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The density—density response function in time-dependent
density functional theory:
Mathematical foundations and pole shifting

Thiago Carvalho Corso, Mi-Song Dupuy, and Gero Friesecke

Abstract. We establish existence and uniqueness of the solution to the Dyson equation for the
density—density response function in time-dependent density functional theory (TDDFT) in the ran-
dom phase approximation (RPA). We show that the poles of the RPA density—density response
function are forward shifted with respect to those of the noninteracting response function, thereby
explaining mathematically the well-known empirical fact that the noninteracting poles (given by the
spectral gaps of the time-independent Kohn—Sham equations) underestimate the true transition fre-
quencies. Moreover, we show that the RPA poles are solutions to an eigenvalue problem, justifying
the approach commonly used in the physics community to compute these poles.

1. Introduction

While ground state properties of molecules are very successfully captured by time-
independent Kohn—Sham density functional theory (KS-DFT), excitation energies provide
a much greater challenge. In particular, the excitation energies of the time-independent
Kohn—Sham equations do not accurately capture the true excitation energies, and have no
theoretically supported meaning.

Instead, time-dependent density functional theory (TDDFT) in the linear response
regime has been found to capture a molecule’s excitation spectrum much more accur-
ately (see e.g. [24]). The underlying Dyson equation for the density—density response
function of TDDFT has been derived as a meaningful approximation for this task (see e.g.
[16,22]), and the overall approach has a huge physics literature. Our goal in this paper is
to put TDDFT in the linear response regime and its connection with excitation spectra on
a firm mathematical footing. We

(1) establish existence and uniqueness of a solution to the Dyson equation for the
density—density response function, in the basic case of the random phase approx-
imation (RPA)
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(2) mathematically clarify the relationship between the density—density response
function and excitation spectra, by proving that the “exact” response function
(coming from the evolution of the one-body density under full many-body quan-
tum dynamics) has poles precisely at the excitation frequencies of the many-body
Hamiltonian;

(3) show that the excitation frequencies obtained from the RPA Dyson equation are
always forward shifted with respect to those of the time-independent Kohn—Sham
equations.

Here, (1) proceeds by naturally viewing the density—density response function (DDRF)
ata given time ¢ as a linear operator between one-body potentials and identifying a suitable
class of potentials on which the Dyson equation is well posed.

The result in (2) is considered “well known” in the physics literature. But the under-
lying Lehmann representation of the DDRF is not strictly speaking applicable to the
molecular Hamiltonians to which one seeks to apply it in practice, as it tacitly assumes
purely discrete spectrum and misses contributions from the continuous spectrum. Our
advance is to provide a rigorous Lehmann representation of the DDRF which applies to
molecular Hamiltonians and captures the contributions from the continuous spectrum.

Finally, (3) proceeds by characterizing the RPA poles as solutions to a certain eigen-
value problem, and carefully analyzing this eigenvalue problem.

Before stating our main results in more detail, let us introduce some background on
linear response theory and on TDDFT.

1.1. Linear response theory

Linear response theory allows one to compute first-order corrections to quantities of
interest of a molecule at equilibrium which is perturbed by an external potential. The
exact wave function W(¢) encoding the behavior of the electrons of the molecules is the
solution to the time-dependent Schrodinger equation

{iB,\I/(t) =H@®)V(r), t>0, (1)

V(0) = Yo,
where
H@)=H+ef()Vp,

with Vp a time-independent bounded multiplicative potential (the probe potential) and f
a bounded scalar function of time (the time profile). Here, Wy is the ground state of the
rest Hamiltonian A, which for a molecule has the form

N
H=—3at Y wli—r)+ Y o, @

1<i<j<N i=1

where v, w € L2(R3) + L*®(R?) and real valued.
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For an observable Vo we are interested in the expectation value
(Vo): = (W(1), Vo ¥(1)).
Since the perturbation is small, at first order in ¢ the variation of (Vg); is
(Vo) = (Vo)o + e(Xvovp * /1) + O(),

where Xy, v, is the function given by the Kubo formula (see Proposition 2.1)
Xyovey(T) = —i0(t) (Vo Vo, e "HTEITYow4) 4 coc.
This function has a Fourier transform, at least in the distributional sense,
Xvovp (@) = lim (Vo Vo(@ +in—(H = Eg) ™' Va o)

—(Wo. V(@ + in + (H — Eq))™' Vo o). 3)

where 7 — 0T means the one-sided limit as 7 converges to zero from above. This formula
relates the singularities of the Fourier transform of X to the spectrum of H. More pre-
cisely, X has a pole if |w| is an eigenvalue of H — Ey. When |w| belongs to the essential
spectrum of H — E), X is regular for a wide class of potentials v and w as a result of the
limiting absorption principle. We refer to [1,2, 6] for more information on this topic.

The location of the poles of the Fourier transform X provides access to the spectrum
of H and in particular to its low-lying eigenvalues. At first sight, evaluating X from equa-
tion (3) is by no means simpler than diagonalizing the many-body operator H. However,
a major simplification can be achieved, at least formally, by (“exact” and approximate)
TDDFT, which are time-dependent versions of static Hohenberg—Kohn density functional
theory [11, 13], respectively static Kohn—Sham density functional theory [12]. Provided
the perturbing potential Vp and the observable Vi are one-body potentials

N N
Ve =Y va(r), Vo= volr) )
k=1

k=1

the expression for X' becomes

Xveve (t) = (vo, x(D)ve), ®)

for some universal operator-valued function y which is independent of vy and vy and
only depends on the static Hamiltonian H in equation (2). This function, called the
density—density response function of H, is rigorously constructed in Section 2.1. In the
physics literature, y is usually postulated to have an integral kernel, obtained formally by
taking v and v to be delta functions located at r, respectively r’,

X(r’r/vt) = (8rv X(T)Sr’)s
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and this kernel is known as the density—density response function. The operators Vp and
Vo in (4) are then the density operators p, = ZZN=1 8y (ri) and p,r = vazl 8/ (1), explain-
ing the name. Mathematically, there is no need for — or advantage from — such an integral
representation; y is simply an operator-valued function of time acting on one-body poten-
tials.

The key observation which allows one to bring to bear TDDFT is now the following:
with the restriction (4) to one-body perturbing potentials and one-body observables, the
expectation value (Vp); only depends on the electronic density p¥ at time ¢,

oYt r) = N/ \W(t,r,ra,....rx)2dry .. .dry. (6)
R3(N-1)

In the following we write p¥ (¢) for the function p¥(z,-): R* — R. We have

Vo)t = (vo, p¥ (1)) = (vo, p*(0)) + (v, (xvp * £)(1)) + O), @)

so by identification, y gives the variation of the electronic density to the first order in &,

p¥ (1) = p*(0) + (v » £)(1) + O, ®)

where throughout this paper @ » f denotes convolution in time,

(a* f)(t) = /0 a(t —5) f(s) ds.

If it is possible to efficiently approximate the density evolution, and hence the density—
density response function y, then we have a way to obtain the variation of the expectation
value (Vg ), in the linear response regime. Such approximations are provided by TDDFT.
In the next section we only introduce the simplest — and commonly used — such approx-
imation, referring to Appendix A for more details and references.

1.2. Time-dependent density functional theory

TDDFT aims to reproduce or approximate the evolution of the electronic density pY,

which is governed by the many-body Hamiltonian H, by the evolution of the density of a

noninteracting system. More precisely, the electronic density p¥ is approximated by the

electronic density p®, where ® is the solution to

i0:P(t) = Her(1)D(r), t >0, ©)
P(0) = Dy,

for some suitable effective noninteracting Hamiltonian H.g. The initial condition ®¢ is
a Slater determinant whose density p®° approximates the electronic density p¥ (0) of the
exact ground state. In practice it is taken to be the Kohn—Sham determinant, i.e. the ground
state of the Hamiltonian (12). In this paper we focus on the physical case of the Coulomb
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interaction in (2), w = Il_l and the random phase approximation (RPA), which corresponds
to the effective Hamiltonian

1

B |(ri) +ef(t)vp(r;). (10)

N
Herlt) = =5 0+ 3 00) + 0[P 0)10) + p(0)
i=1

Here, @ is the solution to (9), p® is its density (equation (6) with ¥ replaced by ®),
Uxe[p®(0)] is the static Kohn—Sham exchange-correlation potential of the initial density,
and \l_l * - is the Hartree operator, i.e. the convolution with the Coulomb potential. Thus,
in the RPA, the Hartree potential p®(r) * Il_l (being the dominant part of the interaction)
is dynamically updated, whereas the exchange-correlation potential is frozen at the initial
density. Also updating it dynamically would correspond to the adiabatic local density
approximation (ALDA) provided vx.[p] is given by the LDA. Since we are interested in
the linear response regime, it is not necessary to solve the nonlinear system (9), (10).
Instead, assuming that p® has a Taylor expansion to order 1 in ¢, it can be shown (see
Appendix A) that the variation of (V) is given by formula (7) with y replaced by the
solution yRFPA to the following Dyson equation:

1
A0 = 100 + (o (77 2 )0 an
The operator-valued function y is the density—density response function of the frozen (or
static) Hamiltonian

1
-1

Equation (11) is called the Dyson equation in the RPA, and its solution is the RPA
density—density response function [16, 22]. This is the simplest approximation of the
density—density response function y in TDDFT. More sophisticated approximations (see
e.g. [15]) are beyond the scope of the present paper. The interested reader may consult
Appendix A for a compact introduction to TDDFT and the derivation of (11), and the
monographs [16,22] for an overview of the field from a physics perspective.

Finally, we remark that interesting linear response problems arise in many differ-
ent contexts. For mathematical results on the potential-to-density response of nonlinear
Hartree dynamics for crystals see [4]. A mathematical study of the linear response of
density and current density in TDDFT to applied electromagnetic fields in a continuum
limit can be found in [8].

N
Ho = —%A + D v(r) + v O)](1) + p®(0) *

i=1

(ri). (12)

1.3. Main results

The main focus of the paper is to establish fundamental properties of the solution yRPA
to the Dyson equation (11) (including but not limited to existence and uniqueness), under
natural assumptions on the Hamiltonian H associated to the reference density—density
response function y.
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1.3.1. Assumptions. We recall here that the rest Hamiltonian considered is

N
H = _lA + Z w(r —rj) + ZU(”J (13)

2
1<i<j<N i=1

acting on the anti-symmetric L2-space
N
Jn = \ L*®),
i=1

where v, w € L?(R3) 4+ L%°(R3) are real valued. Under this condition on v and w, it is
well known that the Hamiltonian H is a self-adjoint operator with domain H2(R3¥) N
J¢n which is bounded from below [18].

Throughout this paper, we shall also assume that H satisfies the following general
assumption.

Assumption 1. Let v, w € L?(R3) + L% (R?) be real-valued functions and H be defined
as in (13). Then we assume that

(i) the ground state energy Eqo of H is a simple isolated eigenvalue;

(ii) the electronic density p¥° of the ground state Wy is bounded;

Note that assumption (ii) is in fact a consequence of (i) for Schrodinger operators of
the form (13) (see e.g. [20]). The reason we promote it to an independent assumption here
is that all the results from this paper ultimately rely on these two assumptions and not on

the specific form of the rest Hamiltonian H .
Under the above assumptions we note that the ionization threshold €2, defined as

Q = infoes(H) — Eo, (14)
is positive. This is a simple but important observation, since most of the results discussed
next concern the behavior of yRPA inside the interval (—£2, 2).

1.3.2. Solution to the Dyson equation. We first show that the Dyson equation (11) has
a unique solution in the space of strongly continuous maps from R to B(L?(R3) +
L*®(R3), L'(R3) N L2(R?3)), denoted here by

Cs(Ry; B(L? + L™, L' N L?)).

This is the space of density—density response functions of Hamiltonians (2) as seen in
Proposition 2.4. The proof is an application of the Banach fixed point theorem in an appro-
priate space.

Theorem 1.1 (Existence of the solution yR™). Let yo € Cs(Ry; B(L? + L>®, L' N L?)).
Then the following assertions are true:
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(i) there is a unique solution yR*» € Cs(R4; B(L? + L™, L' N L?)) to the RPA
Dyson equation (11);

(i) the solution map

SRPA. {Cs(&; B2+ L®, L' N L%) = Co(Ry: B(L2 + L®, L' N L?)),

RPA
Xot=> X P
is a bijection.

1.3.3. Poles of the RPA density—density response function. From equations (3) and (5),
it can be shown (see Section 2.3) that the Fourier transform of the density—density response
function y, defined on {Im(z) > 0} as fooo x(t)e?! dt, is an analytic family of operators
whose meromorphic extension has simple real poles. This means that for @ € R a pole of
X there is a neighborhood of w, an analytic family of operators defined in this neighbor-
hood z — Kj(z), and a finite-rank operator K_1, such that

7(2) = Koo) + .

zZ—w

We denote the set of poles of y by & () and define the rank of a pole w as
ranky, (y) = rank K_;.

The main result of this paper shows that the RPA density—density response function has a
similar structure. More precisely, we show that the Fourier transform of R also admits
a meromorphic extension whose poles are located along the real axis. We also prove that
these poles are forward shifted compared to the poles of the Fourier transform of the
reference density—density response function yg.

Note that even the existence of the Fourier transform in the upper half-plane is not
clear a priori. Indeed, if we take yo(t) = K for any ¢ > 0 and some bounded operator
K € B(L*(R3) + L*®(R3); LY(R?) N L2(R3)), then yy is a strongly continuous map
from Ry to B(L? + L°°, L' N L?) but the solution to the Dyson equation (11) in this
case is given by e’XF# K whose Fourier transform diverges in {Im(z) < supo (K Fg)}.

Theorem 1.2 (Poles of )(/RE\). Let yo be the density—density response function (see the
definition in Proposition 2.3) of a Hamiltonian H satisfying Assumption 1. Let yRA be
the solution of the RPA Dyson equation (11) and Q = inf o.s(H) — Eg be the ionization
threshold of H. Let Dq be the set

Dg = C\ (o0, —QJ U [$2, 00)).

Then the following holds:
(i) (Meromorphic) The Fourier transform yRPA: Dg — B(L2(R?) + L®°(R?),
LY(R3) N L2(R?)) is a meromorphic family of operators with simple poles con-
tained in (—2, Q);
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(ii) (Forward shift of poles) Let (o) be the set of poles of fo. Then the poles of
)(/Rﬁ are forward shifted with respect to the poles of ¥ in the sense that, for any
0<w<

Y rankg(RPA) < Y ranka ().

DeP (XRPA) DEP (Ro)
|®|<w |&|<w

Remark 1.3. While the theorem is insensitive to the precise form of the Hamiltonian H
governing the reference density—density response function yg, the standard choice given in
equation (12) is of particular physical interest. In this case, the poles are located precisely
at the spectral gaps €, — €; between occupied and unoccupied eigenvalues of the (one-
body) Kohn—Sham Hamiltonian

hes = =58+ v+ 0lp O]+ p°0) T
of time-independent density functional theory (see Appendix B). Thus statement (ii)
implies that the Kohn—Sham spectral gaps (accounting for multiplicities) always under-
estimate the excitation frequencies predicted by the RPA. This can be taken as a mathem-
atical explanation of the empirical fact that the Kohn—Sham gaps are commonly too low
compared to the experimental excitation frequencies (see e.g. [24]).

As alast result, we give a rigorous way to find the poles of )(/RE\, and compute its rank,
by solving an eigenvalue problem. This rigorously justifies the standard approach in the
quantum chemistry community to find the poles of X/RE’\, as long as they lie outside the
set of poles of yo. For the mutual poles of ¢ and )(/R?A, the rank can also be computed
by solving a similar eigenvalue problem in a reduced space. More precisely, we have the
following criteria:

Theorem 1.4 (Characterization of the poles of )(/RE%). Let |w| < Q be a pole of )(/RE%, and
let Fg be the Hartree operator | +—> ﬁ x f. Then the following hold:

(1) Ifw is not a pole of }o, then the rank of w as a pole of)(/RE’s is given by the number
of linearly independent solutions in L>(R3) of the equation

F R0 FY2f = f (15)

(1) If w is a pole of Fo, then the rank of w as a pole of)(/RE\ is given by the number of
linearly independent solutions in L>(R3) of

PFFYRo(@) FP P f = f,

where F I}I/ % is the square root of Fg given up to a normalization constant by
convolution against #, and P#‘ is the orthogonal projection on the orthogonal

complement of V = Fé/z(ker(H — Eo + |w)])).
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Remark 1.5. Note that for any solution f of (15), the nonzero function g = jo(w) F 11{/ 2 f
e L'(R3) N L?(R3) satisfies the equation 7¢(w)Fy g = g. Likewise, a solution g of the
latter yields a solution of the former by taking f = F 111/ 2 g € L%(R?). In particular, solving
(15) is equivalent to solving g = jo(w)Fp g, which is the starting point of the Casida
formalism in TDDFT [14, Section 3.8].

Strategy of the proof. The proofs of Theorems 1.2 and 1.4 consist of two main steps.
The first and most involved step is a detailed spectral analysis of the symmetrized operator
xs=F I}I/ 23F I}I/ 2 This analysis leads to the characterization of the poles of (1 — 75)~!
in Propositions 4.2 and 4.3 below. With these propositions, the second step in our proof
is to show that X/R-I?A is a meromorphic family of operators with simple real poles, and
then prove the identity rank,, ( X/RE%) = rank,, ((1 — 75)~!) for any w € (—Q, Q). The key
properties of Fz used in our proofs are its positivity and its L?-mapping properties, given
by the Hardy-Littlewood—Sobolev inequality. In particular, we expect that the results here
can be extended to other types of adiabatic approximations used in TDDFT.

Structure of the paper. We start by introducing some notation in the next paragraph.
In Section 2 we introduce the (exact) density—density response function y of a general
Hamiltonian and relate it to the celebrated Kubo formula from linear response theory.
We also derive some L? smoothing properties of y (Lemma 2.4) and give the formula
of its Fourier transform, which can be viewed as a meromorphic family of operators. In
Section 3 we prove the existence and uniqueness of solutions to the RPA-Dyson equa-
tion (11) in the setting of Theorem 1.1. In Section 4 we study the symmetrized operator
As = ;11/2)?0 FI}I/Z and characterize the poles of (1 — #5)~! in Propositions 4.2 and 4.3.
We then use these propositions in Section 5 to prove Theorems 1.2 and 1.4.

Notation

The set Ry = [0, co) denotes the set of nonnegative real numbers. For A and B non-
negative scalar quantities, A < B means that there is an irrelevant positive constant C
such that A < CB. We use the following convention for the Fourier transform of functions
f:R — F where F is a Banach space:

Flo) = fR F(e'™ dr.

Let F, G be Banach spaces. We will denote their respective norms by ||-||r and |-||G.
Moreover, we denote the set of linear continuous operators from F to G by B(F, G). If
F = G, we simply use B(F). The operator norm on B(F, G) is denoted by

ITIFc = sup [TgllF.
geG
lgllg=1

Whenever it is clear from the context to which operator space 7' belongs, we shall use
only ||T'|| for the operator norm. For an operator 7: F — G on Banach spaces F, G, we
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denote its kernel and range by ker 7 C F andran7 C G. We also use rank 7" = dimran T’
for the rank of T'. For 1 < p < oo, L?(R3) (or just L?) denotes the standard L? spaces
with respect to Lebesgue measure. We use the notation

(fe) = [ Terar

for the standard inner product on L2 (R"). We also use L?(R") + L4(R") and L?(R") N
L42(R™) for the Banach spaces of measurable functions with finite norms

IAllrtra = _inf U fplle + 1l follza},
F=rh+sfq

Iflzraze = max{|| £l I fllza}-

Note that if p and g are conjugate exponents, that is to say, p~! + ¢! =1, L? + L4
is the dual of L? N L4. For a projection P € B(F) on a Banach space F,i.e. P2 = P,
we say that an operator B € B(F) is invertible with respect to P if PBP = B and there
exists an operator B~! € B(F) such that

PB'P=B"' and B 'B=BB'=rpP

Note that the inverse B~! is unique.

2. The ground-state density—density response function

In this section we recall the basics of linear response theory and give a derivation of the
density—density response function. We then highlight a few properties of this operator-
valued function and give a representation of its Fourier transform.

2.1. Derivation and Kubo formula

Let us start with the definition of the linear response function and its connection to the
first-order variation in the dynamics with respect to some perturbation.

Let H be the static Hamiltonian defined in (13) and consider the time-dependent fam-
ily of self-adjoint operators H(¢),

H(t) = H + £0(t) f(t)Vp, (16)

where the perturbing potential V is a bounded multiplication operator Vp: Ky — Hpn,
the function f € L*°(R), ¢ € R, and 6 is the Heaviside function

if
9(;):{0 ift <0,

1 otherwise.
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Next suppose that Vg: #xy — Hn is an observable of interest. We are interested in
the expectation value (Vg ), := (W(¢), Vo W(¢)) for small time ¢ where W is the solution
of the time-dependent Schrodinger equation

{iat\ll(t) = H@t)¥(), t>0, (17)

v (0) = W,
with W, being the ground-state wave function of H.

Proposition 2.1. Let H(t) be the family of self-adjoint operators defined in (16). Let W(t)
be the solution of (17) and Vg: Hn — Hn be a bounded multiplication operator. Then
(Vo) = (¥(t), VoW(t)) has the expansion

[e.¢]

(Vo): — (Vo)o = iS/ 0t —1") f("){(Wo, [V, (Vo)1 (t —1")]Wo) di’ + O(e?), (18)

where (Vo)1 (t) = '™ Ve ™ and [A, B] = AB — BA denotes the commutator.

Proof. Let Hi(t) = €6(t) f(t)Vp. Under the assumption on Ve and f, itis clear that ¢
Hi(t) € B(Hn, Hy) is uniformly bounded. Hence, by a standard evolution equations
argument, the solution to the time-dependent Schrodinger equation exists, is unique, and
satisfies the Duhamel formula

t
V(1) = ey, —i/ e HCOH [ (5)W(s) ds. (19)
0
In particular, iterating (19) twice yields
t
() = e oy, —je / F($)0(s)e I Yoo~ H Y g + 9(£2).  (20)
0

Hence, plugging (20) into the definition of (Vg ), completes the proof. ]

If the perturbation operator Vg and the observable Vg are given by one-body poten-
tials

N N
Ve =Y vp(re). Vo= volr).
k=1 k=1
with vg and vy real-valued bounded functions, then the integrand in (18) is bilinear in
the potentials, providing the following bilinear form on L™ (R3) x L>®(R?):

N N
D v (), (Z U@(rk)) (r)}lfo>, @1
k=1 1

k=1

(vo. 1(1)vp) = i9<r><%, [

where the inner product on the left is the L2 inner product. The operator-valued function
7 > x(7) defined by equation (21) is the density—density response function associated
with the Hamiltonian H.

The reason behind this definition is the celebrated Kubo formula below, which gives
the first-order variation of (V) caused by Vi, as a convolution against (vg, x(t)ve).
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Corollary 2.2 (Kubo formula). Let y be as defined in (21). Then
o0
(Vo): — (Voo = ¢ / (vo. 1t — ')vp) f(t)) di’ + O(E).
0

2.2. Regularity of the density—density response function

We now give an alternative representation of the density—density response function of H
and derive a few L?-mapping properties that will be useful in the next sections.

Proposition 2.3. Let H be a Hamiltonian satisfying Assumption 1. Let Eo be the low-
est eigenvalue of H, and Wy an associated normalized eigenfunction. Define S: Ky —
LY(R3) to be the mapping from a many-body wave function ® to the diagonal of the mixed
one-body reduced density matrix y®Yo, that is to say,

SP)(r) = N/ D(r,ra, ..., rN)Yo(r,r2,...,rNn)dry ... dry. (22)
(RS)N—I

Let y be the density—density response function of H (as defined in (21)). Then for any
f. g € L®(R3) real valued, one has

(£ x(0)g) = (£.20(1)S sin(1(Eo — H))S™g),

where S*: L®°(R3) — Hy is the adjoint of S given by

N

(S*0)(r1.....rn) = D> v(r)Wo(ri. ... rw). (23)

k=1
Proof. First note that the Hamiltonian H commutes with complex conjugation, i.e.

Iﬁ)(rl,'--,VN)=HCT)(I’1,...,FN).

Hence, the projection-valued (spectral) measure Pf’ associated to H also commutes with
complex conjugation, and therefore

(ei’—I'UQ)(rl,...,rN) = (e D)(ry.....1N)

for any real-valued wave function ® € # . Moreover, due to the uniqueness assumption
on the ground state of H, we can take Wy to be real valued. Therefore, using the identity
etHN @, = eitEo we conclude that
(fx(0)g) = i8(O)(S™ .7V S"g) — (§*g. e THHTEIS™ f))
= 10(0)((S™ f.e"! 7V S"g) — (™ fLeitHEo) S*g))
= —20(1)(S™ f.sin(1(H — E0))S™g) = (/. xo(1)g).

for any real-valued functions f, g € L (R3). |
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Using the boundedness of the electronic density p¥°, we can show that y has more
regularity (in terms of L? spaces) than simply mapping L to L.
Proposition 2.4 (L?-regularity of y). Let S and S* be defined by (22) and (23), for some
H satisfying Assumption 1. Then S € B(Hy, L' (R3) N L2(R3)) and S* € B(L*(R3) +
L®(R3), Hy). In particular, t — y(t) is a strongly continuous family of operators in
B(L*(R3) + L®(R?), LY (R3) N L2(R?)), and the map t v || x(¢)|| 24 L. L1nL2 is uni-
formly bounded in R ;..

Proof. From the boundedness of p¥° and the Cauchy—Schwarz inequality we have

/ |SO(r) 2 dr < N/ p%(r)/ |®(r, 7, ..., rN)|2drs. .. dry dr
R3 R3 R3WN-1)
< N[p¥ Lo | DIl 2 mon)-
and
/ |S®(r)|dr < N/ |Wo(r,ra,...,rN)P(r, 12, ..., rN)|dra ... dry
R3 (]R3)N

< N[ WollL2@smy [ @l L2w3vy = N[ PllL2w3ny.

Hence, S maps #y to L'(R3) N L2(R3). Since S* is the adjoint of S, $* is bounded
from (LY(R?) N L2(R3?))* = L2(R3) + L®(R?) to (#n)* = Hy (where we use the
Riesz representation for the second identification). The properties of y now follow because
sin(t (H — Ey)) is strongly continuous in 8(Hx, # ) and goes to O strongly ast — 0. =

2.3. Fourier transform of the density—density response function and its poles

Here we give a representation of the Fourier transform of the density—density response
function y in terms of the resolvent of H. This can be viewed as a mathematically rig-
orous version of the celebrated Lehmann representation, to which it reduces under the
— in the physics literature tacitly made but for the physical Hamiltonian (13) incorrect
— assumption of purely discrete spectrum. We also introduce the definition of a mero-
morphic family of operators with poles of finite rank, borrowed from [7, Appendix C],
and show that the poles of y are located at the spectrum of H . Let us start with the Fourier
transform of y, defined on the upper half-plane {Im(z) > 0} by

7) = / 10 a, 24)
0

where we have used that y(#) = 0 for ¢t < 0.

Proposition 2.5 (Fourier transform of the density—density response function). Let y be
the density—density response function defined in (21) for some H satisfying Assumption 1.
Then the Fourier transform of y is given by

()=S0 —-PEY(Eo—z—H) "+ (Eo +z— H) (1 - Pf)s*
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for any Im(z) > 0, where the operators S and S* are defined in (22), (23), E¢ is the
ground state of H, and P g) is the orthogonal projection onto the space spanned by V.

Moreover, the Fourier transform of y along the real line is the tempered distribution given
by

7 () = 1inol+S(1 - PEY(Eo—w—in—H)"' + (Eo+w+in—H)™")
7]—)
x (1—PH)s*, (25)
where the limit exists in the distributional sense.

Proof. Since H is self-adjoint, from Proposition 2.3 and the spectral theorem we find that
/ (@)t @rint g = § / / 2sin(t(Eg — A))e'@rimt qpH qr s*
0 0o JE,

—S/OO 1 + 1 drPH s*
N Eo Eo—a)—in—)t E0+a)+i7]—k A
=S -PHY(Eo—w—in—H)™!

+(Eo+w+in—H) )1 - P)s*,

where PAH is the spectral projection of H and we have used that
(Eo+w+in—H) "Wy + (Eg—w—in—H) W, =0. "
Next, we make formula (25) more explicit in terms of the spectrum of H .

Proposition 2.6 (Rigorous Lehmann representation). Under the assumptions of Proposi-
tion 2.5, for Im(z) > 0 we have

1 1
Ejeoy(H)\{Eo} "NEg—z—Ej Eo+z—E; j

1 1
S dPs*, 26
+ UCSS(H)EO_Z_)L_'_EO‘FZ_A A (26)

where PAH is the spectral projection of H, and o4 and 0.ss denote, respectively, the dis-
crete and the essential spectrum of H.

Proof. This follows immediately from Proposition 2.5 and the spectral theorem for self-
adjoint operators. ]

Remark 2.7 (Lehmann representation in the physics literature). When H has purely dis-
crete spectrum, as happens for example when v is a trapping potential, formula (26)
simplifies further. Let {W; }19‘;0 be an orthonormal basis consisting of eigenstates of H,
corresponding to eigenvalues £, and use that

o0
(1=PHHo=> " w(y;. o).
j=1
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Introduce the excitation frequencies w; = E; — Eo, and calculate

(vo. 2(:)vp)
=¥ [ votrntraman

jz1

= ZN[vg(rl)/\Ifo(rl,.. NV (ry, .. ry)dry L dry dry

j=>1
1

X(
—Z —wj Z —wj

)(w;. %),
and therefore, decomposing z into its real and imaginary parts, i.e. z = @ + in (n > 0),

(vo. f(@ +inve) =Y (Yo, VoW, )(¥;. Vo W)
j=1

< (= 1 1 ) @7
“orin—a  @rin—o/)

This is precisely the Lehmann representation of the density—density response func-
tion familiar from the physics literature. This representation beautifully reveals how a
frequency-dependent perturbation couples to the excitation spectrum of the system.

Note, however, that this representation, unlike ours above (equation (26)), is not
strictly speaking applicable to the standard atomic and molecular Hamiltonians (equa-
tion (13) with v(r) = — 224:1 Zy/|r — Ry|) which contain continuous spectrum, as it
misses the integral term in (26).

Let us now recall the definition of a meromorphic family of operators as defined in
[7, Appendix C].

Definition 2.8 (Meromorphic family of operators). Let & C C be an open set and E, F
be Banach spaces. We say that K: D — B(FE, F) is a meromorphic family of operators
if in a neighborhood of any zg € D, there exist finite rank operators K_; € 8(E, F), for
1 < j <k, such that

K(:) = KO(Z)‘I'Z R

—z0)/’
where K¢ (z) is holomorphic near zy. If kK = 1, we say that zg is a simple pole and define
its rank as rank;,(K) = rank K_;.

Then we can relate the definition above with the representation in Proposition 2.5.

Proposition 2.9 (Poles of }). Let y be the density—density response function defined in
Proposition 2.3 for some Hamiltonian H satisfying Assumption 1. Let Dg C C be the set

Do = C\ ((—o0,—R] U [2, +00)).
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Then j: Dq — B(L? + L>®°, L' N L?) is a meromorphic family of operators with simple
poles contained in (—2, ). Moreover, the set of poles of j is

P(7) ={w € R: Eq + || € 0(H) \ Eg and SP£ \ # 0}, (28)
and the rank of a pole w € P(}) is given by
rankg, () = rank SPg)le,

where PH

Eo-tlo| S the spectral projection of H onto the eigenspace ker(H — Eg — |w]).

Proof. For Im(z) > 0, we start from the representation of y(z) in Proposition 2.6. As
Q2 > 0, we can extend y(z) analytically to the lower half-plane Im(z) < 0 and we dir-
ectly obtain that it is a meromorphic family of operators with simple real poles with the
characterization (28). For the statement on the rank of the poles, note that from (26),
rank, (1) = rank(SPg) +05 ™). Moreover,

(f.SPE v0S*f) = (PEy10S™ [ PEiS* ) = 1PEy10S™ [ 2@y

for any f € L?(R3) + L*°(R3), and so we have rank(SPg)erS*) > rank(Pg)+wS*).
But rank(Pg)erS*) = rank(SPg)er), and we already have that rank(SPg)+mS*) <
rank(SPg)+w), hence rank,, (y) = rank(SPg)er). |

Remark 2.10. If the Hamiltonian H has purely discrete spectrum (for instance when v is
a trapping potential), Do = C and P () is the whole set of singular points of the Fourier
transform . However, past the ionization threshold (see (14)) it is not clear how singular ¥
is. For instance, under suitable assumptions on v and w one can use the celebrated limiting
absorption principle [2,3,21] to show that j is continuous — or even differentiable — above
the ionization threshold (and away from embedded eigenvalues).

3. The RPA Dyson equation

The goal of this section is to prove Theorem 1.1. We start with existence and uniqueness,
and then prove the bijection property. To shorten the notation, for any 7 > 0 we define

I xll7 := esssupl| x(t)l| L2+ L=, L1nL2s (29)
t€(0,T]

where y € L*>([0,T); B(L? + L>, L' N L?)).

3.1. Well-posedness of the Dyson equation

We now turn to the well-posedness of the RPA-Dyson equation

t

£ = 70(0) + /0 2ot — ) Frr £*%(s) ds;,
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where Fp is the Hartree operator defined as the convolution with ﬁ Here, the reference
response function y¢ can be a general operator-valued function of time, only required to
satisfy mild regularity conditions.

The starting point is to show that the convolution map

t

(0.0 €10 00 = o+ Fu)©) = [ tolt =) Fa(5) 8
0
is continuous in appropriate spaces. More precisely, we have the following lemma.

Lemma 3.1 (Continuity of the convolution map). Let y € L>®°((0, T], B(L? + L,
L' N L?)) and yo € L°((0,T], B(L? 4+ L®, L' N L?)). Then the function t — yo(t —
s)Fy x(s) belongs to L>((0, T], B(L? + L*, L' N L?)) and it holds that

€ (xo. O < Tlixollzllxllz (30)

Moreover, if either y or g is strongly continuous, then so is €(xo, x)-

Proof. Since Fg = 471(—%A)_1 and we have the continuous inclusions L?(R3) C
L%(R3) + L*®(R3) and L'(R3) N L2(R3) Cc LI(R3),for2 < p<ooand 1 < g <2,
estimate (30) follows directly from the Hardy-Littlewood—Sobolev inequality, which in
R3 reads

o fllp < Clfllg: Ta=(=A)72,

for % = % + £ with 1 < p, ¢ < oco. Strong continuity follows by observing that yo(f —
§)Fg x(s) is strongly continuous in ¢ and uniformly bounded (in s) in the B(L? + L,
L' N L?)-operator norm. Hence, by dominated convergence we find that € (g, y) is also
strongly continuous. On the other hand, if y is strongly continuous we can use the change
of variables s + ¢t — s and the same argument to show that € (¢, x) is strongly continuous.

We can now use the above estimate to show the well-posedness on the space of
strongly continuous B(L? + L*®, L' N L?)-valued functions.

Proof of item (i) from Theorem 1.1. First note that by inequality (30), for 7" sufficiently
small we know that the map

L®((0,T], B(L* + L™, L' NL?) — L*®((0,T], B(L*+L>®, L' NL?)),
x = €0 (D).

is a contraction. Therefore, by the Banach fixed point theorem, there exists a unique

solution y; € L*®((0, T]; B(L? 4+ L™, L' N L?)) satisfying x1 = yo + €7 (x0. x1)-

Hence, we just need to extend this solution to the whole R,. For this, note that, as

X0 € L®((0,2T], B(L? + L, L' N L?)), there exists some § = 8(||xoll27) > 0 (with
the norm defined in (29)) such that the map

fT(Xow)i{

t
€Lt (xo. (1) = /T xo(t — ) Fp x(s)ds
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is also a contraction in L®([Ty — 8, To + 8]; B(L? + L™, L' N L?)) forany 0 < Ty <
2T — §. Hence, let y;(¢) be the solution in L>((0, T]; B(L? + L, L' N L?)); then the
map

T
X o +/ x0(t — ) Frr x1(5) ds + €2+ (0. )
0

is again a contraction and we can find a unique fixed point y,. Moreover, we have

t

x1(t) — x2(t) = /T xo(t —8)Fg(x1(s) — x2(s))ds = \€$+8(X0, X1 — x2)(@),
for any T — 6 <t < T + §. But because 0 is the unique fixed point of ‘6;"'8 (xo0, s
we must have yq(¢) = y2(¢) forae T —§ <t < T + 5. We have thus extended y; to
(0, T + §]. To conclude, note that since § is uniform in the interval (0,277], we can iterate
the argument to extend y; to the interval (0, 27']. Repeating the same steps, we can further
extend the solution to the whole R . Strong continuity follows from the strong continuity
in Lemma 3.1. |

3.2. Bijection of the RPA-Dyson solution map
By virtue of Theorem 1.1 (i), we can define the solution map

gRPA. Cs(Ry:B(L2 4+ L®° L' N L?) — Cs(Ry: B(L* + L™, L' N L?)),
xo > XX e ker{xo + €(x0.") —}-

To complete the proof of Theorem 1.1, we now show that SRP* is bijective in Cy(R4;
B(L2 + L™, L' N L2)).

Proof of item (i) of Theorem 1.1. Note that, by repeating the arguments in the proof of
item (i) of Theorem 1.1, for any y € Cy(R4; B(L? + L, L' N L?)), we can find a
unique yo € Cs(R4:; B(L? + L>®, L' N L?)) satisfying yo = x — € ()0, ). In particular,
% = SRPA () is the unique solution of the RPA-Dyson equation, which implies that §RPA
is surjective. Similarly, by the uniqueness of the solution y¢ of yo = y — € (o, x), we
also have injectivity of $®PA and the proof is complete. m

4. Symmetrized density—density response function
In this section we want to characterize the poles of (1 — 75(z))~! for operators of the form
s Eo—4A H *
e (z)=T([ 2———————dP;" |T7, 31
’ oy (Eo—M)?—z2 %
where T is a bounded operator from # to a Hilbert space J, and Pf’ is the projection-

valued measure of a Hamiltonian satisfying Assumption 1. As already remarked at the end
of the introduction, such a characterization is essential for the proof of Theorem 1.2.
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We start by introducing some new notation. By virtue of Proposition 2.9, we define
the relevant excitations 0 < w1 < wy < --- as the set of positive poles of fs, i.e.

{wjfie; ={0<w <QTPH,, #0} = P(1) N(0.Q). (32)

where Pg) 1o 18 the spectral projection of H at the eigenvalue Ey + w. For finite m, we
set wy,+1 = $2, where we recall that €2 is the ionization threshold defined in (14). We also
call the intervals (w;, ; +1) the excitation-free intervals, and define the finite-dimensional
subspaces
— H L H
V; = (ker PE0+ij )— =ran TPE0+a)j'

Then by Proposition 2.9 (which also holds for j, in place of }), the rank of w; as a pole
of js is given by dim V;.

Remark 4.1. Note that we can assume ker(1 — Pg) )T* = {0}, as otherwise, we could
simply set
H = (ker(1— PEYT*) = ran(T(1 — PH)) c #
and consider ys = P s P as an operator in Je.
The main goal of this section is then to prove the following propositions:

Proposition 4.2 (Characterization of the poles of (1 — 75)™1). Let ¥s(z) be defined by
(1) and Dg = C \ ((—oo, —Q] U [, 00)). Then (1 — 75)~': Dq — B(H, H) is a
meromorphic family of operators with simple real poles with rank given by

dimker(l — P 7s(w;)PL) ifw = w; for some j < m,
ranky, (1 - 25)7") = U= Pyaopty) vo=of T=" @)
dimker(1 — ys(w)) otherwise.
Moreover, for z close to wj we have
(1= 357" = (2 —w) 7' Ky + Ko + Oz — ). (34)

where K_1 Py, = 0 and ran Ko Py; C ran K_;.

Proposition 4.3 (Forward shift of the poles of (1 — 75)™!). Let ¥ be the operator defined
in (31). Then the poles of (1 — )~ ! are forward shifted with respect to the poles of js in
the sense that for any 0 < w < 2, we have

> rankg((I—£0)7) < Y ranks(Ry).
@EP((1-1)™H DEP(Xs)
&< &<
A very crude heuristics for why such a statement might be true goes as follows.
Assume that 7y equals -2 with a # 0, which is the simplest function exhibiting a pole
at w. Then (1 — 75(z))~! = Z_z(;ﬁa), which has a pole at w + a. Thus when a > 0, the
pole of (1 — j5)~! is forward shifted with respect to that of f. The plan for the rest of
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the section is to first prove Proposition 4.2 and then to use it to prove Proposition 4.3.
The proof of Proposition 4.2 consists of three main steps. First we show that 1 — y5(z) is
invertible for Im(z) # 0 or |w| < w; and find an explicit estimate for the blow-up of the
inverse as Im(z) — 0 (Lemma 4.6). We then use this estimate to conclude that all poles
in the excitation-free intervals (w;, wj+1) are simple and give their rank (Lemma 4.7).
Finally, we isolate the singularity of 1 — ¥s(w) at = w; and deal with the blowing-up
and vanishing parts of 1 — js(w) separately.

4.1. Proof of Proposition 4.2
The starting point of our analysis is the spectral decomposition
2w )j

©2A
7 — H * H *
Xs(2) —j<mmTPEo+w,-T +T([9 mdPEo+A)T ;

:=Bj = Bess (Z)

where Plg +o; is the spectral projection in the eigenspace ker(H — Ey — |w;|), and w;
are the excitations defined in (32). Note that since

H H H
TPE0+a)jT* = TPE0+a)j (TPE0+a)j)*’

the operators B; are invertible with respect to the orthogonal projection Py;. This follows
from the identity ker A = (ran A)L valid for any symmetric operator A € B(H, ¥).

The first step to prove Proposition 4.2 is to show that the positive spectra of y; are
discrete. This follows from the following proposition.

Proposition 4.4 (Essential spectrum of jy). Let js(z) be defined by (31). Then, for any
z € Do \ P(Is), the operator js(z) satisfies

1s(2) = 1s(D)* = fs(=2). (35)
In particular, x5(z) is self-adjoint for real z. Furthermore, we have

aess()?s(w)) C (_ooa 0],

SJorany w € (=2, Q) \ P (1s).
Proof. The symmetries in (35) are immediate from the definition in (31) and the identity
((z— H)™)* = (£ — H)™!. For the essential spectrum part, note that aﬂz—fﬂ < 0 for

|w| < A. This, together with the fact that B; = (TPg) + wj)(TPg) n w]_)* is nonnegative,
implies that

Za)j
2_ 2
w; A

<f B_,~f>§0 forany 0 < o < wj (36)

and
(f, Bess(w) f) <0 forany 0 < w < Q. (37
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In addition, since all B; are finite rank operators, from Weyl’s criterion we have

. 2w; .
Oess(Xs (a))) = Oess ( Z r]szj + Bess(w)) for any integer k <m. (38)
izk 7

The result now follows from (36), (37), and (38) by the Rayleigh Ritz principle. [

4.1.1. Inverse of 1 — ys(z) for Im(z) # 0 or |z| < w1. Next we want to show that
1 — %s(z) is invertible for any z with Im(z) # 0 or |Re(z)| < w;. For this, we shall use
the following inequality between the real and imaginary parts of { f, 1s(z) f).

Lemma 4.5 (Real to imaginary ratio). Let ys(z) be defined by (31). Then for any z =
w+ine Do\ ((—2,—w1] U [w1,RQ)) and f € H we have

2_ .2 2
wm =1 — W

||
Proof. Let z = w + in and suppose that w? — n? < a)f Then, since the integrand in (31)
vanishes for A = Eg, by making the translation A — A — Ej, we find that

Re((/. 5()/)) = max{0, HIm((f 2 (2) /). (39)

<0
———
R o) )L(C()z—T]2—A,2)
Re(f2u()) =2 [ ST el Lo P <0
1

which gives estimate (39) in this case. On the other hand, if ®* — n? > w? we have

N w2—n2 )L(wl _ '72 _ 12)

A2 — 222
<2/«/a)27'[2 l|w7]| (a)z_nz_)’z)dHPH Tf||2
I A2 — 222 leon Foth

Vor-n? Awn
gl
®

A2 — 222

Re(f. 7s(2).f) <2 / dIPE TfI

1

1

w?—n? —w?

|en]
w?>—n®—w

2
HIm( £ 75(2) F)]- =

diPE L TfIP

1

|wn]

Now we can use estimate (39) to show that 1 — ys(z) is invertible away from the real
axis and before the first excitation w;. In addition, we obtain an explicit upper bound on
the blow-up rate of the inverse as z approaches the real axis. This bound will be useful to
show that the poles of (1 — 75)~! are simple.

Lemma 4.6 (Inverse away from the real axis and before w1). Let xs(z) be defined in (31)
and jLg > 0. Then g — xs(z) is invertible inthe set {z =w +ineC:n#0or || <wi}.
Moreover, we have

(o = Zs(@ + i) 7'l < ug Izl 0l ™", (40)
forany z € C\ R.
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Proof. Let g:C \ {w1, —w1} — R U {+00} be the function

2

w? —n? —w?
glw+in) = maX{O, il 1

|n]
Then, for f # 0 with Re( f, 7s(z) f) < 0, we have

b @) € B2\ {(@1,0). (0. 1)},

1Geo = As@NF I = 1F 17 Re(fo 1o — s(2) )] = moll 1.

On the other hand, by estimate (39), for any f € # withRe(f, f5(z) f) > Oand || || =1,
we find

(1o = 25N FI1P = [(f: (o — Z5(2)) £)I?
= (Re(f: o — 7s(2) ) + (m( . 15(2) f))?
> (Re( /. 15(2) f)*(1 + g(2) ™) — 2po Re(f2 fs(2) /) + -

Thus, minimizing the function © > t2(1 + g(z)™2) — 2ot + 3 we obtain

120 = £ (2D f | 2 ——— || £ (41)

V1+g(2)

for any such f. We thus conclude that (41) holds for any f € J with || f] =1 (as
1 + g(z)? > 1). Therefore, g — fs(z) is injective and the range is closed whenever
g(z) < 400, which is precisely the set {z = w + in : n # 0 or |w| < w1}. Moreover,
since J5(2)* = J5(Z) (see Proposition 4.4) and g(z) = g(Z), the adjoint (o — ¥s(2))* =
1o — Xs(Z) is also injective, which implies that 1o — xs(z) is invertible. Estimate (40) now
follows from (41) and the estimate g(z) = max{0, (0* — n* — w})/|on|} < |0|/In]. =

4.1.2. Inverse of 1 — j;(w) away from the poles of ;. We now prove a lemma that
will be useful to show that all poles of (1 — 7)™ ! are simple.

Lemma 4.7 (Simple poles at discrete spectrum). Let K: Be(zg) — B(H) be a holo-
morphic family of operators such that K(zo) is normal, 0 is an isolated point in the
spectrum of K(zg), and M = dimker K(z¢) < oo. Suppose that there is a constant C > 0
such that

IK(zo +in) fIl = Cinllfll, forany f € H and n > 0 close to 0. (42)

Then K(z) is invertible for z # zg close enough to zo and

K4

K(z)™' =

+ Ko(2),
Z—2

where rank K_1 = M and Ky(z) is holomorphic in B¢(zg) (for some possibly smaller
e >0).
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Proof. First, since 0 € 047(K(z9)), we know from standard perturbation theory (see
Lemma C.1 in the appendix) that for any § > 0 small enough, the projection

00) = ¢ (E-K@)
0)

2mi 0Bs

is holomorphic for z close enough to zo. Moreover, as K(zg) is normal, the projection
Q(zo) is the orthogonal projection on ker K(z¢). Hence,

Zli>nzlo Q(Z)K(Z)Q(Z) - PkerK(zo)K(ZO)PkerK(zo) = 07

and therefore,
0(2)K(2)Q(2) = (z — z0) K1 + Oz — zo*). (43)

Hence, from (42) and the fact that Q(z) commutes with K(z), we have
|K1v] Z |lv]l, forany v € ran Q(zp + in) and n > 0 small enough. (44)

This implies that rank K7 > rank Q(z) = rank Q(z¢9) = M. Moreover, since

. 1
lim
z—20 Z — Zo

lim Q(Z)(L Q(Z)K(Z)Q(Z))Q(Z)

z—2Zo zZ—2Zo

0(20)K10(20),

K

0(2)K(2)Q(2)

we conclude that rank K1 = rank Q(z9) = M < oo. But since ran Q(zp) is finite-dimen-
sional and Q(z¢) commutes with K7, we see that K is invertible with respect to Q(zg).
This in turn implies that Q(z)K(z) Q(z) is invertible with respect to Q(z), for z close
to zo excluding z = z¢. Indeed, this follows from (43), the fact that Q(z) commutes
with Q(2)K(z)Q(z), and rank Q(z) K(z) Q(z) = dimran Q(z) < oco. Hence, we have the
decomposition

K™ = (Q@KE@0@) ™ +(0@KE@)0E) ™
where Q(Z) =1-0(z),and (Q(2)K(z)Q(z))~!, respectively (Q(Z)K(Z)Q(Z))_l are

the inverses with respect to Q(z) and Q (z). Moreover, by the definition of Q(z), we see
that 0 & 0(K(z)|keré(z)) for any z close to zo. Hence, the inverse (é(z)[((z)é(z))_1
exists and is uniformly bounded (by continuity) around z = zo. We are thus left with
computing the pole of (Q(z)K(z)Q(z))™ .

To compute the pole of (Q(z)K(z)Q(z))™!, first note that from the expansion (43)
and the bound (44), we find that ||(Q(z) K (z) Q(2)) ! || < |z — zo|™'. Thus, if we multiply
(43) by (Q(2)K(2)Q(z))~! on the left and by K;! on the right, we obtain

QKT = (z = 20)(Q(2)K(2) 0(2)) ™ Q(20) + O(Iz — zo])-
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Hence, using that Q(z) = Q(z¢) + O(z — zo) (which holds since Q(z) is holomorphic),
we conclude that

QK@) Q@) = (z—z0) 'K + O(1),

which completes the proof. Note that the remainder ¢ (1) is holomorphic since the inverse
of a holomorphic operator-valued function (whenever defined) is also holomorphic and
any holomorphic operator which is uniformly bounded around zy can be extended to zg
(by Cauchy’s formula). ]

4.1.3. Inverse of 1 — j;(w) at the poles of j5. We now come to the last difficulty of the
proof, namely, dealing with the points w = w;. The key idea here is to use the operator

A5, (2) = PVLj)zs(z)PVij e B(V;S V) (45)

as a reference for separating the spectrum of y;. Precisely, we show here that (o > 0 is an
eigenvalue of j§, j(w;) with multiplicity M if and only if the spectrum of js(z) close to
Lo converges to {{Lo} as z — w; and the associated Riesz projection has rank M. Before
we show this however, we need one technical lemma. This lemma provides an asymptotic
expansion for a continuous operator-valued function close to one of its poles.

Lemma 4.8 (Inverse of an operator-valued function around a pole). Let V C H# be a
closed subspace, and let B € B(H) be invertible with respect to the orthogonal projec-
tion Py. Let z — A(z) € B(H) be an analytic family of operators and suppose that
PI}A(Z)PI} is invertible with respect to PI}, with a uniform bound. Then, for z € C small
enough, the operator A(z) + z~! B is invertible and we have

(A(z) +z7'B)™' = (PFrA() Pyr) ™ + O(lz)).

Proof. The proof relies on a Schur complement. Writing the operator A(z) + z~! B by
blocks, we have

zT'B+ PyA() Py PyAGC)PF\ _ (A B
PFAG)Py  PrA@Py) —\€ D)

The Schur complement is the operator #4 — 8D €. Using that zA and BD '€ are
uniformly bounded, the Schur complement is invertible for |z| sufficiently small:

(A-BD ey =47t Z(z@@—lﬁ(m)—l).
k>0

The result then follows from the formula for the inverse of A(z) + z~! B in terms of the
blocks:

(A(z) +z7'B)7!

B (A— BD1E)! —(A-BD1e)18D!
“\—ole(A-8D71)! D14 DlE(A-BDE) 18D !

0 0
~(0 pacrrp ) ot "
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We can now prove the previously mentioned correspondence between the spectra of
Zs(z) and X5 ; (w;) as z approaches w;.

Lemma 4.9 (Convergence of discrete spectra). Let X5, ;(z) be the operator defined in
(45). Then, for any o > 0 and § > 0 small enough, there exists a neighborhood Us of w;
such that 0Bg (o) N o (fs(z)) = @ for any z € Us and
1 N _
00@) = — (b= s dp
270 JoBs (n0)
1

= i (MPI# _)?s,j(z))_l du + O(|z — wjl),
7L J3Bs (o)

where (//,PIJ,; — s, (2))7Y is the inverse with respect to Pd;. In particular,
rank Q(z) = dimker(u — s, (w;)), foranyz € Us,

and
0()Py, = O(|z —wyl) and Py, 0(2) = O(z — w;) (46)

for any z € Us.

Proof. The first step is to prove the following claim: for any w1 € C in the resolvent set
of Js,j(w;) (where the resolvent/spectra is with respect to i)’(VjJ-)), there exist neighbor-
hoods U of w; and W of o such that W No(js(z)) = @ forany z € U.

Solet 1o € C belong to the resolvent set of ¥, ; (w;). Then, from standard perturbation
theory (see Lemma C.1) and the continuity of z > jJ, j(z), we can find § > 0 small
enough such that Bs(ito) C C lies on the resolvent set of Js,;(z) for any z close enough
to wj. In particular, the inverse (/,LPIJ,‘_ — %s,j(2))7! exists and is uniformly bounded for
z close enough to w; and w € W := Bg/2(io). Therefore, we can apply Lemma 4.8 to
pw—1s(z) = A(z, u) + (z — wj) "' B, where

Az, p) = p—Js(z) + (z—w))"'B;, B =B,
and
Py A(z, ) Py, = Py — 35, (2),
to conclude that  — ys(z) is invertible and

(n—gs(z) L= (MPVL], — 75, @) '+ 0(z—wj|), foranypu e Wandz e U, (47)

where (MPI}j — Xs,7)" ! is the inverse with respect to PIﬂ;.

Next, let 0 < o € o(Xs,j (@j)). So, by the same arguments as in the proof of Proposi-
tion 4.4, we find that 11 belongs to the discrete spectrum of j; j(w;). Thus, from classical
perturbation theory again, we can find an annulus

Bs(110) \ Bs/2(to) C {z € C:Re(2) > 0}
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contained in the resolvent set of ¥ ;(z) for any z sufficiently close to w;. In particular,
from our first claim and a compactness argument, we can take a small enough neighbor-
hood of z = w; such that the annulus Bs(110) \ Bs/2(jto) also lies inside the resolvent set
of ¥s(z). In this neighborhood, the spectral (Riesz) projection defined by

1 N -
0(z) = 5— (k= 1s(2))""du
2mi JoBy (o)

is holomorphic and has constant rank. Moreover, substituting (11 — 75(z))~! by (47) in
the above we obtain

1 . -

0@ = — (WP = 25, ()7 du + O(1z — w)).
270 JaBs (u0)
Moreover, since (,uPIﬂ; — 1s.j(2) ' Py, = Py, (/J,Pd-; — %s5,j(2))™! = 0 we obtain (46).
To complete the proof we just need to show that rank Q(z) = dimKker j1o — {5, (@;)).

This follows from the fact that Q (z) is a continuous family of projections, hence rank Q(z)
is constant, and Q(z) — % Sﬁ(/,LPdv; — Js,j (@)1, which is the orthogonal projection
on ker 1o — X5, (w;) (as fs,j (w;) is symmetric). [

We are now in a position to prove Proposition 4.2.

Proof of Proposition 4.2. Note that the set {z € Do \ P(¥s) : 1 € 0(}(2))} € C is open
by continuity. Hence, (1 — 75(z))! is well defined and holomorphic on this set, and we
just need to worry about the points where 1 — ¥ is not invertible, and the points w; where
Xs blows up. By Lemma 4.6, the set of points where 1 — ¥ is not invertible is contained in
the intervals w € (—2, —w1] N [w1, ). Moreover, by the symmetries of yy, it is enough
to look on the positive interval [wq, 2).

So first, let us consider the points w € (wj, w;j+1) for some j < m, where | — xs(w) is
not invertible. For these points, we know from Proposition 4.4 that 1 belongs to the discrete
spectrum of 7s(w). Hence, from Lemma 4.7, estimate (40), and the fact that §s(w) is self-
adjoint, we conclude that this set of points is discrete, and that (1 — 7s(w))~! has a pole
with rank equal to dimker(1 — ys(w)) at any such point.

Next we want to show that any excitation w; is a pole of (1 — 75)~! with rank equal
to dimker(1 — P‘ﬂ; s (a)j)P‘}j). So let w; be a pole of x5, and let z be in a neighborhood
of w; such that the projection

00 = —¢ -7
1)

2mi 0Bs

has rank M; = dimker(1 — Plﬂ-j s (a)j)P‘}j). That this projection is well defined and holo-
morphic for z close to w; is a consequence of Lemma 4.9. Thus, since f;(z) commutes
with Q(z), we can deal with the operators

1= 75(2) = 0(2)(1 = 75(2) Q(2) + 0 (2)(1 — 75(2)) O(2)

=K(z) =K(z)

separately.
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Let us start with K(z). From the definition of Q(z) and Lemma 4.9, we see that
K(z) - 0as z — w;. Hence, K(z) can be expanded as

K(z)=(z—wj)K1 + 0O(z — wj]).
for some K; € B(H). Moreover, from the blow-up estimate (40), we also have

[K(w; +im fIl Z [nlllfIl,  forany f & ran Q(z) and 7 small.

Hence, the same arguments as the proof of Lemma 4.7 lead to the conclusion that K; is
invertible with respect to O (w; ), that K(z) is invertible with respect to Q(z) for z # w;,
and that

K(z)'=(z—w) 'K +0(1), (48)

for some operator K_; with rank K_; = M = dimker(1 — Pd; s (a)j)P‘ﬁ;). The big-O
term here is with respect to the limit z — w;.

For K(z) we can use formula (66) in the appendix. Indeed, introducing the Riesz
projection Q;(z) = %Bs(uo)('upd; — %5, (2))" 1 du of gs,j(z) around 1, then from the
definition of Q (2), formula (66), and Lemma 4.8, we find that

-~ 1 1 R _
K@z =— ——(n—fs(@) " dp
2t Jypgy b — 1

_1 1Pt —p ! o
= 30 By TP~ as @) 01z = )
(PF — Q)1 = 5, ;)(PF — () + Oz — ;)

= O(1). (49)

Combining (48) and (49), we have shown that

” _ _ ~_ K_
(=)' =K'+ K= —

+ Ko(2),
Z—wj
where K_; is invertible with respect to the orthogonal projection on ker 1 — ¥, ; (w;) and
the operator K¢ (z) is holomorphic and uniformly bounded around z = w;.
To complete the proof, it is enough to show that ran K¢(w;) C ran K_;. This follows
from the identity

Ko(w)) Py, = zlggj(l — fs@) 7' Py, = zlggj K(z)"'Py, + Zl_i)ngl)j(]?(z))_lPW

=0
= lim Q(z)K(z)"'Py, = Q(w)) lim K(z)~'Py,,
z—>wj z—>w]- ;

where we used that K_; Py, = 0, and E(z)_1 Py; = O(|z — wj]) (see (49)), and the fact
that ran Q (w;) = ran K_;. |
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4.2. Proof of Proposition 4.3

The strategy here is to show that the eigenvalues of js(w), as a function of w, are strictly
decreasing along the intervals (w;, w; 1), and then analyze what happens when w crosses
wj . For this, let us introduce the number of eigenvalues, counting multiplicity, greater than
Mo as
My (@) = Z dimker(pu — ys(w)).
M=o

Then the following lemma holds:

Lemma 4.10 (Strictly decreasing eigenvalues). The positive eigenvalues of Js(w) are
decreasing functions of w in the interval (w;,®j+1), j = 0. Moreover, for any po > 0, we
have

Mo (@) = nyy(@;) + dim V; — dimker(po — Pd‘_ Ps (wj)%), (50)

where ny, (a) ) = liMy— 0 w>0; Nue (@) and nyy(@;) = liMy—e; 0<w; M (@) are,
respectively, the right and left limits of n,(w) at w;.

Proof. We first note that since the function 2(A, w) = wzz__xﬂ is decreasing for w in the
intervals (—oo, 1) and (X, 00), and since the spectral measure ||Pyyg,7* f||* is not
identically zero for any f in the complement of the kernel of 7*, then for any w > o’ in
(0, wj+1),

oo

(25 (@) f) = f h. o) d| P T F I

1
oo

> | ) d| P g T FIP = (f: Rs(@) f).
w1
Hence by the Rayleigh—-Ritz principle, the positive eigenvalues of fs(w) are decreasing
functions of  in the interval (w;, w;4+1).
The existence of the right and left limits of n,,(w) at w; follows since n,,(w) is
decreasing. By Lemma 4.9 and the decreasing property of the eigenvalues of j;, the left
limit of 7, (a) ), w < w; is exactly the number of eigenvalues of PV s (a)j)PJ- equal

to or greater than . Indeed, by Lemma 4.9, an eigenvalue of PV Hs(w;j )P equal to or
greater than o corresponds to another eigenvalue of Js(w), for @ in a ne1ghb0rh00d of
wj. Since w < wj, by the decreasing property, the corresponding eigenvalue is greater than
to. Conversely, if j(w) is an eigenvalue of ¥s(w) such that limg e, w<w; L(®) > o,
then as limy— 0, w<w, wzw;) > = —oo the corresponding family of eigenfunctions has a

vanishing component on V;. ’Hence pt(w) converges to an eigenvalue of PV Is(w /)Plﬂ;
For the right limit 7, (a)j ), consider an eigenvalue (w) of ¥s(w), @ > w; greater

than po. Since w — p(w) is decreasing, it either diverges at w; or it converges to an eigen-

value of P‘}j s (a)j)PIﬂ; strictly greater than o by a similar argument to above. Finally,
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there are exactly dim V; eigenvalues blowing up at w; since for any f € V;, we have

. 2w, 5
o ds@) f) = (1 2—’2ij)—)xs(w)—— 11z - 2||f||2
w? —o;
80 limy—w; w>w; (f, {s(@) f) = oo and P#} )?S(a))PIJ,; is bounded in a neighborhood
of w;. m

Proof of Proposition 4.3. From Proposition 4.2, 1 — ys(w) is invertible for 0 < v < w;.
Since PI}I )A(S(a))P&l is negative for |w| < w,, from Lemma 4.9, w; is not a pole of
(1 — %5)~'. By Proposition 2.9, we have rank,, ({s) = dim V;, so by Lemma 4.6 it is
enough to show that

> ranke((1—3)7") <> dimV; forany j <m. (51)

W] <W<Wj41 k<j

By Proposition 4.2, rank, ((1 — %5)~1) = dimker(1 — f5(w)) for any w € (0j, ®j+1).
From the decreasing property of the eigenvalues in Lemma 4.10, the sum of the ranks of
the poles in the interval (w;, w;j41) is given by the number of eigenvalues of ys(w) that
cross 1. Hence for any j > 0,

Z ranky, (1 — ¥5)~ l)—111(60 ) —ni(w;yq).

Wj<W<Wj+1

As aresult, combining Lemma 4.9, estimate (50), and the rank characterization in (33) we
get

Z rank,, ((1 — )?s)_l)

W1 <W<Wj+1

Il
M-\.

(rokon( =207+ X kol 2070)

O <O<Wk 41

~
Il
-

Il
M\.

(dimker(/LO - Pli;)?s(wj)PI%j) + nl(w]j_) - nl(a)k_.l,_l))

~
Il
_

|
M\.

ny(wg) +dim Vg —ny(wg,,)

~
Il
—-

=ni(w;) —ni(w +1)+Zd1ka
k=1

But since nl(a)]trl) > 0and n;(w]) = 0as }s(w) is nonpositive semidefinite for v < wy,
we obtain (51). [ ]
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5. The Fourier transform of yRPA

We can now use Propositions 4.2 and 4.3 in the particular case 7 = F 1;/ ’S to prove
Theorems 1.2 and 1.4.

Proof of Theorem 1.2. Let y¢ be the density—density response function of some Hamilto-
nian satisfying Assumption 1 and let yRPA = SRPA(y() be the associated solution to the
RPA-Dyson equation. Then, since || yo(¢)|| 241,112 is uniformly bounded by Propos-
ition 2.4, from the Gronwall inequality we know that || x4 (¢)|| 24100 11n22 < eP! for
some D > 0. Hence, the Fourier transform X/RE\(Z) is well defined for Im(z) > D and we
have (by the convolution property of the Fourier transform)

XRPA(2) = f0(2) + fo(2) Fu xR (z), forIm(z) > D. (52)

Let 7, %o, and j; be the operators defined by

7= FgPaR, o= Fi?fo, and fs = Fp?foFy?, (53)

1. . g . . .
where F 111/ 2= Jaxn (—A)™2 is up to a multiplicative constant the convolution against #

Then we have

X(@) = Xo(2) + ks () = (1= fs(2)x(2) = fol2).

Also, we see from the Hardy—Littlewood—Sobolev inequality that ¥ (z) € B(L?(R?) +
L*®(R3), L?2(R?)), and that j, is an operator of the form of equation (31) with T =
FI}I/ZS € B(Hy, L?(R?)). Therefore, from Proposition 4.2, the map

2 (1= 15(2) Y i0(2) € B(LY(R?) N L*(R3), L2(R?))

is the unique meromorphic extension of y to the domain Do = {z € C:Im(z) # O or
|[Re(z)| < 2}. Now going back to equation (52), we see from (53) that

XRPA(2) = 70(2) + 20(2) Fi 2 7(2)
= 70(2) + 7o) F (1= 752 F 2 70 2). (54)

In particular, XRPA has a unique meromorphic extension as a map from Dg to B(L? +
L, L' N L?), which proves item (i) from Theorem 1.2.

For the other item in Theorem 1.2, we want to relate the poles of )(/RE% to the poles of
(1 — #5)~L. This can be done by observing that, since FPII/Z: L'(R3) N L2(R3) — L2(R3)
is injective and bounded, a point z € Dgq is a pole of )(/RE\(Z) with finite rank if and only
ifitis a pole of y = F I}I/ 2 )(/RE\ with the same rank. Therefore, if we can show that any
pole of y is simple and the inequality

rank,, (7) < rank,((1 — 25)7") (55)
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holds for any 0 < w < 2 (with the convention that the rank is 0 if w is not a pole), then
Theorem 1.2 follows from the forward shift property in Proposition 4.3.

For w € P((1 — 75)™") \ P(jo). since jq is holomorphlc in a neighborhood of w,
it is clear from (54) that w is at most a simple pole of )(RPA and that inequality (55)
holds. We are thus left with the points in (o). Let w; € £ (Fo). Since Fy 12 i inject-

1/2 H —
ive and bounded from L'(R?*) N L*(R?) to L2(R?), we have dimran Fp; SPy s, =

dimran SP 51 o, . This implies that the poles of j are precisely the poles of y¢ and they
have the same rank Hence, using the spectral decomposition of H, we have that yo(z) +
Zw L Fl/zSPg)_HD S* is bounded. By the decomposition (34) of (1 — 75(z))~! for z in
a nelghborhood of w;, we obtain

(z —w)x(2) " "
F/°spH gx Fg/*SpPH ., S*
— (K_1 + (z—w,-)KO)(—H R - )
— @y —wj
+0(|z — wj])

FY?sPH ,  s*
= K—1—0+w + K—l()?o -
z—wj

+ 0O(|z — wj).

Fi?SPH ,  s*

+ H

o ) + KoFy/>SPf s
J

Recall that j, is given by equation (31) by taking T = F I}I/ 2S. Hence, using the last
statement in Proposition 4.2, we get that K_1 Fy 2gp g +o, S* = 0. This shows that w;
is at most a simple pole of y. Moreover, using the last statement of Proposition 4.2 again,

ran KOFI/ZSP]?H) C ran K_;. As, by equation (33),
dimran K_; = dimker(1 — PV )(s(a)])P 1) = rank,,, ((1 — ¥5)~ b,

the inequality rank,, (¥) < ranky, ((1 — #s)™1) holds for any j < m and the proof is
complete. ]

Notice that we have proved that rank, ( )(/RE\) <rank, ((1 — 75)™ ') forany 0 < w < Q,
which will be useful in the proof of Theorem 1.4.

Proof of Theorem 1.4. By the rank characterization in equation (33) from Proposition 4.2,
it is enough to show that rankw()(/RE%) = rank, ((1 — f5)™') for any 0 < w < Q. The
inequality rankg, ( )(/REL\) = rank, (¥) < rank,((1 — js)) has already been proved . For
the converse inequality, observe that, since y: Do — B(L? 4+ L>®,L?)is meromorphic,
the map y F I}I/ 2 Do — B(L?, L?) is also a meromorphic family of operators. Thus the
inequality rank,, (¥ F’ }11/ 2) < ranky, () holds since the composition of linear operators can
only lower the rank. The proof is now complete because

FOFY? == 3@ F 2 Ro() FY? = (1= 352" =1, (56)
N e’
=iS(Z)

which implies that rank, ((1 — 75)™1) = rank, (7 F I;/ %) < rank,, (yRPA). [
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Remark 5.1. Ideally, we would like to conclude the proof of Theorem 1.2 directly from
identity (56). However, this is not possible because F' }11/ 212 L%+ L®isnot surjective
(nor is the image dense in L2 + L), and some poles could in principle vanish when
composing X/R?A with F 111/ % on the right.

A. Time-dependent density functional theory

In TDDFT, one postulates the existence of an (exact) time-dependent exchange-correlation
potential' vy such that the solution ®(¢) of the time-dependent Schrodinger equation

i10;,9(t) = Hee(1)D(t) fort > 0, 57)
@(0) = Do,
where the effective noninteracting Hamiltonian is given by
1 ul 1
Hen(t) = =38+ 3 v(ry) + €/ (v (r)) + p%(0) % 7(17)
j=1
+ vselp®s Wos Do (. 7)), (58)

reproduces the time-dependent electronic density p¥ of the solution W(t) of the interact-
ing evolution (1). The potential v at time ¢ depends not just on the density p¥ at time ¢,
but on its past history at all times ¢’ € [0, ¢]. The initial state of the noninteracting system
® can be chosen arbitrarily as long as [16, Chapter 4] it reproduces the initial density
p¥° and the initial divergence of the current density

V. j%(r) =NV .Im Wo(r,ra, ..., iN)VeWo(r,ra,...,ry)dry...dry.
(RS)N—l

Note however that the exact xc potential depends on this choice.

A.1. Formal derivation of the Dyson equation

In typical applications of linear response theory, the state Wy is the ground state of the
static interacting Hamiltonian governing evolution (1). In particular, for ¢ = 0 the time-
dependent density p"¥ satisfies p¥ (1) = p¥° for all times ¢ > 0. Consequently, if we choose
the ground state of the noninteracting system @ to be the exact Kohn—Sham ground state
reproducing the density p¥° (assuming it exists), the time-dependent xc potential reduces
to the exact xc potential of static DFT, i.e.

ch[pq’; ‘I—’(); cDO] — vstatiC[p\IJo],

Xc

!For proofs of the existence, respectively uniqueness up to a time-dependent constant of such a poten-
tial see [19, 23], and for contributions to the open question of whether the required assumptions hold for
systems with Coulomb interaction see [16, Section 4.4.2] and [9].
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where @y is the ground state of the noninteracting Kohn—Sham Hamiltonian

1

)+ Vi oY) (r)). (59)

N
o= Lot 3o+ ot
j=1
From this observation we can now derive the Dyson equation of TDDFT. To this end,
let us assume that the function p > vy [p; g; Wo] is differentiable with respect to time-
dependent densities at the stationary density p(t) = p¥° for all #. Then, using the expan-
sion of the electronic density given in equation (8), we have

veelp”'s Wos @o](r, 1) = vig™[p™](r) + eFxe(x * fv2)(r, 1) + O (&),

where Fy. = %[p%; Wy; Op] is a linear operator whose (Schwartz) kernel is called
the (exact) exchange-correlation kernel of TDDFT. Similarly, the Hartree term can be
expanded in powers of ¢ and the effective Hamiltonian (58) becomes

N

He(t) = Ho + Y e(Fu + Fio)(x * fvp)(rj. 1) + ef (v (1)) + O(e?).
=1

where Hy is the Kohn—Sham Hamiltonian (59) and Fpy is the Hartree operator, acting
on time-dependent potentials v by time-instantaneous convolution in space against the
Coulomb potential,

1
-1

The equivalence of the densities and (8) now yield

(Fgv)(t,r) = *v(t,)(r) = A3 ;v(t,r’) dr'.

=]

p‘ll(t) — p\IJO
(x * fvp) = lim = lim
e—>07t & e—>07F &

= yo* fve + yox (Fg + Fo)(x * fop),

pq)(t) — pq)O

where y and yo are the density—density response functions of the interacting Hamiltonian
and the noninteracting Kohn—Sham Hamiltonian, respectively. As the identity above holds
for every time-dependent potential f(¢)vgp (r), we obtain the celebrated Dyson equation
of TDDFT,

X =Xo+ xox (Fg + F)x. (60)
Remark A.1. Recalling that y is a time-dependent operator on potentials, and making the

convolution in time in equation (60) and the Hartree operator explicit, the equation says
that for any time ¢ > 0 and any potential vy € L™ (R?),

t 1
1Ove = roO)ve + [o 10t =) 5 (L07) + 7000 =) Purug) () s,

where yvg is the continuous L!(R?)-valued map s > y(s)vep.
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A.2. Common approximations

In the absence of any explicit description of the exact time-dependent xc potential vy, all
practical TDDFT calculations must resort to approximations. The two most common ones
are the following:

(1) Random phase approximation (RPA). Electron—electron interaction is only taken into
account on a mean field level, that is to say, in (57)—(58) one only keeps the Hartree term
but takes vy, = 0. It follows that Fy. = 0 and the Dyson equation (60) reduces to the
RPA-Dyson equation

X =Xo+ xox Fuy (61)
treated in this paper.

(2) Adiabatic local density approximation (ALDA). In (57)—(58) one uses the instantan-
eous (or static) local density approximation at each time ¢,

Vxe[p®: Wos @o](r, 1) = vEPA[p® D] (r), (62)

where vIPA is the LDA exchange-correlation potential, that is to say, vLPA[p](r) =

XC XC
e (p(r)), exc(p) is the exchange-correlation energy density per unit volume of a homo-
geneous electron gas with density p (known accurately from asymptotic and numerical
results [5, 17]), and e} (p) = diﬁexc(ﬁ). Since F,. is the functional derivative of the
exchange-correlation potential with respect to the density, it is given in this case by the

multiplication operator

ALDA SU)]ZCDA d " @
Fe ™ (fve)t,r) = T[p N fvp)(r, 1) = e"xc(p °(r) f(Dvp(r).

All the results in this paper (Theorems 1.1, 1.2, and 1.4) apply to equation (61). Note
that the particular approximation chosen for the static xc potential v underlying the
reference response function yo can be arbitrary, provided the Hamiltonian (59) satisfies
Assumption 1.

In the approximation (62), the time-dependent xc potential only depends instantan-
eously on the electronic density p(-, ¢). This is an adiabatic approximation and it is one
of the main challenging problems in TDDFT to improve on it in a systematic way [22,

Chapter 8].

B. Poles of the density—density response function
of a noninteracting Hamiltonian

Proposition B.1. Let y be the density—density response function defined in (21) of a non-
interacting Hamiltonian H satisfying Assumption 1, i.e. H = —%A + ZZN=1 v(r;). Let
h be the one-body Hamiltonian h = —%A + v and (g, Yi)1<k<n € (R x L2(R3)N
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be its lowest eigenpairs. Then we have for all vp € L*>(R3) + L®(R3) and z € C with
Im(z) > 0,

N
A@vp () =Y Ykl —z =7 + (e + 2 =) Neyi) (). (63)

k=1

Proof. The proof proceeds by deriving and exploiting explicit one-body expressions for
the many-body operators appearing on the right-hand side of (24).

Step 1. We first show that

((Eo—z—H)™' + (Eo +z — H)")S™vp

1 N
= =00 2 oty =2 =W+ (ot +2 =) o ()
tj=loeSy
N
x l—[ Vo k) (rk).- (64)
k=1

Since HW¥, = EyWV,, we have

(Eo—z—H)™' +(Eo +z—H)")S*vp

N
= (Eo—z—H)"' +(Eo+z=H)™) ) vp(r)%o(ri,.... 7).

i=1

Using that for any bounded continuous g, we have
/]Rg()k)dP)fY = /RN glur +--- +/L1v)dPl}L’1 ®~--®dP,i’N,

and noticing that foro € Sy, Eg = lecv=l €5(k)> We get (64).

Step 2. We have

S((Eo—z—H)™' + (Eo +z— H)")S vp(r)

N _
= ﬁ v \110(}", ro,..., VN)
X > (=D Ueo(y =2 =)+ (eo(jy + 2= )7
geSN
x (0 (Vo)) [ | Vo () dra ... dry

k>2

X

- <‘I’o, = DY Doy —z =W+ (eoy + 2 — ) v (r))
rj=loeSy N

<[] lﬂcr(k)(rk)>/)o(r)-

k=1
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Since (h — €5(j))¥o(j) = 0, the second term on the right-hand side of the above equation
vanishes. Thus, by orthonormality of (v/;)1<;<n, We obtain

N

A@vp(r) =Y Vk)ler —z =)+ (e + 2 = ) e v) (). =

k=1

We notice that expression (63) is equivalent to the Lehmann representation typically
found in the physics and chemistry literature if, as is often assumed in this literature (but
not strictly speaking valid for molecular Hamiltonians due to the presence of continuous
spectrum), /1 is diagonalizable in an orthonormal basis (¥/;);en. Under this assumption,

ek —z—h)" + (e + 2z — ) Nwayi)(r)

(e ) Wa vo v Va0,

€ —€q +Z
Hence, for ve € L2(R) + L>®(R?), we obtain
(vo. X(2)ve)

N oo
= (s ) Wkvo. Ve Y vy

€k —€q — Z €k —€q +Z

N oo
=2 ( : + : )(kaa,llfa)(llfa,vm/fk)- (65)

€ —€q — Z € —€q +Z

Note that the Lehmann representation (65) could also have been easily obtained from
(27), by using the fact that the excited states of the noninteracting Hamiltonian H are
given by the Slater determinants of the eigenstates of & containing at least one unoccupied
eigenstate ¥,, a > N, and that only those Slater determinants containing exactly one
unoccupied eigenstate yield nonzero matrix elements in (27).

Equation (65) shows that the poles of the density—density response function of a non-
interacting Hamiltonian are located at the spectral gaps between occupied and virtual
eigenvalues of the one-body Hamiltonian.

C. Spectral theory of bounded operators

We collect here some results on the spectral theory of bounded operators on Banach
spaces. These results are elementary and complete proofs can be found in [10]. For the
convenience of the reader, we briefly sketch these proofs here.

Lemma C.1 (Continuity of spectra). Let A € B(E), where E is a Banach space and p €
p(A) (where B(E) denotes the set of bounded linear operators on E and p(A) denotes
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the resolvent set of A). Then for any B with ||B|| < ||(x — A)~"|| we have i € p(A + B).
In particular, if A: B§(0) C C — B(FE) is continuous and W C p(A(0)) is compact, then
W C p(A(z)) for any z close enough to 0.

Proof. For € p(A), we have

m—A'(u—A-B)=1—(u—A)"'B
and
(m—A-B)(u—A)""'=T-Bu—-A)~"

Thus, for || B|| < ||(t — A)~1||~! the operators above are of the form I — K with || K| < 1.
Hence, they are invertible and the inverse is given by the Neumann series, ) ", ony K-
For the second statement, note that since W is compact, and (1 — A(0))~! is continu-
ous with respect to u, we have € = infew ||(1 — A(0))~1||~! > 0. Thus, from continuity
we have ||A(z) — A(0)| < € for any z close to 0 and the result follows from the first
statement. u

Lemma C.2 (Riesz projection and separation of spectra). Let y C p(A) C C be a closed
smooth curve separating the spectrum of A. Then the operator

1 _
PP
i J,
is a projection commuting with A. Moreover, for (o € y, the operator
1 _
Sww=5f (w—A)"11 - P)du
L Jy W= Ko
satisfies
(1= P)(po — A)(A = P))™" for po inside y,
S(po) = » Ho e (66)
(P(uo—A)P) for o outside y .

In particular, the spectra of Al p € B(ran P) and Alxer p € B(ker P) are given respect-
ively by the spectrum of A inside and outside y.

Proof. That the operator P is well defined and bounded is clear since y C p(A) and
i+ (. — A)~!is continuous in p. To see that P is a projection, note that one can choose
a curve y; inside y such that all points lying between y; and y are in the resolvent of A.
Thus, from a standard argument of holomorphic function theory,
1 -1
P=—Q (A—-A) " dAr.
2mi Jy,
Hence, multiplying the above by the definition of P with a contour integral on y, using
the resolvent identity (1 — A) " '(A — A) ' = (u -1 (A — A~ —(u— A1), and
using the Cauchy integral formula for holomorphic functions, one can show that P2 = P.
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Since S(pto) commutes with A, formula (66) follows from

1 1 1 _ 1— P for pg inside y,
(10 = A)S(t0) = 52 P bl 1du={
y Y

2ni J, w—po  2mi —-P for g outside y,

and

1 (T ) L Ry ) 0 for pg inside y,
S P=— d =
(1) 2ri ygy él (= po)(A — ) {

Finally, the last statement follows from two observations. First, the existence of the
inverses in (66) implies that o (A |, p) lies inside y and o (A|ke; p) lies outside y. Second,

from the decomposition
A | ran P 0 )
A=
( 0 A |ker P

with respect to # = ran P & ker P, we have 6(A4) = 0 (Alxer P) U 0 (A|ran P)- |

S(uo) for g outside y.
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