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Resolvent bounds for Lipschitz potentials in dimension two
and higher with singularities at the origin

Donnell Obovu

Abstract. We consider, for h;E > 0, the semiclassical Schrödinger operator �h2�C V � E
in dimension two and higher. The potential V and its radial derivative @rV are bounded away
from the origin, have long-range decay and V is bounded by r�ı near the origin while @rV is
bounded by r�1�ı , where 0� ı < 4.

p
2� 1/. In this setting, we show that the resolvent bound

is exponential in h�1, while the exterior resolvent bound is linear in h�1.

1. Introduction

Let P denote the semiclassical Schrödinger operator on L2.Rn/, for n � 2, defined
by

P D P.h/´ �h2�C V WL2.Rn/! L2.Rn/; h > 0; (1.1)

where � is the Laplacian on Rn and V WRn ! R is the potential. Unless otherwise
stated, we will be working with polar coordinates .r; �/ D .jxj; x

jxj
/ 2 .0;1/ � Sn�1

to represent a point x 2 Rn n ¹0º. For a function f defined on some subset of Rn, we
use the notation f .r; �/´ f .r�/ and denote the partial derivative with respect to the
radial variable by f 0 D @rf .

The potential V must satisfy

V 2 Lp.Rn/C L1.Rn/; (1.2)

jV.r; �/j1r<1 � c1r�ı ; (1.3)

jV.r; �/j1r�1 � y.r/ for all .r; �/ 2 .0;1/ � Sn�1: (1.4)

Here, p � 2, p > n
2

, 0 � ı < 4.
p
2 � 1/, c1 > 0 and the function y is non-negative,

bounded, and decreases to zero as r!1. We also require the distributional derivative
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of V with respect to the radial coordinate r , V 0 to exist and meet the criteria that

V 0 2 L1loc.R
n
n ¹0º/; (1.5)

jV 0.r; �/j10<r<1 � c1r�1�ı ; (1.6)

jV 0.r; �/j1r>1 � c0r�1m.r/ (1.7)

for some c0 > 0 and a function mW .0;1/! Œ0; 1� with

lim
r!1

m.r/ D 0; .r C 1/�1m.r/ 2 L1.0;1/: (1.8)

The typical examples of m, as shown in [8], are .1 C r/�� or log�1��.e C r/ for
� > 0.

The operator P.h/, with the potential V satisfying (1.2)–(1.7), is self-adjoint with
respect to the domain D.P / D H 2.Rn/ [10].

The main theorem of this paper is

Theorem 1. Fix E > 0 and s > 1
2

. Suppose V WRn ! R satisfies conditions (1.2)
to (1.7). Then there existsM DM.E;y;c0; c1; ı;m/;C2DC2.E;y;c0; c1; ı;m/;C3D
C3.E; y; c0; c1; ı;m/ > 0 and h0 2 .0; 1� so that for all " > 0 and h 2 .0; h0�,

khxi�s.P.h/ �E ˙ i"/�1hxi�skL2.Rn/!L2.Rn/ � e
C3
h ; (1.9)

and

khxi�s1jxj�M .P.h/ �E ˙ i"/�11jxj�M hxi�skL2.Rn/!L2.Rn/ �
C2

h
; (1.10)

where hxi ´ hri ´ .1C r2/
1
2 .

Moreover, if suppV �B.0;R0/, then one can takeM D C1.y; c0; c1; ı;R0/E�
1
2 .

The interest in resolvent estimates of the form (1.9) can be traced back to Burq [1],
who showed (1.9) in the case of smooth, compactly supported potentials. The resolvent
estimates were then used to estimate the rate of decay of the local energy of the wave
equation when an obstacle was present in the domain. Following works by Vodev [14],
Burq [2], and Cardoso and Vodev [3] expanded on the resolvent estimates found in [1],
with [14] generalising the estimate to a class of noncompactly supported potentials,
[2] extends the estimates in [1] to the case of smooth, long-range potentials, and Car-
doso and Vodev [3] refine Burq’s work [2] to give exterior estimates of the form seen
in (1.10).

Datchev’s work [4] provided resolvent estimates (1.9) and (1.10) for potentials
with weaker assumptions placed on their regularity in dimensions n ¤ 2. The only
requirement was that the potential V and its radial derivative @rV be bounded and
satisfy certain decay estimates. Datchev used an energy functional to prove global
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Carleman estimates, a technique which features in later works on resolvent estimates,
including this paper. Further works that give resolvent estimates with little regularity
assumed are [5, 9, 11, 13, 15–21].

Of particular importance to this paper is Shapiro’s work [12], which shows (1.9)
and (1.10) for long-range potentials V in two dimensions, expanding on [4] to include
the two-dimensional case. However, [12] requires decay conditions on the whole
gradient rV while [4] only requires a derivative in the radial variable. This paper
extends the results of [4] to the two-dimensional case, in particular, requiring only
assumptions on @rV , rather than rV .

This paper is a continuation of the joint work of Galkowski and Shapiro [8], who
gave a proof for resolvent estimates in the case of potentials that are unbounded at
the origin with long-range decay. We prove resolvent estimates for potentials with
singularities at the origin in two dimensions and higher, extending the results of [8] to
a class of potentials with greater growth at the origin. Notably, the resolvent estimates
are true in the case of Coulomb potentials in three dimensions. We will see that, in
order to handle singularities in a soon-to-be-defined energy functional at the origin,
we require similar methods to those used by Galkowski and Shapiro in [8] with the
added use of the Mellin transform inspired by [6], to handle the singularity of the
potential at the origin. In [6], these Mellin transform methods were used to prove
resolvent estimates in the case of compactly supported radial potentials that are only
L1. Here, we use these methods to handle large singularities in the potential and we
address the dimension two case of resolvent estimates simultaneously.

The approach taken to prove Theorem 1 involves defining the conjugated operator

P˙';E;".h/´ e
'
h r

n�1
2 .P.h/ �E ˙ i"/r�

n�1
2 e�

'
h

D �h2@2r C h
2r�2ƒC 2h'0@r C V � .'

0/2 C h'00 �E ˙ i"; (1.11)

where

ƒ´ ��Sn�1 C
.n � 1/.n � 3/

4
;

the phase function ' is absolutely continuous and defined on Œ0;1/ with ' � 0,
'.0/ D 0 and '0 � 0 and�Sn�1 is the Laplace–Beltrami operator on Sn�1. Through-
out this paper, integrations are carried out with respect to the measure drd� and the
Lebesgue measure on Rn. To avoid confusion, we will distinguish between Œ0;1/ �
Sn�1 and Rn, with integration that takes place on subsets of Œ0;1/ � Sn�1 being
done with respect to drd� and integration that takes place on Rn being done with
respect to the Lebesgue measure. Additionally, we say for a function f .x; y/ taking
values x 2 X and y 2 Y that f 2 Lpx .X/ if for any y0 2 Y , f .�; y0/ 2 Lp.X/.
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We now define an energy functional

F.r/ D F Œu�.r/´ku0.r; �/k2
L2
�
.Sn�1/

� h.h2r�2ƒC V � .'0/2 �E/u.r; �/; u.r; �/iL2
�
.Sn�1/; (1.12)

for u 2 r
n�1
2 C1c .R

n/ when n � 2. For a weight function w 2 C 0Œ0;1/ that is piece-
wise C 1, the distribution .wF /0 on .0;1/ is

.wF /0 D � 2w RehP˙';E;".h/u; u
0
i � 2"w Imhu; u0i C .2wr�1 � w0/hh2r�2ƒu; ui

C .4h�1w'0 C w0/khu0k2 C .w.E C .'0/2 � V //0kuk2

C 2w Rehh'00u; u0i; (1.13)

where we drop the L2
�
.Sn�1/ subscript for ease of notation.

In the proof of Theorem 1, we attain a lower bound for .wF /0 by constructing
appropriate weight and phase functions w and '. This requires extra work in dimen-
sion two compared to dimensions n ¤ 2 because of the .2wr�1 � w0/hh2r�2ƒu; ui
term in (1.13). In dimensions n ¤ 2, the operator ƒ is non-negative, so this term can
be bounded below by zero, provided we require 2wr�1 � w0 � 0. In dimension two,
however, ƒ has a negative eigenvalue and the rest of the eigenvalues are positive.
This means a negative singularity occurs at r D 0, which requires extra care when
compared to the cases when n ¤ 2.

The remainder of this paper can be summarised as follows. In Section 2, we adapt
techniques from [6] to provide estimates to the solution u of .P � E ˙ i"/u D f 2
L2.Rn/ near the origin. Section 3 is where the weight and phase functions are con-
structed for the purpose of using Datchev’s technique [4] of producing Carleman
estimates from the energy functional given by (1.12). In Section 4, these Carleman
estimates are proven, with the results in Section 2 used to give us a better handle of
the estimates near the origin. Section 5 concludes the proof of Theorem 1 by using
the results of Section 2 to show inequalities (1.9) and (1.10).

2. Near origin estimates

The first step is to establish control on the behaviour of u near the origin. Much of this
uses techniques used in [6, Section 4], but adapted for the more general n-dimensional
problem with potentials that need not be either L1, compactly supported or radial.
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We define an integral transform, M, known as the Mellin transform, and its inverse
M�1t by

M.u/.�; �/´

1Z
0

r i�u.r; �/
dr

r
; (2.1)

M�1t .v/.r; �/ D
1

2�

Z
Im�Dt

r�i�v.�; �/d�; (2.2)

for u 2 C1c .RC � Sn�1/ and v 2L1Re� .RIL
2
�
.Sn�1//\L2Re� .RIL

2
�
.Sn�1// and t 2

R. By the density ofC1c .RC �Sn�1/ andL1Re� .RIL
2
�
.Sn�1//\L2Re� .RIL

2
�
.Sn�1//

inL2.RC �Sn�1; r�2t�1drd�/ andL2Re�;� .R�Sn�1/ respectively, the Mellin trans-
form and its inverse are well-defined, bounded operators

MWL2.RC � Sn�1I r�2t�1drd�/! L2Re�;� .R � Sn�1/

and
M�1t WL

2
Re�;� .R � Sn�1/! L2.RC � Sn�1I r�2t�1drd�/:

The Mellin transform and its inverse satisfy the following for all � 2 Sn�1:

kM.u/.�; �/kL2Re� .R/
D .2�/

1
2 kr�t�

1
2u.r; �/kL2r .RC/; (2.3)

kr�t�
1
2 M�1t .v/.r; �/kL2r .RC/ D .2�/

� 12 kv.�; �/kL2Re� .R/
; (2.4)

M.rn@nru/.�; �/ D .�1/
n�.i� C n/

�.i�/
M.u/.�; �/; (2.5)

where � D � C i t 2 C and �.z/ is the Gamma function [7].
We now define �j ´ j 2 C .n � 2/j C .n�1/.n�3/

4
for j 2 N0, which are the

eigenvalues of ƒ. Let

T ´
°
t 2 R W t D

1˙
p
1C 4�j

2
for some j 2 N0

±
which is the set of the imaginary parts of the poles of the map � 7! .�2 � i� Cƒ/�1.
Elements of T are of the form

t˙;j D
1˙ ..n � 2/C 2j /

2
(2.6)

Additionally, define

‡.t/´ k.t2 � t �ƒ/�1kL2.Sn�1/!L2.Sn�1/:

For the operator
Q´ �@2r C r

�2ƒ; (2.7)

we have the following result.
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Lemma 2.1. There exists a C > 0 such that, for N 2 R with �N � 1 2 R n T ,
t0 2 R n T and u 2 r�NL2comp.RC � Sn�1/ with Qu 2 r t0�

3
2L2comp.RC � Sn�1/,

u D Et0.r
2Qu/C…t0.r

2Qu/

where

Et0.v/.r; �/´
1

2�

Z
Im�Dt0

r�i� .�2 � i� Cƒ/�1 M.v/.�; �/d�;

…t0.v/.r; �/´ i
X

�N�1<Im�<t0
�2�i�C�jD0
for some j2N0

Res� .r�i� .�2 � i� Cƒ/�1 M.v/.�; �//;

and for each � 2 Sn�1

kr�t0�
1
2Et0.v/.r; �/kL2r .RC/ � C‡.t0/kr

�t0�
1
2 v.r; �/kL2r .RC/:

Here, Lpcomp is the space of Lp functions with compact support.

Proof. Given t0 2 R n T , we can assume, without loss of generality, that �N < t0.
Since u 2 r�NL2comp.RC �Sn�1/, the Mellin transform of u, M.u/.�;�/, is holo-

morphic on the region Im � < �N � 1
2

.
Using (2.5), we can write

M.r2Qu/.�; �/ D .�2 � i� Cƒ/M.u/.�; �/; Im � < �N �
1

2
;

which gives

u.r; �/ D
1

2�

Z
Im�D�N�1

r�i� .�2 � i� Cƒ/�1 M.r2Qu/.�; �/d�

D
1

2�
lim
R!1

Z

R;�N�1

r�i� .�2 � i� Cƒ/�1 M.r2Qu/.�; �/d�;

where 
R;t ´ ¹� 2 C W Re � 2 Œ�R;R�; Im � D tº.
We want to deform the contour to Im � D t0 � " for " > 0 then take the limit as

"! 0.
In the region Im � < t0, kM.r2Qu/.�/kL1Re�

is finite, so we haveˇ̌̌̌ Z

˙R;�N;�"

r�i� .�2 � i� Cƒ/�1 M.r2Qu/.�; �/d�

ˇ̌̌̌
�
C"

R2
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where 
˙R;�N;�"´¹˙RC i t W t 2 Œ�N � 1; t0 � "�º. In particular, using t0 2R n T ,
M.r2Qu/.�; �/ varies continuously in L2Re� .R/ for Im � � t0, for each value of � .

Sending "! 0 and R!1 gives us

u.r; �/ D
1

2�

Z
Im�Dt0

r�i� .�2 � i� Cƒ/�1 M.r2Qu/.�; �/d�

C i
X

�N�1<Im�<t0
�2�i�C�jD0
for some j2N0

Res� .r�i� .�2 � i� Cƒ/�1 M.r2Qu/.�; �//:

We can therefore define

Et0.v/.r; �/´
1

2�

Z
Im�Dt0

r�i� .�2 � i� Cƒ/�1 M.v/.�; �/d�; (2.8)

…t0.v/.r; �/´ i
X

�N�1<Im�<t0
�2�i�C�jD0
for some j2N0

Res� .r�i� .�2 � i� Cƒ/�1 M.v/.�; �//: (2.9)

Using (2.1) and (2.2), we can rewrite (2.8) as

Et0.v/ DM�1t0 ..�
2
� i� Cƒ/�1 M.v/.�; �//:

We now show that for Im� D t0, .�2 � i� Cƒ/�1 onL2.Sn�1/ is bounded by‡.t0/.
As ƒ is self-adjoint, we have that

k.�2 � i� Cƒ/�1kL2.Sn�1/!L2.Sn�1/ D dist.i� � �2; ¹�j W j 2 N0º/
�1:

To find an upper bound on dist.i� � �2; ¹�j W j 2 N0º/
�1, we notice that

sup
Im�Dt0

.dist.i� � �2; ¹�j W j 2 N0º/
�1/ D sup

j2N0

. inf
Im�Dt0

ji� � �2 � �j j/
�1:

Through calculation it can be showed that the minimum of ji� � �2 ��j jwith respect
to Re � occurs when Re � D 0, therefore

sup
Im�Dt0

.dist.i� � �2; ¹�j W j 2 N0º/
�1/ D sup

j2N0

jt20 � t0 � �j j
�1

D dist.t20 � t0; ¹�j W j 2 N0º/
�1

D k.t20 � t0 �ƒ/
�1
kL2.Sn�1/!L2.Sn�1/:

Now, using (2.3) and (2.4) we obtain the desired result.
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Suppose that t0 2 R n T . Let ˛ D ˛.h/´ ˛0h where 0 < ˛0 < .2C‡.t0//
� 12

and

a´ min
°
˛;
� h2

2C‡.t0/

q
c21 CE

2 C "2

� 1
2�ı
±
:

Here, C is given by Lemma 2.1 and c1 is from (1.3). Define ˛1´ max
®
˛; 1

2

¯
. Addi-

tionally, for R1; R2 2 Œ0;1�, define A.R1; R2/´ ¹.r; �/ 2 .0;1/ � Sn�1 W R1 <

r < R2º to be the annulus with inner and outer radii of R1 and R2 respectively. When
integrating over A.R1; R2/, we will do so with respect to drd� . We have the follow-
ing estimate for the behaviour of u 2 r

n�1
2 C1c .R

n/ near the origin.

Lemma 2.2. Suppose E > 0, t0 2
�
�
1
2
; 0
�

and the potential V satisfies (1.3). Then

there exists C;h0 > 0 such that for every h 2 .0;h0�, 0� "� 1 and u 2 r
n�1
2 C1c .R

n/,
we have

kr�
1
2�t0ukL2.A.0;˛1//

� C‡.t0/h
�2
�
kr

3
2�t0r

n�1
2 .P �E ˙ i"/r�

n�1
2 ukL2.A.0;2˛1//

C kr
3
2�t0.V �E ˙ i"/ukL2.A.a;2˛1//

C hkr
3
2�t0hu0kL2.A.˛1;2˛1// C hkr

3
2�t0hukL2.A.˛1;2˛1//

�
:

Proof. Let � 2 C1c .Œ0; 2// with �� 1 in a neighbourhood of Œ0; 1�. Define �˛1.r/´
�.˛�11 r/. By (2.7) and (1.1), we can write

Q D h�2r
n�1
2 .P �E ˙ i"/r�

n�1
2 � h�2.V �E ˙ i"/

therefore

Q�˛1u D h
�2�˛1r

n�1
2 .P �E ˙ i"/r�

n�1
2 u

C h�2Œr
n�1
2 .P �E ˙ i"/r�

n�1
2 ; �˛1 �u

� h�2�˛1.V �E ˙ i"/u: (2.10)

Since u 2 r
n�1
2 C1c .R

n/, jV j1r<1 � c1r�ı , and �˛1 is constant near zero, Q�˛1u 2
r
n�1
2 �ıL2comp.RC � Sn�1/. In particular, Q�˛1u 2 r

t0�
3
2L2comp.RC � Sn�1/, there-

fore applying Lemma 2.1 gives us

�˛1u D Et0.r
2Q�˛1u/C…t0.r

2Q�˛1u/: (2.11)

Furthermore, we can multiply both sides of (2.11) by a function � such that � � 1

on the interval Œ0; 2� and � � 0 outside a compact set. Using Lemma 2.1, we get
that �Et0.r

2Q�˛1u/ 2L
2.RC � Sn�1/, which implies �…t0.r

2Q�˛1u/ 2L
2.RC �

Sn�1/.
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To calculate …t0.r
2Q�˛1u/, we refer to (2.9). We need to find where the singu-

larities of r�i� .�2 � i� Cƒ/�1M.r2Q�˛1u/ occur in the � variable, which is done
by solving for �j in �2j � i�j C �j D 0 for �N � 1 < Im �j < t0 for each j 2 N0.
In doing so, we see that �j D i tj , where tj 2 T can be written in the form given
by (2.6). We also require �N � 1 < Im �j < t0, so each of the �j have a negative
imaginary part. Therefore, there are a finite amount of �j being summed over, with
the form �j D i

1
2
.3 � n � 2j /, where j � 0 for n � 3 and j � 1 when n D 2. The

‚j 2 L
2.Sn�1/ are given by

‚j .�/ D i Res�D�j .r
�i� .�2 � i� Cƒ/�1 M.r2Q�˛1u/.�; �//;

therefore we can write, for some J 2 N,

…t0.r
2Q�˛1u/.r; �/ D

JX
jDj0

r
3�n
2 �j‚j .�/;

where j0 D 1 when n D 2 or n D 3 and j0 D 0 otherwise.
For �…t0.r

2Q�˛1u/ to be inL2.RC �Sn�1/, we must have…t0.r
2Q�˛1u/D 0,

in particular
�˛1u D Et0.r

2Q�˛1u/:

Using this fact, Lemma 2.1 and (2.10), we arrive at

kr�
1
2�t0ukL2.A.0;˛//

� kr�
1
2�t0�˛1ukL2.RC�Sn�1/

D kr�
1
2�t0Et0.r

2Q�˛1u/kL2.RC�Sn�1/

� C‡.t0/kr
3
2�t0Q�˛1ukL2.RC�Sn�1/

� C‡.t0/h
�2
�
k�˛1r

3
2�t0r

n�1
2 .P �E ˙ i"/r�

n�1
2 ukL2.RC�Sn�1/

C kr
3
2�t0 Œr

n�1
2 .P �E ˙ i"/r�

n�1
2 ; �˛1 �ukL2.RC�Sn�1/

C k�˛1r
3
2�t0.V �E ˙ i"/ukL2.RC�Sn�1/

�
: (2.12)

We have defined �˛1 so that it is supported on the interval Œ0; 2˛1� and bounded above
by 1, therefore

k�˛1r
3
2�t0r

n�1
2 .P �E ˙ i"/r�

n�1
2 ukL2.RC�Sn�1/

� kr
3
2�t0r

n�1
2 .P �E ˙ i"/r�

n�1
2 ukL2.A.0;2˛1//: (2.13)

A straightforward calculation of the term involving the commutator gives

Œr
n�1
2 .P �E ˙ i"/r�

n�1
2 ; �˛1 �u D �h

2.�00˛1uC 2�
0
˛1
u0/;
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the support of which is contained within the interval Œ˛1; 2˛1�, therefore,

kr
3
2�t0 Œr

n�1
2 .P �E ˙ i"/r�

n�1
2 ; �˛1 �ukL2.Rn;drd�/

� h2kr
3
2�t0ukL2.A.˛1;2˛1// C hkr

3
2�t0hu0kL2.A.˛1;2˛1//:

Using (1.3), we arrive at

k�˛1r
3
2�t0.V �E ˙ i"/ukL2.RC�Sn�1/

� c1a
2�ı
kr�

1
2�t0ukL2.A.0;a// C kr

3
2�t0.V �E ˙ i"/ukL2.A.a;2˛1//: (2.14)

We substitute inequalities (2.13) to (2.14) into (2.12) and subtract kr�
1
2�t0ukL2.A.0;a//

to conclude the proof.

3. Constructing phase and weight functions

We return to equation (1.13) for the distribution .wF /0, which is defined on .0;1/
and where the weight functionw 2 C 0Œ0;1/ is piecewise C 1. The distribution .wF /0

is given by

.wF /0 D � 2w RehP˙';E;".h/u; u
0
i � 2"w Imhu; u0i C wqhh2r�2ƒu; ui

C .4h�1w'0 C w0/khu0k2 C .w.E C .'0/2 � V //0kuk2

C 2w Rehh'00u; u0i;

where

q´ 2r�1 �
w0

w
:

Using 2ab � �.
a2 C 
�1b2/ for 
 > 0, we get

.wF /0 � �

1w

2

h2w0
kP˙';E;".h/uk

2
� 2"w Imhu; u0i

C wqhh2r�2ƒu; ui C .4.1 � 
�12 /h�1w'0 C .1 � 
�11 � 

�1
2 /w0/khu0k2

C .w.E C .'0/2 � V //0kuk2 �

2.w'

00/2

w0 C 4h�1'0w
kuk2;

for 
1; 
2 > 0. Setting � > 0 and letting 
1 D 2.1C �/��1 and 
2 D 1C � we see
that

.wF /0 � �
2.1C �/w2

�h2w0
kP˙';E;".h/uk

2
� 2"w Imhu; u0i C wqhh2r�2ƒu; ui

C

�
1 �

1

1C �

�
1C

�

2

��
w0khu0k2 C .w.E C .'0/2 � V //0kuk2

�
.1C �/.w'00/2

w0 C 4h�1'0w
kuk2:
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To control the term involvingƒ above, we will require that q � 0 and use the fact that
ƒ � �1

4
for any n 2 N to get

.wF /0 � �
2.1C �/w2

�h2w0
kP˙';E;".h/uk

2
� 2"w Imhu; u0i

C

�
1 �

1

1C �

�
1C

�

2

��
w0khu0k2 �

h2

4r2
wqkuk2

C .w.E C .'0/2 � V //0kuk2 �
.1C �/.w'00/2

w0 C 4h�1'0w
kuk2: (3.1)

Define

A.r/´ .w.E C .'0/2 � V //0 �
h2wq

4r2
; B.r/´

.w'00/2

w0 C 4h�1'0w
:

Let
b´ sup

°
r > 1 W V C

1

2
rV 0 �

E

4
and V �

E

4

±
;

which is finite because (1.4) and (1.7) imply V; rV 0 ! 0 as r !1. Let

M ´ 2max¹b; 6
p
3; 8KE�

1
2 º;

where the constant K satisfies

K � max
°� 24c1

16 � 8ı � .1C �/ı2

� 1
2

; sup
1�r�b

1

2
.1C r/

3
2

p
1C y.r/C c0m.r/

±
:

(3.2)
When w0; '0 ¤ 0, define

W ´
w

w0
; ˆ´

'00

'0
: (3.3)

The goal is to construct weight and phase functions w and ' respectively, so
that (3.1) has a useful lower bound. This will be crucial in proving Theorem 1. Let

'0.r/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Kr�

ı
2 0 � r � 1;

2K
1Cr

1 � r � M
2
;

8K

M2.1CM2 /
.M � r/2 M

2
� r < M;

0 r �M;

(3.4)

W.r/ D

´
1
2
r 0 < r < M;

min
�

Er3

4.c0r2m.r/C1/
; hri2s

�
r > M:
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We can calculate the weight function w to be

w.r/ D

´
K1r

2 0 � r < M;

K1M
2e
R r
M W�1dr r �M;

(3.5)

for some constant K1 > 0.

Lemma 3.1. Fix 0 < � < 16�8ı�ı2

ı2
and suppose V satisfies conditions (1.2) through

to (1.7). Then, for h 2 .0; h0�, where h0 < 27E
4.1C�/K

and for ' and w defined by (3.3)
and (3.4),

A � .1C �/B �
E

2
w0:

Proof. By slightly adapting (2.10) in [8], we have the inequality

A � .1C �/B � w0
h
E C .'0/2

�
1C 2Wˆ � .1C �/Wˆ2 min

�
W ;

h

4'0

��
� V �W

�
V 0 C

h2q

4r2

�i
: (3.6)

For 0� r � 1, we have '0 DKr�
ı
2 and W D 1

2
r , which implies q D 0 andˆD� ı

2r
.

Using (3.6) in conjunction with (1.3), (1.6) and (3.2), we see that

A � .1C �/B � w0
h
E CK2r�ı

�
1 �

ı

2
� .1C �/

ı2

16

�
�
3

2
c1r
�ı
i
�
E

2
w0: (3.7)

For 1 < r � M
2

, we have '0 D 2K.1C r/�1 and W D 1
2
r , which implies q D 0 and

ˆ D � 1
.1Cr/

. From the definition of b and (1.4) and (1.7), we have that

V C
1

2
rV 0 � .y.r/C c0m.r//11�r�b C

E

4
1r�b:

Given that

.'0/2
�
Wˆ2 min

�
W ;

h

4'0

��
�

Khr

4.1C r/3
�
Kh0

27
;

the two inequalities above together with (3.6) give us

A � .1C �/B � w0
h3E
4
C

4K2

.1C r/3
� .1C �/

Kh0

27
� .y.r/C c0m.r//11�r�b

i
� w0

h3E
4
C

� 4K2

.1C r/3
� .y.r/C c0m.r//

�
11�r�b � .1C �/

Kh0

27

i
:

Using (3.2) and the assumption that h0 < 27E
4.1C�/K

, we see that

A � .1C �/B �
E

2
w0;

for 1 < r < M
2

.
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For M
2
� r < M , we have

'0.r/ D
8K

M 2.1C M
2
/
.M � r/2;

ˆ D
�2

M � r
;

W D
1

2
r;

and, because M
2
> b, V C 1

2
rV 0 � E

4
. We can then see that

.'0/2.1C 2Wˆ/ D .'0/2
�
1 �

2r

M � r

�
� �

128K2

M 4
�
1C M

2

�2 r.M � r/3
and

.'0/2Wˆ2 min
�
W ;

h

4'0

�
�

4Kh0r

M 2
�
1C M

2

� :
Using (3.6) and the fact that W D 1

2
r implies q D 0 and that h0 < 27E

4.1C�/K
, we get

A � .1C �/B � w0
h3E
4
�

128K2

M 4
�
1C M

2

�2 r.M � r/3 � 27Er

M 2
�
1C M

2

�i;
which, together with

r.M � r/3 �
M 4

16
and r < M;

yields

A � .1C �/B � w0
h3E
4
�
54E

M 2
�
32K2

M 2

i
:

We defined M to be greater than or equal to max¹12
p
3; 16KE�

1
2 º, which gives us

A � .1C �/B �
E

2
w0;

for M
2
� r < M .

On the region r �M , we have '0 D 0, which reduces (3.6) to

A � .1C �/B � w0
h
E � V �WV 0 �

Wh2q

4r2

i
:

For r �M , V � E
4

, V 0 � c0r�1m.r/ by (1.7) and q D 2r�1 �W�1 by the definition
of q. Therefore,

A � .1C �/B � w0
h3E
4
�W

�
c0r
�1m.r/C

h2

2r3

�i
:
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By making the substitution W � Er3

4.c0r2m.r/C1/
we see that

A � .1C �/B �
E

2
w0:

Remark 3.2. The requirement that ı < 4.
p
2� 1/ is an artefact of the methods used

to construct the weight and phase functions in Section 3. We see that this requirement
allows for inequality (3.7) to be satisfied.

4. Carleman estimates

To be able to prove Theorem 1, we first give a Carleman estimate. We begin by proving
the following lemma.

Lemma 4.1. There are constants C; h0 > 0 that are independent of h and " so thatZ
r;�

w0.juj2 C jhu0j2/drd� �
C

h2

Z
r;�

hri2sjP˙';E;".h/uj
2drd� C

C"

h

Z
r;�

juj2drd�:

for all " > 0 and h 2 .0; h0�, and for all u 2 r
n�1
2 C1c .R

n/.
The proof of this lemma follows a similar argument to that can be found in the

proof of [8, Lemma 3.2], but is adapted for the use of a weight function w that is
quadratic near the origin.

Proof. Starting with (3.1) and applying Lemma 3.1, for h 2 .0; h0� we get

.wF.r//0 � �
2.1C �/w2

�h2w0
kP˙';E;".h/u.r; �/k

2
� 2"w Imhu.r; �/; u0.r; �/i

C

�
1 �

1

1C �

�
1C

�

2

��
w0khu0.r; �/k2 C

E

2
w0ku.r; �/k2;

where the norm and inner product used in this inequality are those of the space
L2
�
.Sn�1/, and � > 0 depends on ı, as implied by Lemma 3.1.
Integrating the inequality above with respect to r from 0 to 1 and using the

fact that wF; .wF /0 2 L1.0;1/ and w.0/ D 0, we get
R1
0
.wF /0dr D 0. From (3.4)

and (1.8), we see that W�1 2 L1..0;1//, which implies the boundedness of w. This,
together with the fact that w

w0
. hri2s , gives usZ

r;�

w0.juj2 C jhu0j2/ .
1

h2

Z
r;�

hri2sjP˙';E;".h/uj
2
C 2"

Z
r;�

wjuu0j:
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We now use the Cauchy–Schwarz inequality on 2"
R
r;�
wjuu0j, which givesZ

r;�

w0.juj2 C jhu0j2/ .
1

h2

Z
r;�

hri2sjP˙';E;".h/uj
2
C
"

h

Z
r;�

wjuj2 C
"

h

Z
r;�

wjhu0j2:

(4.1)
Let ˇ D min

®
h
c"
; 1
¯

where c > 0 is the implicit constant in (4.1). Then for 0 < r <
ˇ, we have c"

h
w � 1

2
w0. The term

R
r�ˇ

wjhu0j2 can be subtracted from both sides
of (4.1), givingZ
r;�

w0.juj2 C jhu0j2/ .
1

h2

Z
r;�

hri2sjP˙';E;".h/uj
2
C
"

h

Z
r;�

juj2 C
"

h

Z
r;�
r�ˇ

jhu0j2; (4.2)

where we have used the fact that w is bounded.
By letting �.r/ 2 C1c .Œ0; ˇ// with � � 1 on Œ0; ˇ

2
� and  D 1� �, we use (1.11)

to get

Re
Z
r;�

.P˙';E;".h/ u/ u D

Z
r;�

jh. u/0j2 C Re
Z
r;�

2h'0. u/0 u

C

Z
r;�

.h2r�2ƒ u/ uC

Z
r;�

h'00j uj2

C

Z
r;�

.V �E � .'0/2/j uj2

and Z
r;�

h'00j uj2 D �Re
Z
r;�

2h'0. u/0 u:

Using the facts that on supp , jV �E � .'0/2j and r�2 are bounded and hri�2s .w0

and thatƒ��1
4

together with the two equations above, we have that, for all h 2 .0; 1�
and 
 > 0,Z
r;�
r�ˇ

jhu0j2 .
Z
r;�

juj2 C



2

Z
r;�

w0juj2 C
1




Z
r;�

hri2sj P˙';E;".h/uj
2
C
h2




Z
r;�

ˇ
2�r�ˇ

jhu0j2:

(4.3)
After substituting (4.3) into (4.2), we choose 
 > 0 small enough, and then making
h0 sufficiently small, givingZ

r;�

w0.juj2 C jhu0j2/ .
1

h2

Z
r;�

hri2sjP˙';E;".h/uj
2
C
"

h

Z
r;�

juj2:
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We are now in a position to prove the Carleman estimate.

Lemma 4.2. There are constants C1; C2 > 0 independent of h and " such that

khri�s1�Mvk2L2.Rn/ � e
C1
h

�
khris.P �E ˙ i"/vk2

L2.Rn/ C "kvk
2
L2.Rn/

�
; (4.4)

khri�s1�Mvk2L2.Rn/ �
C2

h2
khris.P �E ˙ i"/vk2

L2.Rn/ C
C2"

h
kvk2

L2.Rn/: (4.5)

for all " > 0 and h 2 .0; h0�, and for all v 2 C1c .R
n/.

Here, the measure used to define the L2 norms in use in (4.4) and (4.5) is the
Lebesgue measure on Rn.

Proof. We begin with the proof by showing the inequality (4.4) holds. We start by
defining u D r

n�1
2 v where v 2 C1c .R

n/ then continue by separately considering u
in some small region near the origin and u away from the origin, by writingZ

r;�

jhri�suj2drd� D

Z
r;�

0�r�a

jhri�suj2drd� C

Z
r;�
r�a

jhri�suj2drd�: (4.6)

The second term, which describes u away from the origin, can be estimated as follows:Z
r;�
r�a

jhri�suj2 . a�1
Z
r;�

w0juj2 (4.7)

for some constant C > 0 that is independent of h and ". We have dropped the drd�
for ease of notation. As for the first term, we have the estimateZ

r;�
0�r�a

jhri�suj2 . a1C2t0
Z
r;�

0�r�a

jr�
1
2�t0uj2; (4.8)

where t0 2 .�12 ; 0/. Combining (4.7) and (4.8) with (4.6) givesZ
r;�

jhri�suj2 . a�1
Z
r;�

w0juj2 C a1C2t0
Z
r;�

0�r�a

jr�
1
2�t0uj2: (4.9)

We now look towards Lemma 2.2 to turn (4.9) into an estimate in terms of .P �E ˙
i"/u and u,

kr
3
2�t0r

n�1
2 .P �E ˙ i"/r�

n�1
2 uk2

L2.A.0;2˛1//
.
Z
r;�

jhrisP˙';E;".h/.e
'
h u/j2: (4.10)
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Next, we make use of (1.3) and that w0 � r on A.a; 2˛1/ to arrive at

kr
3
2�t0.V CE ˙ i"/uk2

L2.A.a;2˛1//
. .1C a2�2t0�2ı/

Z
r;�

w0.je
'
h uj2 C jh.e

'
h u/0j2/:

Furthermore, since t0 < 0, we have

kr
3
2�t0uk2

L2.A.˛1;2˛1//
C kr

3
2�t0hu0k2

L2.A.˛1;2˛1//
.
Z
r;�

w0.je
'
h uj2 C jh.e

'
h u/0j2/:

(4.11)

From Lemma 2.2, we have

a1C2t0
Z
r;�

0�r�a

jr�
1
2�t0uj2

� C‡.t0/
2a1C2t0h�4

�
kr

3
2�t0r

n�1
2 .P �E ˙ i"/r�

n�1
2 uk2

L2.A.0;2˛1//

C kr
3
2�t0.V �E ˙ i"/uk2

L2.A.a;2˛1//

C hkr
3
2�t0hu0k2

L2.A.˛1;2˛1//

C hkr
3
2�t0huk2

L2.A.˛1;2˛1//

�
: (4.12)

For small enough h0 > 0, a � h
2
2�ı for h 2 .0; h0�, therefore h�4 � a�2.2�ı/, so

a1C2t0h�4 � a�3C2t0�2ı . Substituting inequalities (4.10) to (4.11) into (4.12) allows
us to obtain

a1C2t0
Z
r;�

0�r�a

jr�
1
2�t0uj2 . a�3C2t0C2ı

Z
r;�

jhrisP˙';E;".h/.e
'
h u/j2

C .a�3C2t0C2ı C a�1/

Z
r;�

w0.je
'
h uj2 C jh.e

'
h u/0j2/:

(4.13)

Because t0 > �12 and ı � 0, we get a�3C2t0C2ı � a�4 and therefore

a1C2t0
Z
r;�

0�r�a

jr�
1
2�t0uj2 . a�4

�Z
r;�

jhrisP˙';E;".h/.e
'
h u/j2

C

Z
r;�

w0.je
'
h uj2 C jh.e

'
h u/0j2/

�
:
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From here, we make use of (4.9) followed by the substitution a � h
2
2�ı and arrive atZ

r;�

jhri�suj2 . h�
8
2�ı

�Z
r;�

jhrisP˙';E;".h/.e
'
h u/j2 C

Z
r;�

w0.je
'
h uj2 C jh.e

'
h u/0j2/

�
:

We now use Lemma 4.1 and a substitution u D r
n�1
2 v to arrive at (4.4).

To show (4.5), we use the observation that hri�2s . w0 for r �M , which impliesZ
r;�
r�M

jhri�suj2 .
Z
r;�

w0.juj2 C jhu0j2/;

then the use of Lemma 4.1 yieldsZ
r;�
r�M

jhri�suj2 .
1

h2

Z
r;�

jhrisP˙';E;".h/uj
2
C
"

h

Z
r;�

juj2

Making the substitution u 7! e
'
h r

n�1
2 v givesZ

r;�
r�M

jhri�svj2e
2'
h rn�1

. e
C'
h

�
1

h2

Z
r;�

jhris.P CE ˙ i"/vj2rn�1 C
"

h

Z
r;�

jvj2rn�1
�
;

where C' ´ 2max '. Furthermore, 2'.r/ D C' for r � M because '0 � 0 for all

r > 0 and '0 D 0 for r �M . Dividing through by e
C'
h gives us (4.5).

5. Resolvent estimates

The goal of this section is to prove Theorem 1. This proof follows the same argument
as used in [8, Section 5].

Proof. Since increasing s only decreases the weighted resolvent norms found in (1.9)
and (1.10), we can let 1

2
< s < 1 without any loss of generality. Lemma 4.2 gives us

C1; C2; h0 > 0 such that

e�
C1
h khri�s1�Muk2L2.Rn/ C khri

�s1�Muk2L2.Rn/

�
C2

h2
khris.P �E ˙ i"/uk2

L2.Rn/ C
C2"

h
kuk2

L2.Rn/; (5.1)
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for all " � 0 and h 2 .0; h0�, and all u 2 C1c .R
n/. For any 
; 
0 > 0,

2"kuk2
L2.Rn/ D �2 Imh.P �E ˙ i"/u; uiL2.Rn/

� 
�1khris1�M .P �E ˙ i"/uk2L2.Rn/ C 
khri
�s1�Muk2L2.Rn/

C 
�10 khri
s1�M .P �E ˙ i"/uk2L2.Rn/ C 
0khri

�s1�Muk2L2.Rn/:
(5.2)

We set 
 D h e
�
C1
h

C2
and 
0 D h

C2
. Inequalities (5.1) and (5.2) imply, for some C > 0,

all " � 0, h 2 .0; h0� and u 2 C1c .R
n/,

e�
C
h khri�s1�Muk2L2.Rn/ C khri

�s1�Muk2L2.Rn/
� e

C
h khris1�M .P �E ˙ i"/uk2L2.Rn/

C
C

h2
khris1�M .P �E ˙ i"/uk2L2.Rn/: (5.3)

The final task is to use (5.3) to deduce

e�
C
h khri�s1�M .P �E ˙ i"/�1hri�sf k2L2.Rn/
C khri�s1�M .P �E ˙ i"/�1hri�sf k2L2.Rn/

� e
C
h k1�Mf k2L2.Rn/ C

C

h2
k1�Mf k2L2.Rn/; (5.4)

for " > 0; h 2 .0; h0�; f 2 L
2.Rn/, from which Theorem 1 follows. We require a

Sobolev space estimate followed by the application of a density argument that relies
on (5.3).

The operator

ŒP; hris�hri�s D .�h2�hris � 2h2.rhris/ � r/hri�s

is bounded H 2 ! L2, so, for all u 2 H 2.Rn/ such that hrisu 2 H 2.Rn/,

khris.P �E ˙ i"/ukL2.Rn/ � k.P �E ˙ i"/hri
sukL2.Rn/

C kŒP; hris�hri�shrisukL2.Rn/

� C";hkhri
sukH2.Rn/; (5.5)

for some constant C";h depending on " and h. Given f 2 L2.Rn/, the function
u D hris.P �E ˙ i"/�1hri�sf 2 H 2.Rn/ because u D .P �E ˙ i"/�1.f �w/,
where w D hrisŒP; hri�s�hrishri�su is L2 because the operator hrisŒP; hri�s�hris is
bounded H 2 ! L2 since s < 1 and hri�su D .P �E ˙ i"/�1f is in H 2.



D. Obovu 182

Now, choose a sequence uk 2 C1c .R
n/ such that

uk ! hri
s.P �E ˙ i"/�1hri�sf

in H 2.Rn/. Define Quk ´ hri�suk . Then, as k !1,

khri�s Quk � hri
�s.P �E ˙ i"/�1hri�sf kL2.Rn/

� kuk � hri
s.P �E ˙ i"/�1hri�sf kL2.Rn/ ! 0:

Also, applying (5.5) gives

khris.P �E ˙ i"/ Quk � f kL2.Rn/

� C";hkuk � hri
s.P �E ˙ i"/�1hri�sf kH2.Rn/ ! 0:

We then replace u by Quk in (5.3) and send k !1 to attain (5.4).
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