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The harmonic H 1-functional calculus
based on the S -spectrum

Antonino De Martino, Stefano Pinton, and Peter Schlosser

Abstract. The aim of this paper is to introduce theH1-functional calculus for harmonic func-
tions over the quaternions. More precisely, we give meanring toDf.T / for unbounded sectorial
operators T and polynomially growing functions of the formDf , where f is a slice hyperholo-
morphic function and D D @q0 C e1@q1 C e2@q2 C e3@q3 is the Cauchy–Fueter operator. The
harmonic functional calculus can be viewed as a modification of the well-known S -functional
calculus f .T /, with a different resolvent operator. The harmonic H1-functional calculus is
defined in two steps. First, for functions with a certain decay property, one can make sense of
the bounded operatorDf.T / directly via a Cauchy-type formula. In a second step, a regulariza-
tion procedure is used to extend the functional calculus to polynomially growing functions and
consequently unbounded operators Df.T /. The harmonic functional calculus is an important
functional calculus of the quaternionic fine structures on the S -spectrum, which arise also in the
Clifford setting and they encompass a variety of function spaces and the corresponding func-
tional calculi. These function spaces emerge through all possible factorizations of the second
map of the Fueter–Sce extension theorem. This field represents an emerging and expanding
research area that serves as a bridge connecting operator theory, harmonic analysis, and hyper-
complex analysis.

1. Introduction

The complex Riesz–Dunford functional calculus [37] is based on the Cauchy integral
formula and gives meaning to holomorphic functions of operators via the integral

f .A/´
1

2�i

Z
@�

.zI � A/�1f .z/dz; (1)

where � � C is a suitable open set containing the spectrum of the complex bounded
linear operator A. Extending the holomorphic functional calculus to quaternionic
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operators presented a formidable challenge because of the various potential concepts
of quaternionic holomorphicity. Indeed, in hypercomplex analysis, unlike in complex
analysis, it is important to recognize the existence of multiple notions of analyticity,
including slice hyperholomorphic functions and Cauchy–Fueter regular functions.
Moreover, in the slice hyperholomorphic setting, due to the lack of commutativity,
there exist two different hyperholomorphic Cauchy kernels

S�1L .s; q/´ .s � Nq/.s2 � 2q0s C jqj
2/�1 (2a)

and

S�1R .s; q/´ .s2 � 2q0s C jqj
2/�1.s � Nq/: (2b)

For f in the space SHL.U / of left slice hyperholomorphic functions, the left Cauchy
kernel S�1L .s; q/ gives raise to the Cauchy integral formula

f .q/ D
1

2�

Z
@.U\CJ /

S�1L .s; q/dsJf .s/; (3)

while for right slice hyperholomorphic functions a similar formula holds true using
the right Cauchy kernel S�1R .s; q/, see for example [21, Theorem 2.1.32]. For the
interpretation of the integral and the notion of slice hyperholomorphicity, we refer
to Definition 2.3 and Definition 2.2. Motivated by the integral (3), the quaternionic
extension of (1), called S -functional calculus for a quaternionic linear operator T , is
defined by

f .T /´
1

2�

Z
@.U\CJ /

S�1L .s; T /dsJf .s/; (4)

where the left S -resolvent operator S�1L .s; T / is associated with (2a) and properly
defined in (12). In this paper we establish a functional calculus similar to (4), for
functions in the space

AHL.U / D ¹Df j f 2 SHL.U /º;

where D is the Cauchy–Fueter operator

D D
@

@q0
C e1

@

@q1
C e2

@

@q2
C e3

@

@q3
: (5)

Due to the Fueter mapping theorem [38], the space AHL.U / is exactly the one of
axially harmonic functions. Applying the operator D to the formula (3), carrying the
derivatives inside the integral and using the explicit formula

DS�1L .s; q/ D �2.s2 � 2q0s C jqj
2/�1µ �2Q�1c;s.q/
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of the Cauchy kernel, we obtain the Cauchy-type formula for axially harmonic func-
tions

Df.q/ D
�1

�

Z
@.U\CJ /

Q�1c;s.q/dsJf .s/:

Replacing the quaternion q by a suitable quaternionic operator T , the above formula
motivates the definition of the harmonic functional calculus

Df.T / D
�1

�

Z
@.U\CJ /

Q�1c;s.T /dsJf .s/: (6)

For a rigorous definition of the operator Q�1c;s.T /, see (10) and (11). For bounded
operators T , this functional calculus is already well established in [11, 34]. In this
paper we consider the class of unbounded sectorial operators (also called operators
of type !). The set U mentioned in the boundary integration within equation (6) must
encompass the S -spectrum of T . So, for this class of operators, the S -spectrum is
unbounded and so we have to require additional decay properties on the function f
to ensure the convergence of the integral.

Nonetheless, by employing a regularization procedure known as the H1-func-
tional calculus, originally introduced by A. McIntosh in the complex context [44], we
can subsequently extend the harmonic functional calculus to include functions f that
exhibit polynomial growth. To explore the H1-functional calculus in the complex
context, one can refer to the following sources: [4–6, 40–42, 48]. Additionally, for an
extension of the H1-functional calculus in the monogenic Clifford setting and its
applications, one can consider the books [43, 46].

We now intend to offer a comprehensive perspective on our theory by elucidating
its initial motivations, detailing recent developments, and introducing a new branch
known as the fine structures on the S -spectrum. Within this new branch, we encounter
the development of the harmonic functional calculus, whose H1-version has been
elaborated in this work.

The study of quaternionic operators is motivated by their relevance to the formula-
tion of quantum mechanics. The foundational work by Birkhoff and von Neumann [8]
showed that there are essentially two ways to formulate quantum mechanics, one
using complex numbers and the other using quaternions. This result is significant
since it establishes the importance of quaternionic operators as a fundamental part of
quantum mechanics. The notion of S -spectrum was discovered in 2006, only using
methods in hypercomplex analysis even though its existence was suggested by qua-
ternionic quantum mechanics. For more details, see the introduction of the book [21].
The notion of S -spectrum extends also to Clifford operators, see [29], and recently
it has been shown that the quaternionic and the Clifford settings are just particular
cases of a more general framework in which the spectral theory on the S -spectrum
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can be developed, see [22,24] and the references therein. Using the notion of S -spec-
trum, it was also possible to prove the quaternionic version of the spectral theorem.
Precisely, unitary operators, using Herglotz’s functions, were considered in [2], while
quaternionic normal operators are studied in [1]. More recently, the spectral theorem
based on the S -spectrum was extended also to Clifford operators, see [23].

The development of the spectral theory on the S -spectrum has opened up several
research directions in hypercomplex analysis and operator theory, without claiming
completeness, we mention the quaternionic perturbation theory and invariant sub-
spaces [9] and new classes of fractional diffusion problems [15, 16, 18, 20, 25] that
are based on the H1-version of the S -functional calculus [3, 18]. Finally, we men-
tion that the spectral theory on the S -spectrum is systematically organized in the
books [20, 21, 29].

In recent times, a new branch of the spectral theory on the S -spectrum has been
developed, that is called fine structures on the S -spectrum. It turns out that the space
AHL.U / of axially harmonic functions is only one of the spaces arising from the fac-
torization of the operators in the Fueter–Sce theorem [38, 45, 47], which connects the
class of slice hyperholomorphic functions with the class of axially monogenic func-
tions AML.U / via the powers �

n�1
2 of the Laplace operator in dimension n C 1,

where n is the number of imaginary units in the Clifford algebra Rn. Their cor-
responding integral representations in turn give raise to various functional calculi,
see [11,12,33,34]. Note that, for odd n, the operator �

n�1
2 is a pointwise differential

operator, see [30,47], while for even values of nwe are dealing with fractional powers
of the Laplace operator, see [45]. For more information on the work of M. Sce, see the
translation of his work with in [30], and for a different description of the Fueter–Sce
theorem [31, 32].

In the special case of the quaternions H (which are classically identified with R2),
the Fueter–Sce theorem, called Fueter mapping theorem in this case, holds true with
n D 3. This means that the connection between slice hyperholomorphic and axially
monogenic functions is via the four-dimensional Laplace operator

� D
@2

@q20
C

@2

@q21
C

@2

@q22
C

@2

@q23
:

This operator can now be factorized using the Cauchy–Fueter operator D from (5)
and its conjugate xD in the two different ways

� D D xD D xDD: (7)

The space AHL.U /, for which we motivated the harmonic functional calculus in (6),
now arises from the first of the above factorizations, namely

SHL.U /
D
! AHL.U /

xD
! AML.U /:
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At this point, we also want to mention that the polyanalytic functional calculus of the
space

AP2;L.U / D ¹ xDf j f 2 SHL.U /º;

arising from the second factorization in (7), is constructed with similar strategy in [10,
33] and the F-functional calculus for the space AML.U / was established long ago
in [28], while more recent investigations can be found in [13, 14, 17, 26, 27].

Plan of the paper. The aim of Section 2 is to collect the basic facts about qua-
ternionic function theory and in particular to fix the notations used in the paper. In
Section 3 we investigate the integral (6) for operators T of type ! and slice hyper-
holomorphic functions f which have some order of decay at 0 and at 1. Beside
the welldefinedness of this functional calculus stated in Theorem 3.4, we also prove
its basic properties as the commutation with other operators in Proposition 3.7 and
Corollary 3.8, the product rule in Theorem 3.10 and the equivalence to the rational
functional calculus in Proposition 3.12. In Section 4 we extend the theory of Sec-
tion 3 to functions which are allowed to grow polynomially at 0 and at 1, using
certain regularizer functions. Again, the commutation relations in Proposition 4.7 and
Corollary 4.8, the product rule in Theorem 4.9 and the equivalence to the rational
functional calculus in Proposition 4.10 are also proven for this extended theory.

2. Preliminary results on quaternionic function theory

The setting in which we will work in this paper is the one of the quaternions

H´ ¹s0 C s1e1 C s2e2 C s3e3 j s0; s1; s2; s3 2 Rº

with the three imaginary units e1; e2; e3 satisfying the relations

e21 D e
2
2 D e

2
3 D �1 and

e1e2 D �e2e1 D e3;

e2e3 D �e3e2 D e1;

e3e1 D �e1e3 D e2:

For every quaternion s 2 H, we set

Re.s/´ s0 .real part/;

Im.s/´ s1e1 C s2e2 C s3e3 .imaginary part/;

Ns´ s0 � s1e1 � s2e2 � s3e3 .conjugate/;

jsj ´

q
s20 C s

2
1 C s

2
2 C s

2
3 .modulus/:
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The unit sphere of purely imaginary quaternions is defined as

S´ ¹s 2 H j s0 D 0 and jsj D 1º;

and for every J 2 S consider the complex plane

CJ ´ ¹uC Jv j u; v 2 Rº;

which is an isomorphic copy of the complex numbers, since every J 2 S satisfies
J 2 D �1. Moreover, for every quaternion s 2 H we consider the corresponding
2-sphere

Œs�´ ¹Re.s/C J j Im.s/j j J 2 Sº:

Next, we introduce the so called slice hyperholomorphic functions, which are a qua-
ternionic analogue to the complex holomorphic functions. The sets on which those
functions are defined and suitable for operator theory are the following axially sym-
metric sets.

Definition 2.1 (Axially symmetric sets). A subset U �H is called axially symmetric,
if Œs� � U for every s 2 U .

Definition 2.2 (Slice hyperholomorphic functions). Let U �H be axially symmetric
and open. A function f WU ! H is called left (resp. right) slice hyperholomorphic,
if there exists two continuously differentiable functions ˛; ˇWU´ ¹.u; v/ 2 R2 j

uC Sv � U º ! H, with

f .uC Jv/ D ˛.u; v/C Jˇ.u; v/ .resp. f .uC Jv/ D ˛.u; v/C ˇ.u; v/J /; (8)

for every .u; v/ 2U, J 2 S, and if the functions ˛;ˇ satisfy the symmetry conditions

˛.u;�v/ D ˛.u; v/ and ˇ.u;�v/ D �ˇ.u; v/;

as well as the Cauchy–Riemann equations

@

@u
˛.u; v/ D

@

@v
ˇ.u; v/ and

@

@v
˛.u; v/ D �

@

@u
ˇ.u; v/: (9)

The class of left (resp. right) slice hyperholomorphic functions on U is denoted by
SHL.U / (resp. SHR.U /). In the special case that the functions ˛ and ˇ are real valued,
we call the function f intrinsic and denote the space of intrinsic functions by N.U /.

Next we introduce path integrals of slice hyperholomorphic functions. Since it is
sufficient to consider paths embedded in only one complex plane CJ , the idea is to
reduce it to a classical complex path integral.
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Definition 2.3. LetU �H be axially symmetric, J 2 S. Then, for any f 2 SHR.U
0/,

g 2 SHL.U 0/ for some open set U 0 � xU , we define the integral

Z
@.U\CJ /

f .s/dsJg.s/´

bZ
a

f .
.t//

 0.t/

J
g.
.t//dt;

where 
 W Œa; b�! CJ is a parametrization of the boundary @.U \CJ /.

From now on, V always denotes a two-sided Banach space over the quaternions
H. In the following we will specify the class of operators with commuting compon-
ents, which will be of interest in this paper.

Definition 2.4 (Operators with commuting components). A right-linear closed oper-
ator T W V ! V with a two-sided linear domain dom.T / is said to be an operator
with commuting components if there exist two-sided linear operators Ti W V ! V ,
i 2 ¹0; : : : ; 3º, with dom.Ti / D dom.T /, such that

T D T0 C e1T1 C e2T2 C e3T3;

and the property that for all i; j 2 ¹0; : : : ; 3º

dom.T 2/ � dom.TiTj / and TiTj D TjTi on dom.T 2/:

We will denote the class of closed operators with commuting components by KC.V /.

For any operator T 2 KC.V /, we additionally define the conjugate operator

xT ´ T0 � e1T1 � e2T2 � e3T3;

with dom. xT /´ dom.T /. Then for every T 2 KC.V / there obviously holds the prop-
erties

dom. xT T / D dom.T 2/ � dom.T xT /;

as well as

jT j2´ xT T D T xT D T 20 C T
2
1 C T

2
2 C T

2
3 ; on dom.T 2/:

For any operator T 2 KC.V /, we now use the operator

Qc;s.T /´ s2I � 2T0s C jT j2; with domQc;s.T / D dom.T 2/; (10)

to define the S -resolvent set

�S .T /´ ¹s 2 H j Qc;s.T / is bijectiveº: (11)
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The complement of this set will be called the S -spectrum

�S .T /´ H n �S .T /:

It is proven in [20, Theorem 3.1.6] that �S .T / is an axially symmetric open subset of
H and that the mapping s 7! Q�1c;s.T / is intrinsic on �S .T /. Moreover, motivated by
the Cauchy kernels (see (2a) and (2b)), we define for every s 2 �S .T / the left and the
right S -resolvent

S�1L .s; T /´ .sI � xT /Q�1c;s.T / and S�1R .s; T /´ sQ�1c;s.T / �

3X
iD0

TiQ
�1
c;s.T /ei :

(12)
Note that on dom.T / we are allowed to interchange TiQ�1c;s.T / D Q

�1
c;s.T /Ti , which

gives the more elegant form of the right S -resolvent

S�1R .s; T / D Q�1c;s.T /.sI � xT /; on dom.T /: (13)

Remark 2.5. Note that the original definition of the S -resolvent set is

�S .T /´ ¹s 2 H j Qs.T / is bijectiveº; (14)

using the operator
Qs.T /´ T 2 � 2s0T C jsj

2:

This definition has the advantage that it is well defined for any closed operator
T W V ! V , not only for those with commuting components. However, it is proven
in [20, Theorem 3.3.4] that for operators T 2 KC.V / the two definitions (11) and (14)
coincide. Moreover, also the left (resp. right) S -resolvent operators (12) are originally
defined as

S�1L .s; T /´ Q�1s .T /Ns � TQ�1s .T /

and

S�1R .s; T /´ .NsI � T /Q�1s .T /; (15)

but turn out to be equivalent to (12) in the case of operators T 2 KC.V /.

In order to finally define the class of operators, for which we will introduce the
harmonicH1-functional calculus in this paper, we denote for every angle ! 2 .0; �/
the open sector

S! ´ ¹s 2 H n ¹0º j jArg.s/j < !º;

where Arg.s/ is understood as the usual complex argument in the space CJ , where
J 2 S with s 2 CJ .
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Definition 2.6 (Operators of type !). Any T 2 KC.V / is called operator of type
! 2 .0; �/, if �S .T / � S! and if for every � 2 .!;�/ there exists some C� � 0, such
that

kS�1L .s; T /k �
C�

jsj
and kS�1R .s; T /k �

C�

jsj
; for every s 2 Sc� n ¹0º: (16)

A similar estimate as in [19, Lemma 3.7] now shows that estimates (16) on the
S -resolvent operators imply a similar estimate on the commutative Q-resolvent
Q�1c;s.T /, which will be crucial for the existence of the integral (19a) of the harmonic
functional calculus.

Lemma 2.7. Let T 2 KC.V / such that T; xT are of type !. Then for every � 2 .!; �/
there exists some C� � 0, such that

kQ�1c;s.T /k �
C�

jsj2
; for every s 2 Sc� n ¹0º: (17)

Proof. Using the representations (12) for S�1L .s; T / and (13) for S�1R .s; T /, gives

.S�1R .s; T /C S�1R .s; xT //.S�1L .s; T /C S�1L .s; xT //

D Q�1c;s.T /..sI � xT /C .sI � T //..sI � xT /C .sI � T //Q
�1
c;s.T /

D 4Q�1c;s.T /.sI � T0/
2Q�1c;s.T /;

as well as

.S�1R .s; T / � S�1R .s; xT //.S�1L .s; T / � S�1L .s; xT //

D Q�1c;s.T /..sI � xT / � .sI � T //..sI � xT / � .sI � T //Q
�1
c;s.T /

D 4Q�1c;s.T /.T
2
0 � jT j

2/Q�1c;s.T /:

Note that it is justified by ran.S�1L .s; T // � dom.T / to use the representation (13) of
S�1R .T /. By subtracting these two equations, we then conclude the identity

.S�1R .s; T /C S�1R .s; xT //.S�1L .s; T /C S�1L .s; xT //

� .S�1R .s; T / � S�1R .s; xT //.S�1L .s; T / � S�1L .s; xT //

D 4Q�1c;s.T /.s
2
� 2sT0 C jT j

2/Q�1c;s.T / D 4Q
�1
c;s.T /:

Since T as well as xT are assumed to be of type!, the estimates (16) of the S -resolvents
hold for T as well as for xT (let us say for the same constant C� ) and we get the final
estimate

kQ�1c;s.T /k �
1

4

��C�
jsj
C
C�

jsj

��C�
jsj
C
C�

jsj

�
C

�C�
jsj
C
C�

jsj

��C�
jsj
C
C�

jsj

��
D
2C 2

�

jsj2
:



A. De Martino, S. Pinton, and P. Schlosser 130

3. Harmonic functional calculus for decaying functions

In this section we take the first step in establishing the harmonic functional calculus
for unbounded operators of type !, by giving a direct meaning to the integral (6) for
the following classes of slice hyperholomorphic functions:

(i) ‰
Q
L .S� /´

®
f 2 SHL.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j �

C˛ jsj
1C˛

1Cjsj1C2˛

for every s 2 S�
¯
,

(ii) ‰
Q
R .S� /´

®
f 2 SHR.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j �

C˛ jsj
1C˛

1Cjsj1C2˛

for every s 2 S�
¯
,

(iii) ‰Q.S� /´
®
f 2 N.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j �

C˛ jsj
1C˛

1Cjsj1C2˛

for every s 2 S�
¯
.

The decay at 0 and at1 is necessary in order to make the integrals (18a) and (19a)
converge.

Remark 3.1. Since the S -resolvents S�1L .s; T / and S�1R .s; T / admit at s D 0 only
a 1
jsj

-singularity due to (16), instead of the 1
jsj2

-singularity of Q�1c;s.s; T / in (17),

the O.jsj1C˛/ decay in the space ‰Q.S� / can be reduced to an O.jsj˛/ decay for
the S -functional calculus (18a). This means, classically, the S -functional calculus is
defined for the larger class of functions:

(i) ‰L.S� /´
®
f 2 SHL.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j �

C˛ jsj
˛

1Cjsj1C2˛

for every s 2 S�
¯
,

(ii) ‰R.S� /´
®
f 2 SHR.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j �

C˛ jsj
˛

1Cjsj1C2˛

for every s 2 S�
¯
,

(iii) ‰.S� / ´
®
f 2 N.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j �

C˛ jsj
˛

1Cjsj1C2˛

for every s 2 S�
¯
.

However, since we will use the S -functional calculus typically in combination
with the harmonic functional calculus (19a), we will consider functions in the smaller
spaces ‰QL .S� /, ‰

Q
R .S� /, ‰

Q.S� / most of the time.

The following well-known S -functional calculus is motivated by the Cauchy for-
mula (3) and for example worked out in [3].

Definition 3.2 (S -functional calculus for decaying functions). Let T 2 KC.V / be an
operator of type !. Then for any f 2 ‰L.S� / (resp. f 2 ‰R.S� /), � 2 .!; �/, the
S -functional calculus is defined as the bounded, everywhere-defined operator

f .T /´
1

2�

Z
@.S'\CJ /

S�1L .s; T /dsJf .s/I (18a)
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resp.,

f .T /´
1

2�

Z
@.S'\CJ /

f .s/dsJS
�1
R .s; T /; (18b)

where ' 2 .!; �/ and J 2 S are arbitrary and the integral is independent of those
parameters.

The novelty of this paper is now the following harmonic functional calculus,
which replaces the left and right S -resolvent operators in (18a) by the commutative
pseudo resolvent Q�1c;s.T /. This leads to a functional calculus for the axially har-
monic functions AH.U /, i.e., for Df.T / for any slice hyperholomorphic function
f 2 SH.U /. Note that simply plugging Df into the S -functional calculus (18a) is
not allowed since in general Df is no longer a slice hyperholomorphic function.

Definition 3.3 (Harmonic functional calculus for decaying functions). Let us con-
sider T 2 KC.V / with T; xT being operators of type !. Then for every f 2 ‰QL .S� /
(resp. f 2 ‰QR .S� /), � 2 .!; �/, the harmonic functional calculus is defined by

Df.T /´
�1

�

Z
@.S'\CJ /

Q�1c;s.T /dsJf .s/; (19a)

resp.,

.fD/.T /´
�1

�

Z
@.S'\CJ /

f .s/dsJQ
�1
c;s.T /; (19b)

where ' 2 .!; �/ and J 2 S are arbitrary; see Figure 1.

�S .T /

! ' �

CJ

dom.f /

Figure 1

The following theorem shows that the Definition 3.3 is well posed.
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Theorem 3.4. Let T 2 KC.V / such that T; xT are of type !. Then for f 2 ‰QL .S� /
(resp. f 2 ‰QR .S� /), � 2 .!; �/, the integrals (19a) are absolute convergent and do
neither depend on the angle ' 2 .!; �/ nor on the choice of the imaginary unit J 2 S.
Moreover, if two functions f; g 2 ‰QL .S� / (resp. f; g 2 ‰QR .S� /) satisfy Df D Dg
(resp. fDDgD), then also the functional calculiDf.T /DDg.T / (resp. .fD/.T /D
.gD/.T /) coincide.

Proof. We will only consider f 2 ‰QL .S� /, i.e., the integral (19a), the calculations
for the integral (19b) are the same.

For the absolute convergence of the integral (19a), we use the path


.t/´

´
�teJ' ; t < 0;

te�J' ; t > 0;

along the boundary of S' \ CJ . Then the estimate (17) of the operator Q�1c;s.T / and
the fact that f 2 ‰QL .S� /, give the absolute convergence of the integralZ

Rn¹0º



Q�1c;
.t/.T /

 j
 0.t/j jf .
.t//jdt � C'C˛ Z
Rn¹0º

jt j˛�1

1C jt j1C2˛
dt <1: (20)

For the independence of the angle ', we consider two angles '1 < '2 2 .!; �/ and
for every 0 < " < R we consider the curves

�".'/´ "eJ' ; ' 2 .�'2;�'1/ [ .'1; '2/;

�R.'/´ ReJ' ; ' 2 .�'2;�'1/ [ .'1; '2/;


1;";R.t/´

´
�teJ'1 ; t 2 .�R;�"/;

te�J'1 ; t 2 ."; R/;


2;";R.t/´

´
�teJ'2 ; t 2 .�R;�"/;

te�J'2 ; t 2 ."; R/I

see Figure 2.
Then the Cauchy integral theorem givesZ


1;";R

Q�1c;s.T /dsJf .s/ D

Z
�R˚
2;";R	�"

Q�1c;s.T /dsJf .s/: (21)
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CJ

'1
'2�"

�"


1;";R


1;";R


2;";R


2;";R

�R

�R

Figure 2

In the limit "! 0C, the integral along �" vanishes, because ofˇ̌̌̌ Z
�"

Q�1c;s.T /dsJf .s/

ˇ̌̌̌
D

ˇ̌̌̌ Z
'1<j'j<'2

Q�1
c;"eJ'

.T /"eJ'f ."eJ'/d'

ˇ̌̌̌

� C'1C˛

Z
'1<j'j<'2

1

"2
"

"1C˛

1C "1C2˛
d'

D 2C'1C˛.'2 � '1/
"˛

1C "1C2˛
"!0C

����! 0: (22)

In the same way also the integral along �R vanishes in the limit R!1,ˇ̌̌̌ Z
�R

Q�1c;s.T /dsJf .s/

ˇ̌̌̌
� 2C'1C˛.'2 � '1/

R˛

1CR1C2˛
R!1
����! 0: (23)

Performing now the limits "! 0C andR!1 in (21) and using that the integrals (22)
and (23) vanish, we obtain the independency of the angle:Z

@.S'1\CJ /

Q�1c;s.T /dsJf .s/ D

Z
@.S'2\CJ /

Q�1s;c.T /dsJf .s/:

For the independence on the imaginary unit J 2 S, we consider two imaginary units
J; I 2 S. For any angles '1 < '2 < '3 2 .!; �/, we fix now " > 0 and define the
paths


1;".t/´

´
�teI'1 ; t < �";

te�I'1 ; t > ";


2;".t/´

´
�teJ'2 ; t < �";

te�J'2 ; t > ";
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3;".t/´

´
�teI'3 ; t < �";

te�I'3 ; t > ";

�".'/´ "eI' ; ' 2 .�'3;�'1/ [ .'1; '3/I

see Figure 3. Note that 
1;", 
3;", �" are curves in CI , while 
2;" is in CJ .

CI

�"

�"


1;"


1;"


3;"


3;"


2;"

Œs�

Œs�

Figure 3

The Cauchy formula (3) then gives the representation

f .s/ D
1

2�

Z

3;"	�"	
1;"

S�1L .p; s/dpIf .p/; s 2 ran.
2;"/; (24)

where the integral along 1, which closes the path on the right, vanishes due to the
asymptotics

jS�1L .p; s/f .p/j D
jp � Nsj

jp2 � 2s0p C jsj2j

C˛jpj
1C˛

1C jpj1C2˛

D O.jpj�1�˛/; as p !1: (25)

Next, we consider the curves

� "
2
.'/´

"

2
eJ' ; ' 2 .'2; 2� � '2/;

�".t/´

´
�teJ'2 ; t 2

�
�";� "

2

�
;

te�J'2 ; t 2
�
"
2
; "
�
:
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CJ
Œp�

Œp�


3;"


1;"


2;"


2;"
�"

�"

� "
2

Figure 4

In this setting, the Cauchy formula (3) gives

Q�1c;p.T / D
�1

2�

Z

2;"˚�"˚� "

2

Q�1c;s.T /dsJS
�1
R .s; p/

D
1

2�

Z

2;"˚�"˚� "

2

Q�1c;s.T /dsJS
�1
L .p; s/; p 2 ran.
3;"/I (26)

see Figure 4. The negative sign in the first line comes from the fact that the curve

2;"˚ �"˚ � "

2
(closed at1 on the left) surrounds the points Œp�\CJ in the negative

sense, and in the second line we used the connection S�1R .s;p/D�S�1L .p;s/ between
the left and the right Cauchy kernel. The integral along1, which closes the path on
the left, vanishes due to the asymptotics

kQ�1c;s.T /k jS
�1
R .s; p/j �

C'2
jsj2

js � Npj

js2 � 2p0s C jpj2j
D O.jsj�2/; as s !1:

Analogously, we obtain

0 D
1

2�

Z

2;"˚�"˚� "

2

Q�1c;s.T /dsJS
�1
L .p; s/; p 2 ran.
1;"/; (27)

since in this case the points Œp� \ CJ lie outside the integration path and hence the
Cauchy integral vanishes. The combination of (24), (26), and (27), leads to the for-
mulaZ

2;"

Q�1c;s.T /dsJf .s/ D
1

2�

Z

2;"

Q�1c;s.T /dsJ

� Z

3;"	�"	
1;"

S�1L .p; s/dpIf .p/

�
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D

Z

3;"

�
Q�1c;p.T / �

1

2�

Z
�"˚� "

2

Q�1c;s.T /dsJS
�1
L .p; s/

�
dpIf .p/

�
1

2�

Z
�"

� Z

2;"

Q�1c;s.T /dsJS
�1
L .p; s/

�
dpIf .p/

C
1

2�

Z

1;"

� Z
�"˚� "

2

Q�1c;s.T /dsJS
�1
L .p; s/

�
dpIf .p/

D

Z

3;"

Q�1c;p.T /dpIf .p/ �
1

2�

Z
�"

Z

2;"˚�"˚� "

2

Q�1c;s.T /dsJS
�1
L .p; s/dpIf .p/;

(28)

where in the last equation we combined the integration path 
1;" 	 
3;" and replaced
it by �", see also Figure 3. This is allowed by the Cauchy theorem since the integral
along1, which closes the path on the right, vanishes due the asymptotics (25), and
since the singularities of S�1L .p; s/ lie on �" ˚ � "

2
, which is outside the integration

path, see Figure 3. Finally, we now perform the limit "! 0C to this equation and
show that the double integral in (28) vanishes. Therefore, we estimate the integrand
by

jQ�1c;s.T /S
�1
L .p; s/f .p/j �

C'1
jsj2

jpj C jsj

jp2 � 2s0p C jsj2j

C˛jpj
1C˛

1C jpj1C2˛

�
C'1C˛.jpj C jsj/jpj

1C˛

jsj2jp � sj jjp � sj j
;

where ¹sI ; sI º D Œs�\CI are the intersections of Œs� with the complex plane CI . The
first part of the integral then vanishes because ofˇ̌̌̌ Z

�"

Z

2;"˚�"

Q�1c;s.T /dsJS
�1
L .p; s/dpIf .p/

ˇ̌̌̌

� 2C'1C˛

Z
'1<j'j<'3

1Z
"
2

."C r/"1C˛

r2j"eI' � reI'2 jj"eI' � re�I'2 j
"drd'

D 2C'1C˛"
˛

Z
'1<j'j<'3

1Z
1
2

1C �

�2jeI' � �eI'2 jjeI' � �e�I'2 j
d�d'

"!0C

����! 0;

where the double integral in the last line exists since the singularities

.�; '/ D .1;˙'2/
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of the denominator is of order 1, which is integrable in the two-dimensional integral.
Also the second part of the double integral in (28) vanishes, sinceˇ̌̌̌ Z

�"

Z
� "
2

Q�1c;s.T /dsJS
�1
L .p; s/dpIf .p/

ˇ̌̌̌

� C'1C˛

Z
'1<j'j'3

2��'2Z
'2

."C "
2
/"1C˛

"2

4
j"eI' � "

2
eI� jj"eI' � "

2
e�I� j

"
"

2
d�d'

D 3C'1C˛"
˛

Z
'1<j'j<'3

2��'2Z
'2

1

jeI' � 1
2
eI� jjeI' � 1

2
e�I� j

d�d'
"!0C

����! 0:

Hence, in the limit "! 0C the equation (28) turns into the desired independence of
the imaginary unit Z

@.S'2\CJ /

Q�1c;s.T /dsJf .s/ D

Z
@.S'3\CI /

Q�1c;p.T /dpIf .p/:

For the independence of the kernel of D, as in [10], we consider two functions
f; g 2 SHL.S� / with Df.s/ D Dg.s/. Due to the decomposition (8), we can write

f .uC Jv/ � g.uC Jv/ D ˛.u; v/C Jˇ.u; v/:

Moreover, we can write the Cauchy–Fueter operator in spherical coordinates with
respect to this decomposition x D uC Jv, with u 2 R and v > 0, as

D D
@

@x0
C e1

@

@x1
C e2

@

@x2
C e3

@

@x3

D
@

@u
C J

@

@v
C
J

v
�J ;

where �J is a symbol for the angular derivatives. Using the identity J�JJ D �J � 2,
see [35, Paragraph 1.12.1], it follows fromD.f � g/.s/ D 0 that the functions ˛ and
ˇ satisfy the Vekua-type differential equations

@

@u
˛.u; v/ �

@

@v
ˇ.u; v/ D

2

v
ˇ.u; v/;

@

@v
˛.u; v/C

@

@u
ˇ.u; v/ D 0:

However, ˛ and ˇ also satisfy the Cauchy–Riemann equations (9) since f � g is
slice hyperholomorphic, and hence we conclude ˇ.u; v/ D 0 and consequently also
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@
@u
˛.u;v/D @

@v
˛.u;v/D 0 have to vanish. Since the domain S� on which the function

f � g is holomorphic is connected, this implies that the function

f .s/ � g.s/ D c is constant for every s 2 S� with Im.s/ ¤ 0: (29)

By continuity, the difference f .s/� g.s/D c then has to be constant for every s 2 S� .
However, this is only possible for cD 0, since otherwise f � g …‰QL .S� /. This means
that f D g and then Df.T / D Dg.T / follows from the integral (19a).

In the next lemma we state same basic properties of the functional calculus (19a).

Lemma 3.5. Let T 2 KC.V / with T; xT being operators of type !, f; g 2 ‰QL .S� /,
for some � 2 .!; �/. Then

(i) Df.T / is a bounded operator with commuting components,

(ii) D.f C g/.T / D Df.T /CDg.T /,

(iii) Df. xT / D Df.T /,

(iv) if f is intrinsic, then Df.T / D Df.T /.

The same results hold true for f; g 2 ‰QR .S� / and the corresponding functional
calculus (19b).

Proof. The boundedness ofDf.T / in the statement (i) follows from the estimate (20).
The linearity in (ii) follows from the linearity of the integral (19a). In order to show
that Df.T / has commuting components, we fix J 2 S and ' 2 .!; �/ and write the
integral (19a) as

Df.T / D
�1

�

Z
@.S'\CJ /

Q�1c;s.T /dsJf .s/

D
�1

�

� 0Z
�1

Q�1
c;�teJ'

.T /JeJ'f .�teJ'/dt

�

1Z
0

Q�1
c;te�J'

.T /Je�J'f .te�J'/dt

�

D
�1

�

1Z
0

�
Q�1
c;teJ'

.T /JeJ'f .teJ'/ �Q�1
c;te�J'

.T /Je�J'f .te�J'/
�
dt

D
�1

�

1Z
0

�
Qc;te�J' .T /Je

J'f .teJ'/

�Qc;teJ' .T /Je
�J'f .te�J'/

�
jQc;teJ' .T /j

�2dt; (30)
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where in the last line we rewrote the commutative pseudo resolvent as

Q�1c;s.T / D Qc;Ns.T /Q
�1
c;Ns.T /Q

�1
c;s.T / D Qc;Ns.T /jQc;s.T /j

�2;

with

jQc;s.T /j
2
D jsj4I � 4s0jsj2T0 C 4s20 jT j

2
� 2jsj2jT j2

� 4s0T0jT j
2
C 4jsj2T 20 C jT j

4: (31)

Using also the explicit value

Qc;te˙J' .T / D t
2e˙2J' � 2te˙J'T0 C jT j

2 (32)

from (10) as well as the decomposition

f .teJ'/ D ˛.t cos'; t sin'/C Jˇ.t cos'; t sin'/ (33)

from (8), we get

Df.T / D
�1

�

1Z
0

��
Qc;te�J' .T /e

J'
�Qc;teJ' .T /e

�J'
�
J˛.t cos'; t sin'/

�
�
Qc;te�J' .T /e

J'

CQc;teJ' .T /e
�J'

�
ˇ.t cos'; t sin'/

�
jQc;teJ' .T /j

�2dt

D
2

�

1Z
0

�
.jT j2 � t2/ sin'˛.t cos'; t sin'/

C ..jT j2 C t2/ cos' � 2tT0/ˇ.t cos'; t sin'/
�
jQc;teJ' .T /j

�2dt:

(34)

If we now decompose

˛.u; v/ D ˛0.u; v/C

3X
iD1

ei˛i .u; v/ and ˇ.u; v/ D ˇ0.u; v/C

3X
iD1

eiˇi .u; v/

into their components, the components Df.T /i , i 2 ¹0; : : : ; 3º of the harmonic func-
tional calculus are explicitly given by

Df.T /i D
2

�

1Z
0

�
.jT j2 � t2/ sin'˛i .t cos'; t sin'/

C ..jT j2Ct2/ cos'�2tT0/ˇi .t cos'; t sin'/
�
jQc;teJ' .T /j

�2dt;

(35)

which are obviously commuting, since the components of T are commuting and there
are no imaginary units involved.
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Statement (ii) follows from the fact, that the resolvent Q�1c;s.T / D Q
�1
c;s.
xT / is the

same for T and for xT by definition (10). Hence, alsoDg.T /DDg. xT / follows imme-
diately.

For the proof of (iii), we note that, by Definition 2.2, the functions ˛ and ˇ in
the decomposition (33) are real valued since f is intrinsic. Then it follows from the
explicit representation (35) thatDf.T /1 DDf.T /2 DDf.T /3 D 0. Hence, only the
term Df.T / D Df.T /0 remains and the conjugate operator is Df.T / D Df.T /.

To the best of our knowledge, a similar statement as Lemma 3.5 is not known for
the S -functional calculus (18a). However, we will need those results in Section 4, and
hence prove the following lemma regarding properties of the commuting components
of the S -functional calculus.

Lemma 3.6. Let T 2 KC.V / with T; xT being operators of type !, and f;g 2‰L.S� /
or f; g 2 ‰R.S� /, for some � 2 .!; �/. Then

(i) f .T / is a bounded operator with commuting components,

(ii) .f C g/.T / D f .T /C g.T /,

(iii) if f is intrinsic, then f .T / D f . xT /.

Proof. The boundedness (i) of the S -functional calculus (18a) follows from the estim-
ate Z

Rn¹0º

kS�1L .
.t/; T /kj
 0.t/jjf .
.t//jdt � C'C˛

Z
Rn¹0º

jt j˛�1

1C jt j1C2˛
dt <1;

which is similar to (20), using the bound (16) of the S -resolvent and the definition of
the space ‰L.S� / in Remark 3.1. The linearity (ii) is also clear by the linearity of the
integral (18a). For the proof of (iii) we fix J 2 S, ' 2 .!; �/ and derive in a similar
way as in (30) with Q�1c;s.T / replaced by

S�1L .s; T / D .sI � xT /Q�1c;s.T /

the formula

f .T / D
1

2�

1Z
0

�
.teJ' � xT /Qc;te�J' .T /Je

J'f .teJ'/

� .te�J' � xT /Qc;teJ' .T /Je
�J'f .te�J'/

�
jQc;teJ' .T /j

�2dt:

(36)
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Using the explicit value (32) of Qc;te˙J' .T / and the decomposition (33) of f , we
further rewrite the integral (36) in the same as we derived (31), such that we get

f .T / D
1

�

1Z
0

�
.2tT0 sin' � t jT j2 sin.2'//˛.t cos'; t sin'/

� .t2 sin' � jT j2 sin'/ xT ˛.t cos'; t sin'/

� .t3 � 2t2T0 cos' C t jT j2 cos.2'//ˇ.t cos'; t sin'/

C .t2 cos' � 2tT0
C jT j2 cos'/ xTˇ.t cos'; t sin'/

�
jQc;teJ' .T /j

�2dt: (37)

If we finally write

˛ D ˛0 C

3X
iD1

ei˛i ; ˇ D ˇ0 C

3X
iD1

eiˇi

and

xT D T0 �

3X
iD1

eiTi ;

with real valued functions ˛i ; ˇi WU! R, i 2 ¹0; 1; 2; 3º, and sort (37) with respect to
the imaginary units, we end up with components of f .T / which are real linear com-
binations of powers of Ti , i 2 ¹0;1;2; 3º. Due to the commutativity of the components
Ti , also the components of f .T / are then commuting. Hence, (i) is proven. For the
proof of (iii), we note that ˛ and ˇ are real valued, since f is assumed to be intrinsic.
Hence, we immediately obtain the identity f .T / D f . xT / from (37).

Proposition 3.7. Let T 2 KC.V / with T; xT being operators of type !, BWV ! V an
everywhere defined bounded operator and f 2 ‰Q.S� /, for some � 2 .!; �/. Then
there holds

BTj D TjB on dom.T / for all j 2 ¹0; : : : ; 3º H) BDf .T / D Df.T /B

Proof. From the assumption it follows that B in particular commutes with the term
jQc;s.T /j

2 from (31) on dom.T 2/, and hence also with its inverse

jQc;s.T /j
�2B D BjQc;s.T /j

�2 on V:

Using this fact in the representation (34) of Df.T /, immediately gives the commuta-
tion

Df.T /B D BDf .T /

since there are no imaginary units in the integrand of (34), not even in the functions ˛
and ˇ, which are real valued since f is assumed to be intrinsic.
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Corollary 3.8. Let T 2 KC.V / with T; xT being operators of type !, f 2 ‰Q.S� /
and g 2 ‰QL .S� / or g 2 ‰QR .S� /, for some � 2 .!; �/. Then there holds

g.T /Df .T / D Df.T /g.T /:

Proof. We only consider g 2 ‰QL .S� /, the case g 2 ‰QR .S� / follows analogously. It
is clear by definition (12) that TjS�1L .s; T /D S�1L .s; T /Tj commutes on dom.T / for
every j 2 ¹0; : : : ; 3º and hence also

g.T /Tj D
1

2�

Z
@.S'\CJ /

S�1L .s; T /dsJg.s/Tj

D
1

2�

Z
@.S'\CJ /

TjS
�1
L .s; T /dsJg.s/ D Tjg.T /;

on dom.T /. From Proposition 3.7, we then conclude g.T /Df .T /DDf.T /g.T /.

Next, we want to derive the very important product rule of the harmonic functional
calculus. The basic ingredient will be the following resolvent equation.

Lemma 3.9. Let T 2 KC.V /, s; p 2 �S .T / with s … Œp�. Then

Q�1c;s.T /S
�1
L .p; s/C S�1R .s; p/Q�1c;p.T /

D Q�1c;s.T /S
�1
L .p; T /C S�1R .s; xT /Q�1c;p.T / (38a)

D Q�1c;s.T /S
�1
L .p; xT /C S�1R .s; T /Q�1c;p.T /: (38b)

Proof. Using the left S -resolvent in (12) and the representation (13) of the right
resolvent, we obtain

Q�1c;s.T /S
�1
L .p; T /C S�1R .s; xT /Q�1c;p.T /

D Q�1c;s.T /.S
�1
L .p; T /Qc;p.T /CQc;s.T /S

�1
R .s; xT //Q�1c;p.T /

D Q�1c;s.T /..p �
xT /Q�1c;p.T /Qc;p.T /CQc;s.T /Q

�1
c;s.T /.s � T //Q

�1
c;p.T /

D Q�1c;s.T /.p � 2T0 C s/Q
�1
c;p.T /: (39)

Since the right-hand side of this equation does not change when we replace T! xT ,
equation (38b) is proven. Moreover, using (12) for S�1L .p; s/ and (15) for S�1R .s; p/,
analogously gives

Q�1c;s.T /S
�1
L .p; s/C S�1R .s; p/Q�1c;p.T /

D Q�1c;s.T /.S
�1
L .p; s/Qc;p.T /CQc;s.T /S

�1
R .s; p//Q�1c;p.T /

D Q�1c;s.T /..p � Ns/Qc;p.T /CQc;s.T /.Ns � p//.p
2
� 2s0p C jsj

2/�1Q�1c;p.T /

D Q�1c;s.T /.p � 2T0 C s/Q
�1
c;p.T /: (40)

Comparison of (39) and (40) gives the resolvent identity (38a).



The harmonic H1-functional calculus based on the S -spectrum 143

With the resolvent equation (38), we are now ready to prove the product rule of
the harmonic functional calculus.

Theorem 3.10. Let T 2 KC.V / with T; xT being operators of type ! and � 2 .!; �/.
Then for every f 2 ‰Q.S� /, g 2 ‰

Q
L .S� / with � 2 .!; �/ we obtain the product

rule

D.fg/.T / D Df.T /g.T /C f . xT /Dg.T / (41a)

D Df.T /g. xT /C f .T /Dg.T /: (41b)

The same product rule also holds for f 2‰QR .S� / and g 2‰Q.S� / using the respect-
ive functional calculi (18b) and (19b).

Proof. We only prove the product rule (41a), since (41b) follows from (41a) when we
replace T by xT and use Lemma 3.5 (iii).

Since f 2 ‰Q.S� / is intrinsic and g 2 ‰QL .S� / is left slice hyperholomorphic,
the product fg is also left slice hyperholomorphic and satisfies the needed estimates
in order to be in the space fg 2 ‰L.S� /. Consider now two angles '2 < '1 2 .!; �/
and imaginary units J; I 2 S. Then, using the functional calculi (18a), (18b), (19a),
and (19b), we have

Df .T /g.T /C f . xT /Dg.T /

D
�1

2�2

� Z
@.S'1\CJ /

f .s/dsJQ
�1
c;s.T /

Z
@.S'2\CI /

S�1L .p; T /dpIg.p/

C

Z
@.S'1\CJ /

f .s/dsJS
�1
R .s; xT /

Z
@.S'2\CI /

Q�1c;p.T /dpIg.p/

�

D
�1

2�2

Z
@.S'1\CJ /

f .s/dsJ

Z
@.S'2\CI /

.Q�1c;s.T /S
�1
L .p; T /C S�1R .s; xT /Q�1c;p.T //dpIg.p/

D
�1

2�2

Z
@.S'1\CJ /

f .s/dsJ

Z
@.S'2\CI /

.Q�1c;s.T /S
�1
L .p; s/C S�1R .s; p/Q�1c;p.T //dpIg.p/;

(42)

where in the last line we used the resolvent equation (38a). Since we chose '2 < '1,
every point s 2 @.S'1 \CJ / lies outside S'2 and hence we getZ

@.S'2\CI /

S�1L .p; s/dpIg.p/ D 0; s 2 @.S'1 \CJ /; (43)
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where the integral along 1, which closes the set on the right, vanishes due to the
asymptotics

jS�1L .p; s/g.p/j �
Cˇ jp � Nsjjpj

1Cˇ

jp2 � 2s0p C jsj2j.1C jpj1C2ˇ /
D O

� 1

jpj1Cˇ

�
; as p !1:

Analogously, every point p 2 @.S'2 \CI / is contained in S'1 , which gives

1

2�

Z
@.S'1\CJ /

f .s/dsJS
�1
R .s; p/ D f .p/; p 2 @.S'2 \CI /: (44)

Plugging now (43) and (44) into (42) reduces the double integral to

Df.T /g.T /C f . xT /Dg.T / D
�1

�

Z
@.S'2\CI /

f .p/Q�1c;p.T /dpIg.p/;

D
�1

�

Z
@.S'2\CI /

Q�1c;p.T /dpIf .p/g.p/ D D.fg/.T /;

where in the second line we used that f is intrinsic and interchanges with the term
Q�1c;p.T /dpJ .

In the last part of this section we investigate how the harmonic functional cal-
culus acts on intrinsic rational functions, i.e., on functions of the form f .s/ D p.s/

q.s/
,

consisting of polynomials p; q with real valued coefficients. To do so, we consider
for every polynomial q.s/ D

Pm
jD0 bj s

j and every right-linear closed operator T the
polynomial functional calculus

qŒT �´

mX
jD0

qjT
j ; (45)

with dom.qŒT �/´ dom.Tm/ and start with a lemma, ensuring its invertibility.

Lemma 3.11. Let T WV !V be a right-linear closed operator with a two-sided linear
domain and q 6� 0 an intrinsic polynomial. If q does not admit any zeros in �S .T /,
then qŒT � is bijective.

Proof. For the constant polynomial q.s/ D q0, we have q0 ¤ 0 by the assumption
q 6� 0. Hence, the operator qŒT �D q0 is bijective. Let us now consider deg.q/Dm� 1
and choose some arbitrary bounded slice Cauchy domain U � �S .T /, containing all
the zeros of q. Then define for some fixed J 2 S the operator

B ´
�1

2�

Z
@.U\CJ /

S�1L .s; T /dsJ
1

q.s/
: (46)
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Then we will prove by induction that ran.B/ � dom.T j / and

T jB D
�1

2�

Z
@.U\CJ /

S�1L .s; T /dsJ
sj

q.s/
; j 2 ¹0; : : : ; m � 1º: (47)

The induction start j D 0 is clear by definition (46). For the induction step j � 1! j

we use the identity
S�1L .s; T /s D TS�1L .s; T /C I; (48)

see [39, Theorem 2.33], to getZ
@.U\CJ /

S�1L .s; T /dsJ
sj

q.s/
D

Z
@.U\CJ /

TS�1L .s; T /dsJ
sj�1

q.s/
C

Z
@.U\CJ /

dsJ
sj�1

q.s/
: (49)

Since the last integral does no longer contain the S -resolvent operator S�1L .s; T /, it
is holomorphic everywhere except the zeros of the denominator q.s/, which all lie
inside U . Hence, it is allowed by the Cauchy theorem to replace U by a ball B0;R
centered at the origin and with large enough radius R such that it contains all zeros
of q. This then leads toZ

@.U\CJ /

dsJ
sj�1

q.s/
D

Z
@.B0;R\CJ /

dsJ
sj�1

q.s/

R!1
����! 0; (50)

where the right-hand side vanishes in the limitR!1 due to the asymptotics s
j�1

q.s/
D

O.jsjj�1�m/ and j �m� 1. Hence, the left-hand side, which does not depend on the
radius R, has to vanish identically. This reduces equation (49) toZ

@.U\CJ /

S�1L .s; T /dsJ
sj

q.s/
D

Z
@.U\CJ /

TS�1L .s; T /dsJ
sj�1

q.s/

D T

Z
@.U\CJ /

S�1L .s; T /dsJ
sj�1

q.s/
D �2�T jB;

where in the second equation we used Hille’s theorem [36, Theorem II.2.6] and in the
third equation the induction assumption (47) for j � 1. Hence, (47) is proven.

Next, we once more use the resolvent identity (48) to write

S�1L .s; T /q.s/ D b0S
�1
L .s; T /C

mX
jD1

bj .TS
�1
L .s; T /C I/sj�1

D b0S
�1
L .s; T /C T

mX
jD1

bjS
�1
L .s; T /sj�1 C

q.s/ � b0

s
:
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By the Cauchy theorem and the already proven identity (47), we then have

0 D
�1

2�

Z
@.U\CJ /

S�1L .s; T /dsJ 1 D
�1

2�

Z
@.U\CJ /

S�1L .s; T /dsJ
q.s/

q.s/

D b0B C T

mX
jD1

bjT
j�1B �

1

2�

Z
@.U\CJ /

dsJ
q.s/ � b0

sq.s/

D qŒT �B �
1

2�

Z
@.U\CJ /

dsJ
q.s/ � b0

sq.s/
: (51)

In the same way as in (50), we are allowed to exchange U by a ball B0;R centered at
the origin and with a large enough radius to contain all zeros of q. Here it is important
that s D 0 is not an additional singularity of the integrand since it is also a zero of the
nominator. This then leads to the integral

1

2�

Z
@.U\CJ /

dsJ
q.s/ � b0

sq.s/
D

1

2�

Z
@.B0;R\CJ /

dsJ
q.s/ � b0

sq.s/

D 1 �
b0

2�

Z
@.B0;R\CJ /

dsJ
1

sq.s/

R!1
����! 1;

where we used that the last integral vanishes in the limit R ! 1 since 1
sq.s/

D

O.s�1�m/ andm� 1. Plugging this into (51) gives qŒT �B D 1. Moreover, the operator
B commutes with T on dom.T /, because

TB D
�1

2�

Z
@.U\CJ /

TS�1L .s; T /dsJ
1

q.s/
D
�1

2�

Z
@.U\CJ /

.S�1L .s; T /s � I/dsJ
1

q.s/

D
�1

2�

Z
@.U\CJ /

1

q.s/
dsJ .sS

�1
R .s; T / � I/ D

�1

2�

Z
@.U\CJ /

1

q.s/
dsJS

�1
R .s; T /T

D
�1

2�

Z
@.U\CJ /

S�1L .s; T /dsJ
1

q.s/
T D BT;

where we used the resolvent equation sS�1R .s; T / � I D S�1R .s; T /T from [39, The-
orem 2.33], as well as the fact that for any intrinsic function g the two integralsZ

@.U\CJ /

S�1L .s; T /dsJg.s/ D

Z
@.U\CJ /

g.s/dsJS
�1
R .s; T /
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coincide. With this commutativity we can rewrite the already proven qŒT �B D 1 also
as BqŒT � D 1 on dom.Tm/, which proves that qŒT � is bijective with inverse

qŒT ��1 D B D
�1

2�

Z
@.U\CJ /

S�1L .s; T /dsJ
1

q.s/
: (52)

Proposition 3.12. Let T 2 KC.V / with T; xT being operators of type ! and consider
two intrinsic polynomials p; q with the properties

(i) deg.q/ � deg.p/C 1,

(ii) p admits a zero of at least order 2 at the origin,

(iii) q does not admit any zeros in S! .

Then qŒT �, qŒ xT � are bijective, p
q
2 ‰Q.S� / for some � 2 .!; �/ and

D
�p
q

�
.T / D .DpŒT �qŒT � � pŒT �DqŒT �/qŒT ��1qŒ xT ��1 (53a)

D .DpŒT �qŒ xT � � pŒ xT �DqŒT �/qŒT ��1qŒ xT ��1: (53b)

Remark 3.13. In (53) the left-hand side is understood as the harmonic functional
calculus (19a) (indicated by the round brackets), while the terms on the two right-hand
sides are understood as the polynomial functional calculus (45) and as the harmonic
polynomial functional calculus

DpŒT �´ �2

nX
iD0

pi

i�1X
kD0

T k xT i�1�k; (54)

with dom.DpŒT �/´ dom.T n�1/, (indicated by square brackets). Note that the oper-
ator (54) is motivated by the action Dsi D �2

Pi�1
kD0 s

k Nsi�1�k of the Cauchy Fueter
operator (5) on monomials, see [7, Lemma 1].

Proof of Proposition 3.12. Note that the second equation (53b) follows from the first
one (53a) when we replace T by xT and use that all terms involving D stay the same
due to Lemma 3.5 (iii) and the definitions (45) and (54) of the polynomial functional
calculi. Hence, it is left to prove the equality (53a).

In the first step we will change the integration path @.S' \ CJ / in the integ-
rals (18a) and (19a) of

�
p
q

�
.T / andD

�
p
q

�
.T /, to some finite path in .S!/c surrounding

all the zeros of q. Since the closed set S! does not contain any zeros of the polyno-
mial q by assumption (iii), we can choose � 2 .!; �/ small enough such that S� does
not contain any zeros of q either. This means that p

q
is intrinsic on S� . Moreover,

p admits a zeros of at least order 2 at the origin by assumption (ii), q does not admit
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a zero at the origin by assumption (iii) and deg.q/ � deg.p/C 1 by assumption (i).
These three properties ensure the existence of a constant C1 � 0 such thatˇ̌̌p.s/

q.s/

ˇ̌̌
� C1

jsj2

1C jsj3
; s 2 S� ; (55)

and hence p
q
2‰Q.S� /. By choosing " small andR large enough, one can ensure that

all the zeros of q lie inside the set

U";R ´ ¹s 2 .S'/
c
j " < jsj < Rº:

If we decompose @.U";R \CJ / D �R 	 
";R 	 �", using the curves


";R.t/´

´
�teJ' ; t 2 .�R;�"/;

te�J' ; t 2 ."; R/;

�".�/´ "eJ� ; � 2 .'; 2� � '/;

�R.�/´ ReJ� ; � 2 .'; 2� � '/;

(see Figure 5), we note that the two integrals

lim
"!0C

Z
�"

Q�1c;s.T /dsJ
p.s/

q.s/
D lim
R!1

Z
�R

Q�1c;s.T /dsJ
p.s/

q.s/
D 0;

vanish due to the estimates (17) and (55). Hence, we obtain

D
�p
q

�
.T / D

�1

�

Z
@.S'\CJ /

Q�1c;s.T /dsJ
p.s/

q.s/

D
�1

�
lim
"!0

lim
R!1

Z

";R

Q�1c;s.T /dsJ
p.s/

q.s/

D
1

�
lim
"!0

lim
R!1

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
p.s/

q.s/

D
1

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
p.s/

q.s/
; (56)

where in the last line we used that by the Cauchy theorem the integral does not depend
on the choice of " and R as long all zeros of q.s/ are inside U";R.

In the second step we consider the operator

B ´
1

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
1

q.s/
; (57)
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zeros of q

! ' �

�S .T /U";R

CJ


";R


";R

�"

�R

Figure 5

for which we will prove that ran.B/ � dom. xT j / and

xT jB D
1

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
sj

q.s/
C 2

j�1X
kD0

T k xT j�1�kqŒT ��1; j 2 ¹0; : : : ; mº;

(58)
where for j D 0 the sum

P�1
kD0 is understood to be 0. First of all, we note that qŒT � is

bijective due to Lemma 3.11. The induction start j D 0 is clear by the definition (57)
of the operator B . For the induction step j � 1! j we use the identity

Q�1c;s.T /s D
xTQ�1c;s.T /C S

�1
L .s; T /;

which follows immediately from the definition (12) of the left S -resolvent, to get

1

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
sj

q.s/

D
1

�

Z
@.U";R\CJ /

. xTQ�1c;s.T /C S
�1
L .s; T //dsJ

sj�1

q.s/

D xT
�
xT j�1B � 2

j�2X
kD0

T k xT j�2�kqŒT ��1
�
� 2T j�1qŒT ��1

D xT jB � 2

j�1X
kD0

T k xT j�1�kqŒT ��1;

where in the second line we used the induction assumption (58) for j � 1 as well as
the identities (47) and (52). Bringing the very right term to the left-hand side finishes
the induction step.
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In the third step we show that

B D �DqŒT �qŒT ��1qŒ xT ��1: (59)

Since U";R � �S .T /, where s 7! Qc;s.T / is slice hyperholomorphic, we get

0 D
1

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ 1 D
1

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
q.s/

q.s/

D

mX
jD0

bj

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
sj

q.s/

D

mX
jD0

bj

�
xT jB � 2

j�1X
kD0

T k xT j�1�kqŒT ��1
�
D qŒ xT �B CDqŒT �qŒT ��1;

where in the last line we used (58) and the definition (54) ofDqŒT �. Using the bijectiv-
ity of qŒ xT � from Lemma 3.11, this is exactly equation (59).

In the fourth step we combine the results (56), (58), and (59) to get the stated
equation

D
�p
q

�
.T / D

1

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
p.s/

q.s/
D

nX
iD0

ai

�

Z
@.U";R\CJ /

Q�1c;s.T /dsJ
si

q.s/

D

nX
iD0

ai

�
xT iB � 2

i�1X
kD0

T k xT i�1�kqŒT ��1
�
D pŒ xT �B CDpŒT �qŒT ��1

D .DpŒT �qŒT � � pŒ xT �DqŒT �/qŒT ��1qŒ xT ��1:

4. The harmonic H 1-functional calculus

In this section we want to enlarge the harmonic functional calculus of Definition 3.3
to slice hyperholomorphic functions on a sector, which are polynomially growing at
0 and at1. More precisely, we consider the following function spaces.

Definition 4.1. For every � 2 .0; �/ we define the function spaces

(i) FL.S� /´
®
f 2 SHL.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j � C˛

�
jsj˛ C

1
jsj˛

�
; s 2 S�

¯
,

(ii) FR.S� /´
®
f 2 SHR.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j � C˛

�
jsj˛ C

1
jsj˛

�
; s 2 S�

¯
,

(iii) F.S� /´
®
f 2 N.S� / j there exist ˛ > 0; C˛ � 0 W jf .s/j � C˛

�
jsj˛ C

1
jsj˛

�
; s 2 S�

¯
:
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First, we generalize the S -functional calculus of Definition 3.2 to these polynomi-
ally growing functions by some regularizing procedure. This is called the H1-func-
tional calculus and was for example already considered in [21, Section 6.3].

Definition 4.2 (The H1-functional calculus). Let T 2 KC.V / be an injective oper-
ator of type !. Then for every f 2 FL.S� /, � 2 .!;�/, we define theH1-functional
calculus

f .T /´ e.T /�1.ef /.T /; (60)

where e 2 ‰.S� / is such that e.T / is injective and ef 2 ‰L.S� /. The operators e.T /
and .ef /.T / are understood by the S -functional calculus (18a) for decaying func-
tions.

It is then proven in [21, Theorem 6.3.4] that such a regularizer function d exists
and that (60) is independent of e.

Motivated by the product rule (41), we will now also generalize the harmonic
functional calculus from Definition 3.3 to the functions from Definition 4.1.

Definition 4.3 (The harmonicH1-functional calculus). Let T 2 KC.V / be such that
T; xT are injective operators of type !. Then for every f 2 FL.S� /, � 2 .!; �/ we
define the harmonic H1-functional calculus

Df.T /´e. xT /�1.D.ef /.T / � f .T /De.T // (61a)

De.T /�1.D.ef /.T / � f . xT /De.T //; (61b)

where e 2 ‰Q.S� /, such that e.T /; e. xT / are injective and ef 2 ‰
Q
L .S� /. Here

D.ef /.T /; De.T / are understood by the harmonic functional calculus (19a) for
decaying functions, e.T /; e. xT / by the S -functional calculus (18a) for decaying func-
tions and f .T /; f . xT / by the H1-functional calculus (60).

Remark 4.4. Note that in Definitions 4.2 and 4.3 only left slice hyperholomorphic
functions f 2 FL.S� / are considered. The reason why the natural analogues

f .T /´ .fe/.T /e.T /�1 and .fD/.T /´ ...fe/D/.T /�f . xT /De.T //e.T /�1;

of (60) and (61b) for right slice hyperholomorphic functions f 2 FR.S� / are missing,
is that these terms would be defined only on dom.e.T /�1/ and hence not independent
of the choice of the regularizer; see also [20, Remark 7.2.2].

Theorem 4.5. Let T 2 KC.V / be such that T; xT are injective operators of type
!. Then for every f 2 FL.S� /, � 2 .!; �/ a regularizer function e in the sense of
Definition 4.3 exists, (61a) and (61b) equal and do not depend on the choice of the
regularizer e. Moreover, for every f;g 2‰L.S� / withDf.s/DDg.s/, also the oper-
ators Df.T / D Dg.T / coincide.
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Proof. For the independence of the regularizer e let e1; e2 2 ‰Q.S� / be two regu-
larizers such that e1.T /; e1. xT /; e2.T /; e2. xT / are injective and e1f; e2f 2 ‰

Q
L .S� /.

From the two versions of the product rule (41a) and (41b) applied to D.e1e2f /.T /,
we get

De1.T /.e2f /.T /C e1. xT /D.e2f /.T / D De2.T /.e1f /. xT /C e2.T /D.e1f /.T /:

(62)
Rearranging this equation and interchanging De1.T / and .e2f /.T / as well as
De2.T / and .e1f /. xT /, which is allowed by Corollary 3.8 and Lemma 3.5 (iii), gives

e2.T /D.e1f /.T / � .e2f /.T /De1.T / D e1. xT /D.e2f /.T / � .e1f /. xT /De2.T /:

(63)
Next, we note that e1. xT /e2.T / D e2.T /e1. xT / commute due to [18, Lemma 3.9] and
so do their inverses e�11 . xT /e�12 .T /D e�12 .T /e�11 . xT /. Multiplying these two inverses
from the left to (63) and using the definition of theH1-functional calculus (60) gives

e1. xT /
�1.D.e1f /.T / � f .T /De1.T // D e2.T /

�1.D.e2f /.T / � f . xT /De2.T //:

(64)
This equation with the particular choice e1 D e2 gives the identity

e2. xT /
�1.D.e2f /.T / � f .T /De2.T // D e2.T /

�1.D.e2f /.T / � f . xT /De2.T //:

This equation on the one hand shows the equivalence of the definitions (61a) and (61b),
and on the other hand plugging it into (64), gives the independence of the regularizer

e1. xT /
�1.D.e1f /.T / � f .T /De1.T // D e2. xT /

�1.D.e2f /.T / � f .T /De2.T //:

It is left to show that a regularizer function e 2 ‰Q.S� / with e. xT / injective and
ef 2 ‰

Q
L .S� / exists. Since f 2 FL.S� /, it admits the estimate

jf .s/j � C˛

�
jsj˛ C

1

jsj˛

�
; s 2 S� ;

for some ˛ > 0,C˛ � 0. For arbitrary n2N with n> 1C ˛, we choose the regularizer

e.s/´
sn

.1C s/2n�1
: (65)

Then obviously e 2 ‰Q.S� /, and due to the asymptotics

e.s/f .s/ D

´
O.jsj�nC1C˛/; as s !1;

O.jsjn�˛/; as s ! 0;

we also have ef 2 ‰QL .S� /. In order to show that e.T /D T n.1C T /�2nC1 is inject-
ive, we note that since T is injective, the n-th power T n is injective as well. Since
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.1 C T /�2nC1 is bijective due to �1 2 �S .T /, we conclude that e.T / is injective.
The injectivity of e. xT / follows the same argument.

In order to prove the independence of the kernel of D, let f; g 2 ‰L.S� / with
Df.s/ DDg.s/. Assume furthermore that e is a regularizer for f as well as for g. In
the same way as in (29) one shows that f D gC c only differ by a constant. Plugging
this into (61) gives

Df.T / D e. xT /�1.D.ef /.T / � f .T /De.T //

D e. xT /�1.D.eg C ce/.T / � .g C c/.T /De.T //

D e. xT /�1.D.eg.T /C cDe.T / � g.T /De.T / � cDe.T //

D e. xT /�1.D.eg.T / � g.T /De.T // D Dg.T /;

where in the third equation we used the linearity of the harmonic functional calculus
in Lemma 3.5 (ii) and the linearity .gC c/.T /D g.T /C c, which holds with equality
if one of the operators is bounded.

Lemma 4.6. Let T 2 KC.V /, with T; xT being injective operators of type !. For every
f; g 2 FL.S� /, � 2 .!; �/,

(i) Df.T / is a closed operator,

(ii) Df.T /CDg.T / � D.f C g/.T /,

(iii) Df.T / D Df. xT /,

(iv) if f is intrinsic, then Df.T / 2 KC.V / with Df.T / D Df.T /.

Proof. Let e be a regularizer of f according to Definition 4.3. For the proof of (i), we
first use the definition (60) of the H1-functional calculus to rewrite (61a) as

Df.T / D .e.T /e. xT //�1.e.T /D.ef /.T / � .ef /.T /De.T //: (66)

Since this is the combination of an unbounded closed with a bounded operator, also
its decomposition Df.T / turns out to be a closed operator again. Next, we note that
due to Lemma 3.6 (iii), we know that e.T / and e. xT / are bounded operators with
commuting components and that

e.T /e. xT / D e.T /e.T / D je.T /j2

only admits the component .e.T /e. xT //0, while .e.T /e. xT //i D 0, i 2 ¹1;2;3º, vanish.
Hence, also the inverse .e.T /e. xT //�1 D .e.T /e. xT //�10 is an unbounded operator
only consisting of the inverse of that one real component. Moreover, e.T /;D.ef /.T /;
.ef /.T /;De.T / are operators with commuting components as well, see Lemma 3.5
and Lemma 3.6, and the respective components are combinations of powers of the
components T0; T1; T2; T3, see the explicit representations (35) and (37). Hence, also
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the decomposition (66) is an operator with commuting component, which prove that
Df.T / 2 KC.V /.

For the proof of (ii), we assume that e is a regularizer of f and of g. Then e is a
regularizer of the sum f C g as well. Combining now the facts

• AB C AC � A.B C C/, for unbounded operators A;B;C in V ,

• D.ef /.T /CD.eg/.T / D D.ef C eg/.T /, by Lemma 3.5,

• f .T /C g.T / � .f C g/.T /, by [3, Theorem 5.6],

leads us to the inclusion

Df.T /CDg.T /

D e. xT /�1.D.ef /.T / � f .T /De.T //C e. xT /�1.D.eg/.T / � g.T /De.T //

� e. xT /�1.D.ef /.T / � f .T /De.T /CD.eg/.T / � g.T /De.T //

� e. xT /�1.D.ef C eg/.T / � .f C g/.T /De.T // D D.f C g/.T /:

The proof of (iii) follows from the two equivalent definitions (61a) and (61b) and
Lemma 3.5 (iii).

Finally, for statement (iv), it first follows from Lemma 3.5 (iii) and Lemma 3.6 (iii),
that

e.T /D.ef /.T / � .ef /.T /De.T / D e. xT /D.ef /.T / � .ef /. xT /De.T /

D e.T /D.ef /.T / � .ef /.T /De.T /;

where the second equation follows from the two versions of the product rule (41a)
and (41b). Hence, the operator e.T /D.ef /.T / � .ef /.T /De.T /, and consequently
also Df.T / in the representation (66), is two-sided linear. This means that Df.T /
only consists of one component and automatically implies Df.T / 2 KC.V / as well
as Df.T / D Df.T /.

Proposition 4.7. Let T 2 KC.V / with T; xT being injective operators of type !,
BW V ! V an everywhere defined bounded operator and f 2 F.S� /, for some � 2
.!; �/. Then there holds

BTj D TjB on dom.T / for all j 2 ¹0; : : : ; 3º H) BDf .T / � Df.T /B:

Proof. First of all, we note that since BTj D TjB commutes with every component
Tj on dom.T /, the operator B commutes also with every component e.T /i of e.T /,
see the representation (37). Hence, B also commutes with

e.T /e. xT / D e.T /e.T / D e1.T /
2
0 C e.T /

2
1 C e.T /

2
2 C e.T /

2
3:
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Consequently, for the inverse we get the inclusion

B.e.T /e. xT //�1 D .e.T /e. xT //�1e.T /e. xT /B.e.T /e. xT //�1

D .e.T /e. xT //�1Be.T /e. xT /.e.T /e. xT //�1 � .e.T /e. xT //�1B:

Since for the same reason,B also commutes with the components of e.T /,D.ef /.T /,
.ef /.T / and De.T /, it also commutes with the components of the bracket term
in (66). However, since Df.T / D Df.T / by Lemma 4.6 (iv), we know that Df.T /
and hence also e.T /D.ef /.T /� .ef /.T /De.T / only consists of the real term, while
all the components which are denoted on the imaginary units e1; e2; e3 vanish identic-
ally. Hence,

B.e.T /D.ef /.T / � .ef /.T /De.T //

D .e.T /D.ef /.T / � .ef /.T /De.T //B; on V;

commutes with the whole bracket term in (66) and hence also with

BDf .T / D B.e.T /e. xT //�1.e.T /D.ef /.T / � .ef /.T /De.T //

� .e.T /e. xT //�1B.e.T /D.ef /.T / � .ef /.T /De.T //

D .e.T /e. xT //�1.e.T /D.ef /.T / � .ef /.T /De.T //B D Df.T /B:

Corollary 4.8. Let T 2 KC.V / with T; xT being injective operators of type !. Then

(i) Df.T /g.T / � g.T /Df .T / for f 2 ‰Q.S� /; g 2 FL.S� /,

(ii) g.T /Df .T /�Df.T /g.T / for f 2 FQ.S� /; g 2‰
Q
L .S� / or g 2‰QR .S� /.

Proof. For the proof of (i), let e be a regularizer of g according to Definition 4.2.
Then

Df.T /g.T / D Df.T /e.T /�1.eg/.T / � e.T /�1.eg/.T /Df .T / D g.T /Df .T /;

(67)
where we commuted

Df.T /e.T /�1 D e.T /�1e.T /Df .T /e.T /�1

D e.T /�1Df.T /e.T /e.T /�1 � e.T /�1Df.T /; (68)

and Df.T /.eg/.T / D .eg/.T /Df .T /, which is allowed by Corollary 3.8.
The inclusion in (ii) follows from Proposition 4.7, since g.T /Tj D Tjg.T /

obviously commute on dom.T / by the integral definition of the S -functional cal-
culus (18a).

Theorem 4.9. Let T 2 KC.V / with T; xT being injective operators of type !. Then
for every f 2 F.S� /, g 2 FL.S� /, � 2 .!; �/, there holds the product rules

D.fg/.T / � Df.T /g.T /C f . xT /Dg.T / (69a)
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and

D.fg/.T / � Df.T /g. xT /C f .T /Dg.T /: (69b)

Proof. First of all, the second rule (69b) follows immediately when we replace T by xT
in (69a) and use Lemma 4.6 (iii). For the prove of (69a) let e1 be a regularizer of f and
e2 a regularizer of g according to Definition 4.3. Using the product rule .fg/.T / �
f .T /g.T / of the S -functional calculus [3, Theorem 5.6] and the commutation of
g.T / and D.e1e2/.T / as in (67), gives

.fg/.T /D.e1e2/.T / � f .T /g.T /D.e1e2/.T / � f .T /D.e1e2/.T /g.T /: (70)

Since e1e2 is a regularizer of the product fg, we can use the identity (70) and the
product rule (41a), to get

D.fg/.T / D .e1e2/. xT /
�1.D.e1e2fg/.T / � .fg/.T /D.e1e2/.T //

� .e1e2/. xT /
�1.D.e1fe2g/.T / � f .T /D.e1e2/.T /g.T //

� .e1. xT /e2. xT //
�1.D.e1f /.T /.e2g/.T /C .e1f /. xT /D.e2g/.T /

� f .T /De2.T /e1.T /g.T / � f .T /e2. xT /De1.T /g.T /:

Using now the commutation rules

D.e1f /.T /.e2g/.T / � D.e1f /.T /e2.T /e2.T /
�1.e2g/.T /

D e2.T /D.e1f /.T /g.T /;

De2.T /e1.T / D e1.T /De2.T / (from Corollary 3.8)

f .T /e1.T / D e1.T /
�1.e1f /.T /e1.T / D .e1f /.T /;

f .T /e2. xT / � e2. xT /f .T / (as in (67)),

we can rearrange the terms and obtain the product rule

D.fg/.T / � e1. xT /
�1e2. xT /

�1.e2.T /D.e1f /.T /g.T /C .e1f /. xT /D.e2g/.T /

� .e1f /.T /De2.T /g.T / � e2. xT /f .T /De1.T /g.T //

D e1. xT /
�1e2. xT /

�1.e2. xT /D.e1f /.T /g.T /C .e1f /. xT /D.e2g/.T /

� .e1f /. xT /De2.T /g.T / � e2. xT /f .T /De1.T /g.T //

� e1. xT /
�1.D.e1f /.T / � f .T /De1.T //g.T /

C e1. xT /
�1.e1f /. xT /e2. xT /

�1.D.e2g/.T / �De2.T /g.T //

D Df.T /g.T /C f . xT /Dg.T /;

where in the second line we used (62) and in the third one we commuted

e2. xT /
�1.e1f /. xT / � .e1f /. xT /e2. xT /

�1

by a similar argument as in (68).
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As the final result of this paper, we investigate the action of the harmonic func-
tional calculus on intrinsic rational functions. The following Proposition 4.10 contains
basically the same statement as Proposition 3.12, but without assumptions (i) and (ii)
on the decay on the polynomials. As a consequence we are obliged to use the harmonic
H1-functional calculus (61) instead of the calculus (19a) for decaying functions.

Proposition 4.10. Let T 2 KC.V / with T; xT being injective operators of type !.
Then, for every intrinsic polynomials p; q, with q not having any zeros in the closed
sector S! , we know that qŒT �, qŒ xT � are bijective and

D
�p
q

�
.T / D .DpŒT �qŒT � � pŒT �DqŒT �/qŒT ��1qŒ xT ��1

D .DpŒT �qŒT � � pŒT �DqŒT �/qŒT ��1qŒ xT ��1:

Here, the left-hand side of this equation is understood as the harmonicH1-functional
calculus (61) and the operators on the right via the polynomial functional calculi (45)
and (54).

Proof. In the first step, let p and q be any intrinsic polynomials. Then, in the sense of
the polynomial functional calculi (45) and (54) we obtain the product rule

DpŒT �qŒT �C pŒ xT �DqŒT �

D �2

nX
iD0

pi

i�1X
kD0

T k xT i�1�k
mX
jD0

qjT
j
� 2

nX
iD0

pi xT
i

mX
jD0

qj

j�1X
kD0

T k xT j�1�k

D �2

nX
iD0

mX
jD0

piqj

� i�1X
kD0

T jCk xT i�1�k C

j�1X
kD0

T k xT iCk�1�k
�

D �2

nX
iD0

mX
jD0

piqj

iCj�1X
kD0

T k xT iCj�1�k D D.pq/ŒT �: (71)

In the second step we choose an intrinsic rational regularizer

e.s/ D
r.s/

t.s/
;

for example the one in (65) with large enough n 2 N. Then it follows from Proposi-
tion 3.12 and (71), that

D
�rp
tq

�
.T / D .D.rp/ŒT �.tq/ŒT � � .rp/ŒT �D.tq/ŒT �/.tq/ŒT ��1.tq/Œ xT ��1

D
�
DrŒT �pŒT �t ŒT �qŒT �C rŒ xT �DpŒT �t ŒT �qŒT � � rŒT �pŒT �DtŒT �qŒ xT �

� rŒT �pŒT �t ŒT �DqŒT �
�
.tq/ŒT ��1.tq/Œ xT ��1; (72)



A. De Martino, S. Pinton, and P. Schlosser 158

as well as�p
q

�
.T /D

�r
t

�
.T /

D pŒT �qŒT ��1.DrŒT �t ŒT � � rŒT �DtŒT �/t ŒT ��1t Œ xT ��1

D
�
DrŒT �pŒT �t ŒT �qŒ xT � � rŒT �pŒT �DtŒT �qŒ xT �

�
.tq/ŒT ��1.tq/Œ xT ��1; (73)

where we used that
�
p
q

�
.T / D pŒT �qŒT ��1 by [20, Lemma 7.2.9]. Plugging the two

representations (72) and (73) into the definition (61), we get the stated representation

D
�p
q

�
.T / D

�r
t

�
. xT /�1

�
D
�rp
tq

�
.T / �

�p
q

�
.T /D

�r
t

�
.T /

�
D .rŒ xT �t Œ xT ��1/�1

�
DrŒT �pŒT �t ŒT �qŒT �C rŒ xT �DpŒT �t ŒT �qŒT �

� rŒT �pŒT �t ŒT �DqŒT �

�DrŒT �pŒT �t ŒT �qŒ xT �
�
.tq/ŒT ��1.tq/Œ xT ��1

D rŒ xT ��1
�
DrŒT �pŒT �qŒT �C rŒ xT �DpŒT �qŒT �

� rŒT �pŒT �DqŒT � �DrŒT �pŒT �qŒ xT �
�
qŒT ��1qŒ xT ��1

D
�
DpŒT �qŒT � �DqŒT �pŒT �

�
qŒT ��1qŒ xT ��1;

where in the last equation we use the identity

DrŒT �qŒ xT �C r.T /DqŒT � D DrŒT �qŒT �C rŒ xT �DqŒT �;

which can be checked by plugging in the definitions (45) and (54).
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