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The L?-boundedness of wave operators
for fourth order Schrédinger operators on R*

Artbazar Galtbayar and Kenji Yajima

Abstract. We prove that the wave operators of the scattering theory for the fourth order Schro-
dinger operator A% + V(x) on R* are bounded in L? (R*) for the set of p’s of (1, c0) depending
on the kind of spectral singularities of H at zero which can be described by the space of bounded
solutions of (A2 + V(x))u(x) = 0.

1. Introduction

Let H =A%+ V, A =09%/0x? + --- + 02/0x2, be the fourth order Schrodinger
operator on R* with real potentials V(x) which satisfy the short-range condition that

sup (1 + |y|)8||V(x)||Lq(|x_y|<1) <oo forag >1land§ > 1. (1.1

yeR4
The operator H is defined via the closed and bounded-from-below quadratic form
q) = [pa(|Au(x)* + V(x)[u(x)[*)dx with domain D(q) = H*(R*) and is
selfadjoint in LZ(R*) (cf. [18]). The spectrum of H consists of the absolutely continu-
ous (AC for short) part [0, co) and the bounded set of eigenvalues which are discrete
in R \ {0} and accumulate possibly at zero; it generates a unique unitary propagator
¢! on L2(R?) and the wave operators W defined by the strong limits in L?(R*)

Wi = lim e'He ™o fy = A?
t—+o00
exist and Range Wy = L2.(H), the AC subspace of L?(R*) for H ([20]). They are
unitary operators from L?(R*) to L2,(H).
The wave operators satisfy the intertwining property: for Borel functions f on R,

S(H) P (H) = Wy f(Ho)WZ, (1.2)
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where P,.(H) is the projection to L2.(H). It follows that, if Wy are bounded in
LP(RY),

IWaullpr®sy < Collullprmsy. € L*@R*)NLPERY (1.3)
forpel C[l,o0]land I* ={p/(p—1): p € I}, then
| f(H) Poc(H) B,y < C|| f(Ho)lB(L4,L7)

for p € I and g € I"* with the constant C independent of f and L?-mapping prop-
erties of the AC part of f(H), f(H)P,(H) may be deduced from those of f(Hy)
which is the Fourier multiplier by (|£|*). Here for Banach spaces X and ¥, B(X, ¥)
is the Banach space of bounded operators from X to ¥ and B(X) = B(X, X).

In this paper, we study whether or not W, satisfy (1.3) for p in a certain range of
pel,o0.Forl < p <oo,and D C R*, |luLr(p) is the norm of L? (D), |lull, =
)l » g4y, lull = llu|l2 and (u, v) is the inner product of L?(R*); the notation (1, v)
will be used whenever the integral fR4 u(x)Tx)dx makes sense, e.g., for u € §(R*)
and v € §'(R%);

L2 (R = {u fullp = sup{ux)|Lrque-yi<a) 1 ¥ € R*} < oo},

We define the Fourier transform £ u(€) or #(€) of u by

/e_ixgu(x)dx;

R4

@®) = Fu®) = ;5.3

My is the multiplication operator with f(§); f(D) := ¥*M;¥ is the Fourier mul-
tiplier. We choose and fix smooth functions y<(A) and y>(A) on [0, co) such that

I, A<,

A A) =1
0. A1>2. 1<) + =)

x<(A) = {
and let, fora > 0, y<4(A) = y<(A/a) and y>,(1) = y>(A/a).
We define the “high” and the “low” energy parts of W respectively by

W:I:Xza(|D|) and W:I:XSa(|D|)~

For the high energy part we have the following theorems. Let (x) = (1 + |x|?)'/? for
xeR? deN.

Theorem 1.1. Suppose V € LI (R*) for a q > 1 and (log |x|)?V € L' (R*). Let

loc,u
a>0and 1 < p < co. Then, there exists a constant co such that Wi x>4(|D|) are

bounded in L? (R*) whenever V satisfies ”V”Lffm,u + |[{log |x])2V |1 < co.
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Remark 1.2. In Theorem 1.1, V' does not in general satisfy (1.1), however, for any
a>0, |V|% is Hy-smooth on [a, c0) in the sense of Kato (Lemma 2.2) and, if ¢ is
small enough, it is also H -smooth on [a, c0) and W4 x>, (| D]) exist ([17,24]).

The same result holds for larger V if V' decays faster at infinity.

Theorem 1.3. Suppose that (x)3V € L' (R*) and V € L1(R*) for a q > 1. Suppose
further that H has no positive eigenvalues. Then, for any a > 0, Wx y>4(|D|) are
bounded in L? (R*) for 1 < p < oc.

We remark that H can have positive eigenvalues for “very nice” potentials V'
([8,22]) in contrast to the case of ordinary Schrédinger operators —A + V' which
have no positive eigenvalues for the large class of short-range potentials ([15, 19]).
We refer to [8,22] and reference therein for more information on positive eigenvalues
for (—A)™ +V,m =2,3,.... We shall assume in this paper that positive eigenvalues
are absent from H. For small V' as in Theorem 1.1, H has no positive eigenvalues.

The range of p for which the low energy parts Wi y<,(|D|) are bounded in
L?(R*) depends on the space No,(H ) of bounded solutions of (A2 + V(x))u = 0:

Noo(H) :={u :u € L¥°[R*) : (A% + V(x))u = 0}.

We call ¢ € Noo(H) zero energy resonance of H. In Section 6 we shall prove the
following lemma which is a version of the result in [14].

Lemma 1.4. Suppose (log|x|)?(x)3V € (L' N L9)(R*) for a g > 1. Then, Noo(H)
is finite-dimensional real vector space. For ¢ € Neo(H ), there exist co € C, a € C*
and symmetric matrix A such that

a-x Ax-x _
(0()6) = —Co + W + W + 0(|X| 3) (|x| — OO) (14)

We call ¢ € Noo(H) \ {0} s-wave, p-wave, or d-wave resonance, respectively, if

co#0,co=0anda#0orco=0,a=0and A4 #0;ifco =0,a =0, A =0, then
¢ 1is zero energy eigenfunction of H.

Theorem 1.5. Assume that H has no positive eigenvalues. Let ¢ > 1.
(1) Suppose that (x)*V e (L' N L9)(R*). Let Noo(H) = {0} or Noo(H) consist
only of s-wave resonances. Then, Wy are bounded in L? (R*) for 1 < p < oo.
(2) Suppose that {log |x|)?(x)3V e (L' N L9)(R*). Let Noo(H) consist only of
s- and p-wave resonances. Then, Wy are bounded in LP (R*) for1 < p < 4
and are unbounded if 4 < p < oo.
(3) Suppose that (log|x|)?({x)'?2V e (L' N LY)(R*). Let Noo(H ) contain d -wave
resonances. Then, Wy are bounded in L? (R*) for 1 < p < 2.
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(4) Suppose that (log |x|)?(x)'2V € (L' N L9)(R*). Let Noo(H) consist only of
s-, p-wave resonances and zero energy eigenfunctions. Then, Wy are bounded
in LP(R*) for1 < p < 4.

Remark 1.6. We believe that W are unbounded in L? (R*) for p > 2 in (3) and for
p > 4 in (4), however, we were not able to prove this. The end point cases p = 1
and p = oo are out of reach of the theorems, whose proof heavily depends on the
harmonic analysis machinery.

We rephrase Theorem 1.5 in terms of the singularities of the resolvent R(A%) =
(H — A%~ at A = 0, which is more directly connected to the proof given below. For
stating this version of the theorem, we need some more notation. In what follows, we
assume u € Dy = {u € S(R*) : 11 € C{(R* \ {0})} unless otherwise stated explicitly;
Dy is dense in L?(R*) for 1 < p < o0o.Forz € C \ [0,00) and CT = {z € Iz > 0},

Ro(z) = (Hp—2)"" and Go(z) = (A —2*)7"
respectively are resolvents of Hy and —A;
RE(MY = 181&1 Ro(A*+ie) and Go(A) = 18133 Go(A +ie)
for A > 0.Forz € ((_?++ ={zeC:Nz>0,3z>0},z #0, we have

Ro(zHu(x) = ;?(Go(z) —Go(iz))u(x), u € Dx. (1.5)

It is well known (e.g., [1]) that Go(z), z € (C_?++, is the convolution with

1 eXEdE _ i( z

F T Gyt ) -2 T
R4

SEe. e

where H 1(1) (z) is the Hankel function and its series expansion shows

1 22 en loglx|\ (=z%[x]?/4)"
G() = ——— + — Cn .
2(0) 4m2|x|? + 4w ’;(g(z) + 2w 2w ) nl(n + 1)!

1.7

Herec, = 1/Q2(n + 1)) + Z}l=1 j~1 and, with the principal branch,

1 z y i
()
g = -3 leel5) — 5, T4
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y being Euler’s constant. Thus, R(')F (A*), A > 0, is the convolution with
1
Ri(x) = 5 (Ga(x) = Gia(x)) = R(Alx]).

: /\2 n AZ n
R = —Z(g() ——l—)( /9 32712 W/ )

nl(n + 1)! nl(n + 1)

n,even
by virtue of (1.7). Reordering (1.8) in the descendent order as A — 0, we obtain

10ngl A2 Al A x| log x|

Rax) = &) = 447 3.4 6- 4472
=:go(H) + No(x) + A2G2(x) + A*3,(M)Ga(x) + A4 Gy (x) + -+
(1.9)
| .
g = (s +35-3). n=01...

where, if n is odd, G2, ;(x) = 0 and no factor g,, (A1) in front of G,,(x) appears.
We denote the convolution operators with No(x), G2,(x), G2,,1(x) by No, G2y,
Gap 1 respectively forn = 1,2, ... and with v(x) := |V(x)|%,

N” = MyNoM,, G = MyGonM,. G = MyGoy i M,
Letsigna = 1 ifa > 0 and signa = —1 ifa < 0;
U(x) =signV(x) and w(x) = U(x)v(x)
so that V(x) = v(x)w(x). Define go(A) = |V [|1&o(A) and ¥ = [jv]|5 v;
P=3®%., Q=1-P, Ty=My+N>.
Define the function M+ (1#) of A > 0 with values in B(L?) by
MT(AY) = My + MyRF (A M,,.
Here and hereafter we simply write L2 for LZ(R*). From (1.9) we have
MT(OH) = go(WP + To + 226G + 245, (MG + 214G +- (1.10)

It follows ([20]) from the absence of positive eigenvalues of H that under the short
range condition (1.1) MT(A*)~! exists in B(L?) for A > 0 and is locally Holder
continuous. The operator M, M+ (A*)~! M,, will play the central role in the paper and
we introduce the short notation

Q,(A) = MyMT(AH ™I M,. (1.11)
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Let RT(A*) = R(A* +i0). Then, as is well known, for A > 0, we have
RT(A* = RF(AY) — RF (AHQ, (V) RF (AY). (1.12)

The following Definition 1.7 is due to [14] where it is tacitly assumed that relev-
ant operators are bounded in appropriate spaces (see Lemma 2.1); KerQTo Q|2 is
finite-dimensional (cf. Lemma 6.1), where for an operator A on L? and A-invariant
subspace K C L2, Al is the part of A in #. As is seen from (1.10), (1.11), and
(1.12), the kind of singularities of H at zero as defined below is closely related to the
singularities of MT(14)~! and RT(A%) at A = 0.

Definition 1.7. (1) We say that H is regular at zero if QTo Q|2 is invertible and
is singular at zero otherwise. If H is singular at zero, let S; be the projection in Q L2

to KerQToQlpp2-

(2) Suppose that H is singular at zero.

(2-1) We say H has singularity of the first kind if Ty := S1ToPToS1|g, 12 is
invertible.

2-2) If Ty |S1L2 is not invertible, let S, be the projection in S; L? to KerT} |S1L2-
We say H has singularity of the second kind if T, := SzGév)S2| S,12 18
invertible.

(2-3) If T»|g, 12 is not invertible, let S3 be the projection in S, L? to KerT>| S,L2-
We say H has singularity of the third kind it T3 := S3G " S3| g, » is invert-
ible.

(2-4) If T3 is not invertible, we say H has singularity of the fourth kind. Let Sy
be the projection in S3L? to KerT3|g,12 and Ty := S4Givl)MvS4|S4L2.

It is known ([14]) that T} is invertible. We have Q =: So D S; D --- D S4. We
denote by the same letter the extension of S; to L? which is defined as the zero
operatoron L2 © S i L?. The kind of singularities of H at zero is closely connected to
the structure of Noo(H ). The following lemma is a slight improvement of the result
of [14] and will be proved in Section 6.

Lemma 1.8. The following statements hold.
(1) Let (log|x|)?V € (L' N L9)(R*) for a ¢ > 1. Then H is singular at zero if
and only if Noo(H) # {0}. In this case, the map ® defined by
D(5) = NoMyZ — [lI7*(PTog.v). & € S1L? (1.13)

is isomorphic from S1L? to Neo(H) and ®~1(¢) = —we, ¢ € Noo(H).

(2) LetV be as in (1). Suppose H has singularity of the first kind, then rank S1=1
and Noo(H) consists only of s-wave resonances.
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(3) Let (log |x|)?(x)3V € (L' N L9)(R*). Then, ® maps { € S1L?> © S,L?,
S,L? © S3L2, S3L2 © S4L? and S4L? to s-wave, p-wave, d-wave reson-
ance and zero energy eigenfunction, respectively.

By virtue of Lemma 1.8, Theorem 1.5 can be rephrased as follows.

Theorem 1.9. Assume that H has no positive eigenvalues. Let g > 1.

(1) Suppose (x)*V € (L' N L9)(R*). If H is regular or has singularity of the
first kind at zero, then Wy are bounded in L? (R*) for 1 < p < oc.

(2) Suppose (log|x|)?(x)8V € (L' N L9)(R*). If H has singularity of the second
kind at zero, then Wy are bounded in L? (R*) for 1 < p < 4 and are unboun-
ded for4 < p < oc.

(3) Suppose (log |x|)?(x)12V e (L' N L9)(R*). If H has singularity of the third
kind at zero, then Wy are bounded in L? (R*) for 1 < p < 2.

(4) Suppose (log|x|)?(x)12V e (L' N L9)(R*). If H has singularity of the fourth
kind at zero, then Wy are bounded in L? (R*) for 1 < p <2 if T3 # 0 and
for 1 < p < 4 if otherwise.

Because of the intertwining property (1.2), the problem of L? boundedness of
wave operators has attracted interest of many authors and, for ordinary Schrodinger
operators H = —A + V on R, various results have been obtained which depend on
the dimension d and on the singularities of H at zero. For some more information,
we refer to the introduction of [35], [34] and the references therein, and [2, 3, 5,9, 10,
29-33] among others.

For H = A? 4 V(x), the investigation started only recently and the following
results have been obtained under suitable conditions on the decay at infinity and the
smoothness of V(x) in addition to the absence of positive eigenvalues of H. When
d =1, W4 are bounded in L?(R') for 1 < p < oo but not for p = 1 and p = oo;
they are bounded from the Hardy space H' to L' and from L' to L} . ([22]); if
d =3 and Ny := {u € L®°(R3) : (A2 + V)u = 0} = 0, then W4 are bounded in
LP(R3) for 1 < p < oo ([111);if d > 5 and Neo 1= Nesolu € (x)~FF2HEL2(RY) :
(A2 + V)u = 0} = 0, then they are bounded in L?(R%) forall 1 < p < oo ([6,7]).
However, no results on L?-boundedness of Wi are known when d = 2, 4. We should
mention, however, detailed study on dispersive estimates has been carried out by Li,
Soffer, and Yao [21] for d = 2 and Green and Toprak [13, 14] for d = 4, and we
borrow some results from [13, 14].

The rest of the paper is devoted to the proof of the theorems. We explain here the
basic idea of the proof, introducing some more notation and displaying the plan of the
paper. Various constants whose specific values are not important will be denoted by
the same letter C and it may differ from line to line. We prove the theorems only for
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W_ because the complex conjugation changes W_ to W,. We often identify integral
operators with their kernels and say integral operator K (x, y) for the operator defined
by K(x,y); we say u(A), A > 0 is good multiplier (GMU for short) if w(|D]) is
bounded in L?(R*) for all 1 < p < oo; if [u)(A)] < CA™/ for 0 < j < 3, then
1(A) is a GMU ([26], p.96).

In Section 2 we prove that operators in Definition 1.7 are bounded (Lemma 2.1)
and give some estimates on the remainders of the series (1.9) (Lemma 2.2). We then
prove (Lemma 2.3) that the spectral projection T1(1) for Hy at A* defined by

OM)u(x) := % lsiﬁ)l(Ro()L4 —ig) — Ro(A* +ie))u(x) (1.14)

satisfies that, with 7, being the translation by a € R*: t,u(x) = u(x — a),

IA)u(x) = /e"“"’ﬁ(/\a))da) = (IT(A)7t—»u)(0), (1.15)

S3

1
(27)?

which attributes the x-dependence of TT(A)u(x) to that of 7_,u and simplifies some
estimates in later sections (see e.g., (1.22)), and that IT(1) transforms the multiplica-
tions to the Fourier multipliers,

SAOTMDu(x) = Q) f(IDu(x), (1.16)

which is particularly useful when f(1) is GMU (see e.g., Lemma 1.12). Note that, for
u € Dy, II(A)u(x) = 0 for A outside a compact interval of (0, co) and [TT(A)u(x)| <
_3 . .
C (x)™2 uniformly with respect to A € (0, c0).
We then introduce the stationary representation formula of W_,

W_u =u— / RFf(AH@Q,(M)TI(MNur’d A (1.17)
0

(cf. [24]) which is valid under assumptions of the theorems (except Theorem 1.1
where the restriction to the high energy part is necessary) and is the starting point
of the proof of the theorems. As we shall exclusively deal with W_, we shall often
omit the superscript + from R(}L (A*) and MT(A*). Atthe end of Section 2, we prove
that the Fourier multiplier defined via R (1) satisfies

[RUYIIDDx=a(IDDIB@zry = C(A + [log|yl)), 1< p <oc. (1.18)

We remark that (7)u and Q(T'(1)) in the following definition are the operators
defined by the integral in the stationary formula (1.17) with 7" and 7' (1) in replace of
@, (1) respectively.
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Definition 1.10. (1) We say an operator is good operator (GOP for short) if it is
bounded in L?(R*) forall 1 < p < oo.

(2) An operator T or operator-valued function T (1) of A > 0 is good producer
(GPR for short) if the following operators are GOP respectively:

Q(Tu := /RO(A“)TH(A)uA?’dA, (1.19)

0
o0

QTM))u = / Ro(AY T(A) TI(M)uAr3d . (1.20)
0

In Section 3 we introduce the operator K and prove that it is a GOP (Lemma 3.4):

Ku(x) = /m(x)(n(k)u)(())ﬁdx. (1.21)

0

The operator K is of fundamental importance: When T = T (x, y), 2(T) is the super-
position of translations of K with weight T'(x, y),

Q(THu(x) = // T(y,z)(tyKt_;u)dzdy, (1.22)
RS

and Q(T) becomes GOPif T € £ := L1(R* x R*):
1Q(TMull, < CIT |g1llullp, (1.23)

(cf. Lemma 3.5). This also implies

STl < G / RITOW) g1 ullpd A, (1.24)
0

where £ (1) = (d7 f/dA7)(A) for j = 0,1, ... (see Proposition 3.6 for the precise
statement). These estimates willl be repeatedly used in the following sections.

Definition 1.11. We say T'(A, x, y) is variable separable (VS for short) if it has
the form T'(A, x, y) = Z;VZI wji(A)T;(x,y); itis good variable separable (§V S for
short) if 44; are GMU and Tj(x,y) € £ forj = 1,...,N.

The following is a direct consequence of (1.23).

Lemma 1.12. I[f T(A,x,y) is §VS, then T(A) is GPR.
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In Section 4 we shall prove Theorem 1.1 and Theorem 1.3. We have from (1.16)
and (1.17) that

Wotoa(1Dh = toalIDDu = [ RGO Loa A, (125
0

Formally, expanding @,(1) as @,(A) = V — VRo(A*)V + --- produces the well-
known Born series for W_y>,(|D]):

W_xza(IDDu = yza(|DDu = Wix=a(IDDu +---, (1.26)

Wax=a(ID])u =/Ro(l“)(MVRo(/\“))”_lMVH(A)MPXza(A)dl- (1.27)
0

Then, W) x>q(|D|)u = Q(My) x>4(|D]) and, since My is the integral operator with
the kernel V(x)8(x — y) € £!, Wi y>4(|D]) is GOP by (1.23). For n = 2, we have
WarsaDD = [ 0, 0)RAVIDDLa(Dltyudy (128

R4

with V2 (x) = V(x)V(x — y). Then, (1.23) with T = M, and (1.18) yield that

[W2x=a(IDDull, < C / VOV — )| + [log|y[Dull,dxdy
RS
< C(IV Iz, + Iflog )2V I lull- (1.29)

Iterating this procedure, we shall show that forn = 3,4, ...
IWaxza(IDDull, < C"(1VlLg , + lI(log X2V L))" [l (1.30)

with C > 0 independent of V and n. Thus, if C(||V||Lf1.u + [[{log |x|)2V||1) < 1,
the series (1.26) converges in B(L?) for 1 < p < oo, which proves Theorem 1.1.
For proving Theorem 1.3, we expand @, (1) with the remainder:

N-—1

QM) = ) (=1)"My(Ry(AH)My)" + (-D¥ Dy (1), (1.31)
n=0

DN(A) = My(My RoAHMy)N (1 + My Ro(A*)My) ™' M. (1.32)

The sum on the right of (1.31) produces Z,ivz_ol (—1)"W, x>a(|D|) which is GOP
by (1.30). The decay of R, (x) as A — oo yields

. _2N . .
10 DN W) gr < CA™ 4 () F D4V |1 + VL)Y, j=0,1,2,3
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forl <g<4/3and4 <q' =¢q/(qg—1) < co. If we take N such that 2N/qg’ > 3,
then y>4(A)Dn(A) becomes GPR for any a > 0 by (1.24) and Theorem 1.3 follows.

In Section 5 we begin studying the low energy part and prove Theorem 1.9 for the
case that H is regular at zero. From (1.17), we have

oo

W x<a(IDDu = z<a(|D)u — / Ro(AH)@y(MTI(MuA> y=a(V)d.  (133)

0

Definition 1.13. For a Banach space X, an integer ¥k > 0 and a function f(A) > 0
defined for small A > 0, say, for A € (0,a),a > 0, (Dglg)(f) is the space of X -valued
Ck-functions of A € (0, a) such that

I(d/dA T x < AT fM)], j=0,....k.
We shall abuse notation and write (9515)( f) also for an element of (Dgg) f).
We write R 5, (x) for the remainder of (1.9): R o(x) = R, (x) and
Rpon(X) = 22" 35, (M) Gan(x) + A" Gopy(x) + -, ,n=1,2,...; (1.34)
R, (A*) is the convolution with R 5, (x) and Rg;l) (A" = MyR5, (A M,:
Ran(A*) = 2%"8, (M) Gan + A" Gopg + -,
RO = My 2, () Gan + 27" Gayg + -+ )My, (1.35)
where Gy is the identity and G ;(x) = No(x). By virtue of Lemma 2.2 and (1.10),
MO = To + goM P + 126 + RP (). RP () € 08 (Wt log ).

If H is regular at zero, then we obtain (Lemma 5.4) via Feshbach formula that, for
small A > 0, with Dg = Q(QTo Q)10 € £' and L of rank two,

(To + 20N P)™" = h(XA)Lo + Do, h(X) = (go(A) +c1)™".

It follows via the perturbation expansion that y <, (A)@,(A) is the sum of §VS§ and
(le) (A*log 1) and, W_y<,(|D|) is GOP for small @ > 0 by Proposition 3.6.

We begin studying the case when H has singularities at zero in Section 6 where
we prove Lemmas 1.4 and 1.8. If H is singular at zero, then M (A%)™! is singular at
A = 0 and the singularities become stronger as the order of the type of singularities
increases from the first to the fourth. We shall study them by repeatedly and induct-
ively applying Lemma 7.1 due to Jensen and Nenciu.
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In Section 7 we shall prove Theorem 1.9 when the singularity is of the first kind.
Then, @, (1) has logarithmic singularity at zero and, in terms of the basis vector { of
S1L? which is one-dimensional,

Qy(A) = (alogA 4+ Db)(v¢ ® v¢) (modulo GPR),

and hence, the integral of (1.33) becomes, modulo GOP,

o0

Quowatt = / RO (00 (x) (08, I W)@ log A + B)A* ya (WA, (136)
0

The point here is that the singularity of a log A + b can be cancelled by the property
/ v(x)¢(x)dx =0 (1.37)
R4

of ¢ € §1L?: equation (1.37) implies that IT(A)u(x) in (v, TI(A)u) of (1.36) may be

replaced by IT(A)u(x) — IT(A)u(0) and Taylor’s formula

ez/lxa) _

|
M IS

1
iAx / wret* 4g (1.38)
=1 0
implies that
1

4
T u(x) — T(A)u(0) = Z [ TI(A) Ryu)(0x)d, (1.39)

0

where R;, 1 < j < 4 are Riesz transforms. We observe that the factor A on the right
of (1.39) produces a GMU p(A) := A(alog A + b) and Qo 41 becomes

o0

4 1
> [ ( / RoG)((00) ® (xyoE) I (x_gx Ripe(| D) (0)43 dx)de (1.40)
0

=1

Then, recalling the definition (1.21) of K, we obtain

4 1

nai(r) = =i Y [ ( / (vi)(y)Zz(vé)(Z)fy(Kf—eszu(lDI)M)(X)dde)d9
=1 0 RS

and (1.23) and Minkowski’s inequality imply for all 1 < p < oo that

4

IQiowatlly < Y 10Nz @) g1 | Kl ry | Rin( DDlIsewr) lullp.
j=1
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In Section 8, we prove Theorem 1.9 when H has singularity of the second kind.
Then, @,(A) has much stronger singularity at zero and with the basis 1, ..., {; of
S,L?

QM) =) A0k ® &) (modulo GPR),
J.k=1

where 7,; are constants. Recall that { € S,L? also satisfies (1.37). For dealing
with this A~2-singularity, we expand ¢’**® to the second order in (1.38) so that
IM(A)u(x) — II(A)u(0) becomes

4

4 1
> idx (MM Ru)(0) = > xmx A / (1 — O)(TI(A)T—gx R Rju)(0)d6. (1.41)
0

=1 m,l=1

Thanks to the factor A? which cancels A~2-singularity, the second term of (1.41)
produces GOP for (1.33). The first term does ka:l ZLI Wg, jkiu(x), where

oo

Wg, jkiu(x) := i(sz,é“k)[(Ro(14)MvEj)(X)(H(A)Rlu)(O)/\ZXSa()t)d/\- (1.42)
0

Ignoring harmless factors i {x;v, {x) and R; and omitting the indices of (1.42), we
consider for w(x) = v(x)&(x), ¢ € S, L2,
oo
Wau =/Ro(l4)w(X)(H(l)u)(o)lz)(sa(k)dl- (1.43)
0
We multiply both side of (1.43) by y>4q(|D|) + x<4a(]D|) which is identity so

that Wau = y>44(|[D|)WBU + Y <aq(|D|)Wpu and move y>44(|D|) and y<a4(|D|)
inside the integral on the right. Let u(§) = y>44(/€])|&]™*. Then,

xz4a(| D) Ro(AH)w(x) = p(D)w(x) + A* (D) Ro(A o (x).

Thanks to the factor A4, the second member on the right-hand side produces GOP for
X>4a(|D|)Wp and the first one does the rank one operator

n(DDo)w, £, f(x) = F (x=a@IEITH ().

Here u(D)w(x) € LP(R*) for 1 < p < oo (cf. Lemma 8.8) and f € L9(R%) if and
only if 4/3 < ¢ < oco. Thus, y>4,(|D|)Wg is bounded in L?(R*) for 1 < p < 4
and is unbounded for p > 4, which already proves that W_ is unbounded in L?(R*)
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if p > 4. We then study y<44(]D|)Wpu. Since &(0) = 0, )(54u(|D|)R0(A4)a)(x) is

equal to
/ [ ok (/ e = gy 0

0 R4

4
It follows that

X<4a(|D)Wpu(x) = //zmw(z)rng Yu(x)dzdb,

0 R4

T e [El=aalED ) .
Yu(x) = / ( / o P dE ) (MO O za (W)
0 R4

(2 )4

Substitute

€| _ A N 1
[E[* =A% —i0  [E|* =A% —i0  (J&]+ D) (&> +A2)

in the d &-integral and recall (1.21). We obtain
Yu(x) = x<4a(ID)Ky<a(|DDu(x) + Lu(x),

where L is the integral operator with the kernel

e Ey (€] x<a (1)
d&d
Ly = // e + )&l + hinl 5™

By virtue of Lemma 3.5, y<4,(|D|)Ky<a(|D|) is GOP and we shall prove in
Appendix A that L is bounded in L?(R*) for 1 < p < 4. Hence, ¥ is bounded in
LP(R*) for1 < p < 4andsois y<aq(|D|)Wp. Thus, W_ is bounded in L?(R*) for
1 < p < 4 but unbounded for p > 4 if H has singularity of the second kind.

In Section 9, we shall study the case when H has singularities of the third or
the fourth kind at zero. Then leading singularities of @,(A) as A — 0 are of orders
of A™*(log A)~! and A~* respectively. However, they act in subspaces S3L? and
S4L? and functions ¢ in S3L2 and S;L? satisfy additional cancellation properties
that (x*v, ¢) = 0 for |o| < 1 and || < 2 respectively, which partly cancel the singu-
larities as previously. Thus, we can proceed by following the line of ideas of previous
sections, however, the argument becomes much more complicated. We shall avoid
outlining it here and proceed to the text as we do not want to make the introduction
too long.
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2. Preliminaries

2.1. Free resolvents

In this section we present some estimates related to R;r (A%) or the expansion (1.9).
We begin with the following lemma which in particular implies that operators that
appear in Definition 1.7 are bounded in L2. We denote by #, the Hilbert space of
Hilbert-Schmidt operators in L?2.

Lemma 2.1. Letqg > land j = 1,2,.... We have

INg”llses < CUIV g, + Ilog [x)?V [1). @.1)
1G5, < CIY V1. 2.2)
1G5 s, < CUXYY ViIza + [{log [x)> (x) ¥ Vl1). 2.3)

Proof. Letq’ = q/(q — 1). Then, Holder’s inequality implies that

/ V() (og |x — yI)2V()ldxdy 2.4)

[x—yl<2
< VIV g, 1108 111720y <y < CAVIT + 1V IZg ).

If |x — y| > 2, then log |x — y| < log(x) + log(y) and
/ [V(x)(log |x — y)?V(»)ldxdy < C|(log(x)*V 1|V |-
|x—y|=2

This proves (2.1). We omit the proof for (2.2) which is obvious and the one for (2.3)
which is similar to that of (2.1). [ ]

For 9, (x), Iz > 0, we have the integral representation ([4] 10.9.21):

00
zz|x|

1
g, (x) = / -t 2 ——lz|x|)2dt, (2.5)
2(27r)2F )|x|? J

where Z% is the branch such that Z% > (0 for z > 0. Thus, if we let

0
et

L/t 3

HA) = 3—/e_tt2 ——iA) dt, [JIA >0, (2.6)
4(2m)2T(3)A2 ) <2 )

then, R(A) = H(A) — H(iA) for A > 0 and

Ri(x) = H(A|x]) = H(iA|x]). 27
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Recall the definitions (1.34) and (1.35) for R 2,(x) and R;’; AYH,n=0,1,...
respectively.

Lemma 2.2. The following statements hold.

(1) For j =0,1,...,

(log Ax|)A™7, 0 < Alx| <1,

. 2.8)
Ix)/ (Alx)73. 1< Alx].

197 Ry (x)] < C; {

Q) IfV e L N L)R* for some g > 1 and 1 <r < 8/5, then M, is

loc,u
Hy-smooth on [a, 00) for any a > 0.

(3) Let j =0,...,2nand a > 0. Then, for0 < A < a,
18] Ry 20 (X)] < Cj (log A|x])A2" 7 |x ", (2.9)

where, if n is odd, (log A|x|) should be removed from the right.
(4) Let 0 < A < a. For the operator Rg,? (A%), we have

1d/dAY RS (A%, < €A~ (log A) | {x)*" (log [x[)?V [l (2.10)
where, if n is odd, (log A) and (log |x|)? should be removed from the right.
Proof. (1) For 0 < A|x| <1, (2.8) follows from (1.8). For A|x| > 1, (2.5) implies that
iy i _3 .
10, (A726 ()| < Cilxl/ (Alx[)72, j =0.1,...,
0] (A241(x))] < Ce Pl (Ax)"2, j=0,1,....

Then, (2.8) follows since Ry (x) = (2A%)71 (g1 (x) — G (x)).

(2) Since v € L? and H*(R*) C L>®(R*) by the Sobolev embedding theorem,
M, is Hyp-bounded. Let A > a. We estimate

My RS (A*) My |5, = / [V(x)Ri(x = y)*V(y)|dxdy
R4
by using (2.8). The integral over A|x — y| > 1 is bounded by C ||V ||?; since
(log Alx|) < Ce(A|x])™°

for any £ > 0 for A|x| < 1; the one over A|x — y| < 1 is bounded by

Coa™ / V@l sup / V(y)ldy
R4

xeR4 |X _y|6
lx—y|<1/a

)dx = CallVliza, IV Il
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Thus, ||MUR(J{()L4)MU||B(L2) < C for A € [a, o] for any a > 0 and by complex con-
jugation || M, Ry (A*) M, IB(z2) < C. Thus, My is Ho-smooth on [a, 00) in the sense
of Kato (see [24]).

(3) If A|x| < 1, then (2.9) is obvious. Let A|x| > 1 and A < a, then |x| > 1/a
and the right side of (2.8) is bounded by that of (2.9) if j < 2n. Let ézm, 2(x) denote
2™\ x|2™ for odd m and A?™ g, (A|x]|)|x|*™ for even m. Then for0 <m <n — 1 and
J <2n

107G om 2 (¥)] < CAP™ I (log Alx[)| x> < CA>"|x|*"

and R 2, (x) = R 0(x) — go(A|x]) — A2Ga(x) — -+ — GZ(n—l),A(x) also satisfies
(2.9) for A|x| > 1.

(4) By virtue of (2.9) and the estimate | log(A|x|)| < (logA)(log|x|), the obvious
modification of the proof of (2.1) implies (2.10). ]

For shortening formula, we define, for 1 < m < n,

Romoon(V) = A2, (A)Gom + -+ + A2"Gop .
RY) L (A) = My(A?" 3, (M) Gam + -+ + A2 Gop )M, 2.11)

2m—2n

where, if k is 0dd, G,¢; = 0 and no g4 (1) in front of Gy as previously.

2.2. Stationary representation formula

Lemma 2.3. Let T1(1) be the spectral projection defined by (1.14). Then, T1(A) sat-
isfies (1.15) and (1.16).

Proof. We express the right of (1.14) via Fourier transform, use polar coordinates and
change the variables. Then,

o0
: € do io%wa 1
0 S3

The first of (1.15) follows by Poisson’s formula. The second of (1.15) and (1.16) are
obvious from the first. ]

Under the condition of Theorem 1.3 or Theorem 1.5, M, is Ho%—compact
and My, Ry (A*)M,, is J>-valued function of A > 0 of class C! by virtue of (2.8).
Moreover, the absence of positive eigenvalues from H implies MT(1%), A > 0 is
invertible in B(L?) ([20]). Hence, M+ (A%)~! is also C! with values in B(L?) and
the following theorem is well known.
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Theorem 2.4. Suppose V satisfies the short range condition (1.1) and (log |x|)?V €
LY(R#*). Then, for u € D, we have the stationary representation formula (1.17) for
W_u.

Remark 2.5. Lemma 2.2 (2) implies that M, is Hy-smooth on [a, o0) for any a > 0
under the condition of Theorem 1.1; if V' is small it is also H-smooth on [a, c0)
and we have the representation formula (1.25) for the high energy part W_ x>, (| D|)u
(see [24])).

2.3. Fourier multiplier defined by the resolvent kernel
We use the following lemma in Section 4. In what follows a <|.| b means |a| < |b].

Lemma 2.6. Leta > 0and 1 < p < oo. Then, there exists a constant Cg, p, independ-
ent of y € R* such that

[RAYIIDDxza(IDDIB(Lr) = Ca,p(1 + |log|y[]). (2.12)
For the proof we use the following result due to Peral ([23]):

Lemma 2.7. Let ¥ (§) € C°(R") be such that Y (§) = O near £ = 0and Y (&) =1
for |&| > a for an a > 0. Then, the translation invariant Fourier integral operator

! ixe+ile V) 2
e / e D fende,

R7
is bounded in L? (R") if and only if
1

1
—— =<
p 2

b

n—1

Proof of Lemma 2.6. Recall (2.7) that R(A|x|) = R, (x) = H (A|x]) — H (iA|x]) and
H (1) has the integral representation (2.6). Let fora > 0

Hea(A) = <a(M)H(A), Hza(A)=)a(2)H ()
and
Rea(A) = Heg(A) = H<q((A), R>a(A) = Hxa(A) — Hza(id).

(1) We write (2.6) for A > 0 in the form

o0

F(L), F(A)=/e"t5(é—i)idt.
0

ei)t

HA) = ————5
42m)2T(3)A2
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Since |3i(F(k))(2a(k))| < CyA™7 for0 < j <3, F(ID|)x>a(|D]) is a GOP. Peral’s
theorem implies that e!/P!| D |_%)(2a/2(|D |) is also GOP. Hence, so is #>4(|D|) and
the norm || #>4(|y||D|)||B(z ) is independent of |y| by scaling. From

00
e—)&

D = o T F(il)=0/e_’t2(2k+1) dt

it is obvious that the Fourier transform of #>,(i|£|) is in $(R*) and #,(i|D|) €
B(L?(R*)) forall 1 < p < co with || H>4(i|y||D|)||B(Lr) being independent of |y|.
Thus, R>4(|y]|D]) satisfies

[R=a(IyIIDDIIB(LP) < Cp. (2.13)

(2) Formula (1.8) implies
8’{x<a(/\)({R(A)+ Sloga)b = ¢ 0= <3

It follows by Mikhlin’s theorem that forany 1 < p < oo

1
| R=a1IDD + g5 logIDDx=aIDD < C

with y-independent C,. Thus, we have only to estimate the B(L#)-norm of

log(|y[|D) x<a(Iy[|D]) x>24(ID1)
=log|y|x<a(I¥|1D) x>24a(|D|) + 10g |D|x<a(|¥||D|) x>24(| D).

The first term on the right is evidently bounded in B(L?) by C|log|y||. To estimate
the second, let f(A,y) = (logA) y<a(|¥|A) x>24(1). We have

fP0 ) <CA 71+ [loglyll). 0=/ <3; (2.14)
Indeed, f(A,y) # Oonlyif |y| <2anda < A < 2a/|y| and,
|/ (4, y)| < max(|logal, |log 2a/|y|[) = ([log|y[| + Ca),
which implies (2.14) for j = 0. The proof for j = 1,2, 3 is similar. Thus,
/(DI y)lBLr) = C(log|yl)

and
[R<a(¥[|1DDx>2a(IDDIB(LP) < Ca,p(1 + [log]|y]]). (2.15)

Estimates (2.13) and (2.15) imply (2.12). ]
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3. Integral operators

3.1. Operator K

We prove here that the operator K defined by (1.21) is GOP. Let

oo

Kiu(x) = / G, ()T ) (0)Ad A, 3.1)
0
Kou(x) = / G2 () (TT(M)u) (0)Ad . (3.2)

0

By virtue of (1.5), we have
1
Ku(x) = E(Kl — K)u(x), ue€ D..
Since (IT(A)u)(0) € C5°(0, 00), (2.9) implies that integrals (3.1) and (3.2) converge
for x # 0 and they are smooth functions of x € R*\ {0}.
Lemma 3.1. Let1 < p < 2. Let for e > 0 and u € Dy

-1 / u(y)
(472)2(|x|? + ie)R4 x| = |y|> +ie

Kieu(x) = dy.

Then, with a constant C, > 0 independent of ¢ > 0
Kiu(x) = eh_r)r(l) Ki cu(x), pointwise for x # 0,
[Kieullp < Cpllullp.
lim || Ko = Kyull, =0,
in particular, Ky is bounded in LP (R%).

Proof. Letu, ¢ € D.. Then, by (1.15) and Fubini’s theorem,

17 __
(Kiu, ) = W/(/ﬁ,\(x)w(x)dx)(/ﬁ(ka))da))kdk.
R4 s3

0

Since the limit converges uniformly for A on compact subsets of (0, o) and

— .1 9
| frwatiar = tim s [ S0 —ae.
R4

R4
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we obtain by using polar coordinates = Aw, A > 0, w € S that

u(me§)
K d&dn. 3.3
(Kiu, ) = lim (2n>4 // (P —Inl2 — i 54" G-
On substituting
1 o0
_ —it(|&|2—|n|%—ie
m_’/e rn0dr, e 0

and by using the Fubini theorem, we see that (3.3) is equal to

. i r —st i, AN iHIER A
iljgmofe (/e n u(n)W)([e 18] (p(E)dé)dt. 3.4)

R4 R

By the Parseval, identity we have

[ o =

1 i\‘)‘ci\z— C
an)? e 4 g(x)dx <), 3 3.5)
R4

(4m1)? 1)
R4

For the dn-integral, substitute elthl® = 1 4 i|n|? fé el gs. Applying the Parseval
identity, we have

1 ztn o e
@n)? / i, e

R4

_ 1 uy)dy .. e
= (2n)2/ BE sw/(/(4 s)z“(y)dy)e as.
]R4

where we have inserted the harmless factor e~5 in the second term for the later pur-

pose. Then, explicitly computing the s-integral implies

1 RITEE _ . ”(y)
(2n)2R/ " ()|n|2‘(2 >2/ a pY GO

Since (3.6) is bounded by C ||| y|~2ul|1, the integral with respect to ¢ of (3.4) is abso-

—&t 5

—et is replaced

lutely convergent without the factor e~®* and the limit is unchanged if e
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by e ¢/, Equations (3.5) and (3.6) then imply that (Ku, ¢) is equal to the lim, o of

|y|2 u(y) "ﬂz £,-2
4(47_[2)2/(/( | E dy)(R[e (p(x)dx)e t<dt

i ilictlz B t(Ix\ —£ -2 Wu(y)
_4(4n2)2R/8(0/(e ) b dl) pp 2

If we compute the inner integral explicitly, this becomes

/ p()u(y)dydx
(4m2)? (x> +ie)(|x|> — [y|*> + ie)
RS

= (K1,eu, ).

Thus, we have shown that for any u, ¢ € D

(Kiu. ) = lim (Ki.cu.9). (3.7)

It is obvious that K; cu(x) is spherically symmetric and, if we write K; (u(x) =
K1,su(p) if [x] = p and

1
Mu(r) = —/u(ra))da), y3 = |S3|,
V3

S3

then
-3 Mu(r)r3

K —
Let(p) (4r2)2(p%2 +ie) J p2—r2+ie
]R4

’

and a change of variable implies

—r3 MU(\/_)V
2(47T2)2(,O+18) p—r —|—zs

Kiu(y/p) = (3.8)

Foru € Dy, Mu(r)is C* in (0, 00). It is then well known that the right side of (3.8)
converges uniformly along with derivarives on compacts of (0, 00). Since Kju(x) is
also smooth for x # 0, then (3.7) implies Kju(x) = limy—¢ K -u(x) for all x # 0.

Moreover, the maximal Hilbert transform (cf. [28, Theorem 1.4 and Lemma 1.5
of Chapter 6, pp. 218-219]) implies that, if we set f(r) = Mu(+/r)r, then

C
F(J/p) = sup |K1eu(v/p)| < ;(er(P) + M 7(p)).

where M (p) is the Hardy-Littlewood maximal function of f and f is the Hilbert
transform of f. Define F(x) = F(|x|) for x € R*. Since p'~? is 1-dimensional (A),
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weight for 1 < p < 2 ([27, p. 218]), we obtain by the weighted inequality for the
maximal functions that for 1 < p < 2

f [F()|7dx = (73/2) / |F(JP)|” pdp
R4 0
<cC / (M (D)1 + M f()[P)p' P dp
0

o0
= [Wror + 1fnrrar (39)
0
If we apply the weighted inequality for the Hilbert transform, then

(3.9) < C1/|f(r)|prl_pdr
0

(o.¢]

=C1/|Mu(ﬁ)r|pr1_pdr

0

[e.e]
=2C, / |Mu(r)|Prdr < Cllull?.
0

Thus,
[ sup [K1,eu(xX)|[lp < Cllullp

>0

and the dominated convergence theorem implies
| Kisu(x) — Kiu(x)|, =0 ase—0
forl < p<2. -

Remark 3.2. The operator K; is unbounded in L?(R*) for 2 < p < oo. To see this
we note
1 B 1
(X2 +ie)(xPP =y +ie) — (yI>+ie)(|x|? = |y|> +ie)
- 2 = Iy?
(x> +ie)(|y|*> +ie)(|x[> — |y|* +ie)
(3.10)
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and recall that the integral operator produced by the first term on the right of (3.10) is
uniformly bounded in L? (R*) for e > 0if 2 < p < oo (cf. [34, Lemma 3.4]). Hence, if
K were bounded in L?(R*) fora p € (2, 00), then it must be that for u, w € C{°(R*)

/[ (x> = [y P)u)w(x)dxdy
(|x[?

fim +io(yP+io(xP—|yP+i )'

el0

Cllullpllwllg

R4xR4

for a constant C > 0, ¢ = p/(p — 1). However, this is impossible because the left

‘ // u(y)w(X)dxdy‘
x|y 12

R4xR4

side is equal to

which cannot be bounded by C ||u||,||w||4 forany 1 < p < oo.

Lemma 3.3. The operator K, has the expression

u(y)

K —
200 = g / *P+ P
]R4

dy, ue€ Dy (3.11)

and is bounded in L? (R*) for 1 < p < 2 and unbounded for2 < p < oc.

Proof. Denote the right side of (3.11) by K,u(x) and

u(y)
(4r2)2(|x|2 + ie)R[ [x]2+ |y]2 +ie

Kz,su(x) = dy

for ¢ > 0. It is evident that for x # 0

;i_l)l}) Ks pu(x) = Ezu(x), sup | K cu(x)| < E2|u|(x).

e>0
Moreover, K, is bounded in LP([R*) for 1 < p < 2, hence,
| Kz vt — I?zu”p -0 ase—>0

by the dominated convergence theorem. Indeed, Kou(x) is rotationally symmetric
and, if we write Kru(x) = Ku(p), p = |x| and Mu(p%) = f(p), then

7|f(r)| L Tl
4(472)2p2 ) P2 412 4(4712)2 1+r2

|(Rau)(p)] <

and Minkowski’s inequality implies for 1 < p < 2 that

I/ 1l
rP(l + r2)

o0
~ 1
1 Ra) (P 27 (000 < C / W 4 <l f oo
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Since || f 27 (0,00) < C ||u||p, by Holder’s inequality,
0 Y
IRl = (2 [ 1Raoobirap)” < clul.
0

We now show Kru(x) = Ezu(x). Since

DU e *Eg(§)d§
GO(lA’)(p(x) - Lljl(} (27T)2 |E|2 + A,Z _ i8
R4

converges uniformly with respect A in compact subsets of R, we obtain

1 T _
(Kau,p) = W/ ([ﬁ,}(x)(/ﬁ(kw)dw))td)t)(p(x)dx
0 Ss3

R4
i ! / ()@ (€)
£l0 (277)4]1{{8 (&7 + Inl* —ie)Inl?

dedn. (3.12)

The repetition of the proof of Lemma 3.1 with |5|? replacing —|n|? implies that the
integral on the right of (3.12) is equal to (K> ;u, ¢). Thus,

(Kau.¢) = im(Kz 0. ¢) = (Kau, @)

and K,u(x) = K,u(x). The proof of that K, is unbounded in L?(R*) for p > 2 is
similar to that for K and is omitted here. This completes the proof of the lemma. m

Lemma 3.4. The operator K is bounded in LP (R*) forall 1 < p < oc.

Proof. By Lemmas 3.1 and 3.3, K is bounded in L?(R*) for 1 < p < 2. We prove
the same for 2 < p < oco. Then, the lemma will follow by the interpolation. Define
Kou = 2(Ky ¢u — K> gu) for e > 0. Then, Ku(x) = limg o K;u(x) for x # 0 and a
simple computation implies

1

Ksu(x) = 2(47)2

(F—,su(x) - F+,8“(x)),

where F cu(x) are rotationally invariant functions given by

u(y)dy
F = .
et () / (X2 £ Y2 +ie)yP
R4
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Notice that the dangerous terms (1/27%)|x|™2|y|~2 have cancelled each other. We

denote Fi ;u(x) = fx¢(p), p = |x|. Then,
Je(p) = sup| fre(p)|
>0

o0
V3 |Mu(r)|r3dr
— 8t ) r%(p%+r?)
0

oo
_ v |Mu(rp)|rdr
84 1472
0

and Minkowski’s inequality implies for any 2 < p < oo that

o0
[ Mu(rp)|lLr((0,00),03dp) AT

3 —c
I /(XD Le ey < 112

0

°°r1—4/p
= C||Mu(p)||Lp((o,oo)»p3dP)/ 142
0

It follows that F¢(x) converges as ¢ — 01in L?(R*) for2 < p < oo to

. u(y)dy
Frux) ‘R/4 <E+ PP

< Cllulp.

It is shown in [34, Lemma 3.4], via the same argument as in the proof of Lemma
3.1, that, for 2 < p < 0o, F_ , is uniformly bounded in B(L?) for ¢ > 0 and F_ ;u(x)
converges as ¢ — 0 for x # 0 and simultaneously in L?(R*). Hence, K is bounded

in L?(R*) for 2 < p < oo as well and the lemma follows.

3.2. Good operators
Recall that (7)) and Q(T'(1)) are defined by (1.19) and (1.20).

Lemma 3.5. We have ||Q(T)ull, < Cp||T ||¢1||u|lp for 1 < p < oo.

Proof. By using the integral kernel R, (x — y) = (1, R;)(x) of Ro(A), we write

oo

QUT)Hu(x) :/(// T(y,Z)tyﬁ,\(x)(H()L)r_zu)(O)dydz))L3d)L.
RS

0
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If we may change the order of integrations, €2(7 )u(x) becomes

// T(y,z)zy(/m(x)(n(x)f_zu)(omdx)dydz
RS 0

= // T(y,z)(tyKt_;u)(x)
RS

and Lemma 3.4 implies
IW(Tullp < CpllT |l g1 llullp-

To see that the change of order of integrations is possible for almost all x € R4,
it suffices to show that R, (x — y)T (v, z)(IT(A)u)(z)A3 is (absolutely) integrable
with respect to (x, y,z,A) € Br(0) x R* x R* x (0, c0) for any R > 0, where
BRr(0) = {x : |x| < R}. However, this is obvious since IT(A)u(z) = 0 for A outside
a compact interval [, ] € (0, 00), [TI(AM)u(z)| < C(z)~3/? uniformly for A € [«, B]
and fB(o,R) |R(x — y)|dx is uniformly bounded for y € R* and A € [a, B]. This
completes the proof. |

The following is the variant of [34, Proposition 3.9]. We take advantage of this
chance to point out that [34, Proposition 3.9] has an error and it must be replaced by
the following proposition and that some obvious modifications are necessary in the
part of [34] which used that proposition. Let a4 = max(a, 0).

Proposition 3.6. Let T(A, x, y) be an £'-valued C?-function of A € (0, 00) such that

lim A TP Q)| g1 =0, j=0,1,2. (3.13)
A—00

Suppose further that T® (1) is AC on compact intervals of (0, 00) and
o0
/A2||T(3)(/\)||$1d)t < 0.
0

Then, for the integral operator T (L) with the kernel T (A, x, y),
QT M))u(x) = / RoAH T TN u(x)A3dA, u € Dy (3.14)
0

satisfies the estimate (1.24) forany 1 < p < oo.

Remark 3.7. If a > 0, condition (3.13) is automatic for y<,(1)7T (1) and (1.24) is
satisfied by Q(T (1)) y<a (| D|) without the condition.
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Proof. Since u € D, [T(A)u(z) = (IT(A)r,u)(0) = 0 outside [«, B] € (0, c0) and
[TI(A)u(z)] < C(z )_% uniformly. It follows by virtue of (2.8) that the integral (3.14)
converges absolutely and defines a continuous function of x € R*. By Taylor’s for-
mula,

T0) =5 [ ((p— 1)) T (p)dp. (3.15)
0

where the integral is the Bochner integral in £1. Let
B =((1-1)4)* = (1=’ A+ 172

Then, the Fourier transform of B(|£|) is integrable on R* (cf. [27, p. 389]). Hence,
B(|D|) is bounded in L?(R*) forall 1 < p <ocoand || B(|D|/p)|/B(Lr) is independent
of 0 < p < co. On substituting (3.15) and changing the order of the integrations, (3.14)
becomes

- / ( / ((P—A)+)2Ro(/\4)T(3)(p)H(A)uﬁdl)dp- (.10
0 0

and, by virtue of (1.16) and (1.19), the inner integral of (3.16) is equal to

oo

P> / RoAHT® (p)IL(A)B(ID|/pyur>dA = p* QT (p)) B(ID|/p)u.
0

Thus, Minkowski’s inequality and Lemma 3.5 imply

o0

G161, =€ [ PITO @)t lulpdp < Clul,.
0

This proves the proposition. ]

4. High energy estimate

We prove here Theorems 1.1 and 1.3.

4.1. Proof of Theorem 1.1. Small potentials

By virtue of what is explained in the introduction, we have only to prove (1.30) for
n=12,...for W, x>4(|D|)u defined by (1.27).
(1) We already proved that | W y>q(|D|)ull, < C||V |1]lull, in the introduction.
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(2)Letn =2 and V;® (x) = V(x)V(x — y). Then, as was shown by (1.29), (1.30)
for n = 2 follows from (1.28), which we prove here. We have by changing variables
that

My Ro(A*)Myu(x) = / VX)RAyDV (x = y)u(x — y)dy
R4

— [ VP @R @ .
]R4
which we substitute in (1.27) for n = 2. Then, since 7, I1(A) = II(41)t, and
RA|yDII(A) = TV R(|y||DI)

by virtue of (1.16), W y>4(|D])u(x) becomes
00
[ ([ Rt =072 TDREND D 0)dzdy 4o a6
0 RS

If we change the order of integrations and apply (1.19), we may rewrite (4.2) in the

desired form:

oo

/ ( / (Ro<x4)MVZ<z>n(m<|z||D|>x2a<|D|>rzu)<x)x3dx)dz
R4 O
= /(Q(MVZ(2>)<R(|Z||D|)Xza(|D|)Tzu)(x)dZ-
R4
(3) Let n > 3 and Vy(fl,)...,ynfl(x) =VX)V(x—y1)-V(XxX—y1—— Y1)

Repeating the argument used for (4.1) implies
Moy (My Ro(A) My )"~ Myu(x) = (My Ro(A*)" ™" Myu(x)
n—1
= / Vi ns O TT RO )ttty )L -y,
R4GI—1) j=1

It follows that W, x>4 (| D|)u(x) is equal to

[[ ] RO -0 0 TTRGID)
j=1

0 R4R4(n—1)
x TI(A) Ty, 4oty DA Y50 (A)dyy -+ - dyp_rdyd A 4.3)
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As in the proof of Lemma 3.5, we may integrate (4.3) by dA first. We then apply
(1.16) to (]_[;';} R(A|y;j)II(A) and (1.19) to the resulting equation. This implies
that the right of (4.3) is equal to

n—1

/Q(M ., Jxza(DD) [T RUpNDDTy, 4ot yyyudys .. dyny.
RAG—1) =1

Note that y>4(|D|) = x>a(|D|)x>a/2(|D|)" 2. Then, Minkowski’s inequality and
Lemmas 3.5 and 2.6 imply that || W}, x> (| D|)u||, is bounded by

n—1

Cp [ 1V rcy [ tog s Dty . ey
RAG—1) J=1
n—1
= ¢y [ Vel [T VeI 1og -1 =3 Dllulpdo .. o
R4 Jj=1
where we have changed variables so that y; = x;_; —x;, j =1,...,n — 1. We

estimate the integral inductively by using Schwarz’ and Holder’s inequalities n-times
by

=

||V||%( [ Vet —X1|>2V(X1)dxodxl)

R4
1

2 1
Xoeee X (/ V(Xn_z)(IOg |xn—2 — Xn—1 |>2V(xn—1)dxn—2dxn—l) ”V“l2
R4
=C*"(IVlgg,, + I{log IX1)2VlL1)".

This proves (1.30) for n > 3 and completes the proof.

4.2. Proof of Theorem 1.3

For the proof we use the following lemma.

Lemma 4.1. Let 1 < g <4/3, ¢ =¢q/(q—1)and j =0,1,.... Let us suppose
that (x)®=3+V e LY(R*) and V € L1(R*). Then, for any a > 0, My Ro(A*)M,,
is Hp-valued C7 function of A > a and, forn = 1,2, ...

. C, : .
135 (My Ro(A*) M) || 0, < ﬁ(nm@f VI +1VI". @4
q/
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Proof. Let Ny, and N, j, j = 0,1, ... be convolution operators with

le(k|x|)|x|j

Nyj(x) = A7 (log Alx ) x<1(A|x]).  Naj(x) = 3,2
A2|x|2

1t follows from (2.8) that 3] R(A*)(x) <|.| C(Ny;(x) + Naj(x)), j = 0,1,.... By
repeating estimate (2.4), we have for any 1 < g < oo that

My Ny j My |5, < CA™% / [V(x)[{log A|x — y|)*|V(y)|dxdy
Alx—y|<1
< C VIV g 1002 A 220
and

_i_2
|Mo N Ml < €277 ollallwll 2o

By Holder’s inequality, for 1 < ¢ < 4,

VEIVO))
JoNzuly, < [ G ydxdy
Alx—y|=1
dx v 4
= CIVIIVI, /W <AV LIV,
Alx|>1

Likewise, for 1 < g < 4/3,

1 VIV ()
ﬁ/ Alx —yl

Alx—y[=1

_o_ 4
loNz 1w, < € dxdy < C|V[|V]gA™

For j > 2, we evidently have |[vN, jw| g%, < cA3 |(x)2/=3V||;. Combining these
estimates together, we obtain for 1 < g < % and A > a that

j —min(j+2,3 i—
197 My Ro(A*) My || 3o, < CA™ ™ F02) ()@ =D+ V||, 4 (V)

This implies (4.4) for n = 1. For n > 2, we compute ai’ (MyRo(A*)My,)" via Leibniz’s
formula and estimate each factor via (4.4) for n = 1. The lemma follows. ]

Proof of Theorem 1.3. We may assume 1 < ¢ < 4/3. Let N be such that 2N/q’ > 3.
We substitute (1.31) with (1.32) in the stationary formula (1.25) for the high energy
part. Then, W_y>,(|D|) becomes

o0

N-1
> (=D Waxza(IDDu + (=DY / R AHDN MTI)UA’ 2a(M)dA,
n=0 0



A. Galtbayar and K. Yajima 302

where we set Wou = u. By virtue of (1.30), Zf,vz_ol (—1D)"W, x>a(ID])u is GOP;
Lemma 4.1 implies that Dy (A, x, y) is &£'-valued function of A € (a, c0) of class
C3 and

P DN Mg < CA @ (| (x)2V Vi)Y, 0<j<3
[0, DN (M) |lgr < (x> Vg + 1V II2)™, <Jj=3

Hence, the operator Dy (4) is GPR for (1.25) by Proposition 3.6 and Theorem 1.3
follows. u

5. Low energy estimates 1. The case H is regular at zero

In what follows, we shall study W_ y<, (| D|) or equivalently
oo
Qiowalt == [ Ro(AHQy (M) TT(A)uA> y<q(A)d A (5.1

0

for a sufficiently small @ > 0. As previously, we define
[e.°]
oDt = [ RGHT TN a W)L,

0
o0

Growa (TN = / Ro(A)T () TI(uA? f <a(R)d A
0

Since we shall in what follows exclusively deal with small A > 0, we shall often omit
the phrase “for small A > 0” and, abusing notation, say that 7" or T(4) is GPR if
Qiowa (T) or Qlow’a(T(A)) is GOP for a sufficiently small a. We irrespectively write
Rem(A) for the operator valued function which satisfies the conditions of Proposi-
tion 3.6 for small A > 0.

We shall often use the following lemma for studying M(A*)™! as A — 0. Let A4

be the operator matrix
a a
A = ( 11 12)
dz1 dzz

on the direct sum of Banach spaces ¥ = ¥; @ ¥Y,.

Lemma 5.1 (Feshbach formula). Suppose ay1, azy are closed and ay», az, are

bounded operators. Suppose that the bounded inverse a221 exists. Then A™' exists
ifand only if d = (a1 — a12a2_21a21)_1 exists. In this case, we have

A_l _ ( d —da12a2_21 )

-1 -1 -1 -1
—ay,ax1d a3, aridaiay, + as,
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In this section, we shall prove Theorem 1.9 when H is regular at zero. Thus,
weassume that (log |x|)2(x)*V € (L' N L9)(R*) for a ¢ > 1 and that the inverse
(OTo Q) ! existsin QL2. Let

P —PTo0ODy )

Do =Q(QTo0)™'Q and Lo = (—DOQTOP DoQToPToQDo

in the decomposition L? = P L? @ Q L?. Notice that rank L = 2.
Lemma 5.2. For small A > 0, Ty + go(A) P is invertible and
(To + go(M)P)™" = Do + h(A)Lo, h(X) = (go(A) + 1)~ (5.2)
where ¢1 = ((v, Tov) — (QTov, DoQTov))||V||T! is a real constant.
Proof. In the decomposition L?> = PL?> @ QL?,

go(A) + PTyP PTOQ) _. (all alz)
QToP 0Ty 0 a1 Az

Here a2, =0T, Q is invertible in Q L? and

7o+ g0 P = (

ar1 —aiz2as, az1 = goA)P + PToP — PToDoToP = (go(A) + ¢1) P

is also invertible in PL?(R?) for small A > 0 and d = (go(A) + ¢1)"' P. Then,
Lemma 5.1 implies that (7o + go(A) P)~! exists and (5.2) holds. ]

Let Do(A) = (To + go(M)P)~! = D¢ + h(A)Lo.

Lemma 5.3. For small & > 0, M(A%) is invertible in L? and

MOHT! = Do(h) + 0F) (A% log A). (5.3)
Proof. We have Rgv)()t)f[)o()t) € (9;2 (A% log A) by Lemma 2.2 and

MO = (14 R (V) Do(1))(g0(A) P + To)
by Lemma 5.2. It follows that M (A*) is invertible for small A > 0 and
MOHT = DoM)(1 + R M) Do (1) = Do(A) + 05 (32 log 1).

This is (5.3). n

Following Schlag [25], we say operator T is absolutely bounded (ABB for short)
if |T(x, y)| defines a bounded operator in 2.

Lemma 5.4. (1) The operator D is ABB.
Q) IfT is ABB and v, w € L?>(R*), then v(x)T (x, y)w(y) € £'.



A. Galtbayar and K. Yajima 304

Proof. (1) The argument of the proof of Lemma 8 of [25] implies that Dy is ABB.
(2) is evident by the Schwarz inequality. ]

Proof of Theorem 1.9 when H is regular at zero. Multiply (5.3) by M, from both
sides. Then, M, Do(A)M, is §VS since Lo is of rank 2, M,DoM, € £' by
Lemma 5.4 and k(1) is GMU; it is evident that MU(Dgg(/\z log MYMy = Rem €

0% (A% log A). Thus, @, (1) is GPR and W_y4(|D|) is GOP. n

6. Low energy estimate 2. Resonances

In this section we prove Lemma 1.4 and Lemma 1.8. We assume only (log |x|)?V €
(L' N L7)(R*), ¢ > 1 unless otherwise stated. We begin with the following lemma.
Recall that S; is the projection in Q L? to Ker Q To QO | @12 We shall often write Neo
for Noo(H).

Lemma 6.1. The projection S, is of finite rank. The operator QToQ + S is invert-
ible in Q L.

In what follows we denote Dy = Q(QToQ + S;)~!'Q in spite of Lemma 5.2
where Do = Q(QTy Q) ! O as the latter becomes the former when S; = 0 and as it
will not appear any further.

Proof. The operator QToQ = QUQ + QNO(U) Q is selfadjoint in the Hilbert space
QL?. Since 1 = U?2, we have by comparing

1= (2 0) 2_(QUC QUP 2
~\o P) ~ \PUQ PUP
that (QUQ)? = Q — QUPUQ. Since rank QUPUQ = 1,

O—ess((QUQ)z) = Oess(Q) = {1}

on Q L? by Weyl’s theorem and 0, (QUQ) C {1,—1}. The operator Név) is compact
in L2 by Lemma 2.1 and hence so is QNév) Q in QL?. Thus, 0(QToQ)lg12 C
{1,—1} by Weyl’s theorem once more and 0 is an isolated eigenvalue of QTo Q|2 of
finite multiplicity. The rest of the lemma follows by the Riesz—Schauder theorem [36].

(]

Proof of Lemma 1.8 (1). Let ¢ € S{L?\ {0}. Then, Q¢ = ¢ and QT Q¢ = 0. It fol-
lows that To¢ = cov for a constant cq, hence

U+ N = cov.  co = [v]52(Tot. v). 6.1)
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Thus, if we define ¢ = ®({) by (1.13), then (6.1) implies ¢ = —co + NoM,, hence
VY = —coV + Név)f = —Ut and ¢ = —we; applying A% to ¢ = —co + NoM,¢
implies A%p = v{ = —Vg or (A2 + V)p = 0.

We next show that ¢ € L (R#*), which will imply ® maps S; L? to Ny, with the

inverse { = —w¢ on its image, in particular, Ny, 7 {0}. The starting point is that for
a§ IS L2
1
9(x) = —co+ NoMyl = —co— o / log|x — ylv(y){(y)dy. (6.2)
R4

Recall that we are assuming (log |x|)2V € (L' N L9)(R*) for a ¢ > 1. Let p =

2q/(q —1).
(i) Let first |[x| < 10. By Holder’s inequality,

flloglx = ylv(MZWIdy < [[log|ylllLr(y1<30) IVl 24y <20 1€ ]l25
lyl=20
if |y| > 20, we have 0 < log |x — y| < log(2|y|) < 2log|y| and
/IOg lx = yllv(»)Z(ldy = 2[[dog[yDvllL2qy>20) ]2
|y|>20
Thus, [¢(x)| < |co| + [No(v0)(x)| = C for |x| < 10.
(ii) Let next |x| > 10. Since P{ = 0 or g4 v(¥)¢(y)dy = 0, we have

No(O)() = 5 [ ol = 3|~ Tog oIy 63
R4

Let Ay ={y :|y|>2[x[}, Ap ={y:[y| <[x|/2} and Az ={y : |x[/2 < |y| = 2|x]}.
If y € Ay, then |[x] < |x — y| < |x]|y], 0 <log|x — y| —log|x| < log|y| and

[(loglx =yl =log|xv(»E(»ldy = ll{log|yvll2lI¢]2
|y[>2]x]
If y € Ay, then |log|x — y| — log|x|| <log2 < 1 and

/I(IOg |x = y| = log[xv(»){(y)ldy < / O W)Idy < [[v2[&]l2.
R4

[yI<|x[/2
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If y € As, then, 0 < log|x| < 2log|y| and

/I(IOgIXI)v(y)é“(y)ldy = 2| log|y[vll2[I¢]l2:

Y€A3

/I(loglx —yDvMEWIdy < [Tog|ylllLrqyi<2)vl241¢]l2;
[x—y|<2,y€A3

if [x — y| > 2, then log |x — y| <log(|x||y|) < 3log|y| and

/ |(log |x — yDv(¥)¢(W)|dy < 3||log|y|v]2I¢]|2-
|x—y|>2,y€A3

Thus, [Nov¢(x)| < C also for |x| > 10 and ¢ € L®(R*).

Finally, we prove Image ® = N, which completes the proof. Let ¢ € Ny \ {0}
and define { = —w¢g. We have A2(¢ + NoV@) = (A? + V)¢ = 0, hence |£[*F (¢ +
NoVe)(€) = 0. It follows that F (¢ + NoV¢) € §'(R*) vanishes outside {0} and
F(@+ NoVp)(E) = Y ginite Ca D*8(&) for constants g, or (¢ + NoVe)(x) is a poly-
nomial. But, ¢ € L™ and (log |x|)?V € (L' N L9)(R*) imply that

(NoVsa)(x)=—8n%( / + / )loglx—ylV(y)w(y)dy

lx—yl<2  [x—y|=2

is bounded by C(1 + log(x)). Hence, it must be that ¢ + NyV¢ = ¢ for a constant
¢ and NoVo(x) € L. It follows that [ Vodx = — [ vidx = 0 because otherwise
[NoVo(x)| > C|log |x|| for large |x| fora C > 0. Hence, P¢ = 0or{ = Q¢ and

cv =+ vNgV)p = —(U + N\t = —T, 0¢.

Thus, QToQ¢ =0o0r¢ € S{ L%, ¢ = —||v||2(PToé,v) and ¢ = ¢ + Novl = ®(¢).
Moreover, ¢ # 0 because ¢ = 0 would imply 0 # ¢ = ¢, hence, w =0and V = 0,
which is a contradiction. |

Proof of Lemma 1.4. We assume here that (log |x|)2(x)3V € (L' N L9)(R*) for a
g>1.Letqg’ =q/(g—1).Letp € Noo(H). We have ¢ = ®({) for { = —wg € S;L?
and (6.2) and (6.3) imply

1
0(0) = —co+ ¢ [oglx =y~ log DV OI0OIdY. (64
R4

where cg is given by (6.1). We assume |x| > 10!° in the sequel. Let

Ay ={y |yl >I|x|/4}
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and
Ay ={y:|y| = |x]/4}

and split the integral on the right of (6.4) as

( [+] )aog x = ¥l = log XDV(()dy = 1(x) + L(x).
Aq A>

(1) For y € A1, we have log |x| <log4|y| and log |x — y| <log5|y|if |x — y| > 1.
Hence, |11 (x)| is bounded by

2/10g(5|yI)IV(y)¢(y)|dy + /10ng = yIIV(»)e(y)ldy

Ay [x—y|<1,yeA;
< C(I{log [y DVMILicay) + 1og [yllLrgxi<nllV ILaa,)) < C(x)~>

Thus, I;(x) may be put into the remainder O(|x|~3) of (1.4).
(2)Fory € Ay, |x —0y| > 3|x|/4 > 10° for0 < § < 1. Let

f(0) = log|x —6y[ —log|x|.

Then, Taylor’s formula implies

(I—

2
29) £7(6)d6, (6.5)

1
! 1 1
) = FO+ O + 350 + [
0

4

4

Xjy; ly|? 2Xj Xk Yj Vi

f/(O):_Z JY] f//(o):W_ Z J J ,
j=1

27 4
Z x| Rl
" 6(y-(0y —x)Iyl*  8(y-(0y —x))?
£7(0) = - ) .
|x —0y| |x —0y|

We substitute (6.5) for log |x — y| — log | x| in I5(x). Since
Fa—6p
RaGr.y) i= [ S5 @00 <. /301710
0

the contribution of R3(x, y) to I>(x) is bounded in modulus by

Cl) [ DPIVOY)Idy < C Oy 1) VL.
Ap
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Since | f7(0)] < (Iyl/1x]). | f"(0)] < C(|yl/1xD?* and |x|/4 < |y|in R*\ A;, we also
have

[ (0 + 3 @)vmpmdy s €10V
RY\A,

(3) Combining the estimates in (1) and (2), we obtain
1
o) = o+ [ (F'O+ 377 0) V0o + O3
R3

which implies expansion (1.4):

: ajx; i Qajx — béjr)xjxx
J J J J -3
p(x) = + E + E + O(|x ) 6.6
(x) Co : 1| B i x[* (Ix[7) (6.6)

where J;i is the Kronecker delta. For later convenience, we express the coefficients
in terms of ¢ by restoring V(y)p(y) = —v(y)¢(y):

1 2
4= 5o [y, b= [P0y, 61
R4 R4
wi = gz [ 000y, (68
R4
This completes the proof. |

Lemma 6.2. Assume that (x)3(log |x|)2V e (L' N L9)(R*) foraq > 1.
(1) Let ¢ € S{L>. Then,

e SHL? < Tyt =0.
(2) Let ¢ € S,L2. Then,
teS3L? = (x%,0) =0 for|a|<1.
(3) Let ¢ € S3L2. Then,
teS4L? = (x%.0)=0 for|a|<2.

Proof. We have (x)3/2(log |x|)¢ € L? by Lemma 1.8 (1).

()If¢ € S1L2 and To¢ = 0, then T1¢ = S; Ty PTpS1¢ = 0and ¢ € S,L2. Con-
versely, if £ € S;L? and T1¢ = 0, then (P Tol, PTo¢) =0and PTol = 0; QT Q¢ =
QTo¢ = 0 evidently. Hence, To¢ = 0.
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(2)Let& € SR L2 If ¢ € S3L2, then (v,¢) = 0 and

4

0= (1350 = = 3| [ xoieoax

Jj=1 R4

2

It follows that (x;v,{) =0for 1 < j <4.Hence, (x*v,{) =0 for || < 1. Conversely,
if (x%v, &) = 0 for |a| < 1, then T»¢(x) is equal to —i (4*)~! times

Ssz/Ix—ylzv(y)Z(y)dy = (Szv)(x)/yzv(y)é(y)dy-
R4 R4

But S>v = 0 and, hence, 75¢(x) = 0. Thus, { € S3L2.
(3)Let ¢ € S4L? C S3L2. Then, (x*v,¢) = 0 for || < 1 by (2) and

0= (1368 = 55 [ (PP + 26y P o) T ddy
R4
2 4 2
=5 /|x|2v(x)§(x)dx + 3'142 jkzl /x,xkv(x);(x)dx
R4 H=1Ra

It follows that (x*v, ¢) = 0 also for || = 2. Conversely, one has that if { € S,L?2
satisfies (x%v, £) = 0 for |a| < 2, then (2) implies ¢ € S3L? and

4
30 = 8300 [ (I =4 w0 2oty )
R4 J=1

Since S3v = 0 and S3(x;v) =0for j =1,...,4by (2), T3¢ = 0. Hence, { € S4L2.
This completes the proof. =

Proof of Lemma 1.8 (2) and (3). For ¢ € S1L?,let ¢ = ®(¢) € Ny and cg,a and A
be coefficients of the expansion (1.4) of ¢(x).

(2) Since P is one-dimensional, rank 77 < 1. Hence, if T} | S, L2 is invertible, then
rank S; = 1 and Ker 71 = Ker PToS; = {0}, which implies co = [|v]|5%(T0¢, v) # 0
for { € S;L? \ {0}, hence H has only s-wave resonances.

(3) Here we assume (x)3(log |x|)2V € (L' N L7)(R%).

(i) Let ¢ € (S{L? © SL?) \ {0}. Then ¢y = 0 would imply PTo¢ = 0 and ¢ €
S, L? which is a contradiction. Hence, co # 0 and ¢ is s-wave resonance.
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(i) Let ¢ € S, L2. Then, To¢ = 0, hence ¢o = 0, by Lemma 6.2 and

(1260 = 5o [ b=y POOWEDGIdxdy

R4xR*
4

—1
=EZ

Jj=1

2
<0. 6.9)

/xj v(x)¢(x)dx

R4

It follows that the selfadjoint operator i 7, on S5 L? is non-positive and (7>, ¢) = 0
implies T5¢ = 0 and ¢ € S3L2. Hence, for non-trivial £ € S, L% © S3L2,i(T»¢,¢) <0,
which implies a # 0 in (1.4) by (6.7) and ¢ is p-wave resonance.

(iii) Suppose next ¢ € S3L% © S4L2. Then ¢y = 0 as previously and ¢ € S3L?
implies a = 0 by Lemma 6.2 and (6.7). For ¢ € S3L?%, we have

1 4 2 1 2
(6.0 = 3 3 | [ eoeods| + %‘ [ o
J.k=1 R4 R4

as previously, and the selfadjoint operator T3 on S3L? is non-negative. It follows
(T5¢,¢) > 0 for non-trivial ¢ € S3L2? © S4L2. Suppose A = 0. Then, in the expres-
sion (6.6), ajx = 0 for j # k and 2a;; —b = 0 for 1 < j < 4. But Z?=1 ajj =b
by (6.8) and 0 = Y"7_, (2a;; — b) = —2b. Hence, a;; = 0 forall 1 < j,k <4 which
contradicts to (T3¢, ¢) > 0. Thus, A # 0 for non-trivial { € S3L2 © S4L? and ¢ is
d-wave resonance.

(iv) Finally, let £ € S4L? \ {0}. Then, we already have shown that ¢ = 0 and
a = 0. Moreover, (73, ¢) = 0 and (6.8) implies A = 0. Thus, ¢ is zero energy eigen-
function of H. ]

7. Singularity of the first kind

In this section we prove W_y <, (| D|) is GOP for sufficiently small @ > 0 when H has
singularity of the first kind at zero, assuming (x)*V € (L' N L9)(R*) fora g > 1.
In what follows, we shall repeatedly and inductively use the following lemma due to
Jensen and Nenciu [16].

Lemma 7.1 ([16]). Let A be a closed operator and S a projection in a Hilbert
space H#. Suppose A + S has bounded inverse. Then, A has bounded inverse if and

only if
B=S—-SA4+S57's

has bounded inverse in S ¥ and, in this case,

A=A+ + U+ 9ISBISUA+ 5L
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7.1. Threshold analysis 1

We begin with lemmas which hold whenever H is singular at zero. Let {{1, ..., {,}
be the orthonormal basis of S;L? so that

Siu=G b+ +&L®Lu, ue QL (7.1)

We denote by the same letter S the extension of S; to L? defined by the right of
(7.1) for all u € L2. The inverse Doy = (QToQ + S1)~! exists in Q L? by virtue of
Lemma 6.1; in the decomposition L2 = PL?> @ QL?, let

P —PTy0Dy
Lo = 7.2
0 (—DOQTOP DOQToPToQDo) 7-2)

by using the same notation as in Lemma 5.2.
Repeating the proofs of Lemmas 5.3 and 5.4 with QToQ + S replacing QT Q
we obtain the following lemma whose proof is omitted.

Lemma 7.2. For small A > 0, Ty + go(A) P + Sy is invertible and
(To + go(M)P + S1)™" = Do+ hi(A)Lo.  hi(A) = (go(A) +c1)~!
with ¢, being a constant. The operator Dy = (QToQ + S1)~! is ABB.
Using the notation of Lemma 5.3 once again, we let

Do(A) = (To + oM P + S1)™' = Do + hi (1) Lo. (7.3)
Tii() = 8, (WG + G,

Lemma 7.3. Suppose that H is singular at zero. Then, M(A*) + Sy is invertible in
L? for small A > 0.

(1) If (x)*V € (L' N L9)(R*) fora q > 1, then
(MO +S)™ = Do) + Y1(h), 1i(W) = 0K (4%, (74

and My(M(A*) 4+ S1)" M, = VS + Rem(R).
(2) If V satisfies (log |x|)2(x)3V € (L' N LY)(R*) fora g > 1, then

Yi(h) = =22Do(MGS Do) + 12(1). Ya(h) = 0% (A*logA). (7.5)
(3) If V satisfies (log |x|)2(x)12V € (L' N L9)(R*) fora q > 1, then

Y2(h) = —A*Do(MiTas () Do(2) — (G5 Do(1)?} + 0% (A% log 2).
(7.6)
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Proof. (1) We have M(A*) + S; = go(M)P + To + S1 + Rg))()k) and Lemma 7.2
implies Ty + go(A)P + S is invertible and we have (7.3). Then, (M(A*) + S;)~!
exists and

(MO + 5D = Do) + R W) Do(A) ™. (7.7)

By expanding the right side and by applying (2.10) we obtain (7.4). Since Dy is ABB,
My(MA*Y) + S1) "My, = VS + Rem(A).

() If (x)3(log|x|)2V € (L' N L9)(R*), then (2.10) implies R$” (1) = A2G(x) +
R (1) with R{” (1) € O%) (1*log 1). We then expand (7.7) by using (1 + X)~! =
1-X+X2(1+X) with X = Rgv) (A)D(1) and estimate the remainder by using
(2.10) forn = 1 and n = 2. We obtain (7.5).

() If (x)'2(log [x[)2V € (L' N LY)(R*), then R (A1) = 44Ty, (1) + RP ()
with R (1) e (9;2 (A%log 1). We then argue as in (2) to obtain (7.6). We omit the
details. ]

We apply Lemma 7.1 to the pair (M (A4), S;). Let
Bi(A) = Sy — Si(M(A*) + $1)7' 8.

Since S1D0 = D()S] = Sl and S1LOS1 = T1 by (7.2), we have Slc;b()()t)Sl =
h1(A)T1 4+ S7 and (7.4) implies

Bi(A) = —hi(M)Th — $1Y1(A) Sy (7.8)
If B1(X) is invertible in Sy L2, then and Lemma 7.1 implies

MOHT = (MUY 4+ S)H+ MO0, (7.9)

ess

MO Q) = (MA* + )7L B (M) TISIHMAY) + S1)7L (7.10)

ess

In what follows A(A) = B(A) will mean A(A) — B(A) = §VS + Ren(A).

7.2. Singularities of the first kind

Suppose now that H has singularity of the first kind at zero. Then, 77 = S1To P T S1
is invertible and rank S; = 1. We let { be the normalised basis vector of S; L2

Lemma 7.4. Let H have singularity of the first kind at zero. Then,
Qy(A) = (alogh + D)(vE) ® (v0), (7.11)

where a € R\ {0}, b € C.
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Proof. We have Ty =dy ' (¢ ® {) withdo=cg 2|V |I7! > 0, where co=||v[|52(To¢, v)
and by Lemma 7.3 B1(A) = d(1)(¢ ® ¢) with

d() = —dy " hi(R) (1 + 0 (A2 1og 1)).
Thus, B; (1) is invertible and
BiM) t=d) M ® ). (7.12)
Combining (7.4) and (7.12), we have
MR =d) T (Do(A) + YA E @ H(Do(R) + Y1(R)). (7.13)

Expand the right of (7.13) and use (7.3), d(A) ™! = —doh{(A)~! + GMU, and Do¢ =
DoS1¢ = . We obtain
MMM, = d(1)™ MyDo()(E ® HDo(W)My + Rem(2)
= —doh1 ()7 () ® (V7)) + FVS + Rem(R).

Since My(M(A*) + S1)"'M, = €VS + Rem(A) by (7.4), (7.9) implies (7.11). m

Proof of Theorem 1.9 when H has singularity of first kind. By virtue of Lemma
7.4, W_x<a(|D|)u(x) is equal modulo GOP to (1.36):

o0

—/(a log 2 + b)Ro(A*) (v8) () (v¢, TA)U)A® y<a (M) d A
0

We have v¢ € (x)2L'(R*) and [pa v(x)¢(x)dx = 0 for ¢ € Sy L2. Thus, the fol-
lowing lemma implies Theorem 1.9 (1). The lemma is more than necessary for this
purpose and we state it in this fashion for the later purpose.

Lemma 7.5. Assume that f,(x)g € L'(R*) and Jra &(x)dx = 0. Then, operators
Qk, k =0,1,2,...defined as follows are GOP:

Qru(x) = /(RJ(X“)f)(X)(g, T(1)u)A> (log 1) y <a(A)d 1.
0

Proof. Let jux (L) = A(log M)* y<4(X) fork = 0,1, .. .; ;tx are GMU. We have

(& TI(Mu) = /g(Z)(H(A)M(Z)—H(/\)M(O))dz

R4
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and TT(A)u(z) — I1(A)u(0) may be expressed as in (1.39). Then, as in (1.40), Qxu(x)
becomes the Z;zl fol do of

oo

[ ([ ®iomnwizsemmrued:)umd a1

0

R4

Since translations commute with Fourier multipliers, (1.15) and (1.16) imply

i (ML) Rju)(0z) = TL(A) (t—62 R pic (| D)) (0).

Thus, if we define T;(y,z) = iz; f(y)g(z), then T;(y, z) € £! and (1.22) implies

(.14 = [ R GAOT IO w0 Rin(ID D) 02 d
0
~ [ 0.5 Koo Ryn(Dudydz.
RS

It follows by virtue of Lemma 3.5 that

17190, < CUT Il IR (DYl < C lulp-

This proves that Qk, k=0,1,...are GOP. ]

8. Singularity of the second kind

We prove here Theorem 1.9 (2). Thus, we assume (log |x[)2(x)3V € (L' N L9)(R*),
Ty is singular in S1L2% and T, = SzGév)Sz is invertible in S, L2. Let

(Ti + $2)~' = D1 @.1)

We clearly have

D1S2 = Sle = Sz.

We abuse notation below and write @g)Lz (f(1)) for oY (f()).
J

B(S, L2)

8.1. Threshold analysis 2

Recall (7.9), (7.10), and (7.8). We study Bj(A) for small A > 0 via Lemma 7.1. In
view of (7.8), let

Bi(A) == iAW) Bi(A) = T1 = A2y (W) T (A + Ta(A); (8.2)
T1(2) = $1DoM)GS" Do) S1 € 05, (1),

T40) 1= SimA) ' HA)S € 0, (1 (logd)?). (8.3)
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Notice that Tl () is 'VS. We remark that we do not assume 75 is invertible in S, L2
in Lemmas 8.1 and 8.2.

Lemma 8.1. We have the following identities:

S,Do = S» = DyS>. (8.4)
SyTo =ToS» =0, LoS»=S,Lo=0. (8.5)
S2Do(1) = Do(M)S2 = S (8.6)
$2T1(0)Ss = $,GS, = T, (8.7)

Proof. (1) Since S1 Dy = S1 = DyS1 and S, C S, we have (8.4).

(2) Since 0 = QToQS1 = QToS1, we have ToSy = PToSy and Kerg ;2 T1 =
Kerg, 12 ToS1. Hence, T9S2 = ToS152 = 0 and S, Ty = 0 by the duality. This implies
the first of (8.5). Then, by using also (8.4), we obtain

SaLo = S2(P = PToQDoQ — QDoQToP + DoQToPTo QDo) = 0.

We likewise have LyS, = 0 and the second of (8.5) follows.
(3) Equations (8.4) and (8.5) imply S2Do(A) = Sa(h1(A)Lo + Do) = S and
likewise D¢(A)S, = S5. Equation (8.7) is obvious from (8.6). ]

Lemma 8.2. For small A > 0, El(k) + S, is invertible in S1L?* and

(Bi(W) + $2)7" = D1+ D122V ' T1() D1 + 0 ,(A*(og 1)), (8.8)

Proof. From (8.2), we have B1() + Sz = (Lg, 1> — L1())(T1 + S2), where
Li(A) := PhiM) ' T1 () Dy — Ta(M) Dy, (8.9)
It follows that B (L) + S, is invertible in S7L? and
(Bi(M) + S2)™' = D1 + D1Li(A) + D1L1i(M)?*(1g, .2 — Li(A) ™', (8.10)
Substituting (8.9) and using (8.3), we obtain (8.8). ]
Lemma 8.3. Let Bo(A) = S» — S2(B1(A) + S2) ™1 S. Then
By(X) = —A2h (M) N(T» + @g‘;)m(xz log 1)): (8.11)

B, () is invertible in S, L? for small A > 0 and

By = A2 (WT T + (9@‘;)”(1). (8.12)
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Proof. Multiply (8.8) by S, from both sides. Since DS, = S2 D1 = S5 by (8.1),
(8.7) implies S,T1(1)S> = T and

$2(B1(0) + 82)7182 = S2 + A2 ()7 T + OF), L (W (log 1)),

from which (8.11) follows (recall 41 (1) = (go(A) + c1)™!). Since T is invertible in
S, L?, the rest is obvious. n

Since B,(A)~! exists and By (A)~! = —h1(A)" 1 B1(A)~!, Lemma 7.1 implies

BiM) = —hiM)THB1W) + $2) 7 = ()T L), (8.13)
Jo(A) = (B1(A) + S2) 7182 B2(A) 1 S2(B1(A) + S2) 7L (8.14)

Substitute (8.13) in (7.10). Then, (7.9) yields that

MOAH™T = (MAH +S)7 + M) + M),
M) = =h W) MAY + S) T S1(B1(A) + $2) TSI (MO + 517
(8.15)
No(A) = =hi () THMAH) + S)TIS1LA)SIMAY) + 517 (8.16)

Recall that M, (M(A*) + S1)~! M, is GPR by Lemma 7.3 (1).
Lemma 8.4. The operator My N1(A)M,, is GPR.

Proof. Substitute (7.4) for (M(A*) + S1)~! and (8.8) for (B1(A) + S»)~! in (8.15),
expand the result and multiply by M,, from both sides. Then, the terms which contain
(9;2 (A?) in (7.4) or terms of order (9;2 (A%log ) in (8.8) are Rem(A)s. What remains
isequal to —h1 (A) "' My Do(1)S1 D151 Do (M) My = —h1 (A) " M, S1 D1 .Sy M, (mod-
ulo §VS). Thus, if S1D;1S; = Z;,k:l ¢jk(§; ® {i) is the matrix representation of
S1D1S; via the basis {¢1, ..., &y} of S{L2,

My MMMy = =Y k(M) e (v8)) ® (&),

jk=1

and the lemma follows from Lemma 7.5 since [p4 v(x)x (x)dx = 0. ]
The following lemma is the clue to the proof of Theorem 1.9. Let {{1, ..., {,}

be the orthonormal basis of S; L? such that {{1, ..., () is the basis of the subspace

S, L? which is spanned by eigenfunctions of 7, (recall (6.9)):

Tty =iajt, a; >0, j=1....m.
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Lemma 8.5. Suppose that H has singularity of the second kind at zero. Then,

QM) = —id7?) a2 wg) ® W) +hi()7 D ap (M) ® (i) (8.17)

j=1 jk=1
modulo GPR, where a;i(A), j.k =1,...,n are GMU.

Proof. By virtue of Lemmas 7.3 and 8.4, it suffices to prove (8.17) for My N, (A) M,
in place of @,(1). We substitute (8.8) for (B1(1) + S2)~! and (8.12) for Bo(1)™"
in (8.14), use S2 D1 = DS, = S and express the result via the basis {{;} of S, L?
chosen as above. We obtain that with GMUs {a;x(A)}; k=1

S1h()S1=1) ai?AP (NG @& + Y au(M)Ei ® G (8.18)
j=1 i,k=1

We then substitute (7.4) with (7.5) for (M(A*) + S;)~! and (8.18) for S;J2(1)S;
in (8.16) and expand the result. Then, Y;(1) = (9;2()9) in equation (7.5) for
(M(A*) 4 S1)7! cancels the singularities in (8.18) and produces Rep(A). Thus, we
obtain that

MyNo (M My = —h1 (W) MyDo(1) x (8.18) x Do (1) M,

= - ia;?A? () ® (g) + Y aeMhi ()7 w8) ® (),

j=1 i,k=1

where we used j)()()&) = Do + /’ll()t)L(), Doy = Dg, S1Dg = DoS1 = S1, S2Dg =
DoS> = S> and S» Lo = L¢S> = 0. Lemma 8.5 follows. [

8.2. Proof of Theorem 1.9 (2)

We follow the argument outlined in the introduction which patterns after the proof
of [35, Theorem 5.13]. We shall, however, need some new estimates at the end of the
proof. By virtue of Lemmas 7.5 and 8.5, we need to study only

Queatt = Zia;Z/Rg(x“)(vg) ® WEHT(MuAy<a(A)dA.
Jj=1 0

We first deal with the terms with j = 1,..., m separately, omitting the index j and
the constant ia;>:
[e.e]

Qu := f(R;(/\“)(vg) ® WO M) Ay<a(MdA, ¢ € SHL2%. (8.19)

0
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Since [p4 v(x)¢(x)dx = 0, we may, as before, replace TI(A)u(z) by TI(A)u(z) —
IT(A)u(0) in (8.19), which we now express in the form (1.41) and denote the operators
produced by the first and the second terms of (1.41) by 25 and 2 respectively. Then,

Qu = Qpu + Qgu
and we call Qg and Qp the good and the bad parts of €2, respectively. Recall that
¢(x) = —w(x)p(x) with ¢ being p-wave resonance, see Lemma 1.8 (1) and (3).
Good part is GOP
Lemma 8.6. The good part Q¢ is a GOP.

Proof. Let Ty 1 (x, y) = (W) (x)ymy1 () (y) and upm; = Ry Rju for 1 < j,1 < 4.
Then, T,,; € £' and Qgu becomes the superposition by Zic,l=1 fol(l — 0)d0O of

o0

/ ( [ R =Tt Z)H(/\)(T—erSaUDl)um,l)(o)/\3d/\)d2dy

R4xR*+ 0
00

= / Tm,z<y,z>ry( / m(x)n(x)(r_ez)fy(|0|>um,z)<0>x3dx)dzdy
R*xR* 0

— [ Tna0- 25 Koz 21D Dt ).

R4xR*
Lemma 3.5 and Minkowski’s inequality then imply that Q¢ is GOP. |

Remark 8.7. The proof shows that Lemma 8.6 holds if { ® ¢ is replaced by a ® ¢
such that a(x)v(x) € L'(R*) and ¢ € QL2.

High energy part of the bad part. Since Z?Zl iAz;(IT(A) Ryu)(0), the first term
of (1.41),1is VS, Qpu(x) becomes the sum of products

4
Qpu(x) = Zi(ZlUI)QB,lu(X),
=1

Qpu(x) = / Ry O () (TTA) R1u) (0)A% y <a (M)A
0
Ignoring the harmless constant i (z;v, {) and Riesz transforms R;, we consider

o0

Wpu(x) = / (R (AH0) (1) (TT(A)u) (A% <a(R)d A (8.20)
0
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where w(x) = v(x)¢(x)(= —V(x)p(x)) with ¢ € S, L2\ {0} (and p-wave resonance
¢(x)). Difficulty here is of course that (8.20) has only A? instead of A>. We decompose

Wpu = xzaa(|D)Wau + x<4a(ID)Wpu

and move ys>44(|D|) and y<a4(|D]) to the inside of the integral in (8.20). We first
consider x>44(|D|)Wpu which is equal to (8.20) with )(24a(|D|)R6F(/\4)a)(x) in
place of R;’(A“)w(x). Let g (§) = y>4a()|E|™*. We have u, € LP(R*) for 1 <
p < oo.

Lemma 8.8. We have ji,(x) € LP(R*) for 1 < p < o0. Forall 1 < p < oo, ua(|D|) €
B(L?(R*) and (| Do € L?(R?)

Proof. Since 1z € C®(R*) and |0% 114 (§)| < Co(€)~*71¢!, integration by parts shows
that 71, € C®°(R*\ {0}) and is rapidly decreasing at infinity along with derivatives;
for the small |x| behavior, we observe that [i, is equal modulo a smooth function to

L7 dr [ Ji(r|x])
irxe ar 1
(2n>2/(/e d“’) =] T
a S3 a

and the well-known property of the Bessel function implies the right side is equal
to C log |x| + O(|x|?) as |x| — 0. Thus, ftz(x) € L?(R*) forall 1 < p < oo and
ta(]D|) is bounded in L?(R*) for all 1 < p < oo. Since

(x)*(log |x|)v € (L? N L*4)(R*),
(x)(log [x)w € (L' N L#AT)(RY)
and
ta(|DDo(x) = 2m) 7 (ftg * ©)(x) € LP(RY) foralll <p<oo. =

Lemma 8.9. Let { € ;L2 \ {0}. The operator ys44(|D|)Wp is bounded in L? (R*)
forl < p < 4and, ifa > 0 is sufficiently small, it is unbounded for 4 < p < oco.

Proof. By Fourier transform, we have

124a(DDRS O)0(x) = F* (na(©)6() + M%)

= pa(|D))o(x) + pa(IDDA* R AHo(x).  (8:21)

Accordingly, y>44(|D|)Wpu(x) becomes the sum ng’l) u(x) + th’z) u(x):

= =

WALu() i= a(IDDo(x) [ TAmOA 2ead (8.22)
0
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oo

W u(x) == / Ha(IDDR Ao () T ()2 r<a(A)d 1.
0

(1) Let v(A) = A3 x<4(A). Then, v(1) is GMU and (1.21) implies
W2 u() = wa(ID)) / w(y)ry( / R ()T (| D)u(O)A dx)

— 1a(ID)) / () (ty Kv(| D) (x)dy.

Minkowski’s inequality and Lemma 3.5 then imply that ngzi is GOP.
(2) Let £(u) be the linear functional defined by

o0

) = [ MU0 dA.
0

Then, Ws2u(x) = pta(ID)w(x)€() by (8.22) and pta(|D)w(x) € L?(R*) for all
1 < p < 0o by Lemma 8.8. It follows that, if pq(|D[)w(x) # 0, W) is bounded
in L?(R*) if and only if the functional £(u) is bounded on L?(R*). By using polar
coordinates § = Aw and the Parseval identity, we obtain

_ 2 fod — r=allE)
Lu) = on )2//u(kw))(<a(k)l dod) = / €3] d§

,J Gy e
! rea(E)
= G R/ u) fedx, S0 = 7 (22D, 8.23)

and f € L9(R*) if and only if 4/3 < g < oco. Hence, £(u) is bounded on L?(R*)
for 1 < p < 4 and is unbounded for 4 < p < oo. Thus, the proof is finished if we
prove g (|D])w # 0 for some a > 0. However, if i, (|D|)w = 0 for all @ > 0, then
it must be that w = v¢ = 0 and, as To¢ = 0 for £ € S, L2, ®(¢) = 0 for the ® of
Lemma 1.8 (1), hence { = 0. This is a contradiction and the lemma is proved. |

Proof of the negative part of Theorem 1.9 (2)

Lemma 8.10. If H has singularity of the second kind at zero, then W_ is unbounded
in LP(R*) for4 < p < oo
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Proof. We prove the lemma when rank S, = 1 and S; = { ® {. A modification of the
general case by using Hahn—Banach theorem can be done by following the argument
in [34, part (iv) of the proof of Theorem 1.4 (2b)], which we omit here. We remark
that v{ # 0 as was shown in the proof of Lemma 8.9.

We prove the lemma by reductio ad absurdum. Suppose W_ is bounded in L? (R*)
fora 4 < p < oo. Then, so must be €2 in (8.19) for all 0 < a < oo and, since Qg is
GOP by Lemma 8.6, so must be Qp > = y>44(|D|)2p. Then, since y>a4(|D |)Wl§2)
is GOP by part (1) of the proof of Lemma 8.9, we conclude that

4

9L = > (wz )W u(x) = pa(IDDEH )W),

I=1

must also be bounded in L?(R#*) for the p, where ngg’lu = ngg Rju (see (8.22))
and

o = (o060, it = (22D
I=1

1§12
For sufficiently small @ > 0, we have u, (| D|)(v¢) # 0. By virtue of Lemma 6.2 (2),
o = ((vz1,0),...,(vz4, ) # 0 and, hence, « - £ is non-trivial linear function of &.

It follows that
4
Z vz, ) fi(x) = F (- §IE[ P x<a((€]) & LY(RY)
=1

for any 1 < g < 4/3. Thus, { is unbounded on L?(R*) for any 4 < p < oo by the
Riesz theorem. This is a contradiction. [

Low energy part of the bad part. We recall that Wpu is defined by (8.20) with w =
v, ¢ being in S L2. The following lemma completes the proof of Theorem 1.9 (2).
A part of the proof will be postponed to Appendix A.

Lemma 8.11. Let { € SoL? and a > 0. Then, x<4q(|D|)Wp is bounded in L? (R*)
forl < p <4,
Proof. Let p(A) = ITI(A)u(0)A2% y<4(A) and, for & > 0,

o0

Wi <u(x) = [Xs4a(|D|)Ro(/\4 +ie)w(x)p()dA.
0

Then, p € C5°((0, 00)) and

FOVE 1)) = 224a(ENOE) / ?‘de. (8.24)

e
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It is evident that
Wp.<u = limWg _u in L%
- el0 =

Since @(0) = 0, Taylor’s formula implies

b(&) = Zsmwm(s) (&) = / [ iz iz, s25)

0 R4

(2m)?

We substitute (8.25) in (8.24) and apply the inverse Fourier transform. By changing
the order of integrations, we obtain

: [ [ e reaalEDlE]
W) = 3 o [ (5 [ =5, 61 oin,
m= 0 R4

where R,,, 1 < m < 4 are Riesz transforms. On substituting

! £ -
EF =A% —ie [P —At—ie G- A —ie

Wg, Su(x) becomes
Wg, <u(x) = Zju(x) + Z5u(x),

where the definitions of Z$ and Z§ are obvious. We have

lxé’
ZEu(x) = ZR / ((Zn)z |g|4f<4“(_'?')Am@)ds)xpmdx

Substitute (8.25) for @, (£), change the order of integrations, and integrate by d£d A
first. As & — 0, Z5u(x) converges in L2(R™) to

o0

4 1
3 / R / izma)(z)rgz( / R () TT(A)u (0)A3 Xsa(k)d)k)dzde
m=1y R4 0

4 1
= Z / (Rm/(izma)(z))rgZK)(ﬁaﬂD|)u(x)dz)d9 =: Ziu(x).
m=17 R4

Lemma 3.5 and Minkowski’s inequality imply that Z; is GOP.
Computing as before, we obtain

ixé <4a A)
Ziu(x) = ZR / (am / GV LEAVTS
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For A > 0 and ¢ > 0, we have
-2 _ 1
e — 2% —ie "1 (E[+ MEP + A2)

and, as ¢ — 0, the left side converges to the right side for all (¢, 1), |€| # A. Thus, as
e — 0, Z5u(x) converges in L2(R*) to

4 ° eix€ P
) Yztal(E)Tn ()
A= ) K 0/ @7 ) G+ AER + 4 o2,

We substitute (8.25) for @,,(£), change the order of integrations, and integrate by
d&d A first. This yields that

4 1
Zou(x) = Z/ on )4/1Zma)(z)(tngmLu)(x)dZ>d9, (8.26)
m=1{

where L is the integral operator defined by

— i ixE X<aa(|§]) ) 2
Lu(x) 0/(/6 (62 + 22) (] +)t)d§ H(A)u0)A” y<a(A)dA.

R4

We substitute (1.15) for TT(A)u(0), use polar coordinates n = Aw, and change the
order of integrations. The result is that L is the integral operator with kernel

eXEX Ny 4o (1ED) x<a(Inl)
L d&éd 8.27
(x.7) = // e = P (el + il <5 (827

We shall prove the following lemma in Appendix A and take it for granted for the
moment.

Lemma 8.12. The operator L is bounded in L? (R*) for 1 < p < 4.

We apply Minkowski’s inequality and Lemma 8.12 to (8.26) and obtain
[Z2ullp < Cll{x)e1llull, forl < p <4,

This completes the proof of Lemma 8.11 since Wp <u = Zju + Z,u. [ ]

9. Singularities of third and fourth kinds

We prove here Theorem 1.9 (3) and (4), assuming (x)2(log|x|)2V € (L' N L9)(R*)
for a ¢ > 1. We have a sequence of projections Q D S; D S2 D S3 D S4. We take
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the basis {¢1,...,¢,} of S;L? such that {{q,...,¢n), m < n, spans S, L2 and, if
Ts = 3G S5 £ 0,

Ty =—iajlj, 1<j<r<m Tf=0r+1<j<m .1

r+1,---»,Cm} 1S the basis of S3L“. Recall Ty = S4 4; Ty is non-singular in
is the basis of S3L2. Recall Ty = S4G.") Sa; Ty i ingular i
SaL?.

9.1. Threshold analysis 3. First step
By virtue of Lemmas 7.3 and 8.4,
Qy(A) = My N>(M) My =: N (1)  modulo GPR

and we study Nz(”)()t) as A — 0. Recall N, (1) is given by (8.16) with (8.14) and we
need to study B»(A)~!. We have from (8.11) that

Bo(A) = —A2hi (M) 'Ba(), B.(W) =T + @f;;)Lz(,\zlog 2)
We apply Lemma 7.1 to the pair (B»(1), S3). Since (T» + S3)~! exists in S,L2, so
does (B2(A) 4+ S3)~! for small A > 0 and
(B2) + S3)7' = Do+ 0 ,(\logh), Dr=(T2+ 837" (92)

Lemma 7.1 implies that, if B3(1) = S5 — S3(§2(A) + S3)7 185 is invertible in S3 L2,
then

By()7" = (Ba(M) + S3) 7! + (B2(A) + S3) 7' S3B3(1) ' S3(B2(A) + S3) 7"
9.3)
On substituting (9.3) x (—=A72h1(A)) for By(A)~! in (8.14) we obtain

J2(A) = J2,1(A) + J22(1)
where J, 1(A) and J3 »(A) are equal, respectively, to

J21(A) = S1(Bi(X) + S2)71S2(Ba(A) + S3) 71 S2(B1(A) + S2) 7' Sy,
J22(A) = S1(B1(A) + S2) 7' Sa(B2(A) + S3) 7!
x S3B3(A)1S3(B2(A) + S3) 7' S2(B1(A) + S2)7'Sy.

Here, we have placed S; on both ends of J5 1(4) and J32(A), which is allowed
since (B1 (1) + S,)~! is an operator in Sy L2 and, accordingly, we have Nz(v)(/\) =
c/\/2(})1) A + Nz(vz) (L) where, for j = 1,2

Ny (A) = A 2My (M) + ST D (D(MAY) + 1) My, (9.4)

We first prove the following lemma which is irrelevant to the existence of B3(1)~1.
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Lemma 9.1. The following statements hold.
(1) There exists Bjr(A) € (9<(C4)(1)’ 1 < j,k <n, such that

M) =i Y a2A708) @ Wg) + Y ()T (M) wE) ® (v8r).

j=1 k=1

(2) The operator produced by (5.1) with J\fz(,vl) (A) in place of @, (M) is bounded in
LP?(R*) for 1 < p < 4 and unbounded for 4 < p < oc.

Proof. Since J;,1(A) has S; on both sides, (8.8) and (9.2) imply

J1(0) = 82028 + 05, (A2 ()7, 9.5)

We substitute (9.5) for J5,1(A) and (7.4) for (M(A*) + S1)~! in (9.4) and expand
the result. Then, Y;(1) = (9;2 (A?) cancels the singularities and, modulo VS +
Rem(k)s

Ny () = A7 My Do () 2,1 (Do (M) M.

Then, since ;(;)()(/\) = Do+ h1(A)Lg and S1 Dy = DpS; = Sy,

N () = A2 My Jo 1 ()M,
+ A2 (A My (LoJ2,1(A) + J2,1(A) Lo) M,
+A72h1(A)*MyLoJ2,1(A) Lo.

Here the first line on the right-hand side is of the desired form by virtue of (9.5) and the
second and the third line produce ¥ VS since Sy Lo = L¢S> = 0. Thus, statement (1)
follows.

(2) By virtue of (1), ,Nz(j)l) has the same form as (8.17). Hence, it produces the
operator which is bounded L?(R*) for 1 < p < 4 and unbounded for 4 < p as was
shown in the proof of Theorem 1.9 (2). ]

Corollary 9.2. If H has singularities of the third or fourth kind at zero, then, modulo
the operator which is bounded in L? (R*) for 1 < p <4 and unbounded for 4 < p < oo,
W_x<a(| D)) is equal to Z which is defined by

Zu = / Ro(AH NS (MW TT(MuA® y <a(AYud A (9.6)
0

9.2. Key lemma

To study J\/Z(vz) (A), we use the following lemma. We use in this section only the result

that B3(1)™! = Oéi)LZ (A2h1(A)) or Bz(A)~! = (9;?L2 (A72) in the respective cases.
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Lemma 9.3. The following statements hold.
(1) If H has singularity of the third kind, then

By = A8, 7 ST S+ 050 (g )7 9
(2) If the singularity is of the fourth kind, then
Bs() ™t = ATAS, TS, + (9§‘2L2 (A2(log 1) ™H). 9.8)

(3) If the singularity is of the fourth kind but d-wave resonances are absent
from H, then modulo (9~(;;)L2 (A%(log 1)3)

Bs(W) ' = A28, TS, + (9;,?L2((10g 1)?). 9.9)

For proving Lemma 9.3, we prepare a few lemmas.
Lemma 9.4. The following statements hold.

(1) The following identities are satisfied by S3:

GVSy = i@ ) v @ S3(x%),  S3GY = i(4*m) ' S3(x%) ® .

(9.10)
S;G sy = 8,6VS; =0, j =0,1,2.3. 9.11)
T1(A)D1S3 = —h (M) S ToPG S5, (9.12)
S,T1(A)D1S3 = 0. (9.13)

(2) We have the following identities for Su:
GaMySs = S4M,G, = 0, (9.14)
T1(N)Ss = S4T1 (1) =0. (9.15)

Proof. (1) Lemma 6.2 (2) evidently implies (9.10). Then, (9.11) follows since one has
Sjv =0,/ =0,...,3.Recall that T1 (1) = S; Do (V)G Do(1)S;. Then, D1 S, =
S2, LoS> = 0 and (9.11) together imply

’fl(A)DIS3 = (Sl + h](A)SlLo)Gév)S:; = hl(k)SlLoGév)Sj;.

Substitute (7.2) for Lg. Then, QGS))SZ =0and S1DpQ = S; imply (9.12). Since
S>Ty = 0 by (8.5), (9.13) follows from (9.12).

(2) Lemma 6.2 (3) implies (9.14). Since S4Do(A) = S4(Do + h1(A)Lo) = Sa,
(9.15) follows from (9.14). ]

The following lemma is a precise version of (9.2). The lemma is more than what
necessary for the proof of Lemma 9.3; however, we need it in this form for that of
Lemma 9.8.
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Lemma 9.5. Modulo (9;‘&2 (A*log A), we have that
(B2(A) + S3)™" = Dy — D2 F3(A) D2 + F354(). (9.16)
where F3(X) and Fs 44()) are given by
F3(0) = A282{Ty 1 (A) = G Do ()G + i)~ (T1(A) D1)*} S,
+ AT (NG, (1) S{GW 5,68 Dy + G 81Dy 516Gy S,
+ A% (M) 28T 1 (M) D)3 Sa, (9.17)
F35q(0) = A*D2{82(8,(MGS + ()™ (T1 (MDA S2D22. (9.18)

Proof. Expanding (8.10) to the third order, we have by (8.9) that

3
(Bi(W) + 87 =3 Dilai() + 00, (% Gog ). (9.19)
j=0

Since S D1 = D15, = S5, Bo(A) = S5 — S2(§1(A) + S,)71S, becomes

3
By(M) = =) SaLi()! Sz + 0, (23 (log 1)),

j=1
Recall (8.9), (8.3), and (7.6). We have
Li(}) = (M)A - A%B),
modulo O, 12(A°(log 1)) where
A=Ti(W)D1, B ==S1DoM){Ta (M) Do(A) — (G5 Do(2))*}51.
Then, since Ez(/\) = —A"2h1(X)B2(A), we obtain by using Szfl (A)D1 8, = T that
Bo(A) =Ts + S2{(A?B + A?2h; (L)1 4?%)
+ A% (M) Y (AB 4+ BA) + A*h (V)71 43S,

modulo Og, ;2 (A®1log A). Then, identities in Lemma 8.1 and DS, = S; D¢ = S
produce

B,(A) =Ts + F5(A), F3(1) = Fs() + Og‘;’Lz(x“log ). (9.20)

From (9.20) we deduce that (B, (1) + S3)~! = Da(1g,12 + F3(A\)D,)~! and
(B2(A) + S3)! = Dy — D2 F3(A) D2 + D1 (F3(1) D2)?

= D3 — D2 F3(A) D2 + F3,54(0) + 0 (A log 1)

modulo (9;‘&2 (A*log A) as desired. n
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Lemma 9.6. Let L = S3G3 (—Lo + LoS1 D151 Lo)GY” S5 and
€M) i=Ts + 5, (A) 783G S5 + 2, () (WL
Then, B3(A) = S5 — S3(B2(A) + S3)71S5 is equal 1o
B3(A) = A2, (ME(R) — 12, (M)*F(A),
F(h) = 53(G{”$:025,G")S3 + 05, ((log )™
Proof. On substituting (9.16), we have
Ba(h) = S3F3(A)S3 — S3Fa,5(1)S3 + O ,(A* log 2).

When sandwiched by S3, the second line of (9.17) vanishes since (9.11) implies
QGév)S3 =353 Gév) O = 0; the third line of (9.17) and the second term on the right of
(9.18) become (95;&2 (A*) since S3T1(A)D; and T{(A)D1S3 are in (Og)L2 (h1(1)).

Hence, modulo (9~(;;)L2 (A*log ),
S3F3(A)S3 = A2S3(Ty (V) + hi (M) L)Ss,
S3F3,54(0)S3 = 13,(1)283(G{" $2D28,G{")Ss.
Recalling that S3G iU)S 3 = T3, we obtain the lemma. [ ]

Proof of Lemma 9.3 (1). If H has singularity of the third kind, then 73 is invertible in
S5 LZ. It follows that

M) = (g2 + (827183683 + 2,(W) (WD) T3 )T
is invertible in S3L? for small A > 0 and
e =T = W SG ST + O, 12 ((log 1) 72).
Then, so is B3(1) = A28, (A)(1 — A2Z,(A) F(A)€(L)~1)€(A) and
Bs()7' =AM T + e T FME) T + O, 12(A22,(1)).
This implies the lemma. u

Proof of Lemma 9.3 (2). If H has singularity of the fourth kind, then Lemma 9.6
remains to hold and T, = S4 G‘(lvl) S4 is non-singular in S4L2 ([14]). Let

S; =508,
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Lemma 9.7. For small & > 0, €(A)~! exists in S3L? and
e = HMWST S+ Z0),  Z() = 05, (1) (9.21)
and in the decomposition S3L? = S‘f‘L2 ® S,4L2

d(L) —d(M)SFG)S4T;! )
~TIS4G)SEAN) T S4G ) SN SEG) ST )

d() = (SETSH ™ + 08, (log)™).

Z(\) = (

Proof. Since GéU)S‘; = S4G§v) = 0 by (9.14), we have ZS4 = S4Z = 0 and, in the
decomposition S3L2 = S;- @ S4L2,

- — )
S;e)St &M 7'8;6, 54), (9.22)

e =, - )7 %
LATISGYSE BT
We apply Lemma 5.1 to €(A). Then, az; = g, (L)~ Ty is invertible in S4L?;
an —anayian = SFEM)SE — () SFGY) ST 5,6 sE
= S{ 158575+ 0%, ((log)™)
1

is also invertible for small A > O since S j‘ VEN j‘ is invertibe in S 4LL2;

d() = (a1 —anazan)”t = (S{T3SH) 7 1+ 0 (log 7).

It follows by Lemma 5.1 that € (1) ™! exists for small A > 0 and is given by (9.21). m
Since € (1) ! exists B3(A) = A2g,(A)(1 —A2g,(A) F(A)€(A)"1)€(A) and, since

el = og‘;)Lz(log A) by (9.21), B3(X) is invertible in S3L2 and
BN =220 e M T + e T FAEQ) T + 00 (25,0,
(9.23)
This implies (9.8) because F(1) = (95;;)L2 (1) and Lemma 9.3 (2) is proved. ]

Proof of Lemma 9.3 (3). Lemma 1.8 (3) implies that d -resonances are absent from H
if and only if S3L2 © S4L? = {0} or T3 = 0 on S3L2. Then, S4 = S3, S;- = 0 and
(9.22) becomes €(A) = g, (1)1 84Ty S4. It follows that Z = 0in (9.21). Then, (9.23)

implies (9.9) because €(A) "' F(ER) ™" € 0%, ((log1)?). n
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9.3. Simplification

In this section we want to simplify J\fz(vz) of (9.4) modulo GPR. For shortening formu-
lae we introduce

E>j(A) =84 (B1(A) + S2)7185(Ba(A) + S3)7LSs, (9.24)
Eazr(A) = S3(B2(A) + S3)71S2(B1(A) + S2)71Sy, (9.25)
E>(A) = E5;(A)B3(A) " Ear(A) (9.26)

and express Nz(vz) (A) in the form
N33 () = A2 My (MOH) + S) T Ex (MO + ST My (927)

Note that E5(A) is sandwiched by S; and, hence, is VS but not §VS$ in general
because of the strong singularities in B3(1)™!, see Lemma 9.3.

In the following lemma, A &~ B means that the factors A which appear in the right
of (9.24), (9.25), and (9.26) may be replaced by B without changing c/\/2(1)2) modulo
GPR. The proof of the lemma uses only the information on the size of B3(A)™' of
Lemma 9.3.

Lemma 9.8. (1) If H has singularity of the third kind, then

(MAY) + S1)7" & Do(h) — De(MAG Do(1). (9.28)

(Bi(X) + S2)' ~ Dy + A*hi (M) ' T1 () Dy. (9.29)

(B2() + $3)7™ & Dy = A2D285(Tyy — G Do(MG)S2Dy (9.30)
— A2 (M) D285 (T 1(A)D1)?S2 Ds.

(2) If H has singularity of the fourth kind, then

(MO + 517~ Do (1) — A2Do(M)GS” Do (R)
— A*2,(M) DG Dy, (9.31)
(Bi(A) + S2)™' ~ Dy + A2h (M) 1D T1 (M) Dy
F A (A g MD1GY Dy + A (W) 72D1(G D)2, (9.32)
(B2(A) + S3)™" & Dy — Dy F3(A) D2 + F 54(2). (9.33)

where we wrote D1S1 = S1D1 = D1 for simplicity.

Proof. We first prove (2) and explain how to obtain (1) from (2) at the end of the
proof. The proof is divided into several steps. Recall notation (1.35) for Rg,; (A) and
(2.11) for RY (A). It is important to observe that E>(1) € (9;‘?L2 (A72)is VS.

2m—2n
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(i) Denote the right side of (9.31) by A;(4) and let
A1) = Do) = R2Do(M)G Do (M) — 245, (M) Do (M) G Do (L).

It is obvious that A; (1) and A; (1) are VS. By virtue of (1.10) and (2.10), (M(A*) +
S1)~! may be expressed as

Do) + R, () Do() ™ (1 + RO M)(1 + R, (W) Do(1) ™)™
and RV (A)(1 + RS, () Do(1)) ™! = 0% (A9). It follows that

(MOY) + 5D = Do) + RY, W Do(A) ™! + 0% (1)

2
=Y Do(M(—RY, ;M) Do(L) + 05 (1°). (9.34)

On substituting (9.34) in (9.27), O (1) produces O (A2) for N} (1) which is
GPR by Proposition 3.6 and we may ignore it from (9.34). Then, the terms of order
(9(4) (A%) which appear in the sum on the right of (9.34) produce gVS for NZ(UZ) L)
and they may also be ignored. Thus, (M(A*) + S;)7! ~ A1 ()). Since Dy = Do +
h(M) Lo, 48, (NDo(M)GL” Do(A) = A*2,(A) Do G Do + O, (A*) and we may
further replace A1 (1) by A1(A). This proves (9.31).
(ii) Let JVZ( V1= AT2My A1 (L) E2(A) A1 (M) My, which is VS and which is equal
to Nz(vz) () modulo GPR by step (i). Let F1(A) = A;(A)S; — S141(1). Then,

Fi) = i(WV)[Lo, 1] + 05 (32) € 0% (1 ().

On replacing A1(A)S; on the left by S14;(A) + F1(4) and S1A4;(A) on the right by
A1(V)S1 — F1(2), M%) (R) becomes

AT2Si My A1 (M) E2 (M) A1 (A My S1 — A2 My S1 A1 (M) E2(A) Fr (M) M,
+ A2 My Fi(A) E2(A) A1 (M) S1 My — A2 My F1 (L) E2 (M) F1 (M) M.

The point here is that the first term is sandwiched by S M, and M,S; and other
terms carry at least one Fi(1) € (9;2 (h1(1)) and, hence, by virtue of Lemma 7.5
and by Lemma 3.5, terms of order @ (1% log 1) in the formulae which will appear
for (B1(A) + S»)~! and (B»(1) + S3)~! in the following step (iii) produce GPR for
Nz(vz) (A) and, hence, may be omitted.

(iii) We show (9.32). Since L () € (95,2 (A%1og A), (9.19) implies

(B1(0) + S2)7" = Dy + DiL1(A) + D1Li(M)? + O (A°(log 1)) (9.35)
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Then (8.9), (8.3), and (7.6) imply that modulo O (A* log 2)

DiLi(A) = Ay (M) 'D1T1(A) Dy + k4h1(l)_1g2()t)D1G4(;v)D1,
DiLi(A)? = A*hi () 72D1 (G D)2,

where we used D1S1 = 81D =Djand D1Dy= DyD, = D;. Since (9;2(1410g)k)
may be ignored from the right side of (9.35) by (ii) above, we obtain (9.32).

(iv) Since the term (9§?L2 (A*log ) in (B»(A) + S3)~! may be ignored by (ii)
above, (9.16) implies (9.33). This completes the proof of statement (2).

If B3(A)~! = oW (A72g,(A)71), then the proof of (2) implies that terms in the

S3L2
class O g, (A*1og 1) may be ignored from (9.34) and, hence, from (9.31) and those in
Oz, (A*(log 1)?) from (9.32) and (9.33). The statement (1) follows. n

9.4. Proof of Theorem 1.9 (3). Singularity of the third kind

We have B3(1)~! = (9;‘;)” (A2(log A)~1). We use Lemma 9.8 (1). Denote the right

of (9.28), (9.29), and (9.30) by i)o(l) + a, D1 + b, and D, + ¢ respectively. We
have a € (9(L42)()L2), be (9;‘?L2 (A%log))andc € (9};&2 (A%logA); they are §VS and

MDY = A2 My (Do) + ar)S1(D1 + br)S2(Da + ¢1) S5
x B3(A)"183(Dy + ¢,)S2(Dy + by)S1(Do(A) + ar)M,,  (9.36)

where we have added the indices / and r to a, b and c to distinguish the ones on the left
and the right of B3(1)~!. We expand the right of (9.36). The result is VS§; the terms
which contain more than two of {a;,a,, b;, b,, c;, c} are in the class Ogl) (A%(logL)?)
and they are §VS; those which contain two of them are also GPR because they are
§VS§ if they contain a; or a, or, otherwise, they are of the form
Mvi)o(/\)@(s“l)Lz(log MDo(M)M, = M,,Slcog‘?Lz(logx)Sle +8VS.

Thus, modulo GPR, Nz(vz) (A) is the sum of the terms which contain at most one of
{a;,a,, by, by, cy,cr}. We denote the term which contains none of them by @ (9)(1)
and those which contain a;, etc. by O(a;)(A), etc. respectively and we individu-
ally estimate the operators produced by (5.1) with O (@)(1), O(a;)(A), ... in place
of @, ().

Recall (see (9.1)) that the basis of S3L? is given by {{;41,...,¢m}, r < m. By
virtue of (9.7) we have

Bs(W)™' =) A2 (log )M ep (MG ® G (9.37)
J.k=r+1
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with ¢ (1) € (9(%4)(1) forsmallA >0, j,k=r+1,...,m.
Lemma 9.9. The operators O(0)(X), O(a;)(X),O(b;)(A), and O(c;)(A) are all GPRs.
Proof. By using Lemma 8.1, we have

O@)(X) = A2 My S3B3(1) ' S3 My,

Oa)(A) = —hi () My LoGS” S3B3 (1)~ 3 My,

O (M) = MyDo(M)S1LoGS" S3 B3 (1) ™" S3M,,

O(c1)(A) = — MyS2D252{T4 ;1 + va)(SIDlSlLO)va)

+ h1 ()G (LoS1D1S1 Lo — Lo)G3”}S3B3 (M) S3My.
We observe that all of these have S3 M, at right ends, which we will use to cancel the
singularity of B3(A)~!. Thus, the proof is similar and we only prove that O (a;)(A) is
GPR and comment on how to modify the argument for others at the end of the proof.
Let, forr + 1 < j,k <m, cjr(A) be asin (9.37) and

Wik () = =k (M) (log M) ek (), pj (x) = (MyLoG5 5)(x), 0 (x) = (vG)(x)

so that O(a))(A) = Y711 A1k (M) (pj ® wg). Since ujx(A) are GMU and

pj» Wk € (x)7SLY(R*), we need only to show that the operator / defined by
)
Tu = / Rf (MM (p ® w)TT(A)urd A (9.38)
0
for u € Dy is GOP when p € (x) "L} (R*) and w(x) = v(x)¢(x) with ¢ € S3L2.
Note that the integral by d A is only over a compact interval of (0, c0) since u € Dy.
Since [pa x*@(x)dx = 0 for || < 1, we have by (1.41) that

i,/=1

4 1
.10 = Y22 [ = 0)( [ an)nG)pe )z )as,
0 R4

where w;;(z) = z;z;w(z) and u;; = R; Ryu, which we substitute in (9.38). The change
of order of integrations then yields /u(x) = Z?,l:l fol (1—=0)1;;(0)u(x)db, where

L @u(x) = // p(y)wmz)ry( / m(x)n(x)r_ezuu(0)A3dx)dydz.
RS 0

The integral inside the parenthesis is equal to Kt_g,u;; (recall (1.21)) and (1.22)
implies that for any 1 < p < o0

1 1:1(@)ull, = Cliplllwirliluirly < Cllullp.
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Hence, I is GOP and O (a;)(1) is a GPR.

Since h1(A) does not play any role except that it is GMU, the entire argument
for O(a;)(A) applies for proving that @ (@)(A) and O(b;)(A) are GPR. The argu-
ment for O(c;)(A) is similar. The only point we have to note is that, instead of
hi(A)in O(a;)(A), O(c;)(A) contains the singularity g,(A) which is hidden in Ty ; =
Gi”)gz()t) + Giljl), however, this is harmless since §,(1)(log 1)~ !¢;x (1) is still GMU.

[

We next study the operators produced by

O(ar)(A) = — (W) My S3Bs(V) 7 S3G Lo M, 9.39)
O(br)(2) =My S3B3(3) "' 536" LoS1D1Do(A) My,
O(c;)(A) = — MyS3B3(A) 71 S3{Tay + G3(LoS1D151)GS”

+ hl(A)Gév)(LOSIDISILO - Lo)Gév)}SzDzSsz.

The following lemma completes the proof of Theorem 1.9 (3).

Lemma 9.10. The operators (9.6) with O(a,)(A), O(b;)(X), and O(c;)(A) in place
of JVZ(UZ) (A) are all bounded in L? (R*) for 1 < p < 2.

We use the following lemma.

Lemma 9.11. Let ¢ € S3L? and p € L'(R*) and let a > 0 be sufficiently small. Then,
Z") defined by

Z"y = / REOHE ® p) I udy<a(M)dA, u € D,
0

is bounded in L? (R*) for 1 < p <2 and, if [ga pP(X)dx # 0, unbounded for2 < p < co.

Proof. The proof patterns after that of Lemma 8.9. Let ® = v{ and

>4a™"

Z0u = 1240 DDZOu + fo4a(IDNZOu = Z8)u + 2 u

(1) We first show that Z")

>4a

is bounded in L?(R*) for 1 < p < 2. We have
o

20 u(x) = / 1>4a(IDDRF A (@ ® p)TT (DA x<a(W)dA.
0

Let 114(§) = x>4a(€)|E[*. Then, 1, (|D)w € LP(R*) forall 1 < p < 00, pa(|D])
is GOP (cf. Lemma 8.8) and

x>4a(IDDRG AHo(x) = pa(IDo(x) + ta(IDDA* R AHw(x)
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(see (8.21)). It follows that Z7) u = 2Dy + 22y where

>4q >4a >4a

Z0u = pa(|DDo(x)L@). L) = / (p. TIAU)Ax <a(V)dA,

202w = pa(ID)) / R () (@ ® p)TT(MUA® < (M) dA.

. . 2 .
Then, Lemma 3.5 implies ||Z(>r4a)u||p < GCpllwll1llpllillu]lp for 1 < p < co. Changing

the order of integrations, we obtain as in (8.23) that
1 X=<a(§])
L) = —— Jalx = )dxdy, Ja(x) = 7 (£2522) (0),
(0 = 55 [ POWEats = y)dxdy, Jot) = 7 (20 (o)
RS

Here J,(x) is smooth and |J,(x)| < C(x)72. It follows by Young’s inequality that
€601 = Cllol Il [l for 1< p <2 and p = p/(p = 1) and | ZZ3ul, <
Cliolllull,. Thus, |Z9) ul, < Clliplli]lull, and 20 is bounded in LP(R*) for
1<p<2

>4a
(2) We note that w # 0 as otherwise { = 0 by virtue of Lemma 1.8 and that
Ua(|D])w # 0 for small a > 0. We have that

>4a

/ Jax—»p()dy ¢ LY ®RY, 1< p'=p/(p—1) <2
]R4

Z(" 1) .

>4, 1s unbounded

unless 6(0) = 0 as in part (2) of the proof of Lemma 8.9. Thus,
in LP(R4) for 2 < p < oo and, hence, so is Z)

(3) We finally show that
20 u(x) = [ Yeaa(DDRE O (@ ® pTIDuAy<a(M)dA
0

satisfies ||Z(<r‘)mu||p < Cl(x)?wll1llplllu], for 1 < p < 2. We may assume w, p €

CS(R*Y). Let wr(y) = ykyiw(y) for k.1 =1,..., 4. Since [ps x*w(x)dx =0,
0*®(0) = 0 for || < 1 and

-y / (-0 [ e onta s

k,l=1 R4
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Hence, y<44(|D|) Ry (A*)w(x) is equal to

lim Z

0
sik

4
d=1}

Let Yk1.4(D) = R; Rk x<44(| D). Then, the inner integral becomes

—1 [ ™5 x<aa(E)
[ oGy [ s G 1)
R4 R4

3 -1 eix$|gg-|2
—/a)kl(J’)TyGVkl,a(D)((zn)4/|§_|4_(A+i8)4d§)dy
R4

R4

— _% / a)kl(y)fyeykl,a(D)(giA_g(x) + g/l-}-ia(x))dy

R4

1
-1 i(x—0y)é <da
Ja-0(Gag [| =g e arde o
RS

336

(recall (1.6)). Thus, by virtue of (3.1) and (3.2), Z®) wis equal to the superposition

<4a
by

L |

1
—5/(1 —6)do
0

k=1

of

/ wk1(y) oy (sz,a(D) / (Fir(x) + G1(x)(p, H(/\)u)l)(sa(l)d/\)dy
0

R4

R4

= [, (m,a(D) [ reri+ Kz)(r_zx5a<|D|>u)(x)dz)dy
]R4

We then apply Lemmas 3.1 and 3.3 and Minkowski’s inequality and obtain the desired

estimate.

Proof of Lemma 9.10. The operators O(a,)(A), O(b,)(A) and O(c,)(A) all have
M, S5 on the left ends. The proof is similar and we prove the lemma only for O (a,)(A).
The modification for others is obvious. We use the notation in the proof of Lemma 9.9.
Substitute @ (a,)(1) for N3 (1) in (9.6) and use (1.16). Then, by virtue (9.39) and

(9.37), Zu of (9.6) becomes

m o0
> Tiu. Jju = / R (AH e ® pr) TT(Mug, jxAd A,
Jk=r+1 0
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where ¢; € S3L2, pr = MyLoG3 4 and uq i = x<a(|DDpjic (DD with 1
being GMU. Then p; € L'(R*) fork = r +1,...,m and Lemma 9.11 implies that
[ Jkully < Cpll{x)2v; |1 llpxllalullp for 1 < p < 2. By virtue of Corollary 9.2, the
lemma follows. ]

Remark 9.12. Lemma 9.11 suggests that W4 are unbounded in L? (R*) for2 < p <
00. This holds if the sum of p’s corresponding to O (a;), O(b,), and O(c;) has non-
vanishing integral. However, we were not able to show g4 pr(x)dx # 0 even for
pr(x) = MyLg Gév) L of O(a,) above, where va)zk (x) is equal to a constant.

9.5. Proof of Theorem 1.9 (4)

It suffices by virtue of Corollary 9.2 to prove that operator Z satisfies statement (4) of
the theorem.

(1) If H has singularity of the fourth kind, then B3(1)~! satisfies (9.8) in general
and the proof in the previous subsection shows that Z with Nz( 2)(/\) being replaced by
(9(4)L2 (A2(log A)™1) of (9.8) is bounded in L?(R*) for 1 < p < 2. Thus, the proof
of Theorem 1.9 (4) is finished if we have proved it for the case 75 = 0 but only using
the condition Tz = 0 through (9.9).

(2) We now prove Theorem 1.9 (4) that W_ is bounded in L? (R*) for 1 < p < 4
if T3 = 0, without using this condition explicitly but using (9.9). Recall that only the
size information on B3(A)™! is used for proving Lemma 9.8.

We have Lemma 9.3 (3). Then, by virtue of Lemma 7.5, (9(4 Z(AZ (log 1)3) in
B3(1)~! produces GPR for ,N2(v2) (1) and we ignore it and we may assume

Bs(M) ' = A28, Bs(M) 7S, Bs()Tl =T 4 (92‘&2 (A2(log 1)2). (9.40)
Thus, the following lemma completes the proof of Theorem 1.9 (4).

Lemma 9.13. Let (9.40) be satisfied. Then, Z is bounded in L? (R*) for 1 < p < 4.

We prove Lemma 9.13 by a series of lemma. The argument is similar to but is more
complicated than that of the previous subsection. Denote the right sides of (9.31),
(9.32), and (9.33) by Do(A) + a, D1 + b, and D, + ¢ respectively. We have

ae0PM), beoPRlogr), &ec0P(Rlogh). (9.41)
Then, Lemma 9.8 implies that modulo GPR

N ) = A4 () B () (), (9.42)
Ji(A) = My(Do() + @) S1(Dy + b1)S2(D2 + 1) Sa, (9.43)
Jr(A) = S4(Dy + &,)S2(D1 + by)S1(Do(A) + dr) My,
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where we have added the indices / and r as previously. We expand the right of (9.42)
and consider each terms separately, which are VS's.

We begin with the following remarks. By virtue of the part (ii) of the proof of
Lemma 9.8, the part O L2 (A*log A) of ¢ produces GPR for :/Vz(vz) (A) and, hence,
we may ignore it; 1dent1t1es (9.14) and (9.15) that GoM,S4 = SaM,G, = 0 and
T1(A)S4 = S4T1 (L) = 0 respectively, substantially simplify the formulae:

S4(D2F3(M)D3) = Ss(WPTai () + A (7' &) (M GL $165”)$2 D3,

SaF354() = 2*8,(M)S4GL Da(,(M)GL + (W)™ (T1(2) D1)*) S2 D2,

(D2 F3(A)D2)Ss = D2S2(A2Ty 1 (M) + A*(h' §,) (MG D1G ™) S

F354(0)Ss = A*3,(M)D285(3,(MG + ()~ (T1 (1) D1)?) DG s,

(9.44)

where we set 51 =8:D;51 and 52 =8,D,55.
The next lemma is evident by (9.41) and we omit the proof.

Lemma 9.14. The terms which contain three or more of {ay, a,, b~l, I;r, Cy,Cr} are
9S8V and, hence, are GPRs.

We then consider the terms which contain at most two of {a;, a,, l;l, l;r, C1,Cr}
and, in addition to the notation of Section 9.4, we introduce O (a,, b;)(1), etc. to
denote the terms which contain @, and b;, etc. By virtue of (9.40),

SaBs(V)71Se =) i (NG ® G (9.45)
Jk=r+1

where 7jx (M) = tjx + Og)(kz(log M)?) and {&ry1,....Cn) is the basis of S4L? =
S3L2.

Lemma 9.15. Let Zgy be the operator defined by the right side of (9.6) with O (@) (1)
in place of c/\/2(”2) (A). Then, Zg is bounded in L?(R*) for 1 < p < 4.

Proof. We have O (@)(A) = A™4S4B3(1)1S, and by (9.45)
Zgu = Z / R AH W))W, TMWA 1 (M r<a(M)dA.  (9.46)
Jk=r+1

Since ¢ € S4L? satisfies g4 x*(v{)(x)dx = 0 for || < 2 (cf. Lemma 6.2), we have
by expanding 4% to the third order in (1.39) that (v¢, IT(A)u) is equal to

> / (1-06y (A3 / “(vé)(z)n(A)(R“r_ezu)(O)dz)de

lee|=3 R4
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where C, are unimportant constants and R* = R{' --- R}* for a = (o, ..., a4).
Thus, if we define

o0
Eju(x) =/R{)F(/\4)(v§j)(X)H(/\)M(O)AZXSa(X)dl, (9.47)
0
then Zgu(x) becomes the sumoverr + 1 < j, k <m and {« : |a| = 3} of
1
Co [a-02( [ 2 0a@E R e (Db Jdo 048
0 R4
However, E; is equal to Wp in (8.20) with ¢; in place of ¢ and {E;};j—, . . are

bounded in L?(R*) for 1 < p < 4 by Lemmas 8.9 and 8.11. Thus, Minkowski’s
inequality implies that for 1 < p < 4

m
1Zou()ll, < C D 1(2)>@E) 1 llullp | Ej B (L) (9.49)
J.k=r+1

This proves the lemma. u

Lemma 9.16. Let J l/ (L) be the sum of the terms which appear when we expand the
right of (9.43) and which contain at least one from {a;, b;, ¢;}. Then, the operator
Z,.y produced by A™* J/()L)§3 (M) ~LS4 M, the sum of the terms which contain none
of {a,, by, Cr} but at least one from {ay, by, ¢1}, is GOP.

Proof. The operator Z; gu is equal to the right of (9.46) with J/(1); in place of
vg;, hence, is 37— 11 D jw1=3 Ca fol(l — 0)2d0 of (9.48) with E; being replaced
by E; which is defined the right of (9.47) with J/(A){; in place of v{;. Here, in
view of (9.41) and that J/() is VS, we have J/(A){; = D e sum AOn(A) fjn With
fin € L'(R*) and 0, € Og)(llog/\). It follows that E;, j = r + 1,...,m, become

oo

Eu) =3 [(REGH fim) )TN0 (1 D)2 y<a(R)d A

finite sum
and they are GOP by virtue of Lemma 3.5. Hence, as in (9.49) we have
m
1Z05u)l, < € 32 @L I lull, 1 Ej sy
Jk=r+1

forall 1 < p < oo. This proves the lemma. |
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Next, we consider the operators produced by the terms which contain two of
{a,,by,c¢,} and none of {a;, b;,c;}.

Lemma 9.17. The operators O (a,, I;r)()u) and O(a,,c,)(A) are GPR.

Proof. (1) Since Sib, = A*h1(A)"'3,(1)S4G Dy by (9.14) and (9.15) and
ir € 05 (A2), O@r.by) (M) = A~ My S4B3(0) ' Sab, S1d, My € 05 (22 (log 1)?).
Hence, itis €VS.

(2) We have O (d,,é,)(A) = A4 My S4 B3(1)~184¢, S2d, M,,. By using (9.44) for
S4é,, thatd, € (9;2 (A2) and (9.45) for S4B5(1)"!S4, we have modulo €VS§ that

O@r. ér)(A) = §,(M)MySa B3 (1) 'S4G $,G Do M,

m
=5 Y MWL) ® pk. pr = MyDoGY $:6{"¢.
J.k=r+1

Here 7j; (1) are GMU, (z)pr € L'(R*) fork = 1,...,4 and [p4 px(z)dz = O since
Do = QDg and Qv = 0. Hence, O (a,,¢,)(A) is GPR by virtue of Lemma 7.5. =

Lemma 9.18. The operator defined by (9.6) with O (b, ¢r)(A) in place of Nz(vz) (A) is
bounded in L? (R*) for 1 < p < 4.

Proof. We have O(by, ¢)(A) = A™*MyS4B3(A) 1847, 820, S1Do(A)M, and, by
virtue of (9.32) and (9.44), this is equal modulo GPR to

—h1(2) 7 My Ss B3 (V)7 S4(@,(MGL” + G D26 Do) D Do () My.

(9.50)
We may simplify (9.50) without changing it modulo GPR as follows: (i) we may first
replace B M)~ by T, ! since the remainder produces GPR; (ii) we next replace the
rightmost f)o(k) =Dg+ h1(A)Lg by h1(L) Lo, which is possible since Do M, T1(A)=
DoM,(TT(A) — T1(0)) can be written in the form (1.39) and produces GPR; (iii) this
leaves h, (A)Eo, which cancels /1 (A)~! in the front and, then, G‘(‘t’l) may be removed,;
(iv) another D¢ (A) may be replaced by Dy since g,(A)h;(A) is GMU. In this way,
we have modulo GPR that

O(br. ) (M) = —Z,(MMySsT; 'S4G Do G Dy Lo M,

m
=Y "MW ® pr. Pk = —MyLoD1GY DG ¢
Jk=r+1
(9.51)
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and the operator produces by (9(15r, ¢r)(A) is equal modulo GOP to the linear com-
bination of

/(RJ(A4)((v§j) ® p)I(Aur g, (M) x<a(V)dA
0

= /pk(Z)(/(R(J{(14)(v§j)(X)(H(/\)f—zM)(O)AZM(X)Xsa(l)d/\)dz,
0

R4

where (1) := Ag,(A) is GMU. The function inside the brackets is equal to Wgu
of (8.20) with w and u being replaced by v{; and t_,u(|D|)u respectively. Then
Lemma 8.9 and Lemma 8.11 imply the lemma. |

We next consider the terms which contain one from {d,, b r» Cr} and another from
{a;, by, cp}.

Lemma 9.19. Ifé; € {d;.b;, ¢} and f, € {d,. by, ¢}, then O(E;, f,)(X) is GPR.
Proof. (i) The operators O(a;, f )(A) and o by, f )(A) are VS since
a18s = —A*g,(MDeGY Sa, 1Sy = A4 ()7 g,(W)D1G S,

by virtue of the cancellation properties (9.14) and (9.15) of Sy, f , € (9;2 (A%log 1)
and M, sandwiches them.
(ii) The operators O (¢;, a,)(A) and O(¢;, b, )(A) are also §VS since

¢ = 0g,12(A*log 1)

and S4d,, S4b, € Oz, (A*(log 1)?).
(iii) Recall {¢1, . .., {m ) is the basis of S, L2(R#*). Then, Lemma 8.1 for S5, (9.44)
for &;, ¢y, and (9.45) for B3(A)~! jointly imply that O (¢;,¢,)(A) is equal to

m
AT My 826184 B3 (M) Salr SaMy =) ajp (M (08)) @ (vEr)
J.k=1

with a;x (1) € O&((logA)?), j.k = 1,...,m. Then, Lemma 7.5 implies that one has
O(¢1.3,)(A) is GPR. .

Finally, we consider the terms which contain one from {d,, l;r, ¢y} but none of

{a1.b1. ¢}, viz. O(@G,)(A), O(by)(A) and O(E,)(A).
Lemma 9.20. Operator O(d,)(A) is GPR.
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Proof. Wehave O(d,)(A) = —g,(A) My S4B3(1) 'S4G Dy M, and (9.45) implies
that, in terms of the basis {{+1, ..., {m} of S4L? and with GMUs 7 (1),

9@ () ==Y MM L) ® (MyDoG ).
Jk=r+1

Here f(x) := M, DOGiv) ¢k (x) satisfies [pa f(x)dx = 0 as remarked in part (ii) in
the proof Lemma 9.17. Thus, Lemma 7.5 implies @ (a,)(1) is GPR. ]

The next lemma concludes the proof of Theorem 1.9 (4).

Lemma 9.21. The operators produced by (9.6) by replacing e/\fz(vz) (A) by (9(5,)(1) or
O(¢,)(A) are bounded in LP? (R*) for 1 < p < 4.

Proof. (i) By virtue of (9.32) and (9.14), we have that modulo GPR
Obr)(A) = hi (W) (M) MySaT;y 'S4G D1 S1(Do + h1(A)Lo) My,

which is the sum of two terms. The one which contains Dy = Do Q is GPR as in the
proof of Lemma 9.20 above; the other which contains /;(1) Lo can be written in the
form

m
S 68 ® fr. Bk = MyLoSi D166 € L' (RY),
J.k=r+1

This is of the same form as of (9.51) in the proof of Lemma 9.18 with p; being
replaced by pr which can play the role of the former. Hence, it produces a bounded
operator in L?(R*) for 1 < p < 4.

(i) We have O(¢,)(A) = )L_4MUS4§3(A)_1S45rS2MU. Since it has S, M, on
the right end, the terms of order (95;) (A*(log A)?) in (9.44) and the remainder term in
(9.40) for B(A)™! produce GPR for @ (¢,)(A) by Lemma 7.5. It follows that modulo
GPR

O@) () = A72MySaTy ' Sa(3, (MG + G S2D2 82 M.

Let {¢1....,{m) be the basis of S, L2 such that {{, 11 ..., n) spans S4L2. Then, we
have with constants c;; and d that

OCE)MN) =" Y A2y ME) ® W), vir() = cjilogh + djx
j=r+1 k=1

and the operator (5.1) produced by O (¢,)(A) becomes modulo GOP

o0

Z Z/(R(—)F(/V‘)Mvé&j)(x)(vfk,H(A)“)A)’jk()t))(y(l)dk- (9.52)
/ 0

j=r+lk=1



The L”-boundedness of wave operators for fourth order Schrédinger operators on R* 343

Since [pa v(2){k(2)dz = 0, we may replace IT(A)u by (1.39) in (9.52). Then each
summand becomes the superposition by i Zig=1 fol dO [ga zm (Vi) (2)dz of

/ (Ry A M) () TI(A) (02 Riu) (OA? Yk (A) g <a (R)d A (9.53)
0

If we replace y;x(A) by djk, (9.53) becomes the trivial modification of (8.20) and it
is bounded in L?(R*) for 1 < p < 4 by Lemmas 8.9 and 8.11. Thus, the next lemma
with Minkowski’s inequality completes the proof of Lemma 9.21. ]

Lemma 9.22. Let ¢ € S4L?. Then, the operator Z,qq defined by

oo

Zagqu(x) = / Ry (AH () (x) (M) (0)A*(log ) x<a()d A,
0

is bounded in LP(R*) for 1 < p < 4.

Proof. The proof is the modification of that of Lemmas 8.9 and 8.11. Note that Z,44
differs from Wp of (8.20) only in that the former has stronger singularity by log A than
the latter and @ = v{ for Z,qq enjoys better cancellation property than that for Wp.

(1) We first show that y>4,(|D|)Zaaa € B(L?) for 1 < p < 4. The argument of
the proof of Lemma 8.9 implies that this follows if the following linear functional
which replaces (8.23):

3 - 1
) = [ TG)u0)32 (og ) <0 ()02 = s [ s
0 R4

is bounded on L?(R*) for 1 < p < 4, where

f(x) = F (x=a(IEDIEI" log [ED ().

However, this is obvious by Holder’s inequality since

flx) = /X/s\a(x — Iyl @logly| + f)dy € LP(R*), 4/3 < p < oo, (9.54)
R4

where « and B are constants (cf. Theorem 2.4.6 of [12]).
(2) We next show that y <44 (| D|)Zaga is also bounded in L?(R*) for 1 < p < 4:

oo

X=4a(|D]) Zagqu (x) = /(Xsm(lDI)RJ(A“)w)(X)H(A)u(O)Ma(l)d/\,
0

Ha(A) = A2 (log M) x<a(R).
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We proceed as in the proof of Lemma 8.11. Since [p4 x*w(x)dx = 0 for |a| < 2 we
have

oE) = Zc £ (1—0)2( —iezfz“w(z)dz)de,
/ /

where C, are unimportant constants. It follows that y<4,(|D[) Rf (A*)w(x) is equal
to

> Ca / (1—6)? ( / z“w(z)R%me(x)dz)de, (9.55)

le|=3

e |EP r<aa(E]) dE

E =M —ie Qn)* ©-56)

= 1

A)L (X) 8—1>T0 /
R4

and y<44(| D|) Zaaqu (x) becomes the same superposition as in (9.55) as follows:

ZC //(1 )2Z“w(z)R°‘tgz(/A,x(x)H()L)u(O),ua(A)dk)d@dz 9.57)

| | 3 0 R4
‘We substitute

[k A3 £ —
— = — + —.
6|4 — A4 —is  |E|*—A* —ie  |E|* =A% —ic

Then, the integral on the right-hand side of (9.56), which is uniformly bounded by
C (x)_% for e > 0 and A € supp IT(A1)u(0), converges compact uniformly as & — 0 to

A2(x) = 2*x<4a(ID)R;.(x) + By (x),

. 1 1 |$| + A sz
52 = syt | (s + ey ) s
R4

Then, A3 y<44(] D|)R;.(x) produces the superposition as in (9.57) of
; <
/Xs4a(|D|)=731(X)H()L)u(0)ua()t)/\3d/\ = Y<4a(IDDKpta(D)u(x),
0

which is GOP by virtue of Lemma 3.4.

Restoring f1g(A) = A2 log Ay <4 (1), we see that B, (x) produces the same super-
position as in (9.57) of

Mu(x) = fBx(x)H()L)u(O))tzlog/\)(sa(/\)d)k.
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Then, the computation which led to (8.27) yields that

Mu(x) = Lyu(x) + Lou(x) = / (L1(x.y) + La(x. y)u(y).

R4
e My _4a(1€]) x<a(n]) log |n]
Li(ey) = = g déd,
1(x:7) / @2 + )l
_ [ €ETPTOEL + D x<4a (€D x<a (1)) log )
LZ(”)‘/ Q02(ER + 1P T

RS

We prove that L and L, are bounded in L?(R*) for 1 < p < 4 which will finish the
proof of the lemma. Letg = p/(p —1),4/3 < g < oc.
(i) The obvious modification of the proof of Lemma A.3 by using (9.54) instead

of |F (In|™" ¥<a(m)(»)] = C (y)~> implies

Clog(ly| +2)
()3 (A + x|+ yh?

It is obvious that || Lq(x,")|l; < C4{x)2 for ¢ > 4/3, which we use for small |x| <
max(10, C,), where Cy is such that 2¢(3g — 4)~! < log C,. Let |x| > max(10, C,).
Then, we evidently have

1 x| 1
7 Clog|x| r3dr\ (x)72, q >4,
([irtmear)” <S55 (0/ o) ECk’g'x'{(xrz—? g<s

b
[y1=lx]

|L1(x, p)| =

and, by using integration by parts, we also have

1 0 1
‘ q C (logr)? 7 Clog|x]
(Jrmenrar)' = ([ S5ar) = T

IxI<lyl |x|

It follows that

N =

1Ll < (/ L1 sy el < Clu.

(i) Let vgq (&) = | x<sa(I€]); v2a(m) = |n|x<24(|nl) and

[y caa(ED x=a(In)) Tog |n]
Ls(x y)—/ 2m)2(IE12 + n]?) Inl

dgdn.
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Then, by replacing |&| + |n| by vsa(§) 4+ v24(n) in (9.58), we obtain
Ly =vsa(D)L3 + L3v24(D) (9.59)

and vg, (D) and v,,(D) are GOP since 75, € L'(R*) for any b > 0. We obtain by
using (9.54) once more that

log(2 + |y —z|)dz
Lawyl=c [ .
’ SO+ D0 =2

Then,

log(2 —zNd
sup /|L3(x,y)|dx§C sup 0g(2 + |y —z[)dz

yeR4 yeR4 1+ |Z|)2(y - 2)3
R4 R4

and L3 is bounded in L' (R*). For 2 < p < 4, we have 4/3 < ¢ < 2 and Minkowski’s

and Holder’s inequalities imply

|L3u(x)|5”””PHI()g((zy;ly') ”q/(l il < ¢l
R4

+lxl+1zD¢ T (x)?

and || L3ul|, < C|lu||p. Thus, L3 is bounded in L? (R*) also for 2 < p < 4 and, hence,
for all 1 < p < 4 by interpolation. Thus, so is L, by virtue of (9.59) and the lemma
is proved. ]

A. Proof of Lemma 8.12

We admit the following lemma for the moment and complete the proof of Lemma 8.12
first.

Lemma A.1. There exists constant C > 0 such that

C

D= T W

(A1)

Proof of Lemma 8.12. By the change of variables y = (1 + |x|)z and by integrating
over the spherical variables first, we have

u(1 + IxD2)ldz _ . 37M|u|((1 + x)ryridr

‘L@l = € | =) T+
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where y3 is the surface measure of S3. Then Holder’s inequality implies

/ My (1 + |x))r)?dx = ys f Moy ((1 + p)r)?p3dp
R4 0

IA

vs / (Myi(pr)? p*dp
1

o0
< yar / Miu(0)? pPdp < Cr=*|u||2.
r

It follows by Minkowski’s inequality that for 1 < p < 4

00 4
lullpr*~7d

|Lull, < Cys L < Clul,.
? (14 |r])3 P

This completes the proof of Lemma 8.12 and, hence, of Lemma 8.11. |

Proof of Lemma A.1. Denote y4(|€]), etc. by x4 (§), etc. It suffices to show (A.1) for
the convolution of the Fourier transforms of

X<a(&) x<a(n) X<a(1M) X<a(&) x<a(n)
€] + [nl Inl - &2+ nl?

which we denote by L(x, y) again. By the rotational symmetry and homogeneity we
have that

. ()=

N = f3(E.n) =

(0] < Cx)73, A )] < C((x)2+ (1)), (A2)

Lemma A.2. Fora > 0, there exists a constant C > 0 such that
| A< C)T20) 72 ((x) + ()2 (A3)
Proof. By following the argument in [26, pp. 61-62], we obtain

R/S/ %dédn _ Zo(/eixf—"fdg)(/e—"y"—’"'dn)dz

R4 R4
00

_ Ca /‘ s2ds
(P + 1722 ) (s*+52+ F2)3
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with
o<po Xyl 1
ST RP+P T

The last integral is bounded by [;° s%(s* + F2)~3ds = CF~2 and

// le zyn C
n<. .
E = G RG + D

It follows that

ol <c [[HaG = DRy —w] ¢
i€ Jf e Ty e = G T e "

RS

Lemma A.3. Fora > 0, there exists a constant C > 0 such that

ixg—iyn X=a(§Dx<alnD) , . , C
I G+l = TR o AP

RS8

Proof. By (A.2) and (A.3), it suffices to prove

/ dz - C (A5)
J, (22 + |x[ + 2Dy = 2)* ~ () () Ux) + (yD* '

Let Ay ={ly —z| = [yl/2}, Ax ={lz| = 2|y[} and Az ={[y|/2 < |y —z]. [z| = 2|y}
so that R* = A; U A, U As. Denote the integrand of (A.5) by F(x, y, z). Since
|v]/2 < |z| < 3|y|/2 on Ay, by using polar coordinates we have

lyl/2

/ F(x,y,z)dz < 0[

Aq

r3dr _ C
P2+ x|+ [yD3(r)> = )@+ x|+ [y])?

Since |y —z| > |z|/2 on A,,

dz c
[ Ferai = [ s i = s

As |z|>2]y|

Since |y[/2 < |z — y| = 5[y|/2 on As,

2|yl

C rdr c
./F@JJMZ§(W3!(LHM+¢PS(w@K1+M%HﬂV'

Az

Summing up, we obtain (A.5). |
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Proof of Lemma A.1. By (A.2) and (A.4), it suffices to show

/ dwdz - C
A ((x —w) + (y = z2)%(w)3(z)((w) + (z))2 = (x)(1 + |x[ + [yD3

Denote the integrand by F = F(x, y,w,z) and split R} = A; U Ay U Azand R? =
A} U AL U A where

Ap ={w:|w — x| = [x[/2} (then [x]/2 < |w]| = 3|x[/2); (A.6)
Ay ={w: |x]|/2 < |w— x| < 2|x]|} (then |w| < 3|x|); (A7)
Az ={w:|w— x| >2|x]|} (then 2|w|/3 < |w — x| < 2|w|, |w| > |x|); (A.8)
Ay ={z |z =yl = |yl/2} (then |y|/2 < |z| < 3|y]/2); (A.9)
Ay ={z:|yl/2 < |z =yl = 2|y]} (then |z] < 3|y|); (A.10)

AL ={z:|z—y|=2|yl} (then2|z|/3 < |z — y| < 2|z|, |z] = |y]). (A.11)

Here the remarks in the parentheses are obvious except possibly for the first ones for
A3z and A%. We prove the one for A3. Since |w| > [x|, jw — x| < |w| + |x| < 2|w]; if
|w| > 3|x|, then |w — x| > |w| — |x| > 2|w]|/3; if |w| < 3|x]|, then |[w — x| > 2|x| >
2|w|/3.

We shall show separately for 1 < j, k < 3 that

C
() (1 +[x[ + [yD?

Ljr(x,y) =/F(x,y,w,z)dwdz <
A_/'XA;(

(A.12)

The proof is elementary and is similar for all of them. Thus, we shall be a little sketchy
in what follows.
(11) We have (A.6) and (A.9) for (w, z) € Ay x A} and

Ix1/2 |y|/2

1 r3p3drd
Lii(x,y) <1 773 2/ /,0—,06
() A + |x[+ D) g b (Ldr+p)
The integral is bounded by a constant times
| x| 1y]* Jod
odrt
] [ e A - a1
40 ; (1—|—0+r)2

which is bounded by C (x)?(y)2({x)? + (y)?)~! and (A.12) for L (x, y) follows.
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(12) By virtue of (A.6) and (A.10) for (w,z) € Ay x AL,

Cdwdz
A+ |x —w| + [yDe{z)(1 + |x] + |z])?

C
Liz(x,y) < W /

A] XA/2

C dw dz
_<X>3(A/ (1+IX—WI+|yI)6)([<Z)(1+IXI+|Z|)2)

/
2

C
= WII (x, ) 2(x,y)

where definitions should be obvious. Then,

x|/2

Li(x,y) = rdr . X[ (A.13)

PRI e ST BP0 |
7 p*dp ClyP®

Iz(x,y)SC/ Tl 02 = L0 (A.14)

0

and (A.12) for Lq5(x, y) follows.
(13) Since |x|/2 < |w| < 3|x|/2 on A, we have

C dw dz
Lw@ﬂy)fW/(/(1+|x_w|+|y—z|)6)<z>(1+|x|+|zl)2

AL A

The dw-integral is equal to I;(x, y — z) of (A.13) and 2|z|/3 < |y — z| < 2|z| for
z € A). It follows that

dz - C
A+ x|+ 12D = (x)A + |x| + [y

Lis(r.y) < Clx] / =

lz|>]yl
(21) By using (A.7) and (A.9) for (w, z) € A, x A}, we have

Cdwdz

e . /A (U Ixl + 1y = 2D ) () (1 + ] + [¥])2

¢ dw
B E(A/ (w)3(1 + |w| + |y|)2)11(y’x)

2

- C
A+ Ixl+yDh*
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(22) We have

dwdz

Lzz(x,y)fm / (w)3(z)(1 + [w] + |z)?
Arx A,

- C / dwdz
T+ x|+ yDs (w)3(z)3
AzXA’z

Clllyl  _ c
= @+ T+ D8 = G+ [l + D3

(23) Use (A.7) and (A.11) and polar coordinates w = ro and z = pw. Then

dw dz
Las(x,y) < |C|/ |(| |/3 | (w)3(<w)+(z))2)(z)(1 + x| + |z])®
z|>|y| |lw|<3|x

- /‘ Cp3dp - / Cdr
) A+p2A+ix[+p T ) A+ [x2+71)?
[ lyI?

C
< .
T+ x[+ D3

(31) For (w, z) € A3z x A, we have (A.8) and (A.9). Then, by using (A.13),

dz dw
L y)<¢C
a1(x.y) = f(A/ (1+|w|+|y—z|)6)<w>3<y><1+|w|+|y|)2

Az

:/‘ I(y,w)dw - Clyl* [ dw
K (w3 (YA + wl+1[yD* — (») e (w)>(1 + |w] + [y])®
Clyl? dw C
|

S S D

(32) For (w, z) € Az x Al,, we have (A.8) and (A.10) and

dz dw
L(w)f/(/ <z>(1+|w|+|z|>2)(1+|w|+|y|)6<w>3'

Az A

Estimating the dz-integral by />(w, y) by using (A.14), we obtain

Cly|Pdw
L(x,y) < / 1+ |w| + |y)8(w)3

jwl>x]
ChyPP  _ c
T+ D7 T @+ x|+ [yD?
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(33) For (w, z) € Az x A, we have (A.8) and (A.11). Hence,

L(x,y) <

lzI>1yl |w|>|x|

/ Cd: f dr

< <C | —M

- |(1+|Z|)(1+|x|+|Z|)7_ K (1 + [x[ +7)°
y

[z|>]y

Cdw ) dz
(I + Jw| + [zD¥(w)3 / (1 + |z])

This is bounded by C (x)~'(1 + |x| + |y|)~> and completes the proof. [
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