construction yields the function Ng. Notice now that, for s 2 .0; 1/,

¹x 2 RW Nf .x/ > sº D
®
x 2 RW 9 t > s so that either af .t/ < x and x � af .1/

or bf .t/ > x � bf .1/
¯
[ .af .1/; bf .1//

D

[
t>s

.af .t/; bf .t//

D

�
inf
t>s
af .t/; sup

t>s
bf .t/

�
D .af .s/; bf .s//: (4.3)

Notice that we used the hypothesis of right continuity of af , bf in order to obtain the last
equality above. Thus, we have

NAt DW ¹ Nf > tº D co.At / 8t 2 F 0:

This allows us to estimateZ
R
j Nf .x/ � f .x/j dx D

Z 1
0

H1.At� NAt / dt

�

Z "�

0

.H1.At /CH1. NAt0// dt C

Z
."� ;1/\F 0

H1.co.At / n At / dt

C

Z
."� ;1/nF 0

.H1.At /CH1. NAt // dt

. ��4"� jlog "j
4
� ; (4.4)

where we used (4.2), � < ˛�=212, and once more Lemma 2.5. The same conclusion holds
in an entirely analogous way for kg � Ngk1.

We now build a function Nh so that (1.2) and (1.5) are satisfied. In fact, we take the most
natural choice

Nh.z/ D sup
.1��/xC�yDz

Nf .x/1�� Ng.y/�:

The level sets xCt D ¹x 2 RW Nh.x/ > tº satisfy, by definition,

xCt D

�[
r1��s�Dt

..1 � �/ NAr C � NBs/:
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As the level sets of Nf , Ng are intervals, the function Nh is measurable. It remains to verify
that we have a control of the form Z

R

Nh � 1C c.�/"


for some 
 > 0 and some function c.�/ > 0. The strategy here is similar to the proof of
Proposition 2.6.

First, we may choose � D ˛�=213 in (4.4), so that we obtain

kf � Nf k1 D

Z 1
0

H1
�
¹f > tº�¹ Nf > tº

�
dt . ��4"

˛�
213 jlog "j

4
� (4.5)

(with the same estimate holding for g, Ng) and then use Chebyshev’s inequality in order to
conclude that

H1
�®
t > 0WH1.¹ Nf > tº/ � "ı

¯�
. "ı (4.6)

for all ı < ˛�=215. Then we fix 
0 < ˛�=215 and define NS � .0;C1/ to be the largest
measurable subset of .0;C1/ satisfying

(1) min¹H1.¹ Nf > tº/;H1.¹ Ng > tº/º > "
0 for all t 2 NS \ .0; 1C c��4"
1
2 /;

(2) H1.¹f > tº�¹ Nf > tº/CH1.¹g > tº�¹ Ng > tº/ . "
˛�
215 for all t 2 NS .

By (4.5) and (4.6), we have H1.RC n NS/ . ��4"
0 . Thus, for some absolute constant
c > 0, there is an element r0 2 .1� c��4"
0 ; 1C c��4"
0/\ NS . Fix this element until the
end of the proof.

Note that transformations of the form

.f; g; h/ 7! .f . � � x0/; g. � C x0/; h/;

.f; g; h/ 7! .f . � � x0/; g. � � x0/; h. � � x0//

preserve (1.2) and (1.5) with the same constant. Also, they leave the set NS defined above
unaltered. Hence, with no loss of generality, we may suppose that the barycenters of ¹ Nf >
r0º and ¹ Ng > r0º both coincide with the origin. Assume this additional fact until the end
of the proof as well.

Now we employ the same strategy as in the final part of the proof of Proposition 2.6.
Fix t > "

�
0
2 . It is not hard to see that the set ¹ Nh > tº splits as

xCt D

�[
r1��s�Dt
r;s2 NS

r0>r;s>"

0

..1 � �/ NAr C � NBs/ [

�[
r1��s�Dt
r;s2 NS

either r>r0 or s>r0

..1 � �/ NAr C � NBs/

[

�[
r1��s�Dt

either r 62 NS or s 62 NS

..1 � �/ NAr C � NBs/ DW xC
1
t [
xC 2t [

xC 3t :
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Case 1: Analysis of xC 1t . By Young’s convolution inequality and the definition of NS , we
have

k�.1��/Ar � ��Bs � �.1��/ NAr � �� NBsk1

� k�.1��/Ar � �.1��/ NAr k1 C k��Bs � �� NBsk1

. "
˛�
215 8r; s 2 NS: (4.7)

On the other hand, by the definition of NS and the fact that we are analyzing xC 1t , we have

min
®
.1 � �/H1. NAr /; �H1. NBs/

¯
� �"
0 :

We thus have the convolution estimate

�.1��/ NAr � �� NBs .x/ > 3"
2
0 (4.8)

whenever

x 2
�
.1 � �/af .r/C �ag.s/C 3"

2
0 ; .1 � �/bf .r/C �bg.s/ � 3"
2
0
�
:

Since .1� �/af .r/C �ag.s/ � �"
0 , .1� �/bf .r/C �bg.s/ � "
0 , and r; s 2 ."
0 ; r0/,
due to the fact that the barycenters of NAr0 and NBr0 coincide with the origin, we have that
the set �

.1 � �/af .r/C �ag.s/C 3"
2
0 ; .1 � �/bf .r/C �bg.s/ � 3"

2
0
�

contains .1 � "

0
4 /..1 � �/ NAr C � NBs/ whenever 
0 < ˛�=215.

On the other hand, (4.7) and (4.8) imply that

x 2 supp.�.1��/Ar � ��Bs / D .1 � �/Ar C �Bs :

Thus,

.1 � �/ NAr C � NBs �
1

1 � "

0
4

..1 � �/Ar C �Bs/ �
1

1 � "

0
4

¹h > tº;

hence
xC 1t �

1

1 � "

0
4

Ct :

Case 2: Analysis of xC 2t [ xC
3
t . Recall that, by assumption, t > "

�
0
2 . Hence, since k Nf k1;

k Ngk1 � 2, we readily obtain
r; s & "


0
2 :

Since H1.RC n NS/ � "
0 , there exist r 0; s0 2 NS , with r 0; s0 2 ."
0 ; r0/, such that jr � r 0j C
js � s0j � "
0 and r > r 0, s > s0. Therefore,

.1 � �/ NAr C � NBs � .1 � �/ NAr 0 C � NBs0 �
1

1 � "

0
4

®
h > .r 0/1��.s0/�

¯
�

1

1 � "

0
4

®
h > t � "�
0

¯
;
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which implies
xCt �

1

1 � "

0
4

®
h > t � "�
0

¯
8t > "

�
0
2 :

Moreover, since supp. Nh/ � .1 � �/ supp. Nf /C � supp. Ng/ and all sets involved are inter-
vals, H1.supp. Nh// . ��4jlog "j

4
� . Thus,Z

R

Nh D

Z 1
0

H1.¹ Nh > tº/ dt

�

Z 1
2 "

�
0
2

0

H1.supp. Nh// dt C
1

1 � "

0
4

Z 1
1
2 "

�
0
2

H1.¹h > tº/ dt

� 1C
c

�4
"
�
0
2 jlog "j

4
� ;

for some absolute constant c > 0. This concludes Step 1, as long as we take 
 2 .0; �
0
2
/

and c.�/ D ��4.

Step 2: The functions af , ag , bf , bg are suitably close to satisfying four-point inequal-
ities. We now use similar methods to those employed in Section 3 in order to conclude
that the functions we constructed are close to being concave.

Indeed, for notational simplicity, we reset our construction from the beginning, addi-
tionally assuming the reductions and conclusions of Step 1 to hold. In other words, we
assume that f , g, h satisfy (1.2) and (1.5), and moreover the level sets of f , g are inter-
vals. We further assume that kf k1 D 1,

R
R f D

R
R g D 1, as in Section 2.

Now Lemma 3.1 yields that there is a set F � .0;C1/ such that H1.RC n F / . "
1
4 ,

and moreoverˇ̌
H1.Ct / � .1 � �/H

1.At / � �H1.Bt /
ˇ̌

. ��
3
2 "

1
4 8t 2 F:

We may now invoke the set F 0 constructed in Lemma 4.2. With this in hand, we define
the set F 0M WD log.F 0/ \ Œ�M;M�, M D � log.1="/ (� < ı=2 to be chosen later). From
this definition and a change of variables we see that H1.Œ�M;M� n F 0M / . "

ı
2 , and F 0M

is such that the sets

AR D AeR D .af .R/;bf .R//;

BS D BeS D .ag.S/;bg.S//;

CT D CeT D .ah.T /;bh.T //

satisfy ˇ̌
H1.CT / � .1 � �/H

1.AT / � �H1.BT /
ˇ̌

. ��
3
2 "

1
4 8T 2 F 0M (4.9)

and

min¹H1.AT /;H
1.BT /º � "

ı
8T 2 .�1; log.1C c��

3
2 "

1
2 // \ F 0M : (4.10)
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We claim that, for R; S; T 2 F 0M such that AR;BS ¤ ;, .1 � �/RC �S D T ,

.1 � �/AR C �BS

�

�
.1 � �/af .T /C �ag.T / �

1

1000
"ı ; .1 � �/af .T /C �ag.T /C

1

1000
"ı
�
: (4.11)

Indeed, if this is not the case, then, by (4.10) and the Brunn–Minkowski inequality,

H1..1 � �/AR C �BS / � "
ı ;

and thus, as all sets involved are intervals,

H1
�
..1 � �/AR C �BS / n ..1 � �/AT C �BT /

�
�

1

1000
"ı :

This implies, on the other hand, that

H1
�
CT n ..1 � �/AT C �BT /

�
�

1

1000
"ı ;

which, together with (4.9) and the one-dimensional Brunn–Minkowski inequality, contra-
dicts the definition of F 0M , as long as we take "� �3. Thus, whenever R; S; T 2 F 0M ,
.1 � �/RC �S D T , AR;BS ¤ ;, we have

.1 � �/af .R/C �ag.S/ � .1 � �/af .T /C �ag.T / �
1

1000
"ı ;

.1 � �/bf .R/C �bg.S/ � .1 � �/bf .T /C �bg.T /C
1

1000
"ı ;

(4.12)

which proves (4.11).
As indicated in Section 3, we can apply [19, Remark 4.1] to translate the three-point

inequalities presented in (4.12) into the following four-point inequalities:

af .T1/C af .T2/ � af .T1;2/C af .T2;1/ �
1

�
"ı ;

ag.T1/C ag.T2/ � ag.T1;2/C ag.T2;1/ �
1

�
"ı ;

(4.13)

bf .T1/C bf .T2/ � bf .T1;2/C bf .T2;1/C
1

�
"ı ;

bg.T1/C bg.T2/ � bg.T1;2/C bg.T2;1/C
1

�
"ı ;

(4.14)

whenever

T1; T2 2F 0M ; T1;2 D
1

2 � �
T1C

1 � �

2 � �
T2 2F 0M ; T2;1 D

1

2 � �
T2C

1 � �

2 � �
T1 2F 0M :

This concludes this step, as the functions af , ag , bf , bg are close to af , ag , bf , bg , which
themselves satisfy the four-point inequalities.
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Step 3: Constructing the log-concave approximations. We now apply Lemma 3.3 to
the functions af , ag , bf , bg .

Indeed, fixing a level r0 > 1� c"ı with min¹H1.¹f > r0º/;H
1.¹g > r0º/º � "

ı , we
may suppose that the barycenters of the intervals ¹f > r0º, ¹g > r0º coincide with the
origin; the existence of such a level follows once again by the definition and properties of
the set F 0M .

After this reduction, the definition of F 0M and Lemma 2.5 ensure that the additional
hypothesis

jaf .T /j C jbf .T /j C jag.T /j C jbg.T /j . ��4jlog "j
4
�

holds on a subset F � F 0M so that H1.F 0M n F/ . "ı . We thus replace F 0M by F, and
henceforth still denote it by F 0M . Notice also that, in such a set, one has af , ag nonpositive
and bf , bg nonnegative.

At the present point, one notices that all other prerequisites for Lemma 3.3 are satis-
fied; thus we may apply it to bf , bg , and to �af , �ag (thanks to (4.13) and (4.14)).

Applying Lemma 3.3 and arguing as in Section 3, we find functions bf , bg , af , ag ,
defined on an interval �M satisfying H1..�M;M/ n�M / . "

ı
2 , such thatZ

F 0M

jbf .T / � bf .T /j dT C
Z

F 0M

jaf .T / � af .T /j dT .
jlog "j

4
�

�!1
"
ı˛�
2 ;

Z
F 0M

jbg.T / � bg.T /j dT C
Z

F 0M

jag.T / � ag.T /j dT .
jlog "j

4
�

�!1
"
ı˛�
2 :

(4.15)

Moreover, bf , bg are concave, af , ag are convex, and they are all bounded in absolute
value by c��4jlog "j

4
� .

Again, the considerations in Section 3 applied almost verbatim to bf , bg , �af , �ag
imply that, by potentially decreasing the power of " in the left-hand side of (4.15), we may
suppose that af , ag , bf , bg are all monotone on a smaller interval IM D .�3M=4;3M=4/,
and thus, as af , ag , bf , bg are themselves bounded by c��4jlog "j

4
� ,Z

IM

jaf .T / � af .T /j dT C
Z
IM

jbf .T / � bf .T /j dT .
jlog "j1C

4
�

�
3!1
2

"
ı˛�
16 ;

Z
IM

jag.T / � ag.T /j dT C
Z
IM

jbg.T / � bg.T /j dT .
jlog "j1C

4
�

�
3!1
2

"
ı˛�
16 :

Similarly to before, we pick the unique pair Qf , Qg of functions such that®
x 2 RW Qf .x/ > t

¯
D .af .log t /;bf .log t //;®

x 2 RW Qg.x/ > t
¯
D .ag.log t /;bg.log t //;
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whenever log t 2 IM (that is, t 2 ."
3�
4 ; "�

3�
4 /),

supp. Qf / D
[

t2."
3�
4 ;"
� 3�4 /

.af .log t /;bf .log t //;

supp. Qg/ D
[

t2."
3�
4 ;"
� 3�4 /

.ag.log t /;bg.log t //;

and ¹x 2 RW Qf .x/ > tº D ¹x 2 RW Qg.x/ > sº D ; for t; s > "�
3�
4 or whenever af .log t /D

bf .log t / D 0 D ag.log s/ D bg.log s/.
It follows from the convexity of af , ag , the concavity of bf , bg , and the argument in

Section 3 that these functions are log-concave.

Step 4: Conclusion. We can finally conclude the proof. Assume, as in previous sections,
that kf k1 D kgk1 D 1 and min¹kf k1; kgk1º D kf k1 D 1. Moreover, we assume that
Steps 1, 2, 3 hold. Thus, using the functions Qf , Qg and the way we built them, we are led
to estimate

kf � Qf k1 D

Z 1
0

H1.¹f > tº�¹ Qf > tº/ dt

�

Z
IM

jaf .T / � af .T /je
T dT C

Z
IM

jbf .T / � bf .T /je
T dT

C

Z "�

0

H1.¹f > tº/ dt

� "�
3�
4

�Z
IM

jaf .T / � af .T /j dT C

Z
IM

jbf .T / � bf .T /j dT

�
C

c

�4
"� jlog "j

4
�

. jlog "j1C
4
� ��

3!1
2 "

ı˛�
32 . ��

3!1
2 "

ı˛�
64 ;

by choosing � D 4
3
ı˛�
32

and using " � e
�1010

jlog � j4

�4 . Note that, in this computation, we
assumed that f and g fulfill the requirements in Steps 1–3. In doing so, we lose powers of
" along the way. More precisely, combining estimates from Section 3 and Steps 1–3, we
have the following requirements:

(1) We must not incorporate any further power from Section 3, as it has only been
used in the reduction to the case of functions whose level sets are intervals.

(2) In Steps 1–3, we must substitute " 7! c
�4
"
�˛�
2048 , by the reduction made in Step 1.

Thus, we conclude that if the functions f , g, h satisfy (1.2) and (1.5), then there are
log-concave functions Qf , Qg such that

kf � Qf k1 C kg � Qgk1 � c�
�
3!1
2 "

�˛3�
230 DW c��

3!1
2 "Q0.�/:
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We are now in a position to use Proposition 2.6. We choose � D c�
�3!1
2 "Q0.�/. The con-

dition � < c0�3 for some c0 2 .0; 1/ becomes

" � ce�M.�/; (4.16)

where we define M.�/ D 1040!1
jlog.�/j4

�4
, and c > 0 is an absolute constant. Under that

condition, notice that all the smallness conditions in the proof above are also fulfilled.
Hence, thanks to Proposition 2.6 and the smallness condition (4.16), there exists a

log-concave function Qh such that, for f , g, h satisfying (1.2) and (1.5), if we let a D
kgk1=kf k1, then there is w 2 R for whichZ

R
ja�f .x/ � Qh.x � �w/j dx . ��!2"

Q0.�/
32

Z
R
h;Z

R
ja��1g.x/ � Qh.x C .1 � �/w/j . ��!2"

Q0.�/
32

Z
R
h;Z

R
jh.x/ � Qh.x/j dx . ��!2"

Q0.�/
8

Z
R
h:

Here, we have let !2 D !1
8
C 2. Thus, noting the choices of Q.�/, M.�/ in the statement

of Theorem 4.1, we notice that this finishes the proof of that result, and thus also the proof
of Theorem 1.6 in dimension n D 1.

5. The high-dimensional case

With the one-dimensional case already resolved in the previous section, we now employ
a recent strategy by the first author and De [9] in order to reduce the higher-dimensional
version to the one-dimensional one, with the aid of the stability version of the Brunn–
Minkowski inequality proved by the second author and Jerison [19]. Indeed, we note that
the main result in one dimension implies the following result:

Corollary 5.1. Let F;G;H WRC ! RC be measurable functions such that

H.r1��s�/ � F.r/1��G.s/� 8r; s � 0; (5.1)

where � 2 Œ�; 1 � �� for some � 2 .0; 1=2�. Suppose thatZ
RC

H � .1C "/

�Z
RC

F

�1���Z
RC

G

��
(5.2)

holds for 0 < " < e�M.�/. Then there are constant a; b > 0, with a=b D kF k1=kGk1,
such thatZ

RC

ja��F.b��t / �H.t/j dt C

Z
RC

ja.1��/G.b.1��/t / �H.t/j dt . ��!"Q.�/
Z

RC

H:

Here, ! and Q.�/ are the same as in Theorem 4.1.
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Proof. We change variables and define f .x/ D F.ex/ex , g.x/ D G.ex/ex , h.x/ D
H.ex/ex . These functions satisfy (1.2), and, asZ

R
f D

Z
RC

F;

Z
R
g D

Z
RC

G;

Z
R
h D

Z
RC

H;

they also satisfy (1.5). By the result in Section 4, there is a constant � 2 R such thatZ
R

ˇ̌
f .x/ � .kf k1=kgk1/

�h.x C ��/
ˇ̌
dx . ��!"Q.�/kf k1;Z

R

ˇ̌
g.x/ � .kgk1kf k1/

1��h.x C .� � 1/�/
ˇ̌
dx . ��!"Q.�/kgk1;

for Q.�/ as in the statement of Theorem 4.1. Changing variables back, we obtainZ
R

ˇ̌
F.t/ � e��.kF k1=kGk1/

�H.te��/
ˇ̌
dt . ��!"Q.�/kF k1;Z

R

ˇ̌
G.t/ � e.��1/�.kGk1kF k1/

1��H.te.��1/�/
ˇ̌
dt . ��!"Q.�/kGk1;

which implies thatZ
R

ˇ̌
e���.kGk1=kF k1/

�F.e���s/ �H.s/
ˇ̌
dt . ��!"Q.�/kF k1��1 kGk�1 ;Z

R

ˇ̌
e.1��/�.kF k1=kGk1/

1��G.e.1��/�s/ �H.s/
ˇ̌
dt . ��!"Q.�/kF k1��1 kGk�1 :

Taking a D e�kF k1
kGk1

, b D e� and using the Prékopa–Leindler inequality on the right-hand
side of the last expression implies the result.

Let f;g; hWRn!RC satisfy the n-dimensional version of (1.2). We use Corollary 5.1
for the triple F , G, H defined by

Hn
�®
x 2 RnWf .x/ > t

¯�
D F.t/;

Hn
�®
x 2 RnWg.x/ > t

¯�
D G.t/;

Hn
�®
x 2 RnW h.x/ > t

¯�
D H.t/:

By (1.2) and the n-dimensional Brunn–Minkowski inequality, we have

H.r1��s�/ � ..1 � �/F.r/1=n C �G.s/1=n/n;

whenever F.s/; G.r/ > 0. Thus, using the weighted inequality between arithmetic and
geometric means, we get condition (5.1) for F.s/; G.r/ > 0. Whenever one of them is
zero, (5.1) holds trivially, and thus we have verified (5.1). By the layer-cake representation,
(5.2) follows at once from (1.5).
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As conditions are verified, we are in position to use the following result:

Lemma 5.2. If " 2 .0; e�Mn.�//, and f; g; hWRn ! RC satisfy (1.2), (1.5) and
R

Rn f DR
Rn g D 1, then there is a dimensional constant cn > 0 such thatZ 1

0

jF.t/ �H.t/j dt C

Z 1
0

jG.t/ �H.t/j dt � cn�
� !2 �1"

Q.�/
2 :

Proof. In analogy with the notation employed in Sections 2, 3, and 4, in what follows, we
let

¹x 2 RnWf .x/ > tº D At ;

¹x 2 RnWg.x/ > tº D Bt ;

¹x 2 RnW h.x/ > tº D Ct

denote the level sets of f , g, h, respectively. Since kf k1 D kgk1 D 1,
R1
0
H D

R
Rn h �

1C ", it follows from Corollary 5.1 that there exists some b > 0 such thatZ 1
0

jb�F.b�t / �H.t/j dt C

Z 1
0

jb�.1��/G.b�.1��/t / �H.t/j dt � a.�; "/;

where we denote a.�; "/ D c��!eQ.�/. We may assume, without loss of generality, that
b � 1.

For t > 0, let

QAt D b
�
nAb�t if QAt ¤ ;;

QBt D b
�.1��/
n Bb�.1��/t if QBt ¤ ;:

These sets satisfy j QAt j D b�F.b�t /, j QBt j D b�.1��/G.b�.1��/t /, andZ 1
0

ˇ̌
j QAt j �H.t/

ˇ̌
dt C

Z 1
0

ˇ̌
j QBt j �H.t/

ˇ̌
dt � a.�; "/: (5.3)

In addition, we also know from the Prékopa–Leindler condition that

.1 � �/b
��
n QAt C �b

1��
n QBt � Ct :

We proceed to divide the positive line Œ0;1/ into two sets, where the measures of QAt ,
QBt are either both close to that ofH.t/, or otherwise. Indeed, we write Œ0;C1/D I [ J ,

where t 2 I if 3
4
H.t/ < j QAt j <

5
4
H.t/ and 3

4
H.t/ < j QBt j <

5
4
H.t/, and t 2 J otherwise.

For J , since " < e�Mn.�/, (5.3) yieldsZ
J

H.t/ dt � 4

Z
J

�ˇ̌
j QAt j �H.t/

ˇ̌
C
ˇ̌
j QBt j �H.t/

ˇ̌�
dt � 8a.�; "/ <

1

2
: (5.4)

Turning to I , it follows from the Prékopa–Leindler inequality and (5.4) thatZ
I

H.t/ dt � 1 �

Z
J

H.t/ dt >
1

2
: (5.5)
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For t 2 I , we define ˛.t/D j QAt j=H.t/ and ˇ.t/D j QBt j=H.t/, and hence 3
4
< ˛.t/;ˇ.t/ <

5
4

, and (5.3) impliesZ 1
0

H.t/ �
�
j˛.t/ � 1j C jˇ.t/ � 1j

�
dt � 2a.�; "/: (5.6)

We then proceed by estimating, by the Brunn–Minkowski inequality,

H.t/ �
�
.1 � �/jAb�t j

1
n C �jBb��1t j

1
n
�n
D
�
.1 � �/b

��
n j QAt j

1
n C �b

1��
n j QBt j

1
n
�n

D j QAt j
1��
� j QBt j

�

�
.1 � �/b�

�
n
j QAt j

�
n

j QBt j
�
n

C �b
1��
n
j QBt j

1��
n

j QAt j
1��
n

�n
D H.t/ � ˛.t/1�� � ˇ.t/�

�
.1 � �/


�
n C �
�

1��
n
�n
; (5.7)

where we let 
 D j QAt j

bj QBt j
. Then (2.6) yields

.1 � �/

�
n C �
�

1��
n � 1C �.


�
2n � 
�

1��
2n /2 � 1C �.


1
4n � 
�

1
4n /2:

We now note that for s � 1, we have

s
1
4n � s�

1
4n D s�

1
4n .s

1
2n � 1/ � s�

1
4n �

s
1
2n�1

2n
.s � 1/ �

1

2n

�
s �

1

s

�
;

and thus (5.7) implies

H.t/ � H.t/ � ˛.t/1�� � ˇ.t/�
�
1C

�

4n
.
 � 
�1/2

�
:

We claim that if t 2 I , then

˛.t/1�� � ˇ.t/�
�
1C

�

4n
.
 � 
�1/2

�
� 1 � 2j˛.t/ � 1j � 2jˇ.t/ � 1j C �

.
p
b � 1/2

8n � b
: (5.8)

Since ˛.t/1�� � ˇ.t/� � 1 � j˛.t/ � 1j � jˇ.t/ � 1j, (5.8) readily holds if j˛.t/ � 1j C
jˇ.t/ � 1j � .

p
b�1/2

16n�b
. Therefore we may assume that

j˛.t/ � 1j C jˇ.t/ � 1j �
.
p
b � 1/2

16n � b
<
1

2
; (5.9)

which condition in turn yields that

bˇ.t/

˛.t/
�
b.1 � .

p
b�1/2

16n2�b
/

1C .
p
b�1/2

16n�b

� b
�
1 � 2 �

.
p
b � 1/2

32n � b

�
� b

�
1 �

p
b � 1
p
b

�
D
p
b: (5.10)
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We deduce, first applying (5.9), and then (5.10) and the fact that 
 D ˛.t/
bˇ.t/

, that

˛.t/1�� � ˇ.t/�
�
1C

�

4n
.
 � 
�1/2

�
� .1 � j˛.t/ � 1j � jˇ.t/ � 1j/

�
1C

�

4n
.
 � 
�1/2

�
� 1 � j˛.t/ � 1j � jˇ.t/ � 1j C

�

8n
.
 � 
�1/2

� 1 � j˛.t/ � 1j � jˇ.t/ � 1j C
�

8n

�p
b �

1
p
b

�2
;

proving (5.8), under assumption (5.9) as well.
It follows first from (5.5), then from (5.7) and (5.8), and finally from (5.6) that

.
p
b � 1/2

16n � b
�

Z
I

H.t/ �
.
p
b � 1/2

8n � b
dt �

1

�

Z
I

H.t/ � .2j˛.t/ � 1j C 2jˇ.t/ � 1j/ dt

�
4a.�; "/

�
:

Since " < e�Mn.�/, we deduce that b < 2; therefore, one easily deduces that

b � 1C 50n
1
2 ��

1
2 a.�; "/

1
2 :

Next we claim thatZ 1
0

ˇ̌
jAt j � j QAt j

ˇ̌
dt C

Z 1
0

ˇ̌
jBt j � j QBt j

ˇ̌
dt � 200n

1
2 ��

1
2 a.�; "/

1
2 : (5.11)

Since jAb�t j � jAt j, we haveZ 1
0

ˇ̌
jAt j � j QAt j

ˇ̌
dt D

Z 1
0

ˇ̌
jAt j � b

�
jAb�t j

ˇ̌
dt

�

Z 1
0

ˇ̌
jAt j � b

�
jAt j

ˇ̌
dt C b�

Z 1
0

ˇ̌
jAt j � jAb�t j

ˇ̌
dt

D .b� � 1/C b�
Z 1
0

.jAt j � jAb�t j/ dt

D 2.b� � 1/ � 100�2��1n
1
2 ��

1
2 a.�; "/

1
2 � 100n

1
2 ��

1
2 a.�; "/

1
2 :

Similarly, jBt j � jBb��1t j, and henceZ 1
0

ˇ̌
jBt j � j QBt j

ˇ̌
dt D

Z 1
0

ˇ̌
jBt j � b

��1
jBb��1t j

ˇ̌
dt

�

Z 1
0

ˇ̌
jBt j � b

��1
jBt j

ˇ̌
dt C b��1

Z 1
0

ˇ̌
jBt j � jBb��1t j

ˇ̌
dt

D .1 � b��1/C b��1
Z 1
0

.jBb��1t j � jBt j/ dt

D 2.1 � b��1/ � 100n
1
2 ��

1
2 a.�; "/

1
2 ;

proving (5.11). We conclude the proof by combining (5.3) and (5.11).
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As a by-product of Lemma 5.2, notice that, by setting min.kf k1;kgk1/D kf k1 D
2, then

��
1
2 a.�; "/

1
2 &n

Z max kgk1;khk1

2

.G.t/CH.t// dt:

In particular, we know that
Ct � .1 � �/At C �Bt (5.12)

whenever t 2 .0; 2/. We claim, before proceeding with the proof, that under such condi-
tions,

kgk1 �
2e � 3nC1

�nC1
: (5.13)

Indeed, if y0 2 Rn is fixed, we have

Ct � .1 � �/At1=.1��/=g.y0/�=.1��/ C �y0:

In particular,Z t

0

F.s/ ds D
1

1 � �

Z t1��g.y0/
�

0

F
� r1=.1��/

g.y0/�=.1��/

�� r

g.y0/

��=.1��/
dr

�
1

1 � �

� t

g.y0/

�� Z t1��g.y0/
�

0

F
� r1=.1��/

g.y0/�=.1��/

�
dr

�
1

.1 � �/nC1

� t

g.y0/

�� Z t1��g.y0/
�

0

H.r/ dr:

Therefore, by picking t D 2 and using that
R
H � 1C ",

R 2
0
F.s/ ds D 1,

g.y0/ �
2 � .1C "/1=�

.1 � �/.nC1/=�
:

A quick analysis shows that, for � 2 .0; 1/, the inequality

.1 � �/1=� �
1

3
.1 � �/

holds. If " < � , then the numerator is at most 2e, and thus, as y0 was arbitrary above, we
conclude the claim. Now using (5.12), we get

H.t/ �
�
.1 � �/F.t/1=n C �G.t/1=n

�n
�
F.t/CG.t/

2
�
jF.t/ �G.t/j

2
8t 2 .0; 2/:

Notice also that, by Lemma 5.2,Z 1
0

jF.t/ �G.t/j dt .n ��
1
2 a.�; "/

1
2 :
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Thus, by these considerations and the almost-optimality of f , g, h for the Prékopa–
Leindler inequality, we obtain

cn�
� 12 a.�; "/

1
2 �

Z ˛

0

�
H.t/ �

F.t/CG.t/

2
C
jF.t/ �G.t/j

2

�
dt 8˛ � 0: (5.14)

On the other hand, notice that (2.9) implies, together with a limiting argument and the
Brunn–Minkowski inequality,

H.t/ � max
®�
�G.t

1
� /1=n C .1 � �/F.1/1=n

�n
;
�
.1 � �/F.t

1
1�� /1=n C �G.1/1=n

�n¯
;

for all t 2 .0; 2/ so that H.t/ > 0. Thus, (5.14) implies

cn�
� 12 a.�; "/

1
2 �

Z ˛

0

�1
2

�
.1 � �/nF.t

1
1�� /C �nG.t

1
� /
�
�
F.t/CG.t/

2

�
dt: (5.15)

We thus let, in analogy with Lemma 2.5,

�.˛/ D

Z ˛

0

..1 � �/nF.t/C �nG.t// dt:

Again in analogy with Lemma 2.5, we may suppose without loss of generality that � �
1=2. Then (5.15) implies

1 � �

2
�.˛

1
1�� /˛�

�
1�� � cn�

� 12 a.�; "/
1
2 C

�.˛/

2�n
:

As in the proof of Lemma 2.5, we let ˇ D ˛
1
1�� . We thus have

�.ˇ/

ˇ
� 2cn�

� 32 a.�; "/
1
2 �

1

ˇ1��
C

1

�nC1
�.ˇ1��/

ˇ1��
;

and therefore

�.ˇ/

ˇ
�

�
2cn�

� 32 a.�; "/
1
2

kX
iD1

.1=�nC1/i�1

ˇ.1��/
i

�
C .1=�nC1/k

�.ˇ.1��/
k
/

ˇ.1��/
k
:

We now select k 2 N to be the first natural number such that ˇ.1��/
k
> e�1. This implies

that

�.ˇ/ . .1=�nC1/k
�
1C cn

p
a.�; "/

ˇ1���
3
2

�
ˇ:

If ˇ > "
Q.�/
2 , then the estimate above yields

�.ˇ/ � cn�
�
!C3
2 ˇjlog.ˇ/j

4.nC3/jlog � j
� :

In particular, one concludes directly from the definition of � that

F.ˇ/CG.ˇ/ � cn�
�
!C3Cn

2 jlog "j
4.nC3/jlog � j

� 8ˇ > "
Q.�/
2 : (5.16)

We are now ready to give the proof of Theorem 1.6 in dimensions n � 2. For that, we use
the shorthand �n.�/ D

4.nC10/jlog � j
�

.
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Proof of Theorem 1.6, n � 2. Let � > 0 be small, to be chosen later. Define the (truncated)
log-hypographs of f , g, h as

�f D
®
.x; T / 2 RnC1W x 2 ¹f > "�º; "� � eT < f .x/

¯
;

�g D
®
.x; T / 2 RnC1W x 2 ¹g > "�º; "� � eT < g.x/

¯
;

�h D
®
.x; T / 2 RnC1W x 2 ¹h > "�º; "� � eT < h.x/

¯
:

We first claim that the measures of the first two such sets are well controlled. Indeed, it
follows directly from the definition of such sets and (5.16) that, for � < Q.�/=4,

cn��
�
!C3Cn

2 jlog "j�n.�/ � � jlog "j �Hn.¹f > "�º/ � HnC1.�f /: (5.17)

On the other hand, by a change of variables and the normalization chosen for f , one
obtains

HnC1.�f / D

Z log kf k1

� log "
F.es/ ds >

1

2
: (5.18)

The same estimates together with (5.13) show that

cn��
�
!C3Cn

2 jlog "j�n.�/ � HnC1.�g/ >
� .nC1/

2e � 3nC1
(5.19)

holds as well. Employing Lemma 5.2, we obtain

jHnC1.�f / �HnC1.�h/j C jH
nC1.�g/ �HnC1.�h/j

�

Z 1
� log "

�
jF.es/ �H.es/j C jG.es/ �H.es/j

�
ds

� "��
�Z 1

0

�
jF.t/ �H.t/j C jG.t/ �H.t/j

�
ds

�
� cn�

�
!C3
2 "

Q.�/
2 �� DW �n � ı."; �; �/: (5.20)

We denote, until the end of the proof, ı D ı."; �; �/ for shortness. By (1.2), we have

.1 � �/�f C ��g � �h: (5.21)

In particular, (5.20), (5.21), and the fact that HnC1.�f / > 1=2 imply the following control
on the measure of �h:

2cn�
�
!C3Cn

2 jlog "j�n.�/ � HnC1.�h/ �
�n

2
:

We are in position to use Theorem 1.4. That result states that, under the conditions satisfied
by the sets �f , �g , and �h in (5.17), (5.18), (5.19), (5.20), and (5.21), for ı < e�An.�/, the
sets �f , �g are both close (in quantitative terms of ı D ı."; �; �/) to their convex hulls.
Here we let An.�/ D 23

nC2
n3

n
jlog � j3

n
=�3

n
, in accordance with [19, Theorem 1.3].
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In more effective terms, Theorem 1.4 implies that there exist an absolute constant
cn > 0 and an exponent 
n.�/ D �3

n
=23

nC1
n3

n
jlog � j3

n
such that the following holds.

Denote the closure of the convex hulls of �f , �g , �h by Sf , Sg , Sh respectively. There are
zw D .w; %/ 2 RnC1, and a convex set Sh � Sh with

Sh � .�f � zw/ [ .�g C zw/;

HnC1.Sh n �h/CHnC1.Sf n �f /CHnC1.Sg n �g/

� cn�
�Nn�

!C3Cn
2 jlog "j�n.�/ı
n.�/;

HnC1.Sh n �h/CHnC1.Sh n .�f � zw//CHnC1.Sh n .�g C zw//

� cn�
�Nn�

!C3Cn
2 jlog "j�n.�/ı
n.�/:

(5.22)

We thus use the shorthand N 0n D Nn C
!C3Cn

2
. Now (5.22) readily implies that

HnC1.Sh n Sh/ � 2cn�
�N 0n jlog "j�n.�/ı
n.�/;

and thus

HnC1.Sh�.Sf � zw//CHnC1.Sh�.Sg � zw// � 6cn�
�N 0n jlog "j�n.�/ı
n.�/: (5.23)

We now employ the analysis of [9, Lemma 6.1]. Explicitly, suppose first that zw D .w; %/,
% > 0. We let

S
%

f
D
®
.x; T / 2 Sf W � log " � T � � log "C %

¯
:

By the fact that

HnC1.Sf C .0; %// D HnC1.Sf / D HnC1.Sf \ .Sf C .0; %///CHnC1.S
%

f
/;

it follows that HnC1.Sf�.Sf C .0; %/// D 2HnC1.S
%

f
/. But we also have that S!

f
�

Sf n .Sh C zw/, which, by (5.22) and (5.23), implies that

HnC1.S
%

f
/ � 6cn�

�N 0n jlog "j�n.�/ı
n.�/:

Thus, by the triangle inequality,

HnC1.Sf�.Sh C .w; 0/// � 2H
nC1.S

%

f
/CHnC1.Sf�.Sh C zw//

� 18cn�
�N 0n jlog "j�n.�/ı
n.�/:

A similar argument works in the case % < 0, if one considers S j%j
h

instead of S%
f

. In the
end, this allows one to conclude that the w 2 Rn from before satisfies that

HnC1.Sh�.Sf � w//CHnC1.Sh�.Sg C w// � 72cn�
�N 0n jlog "j�n.�/ı
n.�/: (5.24)

We now note that, as ¹f > "�º � ¹T D � log "º � �f , then

Sf � co.¹f > "�º/ � ¹T D � log "º:
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We associate to each x 2 co.¹f > "�º/ the function

Tf .x/ D sup
®
T 2 RW .x; T / 2 Sf

¯
:

Clearly, this satisfies Tf .x/� � log " for all x 2 co.¹f > "�º/. We claim that this function
is, moreover, concave. Indeed, if .x; T1/; .y; T2/ 2 Sf , by convexity of that set we get

.tx C .1 � t /y; tT1 C .1 � t /T2/ 2 Sf :

Thus,

Tf .tx C .1 � t /y/ D sup
®
T 2 RW .tx C .1 � t /y; T / 2 Sf

¯
� t sup

®
T 2 RW .x; T1/ 2 Sf

¯
C .1 � t / sup

®
T 2 RW .y; T2/ 2 Sf

¯
D tTf .x/C .1 � t /Tf .y/ 8t 2 .0; 1/:

By definition of Sf , it also follows that Tf .x/ � logf .x/ for all x 2 co.¹f > "�º/. Let

Qf .x/ D

´
eTf .x/ if x 2 co.¹f > "�º/;

0 otherwise:

Now notice that .x; r/ belongs to the interior of Sf if and only if Tf .x/ > r > � log "
and x belongs to the interior of co.¹f > "�º/. Writing A.r/ D ¹.x; T / 2 A; T D rº for
horizontal slices of a set A � RnC1, we compute, by Fubini,

HnC1.Sf n �f / D

Z 1
�1

Hn.Sf .r/ n �f .r// dr

D

Z log2

� log "
Hn.¹log Qf > rº n ¹logf > rº/ dr

D

Z 2

"�
Hn.¹ Qf > sº�¹f > sº/

ds

s

�
1

2

Z 2

"�
Hn.¹ Qf > sº�¹f > sº/ ds:

(5.25)

By Chebyshev’s inequality and (5.22), there is

s0 2 ."
� ; "� C cn�

�
N 0n
2 ı


n.�/
2 /

so that Hn.¹ Qf > s0º�¹f > s0º/ � �
�
N 0n
2 jlog "j�n.�/ı


n.�/
2 :

Recalling the definition of ı, one notices that, if Q.�/
4

> � , and " < .cn/�1e
210Nn log.�/

n.�/Q.�/ we

may take s0 2 ."� ; 2"� / so that

Hn.¹ Qf > s0º�¹f > s0º/ . ��N
0
n=2jlog "j�n.�/"


n.�/Q.�/
8 : (5.26)
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Then define the function Qf1 to be zero whenever Qf � s0, and equal to Qf otherwise. This
new function is again log-concave.

We claim that this new function is still sufficiently close to f . Indeed, by gathering
(5.25), (5.26), and (5.16), we have

k Qf1 � f k1 D

Z 2

0

Hn.¹ Qf1 > tº�¹f > tº/ dt

�

Z s0

0

�
Hn.¹ Qf1 > s0º/CHn.¹f > tº/

�
dt

C

Z 2

s0

Hn.¹ Qf1 > tº�¹f > tº/ dt

� cn�
�
!C3Cn

2 "� jlog "j�n.�/ C
Z 2

s0

Hn.¹ Qf > tº�¹f > tº/ dt

� cn�
�
!C3Cn

2 "� jlog "j�n.�/ C 2HnC1.Sf n �f /

.n ��N
0
n"


n.�/Q.�/
16 jlog "j�n.�/; (5.27)

where we chose � D 
n.�/Q.�/
16

. Fix this value, and thus the value of ı, for the rest of the
proof. Such an inequality is evidently not restrictive to f , and the same argument yields
that there is a log-concave function Qg1 so that

k Qg1 � gk1 .n ��N
0
n�.nC1/"


n.�/Q.�/
16 jlog "j�n.�/: (5.28)

In order to conclude, we only need to prove that both Qf1, Qg1 are sufficiently close,
after a translation, to a log-concave function Qh1. In order to prove that, one only needs to
construct the function Qh in entire analogy with what we did for Qf , Qg; that is, we let

Th.x/ D sup¹T 2 RW .x; T / 2 Shº:

One readily verifies that this new function is, again, concave, and that the function

Qh.x/ D

´
eTh.x/ if x 2 co.¹h > e�º/;

0 otherwise;

is log-concave. Using (5.24) together with an argument similar to (5.27) implies that

HnC1.Sh�.Sf � w//CHnC1.Sh�.Sg C w//

�

Z k Qh1k1
0

�
Hn

�
¹ Qh > sº�¹ Qf . � C w/ > sº

�
CHn

�
¹ Qh > sº�¹ Qg. � � w/ > sº

�� ds
s
: (5.29)

Notice now that k Qf1k1 D kf k1, k Qg1k1 D kgk1, by construction. The idea is then to
truncate from below at height ¹ Qh> s0º and from above at height % WDmax.k Qf1k1;k Qg1k1/
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in order to generate a new function, which is again log-concave by construction. Denote
this new function by Qh1. Moreover, by (5.29) in conjunction with (5.13), we have

2e � 3nC1��n�1cn�
�N 0n jlog "j�n.�/ı
n.�/

�

Z %

s0

�
Hn

�
¹ Qh1 > sº�¹ Qf1. � C w/ > sº

�
CHn

�
¹ Qh1 > sº�¹ Qg1. � � w/ > sº

��
ds

D

Z
Rn

�
j Qh1.x/ � Qf1.x C w/j C j Qh1.x/ � Qg1.x � w/j

�
dx: (5.30)

Combining (5.27), (5.28), and (5.30) implies that

k Qh1. � � w/ � f k1 C k Qh1. � C w/ � gk1 .n ��N
0
n�n�1jlog "j�n.�/"


n.�/Q.�/
16 :

Finally, in order to prove that h is close to Qh1, we estimateZ
Rn

jh.x/ � Qh1.x/j dx D

Z s0

0

Hn.¹h > sº/ ds

C

Z %

s0

Hn.¹h > sº�¹ Qh > sº/ ds C

Z 1
%

Hn.¹h > sº/ ds

� cn�
�
!C3Cn

2 "Q.�/
n.�/=16jlog "j�n.�/

C

Z %

s0

Hn.¹h > sº�¹ Qh1 > sº/ ds

C cn�
�!=2"

Q.�/
2 ; (5.31)

where we used both (5.16) and Lemma 5.2 in the last line. In order to deal with the middle
term, we remark that an argument entirely analogous to that of (5.25) implies that

Hn.Sh n �h/ �
1

%

Z %

s0

Hn.¹h > sº�¹ Qh > sº/ ds;

which on the other hand impliesZ %

s0

Hn.¹h > sº�¹ Qh1 > sº/ ds .n ��n�1��N
0
n"
nQ.�/=16jlog "j�n.�/: (5.32)

Inserting (5.32) into (5.31) implies

kh � Qh1k1 .n ��N
0
n�.nC1/"


n.�/Q.�/
16 jlog "j�n.�/: (5.33)

Finally, in order to arrive at the statement of Theorem 1.6, we notice that the expression
on the right-hand side of (5.33) may be bounded by cn��N

0
n�n�1"


n.�/Q.�/
32 , as long as

" < e
�cn

jlog � j�n.�/2

Qn.�/2 for cn � 1 a sufficiently large absolute constant:
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An inspection of the constants needed for the proof above allows us to conclude that
Theorem 1.6 holds with†n DNnC !C3Cn

2
C .nC 1/, as �
n.�/ is bounded by an explic-

itly computable absolute constant zCn whenever � 2 Œ0; 1�. We also conclude that we may
take Qn.�/ D

Q.�/
n.�/
16

, and the result holds whenever " < cne�Mn.�/, where cn > 0 is
an explicitly computable absolute constant, and one may take

Mn.�/ D cnjlog.�/jmax
²
An.�/

Q.�/
;
�n.�/

2

Qn.�/2

³
; (5.34)

for cn > 0 a sufficiently large absolute constant, depending only on the dimension n � 2.
This finishes the proof of the higher-dimensional case, and thus also of Theorem 1.6.
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