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Homogeneous functions with nowhere-vanishing
Hessian determinant

Connor Mooney

Abstract. We prove that functions that are homogeneous of degree ˛ 2 .0; 1/ on Rn and have
nowhere-vanishing Hessian determinant cannot change sign.

1. Introduction

Let n � 2, and let � � Rn be the cone over a domain † � Sn�1 that has nonempty
boundary. Let

pn WD max¹1; .n � 1/.n � 2/º:

In this paper we show the following:

Theorem 1.1. If there exists a function u 2 C.x�/ that satisfies

(i) u is homogeneous of degree ˛ 2 .0; 1/,

(ii) u 2 W
2;p

loc .�/ \W
1;1.� \ .B2n xB1// for some p > pn (with p D pn allowed

if n � 3),

(iii) u > 0 in � and u D 0 on @�, and

(iv) either detD2u or � detD2u is locally strictly positive in �,

then Rnn� is a convex cone, and † contains a closed hemisphere.

By locally strictly positive we mean bounded below by positive constants almost
everywhere on compact sets, where the constants may depend on the sets. We in fact
show in the course of proving Theorem 1.1 that � detD2u is locally strictly positive, and
that D2u has exactly one negative eigenvalue (see Remark 3.2).

An immediate consequence of Theorem 1.1 is the following:

Theorem 1.2. If u W Rn ! R satisfies

(i) u is homogeneous of degree ˛ 2 .0; 1/,

(ii) u 2 W
2;p

loc .R
nn¹0º/ for some p > pn, and

2020 Mathematics Subject Classification. Primary 35J60; Secondary 35B65, 26B35.
Keywords. Monge–Ampère equations of mixed type, special Lagrangian equation, regularity.

https://creativecommons.org/licenses/by/4.0/


C. Mooney 556

(iii) either detD2u or � detD2u is locally strictly positive in Rnn¹0º,

then u does not change sign.

Indeed, if u changes sign then we may apply Theorem 1.1 to the sets � D ¹u > 0º

and � D ¹�u > 0º to get a contradiction.

Remark 1.3. Theorem 1.2 is special to the cases ˛ 2 .0; 1/. Indeed, if ˛ … Œ0; 1� and
˛ < k2 for some nonzero integer k, then the ˛-homogeneous function

u D r˛ cos.k�/

is sign-changing and has nowhere-vanishing Hessian determinant on R2n¹0º. We also
remark that 0-homogeneous functions have vanishing Hessian determinant on the rays
where they achieve their maxima, and 1-homogeneous functions have identically vanish-
ing Hessian determinant.

Apart from its own interest, Theorem 1.2 is motivated by the question of when interior
gradient estimates hold for solutions to the special Lagrangian equation

F.D2u/ WD

nX
kD1

tan�1.�k.D2u// D ‚.x/ 2
�
�n
�

2
; n
�

2

�
: (1)

Here, u is a function on a domain in Rn and �k.D2u/ denotes the eigenvalues of D2u.
Equation (1), introduced in the seminal work of Harvey and Lawson [11], prescribes the
mean curvature of the gradient graph of u in Rn �Rn. In particular, this graph is volume-
minimizing when ‚ is constant. The existence of continuous viscosity solutions to the
Dirichlet problem for (1) is known in certain situations (see e.g. [5, 7, 9, 10] for results
concerning the Dirichlet problem for viscosity solutions, and [2, 4, 6] for cases in which
classical solutions can be obtained), and there are many fascinating open questions con-
cerning the regularity of these solutions. For example, is not known whether viscosity
solutions to (1) are locally Lipschitz if either ‚ is a constant with j‚j < .n � 2/�

2
(they

are if ‚ is a constant with j‚j � .n � 2/�
2

, see [20], and more generally if ‚ 2 C 2 and
j‚j � .n � 2/�

2
, see [2]) or if ‚ is Lipschitz. Classical proofs of interior gradient esti-

mates for elliptic PDEs involve differentiating the equation once, so it is reasonable to ask
whether interior gradient estimates for (1) hold under such conditions on ‚.

A first attempt to disprove the validity of such estimates could be to build a func-
tion u that is homogeneous of degree ˛ 2 .0; 1/, smooth away from the origin, and has
nowhere-vanishing Hessian determinant. Then F.D2u/ would behave near the origin like
a multiple of �

2
plus a smooth function on the sphere times jxj2�˛ , which is C 1, while u

has unbounded gradient. More precisely, if D2u has k negative eigenvalues, then using
the homogeneity of u and the expansion of tan�1 at˙1 we calculate

F.D2u.x// D .n � 2k/
�

2
�

1X
jD0

h .�1/j
2j C 1

�n�1Œ.D
2u.x=jxj//2jC1�

detŒ.D2u.x=jxj//2jC1�

i
jxj.2�˛/.2jC1/
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near the origin. Here �k.D2u/ denotes the kth symmetric polynomial of the eigenvalues
ofD2u. Taking uD jxj˛ appears to do the trick, but this function is not a viscosity solution
at the origin; one needs u to change sign to prevent this issue. Theorem 1.2 precludes the
existence of such functions, and hence can be viewed as evidence in favor of a positive
result.

Remark 1.4. The most general results concerning the solvability of the Dirichlet problem
for (1) in the class of continuous viscosity solutions have been established for continuous
phases‚ that avoid the special values ¹.n� 2k/�=2ºn�1

kD1
(see [10], [5]). Moreover, it was

recently shown that the comparison principle fails for certain continuous phases ‚ that
take a special value [3]. In view of this one might expect weaker regularity results for
solutions to (1) when the phase takes a special value. The possible examples we discussed
above would have Lagrangian phase .n � 2k/�=2 at the origin for some k, in agreement
with this expectation. However, in this work we rule out their existence.

Remark 1.5. One might also try to build 1-homogeneous functions u on Rn such that
�n�1.D

2u/ is nowhere vanishing, since in that case F.D2u/ is Lipschitz. It is not hard
to show that such functions are necessarily convex or concave (see Section 2), and thus
do not solve the equation at the origin. Interestingly, there exist nonlinear 1-homogeneous
functions u on R3 whose Hessians are either indefinite or 0 at every point (see [15]), so
that F.D2u/ tends to 0 at the origin along rays, but F.D2u/ is not continuous at the origin
for these examples.

Remark 1.6. Theorem 1.2 can also be viewed as a rigidity result for homogeneous solu-
tions to Monge–Ampère equations of mixed type. Such equations arise in challenging
geometric problems such as the Minkowski problem for hedgehogs, for which basic exis-
tence and uniqueness questions remain open [16].

Remark 1.7. Our results are also similar in spirit to those of Lewy about spherical har-
monics in R3 [13, 14]. In these works, Lewy first shows that a homogeneous polynomial
P in R3 of degree d > 2 that has nonvanishing Hessian determinant away from the origin
either does not change sign, or (up to multiplying by �1) the set ¹P > 0º consists of two
diametrically opposed convex cones. He then uses this to prove that the Hessian determi-
nant of a spherical harmonic in R3 of degree > 2must either vanish identically, or change
sign. (Another proof of the latter result, using algebraic geometry, was given by Segre in
[18]). Theorem 1.2 says that a similar conclusion holds in any dimension for functions
that are homogeneous of a fractional degree and change sign. Moreover, the first step in
Lewy’s argument involves analyzing the geometry of level sets of P by considering the
1-homogeneous function P 1=d . Likewise, in this work we consider the 1-homogeneous
function u1=˛ . However, we study the geometry of its gradient image. The author is grate-
ful to a referee for bringing these results to his attention.

The paper is organized as follows. In Section 2 we recall some preliminary results
about 1-homogeneous functions and about maps with integrable dilatation, which are
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natural analogues of quasi-conformal maps in higher dimensions. In Section 3 we prove
Theorem 1.1. The idea of the proof is to study the geometry of the gradient image of the 1-
homogeneous function u

1
˛ . Our analysis is partly inspired by the beautiful arguments used

in [8] to show the linearity of 1-homogeneous functions on R3 that solve linear uniformly
elliptic equations.

2. Preliminaries

In this section we recall a few results about 1-homogeneous functions and about maps
with integrable dilatation.

Let v be a 1-homogeneous function on Rn that, away from the origin, is locally W 2;p

for some p � 1. Euler’s formula for homogeneous functions says that

v.x/ D rv.x/ � x: (2)

Here and below we let r WD jxj and we denote points in Sn�1 by !. Writing

v D rg.!/

and choosing a coordinate system where ! is the last direction, we have

D2v.!/ D

�
r2

Sn�1
g C gIn�1�n�1 0

0 0

�
: (3)

Here and below, rSn�1 and r2
Sn�1

denote the usual gradient and Hessian operators on the
sphere.

It is sometimes useful to represent v in ¹xn > 0º by a function Nv on Rn�1 defined by

Nv.y/ WD v.y; 1/;

so that

v.x0; xn/ D xn Nv
� x0
xn

�
:

Taking the Hessian yields

D2v.y; 1/ D

�
D2 Nv �D2 Nv � y

�D2 Nv � y yT �D2 Nv � y

�
: (4)

Using this we calculate

�n�1.D
2v/.y; 1/ D tr.cof.D2v//.y; 1/ D .1C jyj2/ detD2

Nv.y/: (5)

Here the operator �k denotes the kth symmetric polynomial of the eigenvalues. It is easiest
to verify this formula after rotating in the y variables so that D2 Nv is diagonal.
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If v is C 2 in a neighborhood of en and D2 Nv.0/ is nonsingular, then we can represent
the gradient image of v near en as the graph of a function w using the relation

w.r Nv.y// D @nv.y; 1/ D Nv � y � r Nv;

i.e. w is the (negative) Legendre transform of Nv. One differentiation gives

rw.r Nv.y// D �y;

and another gives
D2w.r Nv.y// D �.D2

Nv/�1.y/: (6)

In particular, up to a sign, the second fundamental form at rv.en/ of the image under rv
of a small ball around en is .D2 Nv/�1.0/. From this it is easy to see that if v is locally
C 2 away from the origin and �n�1.D2v/ is nowhere vanishing, then v is either convex
or concave. Indeed, it suffices to show that either D2v � 0 or �D2v � 0 at some point.
By (6) and (4) this is true at the inverse image under rv of any point on rv.Sn�1/ that is
touched from one side by a hyperplane.

We now recall a few facts about maps of integrable dilatation. Let

'WU � Rn ! Rn

be a map in W 1;n
loc .U / such that detD' > 0 almost everywhere. The dilatation D of ' is

defined by the ratio

D.x/ WD
jD'jn

detD'
:

If D is bounded and n D 2 then ' is quasi-conformal, hence continuous and open by
classical results. Reshetnyak extended this result to mappings with bounded dilatation in
all dimensions [17]. The boundedness required in Reshetnyak’s theorem has since been
relaxed to integrability in certain Lp spaces:

Theorem 2.1 (Iwaniec–Šverák, [12]). If n D 2 and D 2 L1loc.U /, then ' is continuous
and open.

Theorem 2.2 (Manfredi–Villamor, [19]). If n � 3 and D 2 Lploc.U / for some p > n � 1,
then ' is continuous and open.

It is conjectured that the latter result holds in the equality case p D n � 1 (see [12]),
and there are counterexamples when p < n � 1 due to Ball (see [1]).

3. Proof of Theorem 1.1

In this final section we prove the main theorem.
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Proof of Theorem 1.1. We write
u D r˛f .!/:

In a coordinate system where the last direction is ! 2 †, the Hessian of u at ! can be
written

D2u D

�
r2

Sn�1
f C f̨ In�1�n�1 .˛ � 1/rSn�1f

.˛ � 1/rSn�1f ˛.˛ � 1/f

�
: (7)

Subtracting the multiple .rSn�1f /k
f̨

of the last row from the kth row in (7) for k � n � 1
and taking the determinant we arrive at

detD2u D ˛.˛ � 1/f 2�n

�

h
det
�
f r2Sn�1f C

� 1
˛
� 1

�
rSn�1f ˝rSn�1f C f̨ 2In�1�n�1

�i
: (8)

Now let v be the 1-homogeneous function on Rn defined by

v.x/ D

´
.u.x//1=˛; x 2 �;

0; otherwise:

At ! 2 † we compute the Hessian of v in the same coordinates as above, using formula
(3):

D2v D
1

˛
f

1
˛�2

�
f r2

Sn�1
f C . 1

˛
� 1/rSn�1f ˝rSn�1f C f̨ 2In�1�n�1 0

0 0

�
: (9)

We conclude from (8) and (9) that

�n�1.D
2v/ D

f
n�1
˛ �n

˛n.˛ � 1/
detD2u (10)

on†. In particular, either �n�1.D2v/ or ��n�1.D2v/ is locally strictly positive in�. We
also have by standard embeddings that v 2 C 1loc.R

nn¹0º/. On Rnn� this follows from the
fact that

rv D
1

˛
u
1
˛�1ru

in �, the facts that 1=˛ > 1 and u D 0 on @�, and the local Lipschitz regularity of u
up to @� away from the origin. In �, we use the observation that by homogeneity v
can be viewed as a function of n � 1 variables. When n � 4 the Sobolev exponent pn
is thus supercritical. In the case n D 3 it is critical and, denoting by Nv the restriction of
v to a hyperplane tangent to Sn�1, we may apply the continuity assertion in Theorem
2.1 to either r Nv or its reflection over a line. Here we used the fact that �n�1.D2v/ or
��n�1.D

2v/ is locally strictly positive in ¹v > 0º and relation (5). In the case n D 2 we
use that W 1;1 embeds to continuous on the line.
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Now let K WD rv.Sn�1/. For � 2 Sn�1, slide the hyperplane ¹x � � D tº (starting
with t large, and decreasing t ) until it touches K at some point p� . Since 0 2 K we have
p� � � � 0: We claim that the following implication holds:

p� � � > 0) .rv/�1.p�/ \ Sn�1 D ¹�º: (11)

To show the implication (11) it suffices to show that if p� � � > 0 then .rv/�1.p�/ \
Sn�1 � ¹�;��º, since by (2) we have

rv.!/ � ! D v.!/ � 0

for all ! 2 Sn�1. Assume by way of contradiction that p� � � > 0 but .rv/�1.p�/\ Sn�1

is not contained in ¹�;��º. After a rotation we may assume that � D e1, and after another
isometry in the x2; : : : ; xn variables we may assume that rv. Q�/ D p� for some Q� 2 Sn�1

such that Q�n > 0. For y 2 Rn�1 we let

Nv.y/ D v.y; 1/:

By construction, @1 Nv has a local maximum at Q�= Q�n (here we identify points on the hyper-
plane ¹xnD 1ºwith Rn�1), and Nv >0 at this point, sincerv. Q�/Dp� is nonzero. However,
using (5) we see that either detD2 Nv or � detD2 Nv is locally strictly positive in ¹ Nv > 0º.
Theorem 2.1 or 2.2, applied to either r Nv or its reflection over a hyperplane, implies that
r Nv is an open mapping in ¹ Nv > 0º, which contradicts that @1 Nv has a local maximum in
this set.

Finally, let co.K/ denote the convex hull of K, and let w be the support function of
co.K/, that is,

w.x/ WD sup
y2co.K/

.y � x/:

The implication (11) implies that v D w. Indeed, it is clear that 0 � v � w, and for � 2
Sn�1 \ ¹w > 0º we have

w.�/ D p� � � D rv.�/ � � D v.�/:

Because either �n�1.D2v/ or ��n�1.D2v/ is locally strictly positive in �, the set co.K/
has nonempty interior. Indeed, if not, then v D w is translation invariant in some direction
orthogonal to co.K/, which along with the 1-homogeneity of v implies that �n�1.D2v/�

0. We conclude that ¹v > 0º \ Sn�1 contains some closed hemisphere. Indeed, for some
point z and some � > 0 we have B�.z/ � co.K/, and by the definition of w we thus have

¹x � z � 0º \ Sn�1 � ¹w � �º D ¹v � �º:

This completes the proof.

Remark 3.1. The proof in fact shows that u is the ˛th power of the support function of
a convex set that has nonempty interior and 0 in its boundary (note that if 0 were not in
the boundary of co.K/ then w D v > 0 on all of Sn�1), and that Rnn� is the reflection
through the origin of the convex dual to the tangent cone of this set at the origin (see
Figure 1).
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Figure 1

Remark 3.2. The convexity of v and relation (10) imply that � detD2u is locally strictly
positive in�. Moreover,D2u has exactly one negative eigenvalue. Indeed, one sees using
expressions (7) and (9) that D2u can be written in appropriate coordinates at a point in �
in the form

D2u DM � p ˝ p;

where M has n � 1 positive eigenvalues, Mnk D 0 for all k, and pn > 0. The conclusion
is clear when p is a multiple of en. Since

det.M � q ˝ q/ D ��n�1.M/q2n < 0

for any q 2 Rn with qn ¤ 0, the conclusion for general p with pn > 0 follows from the
continuity of the eigenvalues of M � p ˝ p as a function of p.
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