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Quantitative magnetic isoperimetric inequality

Rohan Ghanta, Lukas Junge, and Léo Morin

Abstract. In 1996 Erdős showed that among planar domains of fixed area, the smallest prin-
cipal eigenvalue of the Dirichlet Laplacian with a constant magnetic field is uniquely achieved
on the disk. We establish a quantitative version of this inequality, with an explicit remainder
term depending on the field strength that measures how much the domain deviates from the
disk.

1. Introduction

To solve a problem in probability and mathematical physics [11,12], Erdős developed
the magnetic isoperimetric inequality [10]. It generalizes the Faber–Krahn inequal-
ity to the magnetic Laplacian. Starting with Pólya and Szegő [20], Faber–Krahn-type
results have been established by proving rearrangement inequalities. The inclusion
of a magnetic field, however, makes it notoriously difficult to implement the stand-
ard symmetrization methods. Erdős met the challenge head on: he managed to prove
a magnetic rearrangement inequality, which is reminiscent of the celebrated Pólya–
Szegő inequality, but with an interesting caveat. Such symmetry results with a mag-
netic field are – alas! – very few and far between [1, 5].

Still another compelling feature is that rearrangements alone are not sufficient
for arguing the magnetic isoperimetric inequality. This stands in sharp contrast to
the classical Faber–Krahn setting. To complete the proof, Erdős introduced a new
inequality, tailored specifically for a magnetic Schrödinger operator on a disk, and for
which there exists no analog in the absence of a magnetic field.

We improve Erdős’ result. He showed that if a planar domain is not a disk, then
the principal eigenvalue of the Dirichlet magnetic Laplacian is strictly larger on that
domain than on the disk of same area. We take the next step and establish stability: if
the principal eigenvalue of the magnetic Laplacian is just slightly larger on a planar
domain than on the disk of same area, then that domain is only slightly different from
the disk. Faint perturbations of the smallest principal eigenvalue will not induce a
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dramatic change in the underlying geometry – and this dynamic is very sensitive to
the field strength. We prove our stability estimate with a remainder term that quantifies
the difference between the domain and the disk.

Quantitative Faber–Krahn-type inequalities have been developed almost exclus-
ively around the classical theory of rearrangements. Fueled in large part by the seminal
work of Fusco, Maggi, and Pratelli [13], the last decade has given rise to an entire
industry now devoted to the stability of a remarkable range of geometric and func-
tional inequalities. Our paper provides the first stability result with a magnetic field.
And here, the well-established rearrangement framework is no longer sufficient.

2. Statement of the problem and main result

Let� � R2 be a bounded, connected open set with a smooth boundary. The principal
eigenvalue of the Dirichlet magnetic Laplacian on the planar domain � is

�.B;�/´ inf
f 2H1

0
.�/

R
�
j.�ir � ˛/f j2dxR

�
jf j2dx

;

where ˛D B
2
.�x2;x1/ is a magnetic vector potential generating a homogeneous mag-

netic field of strength B � 0, i.e., rot(˛/ D B . We denote by DR a disk of radius R,
centered at the origin, with the same area as �, i.e., j�j D jDRj D �R2.

In 1996, Erdős [10] proved the magnetic isoperimetric inequality

�.B;�/ � �.B;DR/; (2.1)

with equality if and only if� is a disk. In the absence of a magnetic field, i.e., B D 0,
his result reduces to the usual Faber–Krahn inequality.

In this paper, we want to add to the right-hand side of (2.1) a remainder term that
measures how much the planar domain � deviates from being a disk. This would
make it possible to understand the shape of � now in terms of how close it is to
achieving equality in (2.1). Cf. [7] and references therein.

We measure the difference between � and the disk in the usual way in terms of
the interior deficiency and the Fraenkel asymmetry of the domain.

Definition. The interior deficiency (asymmetry) of a set is defined as

AI .�/´
R � ��.�/

R
;

where ��.�/ denotes the radius of the largest ball contained in �, and R as above is
the radius of DR.
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Definition. The Fraenkel asymmetry of a set is defined as

AF .�/´ inf
x02R2

j��.x0 CDR/j

2j�j
;

where � denotes the symmetric difference.

Both asymmetries are bounded by one and vanish if and only if the set is a disk.
Our main result is a quantitative version of the magnetic isoperimetric inequality.

Theorem 2.1. Let A.�/ denote either the interior asymmetry or the Fraenkel asym-
metry. In the case of the interior asymmetry we also assume that � is simply connec-
ted. Then there is a universal constant c > 0, independent of � and B , such that

�.B;�/ � �.B;DR/.1C ce
� 56BR

2

A.�/
10
3 /: (2.2)

Moreover, if 0 � BR2 � 1
�

, then

�.B;�/ � �.B;DR/.1C cA.�/
3/: (2.3)

Remark 2.2. The quantity A.�/ is scale invariant. Furthermore, � scales like

t2�.B; t�/ D �.t2B;�/

for t > 0, so the factor BR2 appearing in our constant is the natural parameter for this
problem.

In the absence of a magnetic field, i.e., B D 0, the estimate in (2.3) reduces to
Hansen and Nadirashvili’s quantitative Faber–Krahn inequality with the asymmetry
cubed [3, 15]. More recently, Brasco, De Philippis, and Velichkov [8] proved it with
the square power: this is the sharp form, because the exponent cannot be any smal-
ler [4,18]. Our magnetic version in (2.2) should likewise instead have the square of the
asymmetry and, in principle, one could adapt Brasco, De Philippis, and Velichkov’s
argument to achieve this. Their state-of-the-art methods, however, are nonconstructive
and will not yield an explicit constant. This would make it impossible to understand
the pertinent role of the magnetic field strength B in the stability of Erdős’ inequality.

Our methods, on the other hand, yield an explicit constant with a natural depend-
ence on the field strength. Physical intuition suggests that as B !1 the principal
eigenfunctions start to localize on a length scale proportional to 1=

p
B , away from

the boundary, and therefore �.B; �/ becomes less sensitive to the shape of the domain:
it can but faintly distinguish between even very dissimilar shapes, and the little sens-
itivity that remains comes from the fact that these eigenfunctions can still feel about
near the boundary with their exponentially small tails. Now, � can look rather dif-
ferent from DR and yet �.B;�/ � �.B;DR/: a strong magnetic field compromises
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stability. We manage to capture this picture in (2.2) with our constant which vanishes,
exponentially, as B !1.

To prove his Faber–Krahn-type inequality in (2.1), Erdős started out in the usual
way by establishing a rearrangement inequality. See Lemma 3.1. While there are cer-
tainly nontrivial magnetic aspects to the argument, Erdős essentially mimicked the
standard proof [21] of the analogous Pólya–Szegő inequality using the coarea for-
mula and the isoperimetric inequality. But in imposing the Pólya–Szegő scheme on his
problem, he was forced to change the magnetic field on the disk. The vector potential
on the right-hand side of (3.1) is no longer the same, and thus his magnetic rearrange-
ment inequality cannot readily imply (2.1) in the same way that the Pólya–Szegő
inequality yields Faber–Krahn.

To deal with this mis-match between the magnetic fields on � and DR,
Erdős developed the comparison lemma on the disk. See Remark 4.2. It compares the
ground-state energies of the operator on the right-hand side of (3.1) corresponding to
different magnetic fields. This in turn allowed him to recover the original magnetic
field on DR and finish proving (2.1). His comparison lemma is built on the vari-
ational principle and has nothing to do with rearrangements. Unlike his rearrangement
inequality, it has no analog in the absence of a magnetic field.

To prove our stability estimate in Theorem 2.1, we also start out in the usual
way by establishing a quantitative version of Erdős’ rearrangement inequality. See
Proposition 3.2. This is nothing new: in the absence of a magnetic field, i.e., B D 0, it
just reduces to the quantitative version of the Pólya–Szegő inequality that was used in
proving stability of Faber–Krahn [7]. Here we mimic Erdős’ proof but instead apply
the quantitative isoperimetric inequality on the level sets.

Theorem 2.3. Let U � R2 be a bounded set with smooth boundary, and let P .U /

denote the perimeter of U . Let A.U / denote either the interior asymmetry or the
Fraenkel asymmetry. In the case of the interior asymmetry, we also assumeU is simply
connected. Then there is a universal constant c > 0 such that

P .U / � 2
p
�jU j

1
2 .1C cA.U /2/:

This was first proved by Bonnesen in 1924 for simply connected planar sets using
the interior asymmetry [6, 19]. In 2008, Fusco, Maggi, and Pratelli proved a more
general version using the Fraenkel asymmetry [13]. Theorem 2.3 forms the backbone
of the first part of the paper.

In Lemma 4.1 we establish a quantitative version of Erdős’ comparison lemma.
Now, this is really a new estimate, which stands completely outside of the rearrange-
ment framework–and it only enters the scene when B is large.

In Corollary 4.3 we present two very different lower bounds on the quantity
�.B;�/ � �.B;DR/, both involving the asymmetry of the level sets of the principal
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eigenfunction corresponding to �.B;�/. The first bound, (4.7), is based on our quant-
itative version of the rearrangement inequality. The second bound, (4.8), is based on
our quantitative version of the comparison lemma.

As usual, the main difficulty lies in going from the asymmetry of these level sets in
Corollary 4.3 to the asymmetry of the whole domain. We deal with this in the second
part of the paper. When B is small, we operate entirely within the rearrangement
framework just as in the classical Faber–Krahn setting. Here our argument is a direct
perturbation of Hansen and Nadirashvili’s proof of their quantitative Faber–Krahn
inequality [15]. We only use the first bound, given in (4.7), of Corollary 4.3 which is
based on the quantitative version of the rearrangement inequality. This is enough to
prove the estimate in (2.3) of Theorem 2.1.

But as B increases, our weak-field adaptation of Hansen and Nadirashvili’s tech-
nique breaks down: with a strong magnetic field, the rearrangement framework alone
is no longer sufficient for establishing stability. Here we make full use of both the
quantitative version of the rearrangement inequality and now our quantitative version
of the comparison lemma. A distinctive feature of our argument is the necessary inter-
play between the traditional bound in (4.7) – rooted firmly within the paradigmatic
framework of rearrangement inequalities – and our magnetic bound in (4.8), which
is unique to our problem and irreducible to any other estimate used in establishing
stability of a Faber–Krahn-type inequality.

Part I
The magnetic isoperimetric inequality

Here we re-prove Erdős’ magnetic isoperimetric inequality, but with a remainder term
involving the asymmetry of the level sets of the principal eigenfunction corresponding
to �.B;�/. This is given as Corollary 4.3. The quantitative isoperimetric inequality
plays an essential role.

3. The magnetic rearrangement inequality

Standard elliptic theory tells us that the principal eigenfunction corresponding to
�.B;�/ is a complex-valued analytic function. The first ingredient in Erdős’ proof is
a rearrangement inequality. He proved the following.

Lemma 3.1. Let f , kf k2 D 1 be a complex-valued analytic function on � that van-
ishes on the boundary, and let jf j� denote the symmetric decreasing rearrangement
of jf j. Then there exists a vector potential Q̨ .x/ D a.jxj/

jxj
.�x2; x1/, where a.jxj/ is a
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function satisfying 0 � a.jxj/ � Bjxj
2

, such thatZ
�

j.�ir � ˛/f j2dx �

Z
DR

j.�ir � Q̨ /jf j�j2dx C B �

Z
DR

rot. Q̨ /jf j�2dx: (3.1)

This is analogous to the celebrated Pólya–Szegő inequality but with some caveats.

(1) The magnetic field on the disk is no longer the same. Our vector potential
˛ D B

2
.�x2; x1/ corresponds to a homogeneous field of strength B . Now, Q̨

corresponds to a radially symmetric but inhomogeneous field.

(2) The potential Q̨ depends on f , because Erdős constructed a.jxj/ from the
level sets of jf j.

(3) In particular, if a.jxj/ D Bjxj
2

, then the level set ¹jf j > jf j�.x/º is a disk.

Lemma 3.1 yields a lower bound on �.B; �/. Had the vector potential remained
unchanged, (3.1) would have readily implied �.B;�/ � �.B;DR/.

In this section we prove a quantitative version of his rearrangement inequality, and
we write the right-hand side more conveniently in terms of polar coordinates.

Proposition 3.2. Let f , kf k2D 1 be as in the statement of Lemma 3.1, and q.jxj/´
jf j�.x/. Then there exists a bounded function a.jxj/, depending on f and B , such
that1 Z

�

j.�ir � ˛/f j2dx

� B C 2�

RZ
0

.q0.r/C a.r/q.r//2.1C cA2.¹jf j > q.r/º//2r dr;

and
0 � a.r/ �

Br

2
.1C cA2.¹jf j > q.r/º//�2 �

Br

2
; (3.2)

where c > 0 is a universal constant independent of B and �.

In the absence of the asymmetry term, the expression on the right-hand side indeed
coincides with that of (3.1). See Proof of Lemma A.2 in Appendix A.

1We use here the following convention for the interior asymmetry. If the open set U is not
simply connected, we define AI .U / to be the asymmetry of the smallest simply connected set
containing U . Since � is simply connected, this will not change the final value of AI .�/. This
convention allows us to use Theorem 2.3 for the level sets of jf j.
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3.1. Proof of Proposition 3.2

Erdős proved his rearrangement inequality within the standard Pólya–Szegő scheme
[21] using the coarea formula and the isoperimetric inequality, which we replace with
its quantitative version.

To use the coarea formula, first we need a real-valued function. By modifying the
magnetic vector potential, we can work with jf j instead.

Lemma 3.3. Let f be as in the statement of Lemma 3.1, and�0´� n ¹f D 0º. Let
� W�0 7! Œ0; 2�/ be such that f D jf jei� . Since �0 has full measure, w´ ˛ � r�

is defined almost everywhere and rot.w/ D B . Then, with w?´ .�w2; w1/,Z
�

j.�ir � ˛/f j2dx D B C

Z
�

jrjf j C w?jf jj2dx:

Proof. Since jf j 2 H 1
0 .�/ and w is real-valued,Z

�

j.�ir � ˛/f j2dx D

Z
�

j.�ir � w/jf jj2dx D

Z
�

.jrjf jj2 C jw?j2jf j2/dx:

Note w is smooth a.e. By completing the square and integrating by parts,Z
�

j.�ir � ˛/f j2dx D

Z
�

.jrjf j C w?jf jj2 � 2jf jw? � rjf j/dx

D

Z
�

.jrjf j C w?jf jj2 C jf j2 div.w?//dx:

Since div.w?/ D rot.w/ D B , the lemma follows.

Then we use the coarea formula and arrive at an expression involving an integral
over the level sets of jf j.

Lemma 3.4. Let f;w? be as in the statement of Lemma 3.3. Then,Z
�

jrjf j C w?jf jj2dx �

1Z
0

dz .1 � Bˆ.z/z/2
Z

¹jf jDzº

jrjf jj; (3.3)

with

ˆ.z/´
j¹jf j > zºjR
¹jf jDzº

jrjf jj
: (3.4)

If there is no magnetic field, i.e., B D 0, and f is a positive function, then the
relation in (3.3) reduces to the usual coarea formula used in the proof of the Pólya–
Szegő inequality [21].
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Proof of Lemma 3.4. There exists w0 orthogonal to rjf j and 'W� 7! R such that
w? D �'rjf j C w0. By the Pythagorean theorem,Z

�

jrjf j C w?jf jj2dx D

Z
�

.j.1 � 'jf j/rjf jj2 C jw0jf jj2/dx

�

Z
�

j.1 � 'jf j/rjf jj2dx:

Now, we are in a position to use the coarea formula:Z
�

j.1 � 'jf j/rjf jj2dx D

1Z
0

dz

Z
¹jf jDzº

.1 � 'z/2jrjf jj

�

1Z
0

dz
.
R
¹jf jDzº

.1 � 'z/jrjf jj/2R
¹jf jDzº

jrjf jj
:

We use Stokes’ theorem on the level sets. For almost all z > 0, the level set ¹jf j D zº
is a finite union of smooth closed curves by Sard’s theorem. Thus,

Bj¹jf j > zºj D

Z
¹jf j>zº

rot.w/ D
Z

¹jf jDzº

w � �;

where � D .rjf j/?

j.rjf j/?j
. Since w � � D 'jrjf jj, we conclude

Z
�

jrjf j C w?jf jj2dx �

1Z
0

dz
.
R
¹jf jDzº

jrjf jj � Bzj¹jf j > zºj/2R
¹jf jDzº

jrjf jj
:

The lemma follows from the definition of ˆ in (3.4).

With the coarea-type estimate in (3.3), Erdős applied the isoperimetric inequality
on the level sets of jf j to prove his rearrangement inequality; and when B D 0, his
argument reduces to the standard proof of the Pólya–Szegő inequality [21]. Below we
instead apply the quantitative isoperimetric inequality on these level sets.

Proof of Proposition 3.2. From Lemma 3.3, Lemma 3.4, and Hölder’s inequality,Z
�

j.�ir � ˛/f j2dx � B C

1Z
0

dz .1 � Bˆ.z/z/2
j¹jf j D zºj2R
¹jf jDzº

jrjf jj�1
:
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By Sard’s theorem, the denominator is non-vanishing for almost all z > 0. And since
q is the rearrangement of jf j,

q.r/ D F �1.�r2/ where F.z/´ j¹jf j > zºj:

By the coarea formula, again for almost all z > 0

F.z/ D

1Z
z

d�

Z
¹jf jD�º

jrjf jj�1 and F 0.z/ D �

Z
¹jf jDzº

jrjf jj�1:

Then,Z
�

j.�ir � ˛/f j2dx � B �

1Z
0

.1 � Bˆ.z/z/2j¹jf j D zºj2F 0.z/�1 dz:

Now, we do a change of variable z D q.r/ and apply the isoperimetric inequality,
Theorem 2.3, on the level sets: j¹jf j D q.r/ºj � 2�r.1C cA2.¹jf j > q.r/º//. We
write A2 for short. Then,Z
�

j.�ir � ˛/f j2dx � B C

RZ
0

.1 � Bˆ.q.r//q.r//2
.2�r/2q0.r/

F 0.q.r//
.1C cA2/2dr:

Since q0.r/ D 2�rF 0.q.r//�1,

Z
�

j.�ir � ˛/f j2dx � B C 2�

RZ
0

h
q0.r/ �

2�rBˆ.q.r//

F 0.q.r//
q.r/

i2
.1C cA2/2rdr:

Writing a.r/´ �2�rBF 0.q.r//�1ˆ.q.r//, we deduce our rearrangement inequal-
ity.

It remains to prove the upper bound in (3.2). By Hölder’s inequality

�F 0.q.r// D

Z
¹jf jDq.r/º

jrjf jj�1 � j¹jf j D q.r/ºj2
� Z
¹jf jDq.r/º

jrjf jj

��1
;

and by the isoperimetric inequality, Theorem 2.3,

a.r/ � 2�rB
j¹jf j > q.r/ºj

j¹jf j D q.r/ºj2
�
Br

2
.1C cA2.¹jf j > q.r/º//�2:

This concludes the proof of Proposition 3.2.
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4. The comparison lemma

The second ingredient in Erdős’ proof is a comparison lemma, which makes it pos-
sible to recover from the right-hand side of (3.1) the original potential ˛ on the disk.
In this section we prove a quantitative version of his comparison lemma.

For a potential Q̨ D a.jxj/
jxj

.�x2;x1/, with a 2L1..0;R//, we consider the ground-
state energy of the operator .�ir � Q̨ /2 � rot. Q̨ / restricted to radial functions on the
disk, again written more conveniently in terms of polar coordinates

e.a.r//´ inf
q2H

1; rad
0

.DR/

2�
R R
0
.q0.r/C a.r/q.r//2rdr

2�
R R
0
q.r/2rdr

; (4.1)

where H 1; rad
0 .DR/´ ¹qW Œ0; R�! R such that x 7! q.jxj/ belongs to H 1

0 .DR/º:

The function a.r/ D Br
2

corresponds to the original potential ˛ D B
2
.�x2; x1/

and, since rot.˛/ D B ,

B C e.Br=2/ D inf
q2H

1; rad
0

.DR/

R
DR
j.�ir � ˛/q.jxj/j2dxR
DR

q.jxj/2dx
� �.B;DR/: (4.2)

We compare the ground-state energies for different potentials on the disk.

Lemma 4.1. Let qa be a normalized minimizer for the energy e.a.r// in (4.1). Let

ua.r/´ exp
�
�2

rZ
0

a.s/ ds

�
and pa.r/´ qa.r/ua.r/

� 12 : (4.3)

Then, for a; Qa 2 L1..0; R//,

e.a.r// � e. Qa.r//C
2
R R
0
. Qa � a/pajp

0
ajuQardrR R

0
p2auQardr

: (4.4)

Remark 4.2. Our bound in (4.4) implies Erdős’ comparison lemma: if a � Qa, then
e.a.r// � e. Qa.r//. See [10, Lemma 3.1].

Proof. We write

e.a.r// D inf
p2H

1; rad
0

.DR/

R R
0
.p0/2uardrR R
0
p2uardr

D

R R
0
.p0a/

2uardrR R
0
p2auardr

: (4.5)

Since pa is the minimizer in (4.5), it solves the Euler–Lagrange equation

�p00auar � p
0
au
0
ar � p

0
aua D e.a.r//pauar: (4.6)
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Now, we consider e. Qa.r//. It follows from the variational principle and (4.6) that

e. Qa.r// �

R R
0
.p0a/

2uQardrR R
0
p2auQardr

D

R R
0
.�p00auar � p

0
au
0
ar � p

0
aua/

u Qa
ua
pa � p

0
apauar.

u Qa
ua
/0drR R

0
p2auQardr

D e.a.r//C
2
R R
0
p0apa. Qa � a/uQardrR R
0
p2auQardr

:

Note that p0a < 0 by Hopf’s Lemma.

Proposition 3.2, Lemma 4.1 and the observation in (4.2) allow us to conclude with
the following corollary.

Corollary 4.3. Let f be a principal eigenfunction corresponding to �.B; �/ and
q.jxj/´jf j�.x/. Let a.r/ be as in Proposition 3.2 above, and let qa be a normalized
minimizer for the energy e.a.r// in (4.1). Then there is a universal constant c > 0,
independent of B and �, such that

�.B;�/ � �.B;DR/C c

RZ
0

.q0.r/C a.r/q.r//2A2.¹jf j > q.r/º/rdr; (4.7)

and

�.B;�/ � �.B;DR/C cB

R R
0
pajp

0
aje
�Br

2

2 A2.¹jf j > q.r/º/r2drR R
0
p2ae

�Br
2

2 rdr
; (4.8)

where pa is as given in Lemma 4.1 above.

Corollary 4.3 implies �.B;�/� �.B;DR/. Furthermore, if �.B;�/D �.B;DR/,
then either (4.7) or (4.8) can be used to deduce that almost all of the level sets of jf j
are disks; and since f is an analytic function, this implies � is a disk.

The first bound, given in (4.7), is established with our quantitative version of the
rearrangement inequality and with Erdős’ comparison lemma. In the absence of a
magnetic field, i.e., B D 0, this bound reduces to the usual estimate used in all the
proofs of the quantitative Faber–Krahn inequality, e.g., [3, 14, 15, 17].

Our second bound, given in inequality (4.8), is established with Erdős’ rearrange-
ment inequality, our quantitative version of the comparison lemma and our estimate
in (3.2), which follows from the quantitative isoperimetric inequality. This bound, on
the other hand, has no such analog in the absence of a magnetic field.
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Part II
The quantitative version

Here we prove Theorem 2.1 from Corollary 4.3 by extracting the asymmetry of the
whole domain from the asymmetry of the level sets in (4.7) and (4.8). Let

j¹q.jxj/ > sºj D j�j
�
1 �

1

2
A.�/

�
: (4.9)

Following Hansen and Nadirashvili [15], we split the proof into two cases, depending
on whether s is small or large. Lemma B.1 in Appendix B will be useful.

5. The first case: s . e�BR2
A.�/

We assume
s �

1

8
j�j�

1
2 e�

BR2

4 A.�/: (5.1)

We use the representation in (4.5), which allows us to adapt the usual strategy
for dealing with the Dirichlet Laplacian; and when B D 0, the argument reduces to
Hansen and Nadirashvili’s proof of their quantitative Faber–Krahn inequality [15].

We write E.B;�/´ �.B;�/ � B . Let

p´ qu
� 12
a

with q; a as in Corollary 4.3 and ua as in (4.3), and let

Qp.r/´ p.r/ � se
R q�1.s/
0 a.�/d� :

Since Qp0 D p0, it follows from the rearrangement inequality that

E.B;�/ � 2�

RZ
0

.q0 C aq/2rdr D 2�

RZ
0

. Qp0/2uardr � 2�

q�1.s/Z
0

. Qp0/2uardr:

Since Qp vanishes at q�1.s/, it is admissible in the variational problem in (4.5) but on
the disk ¹q > sº, and

E.B;�/

2�
R q�1.s/
0

Qp2uardr
� inf
p2H

1; rad
0

.¹q>sº/

R q�1.s/
0

.p0/2uardrR q�1.s/
0

p2uardr
� E.B; ¹q > sº/;
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where the last inequality follows from the comparison lemma and the observation
in (4.2). Using the scaling property in Remark 2.2 we further estimate

E.B;�/

2�
R q�1.s/
0

Qp2uardr
�

j�j

j¹q > sºj
E
�
B
j¹q > sºj

j�j
;DR

�
�

j�j

j¹q > sºj
E.B;DR/;

(5.2)
where the last inequality follows from Lemma A.2 in Appendix A and again the com-
parison lemma. Finally, we estimate the denominator

2�

q�1.s/Z
0

Qp2uardr D 1 � 2�

RZ
q�1.s/

q2rdr

C 2�

q�1.s/Z
0

..se
R q�1.s/
0 a.�/d� /2 � 2pse

R q�1.s/
0 a.�/d� /uardr

� 1 � s2j¹q < sºj C s2j¹q > sºj � 2se
BR2

4 j�j
1
2

� 1 � 2se
BR2

4 j�j
1
2 :

At the penultimate inequality, we used that e
R q�1.s/
0 a.�/d� � e

BR2

4 and that

2�

q�1.s/Z
0

puardr � 2�

RZ
0

qrdr � 2�j�j
1
2

RZ
0

q2rdr D j�j
1
2 :

Combining the above estimate with (5.2), we have

E.B;�/ � E.B;DR/
j�j.1 � 2se

BR2

4 j�j
1
2 /

j¹q > sºj
;

and the choice of s in (4.9) and our assumption in (5.1) give us

E.B;�/ � E.B;DR/
1 � 1

4
A.�/

1 � 1
2
A.�/

� E.B;DR/
�
1C

1

4
A.�/

�
:

Then, using Lemma A.3 in Appendix A, we find

�.B;�/ � �.B;DR/.1C cmin.1; .BR2/�1e�
3
4BR

2

/A.�//;

which yields the desired estimates in (2.2) and (2.3). This concludes the proof of
Theorem 2.1 in the first case.
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6. The second case: s & e�BR2
A.�/

We assume
s �

1

8
j�j�

1
2 e�

BR2

4 A.�/: (6.1)

Now, we have to treat weak and strong magnetic fields separately. When B is
small, we only use the first bound, given in (4.7), of Corollary 4.3. As B increases, it
becomes necessary to also make use of our second bound in (4.8).

6.1. Weak magnetic fields

We consider 0 � BR2 � 1
�

and prove the stability estimate in (2.3); and when B D 0,
the argument reduces to Hansen and Nadirashvili’s proof of their quantitative Faber–
Krahn inequality [15].

We work on the annulus ¹q.jxj/� sº, whose area is proportional to the asymmetry
of the domain. From the first bound, given in (4.7), of Corollary 4.3, the choice of s
in (4.9), and Lemma B.1 we have

�.B;�/ � �.B;DR/

� c

RZ
q�1.s/

.q0.r/C a.r/q.r//2A2.¹jf j > q.r/º/rdr

� cR2A2.�/

RZ
q�1.s/

.q0.r/C a.r/q.r//2r�1dr

� cR2A2.�/

�r RZ
q�1.s/

q0.r/2 r�1dr �

r
RZ

q�1.s/

�B
2
q
�2
rdr

�2

� cR2A2.�/
� sp
j¹q.jxj/ � sºj

�
B

2
s
p
j¹q.jxj/ � sºj

�2
� cR�2A3.�/.2 � Bj�j/2

� cR�2A3.�/;

since B � 1
j�j
D

1
�R2

. At the penultimate inequality we also used the assumption
in (6.1). Using Lemma A.3, we conclude �.B;�/ � �.B;DR/.1C cA.�/3/.
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6.2. Strong magnetic fields

We consider BR2 > 1
�

and prove our stability estimate in (2.2); instead of integrating
as above on ¹q.jxj/ � sº, we choose to work closer to the boundary on a smaller
annulus whose area is now proportional to the spectral deficit of the domain

D.B;�/´
�.B;�/

�.B;DR/
� 1:

We treat two cases, depending on whether q is large or small near the boundary:
q.R.1�D.B;�/˛// > R�1D.B;�/ˇ and q.R.1�D.B;�/˛// � R�1D.B;�/ˇ ,
where ˛ D 1

5
and ˇ D 3

10
are chosen to optimize our result. For proving our estimate

in (2.2), we can assume that the spectral deficit is very small

D.B;�/˛ < min
° 1

2BR2
;
1

2

±
: (6.2)

6.2.1. Case q.R.1 � D.B; �/˛// > R�1D.B; �/ˇ . By continuity of q,

q.R.1 �D.B;�/ Q̨ // D R�1D.B;�/ˇ for some Q̨ > ˛: (6.3)

If q.R.1 �D.B;�/ Q̨ // � s, our assumption in (6.1) readily yields

cR�1e�
BR2

4 A.�/ � s � q.R.1 �D.B;�/ Q̨ // D R�1D.B;�/ˇ ;

and therefore
D.B;�/ � ce�

BR2

4ˇ A.�/
1
ˇ : (6.4)

If we have q.R.1 �D.B; �/ Q̨ // < s, then the weak-field argument from Sec-
tion 6.1 applies mutatis mutandis. From the first bound, given in (4.7), of Corol-
lary 4.3, the relation in (6.3), and Lemma B.1 we have

�.B;DR/D.B;�/ � c

RZ
R.1�D.B;�/ Q̨ /

.q0.r/C a.r/q.r//2A2.¹jf j > q.r/º/rdr

� cR2A.�/2
�q.R.1 �D.B;�/ Q̨ //p

2R2D.B;�/ Q̨

�
B

2
q.R.1 �D.B;�/ Q̨ //

q
2R2D.B;�/ Q̨r

�2
D cR�2A.�/2D.B;�/2ˇ�Q̨ .1 � BR2D.B;�/ Q̨ /2:
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However, Q̨ depends on B and �. Fortunately, since Q̨ > ˛ and D.B; �/ < 1, we
have D.B; �/ Q̨ < D.B; �/˛; this allows to replace D.B; �/ Q̨ in the above with
D.B;�/˛ . Furthermore, the bound in (6.2) offsets the large BR2 in the parenthetical
expression, which thereby remains positive. Using Lemma A.3,

D.B;�/ � c
A.�/2

R2�.B;DR/
D.B;�/2ˇ�˛ � c

A.�/2

1C BR2
D.B;�/2ˇ�˛;

and therefore

D.B;�/1�2ˇC˛ � c
A.�/2

1C BR2
: (6.5)

With our above choice of ˛ and ˇ, the inequalities in (6.4) and (6.5) both yield the
same desired estimate in (2.2).

Thus far, we have only used the first bound, given in (4.7), of Corollary 4.3 which
is based on the quantitative version of the rearrangement inequality.

6.2.2. Case q.R.1 � D.B; �/˛// � R�1D.B; �/ˇ . If q.R.1�D.B;�/˛// � s;

again our assumption in (6.1) readily yields

cR�1e�
BR2

4 A.�/ � s � q.R.1 �D.B;�/˛// � R�1D.B;�/ˇ

and therefore, as above,

D.B;�/ � ce�
BR2

4ˇ A.�/
1
ˇ : (6.6)

But, when q.R.1 �D.B; �/˛// < s, the weak-field argument from Section 6.1
is no longer useful: it requires a lower bound on q.R.1 �D.B; �/˛//, as above in
Section 6.2.1, to be effective. That argument, however, is based wholly on the first
bound, given in (4.7), of Corollary 4.3.

Now, we instead turn to our second bound, given in (4.8), which is based on our
quantitative version of the comparison lemma. Here there is hope: it is possible to
bound the remainder term in (4.8) from below independently of q.

Lemma 6.1. Let pa be as in Corollary 4.3. Then there exists a universal constant
c > 0, independent of B and �, such that for any 0 < " < 1

2R R
R.1�"/

pajp
0
aje
�Br

2

2 A2.¹jf j > q.r/º/r2drR R
0
p2ae

�Br
2

2 rdr
� ce�

BR2

2 M""
2;

where M"´ inf¹A2.¹jf j > q.r/º/ W R.1 � "/ < r < Rº.
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Proof. Since p0a < 0,

RZ
R.1�"/

pajp
0
aje
�Br

2

2 A2.¹jf j > q.r/º/r2dr

� cM"R
2e�

BR2

2

RZ
R.1�"/

�pa.r/p
0
a.r/dr D cM"R

2e�
BR2

2 pa.R.1 � "//
2:

Furthermore,

pa.R.1 � "// D

RZ
R.1�"/

�p0a.r/dr �
1

R

RZ
R.1�"/

�p0a.r/rdr �
"

R

RZ
0

�p0a.r/rdr;

where in the last inequality we used that r 7! �p0a.r/r is increasing (see (4.6)). The
lemma follows from the Sobolev inequality

RZ
0

�p0a.r/rdr � c

� RZ
0

p2a.r/rdr

� 1
2

� c

� RZ
0

p2a.r/ e
�Br

2

2 r dr

� 1
2

:

Before proceeding with our argument, we remark that Lemma 6.1 would not have
been useful for dealing with the previous situation in Section 6.2.1.

If q.R.1 �D.B;�/˛// < s, then we use the above lemma with " D D.B;�/˛ .
From our second bound, given in (4.8), of Corollary 4.3, Lemma 6.1, and Lemma B.1
we have

�.B;DR/D.B;�/ � cBe�
BR2

2 A.�/2D.B;�/2˛:

Again, using Lemma A.3 and now that BR2 > 1
�

,

D.B;�/ � c
e�

BR2

2

1C .BR2/�1
A.�/2D.B;�/2˛ � ce�

BR2

2 A.�/2D.B;�/2˛;

and therefore
D.B;�/1�2˛ � ce�

BR2

2 A.�/2: (6.7)

With our above choice of ˛ and ˇ, the inequalities in (6.6) and (6.7) both yield the
same desired estimate in (2.2). This concludes the proof of Theorem 2.1.
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A. The magnetic Laplacian on the disk

It follows from Erdős’ rearrangement inequality and comparison lemma, and from the
observation in (4.2) that the principal eigenfunction of the magnetic Laplacian on the
disk is radially symmetric.

Theorem A.1. As above, let DR be a disk of radius R centered at the origin. Then

�.B;DR/ D inf
q2H

1; rad
0

.DR/

R
DR
j.�ir � ˛/q.jxj/j2dxR
DR

q.jxj/2dx
;

where H 1; rad
0 .DR/´ ¹qW Œ0; R�! R such that x 7! q.jxj/ belongs to H 1

0 .DR/º:

Thus, we write �.B;DR/ more conveniently in terms of polar coordinates.

Lemma A.2. Let H 1; rad
0 .DR/ be as in Theorem A.1. Then

�.B;DR/ D B C inf
q2H

1; rad
0

.DR/

2�
R R
0
.q0.r/C Br

2
q.r//2rdr

2�
R R
0
q.r/2rdr

µ B C e.Br=2/:

Proof. First we consider a broader class of vector potentials Q̨ .x/´ a.jxj/
jxj

.�x2; x1/

on the disk, with a.jxj/ bounded. These correspond to radially symmetric but possibly
inhomogeneous magnetic fields that show up in the rearrangement inequality. Written
in polar coordinates, Q̨ .r; �/ D a.r/.� sin �; cos �/ and for f 2 H 1

0 .DR/Z
DR

j.�ir � Q̨ /f j2dx D

RZ
0

2�Z
0

�
j@rf j

2
C

ˇ̌̌ i
r
@�f C af

ˇ̌̌2�
rd�dr:

Thus, for any q 2 H 1; rad
0 .DR/,Z

DR

j.�ir � Q̨ /q.jxj/j2dx

D 2�

RZ
0

..q0.r/2 C .a.r/q.r//2/rdr

D 2�

RZ
0

.q0.r/C a.r/q.r//2rdr � 2�

RZ
0

.q2/0a.r/rdr;
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and after integrating by partsZ
DR

j.�ir � Q̨ /q.jxj/j2dx

D 2�

RZ
0

.q0.r/C a.r/q.r//2rdr C 2�

RZ
0

q2.a.r/r/0dr

D 2�

RZ
0

.q0.r/C a.r/q.r//2rdr C

Z
DR

rot. Q̨ /q.jxj/2dx:

Returning to the original potential ˛ D B
2
.�x2; x1/, the lemma follows from The-

orem A.1, the above calculation and that rot.˛/ D B .

Moreover, Erdős proved the following estimates. See [10, Proposition A.1].

Lemma A.3. There are universal constants C1; C2 such that

B C
C1

R2
e�

3
4BR

2

� �.B;DR/ � B C C2B
� 1

BR2
C BR2

�
e�

1
8BR

2

:

Improving these estimates is an ongoing area of research [2, 9, 16], and the refer-
ences therein. In the absence of a magnetic field, �.0;DR/ D j 20;1R

�2 where j0;1 �
2:4048 is the first zero of the Bessel function of order zero.

B. Asymmetry of large subsets

If a subset is large enough, its asymmetry is comparable to the asymmetry of the
whole domain [7, 15].

Lemma B.1. Let U �� with jU j D �r2 and j�j D �R2. If jU j � j�j.1� 1
2
A.�//,

then rA.U / � 1
2
RA.�/.

Proof. First we consider the interior asymmetry. From our assumption on the area
of U , we have jU j � j�j.1 � 1

2
AI .�//

2 and thus r � R.1 � 1
2
AI .�//. We then

deduce that r � ��.U / � r � ��.�/ � 1
2
.R � ��.�//, which yields the lemma.

Now, we turn to the Fraenkel asymmetry. Let DU and D� denote two concentric
balls such that jDU j D jU j and jD�j D j�j. Then, jD�4�j � jDU4U j C 2.j�j �
jU j/: Using this inequality and our assumption on the area of U , we deduce

jDU�U j

2jU j
�
jD���j

2jU j
�
j�j � jU j

jU j
�
1

2
AF .�/

j�j

jU j
�
1

2

R

r
AF .�/:

Taking the infimum over all translations of DU concludes the proof.
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