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Global weak solutions of the Serre—-Green—Naghdi
equations with surface tension

Billel Guelmame

Abstract. In this paper we consider the Serre—Green—Naghdi equations with surface tension.
Smooth solutions of this system conserve an H -equivalent energy. We prove the existence of
global weak dissipative solutions for any relatively small-energy initial data. We also prove that
the Riemann invariants of the solutions satisfy a one-sided Oleinik inequality.

1. Introduction

The Euler equations are usually used to describe water waves in oceans and channels.
Due to the difficulties in resolving the Euler equations both numerically and analytically,
several simpler approximations have been proposed in the literature for different regimes.
In the shallow-water regime, the main assumption is on the ratio of the mean water depth
h to the wavelength ¢: the shallowness parameter 0 = h?/:2 is considered to be small.
Besides the shallowness condition, a restriction on the amplitude of the wave a can be
considered, assuming that the nonlinearity (or the amplitude) parameter € = a/ h is small.
Consider the shallow-water regime with the small-amplitude condition [31,39] (¢ < 1,
€ < 1). Many equations have been derived to model the propagation of the waves, such
as the Camassa—Holm equation [10], the Korteweg—de Vries (KdV) equation [38] and
some variants of the Boussinesq equations [8,9, 58]. Considering shallow water with pos-
sibly large-amplitude waves (0 < 1, € & 1), by neglecting the terms of order O (o) in
the water-wave equations, Saint-Venant obtained the nonlinear shallow water (or Saint-
Venant) equations [57]. Smooth solutions of the Saint-Venant equations have a precision
of order O (to), where ¢ denotes the time [39]. In order to obtain a better precision, one
can keep the @ (o) terms in the equations and only neglect the @ (c?) terms. This leads
to the Serre—Green—Naghdi equations. Those equations were first derived by Serre [53],
rediscovered independently by Su and Gardner [56] and again by Green, Laws and Naghdi
[23,24]. The Serre-Green—Naghdi equations are the most general and most precise, but
also the most complicated of the models of shallow-water equations presented above. One
can always keep higher-order terms in the equation (keeping terms of order @ (o?) for
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example); this will lead to equations with better precision, but with higher-order derivat-
ives. These equations are not accurate due to the high-order derivative terms, which make
their numerical resolution much slower.

The influence of the surface tension is generally neglected on water-wave problems.
However, in certain cases, the effect of the surface tension is appreciable. Indeed, Longuet-
Higgins [45] showed that the surface tension is significant in certain localised regions, and
cannot be neglected near the sharp crest of the breaking wave. Other experimental studies
showed the importance of the surface tension on thin layers [21, 48, 49]. Those exper-
imentations have been done for different fluids, including water and mercury. Various
mathematical studies of water-wave equations with surface tension exist in the literature;
we refer to [1,3,4,7,12,13,29,46,52,54,60].
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Figure 1. Fluid domain.

Consider a two-dimensional coordinate system Oxy (Figure 1) and an incompressible
fluid layer. Considering the still fluid level at y = 0, the fluid layer is bounded between the
flat bottom at y = —h and a free surface y = h(t, x) — h, where  is the total water depth.
Assume long waves in shallow water with possibly large amplitude. The Serre—Green—
Naghdi system (without neglecting the surface tension influence) reads

hy + [hu]y = 0, (1.1a)
1
ndle + [hu® + Sgh* + Rl =0, (1.1b)
of 1 1
Rd:f §h3(_utx_uuxx +u)25)_)’(hhxx_§h)2¢), (1.1¢)

where u denotes the depth-averaged horizontal velocity, g is the gravitational acceleration
and y > 0 is a constant (the ratio of the surface tension coefficient to the density). The
classical Serre-Green—Naghdi equations (without surface tension) are recovered taking
y = 0. The Serre-Green—Naghdi (SGN,, ) equations (1.1) have been derived in [17] as a
generalisation of the classical SGN equations (y = 0). As mentioned above, the Serre—
Green—Naghdi equations are obtained in the shallow-water regime by neglecting all the
O(0?) terms. An extension of the Serre—Green—Naghdi system with surface tension (1.1)
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have been derived in [37] by neglecting only the @ (o3) terms; local well-posedness and
justification of the extended system have been studied in [35-37].

Due to the appearance of time derivatives in (1.1c), it is convenient to apply the inverse
of the Sturm-Liouville operator

of 1
£nEh— F 00 (1.2)
system (1.1) then becomes
hy + [hu]x =0, (1.3a)
_ 2 1 1
U +uuy + ghy = —ihlax{gh%i — [yh — ggh3]hxx + Eyhi}. (1.3b)

When i > 0, the operator 33,:1 is well defined and smooths two derivatives (see Lemma
5.2 below). This is not enough to control the term containing %, on the right-hand side
of (1.3b). To overcome this problem, we use the definition of £ to rewrite system (1.3)
in the equivalent form

hy + [hu], =0,

2 3 1 (1.4)
u; +uuy +3yh2h, = —i;lax{§h3u§ — Eyhi + Egh2 -3y ln(h)}.

Smooth solutions of the SGN,, equations (1.4) satisfy the energy equation (see Appen-
dix B)
&+ Dy =0, (1.5)

where

d_eflzl 2 13212
E—zhu +2g(h h) +6h ux+2yhx, (1.6)

def 1., 1 =
p & u£+u(ﬂz+ Seh? = Sgh )+yhhxux.

Linearising the SGN,, equations (1.4) around the constant state (h,u) = (h,0) and looking
for travelling waves having the form exp{(kx — wt)i}, we obtain the dispersion rela-
tion w? = ghk?(1 + yk?/g)/(1 + h?k?/3). Defining the Bond number B = gh?/y, the
SGN, equations are linearly dispersive if and only if B # 3. In the dispersionless case
(B = 3), the SGN,, equations admit weakly singular peakon travelling wave solutions
[19,47]. More travelling wave solutions are obtained in [41]. The Serre-Green—Naghdi
equations, with or without surface tension, have been widely studied in the literature. We
refer to [2,28,30,34,39,42] for the case inf 7y > 0 and to [40] for the shoreline problem
(sign(h) = lx>x,). In [2,30,42], a proof of the local well-posedness of the SGN equa-
tions without surface tension (y = 0) is given. Kazerani has proved in [34] the existence of
global smooth solutions of the SGN equations with viscosity for small initial data. A full
justification of model (1.4) is given in [28,39]. By “full justification” we mean local well-
posedness of the system and that the solution is close to the solution of the water-wave
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equations with the same initial data. In a recent work [25], we have obtained a precise
blow-up criterion of (1.4) (Theorem 2.3 below) and we proved that such a scenario occurs
for a class of small-energy initial data (Theorem 2.6 below). Then, in general, smooth
solutions cannot exist globally in time.

This paper investigates the existence of global weak solutions of (1.4) with y > 0.
To the best of the author’s knowledge, the existence of global weak solutions for all the
different variants of the inviscid Serre-Green—Naghdi equations has not been established
before. Here, the existence of global weak solutions is established by approximating sys-
tem (1.4) with another system that admits global smooth solutions. We recover weak
solutions of (1.4) by taking the limit. The proof involves several steps.

We consider initial data satisfying [ ¢ dx < @ﬁz, which is propagated due to the
energy conservation (1.5). Using the fact that the energy is equivalent to ||(h — /., 1) ||1%1,1
and a Sobolev-like inequality (essentially H! < L°; see Proposition 2.4 below) we
obtain a uniform lower bound of A. This is important for ensuring the invertibility of
the operator £ defined in (1.2). Smooth solutions of (1.4) blow up in finite time due
to the presence of quadratic terms in the associated Riccati-type equations. In order to
approximate the SGN,, system, we use a cut-off to obtain a linear growth that leads to
global smooth solutions (due to Gronwall’s inequality). However, cutting off directly as
in [63,64] violates the energy conservation (1.5). The choice of the approximated system
is crucial and must conserve the properties of the SGN,, system. In Section 4 below, we
carefully chose a suitable approximated system that is globally well posed and satisfies the
energy equation (5.8). In order to pass to the limit, some uniform estimates are needed. In
previous studies of smooth solutions of the SGN equations, some estimates of the operator
éC;l have been obtained; those estimates usually depend on the L° norm of %, which
may blow up for weak solutions. In Lemma 5.2 below, we present some new estimates of
i;l depending only on the L° norms of 4 and 1/h. As in [59, 63, 64], an Ll‘zc estimate
of (hx,uy) with p < 3 is also needed. In our case and due to the complexity of the SGN,,
equations, we have to use a change of coordinates to obtain this estimate (see Lemma 5.6
below). We then use some classical compactness arguments with Young measures [32]
and a generalised compensated compactness result [22] to pass to the limit. We follow in
this step the techniques developed in [59] for the Camassa—Holm equation and in [63, 64]
for the variational wave equation. The structure of the SGN,, system being more complex,
we have to handle the weak limit of some nonlinear terms that do not exist in [63, 64]
(see Lemma 6.4 for example). Finally, the global weak solutions of (1.4) are obtained by
taking the limit in the approximated system, and are shown to dissipate the energy and
satisfy the one-sided Oleinik inequality (3.4).

The existence of global solutions to the Boussinesq equations [9, 58]

hy + [hu]x =0, u;+uux + ghy = Usxx (1.7)

have been studied in [5,51]. Schonbek [51] regularised the conservation of the mass by
adding a diffusion term, i.e., h; + [hu]y = ehyy, with € > 0. She proved the global well-
posedness of the regularised system, and she obtained global weak solutions of (1.7) by
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taking ¢ — 0. In [5], Amick proved that if the initial data, (hg, ug), is smooth, then the
solution, (%, 1), obtained by Schonbek [51] is also smooth and is the unique smooth solu-
tion of the Boussinesq equations (1.7).

The SGN,, equations (1.1) can be compared with the dispersionless regularised Saint-
Venant (rSV) system presented in [11]. The rSV system can be obtained replacing R in
(1.1¢) by eR.gy, with

def
jQrSV =

h3(u)zc — Uy — Ulxy) — ghz(hhxx + %hi)

and ¢ = 0; the classical Saint-Venant system is recovered by taking ¢ = 0. Weakly singular
shock profiles of the rSV equations are studied in [50]. In [44], Liu et al. proved the
local well-posedness of the rSV equations and identified a class of initial data such that
the corresponding solutions blow up in finite time. The rSV system has been generalised
recently to obtain a regularisation of any unidimensional barotropic Euler (rE) system
[26]. System (1.1) can also be compared with the modified Serre—Green—Naghdi (mSGN)
equations derived in [14] to improve the dispersion relation of the classical SGN system.
The mSGN system presented in [14] can be obtained replacing R in (1.1c) by

ef 1 3 1 1
Rmsan = §<1 + Eﬂ)h3(_utx — Ulxyx + u)zc) - Eﬁghz(hhxx + §h§>

where B is a positive parameter. The rSV, rE and mSGN systems conserve H !-equivalent
energies and have similar properties to the SGN,, system (1.1). One may obtain the exist-
ence of global weak solutions of those equations following the proof given in this paper.

The study of the classical Serre-Green—Naghdi equations is more challenging. Indeed,
when y = 0, the energy (1.6) fails to control the H' norm of & — h; then a lower bound
of h cannot be obtained. This bound is crucial to obtaining the blow-up result [25] and the
global existence in this paper for y > 0. To the author’s knowledge, the questions of the
blow-up of smooth solutions and the existence of global solutions of the SGN equations
without surface tension are still open. However, Bae and Granero-Belinchén [6] proved
recently that for a class of periodic initial data satisfying inf hy = 0, smooth solutions
cannot exist globally in time. For this class of initial data, it is not known whether smooth
solutions exist locally in time, but if they do, a singularity must appear in finite time.

This paper is organised as follows. In Section 2 we present the local well-posedness
of (1.4) and some blow-up results. Section 3 is devoted to defining weak solutions of (1.4)
and to presenting the main result, which is the existence of global dissipative weak solu-
tions. We discuss in Section 4 the properties needed for the approximated system and we
propose suitable choices. Section 5 is devoted to proving the existence of global smooth
solutions of the approximated system and to obtaining some uniform estimates. We obtain
strong precompactness results in Section 6. The existence of global weak solutions is
proved in Section 7. In Appendix A we recall some classical lemmas that are used in
this paper. Appendix B is devoted to obtaining the energy equations of the approximated
system and of (1.4).
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2. Review of previous results

We consider the Serre—Green—Naghdi equations with surface tension in the form

hy + [hu], =0, (2.1a)
Uy + uty + 3yh2hy = —£5105{C + F(h)}, (2.1b)
u(0,x) = up(x), h(0,x) = ho(x), (2.1¢)
with
def 2

3
C= h3u)26 — Eyh)zc,

3
det 1 I - -
F(h) = Egh2 — igh2 —3yIn(h/h).

The system (2.1) is locally well posed in the Sobolev space

1 gy & Jo + 5P/ (©)17 dg < oo},

where s > 2 is a real number.

HYR) ¥

Theorem 2.1. Lety >0, h > 0 and s > 2. Then, for any (ho — h,ug) € H*(R) satisfying
infyer ho(x) > 0, there exist T > 0 and (h — h,u) € C([0, T], H(R)) N C'([0, T],
HS"1(R)) a unigue solution of (2.1) such that

inf h(t,x) > 0.
(¢,x)€[0,T1xR

Moreover; the solution satisfies the conservation of the energy

% R(%hu2 + %g(h —h)? + éh3u§ + %yhi) dx =0. 2.2)
Remark 2.2. The solution given in Theorem 2.1 depends continuously on the initial data,
ie., if (h(l) —h, u(l)), (h% —h, u%) € HS, such that h(l,, h% > Npin > 0, then forallt < T
there exists a constant C(||(h2 — /, u?)|| oo (0,1, 15y | (' — hout) | Zoo([0,r1, %)) > 0, such
that

Ih" =12t =)o sy < C (b — 1.l —ud) .

The proof of Theorem 2.1 is classic and omitted in this paper; see [26—28, 30,39, 44]
for more details. It is clear from Theorem 2.1 that if the solution at time 7" remains in
H* and inf h(T, x) > 0, then one can extend the interval of existence. This leads to the
blow-up criterion

Tnax < 00 == liminf inf A(t,x) =0 or limsup|(h — i, u)|gs = oo,
t—>Thax XER £ Tomax

where Thax 1S the maximum time existence of the solution. This criterion has been
improved in [25] to the following:
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Theorem 2.3 ([25]). Let Ty be the maximum time existence of the solution given by
Theorem 2.1. Then

liminf inf u, (¢, x) = —oc0
t—>Thmax x€R

Tmax < 00 = liminf inf h(¢,x) =0 or and
t—>Tmax X€ER

lim sup||hy (2, x)|| Lo = 00,
t%Tmax

which is equivalent to the second criterion

liminf inf A(¢,x) =0

t—>Tinax XER

Thax < 00 = limsup|lux(t, x)||pe =00 and or

t—>Tinax

lim sup||hx (¢, x) || = o0.
t— Tax

Note that the energy conserved in (2.2) is equivalent to the H' norm of (h — i, u).
Due to the continuous embedding H 1« % we can obtain a uniform (in time) estimate
of ||(h — i, u)| e, and, if the initial energy is not very large compared to I, we can obtain
a lower bound of /. For that purpose, we present the following proposition.

Proposition 2.4. Fory > 0, h >0, let E bea positive number such that
0< E < Jgyh?. (2.3)
Define
hoin E h—(gY)VAVE, e € b+ (g) VAVE,
Umax &f —Unmin &f 3VAVE | hogin.
Then, for any (h — h,u) € H! satisfying J €dx < E, we have
0 < htmin < B < hoax < 201, Upmin < U < U,

Remark 2.5. Taking an initial data satisfying [p €0 dx < E, then, due to the energy
conservation (2.2) and Proposition 2.4, the depth 4 cannot vanish. The blow-up criteria
given in Theorem 2.3 become then

Thax < 00 — inf  uy(t,x) = —co and limsup|h(t, x)|Le = oc0.
[0, Tmax) xR t—>Tnax

Proof of Proposition 2.4. The Young inequality 1a® + $b? > +ab implies that
1 o 1o
> > —o(h— -
E> /dey > /R(zg(h )? + 2yhx)dx
X _ o0 _
> ver([_t=fneay = [T - isay)
—0o0 X

> Jgrlh—hl?,
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which implies that A, < & < hyac. Making the same estimates with u one obtains
Lo, 1.5,
E= | &dy= (—hu + —h ux> dy

1 5 X o0
= %hmin(/_m uuy dy —/x Ullx dy)
1
= _hiin u 2’
73 mnl"!
where the last inequality ends the proof of ¥, < ¥ < Uyax. ]
As in [25], we can build some initial data with small initial data such that the corres-
ponding solutions blow up in small time.
Theorem 2.6 ([25]). Forany T > 0 and E satisfying (2.3), there exist
o (ho—h,ug) € C(R) satisfying [g €odx < E such that the corresponding solution

of (2.1) blows up at finite time Tiax < T and

inf  uy(t,x) = —o0, su hy(t,x) = oo, inf K, (¢, x) > —oc0.
[Omiax)XR X( ) [O,TmanR X( ) [O’Tmax)XR X( )
. (h~0 —h,iig) € C °(R) satisfying fR €odx < E such that the corresponding solution
of (2.1) blows up at finite time Tax < T and

inf i, (f,x) = —o0, inf Ky (t,x) = —oo, sup I;x(t,x) < o0.
[09Tmax)XR [OsTmax)XR [Omiax)xR

3. Main results

Since smooth solutions fail to exist globally in time, even for arbitrary small-energy initial
data, we shall define weak solutions of the SGN,, system (2.1). For that purpose, we define
the domain ® C H!,

ol {(h—h,u)ye H', [ Edx < Jgyh?}.

Definition 3.1. We say that (& — h,u) € L®(R*, H') N Lip(R*, L?) is a weak solu-
tion of (2.1) if it satisfies the initial condition (2.1c) with (2.1a) in L? and for all ¢ €
C2((0,00) x R) we have

/ {{ur + ury + 3y(h) ?hy} Lre — 9x{C + F(h)}} dx dt = 0. 3.1
R+xR

Moreover, (h(t,-) — h,u(t,)) belongs to ® forall r = 0 and (h — h,u) € C,(Rt, H').
More precisely, for all 7o = 0 we have

Jim [ ((e.) = (0. ).u(t.) = u(to. ) | 1 = 0.

t>ty
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Now we can state the main result of this paper.

Theorem 3.2. Let h.g.y > 0and (hg — h,ug) € D. Then there exists a global weak solu-
tion (h — h,u) € L*>([0,00), H'(R)) N C([0,00) x R) of (2.1) in the sense of Definition

3.1. Moreover,

» for any bounded set Q = [t1,1;] X [a,b] C (0,00) x R and «a € [0, 1) there exists
Co,@ > 0 such that

/Q[|ht|2+°‘ + AT A+ g 2T+ |ux|2+°‘] dx dr < Cy,; (3.2)

* the solution dissipates the energy

/deS/ £od: (3.3)
R R

* there exists C > 0 such that the solution satisfies the Oleinik inequality
1
uy + 3yh~2h, < c(l n ;), a.e. (1,x) € (0,00) x R. (3.4)
Remark 3.3. The constants Cy o and C depend on ﬁ, y, g and fR Eo dx, but not on the

initial data.

In order to obtain global solutions of (2.1), we use a suitable approximation of system
(2.1) that admits global smooth solutions. Using some compactness arguments and taking
the limit, we recover a global weak solution of (2.1). In the next section we present the
choice of the suitable approximated system.

4. An approximated system

The blow-up of the solutions given in Theorem 2.6 is due to the Riccati-type equations.
In order to prevent the singularities from appearing, we slightly modify the Riccati-type
equations.

4.1. Riccati-type equations

Define the Riemann invariants' R and S

REu+2/3yh™ V2, sEy_2/3yn~ 12,
AEu— Byh V2 gy SByh 2

These quantities are constants along the characteristics if the right-hand side of (2.1) is zero.
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System (2.1) can be rewritten as
Ry + ARy = —£;,'9:{C + F(h)}, @
St + 1Sy = =23, 0:{C + F(h)}. '

Defining
P EhR, = huy — \Byh™ by,
0 1S, = huy + /3yh~2h,,

we have
P+0 he — h1/2Q - P
2h 0T 2.3y

From the definition of £ in (1.2), we obtain

Uy =

4.2)
X
0x L0,V = =300 + 30, 2" (h/ h—3\y) (4.3)

for any smooth function W satisfying W(£o0) = 0. Then

1 X
C+ §h33x$;18x6 = h3ax$;1(h/ h—3e).

—00

From (1.1¢) and (2.1b) we obtain

1
R = —ghz’[u, + uu, + 3yh_2hx]x + C
1
=C+ §h38x£;18x{6 + F(h)} (4.4)

X

1

=h*0, %" (h/ h—3e) + §h38x$;18xF(h). (4.5)
—00

Let the characteristics X, Y, starting from x be defined as the solutions of the ordinary

differential equations

d
3 O =00t X)), Xx(0) =x,

%Yxm — A Y1) Ye(0) = .

Differentiating (4.1) with respect to x and using (4.5), we obtain the Riccati-type equations

d* et 1 1

—P = P+ APy =——P>+ 0% -3h2R, 4.6

ar ot TR -6

d”  der [P I B -2

—0= =—— — P“ —3h" "R, 4.6b

G0 E 000 =0+ o (4.6b)
where %, ‘3—: denote the derivatives along the characteristics with the speed A, 1 respect-

ively. We prove below that the term R is bounded. Also, we obtain a bound of the integral
of P2 (respectively Q?) on the characteristics X, (respectively Yy ). Then the singularities
given in Theorem 2.6 appear due to the term P2 in (4.6a) and/or the term Q2 in (4.6b).
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4.2. The choice of the approximated system

In order to obtain a system that admits global smooth solutions, we linearise the negative
quadratic terms on the right-hand side of (4.6) in the neighbourhood of —oco. For that
purpose, let ¢ > 0 and we define as in [63, 64],

def

1\2
1\2 (Z—l——), < —1/e,
1O E (54 2) Loy © = e @)
0, > —1/e.
Note that (4.6) is like a derivative of (2.1); then adding terms to (4.6) will involve some
primitive terms in (2.1) which are not uniquely defined and cannot vanish at co and —oo.
That is why system (2.1) will not be approximated simply by adding y. to (4.6) as in
[63,64].

Our goal is to obtain a system of the form
hy + [hul, = AT,
U + Uy +3yh2hy = —£;10:{C+ F(h)} +ut,

where A1, ut are terms to be chosen suitably. As in Section 4.1, we obtain

1 1 1
Pi APy = = P2t o ye(P) + 07 = 302 R + P,

I, 1 | s
=—— — —P“—3h""R
Q: +n0x ShQ + 8th(Q)+ sh +2’

where

def

1 1
P = hu)y +uch™ — 3yn 2 (), + 5¢3yh*3/2hxh+ = g Xe(P),

def

- 1 _ 1
Q = hu)x +uxh™ + V3yh™ 20 ) e = S By Phe — oy (0).

Due to definition (4.7), when  is near —oo, the term y.(¢) — ¢? behaves as a linear map.
This prevents singularities from appearing in finite time. From (1.6), we have

1 1 - 1 1
&= —hu®>+ —g(h—h?*+ —hP>+ —hQ?>.
g+ 8= ph Pk
Then the energy equation (1.5) becomes

1 - 1 y
_ + . 2 2pt _inpt 1422 2\ +
&+ Dy = huu™ + ke h™ + g(h—h)h +<6h uy + 2hhx)h

1 1 1 1
ChPP + ~h — Pre(P) + —
+ 6 L+ 6 QQ+ 48 Xe(P) + 48QX8(Q)
1 - 1 y
< et + SuPh* + glh—h* + (thu,% + ﬁhi)}ﬁ

+hPP 4 Lh0Q. “8)
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The goal is to find A and u™ such that

» the right-hand side of (4.8) is a derivative of some quantity (i.e., [---]x), which will
ensure that [ € dx is a decreasing function of time;

* when P, Q are large, we have P = O(P) and Q = O(Q), which ensures (with the
Gronwall inequality) that no singularity will appear in finite time.

We can write the right-hand side of (4.8) as 77 + T» such that

_ 3
= g DI+ yhe )+ 200 b (1u(P) - 14(0)
_ _ 3
= =i+ = D0+ 22T ) - 1]
Then a sufficient condition to obtain 77 = [---] is
3
i = [+ 2T P - 0] @9)

On the other hand we have
1 1 1 1
T, = §h3”x(u+)x + Ehzuih-’_ + §u2h+ + huu't — 4_8h(X8(P) + xe(Q))ux
1 1 1 1
= (Ethr + hqu)M + [§h3(u+)x + Ehzuthr - &h(Xa(P) + Xa(Q))]ux-
Then a sufficient condition to obtain 75 = [---] is

(4.10)

X

l + + _ 13 + 12 + i
Sub® 't = [SH s+ SRk = S h(e(P) + 1:(0))]

In next section we prove the global existence of smooth solutions of the approximated
system, and we obtain some uniform estimates that do not depend on ¢.

5. Uniform estimates

In this section we consider y > 0, 2 > 0 and ko — h,ug € H' such that f]R Eodx <, /gyl_zz.
Also let j, be a Friedrichs mollifier; we define & &f ((ho — h) * jg) + h and ug &f (ug *
Je), where (f * g)(x) def fR f(x —x")g(x')dx’. Using that ||(ho — h, uo — ug)|l g1 — 0

as & — O, we can prove

e—>0

lim egdx=[ Eodx < /gyh?, (5.1
R R

which implies that there exists 9 > 0 such that

ef 1 | R
/SdesEd:f—/Eodx—k—gyhz Ve < gp.
R 2 Je 2
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Following the arguments of the previous section (see (4.9) and (4.10)), we consider the
system

e+ [houf], = AE, (5.22)
uf +uful + 3y(h)2hE = —£50,{C° + F(h®)} + B, (5.2b)
uf(0,) = uf = joxug, h(0,)) = hE L jo % (ho — h) + I, (5.2¢)
where
A€ def 2 V3y &y
(g - y32) g{48(h8)1/2 (£e(P) — 1(0° ))g}
_ V3y .

= 6 x| T (P — 20, 63)

el p— £ € 1 3 £ f€ 1 3 3 €
B 2 D 0 SO — (P + @D 654

with & defined as |
¢ —exp{—§| . |}
2y Y

Differentiating (5.2) with respect to x we obtain

dt L e

TP P AP

1 1

=g (P )2 + %XE(PS) + — ghs —(0%)% - z—heﬂa P? + M, (5.52)
d? . def
EQE = Q}E +n° 0%

== (0" + _Xe(Q ) +

1
82 & NeE £
Shs e 8he( P =g ANQ°+N. (55b)

with

MEE 3(h)T2RE + VE —VE, N L _3(hf)T2RE 4 VE 4 VE,

Ve lhea ‘th{ uCAS + hf / [3(h*=‘)‘1 :
g(hs)z e (Xe(PF) + xe(0° ))]dy}, (5.6)
V5 )72 ) (e (P — 105D} = =) A (5)

V3

Smooth solutions of (5.2) satisfy the energy equation (see Appendix B)

~ 1
&+ D% = g Pre(P) + o stg(Qs) <0, (5.8)



B. Guelmame 762

B

* X1 () 0 Y, (5) *2

Figure 2. Characteristics.

where
~ 1 1 - 1
De Eure 4wt (R + Jg(h)? = 3gh?) + yht s — () eV,
_ 3y
3

The first result in this section is the global well-posedness of (5.2).

(h®)Y2V5 (h® — h).

Theorem 5.1. Let h >0, (ho — h,ue) € ® and ¢ € (0, &o]. Then there exists a global
smooth solution (h® — h,uf) € CR*, H3(R)) N C'(RT, H2(R)) of (5.2) and for all
t > 0 we have

/8€dx—/ /i(Psxe(P5)+stg(Qs))dxdt=/ gdr. (5.9
R o Jr 43 R

Moreover, there exist A, B > 0 depending only on ﬁ, y, g and E such that for any t > 0,
x2 € R, and for x1 € (—00, x2) the solution of Xx, (t) = Yx,(t) (see Figure 2), we have

/Z[Ps(s,Xxl(s))]zds + /Z[Qe(s, Yy,(s)]?ds < A(t —1)+ BVt €[0,1]. (5.10)

In order to prove Theorem 5.1, we need to prove the invertibility of the operator £,
and to obtain some estimates of its inverse.
Lemma 5.2. Let 0 < h € H'(R) + h with h™! € L°°. Then the operator £}, is an iso-
morphism from H? to L?. Moreover, if € Ciim &t {f € CR), f(c0), f(—00) € R},
then ef;ll// is well defined and there exists a constant C = C(h, |h=Y||re, |2|lz>) > O
such that

125" Vlwice < Cll¥ Lo, (5.11)
10225, ¥ (x) < C(1 + [hx () llLe  Vx €R, (5.12)
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1€5" Vla < Clyle, (5.13)

1€, 05 Lo < Cl¥llLt, (5.14)

19x 25 9x W llzoe < CUIWIILr + ¥ [lLe], (5.15)

125" 0¥ M2 < ClIY I (lhxllze + 1), (5.16)

125" 0l + 125 Vil < Cllllze. (5.17)
€5 Vllwree < €5 W llaz < CIU+ A7 1122, (5.18)
022, Y1) < CLA + hellL2) (1 + el )W llz2 + [¥](X)]. (5.19)

Also, if h —h € H*(R) we have
€5, 0x0ll s < CLA + [hxlZoo)lolla + I1h = 2l 21| L,  Bxollwreo],

_ (5.20)
15 ¥ llas < CIA + a7 1 a2 + Ih = hllg2[1€5 " ¥ llwreo]-

Moreover; there exists a constant C = C (v, g) such that

g =y Ylgs < Cllvlg, 19x(g—vd) ' ¥lus <Cliy g2 (5:21)
The proofs of (5.11), (5.15) and (5.20) are inspired by [44].

Proof of Lemma 5.2. Step 0. Let (-, -) be the scalar product in L?. Define the bilinear map
a:H'x H' - R as .
a(u.v) E (hu,v) + 5 (Pus.vx).

It is easy to check that a is continuous and coercive. Then the Lax—Milgram theorem
ensures the existence of a continuous bijective linear operator J: H! — H ™! satisfying

a(u,v) = (Ju,v)g-1xg1 Yu,ve H'.

If Ju € L?, an integration by parts shows that (h3uy)y = hu — Ju € L? and J = £,
This implies that ¥ € H?2, which finishes the proof that £, is an isomorphism from H?2
to L2,

Now defining Cy &f {f €C, f(£o0) = 0}, using that L2 N Cy is dense in Cy one can
define :E;l on Cy. If ¢ is in Cyiy,, we use the change of functions (see [44, Lemma 4.4])

() & () — 241 (p(=00) + (p(o0) — pl—00) —— ) €
Po(x) = ¢ =9 ¢ ¢ o) €6
the operator :C;l can be defined as
1 def g o o e*
"0 = 23 g0 + —(p(-00) + (p(00) g0 7).
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Step 1. Let
V= Epu = hu— %(h3ux)x. (5.22)
Using the change of variables
z= 2—: (5.23)
we obtain
v = hu— %u”. (5.24)

The maximum principle ensures that ||u| e < C ||| Lo, which implies with (5.24) that
luzzlLee < Cl[Y]lLoe. (5.25)

Using the Landau—Kolmogorov inequality we obtain ||u; ||z < C||¥| L. Using again
the change of variables (5.23) we get ||ux || < C||¥ ||z, which completes the proof
of (5.11). Estimate (5.12) follows directly from the change of variables (5.23), (5.25) and
5.11).

Multiplying (5.22) by u and using integration by parts one obtains

2
el < Clly o lullzee.

Inequality (5.13) follows directly using the embedding H! < L. Using (5.11) and

X X
£, 0cy = —3/ (h=y) +3%," (h/ h‘3w),
—00 —00
we obtain (5.14) and (5.15). Using the definition of £; we obtain
£710.0 = £ 0.h3 L0 L h 3y
1
= x;lax I:h4$;1h—3w _ §h38xh33xi;1h_3w]
1
= $;1[4h3hxx,;lh*3w +h0. L, Ry — 5axh3axh3ax;fz,jl/f%/f]
= &, [4nPh L3 Y] + R0 25 h T3y (5.26)

Inequality (5.16) follows from (5.13) and the Cauchy—Schwarz inequality.
Let £pu = ¥ + ¢x. Then

”u”%]l = (u,u) + (ux,ux)
1
< Cl(hu,u) + §(h3ux,ux)]

= C(Lpu,u) = C{(Y,u) — (¢, ux)]
< Cllullgr (¥ lie + llelz2).
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which implies that
lullgr < CUIY L2 + ll@llL2). (5.27)

Taking ¥ = 0 (respectively ¢ = 0) we obtain (5.17). Replacing h~3 by ¥ in (5.26), we
multiply by 23 and we differentiate with respect to x to obtain

Py = =3h2h [, 0 kY — £, [ARPh 25 ]
+ h 30, L, 0Py — W30, L5 4R h 25, Y] (5.28)

Using (5.17) and the embedding H! <> L we obtain

10225 W liz2 < Cllhxlr2lll €, 0xh> Wil + 1125, 4R he Ly Y]l 1]
+ Cllax2y 0:h Y [ 12 + Cll0x L), 4R he L ]Il 2
< Cllhaxlz2[1¥ ez + lhxllz2 €5 ¥ g
+ CllY iz + Cllaxllz2 €5 ¥l
< Cl1+ [ 201 | 2.

This with (5.17) implies (5.18).
Now differentiating (5.26) with respect to x, using the definition of £ and replacing
h™3y by ¥, we obtain

0Ly 0Py = 0,2, [AR3he L5 W) + 30, Y — 3y
Then (5.28) becomes
PL = —3h2hy (L5 0 h3 Y — £ 43 h £ ) + 3028 Y — 3Ry
Then, using (5.17), we obtain (5.19).

Step 2. Using £,u = ¥ + ¢ and the Young inequality ab < ﬁaz + %bz with @ > 0,
we obtain

”ux”%p = (U, Ux) + (Uxx, Uxx)
1
< C[(hux’ ux) + g(h:;uxx, Mxx)]
13 3
- C[—(hu,uxx) = (hatt, ) + 5 (W) = (h )xux,uxx)]
= C[_(;Chua Uxx) — (hxua ux) - (hzhxuxv uxx)]
1
< Clafuxxlz. + &”éﬁh””iz + Co(1 + [|hxl|7o0) el 31]-
Taking o > 0 small enough we obtain

luxlz < ClIERuNZ> + (14 [zl 7o) ],
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then
luxllgr < Clll€rullz + (1 + [[hxllzee) |l z1]-

Taking ¥ = 0 (respectively ¢ = 0) and using (5.27), we obtain
I£5 3x@llmz < CA+ hxlze) @l 1L ¥z < CA+ hxlze) ¥ L2 (5.29)

Let A be defined as A f = (1 + £2)1/2 f. Since £5u = ¥ + ¢x, we have
1
LA = [h, A2u + A%y + 8x{—§[h3, Auy + A2<p}.

Defining # = A%u, ¥ = [h, A%Ju + A%y and ¢ = —1[h®, A2Ju, + A2¢ and using (5.27),
(A.3) we obtain
IA%ul g1 < ClI, ANl 2 + 112, ANuxlie + 19 a2 + ll@llae]
< Clllhxlizelullg2 + 1 = hll g2 llullwice + 1V |2 + 1@l a2].
Taking ¥ = 0 (respectively ¢ = 0) and using (5.27) with (5.29), we obtain (5.20).

Step 3. It remains only to prove the inequalities (5.21). Since the operator (g — y92)~ ! is
nothing but a convolution with the function &, the result follows directly using the Young
inequality. |

Lemma 5.3. Let (h —_ﬁ, u) € H'(R) such that [ €dx < E < /gyh?. Then there exists
a constant C = C(y, h, E) > 0 independent of ¢ and h such that

€5 0xCllLom) + IRl L) < C. (5.30)

/ (2(P) + £:(0)) dx < C. (5.31)

€505 4h(xe(P) + xe(O)} o) < C, (5.32)
(L5, 0 thPuxAS Y, £ uAL) Lo w) < C, (5.33)
IAS ||z + (A5, AS, BE,VE, VE) || Loy < C. (5.34)

where A®, B, V{ and V5 are defined as in (5.3), (5.4), (5.6) and (5.7) by replacing (h®,u®)
with (h, u).

Proof. From [p Edx < E we have ||(C, P2,0?)||1 < C. Then the proof of (5.30) follows
from (4.5), (5.11), (5.14) and (5.18). Since y (1) < A2 we obtain (5.31). Then (5.31) with
(5.14) implies (5.32). In remains to prove (5.34). For that purpose, we use the Young
inequality, (5.3) and (5.7) to obtain

[Allzee + [AxllL2 + AxllLe + [V2llLe < C. (5.35)

The estimates (5.11), (5.14), (5.31), (5.6), (5.35), (5.4) and the Cauchy—Schwarz inequal-
ity imply (5.34). |
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Proof of Theorem 5.1. Following [26,27,30, 39,44], we can easily prove the local exist-
ence of solutions of (5.2). Integrating the energy equation (5.8) on [0, ] x R, we obtain
(5.9).

Step 1. Defining

_ -3
Ue s (e — )T, AU Y (3”}(’)) }?) ,

gy def u® h* e yrey 9 A%
B (3)/(/’!8)_3 us) » TUY (—cf]:,} 0x{C8 + F(h®)} + B¢ )"’

system (5.2) becomes
Uf + B(UAU: = F5(U?®). (5.36)

Let (-, -) be the scalar product in L? and E(U?) = L (A3U®, A2A3U®). Since A°B® is a
symmetric matrix, straightforward calculations with (5.36) imply that

EU®); = —=2([A%, BJUE, A°A*U®) — 2(BEAPUE, A°APU°)
(A33"8 APAPU®) + (NPUP, ASAPU®)
2( BRJUE, A°A°U°) + (APU®, (A°B) A*U?)
+2(A° ffs APNPUS) + (APUP, ASA3UF).

From the definition of y, we have

xe®I <& e®I <20 @) <2

Using the Gagliardo—Nirenberg interpolation inequality || fx ”1%4 S C|fllzeell frxllL2 with
(A.2), we then obtain

lxs(P)llaz < Clllxe(P)lLz + xe (P Pil L2
+ e (POYPL N2 + g (PP 2]
S CIPollLel PP llg2 < CIUZ Lo U]l - (5.37)

The same inequality can be obtained for Q°:
lxe(@) g2 < CINUL Lo |U° || - (5.38)
Using (5.21) and (A.2), we obtain

1A% AD s < CUIP (o llB® = Al + (e (P2). xe(Q*) 112
S CA+ ULNEIUC 13- (5.39)

Using (5.9), (5.14), (5.15), (5.17) and Lemma 5.3 we obtain

£33 0:{C° + F(h®)} + B 1o < C(1 + |UE[|3 o). (5.40)
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Now using (5.20), (A.2), (A.4), (5.37), (5.38), (5.39) and (5.40) we obtain
I1B® — L5 9:4C° + F(h*)} s < PUIUL ) 10Ul 3.
where & is a polynomial function. The last inequality with (5.39) implies that
190 ks < PUUL L) U [ 3. (5.41)
Defining B f B(h, 0), and using (A.3) one obtains

(A2, BEUS. A°APU®)| < CI A1 | U s
X (IBE e lUE 2 + [|1BS — Bl g3 |US || o)
S CIUE L= |U° 35 (5.42)

Using (5.2a) and (5.34) one obtains
(AU, (A°B*)x APU®)| + [(APU, ATAPUO)| < C(IUL L + DU 1. (5:43)
Summing (5.41), (5.42) and (5.43) we obtain
EWU®): < PUULNL) U s < PUUL L) EU®),
which implies, with the Gronwall inequality, that
1US|lgzs < CE(U®) < CE(UE)eh PUVEIL®) o < O UE| praelo PUVEIL2) ds.
This implies that if T2, is the maximal existence time, then

max

T:. <00 = limsup||Ui(z,)||Le = o0. (5.44)

max
£
- Tmax

Step 2. Define

:Hi déf %ﬁ((he)l/z(uS)z + g(he)—l/Z(hs _ };)2) _ us(Re + %g((hE)Z _ };2))

+ usé(hs)z\?'i + @(m)l/z(h — h)Vs.
35 & DB (06 20 + gy 0 — i)+ (R4 g0~ )
L 02; = L ey s,
We note that
7res D= @(ha)l/Z(Pé‘)z + 945,
e _ peee — M(h3)1/2(Qa)2 + I,

6
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From Lemma 5.3 we deduce that H§ and H$ are bounded. Then, integrating (5.8) on the
set (see Figure 2)

{(s,x), selt,t], Xy (s) <x < xZ(s)}

and using the dlvergence theorem with (5.9) one obtains (5.10) for all ¢ € [0, T,

Thax)-
max
Define 11 = 1nf{t =0, P%(t,Yx,(t)) = 1} and lett, < T;,, be the largest time such that

Pe(t,Yx,(t)) = 1 on [t1, £2]. Dividing (5.5a) by P® and integrating on the characteristics
between t; and ¢ € [t1, 1], we obtain with (5.10) and Lemma 5.3 that

Po(t. Yy, (1) < PO(11, Yy (1)) V1 € [11,1].
Using that P®(t1, Yx,(t1)) = max{l, P§(x2)} and doing the same for Q°, we obtain

PE(t, Yy (1)) < max{1, P§(x2) €000 V(1.xp) €[0. 7,
Q°(t. Xy, (1)) < max{l, 0§ (x1)}e*" V(1. x1) € [0.T,

) xR, (5.45)
) x R. (5.46)

4 max

’ max

On the other hand, we define t1 mf{t >0, Po(t,Yx, (1)) < —1/e}and leti, < T2, be
the largest time such that P¢(z, Yy, (1)) < —1/& on [f1, f2]. Using (5.5a) and Lemma 5.3
one obtains

e 1. 1.
— < pe dfPs + A°P; = C( + I)PS C Vtelh,t)
Using that P#(f1, Yy, (f1)) = min{ P¢(x2),—1/e}, we obtain for all (7, x,) € [0, T}%,,) X R,
P2t Yy (0) 2 min{ =1 /e, min{ P§ (x2) — 1/e}eC01 1/
| — CU+1/e) } 5.47
+ &+ 1( . o
Doing the same for Q°, we obtain for all (¢, x1) € [0, T%,,) X R,
0°(t. Xxy (1) = min{~1/e, min{ O (x1) — 1/e}eCH1/°"
| — eCa+1/ex } 5.48
T3 +1 (1-e : o
Finally, using (5.44), (5.45), (5.46), (5.47) and (5.48) we deduce that 7%, = oo. n

The remainder of this section is devoted to obtaining some uniform (on ¢) estimates
of the solution of (5.2) given by Theorem 5.1. These estimates are crucial to obtain the
precompactness results in next section.

Lemma 5.4. Let (ho — h,uo) € ® and let (h® — h, u®) be the solution given by The-
orem 5.1. Then there exists a constant C = C(y, h, E) > 0 independent of ¢ < gy and
(ho — h,ug) such that

[ €52 0x € || oo+ xRy + (B, V5, V5, RE) || Lo+ xRy + S || Loo v+, 1 R)) < C. (5.49)
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/R+ /R(XS(P'S) + xe(0%))dx dr < eC, (5.50)
[ TR0t P + 1@ D miy < €. 6:51)
/R IR DA PULAS), £ A i di < C (5.52)
[ 165,898 Pl < e 5.5

Proof. Inequality (5.49) follows from (5.9), (5.30) and (5.34). Note that
/ f (Xe(P®) + xe(QF)) dx dt < —s/ Py (P%)dxdt
R+ JR {Pe<—1/g}

e / 0% £:(0) dx dr.
{Q¢<—1/¢}

The last inequality with (5.9) implies (5.50). Finally, we use (5.50) and Lemma 5.2 as in
the proofs of (5.32), (5.33) and (5.34). We integrate on R™ with respect to ¢ to obtain
(5.51), (5.52) and (5.53). [ ]

Lemma 5.5 (Oleinik inequality). There exists C > O that depends only on y, h, gand E
such that for all (¢, x) € (0,00) X R and € < g9 we have

PE(t,x) <C(1+t7Y, Q%(t.x)<C+171h.

Proof. Let D > 0 be a constant such that 2D~! < 164° < D, and let A, B > 0 be the
constants given in Theorem 5.1. Using Lemma 5.4, we obtain a constant M > 0 depending
only on y, h and E such that

1
M= Sup{—g(./li)z + MS} + DA.
tx \h

Define
def

7(s) & ? 1+ V2MD, () ¥ #(s) + BD.

The goal is to prove that for all # and x we have P®(z, Xx(¢)) < &(¢t) and Q°(¢, Y, (¢)) <
5 (¢). Since the proof is the same, we only prove the inequality for P*®.
Using the inequality —A% P < 2(Af)2 + (P¢)?/8 and using (5.52a), we obtain

d* 1 1 1
—_Pf<— P£2 Pé &\2 _ASZ ME
m 16hg( ) +8h£xs( Hshs(Q) +hs( ¥+
1 1
< —— (P52 + D(0%)% + — y.(P®) + M — AD. 5.54
D( )"+ (Q)+8h8x( )+ (5.54)

Let x € R be fixed. We suppose that there exist £; > 0 such that P¢(t1, X (¢1)) = F (t1)
and Pé(t, Xx(t)) = F (¢t) forall ¢ € [t1,1,]. Since P® = 0 we have y.(P¢) = 0. Integrating
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(5.54) on the characteristics between ¢y and ¢ € [t1, ;] we obtain

Pe(thx(t)) < Ps(tl»Xx(ll))

_[tygyds+AD0—h)+BD-%Ul—ADKt_“)
t

= ?(ll) + ? — g —M(t—ll)—2v2MDln(t/ll) + BD
< 6(1). (5.55)

Since the solution (h¢ — h, uf) € L®(R*, H?), initially we have P£(0%, X, (0T)) <
F(0T) = oo. Inequality (5.55) shows that if P® crosses F at some ¢; > 0, P¢ remains
always smaller than § for ¢ = ¢;. This completes the proof of P¢(t, X, (¢)) < §(t) for all
t > 0. The proof for Q¢ can be done similarly. ]

Lemma 5.6 (L?%% estimates). For any bounded set Q = [t1,t;] x [a,b] C (0, 00) x R
and o € (0, 1) there exists Co,q > 0 such that for all ¢ < g9 we have

f RSP 4 |2 4 il P 4l P dx df < Cogr (5.56)
Q

< Caq. (5.57)
Loo([t1,8a] W22+ (a,b])

x 1
£ (hs / (h)3Cedy + 3F (hs)x)g
—00

f
Remark 5.7. The constant Cy o depends also on ﬁ, y and E but not on ¢ and the initial
data.

Proof of Lemma 5.6. Step 1. In order to prove (5.56) we use the change of variables

def def 1 x N\, e A P
v=t1oz=g - (h*(t,y) —h)dy + hx,
—00 P

we obtain with (5.2a) that
0x = h®0;, 0; =0+ (A* —h®u®)d,, 0;+udy =09, + A%0;.

The map
O:RT xR - RY xR, (t,x)— &(t,x) = (1,2)
is bijective. Then (5.5) becomes

1

1 1
£ & _ &\1/2ype _ _ £\2 £ £\2
Pe o+ (A = 3y (h)2) P = = (P o e(PF) + 5 (%)
1
_ 2_hsAfCP8 + ME, (5.58a)
1 1 1
0% + (A° + 3y (h)?) 08 = ———(0°)* + =~ 1:(0°) + =~ (P®)?
8h¢ 8h¢ 8h¢
1
— —ALQ° + N°. (5.58b)

2h¢
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Without loss of generality, we suppose that « = 2k/(2k + 1) with k € N. Multiplying
(5.58a) by (P?)%, using a+1 =1+ a_+1 (P)%x(P?) = 0 and (5.49) one obtains
I (1-

o (PP — 0F) = (PF) 0% (P - 0°))

8he la + 1
(Pe)et! — 3y (h®)'/?

() (e,
4 C(|Ps|a+1 + (Ps)a).

Doing the same with (5.5b), we obtain

1 l-—a € eNA pE(NE £
T b PF) = (0°)"P*(0° - P7)}

(QS)()[+1 A+ m(ha)lﬂ
= < o+ 1 )r + ( o+ 1
+CUQ° 1T+ (2%)).

(Qa)a+1>z

Adding both equations yields

1 1- gyo+1 £ £
EirES — (0" (P = 0)
+ (PO (P!~ = (09 ™) (P* - 09))

((PS)(¥+1 + (QE)oH-l)

o+ 1
N (\/_(ha)l/Z((Qé‘)ot-I—l _ (Pé‘)Ot-I—l) +As((Q€)a+1 + (PS)ot+l))
o+ 1 z
+C(Q°1" T+ (0" + [ PE*H! 4+ (P)"). (5.59)

Letp € C2°((t1/2,t2 + 1) x (a — 1,b + 1)) be a non-negative function such that ¢ (¢, x) =
1 on Q. Multiplying (5.59) by ¢(®~!(z, z)) and using integration by parts with (5.9) we
obtain

1—0[ e _ &\2 e\a ena
a+1[1;+x p(P* = Q%) ((P*)" 4+ (Q°)%) dx dr

< /R +xR{a (P (@) (P~ ) gt x) dx

+ /W {(PHX(OH* (PO ™ = (05 ™*)(P® — Q°)}o(r, x) dx dr
dz dr

1
= A+ R{a+ 1((Ps)ot+1 (Qé‘)OH-l)(PS 0 )}(p(q) 1(1, Z))

zdf

+/ {(PO*(Q)*((P)' ™ = ()™ (P* = 0°)} (@~ l(f z))
R+txR
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<8 [ [eaouet 4 @ P+ (e a:
R+ xR

3 ((Pe)a+; _:_ (lQe)oz+l )@{I s de

ey1/ serl _(pe« & £)* )
_8/ (ﬁ(/’l )1 2((Q ) +1 (P ) +1)+-A ((Q ) +1+(P ) +1))¢Zd2d‘f
R+ xR a+1

oy / CUO%* + (0°)* + | PE*1 + (P*)%)ph® dx dr
RtxR

PéE a+1 + eya+1 B
— 8/ (( ) (07 )hs(got +ufp, — (h®) L APgy) dx dt
R+xR oa+1

&\1/2 eya+1 _ eya+1 & eya+1 eya+1
o[ (LM@Y Y AR QI T PO,
R+xR a—+1

< Ca,Q-

The last inequality follows from (5.9) and from the fact that ¢ is compactly supported.

Then we have
Pt = 02(Po + (@) dxdt < Cua (5.60)
Step 2. Multiplying (5.59) by (h¥)~'/2 we obtain
1 1—
W{ﬁ(([)&)d%ﬂ _ (QS)CH-l)(Ps _ Qs)
+ (PH(Q) (P9~ = (0°)'™)(P* - 0°)}
(Ps)a-‘rl + (Qs)a+1 m((Qa)a-‘rl _ (PS)O(-’rl)
<( @+ Do) ).+ ( w11 ).
(@Yt (et
@+ w2 s
+ (hS)—l/ZC(|Q8|Ol+1 + (Qe)a + |P5‘|Ol+1 + (Ps)ot)
1 peyetl eya+1 1 4
3 ( ) + (Q ) {(PS)a+le =+ (QE)OH—IPE}.

ZA _
T G T D2 B Pt

Using (5.49) one obtains
1 1-—
SO 1P @+ 0
+ (PO*(Q)* (PO ™ + (%) ™) (P* + Qs)}
((1”8)"”rl + (QE)"‘“) . (JW((QS)"”rl - (Ps)"‘“))
(o + 1)(h8)1/2 T oa+1 z

Ae eya+1 P& a+1

<

~




B. Guelmame 774

As in the first step we obtain

P+ 0P + (@) dxdr < Coa (5.61)
Summing (5.60) and (5.61) one obtains
/Q((Pe)"“r2 +(O) ) dxdt < Copg = /Q[luilz’”" + [R5 2T dx dr < Co 0.

Step 3. Inequality (5.56) follows directly from (5.2) and Lemma 5.4. Finally, using (5.11),
(5.12), (5.18), (5.19) and (5.56) we obtain (5.57). [

6. Precompactness

The goal of this section is to obtain a compactness of the solution. Due to the nonlinear
terms in the equations, strong precompactness is needed to pass to the limit ¢ — 0. Strong
precompactness of (h?), and (u®). is easy to obtain. However, strong precompactness of
(P?%), and (Q°?), is more challenging. Several lemmas in this section are inspired by [15,
59, 61-64]. Throughout the section, Lemma A.2 is used many times without mentioning
it.

We start with strong precompactness of (h¢), and (u),.

Lemma 6.1. There exist (h — h,u) € L>®([0,00), H'(R)) and a subsequence of (h®,u®),
such that we have the following convergences:

(h® —h,u®) — (h—h,u) in L2([0,00) x R),
(h® —h,u®) — (h—h,u) in H'(0,T] xR), VT > 0.

Proof. From the energy equation (5.9) we have that (h¢ — h, u®) is uniformly bounded in
L°([0, 00), H'(R)). Then, using (5.2), and (5.49), we obtain

(75 uD)llz2qo,rxr) < Cr- (6.1)

The weak convergence in H ([0, T'] x R) follows directly. Using the inequality

t 2
160, — 065, )22y = /R ( / 9;(T,X)dr) dx < 11— 51 10: 120 73m)-
S
with (6.1) we obtain
1 € o) — & . 1 & o) — € . —
B (1) — (5. )2y + I A°(2.) — hE (5. ) 2qey = 0

uniformly on . Then, using [55, Theorem 5], we can deduce that up to a subsequence,
(h®, u®) converges uniformly to (&, u) on any compact set of [0, 00) X R whene — 0. =
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Now we establish the weak precompactness of (P¢), and (Q?),.

Lemma 6.2. There exist a subsequence of { P, Q%}¢, also denoted { P?, Q¢}., and fam-
ilies of probability Young measures vtl’x, vix on R and p;y on R?, such that for all
functions f,¢ € CX(R), g € C(R?) with g(£,¢) = O(|€]> + |¢|?) at infinity, and for all
@ € C((0,00) x R) we have

. e _ 1
tim [ grpramnis = [ o [ rowl@ex 62
im [ s r@ et = [ o0 [ o020 63

uniformly on any compact set [0, T C [0, 00), and

lim o(t,x)g(P%, Q%) dxdr
R

£—=>0 JR+x
- / o(t. ) f 9(6.0) djuex(£.0) dx dr. (64)
R+xR R2
Moreover, the map
2 1 2 2
(t.x) > /R £l () + /R 2 dv? (©) (6.5)
belongs to L*(R*, L1(R)), and
(.8 = v (6) @ v7 L (0). (6.6)
‘We define
fP O [ g0 dnED ©7)

which is, from (6.4), the weak limit of g(P¢, Q¥).

Proof of Lemma 6.2. Step 1. The pointwise convergence of (6.2) is a direct corollary of
Lemma A.1 with O = R and p = 2 and the energy equation (5.9). The key point in proving
the uniform convergence is to show that the map

t o, T]r—)/l‘gqﬁ(x)f(Ps(t,x))dxdt (6.8)
is equicontinuous. Multiplying (5.52) by f'(P*) one obtains
SO+ (P = (P 4 30°) /()
g (P + e se(P) + (0
_ 2ith§P£ + M] 11(P®). (6.9)
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Multiplying by ¢ (x) and integrating over [t;, 3] X R we have
[ oA 20 = £(Po (3]

= [ttz A[W(X)XSJ”(PS) + %hsqb(x)(PE +3Q8)f(P5)] dy d

" 1 £\2 1 3 1 £\2
7o - g+ P+ (@)

1
— AP+ Me]f’(Ps) dx dr.
Using that f € C®, the energy equation (5.9), Proposition 2.4 and Lemma 5.4, we find
that the map (6.8) is equicontinuous. This finishes the proof of the uniform convergence
of (6.2). The same proof can be used for (6.3). Using (A.1) we deduce that the map (6.5)

belongs to L>®(R*, L1(R)).

Step 2. Now we suppose that g satisfies g(£,¢) = o(|£|> + |£|?) at infinity. Then, using
Lemma A.1 again, with O = (0,00) x R and p = 2, we obtain (6.4). If g(£,¢) = O (|&|> +
|€]2), let ¥ be a smooth cut-off function with ¥ (§) = 1 for || < 1 and ¥ (§) = 0 for
|€] = 2. Then

lim o(t,x)gr(P?, 0%)dx dt
R

e—0 R+X
- / o(t.%) / ge(6.8) dpty o (£.0) dx dr, (6.10)
R+xR R2

where g, (§,0) &f g(&, {)1#(%)1#(%) with « > 0. Using the Holder inequality, Lemma 5.6

with 2 = supp(¢) we obtain

‘ [ om0 - e 09 axa
RtxR

<

S

/ 0(6,)| [g(PF. 0F)] dx dr
supp(@)N{| P¢|=k or |Q¢|=k}

2/p (p—2)/p
<C (/ lg(Pe, 0%)|P/? dx dt) (/ dx dt)
supp(¢) supp(@)N{| P¢[=k or |Q¢| =k}

(r—2)/
< C[|{(t. %) € supp(9), |P°| = i} | + [{(z. %) € supp(p), |Q°| = «}|]"~7"F
< Ck*7P,
where 2 < p < 3. The last inequality with (6.10) implies that we can interchange the

limits k — oo and ¢ — 0. Using that |g,| < |g| and the dominated convergence theorem
we obtain (6.4).
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Step 3. It only remains to prove (6.6), for which we let f € C2°(R) and we rewrite (6.9)
in the form

FPOY+ (P, = [(h — 26 F(PY] + ——(P® + 30°) £(P¥)

e
[ (P 4 (P £ (07
8he 8he? 8he
_ 1 e pe e| s/ pe
AP+ ]f(P ). 6.11)

Lemma 6.1 implies that (A — A¥) f(P¢) — 01in L2 ((0,00) x R) when ¢ — 0. This implies
that [(A — A%) f(P#)]y is relatively compact in H ;! ((0, o0) x R). Since f € CX(R),
using (5.49) and the energy equation (5.9) we obtain that the remaining terms of the right-
hand side of (6.11) are uniformly bounded in Llloc((O, 00) X R). Then, due to Lemma A.3,
they are relatively compact in ngcl ((0, 00) x R). Doing the same we can prove that for

all f, g € C°(R) the sequences

{Lf PO+ Af(PO)]xte.  {[8(Q)]r + ng(Q°)]x}e

are relatively compact in H,gcl ((0,00) x R). Then, using Lemma A.6 (a generalised com-

pensated compactness result), we obtain

F(PHg(Q®) — f(P)g(Q) whene — 0,

where (f(P), g(Q)) is the weak limit of ( f(P?), g(Q¥¢)) defined in (6.7). Then, for any
@ € C°((0,00) x R) , we have

/ / 0(.%) fE)g() durx (6.0 dx dr
R*txR JR2
—tim [ (. x) f(P)g(0%) dxdr = / o(t.x) F(P)2(0) dx di
R RtxR

e—0 R+ x

/ f p(t, %) (E)2(0) dv} (§) ® V2, (¢) dx dr,
R+ xR JR2

which implies (6.6). The proof of Lemma 6.2 is completed. ]

Using (4.2), Lemma 6.2, (5.2a), (5.53) and Lemma 6.1 we can obtain the identities

P+0O ) — P
uy=FP+te , _pe-F 6.12)
2 237
he + (hu), = 0. (6.13)

Now we present some technical lemmas that are needed to obtain the strong precompact-
ness of (P?), and (QF),.
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Lemma 6.3. Ast — 0 we have

(R —ho,u —uo)|lg1 )y = O, (6.14)
/(P_Z—Fz)dx—i—/(Q_z—QZ)dx—>0. (6.15)
R R
Proof. Define
def g
& — & h > ,
W (\f(h e m v AL
def ( 1& o _
wo.o (o -5 s m ﬁ) =0
Pl & —
Wt x) (\/7(h h)\/7 ﬁ ﬁ Q) (>0,

def g - 0
Wo<)—(\E(ho—h),\/;uo,mpo,mgo).

From Lemmas 6.1 and 6.2 we have, for all ¢ > 0,
We(t,) — Wi(t,-) when ¢ — 0, in L(R),
(P%(t,9)%, 0%(t.)%) — (P2(t,-), Q2(t,-)) whene — 0, in D'(R).
This, with Jensen’s inequality, (5.9) and (5.1) implies that
WOy < PO ay < WOl sy = timipt [ €010
< lim [ &fdx =/ Eodx = | Wo|2.. (6.16)
e—0 R R

The energy inequality (5.9) with (5.1) implies that (u®, P¢, Q¢) is bounded in the space
L°°([0, 00), L%(R)). Multiplying (5.2a) by 1, (5.2b) by (h®)'/? and (5.5a), (5.5b) by
(h%)~'/2 we obtain

0+ [oufls = AS

X

heuel, —
[V, = e = 0 e = Gy

_ (h8)1/2$;518x68 + (hé‘)l/ZnBE7

& A’S €
[%L +] \/; l.= 8(,181)3/2 [(PE)? + xe(P?) + (Q°) + 10P* Q° — 8A% P?]

L2
v
& & & 1
[, +[5], = 5@ + 2602 + (P77 + 10P° 0 —842.0°]
N&'

+ .
Vhe
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Then, for all 7 > 0 and for all ¢ € H'(R), the map

[ / e(x)W*®dx
R
is uniformly (on ¢ € [0, T] and & < g¢) continuous. Then Lemma A.5 implies that
W(t,-) ~ Wy whent — 0,in L%(R), (6.17)

which implies that
[ €odx = |[Wo|7, < liminf|W|7,.
R t—0

On the other hand, (6.16) implies

limsup||W||zz = limsup/
t—0 t—0

Edx < / Eodx = |[Wol7..
R R

Then
fim W22 = IWol2: = [ €0, (6.18)
- R

which implies with (6.17) that
W(t,-) - Wy whent — 0,in L?(R). (6.19)
Inequality (6.16) with (6.18) implies
TR AT) . 2 2
lim |72 = lim [ W2, = [ Woll3.. (6.20)

Then (6.15) follows directly from (6.20). Using (6.19) and (6.12) we obtain the strong
convergence

| (2 = o, /i = Voo, b/ h = o/ ho, N hux = Vhoug) | .o — 0

as t — 0. In order to obtain (6.14), we write

u—uo——(x/—u—\/—uo)-i-\/—uo(———)

7 s
T ( o )+ jz_(h ho).
Uy — g—f(fux /_u)+/_u0<f Jl_)

On the right-hand side of the previous equations, the first term converges to 0 in L? as
t —0.Since h,1/h € L*, ug, hyy, uy € L? and h € C(][0, 00) x R), the dominated con-
vergence theorem implies that the second term goes to 0 as t+ — 0. This ends the proof of
(6.14). (]
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For any x > 0, we define

—K(S%—%K), I

Se©) & S8 =2 E+0 e — 56— ese = | 162 fl <k 621)
K(S—lk), E=>«k
-k, &< —k,

Te(®) E SLE) = & — (E+0)lgen — E—0) gz = 16 €] <k, (6.22)
K, E=>«

Lemma 6.4. For any k > 0, there exist a subsequence {M?, N¢, P¢, Q¢}, and M e
L ((0, 00) x R) such that, when & — 0, we have the limits in the sense of distributions
on (0,00) xR

M~ M and MET(PF) — T (P)M, (6.23)
Ne =~ M and N°T,(Q°) — Te(Q)M. (6.24)

Proof. Step 1. We define
ef * 1
':Pg d:t ;6;51 (/’16/ (ha)—3e€ dy + gF(he)x)
—00

From (5.49), we have that P? is bounded in L*°([t1, t5], W1’°°([a, b))) for any b > a,
tp, > t; > 0. Thus, there exists P e L*®([t1, t2], W1’°°([a, b])) such that, up to a sub-
sequence, we have

PP 9P~ 0, P, ase—0,

. 7P
in Lj,

Step 2. For a fixed ¢ € C°((0, 0o) x R), the inequality (5.12), Lemma 5.4 and (5.57)
imply that (1 — 82){p®P?} is uniformly bounded in L %((0, 0o) x R) for all « € [0, 1).
Then, up to a subsequence, we have

((0,00) x R) for any p < oo.

(1= 02){pP*} — (1 — 32){pP}

in L2Y%((0, 00) x R).

loc

Step 3. Since |T(P®)| < k, the convergence Ty (P¢) — T,(P)isin L ((0,00) x R) for

loc

any p € (1,00). Then, for any Y € C2°((0, 00) x R), we have, up to a subsequence,

lim Y1 —02)" 10, T (P?)} dx dt =/ Y(1—02)"0, T (P)} dx dt.
=0 J(0,00)xR (0,00)xR
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This limit is stronger. Indeed, replacing f in (6.9) by T, we obtain

(Te (PO + DT (PO = 3 (P + 30°)Te(P)
1 &\2 1 & 1 &\2
| g (P + g 2e(PO) + 5(29)

1

AP +M8]TK’(P8).

Then the sequence {(1 — 82) {3, T, (P*)}}¢ is uniformly bounded in W1:*°((0, co) x
R). The Arzela—Ascoli theorem implies that, up to a subsequence, we have that the con-
vergence

(1= 0D O Te(P*)y — (1 = 01" H{3: T (P)}

is uniform on any compact set of (0, 00) x R. Following the same proof we obtain the
uniform convergence

(1= ) HTe(P)} — (1= 03) " H{T(P)}
on any compact set of (0, co) x R.

Step 4. Let ¢ € C£°((0,00) x R). Then

/ Te(P®)pPE dx dt = [ Te(P)(1—32)7 (1 — 33)[(9P?)x — x PF] dx dt
(0,00)xR (0,00)xR
—— [ =R TMLTP) (- ) avar
(0,00)xR
S [ Ay ey (- B arar
(0,00)xR

Taking the limit ¢ — 0 and using Steps 2 and 3 and Lemma A.2 we obtain

lim T (P)pPE dx dt = —/ (1—92)"H0, T (P)} - (1 — 3%){@P} dx dr
=0 J(0,00)xR (0,00)xR
[ =@ TP (- BT arar
(0,00)xR
= [ Te(P)pd, P dx dt. (6.25)
(0,00)xR

Step 5. Since |T,(P?)| < k, from (5.53) we have V1T, (P?) — 0 and Vo, T, (P?) — 0.
Then using (6.25) we obtain (6.23) with

ME 319, 7.

Following the same proof we obtain (6.24). ]
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Lemma 6.5. Forall T > 0, we have
Jim [T (P) — T (Pl qo,r1R) = Jim [[7(Q) — Te( D)l qor1xr) = 0. (6.26)
lim ||Tc(P) — PllLiqo.rixr) = lim [T(Q) — Oll1(0.71xR) = O (6.27)
K—>00 K—>0Q

Moreover, for all k > 0 we have

STP) ~ T(P)? < 50P) — Sc(P), (6.28)

1 — _ _ _
5 (Te(Q) = Te(0))* < 5c(0) = Se(0).
Proof. Since the proofs for P and Q are the same, we only show the proof for P. From
(6.22) we have
2
ITe(§) — &l < 1€ + kllg<— + 1§ — klgzie < 2] Lesigy < ;52-
Then we have

TP~ Te(P)| < |TeP) — P+ [To(P) ~ Pl < ~(P2 + P?)

Jensen’s inequality implies that P2 < P2. Lemma 6.2 implies that P2 € L®(R*, L' (R)).
Then (6.26) and (6.27) follow directly.

The Cauchy—Schwarz inequality implies that 7, (P)? < T,(P)2. Then, using defini-
tion (6.22), we obtain

(Te(P) = Te(P))? < Te(P)? + T (P)* — 2T (P)T(P)
= T, (P)? + To(P)* = 2T, (P)P + 2T (P)(P + )1 p<—«
+ 2T (P)(P — k) 1p>,
= T(P)? + 2T (P)[(P + ) lp<—c — (P + €)1 p_,]
—Te(P)? + 2T (P)[(P —)1pzc — (P — )15, ]
S Te(P)2 = 2¢[(P + K)lps—ic — (P + )L pc_]
— T (P)* 4+ 2¢[(P — k)1psc — (P — k)1 ps, ], (6.29)

where the last inequality follows from Jensen’s inequality with the concavity of &
(§ + k)lg<—, the convexity of § = (§ — «k)1gx, and —k < T, (§) < «. Since

1
Sc(§) = ETK@)Z + i —i)lgze — k(4 )<k,

we have

1
Se(P) = ETK(P)z + k(P —)lpze — k(P + 1)l p<y,

_ 1 _ _ _
Se¢(P) = ETK(P)z + k(P —K)]lpzk — k(P + Ic)]l13$_K.

The last two identities with (6.29) imply (6.28). ]
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Now we state the main result of this section.

Lemma 6.6. The measures v!, v? given in Lemma 6.2 are Dirac measures, and

Vi () =850, 70 =854

Proof. Since the proof is the same, we present here only the proof of vtl’ () =385 ().

Note thatif P2 = P2 then fR(lB £)? dvt () =0, which implies that supp(vt ) =1{P}.
Since vtl . 1s a probability measure, necessarily v, » = 0p. It remains then only to prove
that P2 = P2. The goal is to obtain an evolutionary inequality of P2 — P2 Then, since
it is equal to zero initially, we prove that it remains zero for all time. The proof is given in

several steps.

Step 1. Replacing f in (6.9) by S, one obtains

Sc(P)r + [A°Sc(PO)]x = W(PE +30°)8,(P?)

1
+ |- 8heuf’e)Z 1P+ (0

8h¢

L pe o7 (pe
" ke + ] (P5).

Taking ¢ — 0, using (5.53) and Lemmas 6.2 and 6.4 we obtain
Sc(P)t + (ASc(P))x

= o (2PSc(P) — PPT(P) + 605 (P) + 02T (P)} + T (P)M.  (630)

Step 2. Replacing f in (6.9) by the identity function and taking ¢ — 0, we obtain
P+ (AP)y = SLh([TZ +6P0 + 0%) + M.
Let j, be a Friedrichs mollifier and note that P® Lp« Je- Then we have
PP+ (AP%)x = 6, + {%(172 +6PQ + 0D} # jo+ Nox e,
where 0, & (AP®), — (AP)x * je. Multiplying by T (P?) and using (6.12), we obtain
Se P+ (Se(PY)x = 1200 + P)Se(P9) — - G0 + P)PET(P*)

F TP (P2 4 6P 0 + 0 +
+ T (PO * je) + Te(PF)B.

Taking ¢ — 0 and using Lemma A .4, one obtains

Se(P)e + (ASe(P))x

- %{ZFS"(F) +608c(P) + Te(P)(P? —2P% + 02)} + T(P)M. (6.31)
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Step 3. From (6.30) and (6.31) we obtain
[Sc(P) = Se(P)]i + [A(Sc(P) — Se(P))]x
= M(T(P) — Tc(P))
+ %{ZPSK(P) — P2T¢(P) + P2T((P) — 2P Sc(P) + Te(P)(P? - P2)}
+ o {605 P) — S,(P) + QA(T(P) ~ TP}, (6.32)
From (6.21) and (6.22) we have
E2Te(§) — 268 (§) = £°Te(§) — 268 (§) + 6 — &
= E2[Te(§) — €] + E(E + 1)l + E(E — 1) Lgsi
= k[T () — &1 — (8% = kE + ) lg<ic + (€ — K) Lzl
+ E(E 4 6 lg—ic + E(E — €)1z
= k[T (€) — €] + k(5 + K)Zﬂgs—x — k(¢ — K)z]lgzlc-
Then from (6.21) we have
2PS(P) — P2T(P) + P2T((P) — 2P Sc(P) + T (P)(P? — P2)
= (Te(P) + k)(P + k)*1p<_, + (Te(P) —k)(P — k)’ 15,
- (TK(ﬁ) +K)(P + K)zﬂPs—K - (TIC(F) —Kk)(P — K)z]lPZK

— i*(Te(P) = Te(P)) = 2T (P)(Sc(P) — Se(P)) (6.33)
From definition (6.22) we have
(Te(P) + k)(P 4+ k)1p_, = (Te(P) —k)(P —k)*1p5, = 0. (6.34)
Since T, (P) = —«, we have
~(Te(P) +1)(P + €)*Tp<— < 0. (6.35)

Lettg >0andk = C(1 + to_l). Then, from Lemma 5.5, we have for all t > ¢ that P® <«
and P < k. Then, using the convexity of Ty on (—oo, k) and Jensen’s inequality, we obtain

kX (Te(P)=Te(P) <0 ¥t =15 k=C(+15"). (6.36)
We take g > 0 and « = C(1 + to’l) again. Then, for all ¢ € CZ°((fg, 00) x R), we have

/ (P —k)21lpsepdxdt = 1in(1) /(PE — k) 1pescpdxdt = 0. (6.37)
£—>
Then, using (6.32), (6.33), (6.34), (6.35), (6.36) and (6.37), we obtain

[Sc(P) — Se(P)]; + [M(Se(P) — Se(P))]x
< M(Te(P) — Te(P))

+ %{(6Q — 2T (P))(Sc(P) = Se(P)) + Q2 (Tu(P) — Te(P))},  (6.38)

forany 7o > 0,k = C(1+ 15 ") and 1 > to.
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Step 4. Let fi (¢, x) L S (P) Sc(P) — Si(P)and ff = o fi * je, where jg is a Friedrichs mol-
lifier. Then, from (6.38) and Lemma A .4, we obtain

(- _ 02
O+ Ofx < 30 = Te(P)} £ + (M4 = ) Te(P) = Te(P)) + 6.

1 ((0,00) x R). Let B > 0; multiplying by h3/2(h3/2 f& + g)~1/2/2
and using (6.13) one obtains

[ ), + [

< <3\~/t Z)w 32 4 6, + (P —Te(P)R'2 f¢

where 8, — 0in L}

8h/ 2\ /32 fe + B 832 fE + B
PAx
e

def

where 0, = 0,h3/2(h3/2 f£ + B)~1/2/2 - 01in L. _((0,00) x R). Taking & — 0 we obtain

loc

[, [

~  O2\T.(P) P — P /
< (M+ Q2>T «(P) = Te(P) w32 4 (P —Te(P)R'2 fi

8/ 2\/h3/2 f, + B 8Vh32f + B
BAx
R o 6.39
VI + B o
From (6.28) we have
N2 _ - N2
(F+ 2 >T(P) T(P), 17 < Q‘M+Q_)W'
8h/ 2 /W32 f, + B 2 8h

Using that |T(£)| < |£| and S, (£) < £2/2 we obtain

(ﬁ—TK(F))hl/ZfK‘ IPI\/ﬁ
N AU

Since L! convergence implies pointwise convergence (up to a subsequence), using the
dominated convergence theorem with (6.26) and (6.27) we obtain

1 31—
D2 - 2 _p2
(P24 f) < 8h1/4(2P + 5P )

— _
i o] (4 $) B D]
 tim o] (P — Te(PYR' |-
K—>00 8 h3/2fK +[3 L1(Q)



B. Guelmame 786

for any compact set 2 C (0, 00) x R. Since | S (§)| < £2/2, we have | f¢| < P2/2 + P_2/2.
Taking k¥ — o0 in (6.39) and using the dominated convergence theorem again we obtain

R R R R e

Now taking 8 — 0 we obtain

[‘/h3/2f]t n [A,/h3/2f]x <0 in (f9, 00) x R. (6.40)

Step 5. Following [64], let g & /A3/2f € L®((0, 00), L2(R)). Also let ¢ € CX(R)

satisfy ¢(x) = 1 for |x|] < 1 and ¢(x) = 0 for |x| = 2. Then, for all n > 1, we
have go(x/n) € L*®((0, c0), L'(R)). Then almost all > 0 are Lebesgue points of
t — [p &(t. x)p(x/n)dx for all n = 1. Let £ > 0 be a Lebesgue point of 7 >
Jr &, x)p(x/n)dx and § € (0,7/2). Also let ¥ € C((0, 00)) satisfy

W(t) =0 on (0.8/2) U (7 + 8. 00), U(6) =1 on (5,7 —9),
0<y'(t) <C/8§ on(8/2,6), —y'(t) = C/8 on(f —8,1 +9).

Multiplying (6.40) by ¢(x/n)y¥ (t), integrating on (0, co) x R and using integration by
parts one obtains

C +8 i+8 /
Eﬁ—s /l;{g(t,x)fp(X/n)dxdt < —/{_8 Ag(z,x)w(x/n)w () dx dr

C ) 1 r+6
<S5 [ soemaras tials [ [ stoigemiarar
8/2JR n §/2 JR

From (6.15), we have

1 )
lim/ gt,x)p(x/n)dx =0 = lim —/ / gt,x)p(x/n)dxdt = 0.
t—0 Jr §—>06 §/2 JR

Since 7 > 0 is a Lebesgue point of  — [ g(z, x)¢(x/n) dx, taking first § — 0 and then
n — 0o we obtain
g, x)=0 ae. (f,x) € (0,00) x R.

Hence P2 = P2 almost everywhere, which implies that v 2 (§) = 85(;.(£). The proof
of vzz,x ) = ‘SQ(t,x) (¢) can be done similarly. |

7. The global weak solutions
In this section we use the precompactness results given in the previous section to prove

that the limit (%, u) given in Lemma 6.1 is a weak solution of (2.1). All the limits in this
section are up to a subsequence.
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Let (h® — h, u®) be the solution given in Theorem 5.1. Then, from Lemmas 6.2, 6.6,
5.6, (4.2) and (6.12) we have

(P, Q% us, ht) — (P,Q,ux,hy) inLP ((0,00) x R), (7.1)

XX

I(P#)?,(Q%)%, ), (h) Ly — 1P% 0% ut, hilLi ey
for any p € [2, 3) and compact set 2 C (0, 00) x R. This implies that
(P, 0%, ut, h%) — (P, Q,ux, hy) in L} ((0,00) x R). (7.2)
Using Lemmas 5.6 and 6.1 we obtain that, for all p € [2, 3),

(ué, hé) — (ug,hy) in LP

loc

((0, 00) x R). (7.3)

Now, using (5.53) and taking the weak limit ¢ — 0 in (5.2a), we obtain (2.1a). Applying
£ pe on (5.2b) and multiplying by ¢ € C2°((0, 00) x R) we obtain

1
[+ w3y ey e o — i = S0P )
RtxR 3
1
+ E(pusfli} dx dr
1 1
= [ e PO = S0P (1P + (0D dvat
R+xR 2 48
From (7.2) and Lemma 6.1 we obtain the following convergence as ¢ — 0:
£ &\21¢€ 1 £\3 : 2
{150 = (h*hipx = 50V prs} > Lhg in L ((0.00) x R).
Using (7.2) and Lemma 6.1 again, and also (7.3), we obtain the convergence
(W +uul + 3y (h®)2hsy — {u, + uuy + 3yh2hy}  in L2 ((0,00) x R).

We suppose that supp(¢) C [t1, t2] X [a, b]. Then, using the energy equation (5.9) and
Lemma 5.4, we obtain

< Cllox (W)U Nl Lo 1ty 101,22 (1) 1A L1 (111,020, Lo Qa5

./]R+ . @x (h¥)*u AL dx dt
X

< eC.

Following the same argument we obtain

/ pufAS dxdt| < eC.
R+xR

Then, taking ¢ — 0, using Lemma A.2, (5.50) and (7.2), we obtain (3.1). Performing
the proof of (6.14) for any #o, we obtain that (4 — i, u) € C,(Rt, H'(R)). Lemma 5.5
implies (3.4). Inequality (3.2) follows from Lemma 5.6, (7.1) and (7.3). Finally, the energy
inequality (3.3) follows from (6.16).
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A. Some classical lemmas

Here we recall simple versions of some classical lemmas that are needed in this paper. We
start this section by the following lemma on Young measures.

Lemma A.1 ([32]). Let O be a subset of R" with a zero-measure boundary. For any
bounded family {v®}; C L?(O,RN) with p > 1 there exist a subsequence also denoted
{v®Ys and a family of probability measures on RYN {y,y € O}, such that for all f €
CO(RN) with f(£) = o(|€|P) at infinity and for all ¢ € CX(0O) we have

im [ s0)s@ondy = [ 60 [ r@an©a
with
[ [ 1617 ans @ ay < timintlc 7, o, (A1)

Other results on strong and weak precompactness are also needed, which we recall.

Lemma A.2 ([20]). Let Q be an open set of R". Assume that f, — f in LP(QQ) with
p € (1,00), gy is bounded in LY with q € (1,00) and g, — g in L1(2). Then, for any
@ € L"(Q) suchthat 1/p + 1/q + 1/r = 1, we have

lim fngngodx:/ fegpdx.
Q

n—oo Q

Lemma A.3 ([20]). Forany p >2we have L} _(R?) N Wlo_cl’p (R?) € H ;1 (R?). In other

words, for any open, bounded, smooth set U C R?, if the sequence ( fy) is bounded in
LY U) N W=YP(U), then (f)n is relatively compact in H=1(U).

Lemma A4 ([18, LemmaIL1]). Letc € L\ (R*, H! (R)) and f € L (RT, L2 (R)).

loc loc loc

Also let jo be a Friedrichs mollifier. Then

(O f) * je— cxf % jo) =20 in LL(RT x R).
Lemma A.5 ([43, Lemma C.1]). Let ( f,)n be a bounded sequence in L ([0, T], L?(R)).
If fn belongs to C([0, T], H~Y(R)) and, for any ¢ € H'(R), the map

> /R () fot, x) dx

is uniformly continuous fort € [0, T] and n = 1, then ( fy), is relatively compact in the
space C([0,T], L2 (R)), where L2 is the L? space equipped with its weak topology.

Lemma A.6 (Compensated compactness [22]). Let Q be an open set of R? and let a, b €
C(2,R) such that for all (x1,x3) € Q we have a(xy1, x3) # b(x1, x2). Also let (f5), (gn)
be bounded sequences in L2 _(Q,R) such that f,, — f and g, — g. If the sequences

loc
{0x, fn +0xy(afu)n  and {0x,8n + 0x,(bgn)}n

are relatively compact in H;} (Q), then fngn, — fg in the sense of distributions.
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Let A be defined such that A f = (1 + £2)1/2f and let [4, B] £ AB — BA be the

commutator of the operators A and B. We recall now some estimates of the H* norm of
the product, the commutator and the composition of functions.

Lemma A.7 ([33]). Ifr = 0, then there exists C > 0 such that
I fglar < CULf lleeligllar + 1 larllgllize). (A.2)
A", flgliz < Cl fxlliellglar— + ILf Iarllglieee). (A3)

Lemma A.8 ([16]). Let F € C*®(R) with F(0) = 0. Then, for any m € N, there exists a
continuous function F such that, for all f € H™, we have

IF ) N am < FA LNzl f e (A.4)

VA/A

B. The energy equation

The goal of this section is to prove that smooth solutions of (2.1) (respectively (5.2))
satisfy the energy equation (1.5) (respectively (5.8)). Taking ¢ = 0, we notice that (1.5) is
a particular case of (5.8). We consider ¢ = 0 and (h*, u®) smooth solutions of (5.2). Then
we have

1 - - _
8l — hle = —g(h® — h)(h*u®)x + g (h® — h)AS,

V3y

1 £N\21 € (1,€,,€ € ¢
5)’[(hx) lt = =yh5 (h*u®)xx + ghiA® — 48(h8)1/2

hi(Xs(Pa) — x:(0%)).
Summing, we obtain
1 - 1 - _
Eg[(hg —h)?); + EV[(hi)Z]z = g[(h® — h)A®]x — g(h® — h)(h*u®)x — yh5 (h*u®)xx
1
- 9—6(Q8 — P*)(xe(P?) — xe(Q°)). (B.1
Defining X¢ Ll 4 F (h?), from (5.2) we have
1 1 1
L (520 = 3 (B2 A5 = S (02 W) u)
1
= SO UG ) s — Y () () 2h),
1 1
- gufc(hg)38x§£;}8xx8 + gui(h8)38x38. (B.2)
Using (5.2) again and the definition of £, we obtain
SIREEP]) = S0 AS — 2 P8 — Y, = 3y ()™
— heu‘?i;}?@ + hfu®B®
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1
= =5 ) () — ()Pl = 3y (h°) Tkl —ut X

1 1 1
— gusax(hafaxx,;: 0, X% + gusax(hsfast + Eua((he)zuiﬂi)x

1
- &us[hs(Xs(Ps) + x:(0%)]x

1
= _5[(u£)3h€]x =3y (h®) " 'ufRE — [ufXE] — < [uf(hF)? 05 L5 05 XF]

1

3
1 1

+ g[us(h8)38x38]x + E[uS(hE)ZquA;;]x
1

- E[u"‘hs(xs(P”") + x:(Q°))]x

+ul X + %ui(he)38x$;gl 3, X°

SR BE — S0 A
1

+ %(Ps + Qs)(Xs(PE) + XE(QS))‘ (B.3)

Summing (B.2) and (B.3) one obtains
1 1 1
SV GO+ [ @) = =3y ()™ U + S = S ()W) u)s

— SO ) — SR~

_1
2
— %[ué‘(h‘s‘)3ax$;€1 axxa]x + %[uS(h8)3aan8]x
1 1
+ E[ue(hg)zuiﬂi]x - &[usha()(s(l’a) + Xxe(0%))]x
— y(h°) ul (h*) 2R«

1
+ 5P+ 290s(PY) + 2:(Q%))- (B.4)

Using (4.3) and (5.4) we obtain
1 1 - 1 & & 1 & & &
S ()0, B = §(h€)3ax;eh;{—§u Ax} — S A
1
+ Ehs(XE(Ps) + x:(0°))
x
T (h8)33x13;sl{h6 [ (ot
—0o0
1

- P+ 1 Jay |

_1828_18288 ie & &
= SUV] = SO ULAS + oh*(re(P) + (e(0%)).
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Now using (4.4) and (B.4) we obtain
1 1 1
ST O]+ [ @) = =3y ()™ UG + s = S (0P W) ()
1 1
— SV ) s — 1) R — R,
£ 1 £\2 12 e /p
— [ (8@ =% =3y mr* /) |
1 £(1,€\2\9€ &\3, e eN—2p¢e
+ 30 Vile — y () s ()i
] & & & &
56 (P + Q)Ue(P7) + 1(Q%). (B.5)
Forward calculations lead to
g(h® = ) I*u) + (U + 3y ()~ S, — Ul X
1 1 —2ie
S PP + SV ) + B u () 2R
1 - 1
= gl = L + [0 W)?
- 1
+ 3y[u® In(h®/h)]x + Ey[us(hi)zlx + y[h*hSullx. (B.6)
Summing (B.1), (B.5) and (B.6) we obtain
(55 @ + Sghf — I + L) + S y(he)?]
2 2 6 * 20 1
1 - 1 - 1
+ [E(us)?:hs _ g(he _ h)As 4 usRe 4 EgMS((ha)Z _ h2) _ Eue(hS)Zvi
1 - 1 1
3t (h =) 4 () Ut W) + Syt (h5)? + yhe bt
1 1
= —Pre(P°) + 4_8Q8X8(Q8)~

48
This is (5.8).
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