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The Lp-boundedness of wave operators
for fourth order Schrödinger operators on R4

Artbazar Galtbayar and Kenji Yajima

Abstract. We prove that the wave operators of the scattering theory for the fourth order Schrö-
dinger operator�2CV.x/ on R4 are bounded inLp.R4/ for the set of p’s of .1;1/ depending
on the kind of spectral singularities ofH at zero which can be described by the space of bounded
solutions of .�2 C V.x//u.x/ D 0.

1. Introduction

Let H D �2 C V , � D @2=@x21 C � � � C @
2=@x24 , be the fourth order Schrödinger

operator on R4 with real potentials V.x/ which satisfy the short-range condition that

sup
y2R4

.1C jyj/ıkV.x/kLq.jx�yj<1/ <1 for a q > 1 and ı > 1: (1.1)

The operator H is defined via the closed and bounded-from-below quadratic form
q.u/ D

R
R4.j�u.x/j

2 C V.x/ju.x/j2/dx with domain D.q/ D H 2.R4/ and is
selfadjoint inL2.R4/ (cf. [18]). The spectrum ofH consists of the absolutely continu-
ous (AC for short) part Œ0;1/ and the bounded set of eigenvalues which are discrete
in R n ¹0º and accumulate possibly at zero; it generates a unique unitary propagator
eitH on L2.Rd / and the wave operators W˙ defined by the strong limits in L2.R4/

W˙ D lim
t!˙1

eitH e�itH0 ; H0 D �
2

exist and RangeW˙ D L2ac.H/, the AC subspace of L2.R4/ for H ([20]). They are
unitary operators from L2.R4/ to L2ac.H/.

The wave operators satisfy the intertwining property: for Borel functions f on R,

f .H/Pac.H/ D W˙f .H0/W
�
˙; (1.2)
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where Pac.H/ is the projection to L2ac.H/. It follows that, if W˙ are bounded in
Lp.R4/,

kW˙ukLp.R4/ � CpkukLp.R4/; u 2 L2.R4/ \ Lp.R4/ (1.3)

for p 2 I � Œ1;1� and I � D ¹p=.p � 1/ W p 2 I º, then

kf .H/Pac.H/kB.Lq ;Lp/ � Ckf .H0/kB.Lq ;Lp/;

for p 2 I and q 2 I � with the constant C independent of f and Lp-mapping prop-
erties of the AC part of f .H/, f .H/Pac.H/ may be deduced from those of f .H0/
which is the Fourier multiplier by f .j�j4/. Here for Banach spaces X and Y, B.X;Y/

is the Banach space of bounded operators from X to Y and B.X/ D B.X;X/.
In this paper, we study whether or not W˙ satisfy (1.3) for p in a certain range of

p 2 Œ1;1�. For 1 � p � 1, and D � R4, kukLp.D/ is the norm of Lp.D/, kukp D
kukLp.R4/, kuk D kuk2 and .u; v/ is the inner product of L2.R4/; the notation .u; v/
will be used whenever the integral

R
R4 u.x/v.x/dx makes sense, e.g., for u 2 �.R4/

and v 2 � 0.R4/;

L
p
loc,u.R

4/ D ¹u W kukLp
loc,u
´ sup¹ku.x/kLp.jx�yj�2/ W y 2 R4º <1º:

We define the Fourier transform F u.�/ or Ou.�/ of u by

Ou.�/ D F u.�/ D
1

.2�/2

Z
R4

e�ix�u.x/dxI

Mf is the multiplication operator with f .�/; f .D/´ F �Mf F is the Fourier mul-
tiplier. We choose and fix smooth functions ��.�/ and ��.�/ on Œ0;1/ such that

��.�/ D

´
1; � � 1;

0; � � 2;
��.�/C ��.�/ D 1

and let, for a > 0, ��a.�/ D ��.�=a/ and ��a.�/ D ��.�=a/.
We define the “high” and the “low” energy parts of W˙ respectively by

W˙��a.jDj/ and W˙��a.jDj/:

For the high energy part we have the following theorems. Let hxi D .1C jxj2/1=2 for
x 2 Rd , d 2 N.

Theorem 1.1. Suppose V 2 Lqloc,u.R
4/ for a q > 1 and hlog jxji2V 2 L1.R4/. Let

a > 0 and 1 < p <1. Then, there exists a constant c0 such that W˙��a.jDj/ are
bounded in Lp.R4/ whenever V satisfies kV kLq

loc,u
C khlog jxji2V kL1 � c0.
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Remark 1.2. In Theorem 1.1, V does not in general satisfy (1.1), however, for any
a > 0, jV j

1
2 is H0-smooth on Œa;1/ in the sense of Kato (Lemma 2.2) and, if c0 is

small enough, it is also H -smooth on Œa;1/ and W˙��a.jDj/ exist ([17, 24]).

The same result holds for larger V if V decays faster at infinity.

Theorem 1.3. Suppose that hxi3V 2 L1.R4/ and V 2 Lq.R4/ for a q > 1. Suppose
further that H has no positive eigenvalues. Then, for any a > 0, W˙��a.jDj/ are
bounded in Lp.R4/ for 1 < p <1.

We remark that H can have positive eigenvalues for “very nice” potentials V
([8, 22]) in contrast to the case of ordinary Schrödinger operators �� C V which
have no positive eigenvalues for the large class of short-range potentials ([15, 19]).
We refer to [8,22] and reference therein for more information on positive eigenvalues
for .��/mC V ,mD 2;3; : : : :We shall assume in this paper that positive eigenvalues
are absent from H . For small V as in Theorem 1.1, H has no positive eigenvalues.

The range of p for which the low energy parts W˙��a.jDj/ are bounded in
Lp.R4/ depends on the space N1.H/ of bounded solutions of .�2 C V.x//u D 0:

N1.H/´ ¹u W u 2 L
1.R4/ W .�2 C V.x//u D 0º:

We call ' 2 N1.H/ zero energy resonance of H . In Section 6 we shall prove the
following lemma which is a version of the result in [14].

Lemma 1.4. Suppose hlog jxji2hxi3V 2 .L1 \Lq/.R4/ for a q > 1. Then, N1.H/

is finite-dimensional real vector space. For ' 2 N1.H/, there exist c0 2 C, a 2 C4

and symmetric matrix A such that

'.x/ D �c0 C
a � x

jxj2
C
Ax � x

jxj4
CO.jxj�3/ .jxj ! 1/: (1.4)

We call ' 2 N1.H/ n ¹0º s-wave, p-wave, or d -wave resonance, respectively, if
c0 6D 0, c0 D 0 and a 6D 0 or c0 D 0, a D 0 and A 6D 0; if c0 D 0, a D 0, A D 0, then
' is zero energy eigenfunction of H .

Theorem 1.5. Assume that H has no positive eigenvalues. Let q > 1.

(1) Suppose that hxi4V 2 .L1 \Lq/.R4/. Let N1.H/D ¹0º or N1.H/ consist
only of s-wave resonances. Then,W˙ are bounded inLp.R4/ for 1 < p <1.

(2) Suppose that hlog jxji2hxi8V 2 .L1 \ Lq/.R4/. Let N1.H/ consist only of
s- and p-wave resonances. Then, W˙ are bounded in Lp.R4/ for 1 < p < 4
and are unbounded if 4 � p � 1.

(3) Suppose that hlog jxji2hxi12V 2.L1 \Lq/.R4/. Let N1.H/ contain d -wave
resonances. Then, W˙ are bounded in Lp.R4/ for 1 < p � 2.
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(4) Suppose that hlog jxji2hxi12V 2 .L1 \Lq/.R4/. Let N1.H/ consist only of
s-, p-wave resonances and zero energy eigenfunctions. Then,W˙ are bounded
in Lp.R4/ for 1 < p < 4.

Remark 1.6. We believe that W˙ are unbounded in Lp.R4/ for p > 2 in (3) and for
p � 4 in (4), however, we were not able to prove this. The end point cases p D 1
and p D 1 are out of reach of the theorems, whose proof heavily depends on the
harmonic analysis machinery.

We rephrase Theorem 1.5 in terms of the singularities of the resolvent R.�4/ D
.H � �4/�1 at � D 0, which is more directly connected to the proof given below. For
stating this version of the theorem, we need some more notation. In what follows, we
assume u 2D�D ¹u 2 �.R4/ W Ou 2C10 .R

4 n ¹0º/º unless otherwise stated explicitly;
D� is dense in Lp.R4/ for 1 � p <1. For z 2 C n Œ0;1/ and CC D ¹z 2 =z > 0º,

R0.z/ D .H0 � z/
�1 and G0.z/ D .�� � z

2/�1

respectively are resolvents of H0 and ��;

R˙0 .�
4/ D lim

"#0
R0.�

4
˙i"/ and G0.�/ D lim

"#0
G0.�C i"/

for � > 0. For z 2 xC
CC
D ¹z 2 C W <z � 0;=z � 0º, z 6D 0, we have

R0.z
4/u.x/ D

1

2z2
.G0.z/ �G0.iz//u.x/; u 2 D�: (1.5)

It is well known (e.g., [1]) that G0.z/, z 2 xC
CC

, is the convolution with

Gz.x/´
1

.2�/4

Z
R4

eix�d�

j�j2 � z2
D
i

4

� z

2�jxj

�
H
.1/
1 .zjxj/; (1.6)

where H .1/
1 .z/ is the Hankel function and its series expansion shows

Gz.x/ D
1

4�2jxj2
C
z2

4�

1X
nD0

�
g.z/C

cn

2�
�

log jxj
2�

� .�z2jxj2=4/n
nŠ.nC 1/Š

: (1.7)

Here cn D 1=.2.nC 1//C
Pn
jD1 j

�1 and, with the principal branch,

g.z/ D �
1

2�
log
�z
2

�
�


2�
C
i

4
;
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 being Euler’s constant. Thus, RC0 .�
4/, � > 0, is the convolution with

R�.x/ D
1

2�2
.G�.x/ � Gi�.x// D R.�jxj/;

R.�/´
1

4�

X
n;even

�
g.�/C

cn

2�
�
i

8

� .�2=4/n

nŠ.nC 1/Š
�

i

32�

X
n;odd

.�2=4/n

nŠ.nC 1/Š
: (1.8)

by virtue of (1.7). Reordering (1.8) in the descendent order as �! 0, we obtain

R�.x/ D Qg0.�/ �
log jxj
8�2

� i
�2jxj2

44�
C
�4 Qg2.�/jxj

4

3 � 43
�
�4jxj4 log jxj
6 � 44�2

C � � �

µ Qg0.�/CN0.x/C �
2G2.x/C �

4
Qg2.�/G4.x/C �

4G4;l.x/C � � � ;

(1.9)

Qgn.�/´
1

4�

�
g.�/C

cn

2�
�
i

8

�
; n D 0; 1; : : : ;

where, if n is odd, G2n;l.x/ D 0 and no factor Qg2n.�/ in front of G2n.x/ appears.
We denote the convolution operators with N0.x/; G2n.x/; G2n;l.x/ by N0; G2n;

G2n;l respectively for n D 1; 2; : : : and with v.x/´ jV.x/j
1
2 ,

N
.v/
0 DMvN0Mv; G

.v/
2n DMvG2nMv; G

.v/

2n;l
DMvG2n;lMv:

Let sign a D 1 if a � 0 and sign a D �1 if a < 0;

U.x/ D signV.x/ and w.x/ D U.x/v.x/

so that V.x/ D v.x/w.x/. Define g0.�/ D kV k1 Qg0.�/ and Qv D kvk�12 v;

P D Qv ˝ Qv; Q D 1 � P; T0 DMU CN
.v/
0 :

Define the function MC.�4/ of � > 0 with values in B.L2/ by

MC.�4/ DMU CMvR
C
0 .�

4/Mv:

Here and hereafter we simply write L2 for L2.R4/. From (1.9) we have

MC.�4/ D g0.�/P C T0 C �
2G

.v/
2 C �

4
Qg2.�/G

.v/
4 C �

4G
.v/

4;l
C � � � : (1.10)

It follows ([20]) from the absence of positive eigenvalues of H that under the short
range condition (1.1) MC.�4/�1 exists in B.L2/ for � > 0 and is locally Hölder
continuous. The operatorMvM

C.�4/�1Mv will play the central role in the paper and
we introduce the short notation

Qv.�/ DMvM
C.�4/�1Mv: (1.11)
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Let RC.�4/ D R.�4 C i0/. Then, as is well known, for � > 0, we have

RC.�4/ D RC0 .�
4/ �RC0 .�

4/Qv.�/R
C
0 .�

4/: (1.12)

The following Definition 1.7 is due to [14] where it is tacitly assumed that relev-
ant operators are bounded in appropriate spaces (see Lemma 2.1); KerQT0QjQL2 is
finite-dimensional (cf. Lemma 6.1), where for an operator A on L2 and A-invariant
subspace H � L2, AjH is the part of A in H . As is seen from (1.10), (1.11), and
(1.12), the kind of singularities of H at zero as defined below is closely related to the
singularities of MC.�4/�1 and RC.�4/ at � D 0.

Definition 1.7. (1) We say that H is regular at zero if QT0QjQL2 is invertible and
is singular at zero otherwise. IfH is singular at zero, let S1 be the projection inQL2

to KerQT0QjQL2 .
(2) Suppose that H is singular at zero.

(2-1) We say H has singularity of the first kind if T1 ´ S1T0PT0S1jS1L2 is
invertible.

(2-2) If T1jS1L2 is not invertible, let S2 be the projection in S1L2 to KerT1jS1L2 .
We say H has singularity of the second kind if T2 ´ S2G

.v/
2 S2jS2L2 is

invertible.

(2-3) If T2jS2L2 is not invertible, let S3 be the projection in S2L2 to KerT2jS2L2 .
We sayH has singularity of the third kind if T3´ S3G

.v/
4 S3jS3L2 is invert-

ible.

(2-4) If T3 is not invertible, we say H has singularity of the fourth kind. Let S4
be the projection in S3L2 to KerT3jS3L2 and T4´ S4G

.v/

4;l
MvS4jS4L2 .

It is known ([14]) that T4 is invertible. We have Qµ S0 � S1 � � � � � S4. We
denote by the same letter the extension of Sj to L2 which is defined as the zero
operator on L2	 SjL2. The kind of singularities ofH at zero is closely connected to
the structure of N1.H/. The following lemma is a slight improvement of the result
of [14] and will be proved in Section 6.

Lemma 1.8. The following statements hold.

(1) Let hlog jxji2V 2 .L1 \ Lq/.R4/ for a q > 1. Then H is singular at zero if
and only if N1.H/ 6D ¹0º. In this case, the map ˆ defined by

ˆ.�/ D N0Mv� � kvk
�2.PT0�; v/; � 2 S1L

2 (1.13)

is isomorphic from S1L
2 to N1.H/ and ˆ�1.'/ D �w', ' 2 N1.H/.

(2) Let V be as in (1). SupposeH has singularity of the first kind, then rankS1D1
and N1.H/ consists only of s-wave resonances.
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(3) Let hlog jxji2hxi3V 2 .L1 \ Lq/.R4/. Then, ˆ maps � 2 S1L2 	 S2L2,
S2L

2 	 S3L
2, S3L2 	 S4L2 and S4L2 to s-wave, p-wave, d -wave reson-

ance and zero energy eigenfunction, respectively.

By virtue of Lemma 1.8, Theorem 1.5 can be rephrased as follows.

Theorem 1.9. Assume that H has no positive eigenvalues. Let q > 1.

(1) Suppose hxi4V 2 .L1 \ Lq/.R4/. If H is regular or has singularity of the
first kind at zero, then W˙ are bounded in Lp.R4/ for 1 < p <1.

(2) Suppose hlog jxji2hxi8V 2 .L1 \Lq/.R4/. IfH has singularity of the second
kind at zero, thenW˙ are bounded in Lp.R4/ for 1 < p < 4 and are unboun-
ded for 4 � p � 1.

(3) Suppose hlog jxji2hxi12V 2 .L1 \Lq/.R4/. IfH has singularity of the third
kind at zero, then W˙ are bounded in Lp.R4/ for 1 < p � 2.

(4) Suppose hlog jxji2hxi12V 2 .L1 \Lq/.R4/. IfH has singularity of the fourth
kind at zero, then W˙ are bounded in Lp.R4/ for 1 < p � 2 if T3 6D 0 and
for 1 < p < 4 if otherwise.

Because of the intertwining property (1.2), the problem of Lp boundedness of
wave operators has attracted interest of many authors and, for ordinary Schrödinger
operators H D ��C V on Rd , various results have been obtained which depend on
the dimension d and on the singularities of H at zero. For some more information,
we refer to the introduction of [35], [34] and the references therein, and [2, 3, 5, 9, 10,
29–33] among others.

For H D �2 C V.x/, the investigation started only recently and the following
results have been obtained under suitable conditions on the decay at infinity and the
smoothness of V.x/ in addition to the absence of positive eigenvalues of H . When
d D 1, W˙ are bounded in Lp.R1/ for 1 < p <1 but not for p D 1 and p D 1;
they are bounded from the Hardy space H 1 to L1 and from L1 to L1weak ([22]); if
d D 3 and N1 ´ ¹u 2 L

1.R3/ W .�2 C V /u D 0º D 0, then W˙ are bounded in
Lp.R3/ for 1 < p <1 ([11]); if d � 5 and N1´\">0¹u 2 hxi

�d
2C2C"L2.Rd / W

.�2 C V /u D 0º D 0, then they are bounded in Lp.Rd / for all 1 � p � 1 ([6, 7]).
However, no results on Lp-boundedness ofW˙ are known when d D 2; 4. We should
mention, however, detailed study on dispersive estimates has been carried out by Li,
Soffer, and Yao [21] for d D 2 and Green and Toprak [13, 14] for d D 4, and we
borrow some results from [13, 14].

The rest of the paper is devoted to the proof of the theorems. We explain here the
basic idea of the proof, introducing some more notation and displaying the plan of the
paper. Various constants whose specific values are not important will be denoted by
the same letter C and it may differ from line to line. We prove the theorems only for
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W� because the complex conjugation changes W� to WC. We often identify integral
operators with their kernels and say integral operatorK.x; y/ for the operator defined
by K.x; y/; we say �.�/, � > 0 is good multiplier (GMU for short) if �.jDj/ is
bounded in Lp.R4/ for all 1 < p < 1; if j�.j /.�/j � C��j for 0 � j � 3, then
�.�/ is a GMU ([26], p.96).

In Section 2 we prove that operators in Definition 1.7 are bounded (Lemma 2.1)
and give some estimates on the remainders of the series (1.9) (Lemma 2.2). We then
prove (Lemma 2.3) that the spectral projection ….�/ for H0 at �4 defined by

….�/u.x/´
2

�i
lim
"#0
.R0.�

4
� i"/ �R0.�

4
C i"//u.x/ (1.14)

satisfies that, with �a being the translation by a 2 R4: �au.x/ D u.x � a/,

….�/u.x/ D
1

.2�/2

Z
S3

ei�x! Ou.�!/d! D .….�/��xu/.0/; (1.15)

which attributes the x-dependence of ….�/u.x/ to that of ��xu and simplifies some
estimates in later sections (see e.g., (1.22)), and that ….�/ transforms the multiplica-
tions to the Fourier multipliers,

f .�/….�/u.x/ D ….�/f .jDj/u.x/; (1.16)

which is particularly useful when f .�/ is GMU (see e.g., Lemma 1.12). Note that, for
u 2D�,….�/u.x/D 0 for � outside a compact interval of .0;1/ and j….�/u.x/j �
C hxi�

3
2 uniformly with respect to � 2 .0;1/.

We then introduce the stationary representation formula of W�,

W�u D u �

1Z
0

RC0 .�
4/Qv.�/….�/u�

3d� (1.17)

(cf. [24]) which is valid under assumptions of the theorems (except Theorem 1.1
where the restriction to the high energy part is necessary) and is the starting point
of the proof of the theorems. As we shall exclusively deal with W�, we shall often
omit the superscriptC from RC0 .�

4/ and MC.�4/. At the end of Section 2, we prove
that the Fourier multiplier defined via R.�/ satisfies

kR.jyjjDj/��a.jDj/kB.Lp/ � C.1C j log jyjj/; 1 < p <1: (1.18)

We remark that �.T /u and z�.T .�// in the following definition are the operators
defined by the integral in the stationary formula (1.17) with T and T .�/ in replace of
Qv.�/ respectively.
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Definition 1.10. (1) We say an operator is good operator (GOP for short) if it is
bounded in Lp.R4/ for all 1 < p <1.

(2) An operator T or operator-valued function T .�/ of � > 0 is good producer
(GPR for short) if the following operators are GOP respectively:

�.T /u´

1Z
0

R0.�
4/ T ….�/u�3d�; (1.19)

z�.T .�//u´

1Z
0

R0.�
4/ T .�/….�/u�3d�: (1.20)

In Section 3 we introduce the operatorK and prove that it is a GOP (Lemma 3.4):

Ku.x/ D

1Z
0

R�.x/.….�/u/.0/�
3d�: (1.21)

The operatorK is of fundamental importance: When T D T .x;y/,�.T / is the super-
position of translations of K with weight T .x; y/,

�.T /u.x/ D

“
R8

T .y; z/.�yK��zu/dzdy; (1.22)

and �.T / becomes GOP if T 2 L1´ L1.R4 �R4/:

k�.T /ukp � CkT kL1kukp; (1.23)

(cf. Lemma 3.5). This also implies

k z�.T .�//ukp � Cp

1Z
0

�2kT .3/.�/kL1kukpd�; (1.24)

where f .j /.�/D .d jf=d�j /.�/ for j D 0; 1; : : : (see Proposition 3.6 for the precise
statement). These estimates willl be repeatedly used in the following sections.

Definition 1.11. We say T .�; x; y/ is variable separable (V� for short) if it has
the form T .�; x; y/ D

PN
jD1 �j .�/Tj .x; y/; it is good variable separable (GV� for

short) if �j are GMU and Tj .x; y/ 2 L1 for j D 1; : : : ; N .

The following is a direct consequence of (1.23).

Lemma 1.12. If T .�; x; y/ is GV� , then T .�/ is GPR.
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In Section 4 we shall prove Theorem 1.1 and Theorem 1.3. We have from (1.16)
and (1.17) that

W���a.jDj/u D ��a.jDj/u �

1Z
0

RC0 .�
4/Qv.�/….�/u�

3��a.�/d�: (1.25)

Formally, expanding Qv.�/ as Qv.�/ D V � VR0.�
4/V C � � � produces the well-

known Born series for W���a.jDj/:

W���a.jDj/u D ��a.jDj/u �W1��a.jDj/uC � � � ; (1.26)

Wn��a.jDj/u D

1Z
0

R0.�
4/.MVR0.�

4//n�1MV….�/u�
3��a.�/d�: (1.27)

Then,W1��a.jDj/u D �.MV /��a.jDj/ and, since MV is the integral operator with
the kernel V.x/ı.x � y/ 2 L1, W1��a.jDj/ is GOP by (1.23). For n D 2, we have

W2��a.jDj/u D

Z
R4

�.M
V

.2/
y
/R.jyjjDj/��a.jDj/�yudy (1.28)

with V .2/y .x/ D V.x/V .x � y/. Then, (1.23) with T DM
V

.2/
y

and (1.18) yield that

kW2��a.jDj/ukp � C

Z
R8

jV.x/V .x � y/j.1C j log jyjj/kukpdxdy

� C.kV kLq
loc,u
C khlog jxji2V kL1/2kukp: (1.29)

Iterating this procedure, we shall show that for n D 3; 4; : : :

kWn��a.jDj/ukp � C
n.kV kLq

loc,u
C khlog jxji2V kL1/nkukp (1.30)

with C > 0 independent of V and n. Thus, if C.kV kLq
loc,u
C khlog jxji2V kL1/ < 1,

the series (1.26) converges in B.Lp/ for 1 < p <1, which proves Theorem 1.1.
For proving Theorem 1.3, we expand Qv.�/ with the remainder:

Qv.�/ D

N�1X
nD0

.�1/nMV .R0.�
4/MV /

n
C .�1/NDN .�/; (1.31)

DN .�/ DMv.MwR0.�
4/Mv/

N .1CMwR0.�
4/Mv/

�1Mw : (1.32)

The sum on the right of (1.31) produces
PN�1
nD0 .�1/

nWn��a.jDj/ which is GOP
by (1.30). The decay of R�.x/ as �!1 yields

k@
j

�
DN .�/kL1 � C�

� 2N
q0 .khxi.2j�3/CV kL1 C kV kLq /N ; j D 0; 1; 2; 3
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for 1 < q < 4=3 and 4 < q0 D q=.q � 1/ <1. If we take N such that 2N=q0 > 3,
then ��a.�/DN .�/ becomes GPR for any a > 0 by (1.24) and Theorem 1.3 follows.

In Section 5 we begin studying the low energy part and prove Theorem 1.9 for the
case that H is regular at zero. From (1.17), we have

W���a.jDj/u D ��a.jDj/u �

1Z
0

R0.�
4/Qv.�/….�/u�

3��a.�/d�: (1.33)

Definition 1.13. For a Banach space X, an integer k � 0 and a function f .�/ > 0
defined for small � > 0, say, for � 2 .0; a/, a > 0, O

.k/

X
.f / is the space of X-valued

C k-functions of � 2 .0; a/ such that

k.d=d�/jT .�/kX � Cj�
�j
jf .�/j; j D 0; : : : ; k:

We shall abuse notation and write O
.k/

X
.f / also for an element of O

.k/

X
.f /.

We write R�;2n.x/ for the remainder of (1.9): R�;0.x/ D R�.x/ and

R�;2n.x/ D �
2n
Qg2n.�/G2n.x/C �

2nG2n;l.x/C � � � ; ; n D 1; 2; : : : I (1.34)

R2n.�
4/ is the convolution with R�;2n.x/ and R.v/2n .�

4/ DMvR2n.�
4/Mv:

R2n.�
4/ D �2n Qgn.�/G2n C �

2nG2n;l C � � � ;

R
.v/
2n .�

4/ DMv.�
2n
Qgn.�/G2n C �

2nG2n;l C � � � /Mv; (1.35)

where G0 is the identity and G0;l.x/ D N0.x/. By virtue of Lemma 2.2 and (1.10),

M.�4/ D T0 C g0.�/P C �
2G

.v/
2 CR

.v/
4 .�/; R

.v/
4 .�/ 2 O

.4/

L1.�
4 log�/:

If H is regular at zero, then we obtain (Lemma 5.4) via Feshbach formula that, for
small � > 0, with D0 D Q.QT0Q/�1Q 2 L1 and L0 of rank two,

.T0 C g0.�/P /
�1
D h.�/L0 CD0; h.�/ D .g0.�/C c1/

�1:

It follows via the perturbation expansion that ��a.�/Qv.�/ is the sum of GV� and
O
.4/

L1.�
4 log�/ and, W���a.jDj/ is GOP for small a > 0 by Proposition 3.6.

We begin studying the case when H has singularities at zero in Section 6 where
we prove Lemmas 1.4 and 1.8. If H is singular at zero, then M.�4/�1 is singular at
� D 0 and the singularities become stronger as the order of the type of singularities
increases from the first to the fourth. We shall study them by repeatedly and induct-
ively applying Lemma 7.1 due to Jensen and Nenciu.
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In Section 7 we shall prove Theorem 1.9 when the singularity is of the first kind.
Then, Qv.�/ has logarithmic singularity at zero and, in terms of the basis vector � of
S1L

2 which is one-dimensional,

Qv.�/ � .a log�C b/.v� ˝ v�/ (modulo GPR);

and hence, the integral of (1.33) becomes, modulo GOP,

�low,au �

1Z
0

R0.�
4/.v�/.x/.v�;….�/u/.a log�C b/�3��a.�/d�: (1.36)

The point here is that the singularity of a log�C b can be cancelled by the propertyZ
R4

v.x/�.x/dx D 0 (1.37)

of � 2 S1L2: equation (1.37) implies that ….�/u.x/ in .v�;….�/u/ of (1.36) may be
replaced by ….�/u.x/ �….�/u.0/ and Taylor’s formula

ei�x! � 1 D

4X
lD1

i�xl

1Z
0

!le
i��x!d� (1.38)

implies that

….�/u.x/ �….�/u.0/ D i�

4X
lD1

xl

1Z
0

.….�/Rlu/.�x/d�; (1.39)

where Rj , 1 � j � 4 are Riesz transforms. We observe that the factor � on the right
of (1.39) produces a GMU �.�/´ �.a log�C b/ and �low,au becomes

i

4X
lD1

1Z
0

� 1Z
0

R0.�
4/..v�/˝ .xlv�//….�/.���xRl�.jDj/u/.0/�

3d�

�
d�: (1.40)

Then, recalling the definition (1.21) of K, we obtain

�low,au.x/ D �i

4X
lD1

1Z
0

�Z
R8

.v�/.y/zl.v�/.z/�y.K���zRl�.jDj/u/.x/dydz

�
d�;

and (1.23) and Minkowski’s inequality imply for all 1 < p <1 that

k�low,aukp �

4X
jD1

k.v�/.y/zl.v�/.z/kL1kKkB.Lp/kRl�.jDj/kB.Lp/kukp:
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In Section 8, we prove Theorem 1.9 when H has singularity of the second kind.
Then, Qv.�/ has much stronger singularity at zero and with the basis �1; : : : ; �m of
S2L

2

Qv.�/ �

mX
j;kD1

��2�jk.�j ˝ �k/ (modulo GPR);

where �jk are constants. Recall that � 2 S2L2 also satisfies (1.37). For dealing
with this ��2-singularity, we expand ei�x! to the second order in (1.38) so that
….�/u.x/ �….�/u.0/ becomes

4X
lD1

i�xl.….�/Rlu/.0/ �

4X
m;lD1

xmxl�
2

1Z
0

.1 � �/.….�/���xRmRlu/.0/d�: (1.41)

Thanks to the factor �2 which cancels ��2-singularity, the second term of (1.41)
produces GOP for (1.33). The first term does

Pm
j;kD1

P4
lD1WB;jklu.x/, where

WB;jklu.x/´ ihxlv; �ki

1Z
0

.R0.�
4/Mv�j /.x/.….�/Rlu/.0/�

2��a.�/d�: (1.42)

Ignoring harmless factors ihxlv; �ki and Rl and omitting the indices of (1.42), we
consider for !.x/ D v.x/�.x/, � 2 S2L2,

WBu D

1Z
0

R0.�
4/!.x/.….�/u/.0/�2��a.�/d�: (1.43)

We multiply both side of (1.43) by ��4a.jDj/ C ��4a.jDj/ which is identity so
thatWBu D ��4a.jDj/WBuC ��4a.jDj/WBu and move ��4a.jDj/ and ��4a.jDj/
inside the integral on the right. Let �.�/ D ��4a.j�j/j�j�4. Then,

��4a.jDj/R0.�
4/!.x/ D �.D/!.x/C �4�.D/R0.�

4/!.x/:

Thanks to the factor �4, the second member on the right-hand side produces GOP for
��4a.jDj/WB and the first one does the rank one operator

�.jDj/!.x/.u; f /; f .x/ D F .��a.�/j�j
�1/.x/:

Here �.D/!.x/ 2 Lp.R4/ for 1 � p � 1 (cf. Lemma 8.8) and f 2 Lq.R4/ if and
only if 4=3 < q � 1. Thus, ��4a.jDj/WB is bounded in Lp.R4/ for 1 � p < 4

and is unbounded for p � 4, which already proves that W� is unbounded in Lp.R4/
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if p � 4. We then study ��4a.jDj/WBu. Since O!.0/ D 0, ��4a.jDj/R0.�4/!.x/ is
equal to

4X
mD1

�i

.2�/4

1Z
0

Z
R4

zm!.z/��zRm

�Z
R4

eix�
j�j��4a.j�j/

.j�j4 � �4 � i0/
d�

�
dzd�:

It follows that

��4a.jDj/WBu.x/ D

4X
mD1

�i

.2�/4

1Z
0

Z
R4

zm!.z/��zRmYu.x/dzd�;

Yu.x/ D

1Z
0

�Z
R4

eix�
j�j��4a.j�j/

.j�j4 � �4 � i0/
d�

�
.….�/u/.0/�2��a.�/d�:

Substitute

j�j

j�j4 � �4 � i0
D

�

j�j4 � �4 � i0
C

1

.j�j C �/.j�j2 C �2/

in the d�-integral and recall (1.21). We obtain

Yu.x/ D ��4a.jDj/K��a.jDj/u.x/C Lu.x/;

where L is the integral operator with the kernel

L.x; y/ D

“
R8

eix��iy���4a.j�j/��a.j�j/

.j�j2 C j�j2/.j�j C j�j/j�j
d�d�:

By virtue of Lemma 3.5, ��4a.jDj/K��a.jDj/ is GOP and we shall prove in
Appendix A that L is bounded in Lp.R4/ for 1 < p < 4. Hence, Y is bounded in
Lp.R4/ for 1 < p < 4 and so is ��4a.jDj/WB . Thus, W� is bounded in Lp.R4/ for
1 < p < 4 but unbounded for p � 4 if H has singularity of the second kind.

In Section 9, we shall study the case when H has singularities of the third or
the fourth kind at zero. Then leading singularities of Qv.�/ as �! 0 are of orders
of ��4.log �/�1 and ��4 respectively. However, they act in subspaces S3L2 and
S4L

2 and functions � in S3L2 and S4L2 satisfy additional cancellation properties
that .x˛v; �/ D 0 for j˛j � 1 and j˛j � 2 respectively, which partly cancel the singu-
larities as previously. Thus, we can proceed by following the line of ideas of previous
sections, however, the argument becomes much more complicated. We shall avoid
outlining it here and proceed to the text as we do not want to make the introduction
too long.
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2. Preliminaries

2.1. Free resolvents

In this section we present some estimates related to RC0 .�
4/ or the expansion (1.9).

We begin with the following lemma which in particular implies that operators that
appear in Definition 1.7 are bounded in L2. We denote by H2 the Hilbert space of
Hilbert–Schmidt operators in L2.

Lemma 2.1. Let q > 1 and j D 1; 2; : : :. We have

kN
.v/
0 kH2

� C.kV kLq
loc,u
C khlog jxji2V k1/: (2.1)

kG
.v/
2j kH2

� Ckhxi4jV k1: (2.2)

kG
.v/

2j;l
kH2
� C.khxi4jV kLq

loc,u
C khlog jxji2hxi4jV k1/: (2.3)

Proof. Let q0 D q=.q � 1/. Then, Hölder’s inequality implies thatZ
jx�yj�2

jV.x/.log jx � yj/2V.y/jdxdy (2.4)

� kV k1kV kLq
loc,u
k log jxjk2

L2q0 .jxj�2/
� C.kV k21 C kV k

2
L

q
loc,u
/:

If jx � yj � 2, then log jx � yj � loghxi C loghyi andZ
jx�yj�2

jV.x/.log jx � yj/2V.y/jdxdy � Ck.loghxi/2V k1kV k1:

This proves (2.1). We omit the proof for (2.2) which is obvious and the one for (2.3)
which is similar to that of (2.1).

For Gz.x/, =z � 0, we have the integral representation ([4] 10.9.21):

Gz.x/ D
eizjxj

2.2�/
3
2�
�
3
2

�
jxj2

1Z
0

e�t t
1
2

� t
2
� izjxj

� 1
2

dt; (2.5)

where z
1
2 is the branch such that z

1
2 > 0 for z > 0. Thus, if we let

H .�/ D
ei�

4.2�/
3
2�
�
3
2

�
�2

1Z
0

e�t t
1
2

� t
2
� i�

� 1
2

dt; =� � 0; (2.6)

then, R.�/ D H .�/ �H .i�/ for � > 0 and

R�.x/ D H .�jxj/ �H .i�jxj/: (2.7)
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Recall the definitions (1.34) and (1.35) for R�;2n.x/ and R.v/2n .�
4/, n D 0; 1; : : :

respectively.

Lemma 2.2. The following statements hold.

(1) For j D 0; 1; : : : ;

j@
j

�
R�.x/j � Cj

´
hlog�jxji��j ; 0 < �jxj � 1;

jxjj h�jxji�
3
2 ; 1 � �jxj:

(2.8)

(2) If V 2 .Lqloc,u \ L
r/.R4/ for some q > 1 and 1 � r � 8=5, then Mv is

H0-smooth on Œa;1/ for any a > 0.

(3) Let j D 0; : : : ; 2n and a > 0. Then, for 0 < � < a,

j@
j

�
R�;2n.x/j � Cj hlog�jxji�2n�j jxj2n; (2.9)

where, if n is odd, hlog�jxji should be removed from the right.

(4) Let 0 < � < a. For the operator R.v/2n .�
4/, we have

k.d=d�/jR
.v/
2n .�

4/kH2
� C�2n�j hlog�ikhxi4nhlog jxji2V k1; (2.10)

where, if n is odd, hlog�i and hlog jxji2 should be removed from the right.

Proof. (1) For 0 < �jxj � 1, (2.8) follows from (1.8). For �jxj � 1, (2.5) implies that

j@
j

�
.��2G�.x//j � Cj jxj

j
h�jxji�

3
2 ; j D 0; 1; : : : ;

j@
j

�
.��2Gi�.x//j � Ce

��jxj
jxjj h�jxji�

3
2 ; j D 0; 1; : : : :

Then, (2.8) follows since R�.x/ D .2�
2/�1.G�.x/ � Gi�.x//.

(2) Since v 2 L2 and H 4.R4/ � L1.R4/ by the Sobolev embedding theorem,
Mv is H0-bounded. Let � > a. We estimate

kMvR
C
0 .�

4/Mvk
2
H2
D

Z
R4

jV.x/R�.x � y/
2V.y/jdxdy

by using (2.8). The integral over �jx � yj � 1 is bounded by CkV k21; since

hlog�jxji � C".�jxj/�"

for any " > 0 for �jxj � 1; the one over �jx � yj � 1 is bounded by

C"a
�"

Z
R4

jV.x/j
�

sup
x2R4

Z
jx�yj�1=a

jV.y/jdy

jx � yj"

�
dx � CakV kLq

loc,u
kV k1:
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Thus, kMvR
C
0 .�

4/MvkB.L2/ � C for � 2 Œa;1� for any a > 0 and by complex con-
jugation kMvR

�
0 .�

4/MvkB.L2/ � C . Thus, Mv is H0-smooth on Œa;1/ in the sense
of Kato (see [24]).

(3) If �jxj � 1, then (2.9) is obvious. Let �jxj � 1 and � < a, then jxj � 1=a
and the right side of (2.8) is bounded by that of (2.9) if j � 2n. Let zG2m;�.x/ denote
�2mjxj2m for oddm and �2m Qgm.�jxj/jxj

2m for evenm. Then for 0 �m � n� 1 and
j � 2n

j@
j

�
zG2m;�.x/j � C�

2m�j
hlog�jxjijxj2m � C�2n�j jxj2n

and R�;2n.x/ D R�;0.x/ � Qg0.�jxj/ � �
2G2.x/ � � � � � zG2.n�1/;�.x/ also satisfies

(2.9) for �jxj � 1.
(4) By virtue of (2.9) and the estimate j log.�jxj/j � hlog�ihlog jxji, the obvious

modification of the proof of (2.1) implies (2.10).

For shortening formula, we define, for 1 � m < n,

R2m!2n.�/ D �
2m
Qgm.�/G2m C � � � C �

2nG2n;l ;

R
.v/
2m!2n.�/ DMv.�

2m
Qgm.�/G2m C � � � C �

2nG2n;l/Mv (2.11)

where, if k is odd, G2k;l D 0 and no Qgk.�/ in front of G2k as previously.

2.2. Stationary representation formula

Lemma 2.3. Let ….�/ be the spectral projection defined by (1.14). Then, ….�/ sat-
isfies (1.15) and (1.16).

Proof. We express the right of (1.14) via Fourier transform, use polar coordinates and
change the variables. Then,

….�/u.x/ D lim
"!0

"

4�3

1Z
0

d�

.� � �4/2 C "2

�Z
S3

ei�
1
4 x!
Ou.�

1
4!/d!

�
:

The first of (1.15) follows by Poisson’s formula. The second of (1.15) and (1.16) are
obvious from the first.

Under the condition of Theorem 1.3 or Theorem 1.5, Mv is H
1
2

0 -compact
and MvR

C
0 .�

4/Mv is H2-valued function of � > 0 of class C 1 by virtue of (2.8).
Moreover, the absence of positive eigenvalues from H implies MC.�4/, � > 0 is
invertible in B.L2/ ([20]). Hence, MC.�4/�1 is also C 1 with values in B.L2/ and
the following theorem is well known.
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Theorem 2.4. Suppose V satisfies the short range condition (1.1) and hlog jxji2V 2
L1.R4/. Then, for u 2 D�, we have the stationary representation formula (1.17) for
W�u.

Remark 2.5. Lemma 2.2 (2) implies that Mv is H0-smooth on Œa;1/ for any a > 0
under the condition of Theorem 1.1; if V is small it is also H -smooth on Œa;1/
and we have the representation formula (1.25) for the high energy partW���a.jDj/u
(see [24]).

2.3. Fourier multiplier defined by the resolvent kernel

We use the following lemma in Section 4. In what follows a �j � j b means jaj � jbj.

Lemma 2.6. Let a > 0 and 1 < p <1. Then, there exists a constant Ca;p independ-
ent of y 2 R4 such that

kR.jyjjDj/��a.jDj/kB.Lp/ � Ca;p.1C j log jyjj/: (2.12)

For the proof we use the following result due to Peral ([23]):

Lemma 2.7. Let  .�/ 2 C1.Rn/ be such that  .�/ D 0 near � D 0 and  .�/ D 1
for j�j > a for an a > 0. Then, the translation invariant Fourier integral operator

1

.2�/n=2

Z
Rn

eix�Ci j�j
 .�/

j�jb
Of .�/d�;

is bounded in Lp.Rn/ if and only ifˇ̌̌ 1
p
�
1

2

ˇ̌̌
<

b

n � 1
:

Proof of Lemma 2.6. Recall (2.7) that R.�jxj/DR�.x/DH .�jxj/�H .i�jxj/ and
H .�/ has the integral representation (2.6). Let for a > 0

H<a.�/ D �<a.�/H .�/; H�a.�/D��a.�/H .�/

and

R<a.�/ D H<a.�/ �H<a.i�/; R�a.�/ D H�a.�/ �H�a.i�/:

(1) We write (2.6) for � > 0 in the form

H .�/ D
ei�

4.2�/
3
2�
�
3
2

�
�

3
2

F.�/; F.�/ D

1Z
0

e�t t
1
2

� t
2�
� i
� 1

2

dt:
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Since j@j
�
.F.�/��a.�//j � Ca�

�j for 0 � j � 3, F.jDj/��a.jDj/ is a GOP. Peral’s
theorem implies that ei jDjjDj�

3
2��a=2.jDj/ is also GOP. Hence, so is H�a.jDj/ and

the norm kH�a.jyjjDj/kB.Lp/ is independent of jyj by scaling. From

H .i�/ D
�e��

4.2�/
3
2�
�
3
2

�
�

3
2

F.i�/; F.i�/ D

1Z
0

e�t t
1
2

� t
2�
C 1

� 1
2

dt

it is obvious that the Fourier transform of H�a.i j�j/ is in �.R4/ and H�a.i jDj/ 2

B.Lp.R4// for all 1 � p � 1 with kH�a.i jyjjDj/kB.Lp/ being independent of jyj.
Thus, R�a.jyjjDj/ satisfies

kR�a.jyjjDj/kB.Lp/ � Cp: (2.13)

(2) Formula (1.8) implies

@
j

�

°
��a.�/

�
R.�/C

1

8�2
log�

�±
�j � j Cj ; 0 � j � 3:

It follows by Mikhlin’s theorem that for any 1 < p <1R�a.jyjjDj/C
1

8�2
log.jyjjDj/��a.jyjjDj/


B.Lp/

� Cp

with y-independent Cp . Thus, we have only to estimate the B.Lp/-norm of

log.jyjjDj/��a.jyjjDj/�>2a.jDj/

D log jyj��a.jyjjDj/�>2a.jDj/C log jDj��a.jyjjDj/�>2a.jDj/:

The first term on the right is evidently bounded in B.Lp/ by C j log jyjj. To estimate
the second, let f .�; y/ D .log�/��a.jyj�/�>2a.�/. We have

jf .j /.�; y/j � C��j .1C j log jyjj/: 0 � j � 3I (2.14)

Indeed, f .�; y/ 6D 0 only if jyj < 2 and a < � < 2a=jyj and,

jf .�; y/j � max.j log aj; j log 2a=jyjj/ � .j log jyjj C Ca/;

which implies (2.14) for j D 0. The proof for j D 1; 2; 3 is similar. Thus,

kf .jDj; y/kB.Lp/ � C hlog jyji

and
kR<a.jyjjDj/�>2a.jDj/kB.Lp/ � Ca;p.1C j log jyjj/: (2.15)

Estimates (2.13) and (2.15) imply (2.12).
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3. Integral operators

3.1. Operator K

We prove here that the operator K defined by (1.21) is GOP. Let

K1u.x/ D

1Z
0

G�.x/.….�/u/.0/�d�; (3.1)

K2u.x/ D

1Z
0

Gi�.x/.….�/u/.0/�d�: (3.2)

By virtue of (1.5), we have

Ku.x/ D
1

2
.K1 �K2/u.x/; u 2 D�:

Since .….�/u/.0/ 2 C10 .0;1/, (2.9) implies that integrals (3.1) and (3.2) converge
for x 6D 0 and they are smooth functions of x 2 R4 n ¹0º.

Lemma 3.1. Let 1 < p < 2. Let for " > 0 and u 2 D�

K1;"u.x/ D
�1

.4�2/2.jxj2 C i"/

Z
R4

u.y/

jxj2 � jyj2 C i"
dy:

Then, with a constant Cp > 0 independent of " > 0

K1u.x/ D lim
"!0

K1;"u.x/; pointwise for x 6D 0;

kK1;"ukp � Cpkukp;

lim
"!0
kK1;"u �K1ukp D 0;

in particular, K1 is bounded in Lp.R4/.

Proof. Let u; ' 2 D�. Then, by (1.15) and Fubini’s theorem,

.K1u; '/ D
1

.2�/2

1Z
0

�Z
R4

G�.x/'.x/dx

��Z
S3

Ou.�!/d!

�
�d�:

Since the limit converges uniformly for � on compact subsets of .0;1/ andZ
R4

G�.x/'.x/dx D lim
"#0

1

.2�/2

Z
R4

O'.�/

�2 � �2 � i"
d�;
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we obtain by using polar coordinates � D �!, � > 0, w 2 S3 that

.K1u; '/ D lim
"#0

1

.2�/4

“
R8

Ou.�/ O'.�/

.j�j2 � j�j2 � i"/j�j2
d�d�: (3.3)

On substituting

1

j�j2 � j�j2 � i"
D i

1Z
0

e�it.j�j
2�j�j2�i"/dt; " > 0;

and by using the Fubini theorem, we see that (3.3) is equal to

lim
"#0

i

.2�/4

1Z
0

e�"t
�Z

R4

eit�
2

Ou.�/
d�

j�j2

��Z
R4

eit j�j
2
O'.�/d�

�
dt: (3.4)

By the Parseval, identity we have

1

.2�/2

Z
R4

eit j�j
2
O'.�/d� D

�1

.4�t/2

Z
R4

e
ijxj2

4t '.x/dx �j � j
C

hti2
: (3.5)

For the d�-integral, substitute eit j�j
2
D 1C i j�j2

R t
0
eisj�j

2
ds. Applying the Parseval

identity, we have

1

.2�/2

Z
R4

eit�
2

Ou.�/
d�

j�j2

D
1

.2�/2

Z
R4

u.y/dy

jyj2
� i lim

"#0

tZ
0

�Z
R4

e�
ijyj2

4s

.4�s/2
u.y/dy

�
e�

"
s ds;

where we have inserted the harmless factor e�
"
s in the second term for the later pur-

pose. Then, explicitly computing the s-integral implies

1

.2�/2

Z
R4

eit�
2

Ou.�/
d�

j�j2
D

1

.2�/2

Z
R4

.1 � e�
ijyj2

4t /
u.y/

jyj2
dy: (3.6)

Since (3.6) is bounded by Ckjyj�2uk1, the integral with respect to t of (3.4) is abso-
lutely convergent without the factor e�"t and the limit is unchanged if e�"t is replaced
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by e�"=t . Equations (3.5) and (3.6) then imply that .K1u; '/ is equal to the lim"#0 of

�i

4.4�2/2

1Z
0

�Z
R4

.1 � e�
ijyj2

4t /
u.y/

jyj2
dy

��Z
R4

e
ijxj2

4t '.x/dx

�
e�

"
4t t�2dt

D
�i

4.4�2/2

Z
R8

� 1Z
0

.e
ijxj2

4t � e
i.jxj2�y2/

4t /e�
"

4t t�2dt

�
'.x/u.y/

jyj2
dydx:

If we compute the inner integral explicitly, this becomesZ
R8

�1

.4�2/2
'.x/u.y/dydx

.jxj2 C i"/.jxj2 � jyj2 C i"/
D .K1;"u; '/:

Thus, we have shown that for any u; ' 2 D�

.K1u; '/ D lim
"!0

.K1;"u; '/: (3.7)

It is obvious that K1;"u.x/ is spherically symmetric and, if we write K1;"u.x/ D
K1;"u.�/ if jxj D � and

Mu.r/ D
1

3

Z
S3

u.r!/d!; 3 D jS
3
j;

then

K1;"u.�/ D
�3

.4�2/2.�2 C i"/

Z
R4

Mu.r/r3

�2 � r2 C i"
dr;

and a change of variable implies

K1;"u.
p
�/ D

�3

2.4�2/2.�C i"/

1Z
0

Mu.
p
r/r

� � r C i"
dr: (3.8)

For u 2D�,Mu.r/ is C1 in .0;1/. It is then well known that the right side of (3.8)
converges uniformly along with derivarives on compacts of .0;1/. Since K1u.x/ is
also smooth for x 6D 0, then (3.7) implies K1u.x/ D lim"!0K1;"u.x/ for all x 6D 0.

Moreover, the maximal Hilbert transform (cf. [28, Theorem 1.4 and Lemma 1.5
of Chapter 6, pp. 218–219]) implies that, if we set f .r/ DMu.

p
r/r , then

F.
p
�/´ sup

">0

jK1;"u.
p
�/j �

C

�
.Mf .�/CM Qf

.�//;

where Mf .�/ is the Hardy–Littlewood maximal function of f and Qf is the Hilbert
transform of f . Define F.x/D F.jxj/ for x 2 R4. Since �1�p is 1-dimensional .A/p
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weight for 1 < p < 2 ([27, p. 218]), we obtain by the weighted inequality for the
maximal functions that for 1 < p < 2Z

R4

jF.x/jpdx D .3=2/

1Z
0

jF.
p
�/jp�d�

� C

1Z
0

.jMf .�/j
p
C jM Qf

.�/jp/�1�pd�

� C

1Z
0

.jf .r/jp C j Qf .r/jp/r1�pdr: (3.9)

If we apply the weighted inequality for the Hilbert transform, then

(3.9) � C1

1Z
0

jf .r/jpr1�pdr

D C1

1Z
0

jMu.
p
r/r jpr1�pdr

D 2C1

1Z
0

jMu.r/jpr3dr � Ckukpp :

Thus,
k sup
">0

jK1;"u.x/jkp � Ckukp

and the dominated convergence theorem implies

kK1;"u.x/ �K1u.x/kp ! 0 as "! 0

for 1 < p < 2.

Remark 3.2. The operator K1 is unbounded in Lp.R4/ for 2 < p <1. To see this
we note

1

.jxj2 C i"/.jxj2 � jyj2 C i"/
D

1

.jyj2 C i"/.jxj2 � jyj2 C i"/

�
jxj2 � jyj2

.jxj2 C i"/.jyj2 C i"/.jxj2 � jyj2 C i"/

(3.10)



A. Galtbayar and K. Yajima 294

and recall that the integral operator produced by the first term on the right of (3.10) is
uniformly bounded inLp.R4/ for " > 0 if 2 < p <1 (cf. [34, Lemma 3.4]). Hence, if
K1 were bounded inLp.R4/ for a p 2 .2;1/, then it must be that for u;w 2C10 .R

4/

lim
"#0

ˇ̌̌̌ “
R4�R4

.jxj2 � jyj2/u.y/w.x/dxdy

.jxj2 C i"/.jyj2 C i"/.jxj2 � jyj2 C i"/

ˇ̌̌̌
� Ckukpkwkq

for a constant C > 0, q D p=.p � 1/. However, this is impossible because the left
side is equal to ˇ̌̌̌ “

R4�R4

u.y/w.x/dxdy

jxj2jyj2

ˇ̌̌̌
which cannot be bounded by Ckukpkwkq for any 1 � p � 1.

Lemma 3.3. The operator K2 has the expression

K2u.x/ D
1

.4�2/2jxj2

Z
R4

u.y/

jxj2 C jyj2
dy; u 2 D� (3.11)

and is bounded in Lp.R4/ for 1 < p < 2 and unbounded for 2 < p <1.

Proof. Denote the right side of (3.11) by zK2u.x/ and

K2;"u.x/ D
1

.4�2/2.jxj2 C i"/

Z
R4

u.y/

jxj2 C jyj2 C i"
dy

for " > 0. It is evident that for x 6D 0

lim
"!0

K2;"u.x/ D zK2u.x/; sup
">0

jK2;"u.x/j � zK2juj.x/:

Moreover, zK2 is bounded in Lp.R4/ for 1 < p < 2, hence,

kK2;"u � zK2ukp ! 0 as "! 0

by the dominated convergence theorem. Indeed, zK2u.x/ is rotationally symmetric
and, if we write zK2u.x/ D zK2u.�/, � D jxj and Mu.�

1
4 / D f .�/, then

j. zK2u/.�
1
4 /j �

1

4.4�2/2�
1
2

1Z
0

jf .r/j

�
1
2 C r

1
2

dr D
1

4.4�2/2

1Z
0

jf .r�/j

1C r
1
2

dr

and Minkowski’s inequality implies for 1 < p < 2 that

k. zK2u/.�
1
4 /kLp..0;1/;d�/ � C

1Z
0

kf kp

r
1
p .1C r

1
2 /
dr � Ckf kLp..0;1/:
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Since kf kLp..0;1/ � Ckukp by Hölder’s inequality,

k. zK2u/.x/kp D
�3
4

1Z
0

j. zK2u/.�
1
4 /jpd�

�1=p
� Ckukpp :

We now show K2u.x/ D zK2u.x/. Since

G0.i�/'.x/ D lim
"#0

1

.2�/2

Z
R4

eix� O'.�/d�

j�j2 C �2 � i"

converges uniformly with respect � in compact subsets of R, we obtain

.K2u; '/ D
1

.2�/2

Z
R4

� 1Z
0

Gi�.x/

�Z
S3

Ou.�!/d!

�
�d�

�
'.x/dx

D lim
"#0

1

.2�/4

Z
R8

Ou.�/ O'.�/

.j�j2 C j�j2 � i"/j�j2
d�d�: (3.12)

The repetition of the proof of Lemma 3.1 with j�j2 replacing �j�j2 implies that the
integral on the right of (3.12) is equal to .K2;"u; '/. Thus,

.K2u; '/ D lim
"#0
.K2;"u; '/ D . zK2u; '/

and K2u.x/ D zK2u.x/. The proof of that K2 is unbounded in Lp.R4/ for p > 2 is
similar to that for K1 and is omitted here. This completes the proof of the lemma.

Lemma 3.4. The operator K is bounded in Lp.R4/ for all 1 < p <1.

Proof. By Lemmas 3.1 and 3.3, K is bounded in Lp.R4/ for 1 < p < 2. We prove
the same for 2 < p <1. Then, the lemma will follow by the interpolation. Define
K"u D 2.K1;"u �K2;"u/ for " > 0. Then, Ku.x/ D lim"#0K"u.x/ for x 6D 0 and a
simple computation implies

K"u.x/ D
1

2.4�2/2
.F�;"u.x/ � FC;"u.x//;

where F˙;"u.x/ are rotationally invariant functions given by

F˙;"u.x/ D

Z
R4

u.y/dy

.jxj2 ˙ jyj2 C i"/jyj2
:
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Notice that the dangerous terms .1=2�4/jxj�2jyj�2 have cancelled each other. We
denote F˙;"u.x/ D f˙;".�/, � D jxj. Then,

QfC.�/ D sup
">0

jfC;".�/j

�
3

8�4

1Z
0

jMu.r/jr3dr

r2.�2 C r2/

D
3

8�4

1Z
0

jMu.r�/jrdr

1C r2

and Minkowski’s inequality implies for any 2 < p <1 that

k QfC.jxj/kLp.R4/ � C

1Z
0

kMu.r�/kLp..0;1/;�3d�/rdr

1C r2

D CkMu.�/kLp..0;1/;�3d�/

1Z
0

r1�4=pdr

1C r2
� Ckukp:

It follows that FC".x/ converges as "! 0 in Lp.R4/ for 2 < p <1 to

FCu.x/ D

Z
R4

u.y/dy

.jxj2 C jyj2/jyj2
:

It is shown in [34, Lemma 3.4], via the same argument as in the proof of Lemma
3.1, that, for 2 < p <1, F�;" is uniformly bounded in B.Lp/ for " > 0 and F�;"u.x/
converges as "! 0 for x 6D 0 and simultaneously in Lp.R4/. Hence, K is bounded
in Lp.R4/ for 2 < p <1 as well and the lemma follows.

3.2. Good operators

Recall that �.T / and z�.T .�// are defined by (1.19) and (1.20).

Lemma 3.5. We have k�.T /ukp � CpkT kL1kukp for 1 < p <1.

Proof. By using the integral kernel R�.x � y/ D .�yR�/.x/ of R0.�/, we write

�.T /u.x/ D

1Z
0

�“
R8

T .y; z/�yR�.x/.….�/��zu/.0/dydz

�
�3d�:
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If we may change the order of integrations, �.T /u.x/ becomes“
R8

T .y; z/�y

� 1Z
0

R�.x/.….�/��zu/.0/�
3d�

�
dydz

D

“
R8

T .y; z/.�yK��zu/.x/

and Lemma 3.4 implies

kW.T /ukp � CpkT kL1kukp:

To see that the change of order of integrations is possible for almost all x 2 R4,
it suffices to show that R�.x � y/T .y; z/.….�/u/.z/�

3 is (absolutely) integrable
with respect to .x; y; z; �/ 2 BR.0/ � R4 � R4 � .0;1/ for any R > 0, where
BR.0/ D ¹x W jxj < Rº. However, this is obvious since ….�/u.z/ D 0 for � outside
a compact interval Œ˛; ˇ� b .0;1/, j….�/u.z/j � C hzi�3=2 uniformly for � 2 Œ˛; ˇ�
and

R
B.0;R/

jR�.x � y/jdx is uniformly bounded for y 2 R4 and � 2 Œ˛; ˇ�. This
completes the proof.

The following is the variant of [34, Proposition 3.9]. We take advantage of this
chance to point out that [34, Proposition 3.9] has an error and it must be replaced by
the following proposition and that some obvious modifications are necessary in the
part of [34] which used that proposition. Let aC D max.a; 0/.

Proposition 3.6. Let T .�;x;y/ be an L1-valued C 2-function of � 2 .0;1/ such that

lim
�!1

�j kT .j /.�/kL1 D 0; j D 0; 1; 2: (3.13)

Suppose further that T .2/.�/ is AC on compact intervals of .0;1/ and

1Z
0

�2kT .3/.�/kL1d� <1:

Then, for the integral operator T .�/ with the kernel T .�; x; y/,

z�.T .�//u.x/ D

1Z
0

R0.�
4/ T .�/….�/u.x/�3d�; u 2 D� (3.14)

satisfies the estimate (1.24) for any 1 < p <1.

Remark 3.7. If a > 0, condition (3.13) is automatic for ��a.�/T .�/ and (1.24) is
satisfied by z�.T .�//��a.jDj/ without the condition.
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Proof. Since u 2 D�, ….�/u.z/ D .….�/�zu/.0/ D 0 outside Œ˛; ˇ� b .0;1/ and
j….�/u.z/j � C hzi�

3
2 uniformly. It follows by virtue of (2.8) that the integral (3.14)

converges absolutely and defines a continuous function of x 2 R4. By Taylor’s for-
mula,

T .�/ D �
1

2

1Z
0

..� � �/C/
2T .3/.�/d�; (3.15)

where the integral is the Bochner integral in L1. Let

B.�/ D ..1 � �/C/
2
D ..1 � �2/C/

2.1C �/�2:

Then, the Fourier transform of B.j�j/ is integrable on R4 (cf. [27, p. 389]). Hence,
B.jDj/ is bounded inLp.R4/ for all 1�p�1 and kB.jDj=�/kB.Lp/ is independent
of 0< � <1. On substituting (3.15) and changing the order of the integrations, (3.14)
becomes

�1

2

1Z
0

� 1Z
0

..� � �/C/
2R0.�

4/T .3/.�/….�/u�3d�

�
d�: (3.16)

and, by virtue of (1.16) and (1.19), the inner integral of (3.16) is equal to

�2
1Z
0

R0.�
4/T .3/.�/….�/B.jDj=�/u�3d� D �2�.T .3/.�//B.jDj=�/u:

Thus, Minkowski’s inequality and Lemma 3.5 imply

k(3.16)kp � C

1Z
0

�2kT .3/.�/kL1kukpd� � Ckukp:

This proves the proposition.

4. High energy estimate

We prove here Theorems 1.1 and 1.3.

4.1. Proof of Theorem 1.1. Small potentials

By virtue of what is explained in the introduction, we have only to prove (1.30) for
n D 1; 2; : : : for Wn��a.jDj/u defined by (1.27).

(1) We already proved that kW1��a.jDj/ukp � CkV k1kukp in the introduction.
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(2) Let nD 2 and V .2/y .x/D V.x/V .x � y/. Then, as was shown by (1.29), (1.30)
for n D 2 follows from (1.28), which we prove here. We have by changing variables
that

MVR0.�
4/MV u.x/ D

Z
R4

V.x/R.�jyj/V .x � y/u.x � y/dy

D

Z
R4

V .2/y .x/R.�jyj/.�yu/.x/dy (4.1)

which we substitute in (1.27) for n D 2. Then, since �y….�/ D ….�/�y and

R.�jyj/….�/ D ….�/R.jyjjDj/

by virtue of (1.16), W2��a.jDj/u.x/ becomes

1Z
0

�Z
R8

R.�jx � yj/V .2/z .y/.….�/R.jzjjDj/�zu/.y/dzdy

�
�3��a.�/d�: (4.2)

If we change the order of integrations and apply (1.19), we may rewrite (4.2) in the
desired form:Z

R4

� 1Z
0

�
R0.�

4/M
V

.2/
z
….�/R.jzjjDj/��a.jDj/�zu

�
.x/�3d�

�
dz

D

Z
R4

.�.M
V

.2/
z
/R.jzjjDj/��a.jDj/�zu/.x/dz:

(3) Let n � 3 and V .n/y1;:::;yn�1
.x/ D V.x/V .x � y1/ � � � V.x � y1 � � � � � yn�1/.

Repeating the argument used for (4.1) implies

Mw.MvR0.�
4/Mw/

n�1Mvu.x/ D .MVR0.�
4//n�1MV u.x/

D

Z
R4.n�1/

V .n/y1;:::;yn�1
.x/
� n�1Y
jD1

R.�jyj j/
�
�y1C���Cyn�1

u.x/dy1 : : : dyn�1:

It follows that Wn��a.jDj/u.x/ is equal to

1Z
0

Z
R4

Z
R4.n�1/

R.�jx � yj/V .n/y1;:::;yn�1
.y/
� n�1Y
jD1

R.�jyj j/
�

�….�/�y1C���Cyn�1
u.y/�3��a.�/dy1 � � � dyn�1dyd�: (4.3)
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As in the proof of Lemma 3.5, we may integrate (4.3) by d� first. We then apply
(1.16) to .

Qn�1
jD1 R.�jyj j//….�/ and (1.19) to the resulting equation. This implies

that the right of (4.3) is equal toZ
R4.n�1/

�.M
V

.n/
y1;:::;yn�1

/��a.jDj/

n�1Y
jD1

R.jyj jjDj/�y1C���Cyn�1
udy1 : : : dyn�1:

Note that ��a.jDj/ D ��a.jDj/��a=2.jDj/
n�2. Then, Minkowski’s inequality and

Lemmas 3.5 and 2.6 imply that kWn��a.jDj/ukp is bounded by

C na;p

Z
R4.n�1/

kV .n/y1;:::;yn�1
kL1.R4/

n�1Y
jD1

hlog jyj jikukpdy1 : : : dyn�1

D C na;p

Z
R4n

jV.x0/j

n�1Y
jD1

jV.xj /jhj log jxj�1 � xj jikukpdx0 : : : dxn�1

where we have changed variables so that yj D xj�1 � xj , j D 1; : : : ; n � 1. We
estimate the integral inductively by using Schwarz’ and Hölder’s inequalities n-times
by

kV k
1
2

1

�Z
R4

V.x0/hlog jx0 � x1ji2V.x1/dx0dx1

� 1
2

� � � � �

�Z
R4

V.xn�2/hlog jxn�2 � xn�1ji2V.xn�1/dxn�2dxn�1

� 1
2

kV k
1
2

1

� C n.kV kLq
loc,u
C khlog jxji2V kL1/n:

This proves (1.30) for n � 3 and completes the proof.

4.2. Proof of Theorem 1.3

For the proof we use the following lemma.

Lemma 4.1. Let 1 < q < 4=3, q0 D q=.q � 1/ and j D 0; 1; : : : : Let us suppose
that hxi.2j�3/CV 2 L1.R4/ and V 2 Lq.R4/. Then, for any a > 0, MvR0.�

4/Mw

is H2-valued C j function of � > a and, for n D 1; 2; : : :

k@
j

�
.MvR0.�

4/Mw/
n
kH2
�
Cn;j

�
2n
q0

.khxi.2j�3/CV k1 C kV kq/
n: (4.4)
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Proof. Let N1;j and N2;j , j D 0; 1; : : : be convolution operators with

N1;j .x/ D �
�j
hlog�jxji��1.�jxj/; N2;j .x/ D

��1.�jxj/jxj
j

�
3
2 jxj

3
2

:

It follows from (2.8) that @j
�
R.�4/.x/�j � j C.N1;j .x/CN2;j .x//, j D 0; 1; : : :. By

repeating estimate (2.4), we have for any 1 � q � 1 that

kMvN1;jMwk
2
H2
� C��2j

Z
�jx�yj�1

jV.x/jhlog�jx � yji2jV.y/jdxdy

� C��2j kV k1kV kLq
loc,u
khlog�jxjik2

L2q0 .�jxj<1/

and

kMvN1;jMwkH2
� C�

�j� 2
q0 kvk2kwkL2q

loc,u
:

By Hölder’s inequality, for 1 � q < 4,

kvN2;0wk
2
H2
� C

Z
�jx�yj�1

jV.x/jjV.y/j

.�jx � yj/3
dxdy

� CkV k1kV kq

� Z
�jxj�1

dx

.�jxj/3q
0

� 1
q0

� C�
� 4

q0 kV k1kV kq

Likewise, for 1 � q < 4=3,

kvN2;1wk
2
H2
� C

1

�2

Z
�jx�yj�1

jV.x/jjV.y/j

�jx � yj
dxdy � CkV k1kV kq�

�2� 4
q0

For j � 2, we evidently have kvN2;jwkH2
� C��

3
2 khxi2j�3V k1. Combining these

estimates together, we obtain for 1 � q < 4
3

and � > a that

k@
j

�
MvR0.�

4/MwkH2
� C�

�min.jC 2
q0
; 3

2 /.khxi.2j�3/CV k1 C kV kq/

This implies (4.4) for nD 1. For n� 2, we compute @j
�
.MvR0.�

4/Mw/
n via Leibniz’s

formula and estimate each factor via (4.4) for n D 1. The lemma follows.

Proof of Theorem 1.3. We may assume 1 < q < 4=3. Let N be such that 2N=q0 > 3.
We substitute (1.31) with (1.32) in the stationary formula (1.25) for the high energy
part. Then, W���a.jDj/ becomes

N�1X
nD0

.�1/nWn��a.jDj/uC .�1/
N

1Z
0

RC0 .�
4/DN .�/….�/u�

3��a.�/d�;
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where we set W0u D u. By virtue of (1.30),
PN�1
nD0 .�1/

nWn��a.jDj/u is GOP;
Lemma 4.1 implies that DN .�; x; y/ is L1-valued function of � 2 .a;1/ of class
C 3 and

k@
j

�
DN .�/kL1 � C�

� 2N
q0 .khxi3V kL1 C kV kL2/N ; 0 � j � 3:

Hence, the operator DN .�/ is GPR for (1.25) by Proposition 3.6 and Theorem 1.3
follows.

5. Low energy estimates 1. The case H is regular at zero

In what follows, we shall study W���a.jDj/ or equivalently

�low,au´

1Z
0

R0.�
4/Qv.�/….�/u�

3��a.�/d� (5.1)

for a sufficiently small a > 0. As previously, we define

�low,a.T /u D

1Z
0

R0.�
4/T….�/u�3��a.�/d�;

z�low,a.T .�//u D

1Z
0

R0.�
4/T .�/….�/u�3��a.�/d�:

Since we shall in what follows exclusively deal with small � > 0, we shall often omit
the phrase “for small � > 0” and, abusing notation, say that T or T .�/ is GPR if
�low,a.T / or z�low,a.T .�// is GOP for a sufficiently small a. We irrespectively write
Rem.�/ for the operator valued function which satisfies the conditions of Proposi-
tion 3.6 for small � > 0.

We shall often use the following lemma for studying M.�4/�1 as �! 0. Let A
be the operator matrix

A D

�
a11 a12

a21 a22

�
on the direct sum of Banach spaces Y D Y1 ˚ Y2.

Lemma 5.1 (Feshbach formula). Suppose a11, a22 are closed and a12, a21 are
bounded operators. Suppose that the bounded inverse a�122 exists. Then A�1 exists
if and only if d D .a11 � a12a�122 a21/

�1 exists. In this case, we have

A�1 D

�
d �da12a

�1
22

�a�122 a21d a�122 a21da12a
�1
22 C a

�1
22

�
:
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In this section, we shall prove Theorem 1.9 when H is regular at zero. Thus,
weassume that hlog jxji2hxi4V 2 .L1 \ Lq/.R4/ for a q > 1 and that the inverse
.QT0Q/

�1 exists in QL2. Let

D0 D Q.QT0Q/
�1Q and L0 D

�
P �PT0QD0

�D0QT0P D0QT0PT0QD0

�
in the decomposition L2 D PL2 ˚QL2. Notice that rankL0 D 2.

Lemma 5.2. For small � > 0, T0 C g0.�/P is invertible and

.T0 C g0.�/P /
�1
D D0 C h.�/L0; h.�/ D .g0.�/C c1/

�1 (5.2)

where c1 D ..v; T0v/ � .QT0v;D0QT0v//kV k�11 is a real constant.

Proof. In the decomposition L2 D PL2 ˚QL2,

T0 C g0.�/P D

�
g0.�/C PT0P PT0Q

QT0P QT0Q

�
µ

�
a11 a12

a21 a22

�
Here a22DQT0Q is invertible in QL2 and

a11 � a12a
�1
22 a21 D g0.�/P C PT0P � PT0D0T0P D .g0.�/C c1/P

is also invertible in PL2.R2/ for small � > 0 and d D .g0.�/ C c1/
�1P . Then,

Lemma 5.1 implies that .T0 C g0.�/P /�1 exists and (5.2) holds.

Let zD0.�/ D .T0 C g0.�/P /
�1 D D0 C h.�/L0.

Lemma 5.3. For small � > 0, M.�4/ is invertible in L2 and

M.�4/�1 D zD0.�/CO
.4/

H2
.�2 log�/: (5.3)

Proof. We have R.v/2 .�/ zD0.�/ 2 O
.4/

H2
.�2 log�/ by Lemma 2.2 and

M.�4/ D .1CR
.v/
2 .�/ zD0.�//.g0.�/P C T0/

by Lemma 5.2. It follows that M.�4/ is invertible for small � > 0 and

M.�4/�1 D zD0.�/.1CR
.v/
2 .�/ zD0.�//

�1
D zD0.�/CO

.4/

H2
.�2 log�/:

This is (5.3).

Following Schlag [25], we say operator T is absolutely bounded (ABB for short)
if jT .x; y/j defines a bounded operator in L2.

Lemma 5.4. (1) The operator D0 is ABB.
(2) If T is ABB and v;w 2 L2.R4/, then v.x/T .x; y/w.y/ 2 L1.
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Proof. (1) The argument of the proof of Lemma 8 of [25] implies that D0 is ABB.
(2) is evident by the Schwarz inequality.

Proof of Theorem 1.9 when H is regular at zero. Multiply (5.3) by Mv from both
sides. Then, Mv

zD0.�/Mv is GV� since L0 is of rank 2, MvD0Mv 2 L1 by
Lemma 5.4 and h.�/ is GMU; it is evident that MvO

.4/

H2
.�2 log �/Mv D Rem 2

O
.4/

L1.�
2 log�/. Thus, Qv.�/ is GPR and W���a.jDj/ is GOP.

6. Low energy estimate 2. Resonances

In this section we prove Lemma 1.4 and Lemma 1.8. We assume only hlog jxji2V 2
.L1 \ Lq/.R4/, q > 1 unless otherwise stated. We begin with the following lemma.
Recall that S1 is the projection in QL2 to KerQT0QjQL2 . We shall often write N1

for N1.H/.

Lemma 6.1. The projection S1 is of finite rank. The operator QT0QC S1 is invert-
ible in QL2.

In what follows we denote D0 D Q.QT0Q C S1/
�1Q in spite of Lemma 5.2

where D0 D Q.QT0Q/�1Q as the latter becomes the former when S1 D 0 and as it
will not appear any further.

Proof. The operator QT0Q D QUQ CQN
.v/
0 Q is selfadjoint in the Hilbert space

QL2. Since 1 D U 2, we have by comparing

1 D
�
Q 0

0 P

�
; U 2 D

�
QUQ QUP

PUQ PUP

�2
that .QUQ/2 D Q �QUPUQ. Since rankQUPUQ D 1,

�ess..QUQ/
2/ D �ess.Q/ D ¹1º

onQL2 by Weyl’s theorem and �ess.QUQ/� ¹1;�1º. The operatorN .v/
0 is compact

in L2 by Lemma 2.1 and hence so is QN .v/
0 Q in QL2. Thus, �ess.QT0Q/jQL2 �

¹1;�1º by Weyl’s theorem once more and 0 is an isolated eigenvalue ofQT0QjQL2 of
finite multiplicity. The rest of the lemma follows by the Riesz–Schauder theorem [36].

Proof of Lemma 1.8 (1). Let � 2 S1L2 n ¹0º. Then, Q� D � and QT0Q� D 0. It fol-
lows that T0� D c0v for a constant c0, hence

.U CN
.v/
0 /� D c0v; c0 D kvk

�2
2 .T0�; v/: (6.1)
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Thus, if we define ' D ˆ.�/ by (1.13), then (6.1) implies ' D �c0 CN0Mv�, hence
v' D �c0v C N

.v/
0 � D �U� and � D �w'; applying �2 to ' D �c0 C N0Mv�

implies �2' D v� D �V' or .�2 C V /' D 0.
We next show that ' 2 L1.R4/, which will imply ˆ maps S1L2 to N1 with the

inverse � D �w' on its image, in particular, N1 6D ¹0º. The starting point is that for
a � 2 S1L2

'.x/ D �c0 CN0Mv� D �c0 �
1

8�2

Z
R4

log jx � yjv.y/�.y/dy: (6.2)

Recall that we are assuming hlog jxji2V 2 .L1 \ Lq/.R4/ for a q > 1. Let p D
2q=.q � 1/.

(i) Let first jxj � 10. By Hölder’s inequality,Z
jyj�20

j log jx � yjv.y/�.y/jdy � k log jyjkLp.jyj�30/kvkL2q.jyj�20/k�k2I

if jyj > 20, we have 0 < log jx � yj � log.2jyj/ � 2 log jyj andZ
jyj>20

log jx � yjjv.y/�.y/jdy � 2k.log jyj/vkL2.jyj>20/k�k2:

Thus, j'.x/j � jc0j C jN0.v�/.x/j � C for jxj � 10.
(ii) Let next jxj > 10. Since P� D 0 or

R
R4 v.y/�.y/dy D 0, we have

N0.v�/.x/ D �
1

8�2

Z
R4

.log jx � yj � log jxj/v.y/�.y/dy: (6.3)

Let�1 D ¹y W jyj> 2jxjº,�2 D ¹y W jyj< jxj=2º and�3 D ¹y W jxj=2� jyj � 2jxjº.
If y 2 �1, then jxj < jx � yj < jxjjyj, 0 < log jx � yj � log jxj < log jyj andZ

jyj>2jxj

.log jx � yj � log jxj/jv.y/�.y/jdy � khlog jyjivk2k�k2

If y 2 �2, then j log jx � yj � log jxjj � log 2 < 1 andZ
jyj<jxj=2

j.log jx � yj � log jxj/v.y/�.y/jdy �
Z

R4

j.v�/.y/jdy � kvk2k�k2:
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If y 2 �3, then, 0 < log jxj � 2 log jyj andZ
y2�3

j.log jxj/v.y/�.y/jdy � 2k log jyjvk2k�k2IZ
jx�yj�2;y2�3

j.log jx � yj/v.y/�.y/jdy � k log jyjkLp.jyj�2/kvk2qk�k2I

if jx � yj > 2, then log jx � yj � log.jxjjyj/ � 3 log jyj andZ
jx�yj>2;y2�3

j.log jx � yj/v.y/�.y/jdy � 3k log jyjvk2k�k2:

Thus, jN0v�.x/j � C also for jxj � 10 and ' 2 L1.R4/.
Finally, we prove Imageˆ D N1, which completes the proof. Let ' 2 N1 n ¹0º

and define � D�w'. We have�2.' CN0V'/D .�2C V /' D 0, hence j�j4F .' C
N0V'/.�/ D 0. It follows that F .' C N0V'/ 2 � 0.R4/ vanishes outside ¹0º and
F .' CN0V'/.�/D

P
finite c˛D

˛ı.�/ for constants c˛ , or .' CN0V'/.x/ is a poly-
nomial. But, ' 2 L1 and hlog jxji2V 2 .L1 \ Lq/.R4/ imply that

.N0V'/.x/ D �
1

8�2

� Z
jx�yj<2

C

Z
jx�yj�2

�
log jx � yjV.y/'.y/dy

is bounded by C.1C loghxi/. Hence, it must be that ' C N0V' D c for a constant
c and N0V'.x/ 2 L1. It follows that

R
V'dx D �

R
v�dx D 0 because otherwise

jN0V'.x/j � C j log jxjj for large jxj for a C > 0. Hence, P� D 0 or � D Q� and

cv D .v C vN0V /' D �.U CN
.v/
0 /� D �T0Q�:

Thus,QT0Q� D 0 or � 2 S1L2, c D �kvk�2.PT0�; v/ and ' D c CN0v� D ˆ.�/.
Moreover, � 6D 0 because � D 0 would imply 0 6D ' D c, hence, w D 0 and V D 0,
which is a contradiction.

Proof of Lemma 1.4. We assume here that hlog jxji2hxi3V 2 .L1 \ Lq/.R4/ for a
q > 1. Let q0 D q=.q � 1/. Let ' 2N1.H/. We have ' Dˆ.�/ for � D�w' 2 S1L2

and (6.2) and (6.3) imply

'.x/ D �c0 C
1

8�2

Z
R4

.log jx � yj � log jxj/V .y/'.y/dy; (6.4)

where c0 is given by (6.1). We assume jxj � 1010 in the sequel. Let

�1 D ¹y W jyj > jxj=4º
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and

�2 D ¹y W jyj � jxj=4º

and split the integral on the right of (6.4) as� Z
�1

C

Z
�2

�
.log jx � yj � log jxj/V .y/'.y/dy D I1.x/C I2.x/:

(1) For y 2�1, we have log jxj � log4jyj and log jx � yj � log5jyj if jx � yj � 1.
Hence, jI1.x/j is bounded by

2

Z
�1

log.5jyj/jV.y/'.y/jdy C
Z

jx�yj�1;y2�1

log jx � yjjV.y/'.y/jdy

� C.khlog jyjiV.y/kL1.�1/
C k log jyjkLp.jxj�1/kV kLq.�1// � C hxi

�3

Thus, I1.x/ may be put into the remainder O.jxj�3/ of (1.4).
(2) For y 2 �2, jx � �yj � 3jxj=4 > 109 for 0 � � � 1. Let

f .�/ D log jx � �yj � log jxj:

Then, Taylor’s formula implies

f .1/ D f .0/C f 0.0/C
1

2
f 00.0/C

1Z
0

.1 � �/2

2
f 000.�/d�; (6.5)

f 0.0/ D �

4X
jD1

xjyj

jxj2
; f 00.0/ D

jyj2

jxj2
�

4X
j;kD1

2xjxkyjyk

jxj4
;

f 000.�/ D �
6.y � .�y � x//jyj2

jx � �yj4
C
8.y � .�y � x//3

jx � �yj6
:

We substitute (6.5) for log jx � yj � log jxj in I2.x/. Since

R3.x; y/´

1Z
0

.1 � �/2

2
f 000.�/d� �j � j .7=3/.jyj=jxj/

3;

the contribution of R3.x; y/ to I2.x/ is bounded in modulus by

C hxi�3
Z
�2

jyj3jV.y/'.y/jdy � C hxi�3khyi3V k1:
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Since jf 0.0/j � .jyj=jxj/, jf 00.0/j � C.jyj=jxj/2 and jxj=4� jyj in R4 n�2, we also
have Z

R4n�2

�
f 0.0/C

1

2
f 00.0/

�
V.y/'.y/dy �j � j C hxi

�3
khyi3V k1:

(3) Combining the estimates in (1) and (2), we obtain

'.x/ D �c0 C

Z
R3

�
f 0.0/C

1

2
f 00.0/

�
V.y/'.y/dy CO.hxi�3/

which implies expansion (1.4):

'.x/ D �c0 C

4X
jD1

ajxj

jxj2
C

4X
j;kD1

.2ajk � bıjk/xjxk

jxj4
CO.jxj�3/; (6.6)

where ıjk is the Kronecker delta. For later convenience, we express the coefficients
in terms of � by restoring V.y/'.y/ D �v.y/�.y/:

aj D
1

8�2

Z
R4

yj v.y/�.y/dy; b D
1

8�2

Z
R4

jyj2v.y/�.y/dy; (6.7)

ajk D
1

8�2

Z
R4

yjykv.y/�.y/dy: (6.8)

This completes the proof.

Lemma 6.2. Assume that hxi3hlog jxji2V 2 .L1 \ Lq/.R4/ for a q > 1.

(1) Let � 2 S1L2. Then,

� 2 S2L
2
() T0� D 0:

(2) Let � 2 S2L2. Then,

� 2 S3L
2
() .x˛v; �/ D 0 for j˛j � 1.

(3) Let � 2 S3L2. Then,

� 2 S4L
2
() .x˛v; �/ D 0 for j˛j � 2.

Proof. We have hxi3=2hlog jxji� 2 L2 by Lemma 1.8 (1).
(1) If � 2 S1L2 and T0� D 0, then T1� D S1T0PT0S1� D 0 and � 2 S2L2. Con-

versely, if � 2 S1L2 and T1� D 0, then .PT0�;PT0�/D 0 and PT0� D 0;QT0Q� D
QT0� D 0 evidently. Hence, T0� D 0.
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(2) Let � 2 S2L2. If � 2 S3L2, then .v; �/ D 0 and

0 D .T2�; �/ D
2i

44�

4X
jD1

ˇ̌̌̌ Z
R4

xj v.x/�.x/dx

ˇ̌̌̌2
:

It follows that .xj v;�/D 0 for 1� j � 4. Hence, .x˛v;�/D 0 for j˛j � 1. Conversely,
if .x˛v; �/ D 0 for j˛j � 1, then T2�.x/ is equal to �i.44�/�1 times

S2Mv

Z
R4

jx � yj2v.y/�.y/dy D .S2v/.x/

Z
R4

y2v.y/�.y/dy:

But S2v D 0 and, hence, T2�.x/ D 0. Thus, � 2 S3L2.
(3) Let � 2 S4L2 � S3L2. Then, .x˛v; �/ D 0 for j˛j � 1 by (2) and

0 D .T3�; �/ D
2

3 � 43

Z
R4

.jxj2jyj2 C 2.x � y/2/v.x/v.y/�.x/�.y/dxdy

D
2

3 � 43

ˇ̌̌̌ Z
R4

jxj2v.x/�.x/dx

ˇ̌̌̌2
C

1

3 � 42

4X
j;kD1

ˇ̌̌̌ Z
R4

xjxkv.x/�.x/dx

ˇ̌̌̌2
:

It follows that .x˛v; �/ D 0 also for j˛j D 2. Conversely, one has that if � 2 S2L2

satisfies .x˛v; �/ D 0 for j˛j � 2, then (2) implies � 2 S3L2 and

T3�.x/ D S3

�
v.x/

Z
R4

�
jyj4 � 4

4X
jD1

xjyj � jyj
2
�
v.y/�.y/dy

�
:

Since S3v D 0 and S3.xj v/ D 0 for j D 1; : : : ; 4 by (2), T3� D 0. Hence, � 2 S4L2.
This completes the proof.

Proof of Lemma 1.8 (2) and (3). For � 2 S1L2, let ' D ˆ.�/ 2 N1 and c0; a and A
be coefficients of the expansion (1.4) of '.x/.

(2) Since P is one-dimensional, rankT1 � 1. Hence, if T1jS1L2 is invertible, then
rankS1 D 1 and KerT1 D KerPT0S1 D ¹0º, which implies c0 D kvk�22 .T0�; v/ 6D 0
for � 2 S1L2 n ¹0º, hence H has only s-wave resonances.

(3) Here we assume hxi3hlog jxji2V 2 .L1 \ Lq/.R4/.
(i) Let � 2 .S1L2 	 S2L2/ n ¹0º. Then c0 D 0 would imply PT0� D 0 and � 2

S2L
2 which is a contradiction. Hence, c0 6D 0 and ' is s-wave resonance.
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(ii) Let � 2 S2L2. Then, T0� D 0, hence c0 D 0, by Lemma 6.2 and

i.T2�; �/ D
1

44�

Z
R4�R4

jx � yj2.v�/.x/.v�/.y/dxdy

D
�1

27�

4X
jD1

ˇ̌̌̌ Z
R4

xj v.x/�.x/dx

ˇ̌̌̌2
� 0: (6.9)

It follows that the selfadjoint operator iT2 on S2L2 is non-positive and .T2�; �/ D 0
implies T2�D 0 and � 2S3L2. Hence, for non-trivial � 2S2L2	S3L2, i.T2�;�/ < 0,
which implies a 6D 0 in (1.4) by (6.7) and ' is p-wave resonance.

(iii) Suppose next � 2 S3L2 	 S4L2. Then c0 D 0 as previously and � 2 S3L2

implies a D 0 by Lemma 6.2 and (6.7). For � 2 S3L2, we have

.T3�; �/ D
1

48

4X
j;kD1

ˇ̌̌̌ Z
R4

xjxk.v�/.x/dx

ˇ̌̌̌2
C

1

96

ˇ̌̌̌ Z
R4

x2.v�/.x/dx

ˇ̌̌̌2
as previously, and the selfadjoint operator T3 on S3L2 is non-negative. It follows
.T3�; �/ > 0 for non-trivial � 2 S3L2 	 S4L2. Suppose A D 0. Then, in the expres-
sion (6.6), ajk D 0 for j 6D k and 2ajj � b D 0 for 1 � j � 4. But

P4
jD1 ajj D b

by (6.8) and 0D
P4
jD1.2ajj � b/D �2b. Hence, ajk D 0 for all 1 � j; k � 4 which

contradicts to .T3�; �/ > 0. Thus, A 6D 0 for non-trivial � 2 S3L2 	 S4L2 and ' is
d -wave resonance.

(iv) Finally, let � 2 S4L2 n ¹0º. Then, we already have shown that c0 D 0 and
aD 0. Moreover, .T3�; �/D 0 and (6.8) implies AD 0. Thus, ' is zero energy eigen-
function of H .

7. Singularity of the first kind

In this section we proveW���a.jDj/ is GOP for sufficiently small a > 0whenH has
singularity of the first kind at zero, assuming hxi4V 2 .L1 \ Lq/.R4/ for a q > 1.
In what follows, we shall repeatedly and inductively use the following lemma due to
Jensen and Nenciu [16].

Lemma 7.1 ([16]). Let A be a closed operator and S a projection in a Hilbert
space H . Suppose AC S has bounded inverse. Then, A has bounded inverse if and
only if

B D S � S.AC S/�1S

has bounded inverse in SH and, in this case,

A�1 D .AC S/�1 C .AC S/�1SB�1S.AC S/�1:



The Lp-boundedness of wave operators for fourth order Schrödinger operators on R4 311

7.1. Threshold analysis 1

We begin with lemmas which hold whenever H is singular at zero. Let ¹�1; : : : ; �nº
be the orthonormal basis of S1L2 so that

S1u D .�1 ˝ �1 C � � � C �n ˝ �n/u; u 2 QL2: (7.1)

We denote by the same letter S1 the extension of S1 to L2 defined by the right of
(7.1) for all u 2 L2. The inverse D0 D .QT0Q C S1/�1 exists in QL2 by virtue of
Lemma 6.1; in the decomposition L2 D PL2 ˚QL2, let

L0 D

�
P �PT0QD0

�D0QT0P D0QT0PT0QD0

�
(7.2)

by using the same notation as in Lemma 5.2.
Repeating the proofs of Lemmas 5.3 and 5.4 with QT0QC S1 replacing QT0Q

we obtain the following lemma whose proof is omitted.

Lemma 7.2. For small � > 0, T0 C g0.�/P C S1 is invertible and

.T0 C g0.�/P C S1/
�1
D D0 C h1.�/L0; h1.�/ D .g0.�/C c1/

�1

with c1 being a constant. The operator D0 D .QT0QC S1/�1 is ABB.

Using the notation of Lemma 5.3 once again, we let

zD0.�/´ .T0 C g0.�/P C S1/
�1
D D0 C h1.�/L0: (7.3)

T4;l.�/´ Qg2.�/G
.v/
4 CG

.v/

4;l
:

Lemma 7.3. Suppose that H is singular at zero. Then, M.�4/C S1 is invertible in
L2 for small � > 0.

(1) If hxi4V 2 .L1 \ Lq/.R4/ for a q > 1, then

.M.�4/C S1/
�1
D zD0.�/C Y1.�/; Y1.�/ D O

.4/

H2
.�2/; (7.4)

and Mv.M.�4/C S1/
�1Mv D GV� CRem.�/.

(2) If V satisfies hlog jxji2hxi8V 2 .L1 \ Lq/.R4/ for a q > 1, then

Y1.�/ D ��
2 zD0.�/G

.v/
2
zD0.�/C Y2.�/; Y2.�/ D O

.4/

H2
.�4 log�/: (7.5)

(3) If V satisfies hlog jxji2hxi12V 2 .L1 \ Lq/.R4/ for a q > 1, then

Y2.�/ D ��
4 zD0.�/¹T4;l.�/ zD0.�/ � .G

.v/
2
zD0.�//

2
º CO

.4/

H2
.�6 log�/:

(7.6)
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Proof. (1) We have M.�4/C S1 D g0.�/P C T0 C S1 C R
.v/
2 .�/ and Lemma 7.2

implies T0 C g0.�/P C S1 is invertible and we have (7.3). Then, .M.�4/C S1/
�1

exists and
.M.�4/C S1/

�1
D zD0.�/.1CR

.v/
2 .�/ zD0.�//

�1: (7.7)

By expanding the right side and by applying (2.10) we obtain (7.4). SinceD0 is ABB,
Mv.M.�4/C S1/

�1Mv D GV� CRem.�/.
(2) If hxi8hlog jxji2V 2 .L1\Lq/.R4/, then (2.10) impliesR.v/2 .�/D�2G2.x/C

R
.v/
4 .�/ with R.v/4 .�/ 2 O

.4/

H2
.�4 log�/. We then expand (7.7) by using .1CX/�1 D

1�X CX2.1CX/�1 withX DR.v/2 .�/ zD0.�/ and estimate the remainder by using
(2.10) for n D 1 and n D 2. We obtain (7.5).

(3) If hxi12hlog jxji2V 2 .L1 \ Lq/.R4/, then R.v/4 .�/ D �4T4;l.�/C R
.v/
6 .�/

with R.v/6 .�/ 2 O
.4/

H2
.�6 log �/. We then argue as in (2) to obtain (7.6). We omit the

details.

We apply Lemma 7.1 to the pair .M.�4/; S1/. Let

B1.�/ D S1 � S1.M.�4/C S1/
�1S1:

Since S1D0 D D0S1 D S1 and S1L0S1 D T1 by (7.2), we have S1 zD0.�/S1 D

h1.�/T1 C S1 and (7.4) implies

B1.�/ D �h1.�/T1 � S1Y1.�/S1: (7.8)

If B1.�/ is invertible in S1L2, then and Lemma 7.1 implies

M.�4/�1 D .M.�4/C S1/
�1
CM .1/

ess .�/; (7.9)

M .1/
ess .�/ D .M.�4/C S1/

�1S1B1.�/
�1S1.M.�4/C S1/

�1: (7.10)

In what follows A.�/ � B.�/ will mean A.�/ � B.�/ D GV� CRem.�/.

7.2. Singularities of the first kind

Suppose now thatH has singularity of the first kind at zero. Then, T1 D S1T0PT0S1
is invertible and rankS1 D 1. We let � be the normalised basis vector of S1L2.

Lemma 7.4. Let H have singularity of the first kind at zero. Then,

Qv.�/ � .a log�C b/.v�/˝ .v�/; (7.11)

where a 2 R n ¹0º, b 2 C.
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Proof. We have T1Dd�10 .�˝ �/with d0Dc�20 kV k
�1
1 > 0, where c0Dkvk�22 .T0�;v/

and by Lemma 7.3 B1.�/ D d.�/.� ˝ �/ with

d.�/ D �d�10 h1.�/.1CO
.4/
C .�2 log�//:

Thus, B1.�/ is invertible and

B1.�/
�1
D d.�/�1.� ˝ �/: (7.12)

Combining (7.4) and (7.12), we have

M .1/
ess .�/ D d.�/

�1. zD0.�/C Y1.�//.� ˝ �/. zD0.�/C Y1.�//: (7.13)

Expand the right of (7.13) and use (7.3), d.�/�1 D�d0h1.�/�1CGMU, andD0� D
D0S1� D �. We obtain

MvM
.1/
ess .�/Mv D d.�/

�1Mv
zD0.�/.� ˝ �/ zD0.�/Mv CRem.�/

D �d0h1.�/
�1.v�/˝ .v�/C GV� CRem.�/:

Since Mv.M.�4/C S1/
�1Mv D GV� CRem.�/ by (7.4), (7.9) implies (7.11).

Proof of Theorem 1.9 when H has singularity of first kind. By virtue of Lemma
7.4, W���a.jDj/u.x/ is equal modulo GOP to (1.36):

�

1Z
0

.a log�C b/R0.�4/.v�/.x/.v�;….�/u/�3��a.�/d�:

We have v� 2 hxi�2L1.R4/ and
R

R4 v.x/�.x/dx D 0 for � 2 S1L2. Thus, the fol-
lowing lemma implies Theorem 1.9 (1). The lemma is more than necessary for this
purpose and we state it in this fashion for the later purpose.

Lemma 7.5. Assume that f; hxig 2 L1.R4/ and
R

R4 g.x/dx D 0. Then, operators
z�k , k D 0; 1; 2; : : : defined as follows are GOP:

z�ku.x/ D

1Z
0

.RC0 .�
4/f /.x/.g;….�/u/�3.log�/k��a.�/d�:

Proof. Let �k.�/ D �.log�/k��a.�/ for k D 0; 1; : : :; �k are GMU. We have

.g;….�/u/ D

Z
R4

g.z/.….�/u.z/ �….�/u.0//dz
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and….�/u.z/�….�/u.0/may be expressed as in (1.39). Then, as in (1.40), z�ku.x/
becomes the

P4
jD1

R 1
0
d� of

1Z
0

�Z
R4

.RC0 .�
4/f /.x/izjg.z/.….�/Rju/.�z/dz

�
�3�k.�/d�: (7.14)

Since translations commute with Fourier multipliers, (1.15) and (1.16) imply

�k.�/.….�/Rju/.�z/ D ….�/.���zRj�k.jDj/u/.0/:

Thus, if we define Tj .y; z/ D izjf .y/g.z/, then Tj .y; z/ 2 L1 and (1.22) implies

(7.14) D

1Z
0

RC0 .�
4/Tj….�/.���zRj�.jDj/u/.0/�

3d�

D

Z
R8

Tj .y; z/�yK���zRj�.jDj/udydz:

It follows by virtue of Lemma 3.5 that

k(7.14)kp � CkTj kL1kRj�.jD/ukp � Ckukp:

This proves that z�k , k D 0; 1; : : : are GOP.

8. Singularity of the second kind

We prove here Theorem 1.9 (2). Thus, we assume hlog jxji2hxi8V 2 .L1 \Lq/.R4/,
T1 is singular in S1L2 and T2 D S2G

.v/
2 S2 is invertible in S2L2. Let

.T1 C S2/
�1
D D1: (8.1)

We clearly have
D1S2 D S2D1 D S2:

We abuse notation below and write O
.`/

SjL
2.f .�// for O

.`/

B.SjL
2/
.f .�//.

8.1. Threshold analysis 2

Recall (7.9), (7.10), and (7.8). We study B1.�/ for small � > 0 via Lemma 7.1. In
view of (7.8), let

zB1.�/´ �h1.�/
�1B1.�/ D T1 � �

2h1.�/
�1 zT 1.�/C zT 4.�/I (8.2)

zT 1.�/´ S1 zD0.�/G
.v/
2
zD0.�/S1 2 O

.4/

S1L2.1/;

zT 4.�/´ S1h1.�/
�1Y2.�/S1 2 O

.4/

S1L2.�
4.log�/2/: (8.3)
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Notice that zT 1.�/ is V� . We remark that we do not assume T2 is invertible in S2L2

in Lemmas 8.1 and 8.2.

Lemma 8.1. We have the following identities:

S2D0 D S2 D D0S2: (8.4)

S2T0 D T0S2 D 0; L0S2 D S2L0 D 0: (8.5)

S2 zD0.�/ D zD0.�/S2 D S2: (8.6)

S2 zT 1.�/S2 D S2G
.v/
2 S2 D T2: (8.7)

Proof. (1) Since S1D0 D S1 D D0S1 and S2 � S1, we have (8.4).
(2) Since 0 D QT0QS1 D QT0S1, we have T0S1 D PT0S1 and KerS1L2 T1 D

KerS1L2 T0S1. Hence, T0S2 D T0S1S2 D 0 and S2T0 D 0 by the duality. This implies
the first of (8.5). Then, by using also (8.4), we obtain

S2L0 D S2.P � PT0QD0Q �QD0QT0P CD0QT0PT0QD0/ D 0:

We likewise have L0S2 D 0 and the second of (8.5) follows.
(3) Equations (8.4) and (8.5) imply S2 zD0.�/ D S2.h1.�/L0 C D0/ D S2 and

likewise zD0.�/S2 D S2. Equation (8.7) is obvious from (8.6).

Lemma 8.2. For small � > 0, zB1.�/C S2 is invertible in S1L2 and

. zB1.�/C S2/
�1
D D1 CD1�

2h1.�/
�1 zT 1.�/D1 CO

.4/

S1L2.�
4.log�/2/: (8.8)

Proof. From (8.2), we have zB1.�/C S2 D .1S1L2 � L1.�//.T1 C S2/, where

L1.�/´ �2h1.�/
�1 zT 1.�/D1 � zT 4.�/D1: (8.9)

It follows that zB1.�/C S2 is invertible in S1L2 and

. zB1.�/C S2/
�1
D D1 CD1L1.�/CD1L1.�/

2.1S1L2 � L1.�//
�1: (8.10)

Substituting (8.9) and using (8.3), we obtain (8.8).

Lemma 8.3. Let B2.�/ D S2 � S2. zB1.�/C S2/�1S2. Then

B2.�/ D ��
2h1.�/

�1.T2 CO
.4/

S2L2.�
2 log�//I (8.11)

B2.�/ is invertible in S2L2 for small � > 0 and

B2.�/
�1
D ���2h1.�/T

�1
2 CO

.4/

S2L2.1/: (8.12)



A. Galtbayar and K. Yajima 316

Proof. Multiply (8.8) by S2 from both sides. Since D1S2 D S2D1 D S2 by (8.1),
(8.7) implies S2 zT 1.�/S2 D T2 and

S2. zB1.�/C S2/
�1S2 D S2 C �

2h1.�/
�1T2 CO

.4/

S2L2.�
4.log�/2/;

from which (8.11) follows (recall h1.�/ D .g0.�/C c1/�1). Since T2 is invertible in
S2L

2, the rest is obvious.

Since B2.�/�1 exists and B1.�/�1 D �h1.�/�1 zB1.�/�1, Lemma 7.1 implies

B1.�/
�1
D �h1.�/

�1. zB1.�/C S2/
�1
� h1.�/

�1J2.�/; (8.13)

J2.�/ D . zB1.�/C S2/
�1S2B2.�/

�1S2. zB1.�/C S2/
�1: (8.14)

Substitute (8.13) in (7.10). Then, (7.9) yields that

M.�4/�1 D .M.�4/C S1/
�1
CN1.�/CN2.�/;

N1.�/ D �h1.�/
�1.M.�4/C S1/

�1S1. zB1.�/C S2/
�1S1.M.�4/C S1/

�1;

(8.15)

N2.�/ D �h1.�/
�1.M.�4/C S1/

�1S1J2.�/S1.M.�4/C S1/
�1: (8.16)

Recall that Mv.M.�4/C S1/
�1Mv is GPR by Lemma 7.3 (1).

Lemma 8.4. The operator MvN1.�/Mv is GPR.

Proof. Substitute (7.4) for .M.�4/C S1/
�1 and (8.8) for . zB1.�/C S2/�1 in (8.15),

expand the result and multiply byMv from both sides. Then, the terms which contain
O
.4/

H2
.�2/ in (7.4) or terms of order O

.4/

H2
.�2 log�/ in (8.8) are Rem.�/s. What remains

is equal to�h1.�/�1Mv
zD0.�/S1D1S1 zD0.�/Mv��h1.�/

�1MvS1D1S1Mv (mod-
ulo GV�). Thus, if S1D1S1 D

Pn
j;kD1 cjk.�j ˝ �k/ is the matrix representation of

S1D1S1 via the basis ¹�1; : : : ; �nº of S1L2,

MvN1.�/Mv � �

nX
j;kD1

h1.�/
�1cjk.v�j /˝ .v�k/;

and the lemma follows from Lemma 7.5 since
R

R4 v.x/�k.x/dx D 0.

The following lemma is the clue to the proof of Theorem 1.9. Let ¹�1; : : : ; �nº
be the orthonormal basis of S1L2 such that ¹�1; : : : ; �mº is the basis of the subspace
S2L

2 which is spanned by eigenfunctions of T2 (recall (6.9)):

T2�j D ia
2
j �j ; aj > 0; j D 1; : : : ; m:



The Lp-boundedness of wave operators for fourth order Schrödinger operators on R4 317

Lemma 8.5. Suppose that H has singularity of the second kind at zero. Then,

Qv.�/ � �i�
�2

mX
jD1

a�2j .v�j /˝ .v�j /C h1.�/
�1

nX
j;kD1

ajk.�/.v�j /˝ .v�k/ (8.17)

modulo GPR, where ajk.�/, j; k D 1; : : : ; n are GMU.

Proof. By virtue of Lemmas 7.3 and 8.4, it suffices to prove (8.17) for MvN2.�/Mv

in place of Qv.�/. We substitute (8.8) for . zB1.�/C S2/�1 and (8.12) for B2.�/�1

in (8.14), use S2D1 D D1S2 D S2 and express the result via the basis ¹�j º of S1L2

chosen as above. We obtain that with GMUs ¹aik.�/ºj;kD1;:::;n

S1J2.�/S1 D i

mX
jD1

a�2j ��2h1.�/�j ˝ �j C

nX
i;kD1

aik.�/�i ˝ �k : (8.18)

We then substitute (7.4) with (7.5) for .M.�4/ C S1/
�1 and (8.18) for S1J2.�/S1

in (8.16) and expand the result. Then, Y1.�/ D O
.4/

H2
.�2/ in equation (7.5) for

.M.�4/C S1/
�1 cancels the singularities in (8.18) and produces Rem.�/. Thus, we

obtain that

MvN2.�/Mv � �h1.�/
�1Mv

zD0.�/ � (8.18) � zD0.�/Mv

� �

mX
jD1

ia�2j ��2.v�j /˝ .v�j /C

nX
i;kD1

aik.�/h1.�/
�1.v�i /˝ .v�k/;

where we used zD0.�/ D D0 C h1.�/L0, D0 D D�0 , S1D0 D D0S1 D S1, S2D0 D
D0S2 D S2 and S2L0 D L0S2 D 0. Lemma 8.5 follows.

8.2. Proof of Theorem 1.9 (2)

We follow the argument outlined in the introduction which patterns after the proof
of [35, Theorem 5.13]. We shall, however, need some new estimates at the end of the
proof. By virtue of Lemmas 7.5 and 8.5, we need to study only

�red u D

mX
jD1

ia�2j

1Z
0

RC0 .�
4/.v�j /˝ .v�j /….�/u���a.�/d�:

We first deal with the terms with j D 1; : : : ; m separately, omitting the index j and
the constant ia�2j :

�u´

1Z
0

.RC0 .�
4/.v�/˝ .v�/….�/u/���a.�/d�; � 2 S2L

2: (8.19)
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Since
R

R4 v.x/�.x/dx D 0, we may, as before, replace ….�/u.z/ by ….�/u.z/ �
….�/u.0/ in (8.19), which we now express in the form (1.41) and denote the operators
produced by the first and the second terms of (1.41) by�B and�G respectively. Then,

�u D �BuC�Gu

and we call �G and �B the good and the bad parts of �, respectively. Recall that
�.x/ D �w.x/'.x/ with ' being p-wave resonance, see Lemma 1.8 (1) and (3).

Good part is GOP

Lemma 8.6. The good part �G is a GOP.

Proof. Let Tm;l.x; y/ D .v�/.x/ymyl.v�/.y/ and um;l D RmRlu for 1 � j; l � 4.
Then, Tm;l 2 L1 and �Gu becomes the superposition by

P4
m;lD1

R 1
0
.1 � �/d� ofZ

R4�R4

� 1Z
0

R�.x � y/Tm;l.y; z/….�/.���z��a.jDj/um;l/.0/�
3d�

�
dzdy

D

Z
R4�R4

Tm;l.y; z/�y

� 1Z
0

R�.x/….�/.���z��a.jDj/um;l/.0/�
3d�

�
dzdy

D

Z
R4�R4

Tm;l.y; z/�yK.���z��a.jDj/um;l/.x/dzdy:

Lemma 3.5 and Minkowski’s inequality then imply that �G is GOP.

Remark 8.7. The proof shows that Lemma 8.6 holds if � ˝ � is replaced by a ˝ �
such that a.x/v.x/ 2 L1.R4/ and � 2 QL2.

High energy part of the bad part. Since
P4
lD1 i�zl.….�/Rlu/.0/, the first term

of (1.41), is V� , �Bu.x/ becomes the sum of products

�Bu.x/ D

4X
lD1

ihzlv; �i�B;lu.x/;

�B;lu.x/ D

1Z
0

RC0 .�
4/.v�/.x/.….�/Rlu/.0/�

2��a.�/d�:

Ignoring the harmless constant ihzlv; �i and Riesz transforms Rj , we consider

WBu.x/ D

1Z
0

.RC0 .�
4/!/.x/.….�/u/.0/�2��a.�/d�; (8.20)
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where !.x/D v.x/�.x/.D�V.x/'.x// with � 2 S2L2 n ¹0º (and p-wave resonance
'.x/). Difficulty here is of course that (8.20) has only �2 instead of �3. We decompose

WBu D ��4a.jDj/WBuC ��4a.jDj/WBu

and move ��4a.jDj/ and ��4a.jDj/ to the inside of the integral in (8.20). We first
consider ��4a.jDj/WBu which is equal to (8.20) with ��4a.jDj/RC0 .�

4/!.x/ in
place of RC0 .�

4/!.x/. Let �a.�/ D ��4a.�/j�j
�4. We have �a 2 Lp.R4/ for 1 <

p � 1.

Lemma 8.8. We have c�a.x/2Lp.R4/ for 1�p <1. For all 1�p�1,�a.jDj/2
B.Lp.R4// and �a.jDj/! 2 Lp.R4/

Proof. Since �a 2C1.R4/ and j@˛�a.�/j �C˛h�i�4�j˛j, integration by parts shows
that c�a 2 C1.R4 n ¹0º/ and is rapidly decreasing at infinity along with derivatives;
for the small jxj behavior, we observe that c�a is equal modulo a smooth function to

1

.2�/2

1Z
a

�Z
S3

eirx!d!

�
dr

r
D

1Z
a

J1.r jxj/

r2jxj
dr

and the well-known property of the Bessel function implies the right side is equal
to C log jxj C O.jxj2/ as jxj ! 0. Thus, c�a.x/ 2 Lp.R4/ for all 1 � p <1 and
�a.jDj/ is bounded in Lp.R4/ for all 1 � p � 1. Since

hxi4hlog jxjiv 2 .L2 \ L2q/.R4/;

hxi5hlog jxji! 2 .L1 \ L
2q

qC1 /.R4/

and

�a.jDj/!.x/ D .2�/
�2.c�a � !/.x/ 2 Lp.R4/ for all 1 � p � 1:

Lemma 8.9. Let � 2 S2L2 n ¹0º. The operator ��4a.jDj/WB is bounded in Lp.R4/
for 1 < p < 4 and, if a > 0 is sufficiently small, it is unbounded for 4 � p � 1.

Proof. By Fourier transform, we have

��4a.jDj/R
C
0 .�

4/!.x/ D F �
�
�a.�/ O!.�/C �

4 �a.�/ O!.�/

j�j4 � �4 � i0

�
D �a.jDj/!.x/C �a.jDj/�

4RC0 .�
4/!.x/: (8.21)

Accordingly, ��4a.jDj/WBu.x/ becomes the sum W
.1/
B;�u.x/CW

.2/
B;�u.x/:

W
.1/
B;�u.x/´ �a.jDj/!.x/

1Z
0

….�/u.0/�2��a.�/d�; (8.22)
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W
.2/
B;�u.x/´

1Z
0

�a.jDj/R
C
0 .�

4/!.x/….�/u.0/�6��a.�/d�:

(1) Let �.�/ D �3��a.�/. Then, �.�/ is GMU and (1.21) implies

W
.2/
B;�u.x/ D �a.jDj/

Z
R4

!.y/�y

� 1Z
0

R�.x/….�/�.jDj/u.0/�
3d�

�
dy

D �a.jDj/

Z
R4

!.y/.�yK�.jDj/u/.x/dy:

Minkowski’s inequality and Lemma 3.5 then imply that W .2/
B;� is GOP.

(2) Let `.u/ be the linear functional defined by

`.u/ D

1Z
0

….�/u.0/�2��a.�/d�:

Then, W .1/
B;�u.x/ D �a.jDj/!.x/`.u/ by (8.22) and �a.jDj/!.x/ 2 Lp.R4/ for all

1 � p � 1 by Lemma 8.8. It follows that, if �a.jDj/!.x/ 6D 0, W .1/
B;� is bounded

in Lp.R4/ if and only if the functional `.u/ is bounded on Lp.R4/. By using polar
coordinates � D �! and the Parseval identity, we obtain

`.u/ D
1

.2�/2

1Z
0

Z
S3

bu.�!/��a.�/�2d!d� D 1

.2�/2

Z
R4

bu.�/��a.j�j/
j�j

d�

D
1

.2�/2

Z
R4

u.x/f .x/dx; f .x/ D F
���a.j�j/
j�j

�
; (8.23)

and f 2 Lq.R4/ if and only if 4=3 < q � 1. Hence, `.u/ is bounded on Lp.R4/
for 1 � p < 4 and is unbounded for 4 � p � 1. Thus, the proof is finished if we
prove �a.jDj/! 6D 0 for some a > 0. However, if �a.jDj/! D 0 for all a > 0, then
it must be that ! D v� D 0 and, as T0� D 0 for � 2 S2L2, ˆ.�/ D 0 for the ˆ of
Lemma 1.8 (1), hence � D 0. This is a contradiction and the lemma is proved.

Proof of the negative part of Theorem 1.9 (2)

Lemma 8.10. If H has singularity of the second kind at zero, then W� is unbounded
in Lp.R4/ for 4 � p � 1
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Proof. We prove the lemma when rankS2 D 1 and S1 D � ˝ �. A modification of the
general case by using Hahn–Banach theorem can be done by following the argument
in [34, part (iv) of the proof of Theorem 1.4 (2b)], which we omit here. We remark
that v� 6D 0 as was shown in the proof of Lemma 8.9.

We prove the lemma by reductio ad absurdum. SupposeW� is bounded inLp.R4/
for a 4 � p � 1. Then, so must be � in (8.19) for all 0 < a <1 and, since �G is
GOP by Lemma 8.6, so must be�B;� D ��4a.jDj/�B . Then, since ��4a.jDj/W

.2/
B

is GOP by part (1) of the proof of Lemma 8.9, we conclude that

�
.1/
B;� D

4X
lD1

hvzl ; �iW
.1/;l
B;� u.x/ D �a.jDj/.v�/.x/

Q̀.u/;

must also be bounded in Lp.R4/ for the p, where W .1/;l
B;� u D W

.1/
B;�Rlu (see (8.22))

and

Q̀.u/ D
D
u;

4X
lD1

hvzl ; �ifl.x/
E
; fl.x/ D F

��l��a.j�j/
j�j2

�
.x/:

For sufficiently small a > 0, we have �a.jDj/.v�/ 6D 0. By virtue of Lemma 6.2 (2),
˛´ .hvz1; �i; : : : ; hvz4; �i/ 6D 0 and, hence, ˛ � � is non-trivial linear function of � .
It follows that

4X
lD1

hvzl ; �ifl.x/ D F .˛ � �j�j�2��a.j�j// 62 L
q.R4/

for any 1 � q � 4=3. Thus, Q̀ is unbounded on Lp.R4/ for any 4 � p � 1 by the
Riesz theorem. This is a contradiction.

Low energy part of the bad part. We recall thatWBu is defined by (8.20) with ! D
v�, � being in S2L2. The following lemma completes the proof of Theorem 1.9 (2).
A part of the proof will be postponed to Appendix A.

Lemma 8.11. Let � 2 S2L2 and a > 0. Then, ��4a.jDj/WB is bounded in Lp.R4/
for 1 < p < 4.

Proof. Let �.�/ D ….�/u.0/�2��a.�/ and, for " > 0,

W "
B;�u.x/ D

1Z
0

��4a.jDj/R0.�
4
C i"/!.x/�.�/d�:

Then, � 2 C10 ..0;1// and

F .W "
B;�u/.�/ D ��4a.j�j/ O!.�/

1Z
0

�.�/

�4 � �4 � i"
d�: (8.24)
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It is evident that
WB;�u D lim

"#0
W "
B;�u in L2:

Since O!.0/ D 0, Taylor’s formula implies

O!.�/ D

4X
mD1

�mc!m.�/; c!m.�/ D 1

.2�/2

1Z
0

Z
R4

e�i�z� izm!.z/dzd�: (8.25)

We substitute (8.25) in (8.24) and apply the inverse Fourier transform. By changing
the order of integrations, we obtain

W "
B;�u.x/ D

4X
mD1

Rm

1Z
0

� 1

.2�/2

Z
R4

eix���4a.j�j/j�j

j�j4 � �4 � i"
c!m.�/d���.�/d�;

where Rm; 1 � m � 4 are Riesz transforms. On substituting

j�j

j�j4 � �4 � i"
D

�

j�j4 � �4 � i"
C

j�j � �

j�j4 � �4 � i"
;

W "
B;�u.x/ becomes

W "
B;�u.x/ D Z"1u.x/CZ"2u.x/;

where the definitions of Z"1 and Z"2 are obvious. We have

Z"1u.x/ D

4X
mD1

Rm

1Z
0

� 1

.2�/2

Z
R4

eix���4a.j�j/

j�j4 � �4 � i"
c!m.�/d����.�/d�:

Substitute (8.25) for c!m.�/, change the order of integrations, and integrate by d�d�
first. As "! 0, Z"1u.x/ converges in L2.Rm/ to

4X
mD1

1Z
0

Rm

Z
R4

izm!.z/��z

� 1Z
0

R�.x/….�/u.0/�
3��a.�/d�

�
dzd�

D

4X
mD1

1Z
0

�
Rm

Z
R4

.izm!.z//��zK��a.jDj/u.x/dz

�
d� µ Z1u.x/:

Lemma 3.5 and Minkowski’s inequality imply that Z1 is GOP.
Computing as before, we obtain

Z"2u.x/ D

4X
mD1

Rm

1Z
0

� 1

.2�/2

Z
R4

eix���4a.j�j/.j�j � �/

j�j4 � �4 � i"
c!m.�/d���.�/d�:
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For � > 0 and " > 0, we have

j�j � �

j�j4 � �4 � i"
�j � j

1

.j�j C �/.j�j2 C �2/

and, as "! 0, the left side converges to the right side for all .�; �/, j�j 6D �. Thus, as
"! 0, Z"2u.x/ converges in L2.R4/ to

Z2u.x/ D

4X
mD1

Rm

1Z
0

� 1

.2�/2

Z
R4

eix���4a.j�j/c!m.�/d�
.j�j C �/.j�j2 C �2/

�
�.�/d�:

We substitute (8.25) for c!m.�/, change the order of integrations, and integrate by
d�d� first. This yields that

Z2u.x/ D

4X
mD1

1Z
0

� 1

.2�/4

Z
R4

izm!.z/.��zRmLu/.x/dz
�
d�; (8.26)

where L is the integral operator defined by

Lu.x/ D

1Z
0

�Z
R4

eix�
��4a.j�j/

.j�j2 C �2/.j�j C �/
d�

�
….�/u.0/�2��a.�/d�:

We substitute (1.15) for ….�/u.0/, use polar coordinates � D �!, and change the
order of integrations. The result is that L is the integral operator with kernel

L.x; y/ D

“
R8

eix�Ciy���4a.j�j/��a.j�j/

.j�j2 C j�j2/.j�j C j�j/j�j
d�d�: (8.27)

We shall prove the following lemma in Appendix A and take it for granted for the
moment.

Lemma 8.12. The operator L is bounded in Lp.R4/ for 1 < p < 4.

We apply Minkowski’s inequality and Lemma 8.12 to (8.26) and obtain

kZ2ukp � Ckhxi!k1kukp for 1 < p < 4,

This completes the proof of Lemma 8.11 since WB;�u D Z1uCZ2u.

9. Singularities of third and fourth kinds

We prove here Theorem 1.9 (3) and (4), assuming hxi12hlog jxji2V 2 .L1 \Lq/.R4/
for a q > 1. We have a sequence of projections Q � S1 � S2 � S3 � S4. We take
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the basis ¹�1; : : : ; �nº of S1L2 such that ¹�1; : : : ; �mº, m � n, spans S2L2 and, if
T3 D S3G

.v/
4 S3 6D 0,

T2�j D �ia
2
1�j ; 1 � j � r < mI T2�j D 0; r C 1 � j � mI (9.1)

¹�rC1; : : : ; �mº is the basis of S3L2. Recall T4 D S4G
.v/

4;l
S4; T4 is non-singular in

S4L
2.

9.1. Threshold analysis 3. First step

By virtue of Lemmas 7.3 and 8.4,

Qv.�/ �MvN2.�/Mv µ N
.v/
2 .�/ modulo GPR

and we study N
.v/
2 .�/ as �! 0. Recall N2.�/ is given by (8.16) with (8.14) and we

need to study B2.�/�1. We have from (8.11) that

B2.�/ D ��
2h1.�/

�1 zB2.�/; zB2.�/ D T2 CO
.4/

S2L2.�
2 log�/

We apply Lemma 7.1 to the pair . zB2.�/; S3/. Since .T2 C S3/�1 exists in S2L2, so
does . zB2.�/C S3/�1 for small � > 0 and

. zB2.�/C S3/
�1
D D2 CO

.4/

S2L2.�
2 log�/; D2 D .T2 C S3/

�1: (9.2)

Lemma 7.1 implies that, if B3.�/D S3 � S3. zB2.�/C S3/�1S3 is invertible in S3L2,
then

zB2.�/
�1
D . zB2.�/C S3/

�1
C . zB2.�/C S3/

�1S3B3.�/
�1S3. zB2.�/C S3/

�1:

(9.3)
On substituting (9.3) � .���2h1.�// for B2.�/�1 in (8.14) we obtain

J2.�/ D J2;1.�/C J2;2.�/

where J2;1.�/ and J2;2.�/ are equal, respectively, to

J2;1.�/ D S1. zB1.�/C S2/
�1S2. zB2.�/C S3/

�1S2. zB1.�/C S2/
�1S1;

J2;2.�/ D S1. zB1.�/C S2/
�1S2. zB2.�/C S3/

�1

� S3B3.�/
�1S3. zB2.�/C S3/

�1S2. zB1.�/C S2/
�1S1:

Here, we have placed S1 on both ends of J2;1.�/ and J2;2.�/; which is allowed
since . zB1.�/C S2/�1 is an operator in S1L2 and, accordingly, we have N

.v/
2 .�/ D

N
.v/
2;1 .�/CN

.v/
2;2 .�/ where, for j D 1; 2

N
.v/
2;j .�/ D �

�2Mv.M.�4/C S1/
�1J2;j .�/.M.�4/C S1/

�1Mv: (9.4)

We first prove the following lemma which is irrelevant to the existence ofB3.�/�1.
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Lemma 9.1. The following statements hold.

(1) There exists ǰk.�/ 2 O
.4/
C .1/, 1 � j; k � n, such that

N
.v/
2;1 .�/��i

mX
jD1

a�2j ��2.v�j /˝ .v�j /C

nX
j;kD1

h1.�/
�1

ǰk.�/.v�j /˝ .v�k/:

(2) The operator produced by (5.1) with N
.v/
2;1 .�/ in place of Qv.�/ is bounded in

Lp.R4/ for 1 < p < 4 and unbounded for 4 � p � 1.

Proof. Since J2;1.�/ has S1 on both sides, (8.8) and (9.2) imply

J2;1.�/ D S2D2S2 CO
.4/

S1L2.�
2h1.�/

�1/: (9.5)

We substitute (9.5) for J2;1.�/ and (7.4) for .M.�4/ C S1/
�1 in (9.4) and expand

the result. Then, Y1.�/ D O
.4/

H2
.�2/ cancels the singularities and, modulo GV� C

Rem.�/,
N
.v/
2;1 .�/ � �

�2Mv
zD0.�/J2;1.�/ zD0.�/Mv:

Then, since zD0.�/ D D0 C h1.�/L0 and S1D0 D D0S1 D S1,

N
.v/
2;1 .�/ � �

�2MvJ2;1.�/Mv

C ��2h1.�/Mv.L0J2;1.�/C J2;1.�/L0/Mv

C ��2h1.�/
2MvL0J2;1.�/L0:

Here the first line on the right-hand side is of the desired form by virtue of (9.5) and the
second and the third line produce GV� since S2L0 D L0S2 D 0. Thus, statement (1)
follows.

(2) By virtue of (1), N
.v/
2;1 has the same form as (8.17). Hence, it produces the

operator which is bounded Lp.R4/ for 1 < p < 4 and unbounded for 4 � p as was
shown in the proof of Theorem 1.9 (2).

Corollary 9.2. IfH has singularities of the third or fourth kind at zero, then, modulo
the operator which is bounded in Lp.R4/ for 1<p<4 and unbounded for 4�p�1,
W���a.jDj/ is equal to Z which is defined by

Zu´

1Z
0

R0.�
4/N

.v/
2;2 .�/….�/u�

3��a.�/ud�: (9.6)

9.2. Key lemma

To study N
.v/
2;2 .�/, we use the following lemma. We use in this section only the result

thatB3.�/�1DO
.4/

S3L2.�
�2h1.�// orB3.�/�1DO

.4/

S3L2.�
�2/ in the respective cases.
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Lemma 9.3. The following statements hold.

(1) If H has singularity of the third kind, then

B3.�/
�1
D ��2 Qg2.�/

�1S3T
�1
3 S3 CO

.4/

S3L2.�
�2.log�/�2/: (9.7)

(2) If the singularity is of the fourth kind, then

B3.�/
�1
D ��2S4T

�1
4 S4 CO

.4/

S3L2.�
�2.log�/�1/: (9.8)

(3) If the singularity is of the fourth kind but d -wave resonances are absent
from H , then modulo O

.4/

S3L2.�
2.log�/3/

B3.�/
�1
� ��2S4T

�1
4 S4 CO

.4/

S4L2..log�/2/: (9.9)

For proving Lemma 9.3, we prepare a few lemmas.

Lemma 9.4. The following statements hold.

(1) The following identities are satisfied by S3:

G
.v/
2 S3 D i.4

4�/�1v ˝ S3.x
2v/; S3G

.v/
2 D i.4

4�/�1S3.x
2v/˝ v:

(9.10)

SjG
.v/
2 S3 D S3G

.v/
2 Sj D 0; j D 0; 1; 2; 3: (9.11)

zT 1.�/D1S3 D �h1.�/S1T0PG
.v/
2 S3: (9.12)

S2 zT 1.�/D1S3 D 0: (9.13)

(2) We have the following identities for S4:

G2MvS4 D S4MvG2 D 0; (9.14)

zT 1.�/S4 D S4 zT 1.�/ D 0: (9.15)

Proof. (1) Lemma 6.2 (2) evidently implies (9.10). Then, (9.11) follows since one has
Sj v D 0, j D 0; : : : ; 3. Recall that zT 1.�/ D S1 zD0.�/G

.v/
2
zD0.�/S1. Then, D1S2 D

S2, L0S2 D 0 and (9.11) together imply

zT 1.�/D1S3 D .S1 C h1.�/S1L0/G
.v/
2 S3 D h1.�/S1L0G

.v/
2 S3:

Substitute (7.2) for L0. Then, QG.v/2 S2 D 0 and S1D0Q D S1 imply (9.12). Since
S2T0 D 0 by (8.5), (9.13) follows from (9.12).

(2) Lemma 6.2 (3) implies (9.14). Since S4 zD0.�/ D S4.D0 C h1.�/L0/ D S4,
(9.15) follows from (9.14).

The following lemma is a precise version of (9.2). The lemma is more than what
necessary for the proof of Lemma 9.3; however, we need it in this form for that of
Lemma 9.8.
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Lemma 9.5. Modulo O
.4/

S2L2.�
4 log�/, we have that

. zB2.�/C S3/
�1
� D2 �D2F3.�/D2 C F3;sq.�/; (9.16)

where F3.�/ and F3;sq.�/ are given by

F3.�/ D �
2S2¹T4;l.�/ �G

.v/
2
zD0.�/G

.v/
2 C h1.�/

�1. zT 1.�/D1/
2
ºS2

C �4h�11 .�/ Qg2.�/S2¹G
.v/
4 S1G

.v/
2 D1 CG

.v/
2 S1D1S1G

.v/
4 ºS2

C �4h1.�/
�2S2. zT 1.�/D1/

3S2; (9.17)

F3;sq.�/ D �
4D2¹S2. Qg2.�/G

.v/
4 C h1.�/

�1. zT 1.�/D1/
2/S2D2º

2: (9.18)

Proof. Expanding (8.10) to the third order, we have by (8.9) that

. zB1.�/C S2/
�1
D

3X
jD0

D1L1.�/
j
CO

.4/

S1L2.�
8.log�/4/: (9.19)

Since S2D1 D D1S2 D S2, B2.�/ D S2 � S2. zB1.�/C S2/�1S2 becomes

B2.�/ D �

3X
jD1

S2L1.�/
jS2 CO

.4/

S2L2.�
8.log�/4/:

Recall (8.9), (8.3), and (7.6). We have

L1.�/ � �
2h1.�/

�1.A � �2B/;

modulo OS1L2.�6.log�/2/ where

A D zT 1.�/D1; B D �S1 zD0.�/¹T4;l.�/ zD0.�/ � .G
.v/
2
zD0.�//

2
ºS1:

Then, since zB2.�/D���2h1.�/B2.�/, we obtain by using S2 zT 1.�/D1S2 D T2 that

zB2.�/ � T2 C S2¹.�
2B C �2h1.�/

�1A2/

C �4h1.�/
�1.AB C BA/C �4h1.�/

�1A3ºS2

modulo OS1L2.�6 log �/. Then, identities in Lemma 8.1 and D0S1 D S1D0 D S1

produce

zB2.�/ D T2 C zF3.�/; zF3.�/ D F3.�/CO
.4/

S2L2.�
4 log�/: (9.20)

From (9.20) we deduce that . zB2.�/C S3/�1 D D2.1S2L2 C zF3.�/D2/
�1 and

. zB2.�/C S3/
�1
� D2 �D2F3.�/D2 CD2.F3.�/D2/

2

D D2 �D2F3.�/D2 C F3;sq.�/CO
.4/

S2L2.�
4 log�/

modulo O
.4/

S2L2.�
4 log�/ as desired.
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Lemma 9.6. Let zL D S3G
.v/
2 .�L0 C L0S1D1S1L0/G

.v/
2 S3 and

C.�/´ T3 C Qg2.�/
�1S3G

.v/

4;l
S3 C Qg2.�/

�1h1.�/zL:

Then, B3.�/ D S3 � S3. zB2.�/C S3/�1S3 is equal to

B3.�/ D �
2
Qg2.�/C.�/ � �

4
Qg2.�/

2F.�/;

F.�/´ S3.G
.v/
4 S2D2S2G

.v/
4 /S3 CO

.4/

S3L2..log�/�1/:

Proof. On substituting (9.16), we have

B3.�/ D S3F3.�/S3 � S3F3;sq.�/S3 CO
.4/

S2L2.�
4 log�/:

When sandwiched by S3, the second line of (9.17) vanishes since (9.11) implies
QG

.v/
2 S3 D S3G

.v/
2 QD 0; the third line of (9.17) and the second term on the right of

(9.18) become O
.4/

S2L2.�
4/ since S3 zT 1.�/D1 and zT 1.�/D1S3 are in O

.4/

S1L2.h1.�//.

Hence, modulo O
.4/

S3L2.�
4 log�/,

S3F3.�/S3 � �
2S3.T4;l.�/C h1.�/zL/S3;

S3F3;sq.�/S3 � �
4
Qg2.�/

2S3.G
.v/
4 S2D2S2G

.v/
4 /S3:

Recalling that S3G
.v/
4 S3 D T3, we obtain the lemma.

Proof of Lemma 9.3 (1). IfH has singularity of the third kind, then T3 is invertible in
S3L

2. It follows that

C.�/ D .1S3L2 C . Qg2.�/
�1S3G

.v/

4;l
S3 C Qg2.�/

�1h1.�/zL/T
�1
3 /T3

is invertible in S3L2 for small � > 0 and

C.�/�1 D T �13 � Qg2.�/
�1T �13 S3G

.v/

4;l
S3T

�1
3 COS3L2..log�/�2/:

Then, so is B3.�/ D �2 Qg2.�/.1 � �
2 Qg2.�/F.�/C.�/

�1/C.�/ and

B3.�/
�1
D ��2 Qg2.�/

�1C.�/�1 C C.�/�1F.�/C.�/�1 COS3L2.�2 Qg2.�//:

This implies the lemma.

Proof of Lemma 9.3 (2). If H has singularity of the fourth kind, then Lemma 9.6
remains to hold and T4 D S4G

.v/

4;l
S4 is non-singular in S4L2 ([14]). Let

S?4 D S3 	 S4:
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Lemma 9.7. For small � > 0, C.�/�1 exists in S3L2 and

C.�/�1 D Qg2.�/S4T
�1
4 S4 CZ.�/; Z.�/ D O

.4/

S3L2.1/ (9.21)

and in the decomposition S3L2 D S?4 L
2 ˚ S4L

2

Z.�/ D

�
d.�/ �d.�/S?4 G

.v/

4;l
S4T

�1
4

�T �14 S4G
.v/

4;l
S?4 d.�/ T �14 S4G

.v/

4;l
S?4 d.�/S

?
4 G

.v/

4;l
S4T

�1
4

�
;

d.�/ D .S?4 T3S
?
4 /
�1
CO

.4/

S?
4
L2
..log�/�1/:

Proof. Since G.v/2 S4 D S4G
.v/
2 D 0 by (9.14), we have zLS4 D S4 zL D 0 and, in the

decomposition S3L2 D S?4 ˚ S4L
2,

C.�/ D

�
S?4 C.�/S?4 Qg2.�/

�1S?4 G
.v/

4;l
S4

Qg2.�/
�1S4G

.v/

4;l
S?4 Qg2.�/

�1T4

�
: (9.22)

We apply Lemma 5.1 to C.�/. Then, a22 D Qg2.�/
�1T4 is invertible in S4L2;

a11 � a12a
�1
22 a21 D S

?
4 C.�/S?4 � Qg2.�/

�1S?4 G
.v/

4;l
S4T

�1
4 S4G

.v/

4;l
S?4

D S?4 T3S
?
4 CO

.4/

S?
4
L2
..log�/�1/

is also invertible for small � > 0 since S?4 T3S
?
4 is invertibe in S?4 L

2;

d.�/ D .a11 � a12a
�1
22 a21/

�1
D .S?4 T3S

?
4 /
�1.1CO

.4/

S?
4

.log�/�1/:

It follows by Lemma 5.1 that C.�/�1 exists for small � > 0 and is given by (9.21).

Since C.�/�1 existsB3.�/D�2 Qg2.�/.1��
2 Qg2.�/F.�/C.�/

�1/C.�/ and, since
C.�/�1 D O

.4/

S3L2.log�/ by (9.21), B3.�/ is invertible in S3L2 and

B3.�/
�1
D ��2 Qg2.�/

�1C.�/�1 C C.�/�1F.�/C.�/�1 CO
.4/

S3L2.�
2
Qg2.�/

4/:

(9.23)
This implies (9.8) because F.�/ D O

.4/

S3L2.1/ and Lemma 9.3 (2) is proved.

Proof of Lemma 9.3 (3). Lemma 1.8 (3) implies that d -resonances are absent fromH

if and only if S3L2 	 S4L2 D ¹0º or T3 D 0 on S3L2. Then, S4 D S3, S?4 D 0 and
(9.22) becomes C.�/D Qg2.�/

�1S4T4S4. It follows thatZ D 0 in (9.21). Then, (9.23)
implies (9.9) because C.�/�1F.�/C.�/�1 2 O

.4/

S4L2..log�/2/.
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9.3. Simplification

In this section we want to simplify N
.v/
2;2 of (9.4) modulo GPR. For shortening formu-

lae we introduce

E2;l.�/ D S1. zB1.�/C S2/
�1S2. zB2.�/C S3/

�1S3; (9.24)

E2;r.�/ D S3. zB2.�/C S3/
�1S2. zB1.�/C S2/

�1S1; (9.25)

E2.�/ D E2;l.�/B3.�/
�1E2;r.�/ (9.26)

and express N
.v/
2;2 .�/ in the form

N
.v/
2;2 .�/ D �

�2Mv.M.�4/C S1/
�1E2.�/.M.�4/C S1/

�1Mv: (9.27)

Note that E2.�/ is sandwiched by S1 and, hence, is V� but not GV� in general
because of the strong singularities in B3.�/�1, see Lemma 9.3.

In the following lemma, A� B means that the factors A which appear in the right
of (9.24), (9.25), and (9.26) may be replaced by B without changing N

.v/
2;2 modulo

GPR. The proof of the lemma uses only the information on the size of B3.�/�1 of
Lemma 9.3.

Lemma 9.8. (1) If H has singularity of the third kind, then

.M.�4/C S1/
�1
� zD0.�/ � zD0.�/�

2G
.v/
2
zD0.�/: (9.28)

. zB1.�/C S2/
�1
� D1 C �

2h1.�/
�1 zT 1.�/D1: (9.29)

. zB2.�/C S3/
�1
� D2 � �

2D2S2.T4;l �G
.v/
2
zD0.�/G

.v/
2 /S2D2 (9.30)

� �2h1.�/
�1D2S2. zT 1.�/D1/

2S2D2:

(2) If H has singularity of the fourth kind, then

.M.�4/C S1/
�1
� zD0.�/ � �

2 zD0.�/G
.v/
2
zD0.�/

� �4 Qg2.�/D0G
.v/
4 D0; (9.31)

. zB1.�/C S2/
�1
� D1 C �

2h1.�/
�1D1 zT 1.�/D1

C �4h1.�/
�1
Qg2.�/D1G

.v/
4 D1 C �

4h1.�/
�2D1.G

.v/
2 D1/

2; (9.32)

. zB2.�/C S3/
�1
� D2 �D2F3.�/D2 C F3;sq.�/: (9.33)

where we wrote D1S1 D S1D1 D D1 for simplicity.

Proof. We first prove (2) and explain how to obtain (1) from (2) at the end of the
proof. The proof is divided into several steps. Recall notation (1.35) for R.v/2n .�/ and
(2.11) for R.v/2m!2n.�/. It is important to observe that E2.�/ 2 O

.4/

S1L2.�
�2/ is V� .
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(i) Denote the right side of (9.31) by A1.�/ and let

zA1.�/ D zD0.�/ � �
2 zD0.�/G

.v/
2
zD0.�/ � �

4
Qg2.�/

zD0.�/G
.v/
4
zD0.�/:

It is obvious that A1.�/ and zA1.�/ are V� . By virtue of (1.10) and (2.10), .M.�4/C

S1/
�1 may be expressed as

zD0.�/.1CR
.v/
2!4.�/

zD0.�//
�1.1CR

.v/
6 .�/.1CR

.v/
2!4.�/

zD0.�//
�1/�1

and R.v/6 .�/.1CR
.v/
2!4.�/

zD0.�//
�1 D O

.4/

H2
.�6/. It follows that

.M.�4/C S1/
�1
D zD0.�/.1CR

.v/
2!4.�/

zD0.�//
�1
CO

.4/

H2
.�6/

D

2X
jD0

zD0.�/.�R
.v/
2!4.�/

zD0.�//
j
CO

.4/

H2
.�6/: (9.34)

On substituting (9.34) in (9.27), O
.4/

H2
.�6/ produces O

.4/

L1.�
2/ for N

.v/
2;2 .�/ which is

GPR by Proposition 3.6 and we may ignore it from (9.34). Then, the terms of order
O
.4/

H2
.�4/ which appear in the sum on the right of (9.34) produce GV� for N

.v/
2;2 .�/

and they may also be ignored. Thus, .M.�4/C S1/
�1 � zA1.�/. Since D0 D D0 C

h1.�/L0, �4 Qg2.�/ zD0.�/G
.v/
4
zD0.�/D �

4 Qg2.�/D0G
.v/
4 D0 COH2

.�4/ and we may
further replace zA1.�/ by A1.�/. This proves (9.31).

(ii) Let N
.v/
2;red D �

�2MvA1.�/E2.�/A1.�/Mv , which is V� and which is equal

to N
.v/
2;2 .�/ modulo GPR by step (i). Let F1.�/ D A1.�/S1 � S1A1.�/. Then,

F1.�/ D h1.�/ŒL0; S1�CO
.4/

H2
.�2/ 2 O

.4/

H2
.h1.�//:

On replacing A1.�/S1 on the left by S1A1.�/C F1.�/ and S1A1.�/ on the right by
A1.�/S1 � F1.�/, N

.v/
2;red.�/ becomes

��2S1MvA1.�/E2.�/A1.�/MvS1 � �
�2MvS1A1.�/E2.�/F1.�/Mv

C ��2MvF1.�/E2.�/A1.�/S1Mv � �
�2MvF1.�/E2.�/F1.�/Mv:

The point here is that the first term is sandwiched by S1Mv and MvS1 and other
terms carry at least one F1.�/ 2 O

.4/

H2
.h1.�// and, hence, by virtue of Lemma 7.5

and by Lemma 3.5, terms of order O.4/.�4 log �/ in the formulae which will appear
for . zB1.�/C S2/�1 and . zB2.�/C S3/�1 in the following step (iii) produce GPR for
N
.v/
2;2 .�/ and, hence, may be omitted.

(iii) We show (9.32). Since L1.�/ 2 O
.4/

H2
.�2 log�/, (9.19) implies

. zB1.�/C S2/
�1
D D1 CD1L1.�/CD1L1.�/

2
CO

.4/

H2
.�6.log�/3/: (9.35)
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Then (8.9), (8.3), and (7.6) imply that modulo O
.4/

H2
.�4 log�/

D1L1.�/ � �
2h1.�/

�1D1 zT 1.�/D1 C �
4h1.�/

�1
Qg2.�/D1G

.v/
4 D1;

D1L1.�/
2
� �4h1.�/

�2D1.G
.v/
2 D1/

2;

where we usedD1S1D S1D1DD1 andD1D0DD0D1DD1. Since O
.4/

H2
.�4 log�/

may be ignored from the right side of (9.35) by (ii) above, we obtain (9.32).
(iv) Since the term O

.4/

S2L2.�
4 log �/ in . zB2.�/ C S3/�1 may be ignored by (ii)

above, (9.16) implies (9.33). This completes the proof of statement (2).
If B3.�/�1 D O

.4/

S3L2.�
�2 Qg2.�/

�1/, then the proof of (2) implies that terms in the
class OH2

.�4 log�/ may be ignored from (9.34) and, hence, from (9.31) and those in
OH2

.�4.log�/2/ from (9.32) and (9.33). The statement (1) follows.

9.4. Proof of Theorem 1.9 (3). Singularity of the third kind

We have B3.�/�1 D O
.4/

S3L2.�
�2.log�/�1/. We use Lemma 9.8 (1). Denote the right

of (9.28), (9.29), and (9.30) by zD0.�/ C a, D1 C b, and D2 C c respectively. We
have a 2 O

.4/

L2 .�
2/, b 2 O

.4/

S1L2.�
2 log�/ and c 2 O

.4/

S1L2.�
2 log�/; they are GV� and

N
.v/
2;2 .�/ � �

�2Mv. zD0.�/C al/S1.D1 C bl/S2.D2 C cl/S3

� B3.�/
�1S3.D2 C cr/S2.D1 C br/S1. zD0.�/C ar/Mv; (9.36)

where we have added the indices l and r to a;b and c to distinguish the ones on the left
and the right of B3.�/�1. We expand the right of (9.36). The result is V� ; the terms
which contain more than two of ¹al ; ar ; bl ; br ; cl ; crº are in the class O

.4/

L1.�
2.log�/2/

and they are GV� ; those which contain two of them are also GPR because they are
GV� if they contain al or ar or, otherwise, they are of the form

Mv
zD0.�/O

.4/

S1L2.log�/ zD0.�/Mv DMvS1O
.4/

S1L2.log�/S1Mv C GV� :

Thus, modulo GPR, N
.v/
2;2 .�/ is the sum of the terms which contain at most one of

¹al ; ar ; bl ; br ; cl ; crº. We denote the term which contains none of them by O.;/.�/

and those which contain al , etc. by O.al/.�/, etc. respectively and we individu-
ally estimate the operators produced by (5.1) with O.;/.�/;O.al/.�/; : : : in place
of Qv.�/.

Recall (see (9.1)) that the basis of S3L2 is given by ¹�rC1; : : : ; �mº, r < m. By
virtue of (9.7) we have

B3.�/
�1
D

mX
j;kDrC1

��2.log�/�1cjk.�/�j ˝ �k (9.37)



The Lp-boundedness of wave operators for fourth order Schrödinger operators on R4 333

with cjk.�/ 2 O
.4/
C .1/ for small � > 0, j; k D r C 1; : : : ; m.

Lemma 9.9. The operators O.;/.�/, O.al/.�/;O.bl/.�/, and O.cl/.�/ are all GPRs.

Proof. By using Lemma 8.1, we have

O.;/.�/ D ��2MvS3B3.�/
�1S3Mv;

O.al/.�/ D � h1.�/MvL0G
.v/
2 S3B3.�/

�1S3Mv;

O.bl/.�/ DMv
zD0.�/S1L0G

.v/
2 S3B3.�/

�1S3Mv;

O.cl/.�/ D �MvS2D2S2¹T4;l CG
.v/
2 .S1D1S1L0/G

.v/
2

C h1.�/G
.v/
2 .L0S1D1S1L0 � L0/G

.v/
2 ºS3B3.�/

�1S3Mv:

We observe that all of these have S3Mv at right ends, which we will use to cancel the
singularity of B3.�/�1. Thus, the proof is similar and we only prove that O.al/.�/ is
GPR and comment on how to modify the argument for others at the end of the proof.

Let, for r C 1 � j; k � m, cjk.�/ be as in (9.37) and

�jk.�/ D �h1.�/.log�/�1cjk.�/; �j .x/ D .MvL0G
.v/
2 �j /.x/; !k.x/ D .v�k/.x/

so that O.al/.�/ D
Pm
j;kDrC1 �

�2�jk.�/.�j ˝ !k/. Since �jk.�/ are GMU and
�j ; !k 2 hxi

�6L1.R4/, we need only to show that the operator I defined by

Iu D

1Z
0

RC0 .�
4/.�˝ !/….�/u�d� (9.38)

for u 2 D� is GOP when � 2 hxi�6L1.R4/ and !.x/ D v.x/�.x/ with � 2 S3L2.
Note that the integral by d� is only over a compact interval of .0;1/ since u 2 D�.

Since
R

R4 x
˛!.x/dx D 0 for j˛j � 1, we have by (1.41) that

.!;….�/u/ D

4X
i;lD1

�2
1Z
0

.1 � �/

�Z
R4

!il.z/.….�/���zuil/.0/dz

�
d�;

where !il.z/D zizl!.z/ and uil DRiRlu, which we substitute in (9.38). The change
of order of integrations then yields Iu.x/ D

P4
i;lD1

R 1
0
.1 � �/Iil.�/u.x/d� , where

Iil.�/u.x/ D

“
R8

�.y/!il.z/�y

� 1Z
0

R�.x/….�/���zuil.0/�
3d�

�
dydz:

The integral inside the parenthesis is equal to K���zuil (recall (1.21)) and (1.22)
implies that for any 1 < p <1

kIil.�/ukp � Ck�k1k!ilk1kuilkp � Ckukp:
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Hence, I is GOP and O.al/.�/ is a GPR.
Since h1.�/ does not play any role except that it is GMU, the entire argument

for O.al/.�/ applies for proving that O.;/.�/ and O.bl/.�/ are GPR. The argu-
ment for O.cl/.�/ is similar. The only point we have to note is that, instead of
h1.�/ in O.al/.�/, O.cl/.�/ contains the singularity Qg2.�/ which is hidden in T4;l D
G
.v/
4 Qg2.�/CG

.v/

4;l
, however, this is harmless since Qg2.�/.log�/�1cjk.�/ is still GMU.

We next study the operators produced by

O.ar/.�/ D� h1.�/MvS3B3.�/
�1S3G

.v/
2 L0Mv; (9.39)

O.br/.�/ DMvS3B3.�/
�1S3G

.v/
2 L0S1D1 zD0.�/Mv;

O.cr/.�/ D�MvS3B3.�/
�1S3¹T4;l CG

.v/
2 .L0S1D1S1/G

.v/
2

C h1.�/G
.v/
2 .L0S1D1S1L0 � L0/G

.v/
2 ºS2D2S2Mv:

The following lemma completes the proof of Theorem 1.9 (3).

Lemma 9.10. The operators (9.6) with O.ar/.�/;O.br/.�/, and O.cr/.�/ in place
of N

.v/
2;2 .�/ are all bounded in Lp.R4/ for 1 < p < 2.

We use the following lemma.

Lemma 9.11. Let � 2 S3L2 and � 2L1.R4/ and let a > 0 be sufficiently small. Then,
Z.r/ defined by

Z.r/u D

1Z
0

RC0 .�
4/.v� ˝ �/….�/u���a.�/d�; u 2 D�

is bounded inLp.R4/ for 1<p<2 and, if
R

R4 �.x/dx 6D 0, unbounded for 2�p�1.

Proof. The proof patterns after that of Lemma 8.9. Let ! D v� and

Z.r/u D ��4a.jDj/Z
.r/uC �>4a.jDj/Z

.r/uµ Z
.r/
�4auCZ

.r/
>4au:

(1) We first show that Z
.r/
>4a is bounded in Lp.R4/ for 1 < p < 2. We have

Z
.r/
>4au.x/ D

1Z
0

�>4a.jDj/R
C
0 .�

4/.! ˝ �/….�/u���a.�/d�:

Let �a.�/ D �>4a.�/j�j�4. Then, �a.jDj/! 2 Lp.R4/ for all 1 � p � 1, �a.jDj/
is GOP (cf. Lemma 8.8) and

�>4a.jDj/R
C
0 .�

4/!.x/ D �a.jDj/!.x/C �a.jDj/�
4RC0 .�

4/!.x/
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(see (8.21)). It follows that Z
.r/
>4au D Z

.r;1/
>4auCZ

.r;2/
>4au, where

Z
.r;1/
>4au D �a.jDj/!.x/`.u/; `.u/´

1Z
0

.�;….�/u/���a.�/d�;

Z
.r;2/
>4au D �a.jDj/

1Z
0

RC0 .�
4/.! ˝ �/….�/u�5��a.�/d�:

Then, Lemma 3.5 implies kZ.r;2/>4aukp � Cpk!k1k�k1kukp for 1 < p <1. Changing
the order of integrations, we obtain as in (8.23) that

`.u/ D
1

.2�/2

Z
R8

�.y/u.x/Ja.x � y/dxdy; Ja.x/ D F
���a.j�j/
j�j2

�
.x/;

Here Ja.x/ is smooth and jJa.x/j � C hxi�2. It follows by Young’s inequality that
j`.u/j � Ck�k1kJ kp0kukp for 1 � p < 2 and p0 D p=.p � 1/ and kZ.r;1/>4aukp �

Ck�k1kukp . Thus, kZ.r/>4aukp � Ck�k1kukp and Z
.r/
>4a is bounded in Lp.R4/ for

1 � p < 2.
(2) We note that ! 6D 0 as otherwise � D 0 by virtue of Lemma 1.8 and that

�a.jDj/! 6D 0 for small a > 0. We have thatZ
R4

Ja.x � y/�.y/dy 62 L
p0.R4/; 1 � p0 D p=.p � 1/ < 2

unless O�.0/ D 0 as in part (2) of the proof of Lemma 8.9. Thus, Z
.r;1/
>4a is unbounded

in Lp.R4/ for 2 � p <1 and, hence, so is Z.r/.
(3) We finally show that

Z
.r/
�4au.x/ D

1Z
0

��4a.jDj/R
C
0 .�

4/.! ˝ �/….�/u���a.�/d�

satisfies kZ.r/�4aukp � Ckhxi
2!k1k�k1kukp for 1 < p < 2. We may assume !; � 2

C10 .R
4/. Let !kl.y/ D ykyl!.y/ for k; l D 1; : : : ; 4. Since

R
R4 x

˛!.x/dx D 0,
@˛ O!.0/ D 0 for j˛j � 1 and

O!.�/ D

4X
k;lD1

��k�l

.2�/2

1Z
0

.1 � �/

�Z
R4

e�iy��!kl.y/dy

�
d�:
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Hence, ��4a.jDj/RC0 .�
4/!.x/ is equal to

lim
"#0

4X
k;lD1

1Z
0

.1 � �/

�
�1

.2�/4

“
R8

ei.x��y/��k�l��4a.j�j/

j�j4 � .�C i"/4
!kl.y/dyd�

�
d�:

Let kl;a.D/ D RjRk��4a.jDj/. Then, the inner integral becomesZ
R4

!kl.y/�y�

�
�1

.2�/4

Z
R4

eix��k�l��4a.j�j/

j�j4 � .�C i"/4
d�

�
dy

D

Z
R4

!kl.y/�y�kl;a.D/

�
�1

.2�/4

Z
R4

eix� j�j2

j�j4 � .�C i"/4
d�

�
dy

D �
1

2

Z
R4

!kl.y/�y�kl;a.D/.Gi��".x/C G�Ci".x//dy

(recall (1.6)). Thus, by virtue of (3.1) and (3.2), Z
.r/
�4au is equal to the superposition

by
4X

k;lD1

�
1

2

1Z
0

.1 � �/d�

of Z
R4

!kl.y/��y

�
kl;a.D/

1Z
0

.Gi�.x/C G�.x//.�;….�/u/���a.�/d�

�
dy

D

Z
R4

!kl.y/��y

�
kl;a.D/

Z
R4

�.z/.K1 CK2/.��z��a.jDj/u/.x/dz

�
dy

We then apply Lemmas 3.1 and 3.3 and Minkowski’s inequality and obtain the desired
estimate.

Proof of Lemma 9.10. The operators O.ar/.�/; O.br/.�/ and O.cr/.�/ all have
MvS3 on the left ends. The proof is similar and we prove the lemma only for O.ar/.�/.
The modification for others is obvious. We use the notation in the proof of Lemma 9.9.
Substitute O.ar/.�/ for N

.v/
2;2 .�/ in (9.6) and use (1.16). Then, by virtue (9.39) and

(9.37), Zu of (9.6) becomes

mX
j;kDrC1

Jjku; Jjku D

1Z
0

RC0 .�
4/.v�j ˝ �k/….�/ua;jk�d�;
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where �j 2 S3L2, �k D MvL0G
.v/
2 �k and ua;jk D ��a.jDj/�jk.jDj/u with �jk

being GMU. Then �k 2 L1.R4/ for k D r C 1; : : : ; m and Lemma 9.11 implies that
kJjkukp � Cpkhxi

2v�j k1k�kk1kukp for 1 < p < 2. By virtue of Corollary 9.2, the
lemma follows.

Remark 9.12. Lemma 9.11 suggests thatW˙ are unbounded in Lp.R4/ for 2 < p �
1. This holds if the sum of �0s corresponding to O.ar/;O.br/, and O.cr/ has non-
vanishing integral. However, we were not able to show

R
R4 �k.x/dx 6D 0 even for

�k.x/ DMvL0G
.v/
2 �k of O.ar/ above, where G.v/2 �k.x/ is equal to a constant.

9.5. Proof of Theorem 1.9 (4)

It suffices by virtue of Corollary 9.2 to prove that operator Z satisfies statement (4) of
the theorem.

(1) If H has singularity of the fourth kind, then B3.�/�1 satisfies (9.8) in general
and the proof in the previous subsection shows that Z with N

.v/
2;2 .�/ being replaced by

O
.4/

S3L2.�
�2.log�/�1/ of (9.8) is bounded in Lp.R4/ for 1 < p < 2. Thus, the proof

of Theorem 1.9 (4) is finished if we have proved it for the case T3 D 0 but only using
the condition T3 D 0 through (9.9).

(2) We now prove Theorem 1.9 (4) that W� is bounded in Lp.R4/ for 1 < p < 4
if T3 D 0, without using this condition explicitly but using (9.9). Recall that only the
size information on B3.�/�1 is used for proving Lemma 9.8.

We have Lemma 9.3 (3). Then, by virtue of Lemma 7.5, O
.4/

S3L2.�
2.log�/3/ in

B3.�/
�1 produces GPR for N

.v/
2;2 .�/ and we ignore it and we may assume

B3.�/
�1
D ���2S4 zB3.�/

�1S4; zB3.�/
�1
´ T �14 CO

.4/

S4L2.�
2.log�/2/: (9.40)

Thus, the following lemma completes the proof of Theorem 1.9 (4).

Lemma 9.13. Let (9.40) be satisfied. Then, Z is bounded in Lp.R4/ for 1 < p < 4.

We prove Lemma 9.13 by a series of lemma. The argument is similar to but is more
complicated than that of the previous subsection. Denote the right sides of (9.31),
(9.32), and (9.33) by zD0.�/C Qa, D1 C Qb, and D2 C Qc respectively. We have

Qa 2 O
.4/

H
.�2/; Qb 2 O

.4/

H
.�2 log�/; Qc 2 O

.4/

H
.�2 log�/: (9.41)

Then, Lemma 9.8 implies that modulo GPR

N
.v/
2;2 .�/ � �

�4Jl.�/ zB3.�/
�1Jr.�/; (9.42)

Jl.�/ DMv. zD0.�/C Qal/S1.D1 C Qbl/S2.D2 C Qcl/S4; (9.43)

Jr.�/ D S4.D2 C Qcr/S2.D1 C Qbr/S1. zD0.�/C Qar/Mv;
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where we have added the indices l and r as previously. We expand the right of (9.42)
and consider each terms separately, which are V�s.

We begin with the following remarks. By virtue of the part (ii) of the proof of
Lemma 9.8, the part O

.4/

S2L2.�
4 log �/ of Qc produces GPR for N

.v/
2;2 .�/ and, hence,

we may ignore it; identities (9.14) and (9.15) that G2MvS4 D S4MvG2 D 0 and
zT 1.�/S4 D S4 zT 1.�/ D 0 respectively, substantially simplify the formulae:

S4.D2F3.�/D2/ D S4.�
2T4;l.�/C �

4.h�11 Qg2/.�/G
.v/
4 S1G

.v/
2 /S2D2;

S4F3;sq.�/ D �
4
Qg2.�/S4G

.v/
4
zD2. Qg2.�/G

.v/
4 C h1.�/

�1. zT 1.�/D1/
2/S2D2;

.D2F3.�/D2/S4 D D2S2.�
2T4;l.�/C �

4.h�11 Qg2/.�/G
.v/
2
zD1G

.v/
4 /S4;

F3;sq.�/S4 D �
4
Qg2.�/D2S2. Qg2.�/G

.v/
4 C h1.�/

�1. zT 1.�/D1/
2/ zD2G

.v/
4 S4

(9.44)

where we set zD1 D S1D1S1 and zD2 D S2D2S2.
The next lemma is evident by (9.41) and we omit the proof.

Lemma 9.14. The terms which contain three or more of ¹ Qal ; Qar ; Qbl ; Qbr ; Qcl ; Qcrº are
G�V and, hence, are GPRs.

We then consider the terms which contain at most two of ¹ Qal ; Qar ; Qbl ; Qbr ; Qcl ; Qcrº
and, in addition to the notation of Section 9.4, we introduce O. Qar ; Qbl/.�/, etc. to
denote the terms which contain Qar and Qbl , etc. By virtue of (9.40),

S4 zB3.�/
�1S4 D

mX
j;kDrC1

Qtjk.�/�j ˝ �k; (9.45)

where Qtjk.�/ D tjk C O
.4/
C .�2.log �/2/ and ¹�rC1; : : : ; �mº is the basis of S4L2 D

S3L
2.

Lemma 9.15. Let Z; be the operator defined by the right side of (9.6) with O.;/.�/

in place of N
.v/
2;2 .�/. Then, Z; is bounded in Lp.R4/ for 1 < p < 4.

Proof. We have O.;/.�/ D ��4S4 zB3.�/
�1S4 and by (9.45)

Z;u D

mX
j;kDrC1

1Z
0

RC0 .�
4/.v�j /.x/.v�k;….�/u/�

�1�jk.�/��a.�/d�: (9.46)

Since � 2 S4L2 satisfies
R

R4 x
˛.v�/.x/dx D 0 for j˛j � 2 (cf. Lemma 6.2), we have

by expanding ei�z! to the third order in (1.39) that .v�;….�/u/ is equal to

X
j˛jD3

C˛

1Z
0

.1 � �/2
�
�3
Z

R4

z˛.v�/.z/….�/.R˛���zu/.0/dz

�
d�;
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where C˛ are unimportant constants and R˛ D R
˛1

1 � � �R
˛4

4 for ˛ D .˛1; : : : ; ˛4/.
Thus, if we define

Eju.x/ D

1Z
0

RC0 .�
4/.v�j /.x/….�/u.0/�

2��a.�/d�; (9.47)

then Z;u.x/ becomes the sum over r C 1 � j; k � m and ¹˛ W j˛j D 3º of

C˛

1Z
0

.1 � �/2
�Z

R4

z˛.v�k/.z/Ej .R
˛���z Qtjk.jDj//u.x/dz

�
d� (9.48)

However, Ej is equal to WB in (8.20) with �j in place of � and ¹Ej ºjDr 0;:::;m are
bounded in Lp.R4/ for 1 < p < 4 by Lemmas 8.9 and 8.11. Thus, Minkowski’s
inequality implies that for 1 < p < 4

kZ;u.x/kp � C

mX
j;kDrC1

khzi3.v�k/k1kukpkEj kB.Lp/: (9.49)

This proves the lemma.

Lemma 9.16. Let J 0
l
.�/ be the sum of the terms which appear when we expand the

right of (9.43) and which contain at least one from ¹ Qal ; Qbl ; Qclº. Then, the operator
Zl;; produced by ��4J 0

l
.�/ zB3.�/

�1S4Mv , the sum of the terms which contain none
of ¹ Qar ; Qbr ; Qcrº but at least one from ¹ Qal ; Qbl ; Qclº, is GOP.

Proof. The operator Zl;;u is equal to the right of (9.46) with J 0
l
.�/�j in place of

v�j , hence, is
Pm
j;kDrC1

P
j˛jD3 C˛

R 1
0
.1 � �/2d� of (9.48) with Ej being replaced

by zEj which is defined the right of (9.47) with J 0
l
.�/�j in place of v�j . Here, in

view of (9.41) and that J 0
l
.�/ is V� , we have J 0

l
.�/�j D

P
finite sum ��n.�/fjn with

fjn 2 L
1.R4/ and �n 2 O

.4/
C .� log�/. It follows that zEj , j D r C 1; : : : ;m, become

zEju.x/ D
X

finite sum

1Z
0

.RC0 .�
4/fjn/.x/.….�/�j .jDj/u/.0/�

3��a.�/d�

and they are GOP by virtue of Lemma 3.5. Hence, as in (9.49) we have

kZl;;u.x/kp � C

mX
j;kDrC1

khzi3.v�k/k1kukpk zEj kB.Lp/

for all 1 < p <1. This proves the lemma.
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Next, we consider the operators produced by the terms which contain two of
¹ Qar ; Qbr ; Qcrº and none of ¹ Qal ; Qbl ; Qclº.

Lemma 9.17. The operators O. Qar ; Qbr/.�/ and O. Qar ; Qcr/.�/ are GPR.

Proof. (1) Since S4 Qbr D �4h1.�/
�1 Qg2.�/S4G

.v/
4 D1 by (9.14) and (9.15) and

Qar 2O
.4/

H2
.�2/, O. Qar ; Qbr/.�/D �

�4MvS4 zB3.�/
�1S4 QbrS1 QarMv 2O

.4/

L1.�
2.log�/2/.

Hence, it is GV� .
(2) We have O. Qar ; Qcr/.�/D �

�4MvS4 zB3.�/
�1S4 QcrS2 QarMv . By using (9.44) for

S4 Qcr , that Qar 2 O
.4/

H2
.�2/ and (9.45) for S4 zB3.�/�1S4, we have modulo GV� that

O. Qar ; Qcr/.�/ � Qg2.�/MvS4 zB3.�/
�1S4G

.v/
4 S2G

.v/
2 D0Mv

D Qg2.�/

mX
j;kDrC1

Qtjk.�/.v�j /˝ �k; �k ´MvD0G
.v/
2 S2G

.v/
4 �k :

Here Qtjk.�/ are GMU, hzi�k 2 L1.R4/ for k D 1; : : : ; 4 and
R

R4 �k.z/dz D 0 since
D0 D QD0 and Qv D 0. Hence, O. Qar ; Qcr/.�/ is GPR by virtue of Lemma 7.5.

Lemma 9.18. The operator defined by (9.6) with O. Qbr ; Qcr/.�/ in place of N
.v/
2;2 .�/ is

bounded in Lp.R4/ for 1 < p < 4.

Proof. We have O. Qbr ; Qcr/.�/ D ��4MvS4 zB3.�/
�1S4 QcrS2 QbrS1 zD0.�/Mv and, by

virtue of (9.32) and (9.44), this is equal modulo GPR to

�h1.�/
�1MvS4 zB3.�/

�1S4. Qg2.�/G
.v/
4 CG

.v/

4;l
/ zD2G

.v/
2
zD0.�/ zD1 zD0.�/Mv:

(9.50)
We may simplify (9.50) without changing it modulo GPR as follows: (i) we may first
replace zB3.�/�1 by T �14 since the remainder produces GPR; (ii) we next replace the
rightmost zD0.�/DD0C h1.�/L0 by h1.�/L0, which is possible sinceD0Mv….�/D

D0Mv.….�/ �….0// can be written in the form (1.39) and produces GPR; (iii) this
leaves h1.�/L0, which cancels h1.�/�1 in the front and, then, G.v/

4;l
may be removed;

(iv) another zD0.�/ may be replaced by D0 since Qg2.�/h1.�/ is GMU. In this way,
we have modulo GPR that

O. Qbr ; Qcr/.�/ � � Qg2.�/MvS4T
�1
4 S4G

.v/
4
zD2G

.v/
2
zD1L0Mv

D

mX
j;kDrC1

Qg2.�/tjk.v�j /˝ �k; �k D �MvL0 zD1G
.v/
2
zD2G

.v/
4 �k

(9.51)
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and the operator produces by O. Qbr ; Qcr/.�/ is equal modulo GOP to the linear com-
bination of

1Z
0

.RC0 .�
4/..v�j /˝ �k/….�/u�

3
Qg2.�/��a.�/d�

D

Z
R4

�k.z/

� 1Z
0

.RC0 .�
4/.v�j /.x/.….�/��zu/.0/�

2�.�/��a.�/d�

�
dz;

where �.�/´ � Qg2.�/ is GMU. The function inside the brackets is equal to WBu
of (8.20) with ! and u being replaced by v�j and ��z�.jDj/u respectively. Then
Lemma 8.9 and Lemma 8.11 imply the lemma.

We next consider the terms which contain one from ¹ Qar ; Qbr ; Qcrº and another from
¹ Qal ; Qbl ; Qclº.

Lemma 9.19. If Qel 2 ¹ Qal ; Qbl ; Qclº and Qf r 2 ¹ Qar ; Qbr ; Qcrº, then O. Qel ; Qf r/.�/ is GPR.

Proof. (i) The operators O. Qal ; Qf r/.�/ and O. Qbl ; Qf r/.�/ are GV� since

QalS4 D ��
4
Qg2.�/D0G

.v/
4 S4; QblS4 D �

4h1.�/
�1
Qg2.�/D1G

.v/
4 S4

by virtue of the cancellation properties (9.14) and (9.15) of S4, Qf r 2 O
.4/

H2
.�2 log�/

and Mv sandwiches them.
(ii) The operators O. Qcl ; Qar/.�/ and O. Qcl ; Qbr/.�/ are also GV� since

Qcl D OS2L2.�2 log�/

and S4 Qar ; S4 Qbr 2 OH2
.�4.log�/2/.

(iii) Recall ¹�1; : : : ; �mº is the basis of S2L2.R4/. Then, Lemma 8.1 for S2, (9.44)
for Qcl ; Qcr , and (9.45) for zB3.�/�1 jointly imply that O. Qcl ; Qcr/.�/ is equal to

��4MvS2 QclS4 zB3.�/
�1S4 QcrS2Mv D

mX
j;kD1

ajk.�/.v�j /˝ .v�k/

with ajk.�/ 2 O4
C..log�/2/, j; k D 1; : : : ; m. Then, Lemma 7.5 implies that one has

O. Qcl ; Qcr/.�/ is GPR.

Finally, we consider the terms which contain one from ¹ Qar ; Qbr ; Qcrº but none of
¹ Qal ; Qbl ; Qclº, viz. O. Qar/.�/, O. Qbr/.�/ and O. Qcr/.�/.

Lemma 9.20. Operator O. Qar/.�/ is GPR.



A. Galtbayar and K. Yajima 342

Proof. We have O. Qar/.�/D� Qg2.�/MvS4 zB3.�/
�1S4G

.v/
4 D0Mv and (9.45) implies

that, in terms of the basis ¹�rC1; : : : ; �mº of S4L2 and with GMUs Qtjk.�/,

O. Qar/.�/ D �

mX
j;kDrC1

Qg2.�/Qtjk.�/.v�j /˝ .MvD0G
.v/
4 �k/:

Here f .x/´ MvD0G
.v/
4 �k.x/ satisfies

R
R4 f .x/dx D 0 as remarked in part (ii) in

the proof Lemma 9.17. Thus, Lemma 7.5 implies O. Qar/.�/ is GPR.

The next lemma concludes the proof of Theorem 1.9 (4).

Lemma 9.21. The operators produced by (9.6) by replacing N
.v/
2;2 .�/ by O. Qbr/.�/ or

O. Qcr/.�/ are bounded in Lp.R4/ for 1 < p < 4.

Proof. (i) By virtue of (9.32) and (9.14), we have that modulo GPR

O. Qbr/.�/ � h1.�/
�1
Qg2.�/MvS4T

�1
4 S4G

.v/
4 D1S1.D0 C h1.�/L0/Mv;

which is the sum of two terms. The one which contains D0 D D0Q is GPR as in the
proof of Lemma 9.20 above; the other which contains h1.�/L0 can be written in the
form

mX
j;kDrC1

Qg2.�/tjk.v�j /˝ Q�k; Q�k DMvL0S1D1G
.v/
4 �k 2 L

1.R4/:

This is of the same form as of (9.51) in the proof of Lemma 9.18 with �k being
replaced by Q�k which can play the role of the former. Hence, it produces a bounded
operator in Lp.R4/ for 1 < p < 4.

(ii) We have O. Qcr/.�/ D ��4MvS4 zB3.�/
�1S4 QcrS2Mv . Since it has S2Mv on

the right end, the terms of order O
.4/

H
.�4.log�/2/ in (9.44) and the remainder term in

(9.40) for zB3.�/�1 produce GPR for O. Qcr/.�/ by Lemma 7.5. It follows that modulo
GPR

O. Qcr/.�/ � �
�2MvS4T

�1
4 S4. Qg2.�/G

.v/
4 CG

.v/

4;l
/S2D2S2Mv:

Let ¹�1; : : : ; �mº be the basis of S2L2 such that ¹�rC1 : : : ; �mº spans S4L2. Then, we
have with constants cjk and djk that

O. Qcr/.�/ �

mX
jDrC1

mX
kD1

��2jk.�/.v�j /˝ .v�k/; jk.�/ D cjk log�C djk

and the operator (5.1) produced by O. Qcr/.�/ becomes modulo GOP

mX
jDrC1

mX
kD1

1Z
0

.RC0 .�
4/Mv�j /.x/hv�k;….�/ui�jk.�/��a.�/d�: (9.52)
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Since
R

R4 v.z/�k.z/dz D 0, we may replace ….�/u by (1.39) in (9.52). Then each
summand becomes the superposition by i

P4
mD1

R 1
0
d�
R

R4 zm.v�k/.z/dz of

1Z
0

.RC0 .�
4/Mv�j /.x/….�/.���zRlu/.0/�

2jk.�/��a.�/d�: (9.53)

If we replace jk.�/ by djk , (9.53) becomes the trivial modification of (8.20) and it
is bounded in Lp.R4/ for 1 < p < 4 by Lemmas 8.9 and 8.11. Thus, the next lemma
with Minkowski’s inequality completes the proof of Lemma 9.21.

Lemma 9.22. Let � 2 S4L2. Then, the operator Zadd defined by

Zaddu.x/ D

1Z
0

RC0 .�
4/.v�/.x/….�/u.0/�2.log�/��a.�/d�;

is bounded in Lp.R4/ for 1 < p < 4.

Proof. The proof is the modification of that of Lemmas 8.9 and 8.11. Note that Zadd

differs fromWB of (8.20) only in that the former has stronger singularity by log� than
the latter and ! D v� for Zadd enjoys better cancellation property than that for WB .

(1) We first show that ��4a.jDj/Zadd 2 B.Lp/ for 1 < p < 4. The argument of
the proof of Lemma 8.9 implies that this follows if the following linear functional
which replaces (8.23):

Q̀.u/ D

1Z
0

….�/u.0/�2.log�/��a.�/d� D
1

.2�/2

Z
R4

u.x/f .x/dx

is bounded on Lp.R4/ for 1 < p < 4, where

f .x/ D F .��a.j�j/j�j
�1 log j�j/.x/:

However, this is obvious by Hölder’s inequality since

f .x/ D

Z
R4

b��a.x � y/jyj3.˛ log jyj C ˇ/dy 2 Lp.R4/; 4=3 < p � 1; (9.54)

where ˛ and ˇ are constants (cf. Theorem 2.4.6 of [12]).
(2) We next show that ��4a.jDj/Zadd is also bounded in Lp.R4/ for 1 < p < 4:

��4a.jDj/Zaddu.x/ D

1Z
0

�
��4a.jDj/R

C
0 .�

4/!
�
.x/….�/u.0/�a.�/d�;

�a.�/ D �
2.log�/��a.�/:
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We proceed as in the proof of Lemma 8.11. Since
R

R4 x
˛!.x/dx D 0 for j˛j � 2 we

have

O!.�/ D
X
j˛jD3

C˛�
˛

1Z
0

.1 � �/2
�Z

R4

e�i�z�z˛!.z/dz

�
d�;

where C˛ are unimportant constants. It follows that ��4a.jDj/RC0 .�
4/!.x/ is equal

to

X
j˛jD3

C˛

1Z
0

.1 � �/2
�Z

R4

z˛!.z/R˛��zA�.x/dz

�
d�; (9.55)

A�.x/ D lim
"!C0

Z
R4

eix� j�j3��4a.j�j/

j�j4 � �4 � i"

d�

.2�/4
(9.56)

and ��4a.jDj/Zaddu.x/ becomes the same superposition as in (9.55) as follows:

X
j˛jD3

C˛

1Z
0

Z
R4

.1 � �/2z˛!.z/R˛��z

� 1Z
0

A�.x/….�/u.0/�a.�/d�

�
d�dz (9.57)

We substitute

j�j3

j�j4 � �4 � i"
D

�3

j�j4 � �4 � i"
C

j�j3 � �3

j�j4 � �4 � i"
:

Then, the integral on the right-hand side of (9.56), which is uniformly bounded by
C hxi�

3
2 for " > 0 and � 2 supp….�/u.0/, converges compact uniformly as "! 0 to

A�.x/ D �
3��4a.jDj/R�.x/CB�.x/;

B�.x/ D
1

2.2�/4

Z
R4

� 1

j�j C �
C
j�j C �

j�j2 C �2

�
eix���4a.j�j/d�:

Then, �3��4a.jDj/R�.x/ produces the superposition as in (9.57) of

1Z
0

��4a.jDj/R�.x/….�/u.0/�a.�/�
3d� D ��4a.jDj/K�a.D/u.x/;

which is GOP by virtue of Lemma 3.4.
Restoring �a.�/ D �2 log���a.�/, we see that B�.x/ produces the same super-

position as in (9.57) of

Mu.x/ D

1Z
0

B�.x/….�/u.0/�
2 log���a.�/d�:
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Then, the computation which led to (8.27) yields that

Mu.x/ D L1u.x/C L2u.x/´

Z
R4

.L1.x; y/C L2.x; y//u.y/;

L1.x; y/ D

Z
R8

eix��iy���4a.j�j/��a.j�j/

.2�/2.j�j C j�j/

log j�j
j�j

d�d�;

L2.x; y/ D

Z
R8

eix��iy�.j�j C j�j/��4a.j�j/��a.j�j/

.2�/2.j�j2 C j�j2/

log j�j
j�j

d�d�: (9.58)

We prove that L1 and L2 are bounded in Lp.R4/ for 1 < p < 4 which will finish the
proof of the lemma. Let q D p=.p � 1/, 4=3 < q <1.

(i) The obvious modification of the proof of Lemma A.3 by using (9.54) instead
of jF .j�j�1 O��a.�//.y/j � C hyi�3 implies

jL1.x; y/j �
C log.jyj C 2/

hxi3hyi.1C jxj C jyj/2
:

It is obvious that kL1.x; �/kq � Cqhxi�3 for q > 4=3, which we use for small jxj �
max.10; Cq/, where Cq is such that 2q.3q � 4/�1 < logCq . Let jxj � max.10; Cq/.
Then, we evidently have

� Z
jyj�jxj

jL1.x; y/j
qdy

� 1
q

�
C log jxj
hxi5

� jxjZ
0

r3dr

hriq

� 1
q

� C log jxj

´
hxi�5; q > 4;

hxi�2�
4
p ; q < 4;

and, by using integration by parts, we also have� Z
jxj�jyj

jL1.x; y/j
qdy

� 1
q

�
C

hxi3

� 1Z
jxj

.log r/q

r3q�3
dr

� 1
q

�
C log jxj

hxi2C
4
p

:

It follows that

kL1ukp �

�Z
R4

kL1.x; y/k
p

Lq.R4/
dx

� 1
p

kukp � Ckukp:

(ii) Let �8a.�/ D j�j��8a.j�j/, �2a.�/ D j�j��2a.j�j/ and

L3.x; y/ D

Z
R8

eix��iy���4a.j�j/��a.j�j/

.2�/2.j�j2 C j�j2/

log j�j
j�j

d�d�:
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Then, by replacing j�j C j�j by �8a.�/C �2a.�/ in (9.58), we obtain

L2 D �8a.D/L3 C L3�2a.D/ (9.59)

and �8a.D/ and �2a.D/ are GOP since O�b 2 L1.R4/ for any b > 0. We obtain by
using (9.54) once more that

jL3.x; y/j � C

Z
R4

log.2C jy � zj/dz
.1C jxj C jzj/6hy � zi3

:

Then,

sup
y2R4

Z
R4

jL3.x; y/jdx � C sup
y2R4

Z
R4

log.2C jy � zj/dz
.1C jzj/2hy � zi3

<1

and L3 is bounded in L1.R4/. For 2 < p < 4, we have 4=3 < q < 2 and Minkowski’s
and Hölder’s inequalities imply

jL3u.x/j � kukp

 log.2C jyj/
hyi3


q

Z
R4

dz

.1C jxj C jzj/6
� C
kukp

hxi2

and kL3ukp �Ckukp . Thus,L3 is bounded inLp.R4/ also for 2 < p < 4 and, hence,
for all 1 � p < 4 by interpolation. Thus, so is L2 by virtue of (9.59) and the lemma
is proved.

A. Proof of Lemma 8.12

We admit the following lemma for the moment and complete the proof of Lemma 8.12
first.

Lemma A.1. There exists constant C > 0 such that

jL.x; y/j �
C

hxi.1C jxj C jyj/3
: (A.1)

Proof of Lemma 8.12. By the change of variables y D .1C jxj/z and by integrating
over the spherical variables first, we have

jLu.x/j � C

Z
R4

ju..1C jxj/z/jdz

.1C jzj/3
D C3

1Z
0

Mjuj..1C jxj/r/r
3dr

.1C r/3
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where 3 is the surface measure of S3. Then Hölder’s inequality impliesZ
R4

Mjuj..1C jxj/r/
pdx D 3

1Z
0

Mjuj..1C �/r/
p�3d�

� 3

1Z
1

.Mjuj.�r//
p�3d�

� 3r
�4

1Z
r

Mjuj.�/
p�3d� � Cr�4kukpp :

It follows by Minkowski’s inequality that for 1 < p < 4

kLukp � C3

1Z
0

kukpr
3� 4

p dr

.1C jr j/3
� C 0kukp:

This completes the proof of Lemma 8.12 and, hence, of Lemma 8.11.

Proof of Lemma A.1. Denote �a.j�j/, etc. by �a.�/, etc. It suffices to show (A.1) for
the convolution of the Fourier transforms of

f1.�; �/ D
��a.�/��a.�/

j�j C j�j
; f2.�/ D

��a.�/

j�j
; f3.�; �/ D

��a.�/��a.�/

j�j2 C j�j2
;

which we denote by L.x; y/ again. By the rotational symmetry and homogeneity we
have that

j Of2.x/j � C hxi
�3; j Of3.x; y/j � C.hxi

2
C hyi2/�3: (A.2)

Lemma A.2. For a > 0, there exists a constant C > 0 such that

j Of1.x; y/j � C hxi
�2
hyi�2.hxi C hyi/�3: (A.3)

Proof. By following the argument in [26, pp. 61-62], we obtain“
R8

eix��iy�

j�j C j�j
d�d� D

1Z
0

�Z
R4

eix��t j�jd�

��Z
R4

e�iy��t j�jd�

�
dt

D
c4

.jxj2 C jyj2/
7
2

1Z
0

s2ds

.s4 C s2 C F 2/
5
2

;
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with

0 � F D
jxjjyj

jxj2 C jyj2
�
1

2
:

The last integral is bounded by
R1
0
s2.s2 C F 2/�

5
2ds D CF �2 and“

R8

eix��iy�

j�j C j�j
d�d��j � j

C

jxj2jyj2.jxj C jyj/3
:

It follows that

j Of1.x; y/j � C

“
R8

j O�a.x � z/ O�a.y � w/j

jzj2jwj2.jzj C jwj/3
dwdz �

C

hxi2hyi2.hxi C hyi/3
:

Lemma A.3. For a > 0, there exists a constant C > 0 such that“
R8

eix��iy�
��a.j�j/��a.j�j/

.j�j C j�j/j�j
d�d��j � j

C

hxi3hyi.hxi C hyi/2
: (A.4)

Proof. By (A.2) and (A.3), it suffices to proveZ
R4

dz

hzi2.1C jxj C jzj/3hy � zi3
�

C

hxihyi.hxi C hyi/2
: (A.5)

Let�1D¹jy � zj � jyj=2º,�2D¹jzj � 2jyjº and�3D¹jyj=2< jy � zj; jzj � 2jyjº
so that R4 D �1 [ �2 [ �3. Denote the integrand of (A.5) by F.x; y; z/. Since
jyj=2 � jzj � 3jyj=2 on �1, by using polar coordinates we have

Z
�1

F.x; y; z/dz �

jyj=2Z
0

r3dr

hyi2.1C jxj C jyj/3hri3
�

C

hyi.1C jxj C jyj/3
:

Since jy � zj � jzj=2 on �2,Z
�2

F.x; y; z/dz �

Z
jzj>2jyj

dz

hzi5.1C jxj C 2jyj/3
�

C

hyi.1C jxj C jyj/3
:

Since jyj=2 < jz � yj � 5jyj=2 on �3,

Z
�3

F.x; y; z/dz �
C

hyi3

2jyjZ
0

rdr

.1C jxj C r/3
�

C

hyihxi.1C jxj C jyj/2
:

Summing up, we obtain (A.5).
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Proof of Lemma A.1. By (A.2) and (A.4), it suffices to showZ
R8

dwdz

.hx � wi C hy � zi/6hwi3hzi.hwi C hzi/2
�

C

hxi.1C jxj C jyj/3
:

Denote the integrand by F D F.x;y;w; z/ and split R4w D�1 [�2 [�3 and R4z D

�01 [�
0
2 [�

0
3 where

�1 D ¹w W jw � xj � jxj=2º .then jxj=2 � jwj � 3jxj=2/I (A.6)

�2 D ¹w W jxj=2 < jw � xj � 2jxjº .then jwj � 3jxj/I (A.7)

�3 D ¹w W jw � xj � 2jxjº .then 2jwj=3 � jw � xj � 2jwj; jwj � jxj/I (A.8)

�01 D ¹z W jz � yj � jyj=2º .then jyj=2 � jzj � 3jyj=2/I (A.9)

�02 D ¹z W jyj=2 < jz � yj � 2jyjº .then jzj � 3jyj/I (A.10)

�03 D ¹z W jz � yj � 2jyjº .then 2jzj=3 � jz � yj � 2jzj; jzj � jyj/: (A.11)

Here the remarks in the parentheses are obvious except possibly for the first ones for
�3 and�03. We prove the one for�3. Since jwj � jxj, jw � xj � jwj C jxj � 2jwj; if
jwj > 3jxj, then jw � xj � jwj � jxj > 2jwj=3; if jwj � 3jxj, then jw � xj � 2jxj �
2jwj=3.

We shall show separately for 1 � j; k � 3 that

Ljk.x; y/ D

Z
�j��

0
k

F.x; y;w; z/dwdz �
C

hxi.1C jxj C jyj/3
: (A.12)

The proof is elementary and is similar for all of them. Thus, we shall be a little sketchy
in what follows.

(11) We have (A.6) and (A.9) for .w; z/ 2 �1 ��01 and

L11.x; y/�j � j
1

hxi3hyi.1C jxj C jyj/2

jxj=2Z
0

jyj=2Z
0

r3�3drd�

.1C r C �/6
:

The integral is bounded by a constant times

1

4

jxj4Z
0

jyj4Z
0

d�d�

.1C � C �/
3
2

D .1C jxj4/
1
2 C .1C jyj4/

1
2 � .1C jxj4 C jyj4/

1
2 � 1;

which is bounded by C hxi2hyi2.hxi2 C hyi2/�1 and (A.12) for L11.x; y/ follows.



A. Galtbayar and K. Yajima 350

(12) By virtue of (A.6) and (A.10) for .w; z/ 2 �1 ��02,

L12.x; y/ �
C

hxi3

Z
�1��

0
2

Cdwdz

.1C jx � wj C jyj/6hzi.1C jxj C jzj/2

D
C

hxi3

� Z
�1

dw

.1C jx � wj C jyj/6

�� Z
�0

2

dz

hzi.1C jxj C jzj/2

�

D
C

hxi3
I1.x; y/I2.x; y/

where definitions should be obvious. Then,

I1.x; y/ D 3

jxj=2Z
0

r3dr

.1C r C jyj/6
� C

jxj4

hyi2.hxi4 C hyi4/
: (A.13)

I2.x; y/ � C

3jyjZ
0

�2d�

.1C jxj C �/2
�

C jyj3

.hxi2 C hyi2/
: (A.14)

and (A.12) for L12.x; y/ follows.
(13) Since jxj=2 � jwj � 3jxj=2 on �1, we have

L13.x; y/ �
C

hxi3

Z
�0

3

� Z
�1

dw

.1C jx � wj C jy � zj/6

�
dz

hzi.1C jxj C jzj/2

The dw-integral is equal to I1.x; y � z/ of (A.13) and 2jzj=3 � jy � zj � 2jzj for
z 2 �03. It follows that

L13.x; y/ � C jxj

Z
jzj>jyj

dz

hzi3.1C jxj C jzj/6
�

C

hxi.1C jxj C jyj/3
:

(21) By using (A.7) and (A.9) for .w; z/ 2 �2 ��01, we have

L21.x; y/ �

Z
�2��

0
1

Cdwdz

.1C jxj C jy � zj/6hwi3hyi.1C jwj C jyj/2

D
C

hyi

� Z
�2

dw

hwi3.1C jwj C jyj/2

�
I1.y; x/

�
C

hxi.1C jxj C jyj/3
:
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(22) We have

L22.x; y/ �
C

.1C jxj C jyj/6

Z
�2��

0
2

dwdz

hwi3hzi.1C jwj C jzj/2

�
C

.1C jxj C jyj/6

Z
�2��

0
2

dwdz

hwi3hzi3

�
C jxjjyj

.1C jxj C jyj/6
�

C

hxi.1C jxj C jyj/3
:

(23) Use (A.7) and (A.11) and polar coordinates w D r� and z D �!. Then

L23.x; y/ � C

Z
jzj>jyj

� Z
jwj�3jxj

dw

hwi3.hwi C hzi/2

�
dz

hzi.1C jxj C jzj/6

�

1Z
jyj

C�3d�

.1C �/2.1C jxj C �/6
�

1Z
jyj2

Cdr

.1C jxj2 C r/3

�
C

hxi.1C jxj C jyj/3
:

(31) For .w; z/ 2 �3 ��01, we have (A.8) and (A.9). Then, by using (A.13),

L31.x; y/ � C

Z
�3

� Z
�1

dz

.1C jwj C jy � zj/6

�
dw

hwi3hyi.1C jwj C jyj/2

D

Z
�3

I1.y; w/dw

hwi3hyi.1C jwj C jyj/2
�
C jyj4

hyi

Z
jwj>jxj

dw

hwi5.1C jwj C jyj/6

�
C jyj3

.1C jxj C jyj/6

Z
jwj>jxj

dw

hwi5
�

C

hxi.1C jxj C jyj/3
:

(32) For .w; z/ 2 �3 ��02, we have (A.8) and (A.10) and

L.x; y/ �

Z
�3

� Z
�0

2

dz

hzi.1C jwj C jzj/2

�
dw

.1C jwj C jyj/6hwi3
:

Estimating the dz-integral by I2.w; y/ by using (A.14), we obtain

L.x; y/ �

Z
jwj>jxj

C jyj3dw

.1C jwj C jyj/8hwi3

�
C jyj3

.1C jxj C jyj/7
�

C

hxi.1C jxj C jyj/3
:
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(33) For .w; z/ 2 �3 ��03, we have (A.8) and (A.11). Hence,

L.x; y/ �

Z
jzj>jyj

� Z
jwj>jxj

Cdw

.1C jwj C jzj/8hwi3

�
dz

.1C jzj/

�

Z
jzj>jyj

Cdz

.1C jzj/.1C jxj C jzj/7
� C

1Z
jyj

dr

.1C jxj C r/5
:

This is bounded by C hxi�1.1C jxj C jyj/�3 and completes the proof.
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