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Spectral properties of Schrödinger operators
with locally H �1 potentials

Milivoje Lukić, Selim Sukhtaiev, and Xingya Wang

Abstract. We study half-line Schrödinger operators with locally H�1 potentials. In the first
part, we focus on a general spectral theoretic framework for such operators, including a Last–
Simon-type description of the absolutely continuous spectrum and sufficient conditions for
different spectral types. In the second part, we focus on potentials which are decaying in a
local H�1 sense; we establish a spectral transition between short-range and long-range poten-
tials and an `2 spectral transition for sparse singular potentials. The regularization procedure
used to handle distributional potentials is also well suited for controlling rapid oscillations in
the potential; thus, even within the class of smooth potentials, our results apply in situations
which would not classically be considered decaying or even bounded.
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1. Introduction

Schrödinger operators in one dimension HV D � d2

dx2
C V are often considered in

the setting of locally L2 or locally L1 potentials; however, there are several reasons to
investigate more general potentials. One is the ubiquity of non-integrable singularities
such as Coulomb- or ı-type potentials in models from mathematical physics; another
is the Lax pair representation of the KdV equation, where H�1.R/ and H�1.T /
is the optimal regularity for well-posedness [33, 36]. Non-integrable singularities are
often studied by specialized methods such as those for the Kronig–Penney model, and
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inverse scattering arguments in the distributional setting are considered in ways that
circumvent the underlying Schrödinger operators. One of the goals of this paper is to
extend some robust techniques in spectral theory to the greater generality of locally
H�1 potentials, defined precisely below.

Schrödinger and Sturm–Liouville operators with distributional coefficients are
often treated via the regularization method introduced in the pioneering work of
Savchuk and Shkalikov [56]. This approach has materialized into the main tool in
the spectral theory of ordinary differential operators with measure and distributional
coefficients. Indeed, it was employed, for example, by Eckhardt and Teschl [21] in
the setting of measure coefficients; by Eckhardt, Gesztesy, Roger, and Teschl [18,19]
for L1loc..a; b// four coefficient Sturm–Liouville operators; by Eckhardt, Kostenko,
Malamud, and Teschl [20] for ı0 potentials supported on Cantor sets; by Hryniv and
Mykytyuk [29,30] for periodic singular potentialsH�1per .R/DH

�1.T /; and by many
other authors, see [19] for an extensive reference list. Most of the papers in this direc-
tion address foundational questions such as self-adjointness, Weyl–Titchmarsh theory,
spectral decomposition, as well as some inverse spectral problems. We emphasize that
the study of spectral types such as in the current paper, and of the associated dynam-
ics for operators with singular coefficients, have received much less attention. The
review of such results for deterministic Kronig–Penney-type models can be found in
[39, Section 2.5] and [2, III.2.3]; some ergodic Hamiltonians modeling point interac-
tions are discussed in [10–12, 15].

In particular, Hryniv and Mykytyuk [29, 30] introduced a class of uniformly loc-
ally H�1 potentials on R by the condition

sup
n
kV�nkH�1.R/ <1;

with the help of compactly supported H 1 multipliers

�n.x/ D

8̂̂<̂
:̂
1 � 2jx � nj2; jx � nj � 1=2;

2.jx � nj � 1/2; 1=2 < jx � nj � 1;

0; 1 < jx � nj;

and showed that real distributions in this class are precisely those with a representation

V D � 0 C �;

where �; � are real-valued functions on R such that

sup
x

xC1Z
x

�.t/2 dt <1; sup
x

xC1Z
x

j�.t/j dt <1: (1.1)



Schrödinger operators with locally H�1 potentials 61

Note that this class includes the potentials V 2 H�1.R/ and V 2 H�1.T / (when
viewed as periodic distributions on R). In particular, the study of Schrödinger operat-
ors with locally H�1 potentials helps to bridge spectral theory with scattering argu-
ments. This decomposition is related to the Miura transformation and the Riccati
representation [32,38] for periodic V , in which every V 2H�1.T / with zero average
is represented uniquely in the form V D � 0 C �2 �

R
T �

2.t/ dt . In the non-periodic
case, in the construction of [29], � takes the role of a local average, so the decompos-
ition really requires two functions.

Several classes of singular potentials are modeled by a suitable choice of �; � .
For example, a Coulomb-type term jx � x0j�1, x0 2 .0;1/ is realized by setting
�.x/ D log jx � x0j, �.x/ D 0, and the point interaction ı.x � x0/ is realized by the
characteristic function �.x/ D �Œx0;1/ and �.x/ D 0.

Remark 1.1. Of course, the decomposition V D � 0 C � is not unique; the procedure
in [29] provides � , � such that

C�1 sup
x
.k��Œx;xC1/k2 C k��Œx;xC1/k1/

� kV kH�1unif .R/
� C sup

x
.k��Œx;xC1/k2 C k��Œx;xC1/k1/

with some universal constant C (the second inequality is general; the first is a con-
sequence of the choice of �; � starting from V ). Accordingly, the quantity

k��Œx;xC1/k2 C k��Œx;xC1/k1

is interpreted as the local size of the potential.

By Dirichlet decoupling and Weyl matrix arguments, many spectral properties of
Schrödinger operators on R are reduced to spectral properties of half-line Schrödinger
operators. For this reason, spectral properties are often naturally considered in the
half-line setting. In this paper, we consider half-line Schrödinger operators with real-
valued distributional potentials V D � 0 C � . The formal rewriting

�u00 C V u D �.u0 � �u/0 � �u0 C �u D �.u0 � �u/0 � �.u0 � �u/C .� � �2/u

produces Schrödinger operators as follows.

Hypothesis 1.2. Denote RC D .0;1/ and assume that �; � W RC ! R obey (1.1).
Let

uŒ1�´ u0 � �u

denote the quasi-derivative of u 2 ACloc.RC/ and introduce

D´ ¹u 2 ACloc.RC/ W u
Œ1�
2 ACloc.RC/º;

`u´ �.uŒ1�/0 � �uŒ1� C .� � �2/u; u 2D:
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This leads to self-adjoint operators on the Hilbert space L2.RC/ with a regular
endpoint at 0, limit point at1, given by

dom.H˛/´ ¹u 2 L2.RC/ W u 2D; `u 2 L2.RC/;

u.0/ cos.˛/C uŒ1�.0/ sin.˛/ D 0º;

H˛u´ `u;

where ˛ parametrizes the boundary condition at 0. We will discuss their self-adjoint-
ness and corresponding quadratic forms in Section 2. Note that this is consistent with
standard ways of defining the operator if the potential is locally integrable (corres-
ponding to � D 0) or with ı-singularities (corresponding to jumps in u0), see [29].

Using the quasi-derivative, the eigenfunction equation can be written as a first-
order system for

�
uŒ1�

u

�
. This is encoded by a family of transfer matrices T .z;x/ which

is locally absolutely continuous in x and solves the initial value problem

@xT .z; x/ D

�
��.x/ �.x/ � �.x/2 � z

1 �.x/

�
T .z; x/; T .z; 0/ D I:

There is a corresponding Weyl function m˛ and a canonical spectral measure �˛ .
We will provide all definitions in Section 2; for the purpose of this introduction, it
suffices to know that �˛ is a maximal spectral measure for H˛ , and we are using it
to make precise statements about the spectral type of H˛ . We will use the Lebesgue
decomposition

�˛ D �˛ac C �
˛
sc C �

˛
pp:

One of the goals of this paper is to establish sufficient conditions for different
spectral types, including a criterion for a.c. spectrum which extends the results of
Last and Simon [42] for locally integrable V . One is a description of an essential
support for the a.c. spectrum in terms of Cesarò-boundedness of the transfer matrices.

Theorem 1.3. Assume Hypothesis 1.2. Then, for arbitrary ˛ 2 Œ0; �/, the set

†ac ´

²
E 2 R

ˇ̌̌̌
lim inf
l!1

1

l

lZ
0

kT .EI x/k2dx <1

³
(1.2)

is an essential support for the a.c. spectrum of H˛ in the sense that �˛ac is mutually
absolutely continuous with the measure �†ac.E/ dE. In particular,

Specac.H
˛/ D †ac

ess:

Above we denoted the essential support of a Borel set S by

xS ess
´ ¹E 2 R W jS \ .E � "; E C "/j > 0 for all " > 0º:

A closely related result gives a sufficient criterion for absence of a.c. spectrum.
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Theorem 1.4. Assume Hypothesis 1.2 and fix arbitrary ˛ 2 Œ0; �/. Let F � R be
a measurable set and suppose there exist sequences ¹xj º1jD1 � RC; ¹yj º1jD1 � RC
such that for Lebesgue almost every E 2 F ,

lim
j!1

kT .EI xj ; yj /k D 1:

Then, �˛ac.F / D 0.

In the other direction one has the following result.

Theorem 1.5. Assume Hypothesis 1.2 and fix ˛ 2 Œ0;�/. Suppose that for some p > 2,

lim inf
x!1

E2Z
E1

kT .EI x/kpdE <1:

Then, H˛ has purely absolutely continuous spectrum on .E1; E2/.

Theorems 1.3, 1.4, and 1.5 generalize results of Last and Simon [42]. The proofs
are given in Section 2, which also includes a Carmona-type formula, subordinacy, and
a Simon–Stolz criterion for absence of eigenvalues.

An important ingredient are new pointwise eigenfunction estimates which are
stated and derived in Section 2. These relate the pointwise behavior of a formal
eigenfunction and its derivative to its local L2 behavior. For V 2 L2loc they follow
from Sobolev embedding theorems, but, for V … L2loc, the local domain becomes
V -dependent and different arguments are needed; estimates of this form were previ-
ously considered for locally L1 potentials [45,60]. The pointwise estimates are given
in Lemma 2.7; here we point out one corollary of these estimates.

Theorem 1.6. Assume Hypothesis 1.2 and let wW .0;1/! .0;1/ obey

sup
¹x;yWjx�yj�1º

w.y/

w.x/
<1: (1.3)

For any E 2 R, there exists a positive constant C such that for any l > 1 and any
solution u 2D, `u D Eu, one has

lZ
1

w.x/kEu.x/k2dx � C

lC1Z
0

w.x/ju.x/j2dx; (1.4)

where

Eu.x/´

�
uŒ1�.x/

u.x/

�
; kEu.x/k2´ juŒ1�.x/j2 C ju.x/j2: (1.5)
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In particular, if
1Z
0

w.x/ju.x/j2 dx <1;

then
1Z
0

w.x/juŒ1�.x/j2 dx <1

and
lim
x!1

p
w.x/ju.x/j D lim

x!1

p
w.x/juŒ1�.x/j D 0: (1.6)

In this paper, we will only use the case w D 1; however, polynomial weights
w.x/D .x C 1/c and exponential weights w.x/D ecx for c 2 R are also relevant for
various criteria about the spectrum, spectral type, and dynamical properties which we
expect to have a generalization to the current setting.

Remark 1.1 indicates that decay at1 should be quantified by the local L2-norm
on � and local L1-norm on � . Thus, the following result generalizes the Blumenthal–
Weyl criterion for preservation of essential spectrum under decaying perturbations.

Lemma 1.7. Assume Hypothesis 1.2 and suppose that

lim
x!1

xC1Z
x

.�2.t/C j�.t/j/ dt D 0: (1.7)

Then, for arbitrary ˛ 2 Œ0; �/, Specess.H
˛/ D Œ0;1/.

We note in particular that Lemma 1.7 gives a more robust criterion even for locally
L1-potentials. Any locally uniformly L1 potential V can be decomposed as � D 0,
� D V , but choosing a different decomposition can give better results. For instance,
Lemma 1.7 implies the following result.

Corollary 1.8. If V 2 L1loc.Œ0;1// is real-valued and the limit

lim
x!1

xZ
0

V.t/ dt

is convergent, then the operator � d2

dx2
C V is limit point at1 and its arbitrary self-

adjoint realization HV in L2.RC/ satisfies Specess.HV / D Œ0;1/.

This corollary applies to oscillatory potentials such as

V.x/´ .�1/b2n.x�n/c; x 2 Œn � 1; n/; n 2 N
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which was considered in [23] by a more specialized argument, and to potentials

V.x/´ x˛ sin.xˇ /; ˛ � 0; ˇ > ˛ C 1 (1.8)

which are not even locally uniformly integrable if ˛ > 0. Similar growing oscillatory
potentials were considered in [13, 64]. To prove Lemma 1.7, we employ classical
perturbation theory for quadratic forms [6, 22, 49].

The description of the essential spectrum is the starting point in the theory of
Schrödinger operators with decaying potentials, which are a classical subject and have
been extensively studied over the past 30 years [1, 4, 14–17, 35, 37, 40, 51, 53, 62–64].
Their spectral properties show a subtle competition between the rate of decay (with
faster decay leading to absolutely continuous spectrum) and the disorder and oscil-
lation in the potential (which promote more singular spectrum). Spectral transitions
dependent on the rate of the decay have been studied by many authors, in particu-
lar: Pearson [51] in deterministic setting; Kiselev, Last, and Simon [37], central to
this paper; Delyon, Simon, and Souillard [15] for discrete Schrödinger operators and
Kronig–Penney models with decaying random potentials; and Kotani, Ushiroya [40]
for continuous Schrödinger operators with decaying random potentials. This collec-
tion of papers gave rise to a number of subsequent investigations many of which are
referenced in the review paper by Denisov and Kiselev [16].

We first prove that short-range perturbations preserve pure a.c. spectrum. In situ-
ations where different exponents are used to control local integrability and decay, the
spaces of functions

`p.Lq/ D
°
f WRC ! C

ˇ̌̌ 1X
nD0

kf�Œn;nC1/k
p
q <1

±
are useful, cf. [8, 54, 55]. The classical result about short-range perturbations is that
V 2 L1.RC/ implies purely a.c. spectrum on .0;1/. The distributional analog of this
criterion, informally speaking, is V 2 `1.H�1/; following Remark 1.1, we find the
correct formulation.

Theorem 1.9. Assume Hypothesis 1.2. If � 2 `1.L2/ and � 2 `1.L1/ D L1.RC/,
then H˛ has purely a.c. spectrum on .0;1/ for every ˛ 2 Œ0; �/.

In fact, we prove a more general result than Theorem 1.9.

Theorem 1.10. Assume Hypothesis 1.2 and

� 2 L1.RC/; .�2 � �/ 2 L1.RC/: (1.9)

Then, for arbitrary ˛ 2 Œ0; �/, the spectral measure on .0;1/ is of the form

�.0;1/.E/d�
˛.E/ D w˛.E/ dE
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with w˛ continuous on .0;1/ and strictly positive there. In particular, the spectrum
of H˛ is purely absolutely continuous on .0;1/.

To see that Theorem 1.10 implies Theorem 1.9, note that `1.L2/ � `2.L2/ D
L2.RC/ and `1.L2/� `1.L1/DL1.RC/; thus, � 2 `1.L2/ and � 2L1.RC/ implies
(1.9). These results apply, for instance, to potentials (1.8) with ˇ > ˛ C 2.

We note that neither condition in these theorems can be relaxed. For � D 0, it is
well known that decay of � weaker thanL1 can introduce singular spectrum in .0;1/;
e.g., Wigner–von Neumann-type potentials [46,50,57,58,62] can exhibit eigenvalues
embedded into ac spectrum with �.x/ D O.1=x/ as x !1. Similarly, we note the
following.

Example 1.11. There exists � 2 ACloc.Œ0;1// with �.x/D O.1=x/ as x!1 such
that for � D 0 and some ˛ 2 Œ0; �/, the spectrum of H˛ is not purely absolutely
continuous on .0;1/.

Since such an example obeys � 2 L2.RC/, it shows that the condition � 2 `1.L2/
cannot be relaxed in Theorem 1.9 and that the condition �2 � � 2 L1.RC/ cannot be
relaxed in Theorem 1.10.

In the second part of the paper, we specialize to decaying sparse potentials and
prove the following theorem.

Theorem 1.12. Let Wn 2 H�1.R/ be real distributions with suppWn � Œ��; ��.
Assume thatWn! W in H�1.R/, withW ¤ 0. Let dn! 0, let ¹xnº1nD1 � RC be a
monotonically increasing sequence such that x1 > � and xn

xnC1
! 0, and let

V.x/ D

1X
nD1

dnWn.x � xn/:

For any ˛ 2 Œ0; �/, Specess.H
˛/ D Œ0;1/ and, moreover, we have the following.

(a) If
P1
nD1jdnj

2 <1, then the spectrum of H˛ is purely absolutely continu-
ous on .0;1/, in the sense that �.0;1/ d�˛ is mutually absolutely con-
tinuous with Lebesgue measure on .0;1/. In particular, Specsc.H

˛/ D ;,
Specpp.H

˛/ � .�1; 0�, Specac.H
˛/ D Œ0;1/.

(b) If
P1
nD1jdnj

2 D 1, then the spectrum of H˛ is purely singular continuous
on .0;1/. In particular,

Specsc.H
˛/ D Œ0;1/; Specpp.H

˛/ � .�1; 0�; Specac.H
˛/ D ;:

The special choiceWn �W 2L1..��;�// yields Pearson-type classical poten-
tials; that case of Theorem 1.12 was proved by Kiselev, Last, and Simon [37]. Our
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extension allows more singular potentials; for instance, as an illustration of The-
orem 1.12, we claim a Kiselev–Last–Simon-type spectral transition for the Kronig–
Penney model. Concretely, letH be the Schrödinger operator acting onL2.RC/ given
by

H D �
d2

dx2
C

1X
nD1

dnı.x � xn/;

where ¹xnº1nD1 � .0;1/ is a sparse sequence satisfying xn=xnC1 ! 0 as n!1,
subject to any self-adjoint condition at 0. Then for any decaying sequence .dn/1nD1,
Specess.H/ D Œ0;1/; moreover, the spectrum is purely a.c. on .0;1/ if .dn/1nD1 is
square-summable and purely s.c. on .0;1/ otherwise. Related to this example is the
paper [44], cf. also [3, 39], where the spectral types of Kronig–Penney-type models
are discussed. In contrast to [44], however, the above example indicates spectral trans-
ition within the class of decaying coupling constants dn, while [44] studies different
spectral types (without transition between them) for growing dn.

Another new feature of our result is that the profileWn may vary with n. Note that
this allows examples such as the locally integrable potential

V D

1X
nD1

dnn�Œxn;xnC1=n�;

where � denote characteristic functions. Since n�Œ0;1=n� ! ı0 in H�1.R/, by The-
orem 1.12, the spectrum is purely a.c. on .0;1/ if the decaying sequence .dn/1nD1 is
square-summable and purely s.c. on .0;1/ otherwise.

Although stated in terms ofH�1.R/, the starting point in our analysis is a decom-
position Wn D S 0n C Tn and the proof must treat these contributions to � and �
separately. As in the classical case [37], our proof is based on the analysis of Prüfer
variables. However, in the present case this analysis is more intricate due to the
appearance of new terms in the differential equations obeyed by Prüfer variables.
Namely, in the setting of H�1 potential V D � 0 C � , as shown in Proposition 2.13,
one has

� 0 D k �
� � �2

k
sin2.�/C � sin.2�/; .logR/0 D

� � �2

2k
sin.2�/ � � cos.2�/;

whereas in the classical case V 2 L1loc.RC/, as discussed in [37],

� 0 D k �
V

k
sin2.�/; .logR/0 D

V

2k
sin.2�/:

An important ingredient in the proof of Theorem 1.12 is given by the fact that
kT .k2; x/k is comparable to R.x/, see Proposition 2.13. Hence, in order to establish
growth or boundedness of eigensolutions and, respectively, the absence or existence
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of purely absolutely continuous spectrum on ŒE1; E2�, it suffices to study the asymp-
totics for R.x/. In Sections 3.3 and 3.4, we describe the asymptotic behavior of R.x/
depending on whether or not ¹dnº1nD1 2 `

2.N/.

2. Spectral analysis of Schrödinger operators with distributional
potentials

In this section, we consider Schrödinger operators in the setting of Hypothesis 1.2. We
start with the general properties of the self-adjoint operators and quadratic forms for
locally square-integrable � and locally integrable � , and then establish general ways
to study the spectral type.

2.1. Self-adjointness and form bounds

For an interval I � R and � 2 L2loc.I /, � 2 L
1
loc.I /, differential expressions of the

form
`u D �.u0 � �u/0 � �.u0 � �u/C .� � �2/u

are within the very general setting of four-coefficient Sturm–Liouville operators
with locally integrable coefficients considered by Eckhardt, Gesztesy, Nicols, and
Teschl [19]; in the notation of [19], this is obtained by setting p D 1; q D � � �2;

r D 1; s D �� . Thus, the following general properties are known.
We denote for u 2 ACloc.I / the quasiderivative

uŒ1� D u0 � �u:

Associated with the differential expression ` is the local domain

D D ¹u 2 ACloc.I / W u
Œ1�
2 ACloc.I /º

and three linear, densely defined, unbounded operators H0; Hmin; Hmax acting on
L2.I / defined as follows:

Hmaxu D `u;

u 2 dom.Hmax/´ ¹u 2 L
2.I / W u 2D; `u 2 L2.I /º;

H0u D `u;

u 2 dom.H0/´ ¹u 2 dom.Hmax/ W u has compact supportº;

and Hmin ´ H0, the closure of H0 in L2.I /. By [19, Section 3],

Hmin D H0 D H
��
0 D H

�
maxI Hmin � H

�
min D Hmax:
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Moreover, there is a limit point/limit circle dichotomy at each endpoint, i.e., the space
of solutions of `uD zuwhich are square-integrable in a neighborhood of the endpoint
is two-dimensional for all z 2 C nR (the limit circle case) or one-dimensional for all
z 2 C nR (the limit point case). In this setting, the Wronskian is defined for u; v 2D

by
W.u; v/.x/ D u.x/vŒ1�.x/ � uŒ1�.x/v.x/:

For any u; v 2 dom.Hmax/, the Wronskian has a limit as x approaches an endpoint.
The endpoint sup I (respectively, inf I ) is limit point if and only if

lim
x!sup I

W.u; v/.x/ D 0; u; v 2 dom.Hmax/:

(respectively, as x ! inf I ), cf. [19, Lemma 4.4].
In the setting of Hypothesis 1.2, the endpoint 0 is regular because

1Z
0

�2.t/ dt <1;

1Z
0

j�.t/j dt <1 (2.1)

(informally, a regular endpoint is a point with the same local integrability properties
of the coefficients as an internal point; formally, (2.1) matches the general definition
of regular endpoint used in [19]). Thus, by [19, Section 3], ` is limit circle at 0, for
every u 2 dom.Hmax/ the limits

u.0/ D lim
x!0

u.x/; uŒ1�.0/ D lim
x!0

uŒ1�.x/ (2.2)

exist and are finite, and self-adjoint boundary conditions at 0 are of the form

u.0/ cos˛ C uŒ1�.0/ sin˛ D 0

for some ˛ 2 Œ0; �/.
Full-line Schrödinger operators with H�1loc potentials were studied in detail by

Hryniv and Mykytyuk, for example, in [29,30]; in particular, full-line operators obey-
ing the local uniform bounds (1.1) are limit point at ˙1. Since the limit point/limit
circle dichotomy is a local property of the endpoint by [19, Section 3], in the setting of
Hypothesis 1.2, ` is limit point at1. The following lemma summarizes these known
facts.

Lemma 2.1. Under the assumptions of Hypothesis 1.2, for every u 2 dom.Hmax/, the
limits (2.2) exist and are finite, all self-adjoint extensions ofHmin are parametrized by
˛ 2 Œ0; �/ as follows:

H˛u D �.uŒ1�/0 � �uŒ1� C .� � �2/u; u 2 dom.H˛/;

dom.H˛/ D ¹u 2 dom.Hmax/ W u.0/ cos.˛/C uŒ1�.0/ sin.˛/ D 0º:



M. Lukić, S. Sukhtaiev, and X. Wang 70

Moreover, Hryniv and Mykytyuk [29, Section 3] described semiboundedness and
quadratic forms associated with the full-line Schrödinger operators; we adapt this
proof to the half-line setting, in order to describe the quadratic forms associated
with H˛ .

Theorem 2.2. Under the assumptions of Hypothesis 1.2, for every ˛ 2 Œ0; �/, the
operatorH˛ is bounded from below and there exist C D C.�; �/ > 1;�D �.�; �/ > 0
such that for E < min¹inf Spec.H˛/; 0º,

.H˛
�E/�1 � C.��X �E C �/

�1; (2.3)

where ��X is the Dirichlet Laplacian on RC if ˛ D 0 and Neumann Laplacian if
˛ 2 .0; �/.

The quadratic form h˛ of H˛ is given by

h˛Œu;v�D

´R1
0
. Nu0v0 � Nu0�v � Nu�v0 C � Nuv/.x/ dx � cot.˛/u.0/v.0/; ˛ 2 .0; �/;R1

0
. Nu0v0 � Nu0�v � Nu�v0 C � Nuv/.x/ dx; ˛ D 0;

(2.4)
for u; v 2 dom.h˛/, where

dom.h˛/´

´
H 1.RC/; ˛ 2 .0; �/;

H 1
0 .RC/´ ¹f 2 H

1.RC/ W f .0/ D 0º; ˛ D 0:
(2.5)

Proof. Recall from [29, Lemma 3.1] that for arbitrary interval I � RC of length 1,
" 2 .0; 1/, and  2 H 1.I /,

k k2L1.I / � "k 
0
k
2
L2.I /

C 8"�1k k2
L2.I /

; (2.6)

k  0kL2.I / � "k 
0
k
2
L2.I /

C 4"�3k k2
L2.I /

: (2.7)

In particular, as in the proof of [29, Theorem 3.4], for any u 2 H 1.RC/,

1Z
0

j�uj2 D

1X
nD0

nC1Z
n

j�uj2 � k�k22;unif

1X
nD0

kuk2L1.n;nC1/ �
(2.6)

Ckuk2
H1.RC/

<1:

That is, �u 2 L2.RC/. Due to this and H 1.RC/ � L1.RC/, the form h˛ defined
by (2.4), (2.5) is well defined.

Let us now prove that h˛ is relatively bounded with respect to the quadratic form
of the Dirichlet or Neumann free Laplacian on RC, depending on the value of ˛. Note
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that for arbitrary " > 0, employing (2.6), (2.7) as in the proof of [29, Lemma 3.2],ˇ̌̌̌ 1Z
0

� Nu0u

ˇ̌̌̌
�

1X
nD0

nC1Z
n

j� Nu0uj �
(2.7)
k�k2;unif."ku

0
k
2
L2.RC/

C 4"�3kuk2
L2.RC/

/;

ˇ̌̌̌ 1Z
0

� Nuu

ˇ̌̌̌
�

1X
nD0

nC1Z
n

j� j kuk2L1.n;nC1/ �
(2.6)
k�k1;unif."ku

0
k
2
L2.RC/

C 8"�1kuk2
L2.RC/

/;

(2.8)

for arbitrary u 2 H 1.RC/; moreover, by (2.6),

ju.0/j2 � "ku0k2
L2.RC/

C 4"�3kuk2
L2.RC/

: (2.9)

Let hX , X 2 ¹D;N º denote the quadratic form corresponding to Dirichlet or Neu-
mann free Laplacian on RC; i.e.,

hX .u; u/ D ku0k2
L2.RC/

; u 2 dom.hX /;

where
dom.hD/´ H 1

0 .RC/ and dom.hN /´ H 1.RC/:

We will proceed with assuming ˛ 2 .0; �/, the second case ˛ D 0 can be handled
similarly. For any a 2 .0; 1/, the inequalities (2.8), (2.9) yield b 2 R such that

jh˛Œu; u� � hN Œu; u�j � aku0k2
L2.RC/

C bkuk2
L2.RC/

; u 2 H 1.RC/:

That is, the lower order terms and the boundary term in the definition of h˛ , considered
as quadratic form on H 1.RC/, are relatively bounded with respect to Neumann form
hN , with relative bound less than one, see [34, Section VI.3.3] or [52, Chapter X].
Thus, by [52, Theorem X.17], h˛ is closed bounded from below quadratic form and
there is a unique self-adjoint operator T ˛ acting in L2.RC/ which satisfies

hT ˛u; viL2.RC/ D h˛.u; v/; u 2 dom.T ˛/; v 2 dom.h˛/: (2.10)

We claim that H˛ � T ˛ . Assume this claim, we note that both operators are self-
adjoint and therefore must coincide. This implies that h˛ is the quadratic form of the
operator H˛ which is consequently bounded from below. Let us now proof H˛ �

T ˛ for ˛ 6D 0 (the case ˛ D 0 can be handled analogously). It suffices to estab-
lish (2.10) for all u 2 dom.H˛/ and all v 2 H 1.RC/ \ C1.RC/ with bounded1

support supp.v/. Indeed, both sides of (2.10) are continuous with respect to v in

1In case ˛ D 0, take v with compact support, i.e., v 2 C1
0
.RC/
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H 1.RC/ norm and the set of v 2H 1.RC/\C1.RC/with bounded support is dense
inH 1.RC/, see, for example, [22, Corollary 3.3 in Chapter V, Section 3]. Then using
uŒ1�.0/D�cot.˛/u.0/, v.x/D 0 for sufficiently large x > 0, and integration by parts,

h˛.u; v/ D

1Z
0

�
uŒ1�v0 � �uŒ1�v C .� � �2/ Nuv

�
.x/ dx C uŒ1�.0/v.0/

D

1Z
0

�
�.uŒ1�/0v � �uŒ1�v C .� � �2/ Nuv

�
.x/ dx

D hH˛u; viL2.RC/:

In order to prove (2.3) (again we focus on the case ˛ 2 .0; �/), we invoke (2.8),
(2.9) to obtain some C D C.�; �/ > 1 such that

h˛.u; u/ � C.ku0k2
L2.RC/

C �kuk2
L2.RC/

/; u 2 H 1.RC/:

Noting that the left-hand side above is the quadratic form of H˛ and the right-hand
side is the quadratic form of C.��N C �/, assertion (2.3) follows from [34, The-
orem VI 2.21], where it is shown that the ordering of quadratic forms implies the
ordering of resolvents.

Remark 2.3. (i) The representation V D � 0 C � is not unique; given two pairs
.�i ; �i / 2 L

2
loc.RC/ � L

1
loc.RC/, i D 1; 2 with � 01 C �1 D V D �

0
2 C �2 one has

� ´ �1 � �2; � 0 D �2 � �1;

so that � 2 W 1;1
loc .RC/.

(ii) Fix � 2 W 1;1
loc .RC/ and .�; �/ 2 L2loc.RC/ � L

1
loc.RC/. We say that the pair

.� C �; � � � 0/ is a gauge change of .�; �/. The domain dom.Hmax/ is gauge change
invariant since for u 2 ACloc.RC/ one has

.u0 � �u/ 2 ACloc.RC/ () .u0 � .� C �/u/ 2 ACloc.RC/

and a direct calculation shows that the action of the maximal operator Hmax is also
gauge change invariant. The gauge change affects the definition of the quasi-derivative
u
Œ1�
j D u

0 � �ju so that uŒ1�1 D u
Œ1�
2 � �u. Therefore, the self-adjoint boundary condi-

tions u.0/ cos j̨ C u
Œ1�
j .0/ sin j̨ D 0 are relabeled by the formula

cot˛2 D cot˛1 � �.0/:

Remark 2.4. In the setting of Theorem 2.2, two distinct self-adjoint extensions of
Hmin are rank-one perturbations of each other. Concretely, one has

dim rank..H˛
� i/�1 � .Hˇ

� i/�1/ � 1:
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This is due to the fact that the deficiency indices of Hmin are .1; 1/ and the abstract
Krein’s resolvent formula [9, Theorem A.1].

We can now prove our version of the Blumenthal–Weyl criterion.

Proof of Lemma 1.7. By Remark 2.4 and [22, Theorem 2.4], it suffices to prove the
statement for ˛ D 0. Let HD and hD denote respectively the Dirichlet Laplacian
and its quadratic form on RC; i.e., using the notation of Theorem 2.2 with ˛ D 0,
� D � D 0, write HD ´ H 0, hD D h0. Our goal is to show that for �; � as in (1.7),
the quadratic form h0 is a relative compact perturbation of hD (see e.g., [49, Defini-
tion 2.12], [22, Section IV.4]). This assertion together with [49, Theorem 2.13] yields
Specess.H

0/D Specess.HD/ and, when combined with Specess.HD/D Œ0;1/, proves
the statement.

Consider the quadratic form

sŒu; v� WD

1Z
0

.�u0�v � Nu�v0 C � Nuv/.x/dx; u; v 2 dom.s/ D H 1
0 .RC/:

In order to show that h0 is a relative compact perturbation of hD , it suffices to verify
that

(i) one has

jsŒu; u�j � C.h0Œu; u�C kuk2
L2.RC/

/ for any u 2 H 1
0 .RC/I (2.11)

(ii) if supj kuj kH1.RC/ � 1; then there exists a subsequence ¹ujmº
1
mD1 such

that for " > 0 there exists K > 1 such that

jsŒujm � ujn ; ujm � ujn �j < " for all m; n > K; (2.12)

cf. [49, Theorem 2.14].

The first inequality (2.11) follows from (2.8), so it suffices to prove (2.12). First, let
�Œa;b� denote the characteristic function of Œa; b� and note that

jsŒu; u�j � 2

ˇ̌̌̌ 1Z
0

.�Œ0;t�u0�u/.x/dx

ˇ̌̌̌
C

ˇ̌̌̌ 1Z
0

.�Œ0;t�� juj
2/.x/dx

ˇ̌̌̌

C 2

ˇ̌̌̌ 1Z
0

.�Œt;1/u0�u/.x/dx

ˇ̌̌̌
C

ˇ̌̌̌ 1Z
0

.�Œt;1/� juj
2/.x/dx

ˇ̌̌̌
; u 2 dom.s/:

(2.13)
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Fix arbitrary " > 0, then for a sequence ¹uj º1jD1 � dom.s/with supj kuj kH1.RC/ � 1
and sufficiently large, j -independent, t D t ."; �; �/ > 0,

2

ˇ̌̌̌ 1Z
0

.�Œt;1/.uj � uk/0�.uj � uk//.x/dx

ˇ̌̌̌
C

ˇ̌̌̌ 1Z
0

.�Œt;1/� juj � ukj
2/.x/dx

ˇ̌̌̌
�

(2.8)
C.k�Œt;1/�k2;unif C k�Œt;1/�k1;unif/kuj � ukkH1.RC/ � "=2; (2.14)

for all j 2 N, where, in the last inequality, we used (1.7) and supj kuj kH1.RC/ � 1.
Next, for t defined above, note that supj k�Œ0;t�uj kH1.RC/ � 1 and, due to compact-
ness of the embeddingH 1..0; t// ,! L2..0; t//, there exists a subsequence ¹ujk º

1
kD1

which is Cauchy in L2.RC/. For such a subsequence and arbitrary " > 0, there exists
K > 1 such that

2

ˇ̌̌̌ 1Z
0

.�Œ0;t�.ujm � ujn/
0�.ujm � ujn//.x/dx

ˇ̌̌̌

C

ˇ̌̌̌ 1Z
0

.�Œ0;t�� jujm � ujn j
2/.x/dx

ˇ̌̌̌
< "=2; for m; n > K; (2.15)

where we used the Cauchy–Schwarz inequality and supj k�Œ0;t�uj kH1.RC/ � 1. It
follows from (2.13) with u´ ujm � ujn , (2.14) and (2.15) that

jsŒujm � ujn ; ujm � ujn �j < "; for m; n > K;

which yields (2.12) as required.

Proof of Corollary 1.8. Let �.x/´
R x
0
V.t/dt �

R1
0
V.t/dt , � D 0. Then �.x/! 0,

x ! 1, hence (1.1) holds; hence, by Lemma 2.1 HV is limit point at infinity. In
addition one has (1.7), thus, by Lemma 1.7, Specess.H

˛/ D Œ0;1/ which combined
with � 0 C � D V yield Specess.HV / D Œ0;1/ as asserted.

At this point, let us prove the assertion made in Example 1.11.

Proof of Example 1.11. The Wigner–von Neumann potential V , explicitly defined in
[57, Section 3, Part B], admits a real-valued non-trivial eigenfuction u 2 L2.RC/
corresponding to eigenvalue 1. In particular, for the choice of boundary condition at 0
corresponding to u, the Schrödinger operator � d2

dx2
C V has an eigenvalue in .0;1/.

We set �.x/´�
R1
x
V.t/dt and � D 0. Then V D � 0 C � so this is a gauge change

of the Wigner–von Neumann potential; in particular, spectral type is unchanged. To
prove �.x/ D

x!1
O.1=x/, we recall the asymptotic formula

V.t/ D �
8 sin.2t/

t
CO.t�2/; t !1:
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Hence, for some C; c > 0 and sufficiently large x we haveˇ̌̌̌ 1Z
x

V.t/dt

ˇ̌̌̌
�

ˇ̌̌̌ 1Z
x

8 sin.2t/
t

dt

ˇ̌̌̌
C

ˇ̌̌ c
x

ˇ̌̌

�

ˇ̌̌̌
ˇ4 cos.2x/

x

ˇ̌̌̌
ˇC

ˇ̌̌̌ 1Z
x

4 cos.2t/
t2

dt

ˇ̌̌̌
C
c

x
�
C

x
:

Remark 2.5. (i) The invariance of the essential spectrum under small at infinity
perturbations of the coefficients has been investigated by many authors in various
settings, see e.g., [3, 25, 28, 65] and especially [43], which contains many relevant
references. The central fact in the classical treatment of this problem via Weyl-type
sequences, see [28, Section 10], is that H˛ has a locally compact resolvent; i.e.,
�.0;n/.H

˛ � i/�1; n� 0 is compact inL2.RC/. This still holds in our case, as readily
seen from the explicit form of Green’s function. However, there is a major obstacle in
using the classical approach since dom.H˛/, as a subset of L2.RC/, depends on �; � .
Notably, one does not even have the inclusion C10 .RC/ � dom.H˛/ in general; e.g.,
such an inclusion does not hold when V is not locallyL2. The key feature of our proof
of Lemma 1.7 is that the form domain h˛ does not depend on �; � . Interestingly, the
latter does depend on ˛, though the invariance of essential spectrum under perturb-
ation of the boundary condition is handled by Krein’s formula for the difference of
resolvents of two self-adjoint extensions of the minimal operator Hmin, as discussed
in Remark 2.4.

(ii) Relevant to this discussion are [26, Theorem 3.2] (see also [47,48]), where the
full-line version of (1.7) is shown to be equivalent to compactness of the multiplier
given by an H�1.R/ potential, and [3], where Birman’s perturbation theory is used
to prove invariance of the essential spectrum for Kronig–Penney-type models with
decaying coupling constants.

2.2. Weyl–Titchmarsh theory

For z 2 C, g 2 L1loc.RC/, the differential equation

�.uŒ1�/0 � �uŒ1� C .� � �2/u � zu D g; u 2D

is rewritten as the first order system

d

dx

�
uŒ1�.x/

u.x/

�
D A.z; x/

�
uŒ1�.x/

u.x/

�
�

�
g.x/

0

�
; A.z; x/´

�
�� .� � �2/ � z

1 �

�
:

Assuming Hypothesis 1.2, since the matrix coefficients inA.z;x/ lie inL1loc.RIC
2�2/,

the corresponding initial value problem has a unique locally absolutely continuous
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solution. In particular, for g D 0, ˛ 2 Œ0; �/, we consider the initial value problem
`u � zu D 0 and denote by �˛;z , �˛;z its solutions satisfying the initial conditions�

�
Œ1�
˛;z.0/ �

Œ1�
˛;z.0/

�˛;z.0/ �˛;z.0/

�
D R�1˛ ; R˛ ´

�
cos.˛/ � sin.˛/
sin.˛/ cos.˛/

�
: (2.16)

The solutions are entire with respect to z. In the special case ˛ D 0, we denote �z ´
�˛;z; �z ´ �˛;z . Note that any u 2D solving `u D zu satisfies�

uŒ1�.x/

u.x/

�
D T .zI x; 0/

�
uŒ1�.0/

u.0/

�
; T .zI x; 0/´

�
�
Œ1�
z .x/ �

Œ1�
z .x/

�z.x/ �z.x/

�
:

Since W.�z; �z/.x/ is constant (due to Lagrange identity [19, Lemma 2.3]),

detT .zI x; 0/ D 1:

Thus, the transfer matrix can be defined as

T .zI x; y/´

�
�
Œ1�
z .x/ �

Œ1�
z .x/

�z.x/ �z.x/

��
�
Œ1�
z .y/ �

Œ1�
z .y/

�z.y/ �z.y/

��1
;

where for any u 2D solving `u D zu, and any x; y � 0,

T .zI x; y/

�
uŒ1�.y/

u.y/

�
D

�
uŒ1�.x/

u.x/

�
:

We will often denote T .zI x/´ T .zI x; 0/.
Next, we recall the Weyl–Titchmarsh theory for `. Assuming Hypothesis 1.2,

since ` is limit point at infinity, for any z 2 C nR, there is a 1-dim set of solutions in
L2.RC/ to `u D zu, where any such non-trivial solution is called a Weyl solution at
infinity and denoted by  z . Fix any  z; the Weyl–Titchmarsh m-function is given by

m˛.z/ D �
W. z; �˛;z/

W. z; �˛;z/
D

cos.˛/ Œ1�z .0/ � sin.˛/ z.0/

sin.˛/ Œ1�z .0/C cos.˛/ z.0/
:

The boundary condition affects the Weyl function by a rotation matrix: denoting by
' the projective relation on C2 n ¹0º,�

m˛.z/

1

�
' R˛

�
m0.z/

1

�
: (2.17)

The Weyl disks are defined as

D˛
x .z/´ ¹U˛ j u ¤ 0 2D; `u � zu D 0; iW. Nu; u/.x/ < 0º;

U˛ ´
cos.˛/uŒ1�.0/ � sin.˛/u.0/
sin.˛/uŒ1�.0/C cos.˛/u.0/

:
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Proposition 2.6. Assume Hypothesis 1.2 and fix z 2 CC, ˛ 2 Œ0; �/.

(i) For x > 0, the set D˛
x .z/ is a disk in CC.

(ii) The disks from (i) are strictly nested; i.e.,

D˛
y .z/ � D

˛
x .z/; x < y:

(iii) The intersection of these disks is a single element set consisting of the Weyl–
Titchmarsh coefficient m˛.z/; i.e.,\

x�0

D˛
x .z/ D ¹m˛.z/º:

Moreover, �˛;z Cm˛.z/�˛;z is a Weyl–Titchmarsh solution.

(iv) The mapping z 7! m˛.z/ is a Herglotz function; i.e., analytic function

CC ! CC:

Proof. In this setting, the Lagrange identity for u 2D with `u D zu, z 2 CC, is

2 Im z

xZ
0

ju.t/j2 dt D iW. Nu; u/.x/ � iW. Nu; u/.0/:

In particular, if u ¤ 0, then u has only isolated zeros so the function

iW. Nu; u/.x/ D �2 Im.u.x/uŒ1�.x//

is real-valued and strictly increasing in x. The strict increasing property above cor-
responds to the fact that the operator obeys the Atkinson condition, or equivalently,
the corresponding canonical system has no singular intervals. The other conclusions
are general consequences of the fact that the operator is limit point at 1 (see, e.g.,
[41]).

To conclude Section 2.2, we recall from [19, Section 9] the spectral decomposition
for the operatorH˛ . The Herglotz functionm˛ discussed in Proposition 2.6 (iv) gives
rise to a Borel measure �˛ via the Stieltjes–Livsic inversion formula

�˛..E1; E2�/ WD lim
ı#0

lim
"#0

1

�

E2CıZ
E1Cı

Imm˛.˛ C i"/d�;

for real numbers E1 < E2. The operator H˛ is unitarily equivalent to the operator of
multiplication by the independent variable in the space L2.R; �˛/ and the classical
spectral description via boundary values of m˛.z/ holds, see [19, Section 9]. For
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instance, as in the classical setting, if ˛ � ˇ … �Z, then a.c. parts of �˛ , �ˇ are
mutually a.c., and their singular parts are mutually singular.

We will return to a detailed analysis of the absolutely continuous part of spec-
tral measure �˛ in Section 2.4, where we will rely on estimates for eigensolutions
discussed next.

2.3. Eigensolution estimates

In this section, we derive auxiliary estimates for solutions of `uDEu,E 2R, u 2D.
To describe the main assertions, let us fix � > 0 and recall (1.5). In the estimates
that follow, we give bounds with explicit dependence on the parameter E; we do not
optimize these estimates, but we will use explicit estimates in some of the proofs that
follow.

Lemma 2.7. Assume Hypothesis 1.2. There exist constantsC1;C2;C3;C4;C52.0;1/
which depend only on k�k2;unif, k�k such that, for every E 2 R and every real-valued
solution u 2D of `u D Eu,

(i) on every interval I � RC with jI j D � � 1,

kEu.y/k � C1e
�jE j
kEu.x/k; for all x; y 2 I I

(ii) on every closed interval I � RC with jI j D � � 1,

max
x2I
juŒ1�.x/j � C2

e�jE j

�
max
x2I
ju.x/jI

(iii) for ı D C3.1C jEj/�1, at least one of the infimums

inf
Œy�ı;y�\RC

ju.x/j; inf
Œy;yCı�

ju.x/j

is larger or equal to ju.y/j=2;

(iv) for every " � 1
4

and every y � ",

ju.y/j2 � C4.1C jEj/
2

yC"Z
y�"

ju.x/j2 dxI

(v) for every " � 1
2

and every y � ",

juŒ1�.y/j2 � C5e
2"jE j.1C jEj/2

yC"Z
y�"

ju.x/j2 dx
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Proof. (i) From Eu0DAEu for x <y, we obtain by Gronwall’s inequality [5, Lemma 1.3]

kEu.y/k � e
R y
x kA.t;E/kdtkEu.x/k:

The operator norm bound

kA.t; E/k � 1C 2j�.t/j C j�.t/j C j�2.t/j C jEj

implies that kA.t; E/k is uniformly locally integrable: on every interval I of length
jI j D � � 1,Z

I

kA.t; E/kdt � 1C 2k�k2;unif C k�k C k�k
2
2;unif C �jEj:

The case y < x follows analogously.
(ii) We fix

S ´
1

C1.3C k�k2;unif/
�e��jE j (2.18)

and assume that for some y0 2 I ,

kEu.y0/k � ju
Œ1�.y0/j >

1

S
ju.x/j for all x 2 I:

Combining, we conclude that for all x; y 2 I ,

kEu.y/k �
1

C1e�jE j
kEu.y0/k >

1

C1e�jE jS
ju.x/j:

Since C1e�jE jS < 1, this implies

juŒ1�.y/j >
� 1

C 21 e
2�jE jS2

� 1
�1=2
ju.x/j; for all x; y 2 I:

In particular, uŒ1� has no zeros on the interval I , so it has constant sign there. Thus,ˇ̌̌̌ Z
I

uŒ1�.t/ dt

ˇ̌̌̌
D

Z
I

juŒ1�.t/j dt > �
� 1

C 21 e
2�jE jS2

� 1
�1=2

max
x2I
ju.x/j: (2.19)

On the other hand, denoting the end points of I by j� < jC, one hasˇ̌̌̌ Z
I

uŒ1�.t/ dt

ˇ̌̌̌
D

ˇ̌̌̌
u.jC/ � u.j�/ �

Z
I

�.t/u.t/ dt
ˇ̌

� 2max
x2I
ju.x/j C

p
�k�k2;unif max

x2I
ju.x/j: (2.20)
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Since u is not identically zero on I , combining (2.19) and (2.20), we obtain

�
� 1

C 21 e
2�jE jS2

� 1
�1=2

< 2C k�k2;unif

p
� � 2C k�k2;unif

which implies

1

C 21 e
2�jE jS2

<
.2C k�k2;unif/

2

�2
C 1 �

.3C k�k2;unif/
2

�2

and contradicts (2.18).
(iii) Impose C3 � 1 to ensure ı � 1. Assume that the claim is false: then u.y/¤ 0

and by continuity there exist x1 2 Œy � ı; y� \ Œ0;1/ and x2 2 Œy; y C ı� such that
ju.x1/j D ju.x2/j D ju.y/j=2. In particular, x1 < y < x2. Pick s 2 Œx1; x2� so that

ju.s/j D max
x2Œx1;x2�

ju.x/j:

By considering˙u, without loss of generality we can assume u.s/ > 0.
Moreover, let us assume uŒ1�.s/ � 0 and work on the interval Œs; x2�; the other

case is analogous by working on Œx1; s�.
The first step is an upper bound for the quasiderivative. For x 2 Œs; x2�, denote

h.x/ D e
R x
s �.t/ dtuŒ1�.x/:

Then the equation for .uŒ1�/0 implies

h0.x/ D e
R x
s �.t/ dt .�.x/ � �.x/2 �E/u.x/:

Since x � s � x2 � s < 2ı � 1, we useˇ̌̌̌ xZ
s

�.t/ dt

ˇ̌̌̌
� jx � sj1=2k�k2;unif;

xZ
s

j�.t/ � �.t/2 �Ejdt � k�k22;unif C k�k C jEj

to conclude that for x 2 Œs; x2�, for some constant C ,

jh.x/ � h.s/j �

xZ
s

eC jt�sj
1=2

j�.t/ � �.t/2 �Ejju.t/jdt

� eC jx�sj
1=2

u.s/

xZ
s

j�.t/ � �.t/2 �Ejdt

� .C C jEj/eC jx�sj
1=2

u.s/:
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Since h.s/ D uŒ1�.s/ � 0, we turn this into a one-sided bound

�h.x/ � �h.s/C .C C jEj/eC jx�sj
1=2

u.s/ � .C C jEj/eC jx�sj
1=2

u.s/

and from this we finally obtain

�uŒ1�.x/ � .C C jEj/e2C jx�sj
1=2

u.s/; for all x 2 Œs; x2�: (2.21)

Then we expand for x 2 Œs; x2�,

u.x/ D u.s/C

xZ
s

u0.t/ dt D u.s/C

xZ
s

uŒ1�.t/ dt C

xZ
s

�.t/u.t/ dt

and by using (2.21) we get

u.x/ � u.s/ � jx � sje2C jx�sj
1=2

.C C jEj/u.s/ � jx � sjk�k2;unifu.s/:

Plugging in x D x2, recalling that u.x2/ � u.s/=2 and jx2 � sj < 2ı, and dividing by
u.s/ we obtain

1

2
> 1 � 2ıe4Cı

1=2

.C C jEj/ � ık�k2;unif

Equivalently,

2ıe4Cı
1=2

.C C jEj/C ık�k2;unif >
1

2

which gives a contradiction if ı is small enough.
(iv) It follows from (iii) that

yC"Z
y�"

ju.x/j2 dx �
ju.y/j2

4
min¹"; ıº:

(v) Without loss of generality, assume " � 1. Starting with (ii) and then (iv), with
a D "=2,

juŒ1�.y/j2 � C 22
e4ajE j

.2a/2
max

x2Œy�a;yCa�
ju.x/j2

� C 22C4
e4ajE j

.2a/2
.1C jEj/2 max

x2Œy�a;yCa�

xCaZ
x�a

ju.t/j2 dt

which implies

juŒ1�.y/j2 � C5e
2"jE j.1C jEj/2

xC"Z
x�"

ju.t/j2 dt:
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Proof of Theorem 1.6. By considering Re u; Im u, it suffices to consider real-valued
eigensolutions. Denote by C the supremum in (1.3). By Lemma 2.7, there exists M
such that

w.x/kEu.x/k2 � w.x/M

xC1Z
x�1

u.y/2 dy � CM

xC1Z
x�1

w.y/u.y/2 dy: (2.22)

Integrating and using Tonelli’s theorem gives

lZ
1

w.x/kEu.x/k2dx � CM

lZ
1

xC1Z
x�1

w.y/u.y/2dydx � 2CM

lC1Z
0

w.y/u.y/2dy:

(2.23)
From now on, assume

R1
0
w.x/ju.x/j2 dx <1. Letting l !1 in (2.23) shows

1Z
1

w.x/kEu.x/k2dx <1:

By (1.3), w is bounded on .0; 1/, so
R 1
0
w.x/uŒ1�.x/2dx <1. Using decaying tails

of an integrable function, (2.22) implies the pointwise decay (1.6).

As a first application, we prove a Simon–Stolz-type criterion for absence of pure
point spectrum, cf. [59].

Lemma 2.8. Assume Hypothesis 1.2. If for some E 2 R,

1Z
0

dx

kT .EI x/k2
D1; (2.24)

then H˛ has no nontrivial solutions in L2..0;1//; in particular, H˛ doesn’t have
an eigenvalue at E for any ˛ 2 Œ0; �/.

Proof. Fix nontrivial u 2 D, `u D Eu. By Theorem 1.6 with w D 1, it suffices to
show that q

.uŒ1�/2 C u2 62 L2.RC/: (2.25)

Since T .EI x/ 2 SL.2;R/ implies kT .EI x/k D kT .EI x/�1k,

kEu.x/k � C
kEu.0/k

kT .EI x/k
; Eu.x/ D .uŒ1�.x/; u.x//>;

which together with (2.24) yields (2.25) as required.
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2.4. The absolutely continuous spectrum via Last–Simon approach

The main goal of this section is to develop the Last–Simon approach, cf. [42], to abso-
lutely continuous spectrum via growth of transfer matrices. To do this, we first discuss
the relation between the subordinacy theory and the growth of transfer matrices.
We say that u 2 D is a subordinate solution of `u � zu D 0 if for some solution
`v � zv D 0; v 2D n ¹0º,

lim
x!1

kukx

kvkx
D 0; kf k2x WD

xZ
0

jf .y/j2 dy: (2.26)

Note that if (2.26) holds for some eigensolution v, it holds for every eigensolution
linearly independent with u. Moreover, taking v D Nu, we see that if a subordinate
solution exists, it must be linearly dependent with its complex conjugate, so it must
be a multiple of �˛;z for some ˛.

For �-a.e. � 2 R, the normal boundary value lim"#0 m.� C i"/ exists in CC.
Subordinacy theory relates this value to the existence of subordinate solutions [27,31];
this was recently understood to be a special case of bulk universality in a general
Hamiltonian system setting [24]. To explain this, incorporate the boundary condition
into the transfer matrix by defining

T˛.zI x/ D R˛

�
�
Œ1�
˛;z.0/ �

Œ1�
˛;z.0/

�˛;z.0/ �˛;z.0/

�
:

This transfer matrix T˛.zI x/ obeys the initial value problem

@xT˛.zI x/ D R˛A.z; x/R
�1
˛ T˛.zI x/; T˛.zI 0/ D I:

This is a special case of a so-called Hamiltonian system, and can be written as

j @xT˛.zI x/ D R˛

�
1 �.x/

�.x/ �.x/2 � �.x/C z

�
R�1˛ T˛.zI x/; j D

�
0 �1

1 0

�
:

The transfer matrices generate a matrix kernel

Kl.z; w/ D

lZ
0

T˛.wI x/
�R˛

�
0 0

0 1

�
R�1˛ T˛.zI x/ dx

D

lZ
0

�
�˛;z.x/�˛;w.x/ �˛;z.x/�˛;w.x/

�˛;z.x/�˛;w.x/ �˛;z.x/�˛;w.x/

�
dx:
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By the Cauchy–Schwarz inequality, the solution �˛;z is subordinate if and only if

lim
l!1

1

Tr Kl.E;E/
Kl.E;E/ D

�
0 0

0 1

�
:

Scaling limits of Kl are related to the normal limits of m-function: by [24, The-
orem 1.8],

lim
"#0

m˛.E C i"/ D1 () lim
l!1

1

Tr Kl.E;E/
Kl.E;E/ D

�
0 0

0 1

�
:

Using (2.17) to restate in terms of m0, we conclude as follows.

Lemma 2.9. Assume Hypothesis 1.2. For any E 2 R,

lim
"#0

m0.E C i"/ D � cot˛ () �˛;E is subordinate:

We also denote

N.`/´ ¹E 2 R W no solution of `u �Eu D 0 is subordinateº:

Taking the union over ˛ in Lemma 2.9 and taking negations, for every E for which
the normal limit exists, E 2 N.`/ if and only if

lim
"#0

m0.E C i"/ 2 CC:

Recall that we denote by �˛ac the absolutely continuous part of the spectral meas-
ure �˛ .

Lemma 2.10. Assume Hypothesis 1.2. For arbitrary ˛ 2 Œ0; �/, N.`/ is an essential
support for the absolutely continuous spectrum ofH˛ in the sense that�˛ac is mutually
absolutely continuous with �N.`/.E/ dE. In particular,

Specac.H
˛/ D N.`/

ess
:

Proof. Recall from [19, Corollary 9.4] that an essential support for �˛ac is the set

Mac ´ ¹E 2 R j 0 < lim sup
"#0

Imm˛.�C i"/ <1º:

Since m˛ has a normal boundary value in CC for Lebesgue-a.e. E (see e.g., [61,
Theorem 3.27, Corollary 3.29]), the set

¹E 2 R j lim
"#0

m˛.E C i"/ 2 CCº

is also an essential support for the a.c. spectrum. This set is independent of ˛ by (2.17).
By the observation proceeding the lemma, the set N.`/ is another essential support
for the a.c. spectrum of H˛ .
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Proof of Theorem 1.3. Since the spectral type of the a.c. part is independent of ˛
(Lemma 2.10), it suffices to prove the claim for ˛ D 0. Assuming this value, we
drop symbol ˛ from subsequent notation.

Due to preservation of the Wronskian, we have k E�˛;E .x/kkE�˛;E .x/k � 1; thus,

.l � 1/2 � kE�˛;Ek
2
L2..1;l//

kE�˛;Ek
2
L2..1;l//

; l > 1: (2.27)

Then, one has

k�˛;Ek
2
L2..0;lC1//

k�˛;Ek
2
L2..0;lC1//

�
(1.4)

C
k E�˛;Ek

2
L2..0;lC1//

kE�˛;Ek
2
L2..1;l//

�
(2.27)

C
k E�˛;Ek

4
L2..0;lC1//

.l � 1/2

� C
�R lC1

0
kT .EI x/k2dx

l � 1

�2
;

where in the last step, we used k E�˛;E .x/k � kT .E; x/k. If the solution �˛;E is sub-
ordinate, taking the limit l !1 shows

lim
l!1

1

l

lZ
0

kT .EI x/k2dx D1:

In other words, for the set †ac defined by (1.2), we conclude †ac � N.`/.
Therefore, to complete the proof, it is enough to show that

lim inf
l!1

1

l

lZ
0

kT .EI x/k2dx <1; for �ac-a.e. E:

To that end, let us fix 
 > 1 and introduce the measure

d�´
min¹�0; �

�
2 º

e2
 jE j
:

Since d� is equivalent to �ac, in order to prove that†ac is an essential support for �ac,
it is enough to showZ

R

�
lim inf
l!1

1

l

lZ
0

kT .EI x/k2dx

�
d�.E/ <1: (2.28)

To that end, we will prove the following auxiliary inequalities: there exists‡ > 0 such
that for all x 2 .2;1/,Z

R

R xC1
x�1
j�E .t/j

2dt

e
 jE j
d�0.E/ < ‡;

Z
R

R xC1
x�1
j�E .t/j

2dt

e
 jE j
d�

�
2 .E/ < ‡; (2.29)
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Z
R

R xC1
x�1
j�
Œ1�
E .t/j

2dt

e2
 jE j
d�0.E/ < ‡;

Z
R

R xC1
x�1
j�
Œ1�
E .t/j2dt

e2
 jE j
d�

�
2 .E/ < ‡: (2.30)

We will prove the first parts of (2.29), (2.30), the second parts can be proved analog-
ously. Since supp�0 is bounded from below, for some ƒ < min supp�0,Z

R

j�E .x/j
2

e
 jE j
d�0.E/ � c

Z
R

j�E .x/j
2

E �ƒ
d�0.E/:

Then, using spectral representation of Green’s function [19, Lemma 9.6] and the last
part of Theorem 2.2, we obtainZ

R

j�E .x/j
2

e
 jE j
d�0.E/ � C

Z
R

j�E .x/j
2

E �ƒ
d�0.E/

D G.ƒI x; x/ �
(2.3)

CGfree.�.�; �/ �ƒI x; x/ � ˛.1 � e�ˇ jxj/; (2.31)

where �.�; �/ is as in (2.3), G and Gfree denote respectively the Green’s functions for
H 0 and the free Dirichlet Laplacian on RC, i.e., for � D � D 0, and the constants
˛; ˇ depend only on ƒ; �; � . Integrating (2.31) yields the first inequality in (2.29).

Next, we switch to the first inequality in (2.30). By Lemma 2.7,

j�
Œ1�
E .t/j

2
� C.E/

tC1=2Z
t�1=2

j�E .y/j
2dy;

with C.E/ D O.e
 jE j/; E !1. Then, one hasZ
R

R xC1
x�1
j�
Œ1�
E .t/j

2dt

e2
 jE j
d�0.E/ �

Z
R

C.E/

R xC3=2
x�3=2

j�E .t/j
2dt

e2
 jE j
d�0.E/ < ‡;

where in the last step we used (2.31). Next, (2.29) and (2.30) together yield a constant
C > 0 such that for all x 2 .2;1/,Z

R

xC1Z
x�1

kT .EI t /k2dt d�.E/ < C: (2.32)

Splitting the interval .0; l/ into disjoint intervals of length 2, averaging over l , and
applying Fatou’s lemma givesZ

R

lim inf
l!1

1

l

lZ
0

kT .EI t /k2dt d�.E/ � C

which implies (2.28).
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Proof of Theorem 1.4. Using estimate (2.32) together with

kT .EI t; s/k � kT .EI s/kkT .EI t /k

and the Cauchy–Schwarz inequality in L2.R; d�/ gives

sup
x;y2.2;1/

Z
R

xC1Z
x�1

yC1Z
y�1

kT .EI t; s/k2dt ds d�.E/ <1;

which implies by Fatou’s lemma that for �-a.e. E,

lim inf
j!1

xjC1Z
xj�1

yjC1Z
yj�1

kT .EI t; s/k2dt ds <1:

By Lemma 2.7, for any E there exists C > 0 such that

C�1

xjC1Z
xj�1

yjC1Z
yj�1

kT .EI x; y/k2dxdy � kT .EI xj ; yj /k
2

� C

xjC1Z
xj�1

yjC1Z
yj�1

kT .EI x; y/k2dxdy;

so for �-a.e. E,
lim inf
j!1

kT .EI xj ; yj /k <1:

Theorem 1.4 will be our principal tool for showing the absence of absolutely con-
tinuous spectrum for a class of slowly decaying potentials, see Theorem 1.12 (b).

2.5. Carmona formula and pure a.c. spectrum on intervals

In this section, we discuss a Carmona-type, cf. [7], approximation result for the spec-
tral measure ofH˛ and use it to derive a criterion for pure a.c. spectrum on an interval.
This is our main tool for showing purely absolutely continuous spectrum for a class
of slowly decaying potentials, see Theorem 1.12 (a).

Theorem 2.11. Assume Hypothesis 1.2. For any ˛ 2 Œ0; �/, the measures

d�˛x.E/ D
1

�.�˛;E .x/2 C �
Œ1�
˛;E .x/

2/
dE; x > 0; (2.33)
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converge vaguely to the spectral measure �˛ of H˛ as x !1 in the sense that

lim
x!1

Z
R

h.E/ d�˛x.E/ D

Z
R

h.E/ d�˛.E/; for all h 2 C0.R/: (2.34)

Proof. Recall R˛ from (2.16). For z 2 CC and x > 0, let us define mx;˛.z/ 2 C via�
mx;˛.z/

1

�
' R˛T .zI x/

�1

�
i

1

�
: (2.35)

In other words, one has that mx;˛.z/ is the image of i under the Möbius transform
MŒR˛T .zIx;0/

�1�. By Proposition 2.6, i 2CC impliesmx;˛.z/ 2D˛
x .z/�CC, and

thus the function z 7! mx;˛.z/ is Herglotz; moreover, since the disks D˛
x .z/ shrink

to a single point, for every z 2 CC, one has mx;˛.z/! m˛.z/ as x !1. Our next
objective is to compute boundary value of Immx;˛.E C i"/ as " # 0. Put

P.z; x/´ cos.˛/.i�˛;z.x/ � � Œ1�˛;z.x//C sin.˛/.i�˛;z.x/ � �Œ1�˛;z.x//;

Q.z; x/´ sin.˛/.i�˛;z.x/ � � Œ1�˛;z.x//C cos.˛/.�i�˛;z.x/C �
Œ1�
˛;z.x//;

and rewrite (2.35) as

mx;˛.z/ D
P.z; x/

Q.z; x/
D
P.z; x/Q.z; x/

jQ.z; x/j2
:

Note that both the denominator and the numerator are entire functions of z. Moreover,
we claim that jQ.z; x/j2 does not vanish for all z 2 CC [R and x > 0. Sincemx;˛ 2
CC whenever z 2 CC, it suffices to check the claim for z 2 R. Suppose for some
x > 0,

0 D jQ.z; x/j2 D j.� sin.˛/� Œ1�˛;z.x/C cos.˛/�Œ1�˛;z.x//

C i.sin.˛/�˛;z.x/ � cos.˛/�˛;z.x//j2:

Since �˛;z; �˛;z; �
Œ1�
˛;z; �

Œ1�
˛;z 2 R for z 2 R, jQ.z; x/j2 D 0 implies ReQ.z; x/ D

ImQ.z; x/ D 0. Writing this in matrix form gives the system�
�
Œ1�
˛;z.x/ �

Œ1�
˛;z.x/

�˛;z.x/ �˛;z.x/

��
cos˛
� sin˛

�
D

�
0

0

�
;

which is a contradiction since the matrix is invertible. Thus, Q.z; x/ ¤ 0 for z 2 R

and mx;˛.z/ has a continuous extension to R. To summarize,

lim
"#0

Immx;˛.E C i"/ D
ImŒP.E; x/Q.E; x/�
jQ.E; x/j2

; (2.36)
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where

ImŒP.E; x/Q.E; x/� D cos2 ˛.�Œ1�˛;E .x/�˛;E .x/ � �
Œ1�
˛;E .x/�˛;E .x//

C sin2 ˛.��˛;E .x/�
Œ1�
˛;E .x/C �

Œ1�
˛;E .x/�˛;E .x//

D .sin2.˛/C cos2.˛//W.�˛;E ; �˛;E / D 1; (2.37)

and

jQ.E; x/j2 D
�
cos.˛/�Œ1�˛;z.x/ � sin.˛/� Œ1�˛;z.x/

�2
C
�
cos.˛/�˛;z.x/ � sin.˛/�˛;z.x/

�2
D





��Œ1�E .x/ �
Œ1�
E .x/

�E .x/ �E .x/

��
cos.˛/
� sin.˛/

�



2 D 



��Œ1�˛;E .x/�˛;E .x/

�



2: (2.38)

It follows from (2.36), (2.37), and (2.38) that the measure corresponding to the Her-
glotz function mx;˛.z/ is given by (2.33). Moreover, since mx;˛.z/ ! m˛.z/ as
x !1, by their Herglotz representations, the corresponding measures converge in
the sense as asserted.

Having established (2.34), the proof of Theorem 1.5 is identical to that of [42,
Theorem 3.7].

Proof of Theorem 1.5. Choose a sequence xn !1 such that

lim
n!1

E2Z
E1

kT .EI xn/k
pdE <1:

Since detT .EI x/ D 1 and kv˛k D 1,

kT .EI xn/v˛k � kT
�1.EI xn/k

�1
kv˛k D kT .EI xn/k

�1;

and thus for q D p=2,

sup
n

E2Z
E1

� 1

�kT .EI xn/v˛k2

�q
dE � sup

n

E2Z
E1

.��1kT .EI xn/k
2/q dE <1:

Hence, by [42, Lemma 3.8], the weak limit d�˛ of measures d�˛xn is purely abso-
lutely continuous on .E1; E2/.

In the study of decaying potentials, a variant of Carmona’s formula is useful.
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Theorem 2.12. Assume Assume Hypothesis 1.2 For any ˛ 2 Œ0; �/, the measures

d�˛x .E/ D
�.0;1/.E/

p
E

�.E�˛;E .x/2 C �
Œ1�
˛;E .x/

2/
dE; x > 0 (2.39)

converge vaguely on .0;1/ to �˛ as x !1 in the sense that

lim
x!1

1Z
0

h.E/ d�˛x .E/ D

1Z
0

h.E/ d�˛.E/; for all h 2 Cc..0;1//:

Proof. We use the branch of
p
�z on CC such that Re

p
�z > 0, Im

p
�z < 0. With

this choice of branch, �
p
�z is a Herglotz function which continuously extends to

CC with values �.0;1/.E/
p
E on R. For z 2 CC, x > 0, define mx;˛.z/ via�

mx;˛.z/

1

�
' R˛T .zI x/

�1

�
�
p
�z

1

�
:

Since�
p
�z is Herglotz,mx;˛.z/2Dx;˛.z/�CC and is Herglotz as well. Moreover,

since D˛
x .z/ shrinks to a point as x !1, mx;˛.z/! m˛.z/ as x !1. By argu-

ments analogous to the proof of Theorem 2.11, Immx;˛.z/ has a continuous extension
to .0;1/ with

lim
"#0

Immx;˛.E C i"/ D

p
E

E�˛;E .x/2 C �
Œ1�
˛;E .x/

2
:

It follows from above that the measure corresponding to mx;˛.z/ has the restriction
to .0;1/ given by (2.39), which concludes the proof.

2.6. Prüfer variables

We now introduce Prüfer variables associated with real eigensolutions of ` and relate
their growth to that of the transfer matrices. In the locally integrable setting, Prüfer
variables are a well-established tool for spectral analysis for decaying potentials; we
will use them in the proof of Theorem 1.12.

For k > 0, consider the eigenvalue equation `u D k2u; u 2 D. For a non-trivial
real-valued solution u, introduce � WR! R, RWR! .0;1/ via the relations

u.x/ D R.x/ sin.�.x//; uŒ1�.x/ D kR.x/ cos.�.x//: (2.40)

Since a composition of a Lipschitz function with an absolutely continuous function is
absolutely continuous, this can be done so that R; � 2 ACloc.Œ0;1//. The remaining
non-uniqueness in the choice of � is usually fixed by setting �.0/ 2 Œ0; 2�/.
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Proposition 2.13. Assume Hypothesis 1.2. For k > 0, in terms of Prüfer variables,
the eigenfunction equation `u D k2u is equivalent to the system

� 0 D k �
� � �2

k
sin2.�/C � sin.2�/; (2.41)

.logR/0 D
� � �2

2k
sin.2�/ � � cos.2�/: (2.42)

Moreover, for any ˛; ˇ 2 .0;1/, �1; �2 2 Œ0; 2�/, there is a constant

C D C.˛; ˇ; �1; �2/ > 1

such that for all k 2 .
p
˛;
p
ˇ/,

1

C
max.R.x; �1/; R.x; �2// � kT .k2I x/k � C max.R.x; �1/; R.x; �2//: (2.43)

Proof. First, we rewrite `u � k2u D 0 as�
uŒ1�

u

�0
D

�
�� .� � �2/ � k2

1 �

��
uŒ1�

u

�
; 0
´

d

dx
:

Then, substituting (2.40) into the above equation, we obtain�
kR0 cos.�/ �R� 0 sin.�/
R0 sin.�/CR� 0 cos.�/

�
D

�
��kR cos.�/CR.� � �2/ sin.�/ � k2R sin.�/

kR cos.�/C �R sin.�/

�
:

(2.44)
To derive (2.41), we take the scalar product of both sides of (2.44) and .� sin.�/;
k cos.�//; and to derive (2.42), we take the scalar product of sides of (2.44) and
.cos.�/; k sin.�//.

Let u1; u2 be solutions corresponding to the initial conditions �.0/ D �1;

�.0/ D �2 respectively. Then,

U.x/ D T .k2I x/U.0/; U.x/´

�
u
Œ1�
1 .x/ u

Œ1�
2 .x/

u1.x/ u2.x/

�
:

Using the representation (2.40), one obtains

C1 max.R.x; �1/; R.x; �2// � kU.x/k � C2 max.R.x; �1/; R.x; �2//; x � 0

(2.45)
for some constants C1; C2 > 0 depending only on ˛; ˇ. Finally, since T .k2I x/ 2
SL.2;R/, there exists constants C3; C4 > 0 depending only on �1; �2 such that

C3kU.x/k � kT .k
2
I x/k � C4kU.x/k; x � 0: (2.46)

Combining (2.45), (2.46) yields (2.43).
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Proof of Theorem 1.10. Consider Prüfer variables R.x;E/ associated to the solution
�˛;E forE 2 .0;1/. By (2.42), logR.x;E/ converges uniformly as x!1 on every
compact interval ŒE1;E2� � .0;1/. Recall d�˛x .E/ from Theorem 2.12, then for any
h 2 Cc..0;1//, by uniform convergence,

lim
x!1

Z
h.E/d�˛x .E/ D lim

x!1

Z
h.E/

p
E

�.E�˛;E .x/2 C �
Œ1�
˛;E .x/

2/
dE

D

Z
h.E/

p
E�.limx!1R.x;E//2

dE:

Thus,

�.0;1/.E/d�
˛.E/ D

�.0;1/.E/
p
E�.limx!1R.x;E//2

dE:

3. Distributional sparse potentials. Investigation of spectral types

In this section we prove Theorem 1.12.

3.1. Decomposition of sparse potentials

The first step in the proof of Theorem 1.12 is to reformulate it in terms of the Hryniv–
Mykytyuk decomposition in a way that is consistent with the sparse structure of
the potential. If we applied their decomposition directly to V , the dependence on
integers in [29] would complicate matters; instead, note that [29, Lemma 2.2] gives
a decomposition of Wn 2 H�1.R/ with suppWn � Œ��;�� as Wn D S 0n C Tn with
Sn 2 L

2.R/, Tn 2 L1.R/ supported in the same interval (the authors use � D 1 but
this is merely a matter of rescaling). Moreover, this decomposition is continuous in
H�1.R/-norm. Thus, we obtain

Wn D S
0
n C Tn; W D S 0 C T;

with

supp.Sn/ [ supp.S/ [ supp.Tn/ [ supp.T / � Œ��;��; S 0 C T 6D 0;

S; Sn 2 L
2.R/; T; Tn 2 L

1.R/; kSn � SkL2.R/ ! 0; kTn � T kL1.R/ ! 0: (3.1)

In addition, without loss of generality, we can assume that S ¤ 0 and T ¤ 0: this is
because if one of S;T is identically equal to zero, we can pick arbitrary h 2W 1;1.R/,
supp.h/ � Œ��;��, S C h 6� 0, T � h0 6� 0. Notice that Wn D .Sn C h/0 C Tn � h0,
W D .S C h/0 C T � h0.
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In summary, we will use the following setup throughout this section.

Hypothesis 3.1. Let ¹xnº1nD1 � RC be a monotonically increasing sequence such
that x1 > � and

lim
n!1

xn

xnC1
D 0: (3.2)

Let ˇ >1 be so that xn�Cˇn for a fixed constantC >0. Let T;S;Tn;Sn be as in (3.1)
and suppose, in addition, T 6� 0, S 6� 0. Furthermore, fix a sequence ¹dnº1nD1 � R

with
lim
n!1

dn D 0: (3.3)

Let sparse coefficients �; � be given by

�.x/ D

1X
nD1

dnTn.x � xn/;

�.x/ D

1X
nD1

dnSn.x � xn/:

Fix arbitrary ˛ 2 Œ0; �/, and let H˛ be the corresponding Schrödinger operator as
defined in Theorem 2.2.

The rest of this paper is dedicated to the proof of Theorem 1.12.

3.2. Auxiliary estimates for Prüfer variables

We begin with a series of auxiliary results. The first one concerns estimates for Prüfer
variables and their k-derivatives near xn for large n.

To streamline the exposition, in the remaining part of the paper, we will use C for
positive constants that vary from one inequality to the other but always remain n-inde-
pendent. Also, whenever an inequality involving n is mentioned without a specified
range of admissible values of n, it is assumed that the range is n � n0 for some n0.

Lemma 3.2. Assume Hypothesis 3.1 and fix any compact interval ŒE1;E2�� .0;1/.
Then, there exists a constant C > 0 such that for all k 2 Œ

p
E1;
p
E2� and sufficiently

large n, ˇ̌̌@�
@k
.xn C�/

ˇ̌̌
� Cxn; (3.4i)ˇ̌̌@2�

@k2
.xn C�/

ˇ̌̌
� C min

°
x2n; 1C

nX
mD1

dmx
2
m

±
; (3.4ii)
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and

j logR.xn C�/j � C
nX

mD1

dm; (3.4iii)

ˇ̌̌@ logR
@k

.xn C�/
ˇ̌̌
� C

nX
mD1

dmxm: (3.4iv)

Proof. Proof of (3.4i). Fix any compact interval Œa; b� � R, f; g 2 L1.Œa; b�/, and
suppose h 2 ACloc.Œa; b�/ satisfying h0.x/ D f .x/ C g.x/h.x/. Then, for any x 2
Œa; b�,

jh.x/j � jh.a/je
R b
a jgjdy C

bZ
a

jf je
R b
a jgjdt dy D .jh.a/j C kf k1;Œa;b�/e

kgk1;Œa;b� :

(3.5)

Let h.x/´ @�
@k
.x/. Differentiating (2.41) with respect to k, we have @h

@x
D f C gh

with

f .x; k/´ 1C
� � �2

k2
sin2.�/; g.x; k/´ � cos.2�/ �

� � �2

k
sin.2�/; (3.6)

which, for Œa; b�´ Œxn ��; xn C�� and sufficiently large n, satisfy

kf .�; k/kL1.a;b/ � 2�C Cdn; kg.�; k/kL1.a;b/ � Cdn: (3.7)

Our objective is to prove that there exists C > 0 such that for sufficiently large n,

jh.xn C y/j � Cxn; y 2 Œ��;��: (3.8)

Note that h0.x/ D 1 for x 2 .xn�1 C�; xn ��/; thus,

jh.xn ��/j � jh.xn�1 C�/j C xn � xn�1 � 2�: (3.9)

Then, using (3.5) with f;g as in (3.6), Œa;b�D Œxn ��;xnC y�, and employing (3.7),

jh.xn C y/j � .jh.xn ��/j C 2�C Cdn/e
Cdn

�
(3.9)
.jh.xn�1 C�/j C xn � xn�1 C Cdn/e

Cdn : (3.10)

for sufficiently large n. Since ˇ > 1, dn! 0, and xn!1, there exists n1 2 N such
that for all n � n1,

ˇ�1eCdn �
1C ˇ�1

2
and

�
1C

Cdn

xn

�
eCdn � 1C

�1 � ˇ�1
2

�
: (3.11)
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For such n1, let D � 2 be such that

jh.xn1�1 C�/j � Dxn1�1:

We claim that for all n � n1,

jh.xn C y/j � Dxn; y 2 Œ��;��: (3.12)

Indeed, using (3.2) together with (3.10) and (3.11), for n � n1; y 2 Œ��;��, we have

jh.xn C y/j � .jh.xn�1 C�/j C .xn � xn�1/C Cdn/e
Cdn

� ..D � 1/xn�1 C xn C Cdn/e
dn

� xn

�
.D � 1/ˇ�1 C 1C

Cdn

xn

�
eCdn

� xn

�
D � .D � 2/

1 � ˇ�1

2

�
� Dxn;

which yields (3.4i).
Proof of (3.4ii). Let w ´ @h

@k
D

@2�
@k2

and differentiate (2.42) twice with respect
to k, then

@w

@x
D F.x/CG.x/w.x/; (3.13)

where
F.x/´ F1.x/C F2.x/h.x/C F3.x/Œh.x/�

2

and

F1.x/´ �2 �
� � �2

k3
sin2.�.x//;

F2.x/´ 2 �
� � �2

k2
sin.2�.x//;

F3.x/´ �2 �
� � �2

k
cos.2�.x// � 2� sin.2�.x//

G.x/´ �
� � �2

k
sin.2�.x//C � cos.2�.x//:

Note that for Œa; b�´ Œxn ��; xn C�� and sufficiently large n,

kF kL1.a;b/ � Cdnx
2
n; kGkL1.a;b/ � Cdn; (3.14)

where we used (3.12) in the first inequality. Then, using (3.5) with Œa; b� D Œxn ��;
xn C y�, f D F , g D G, w.xn ��/ D w.xn�1 C�/, and (3.14),

jw.xn C y/j � .jw.xn�1 C�/j C Cdnx
2
n/e

Cdn : (3.15)
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Since ˇ > 1 and dn ! 0, for any C > 0, there is large enough n2 such that for all
n � n2,

ˇ�2eCdn �
1C ˇ�1

2
; Cdne

Cdn �
1 � ˇ�1

2
: (3.16)

For such n2, let zD � 2 be such that

jw.xn2�1 C�/j �
zDx2n2�1:

We claim that for all n � n2,

jw.xn C y/j � zDx
2
n; y 2 Œ��;��: (3.17)

Proceed with induction in n: suppose (3.17) holds for n � 1; then, employing (3.15),
for all y 2 Œ��;��,

jw.xn C y/j � .jw.xn�1 C�/j C Cdnx
2
n/e

Cdn

� . zDx2n�1 C Cdnx
2
n/e

Cdn � x2n.
zDˇ�2 C Cdn/e

Cdn

�
(3.16)

x2n

�
zD
1C ˇ�1

2
C
1 � ˇ�1

2

�
� x2n

�
zD C .1 � zD/

1 � ˇ�1

2

�
� zDx2n:

(3.18)

To complete the proof of (3.4ii), integrate (3.13) over Œxn ��;xnC�� and use (3.17);
then,

jw.xn C�/ � w.xn ��/j � Cdnx
2
n; n � n2:

Hence,

jw.xn C�/j � jw.xn2�1 C�/j C

nX
mDn2

jw.xm C�/ � w.xm ��/j

� Dx2n2�1 C C

nX
mDn2

dmx
2
m � C

�
1C

nX
mD1

dmx
2
m

�
:

Combining this with (3.18) concludes the proof for (3.4ii).
Proof of (3.4iii) and (3.4iv). Note that

R.xn�1 C�/ D R.xn ��/

as @ logR
@x
� 0 on Œxn�1 C�; xn ���. Integrating (2.42) over Œxn ��; xn C�� and

noting that dn ! 0,

j logR.xn C�/ � logR.xn ��/j � Cdn;
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which implies (3.4iii). To prove (3.4iv), differentiate (2.42) with respect to k to get

@

@x

@ logR
@k

D �
� � �2

2k2
sin.2�/C

� � �2

2k
cos.2�/

@�

@k
C � sin.2�/

@�

@k
I

then, integrate both sides over Œxn ��; xn C�� while noting (3.8) and dn ! 0,ˇ̌̌ @
@k

logR.xn C�/ �
@

@k
logR.xn ��/

ˇ̌̌
� Cdnxn:

The latter, in turn, yields (3.4iv).

Remark 3.3. Lemma 3.2 and its proof are similar to [37, Propositions 5.1 and 5.2],
where the case of Sn D 0 and Tn D T 2L1.R/was considered. We extend that proof
to the case Sn 6D 0, and Tn 2 L1.R/ by using (3.5), which is an L1 version of the key
inequality [37, eq. (5.7)], and verifying new inequalities (3.7) and (3.14).

To streamline the exposition, we introduce the following notation:

qn.y; k/´
dnT .y/ � d

2
nS

2.y/

2k
; �n.y/´ dnS.y/: (3.19)

Note that, due to (3.1), for a fixed interval Œ˛; ˇ� � .0;1/, we have

�Z
��

jqn.y; k/j C j�n.y/jdy D
n!1

O.dn/; (3.20)

uniformly for k 2 Œ˛; ˇ�.
In the following lemma, we provide the second order expansion of variable � with

respect to dn as n! 1. This result will be used in Lemma 3.10 and the proof of
Theorem 1.12 (a).

Lemma 3.4. Assume Hypothesis 3.1 and fix any compact interval ŒE1;E2�� .0;1/.
Then, the asymptotic expansion

�.xn C y/ D
n!1

� .0/n .y/C dn�
.1/
n .y/CO.d2n / (3.21)

holds uniformly for y 2 Œ��;��, k 2 Œ
p
E1;
p
E2�, where, recalling (3.19),

� .0/n .y/´ �.xn�1 C�/C k.xn C y � xn�1 ��/; (3.22)

� .1/n .y/´
1

dn

yZ
��

�n.s/ sin.2� .0/n .s// � 2qn.s/ sin2.� .0/n .s// ds: (3.23)
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Proof. By (2.41),

j�.xn C y/ � �
.0/
n .y/j

�

xnCyZ
xn��

j� 0.s/ � kj ds

D

yZ
��

j�n.s/ sin.2�n.xn C s// � 2qn.s/ sin2.�.xn C s//jds D
n!1

O.dn/;

(3.24)

where in the last step we used (3.20). The argument for the second-order asymptotic
formula is similar. Note that

j�.xn C y/ � �
.0/
n .y/ � dn�

.1/
n .y/j

D

ˇ̌̌̌ xnCyZ
xn��

.� 0.s/ � k/ ds � dn�
.1/
n .y/

ˇ̌̌̌

�

ˇ̌̌̌ yZ
��

�n.s/Œsin.2� .0/n .s// � sin.2� .0/n .xn C s//�

� 2qn.s/Œsin2.� .0/n .s// � sin2.�.xn C s//�ds
ˇ̌̌̌
;

D
n!1

O.d2n /;

where we used (3.20) and (3.24) in the last step.

Remark 3.5. A version of Lemma 3.4 with Sn D 0 and Tn D T 2 L1.��;�/ is
discussed in [37, Sections 5,6]. In our case, notice that when Sn 6D 0, the integral on
the right-hand side of (3.23) contains an additional term �n.s/ sin.2� .0/n .s//. This will
become relevant in the proof of Theorem 1.12 (b).

Corollary 3.6. Assume the setting of Lemma 3.4. Then,

@�
.0/
n .y/

@k
>
xn

2
; (3.25)

holds for sufficiently large n and all k 2 Œ
p
E1;
p
E2�, y 2 Œ��;��.
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Proof. Differentiating (3.22) with respect to k and using (3.4i) and (3.4ii), we get

@�
.0/
n .y/

@k
´

@�.xn�1 C�/

@k
C xn C y � xn�1 ��

� xn C y � .C C 1/xn�1 C y >
xn

2
;

where we used (3.2) in the last step.

To conclude this section, we show that (3.3) rules out point spectrum for H˛ .

Proposition 3.7. Assume Hypothesis 3.1. Then, Specpp.H
˛/ \ .0;1/ D ; for all

˛ 2 Œ0; �/.

Proof. Consider the Prüfer variables corresponding to a non-trivial real eigensolution
u at E > 0, normalized so that R.0/ D 1. By (3.4iii),

R.xn C�/
2
� exp

�
�2C

nX
mD1

dm

�
:

This means at most exponential decay of the sequenceR.xnC�/2, since the sequence
dn is bounded. Due to the superexponential growth (3.2), this implies

.xnC1 � xn � 2�/R.xn C�/
2
!1; n!1:

Since R.x/ is constant on Œxn C�; xnC1 ���, this implies

1Z
0

R.x/2dx D1

and, by Theorem 1.6, this implies u … L2.RC/.

3.3. Purely absolutely continuous spectrum

In this section, we provide the proof of Theorem 1.12 (a).

Proof of Theorem 1.12 (a). By Lemma 1.7, one has that Specess.H
˛/D Œ0;1/. Then,

by Theorem 2.11, it suffices to show that for every finite interval ŒE1; E2� � .0;1/,

lim inf
n!1

E2Z
E1

kT .EI xn C�/k
4 dE <1: (3.26)
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In fact, we will show that for any � 2 Œ0; 2�/ and any non-negative g 2 C10 .0;1/
(after possibly passing to a subsequence),

sup
n
Bn <1; Bn´

1Z
0

g.k/jR.xn C�; �/j
4dk <1: (3.27)

The latter together with Proposition 2.13 yields (3.26). Explicitly, we will derive a
recursive inequality

Bn � .1C �n/Bn�1; (3.28)

for a sequence ¹�nº 2 `1.N/, �n > 0, which is sufficient for (3.27). To that end,
we integrate (2.42) over the interval Œxn � �; xn C �� and use R.kI xn � �/ D
R.kI xn�1 C�/ to obtain

R.kI xn C�/
4
D R.kI xn�1 ��/

4 exp.Qn/; (3.29)

where

Qn D
2

k

�Z
��

.dnTn.y/ � b
2
nS

2.y// sin.2�.xn C y// dy

� 4

�Z
��

dnSn.y/ cos.2�.xn C y// dy:

Then,

jQn � zQnj � Cd
2
n (3.30)

where

zQn´
2

k

�Z
��

.dnTn.y/ � d
2
nS

2
n .y// sin.2� .0/n .y// dy

� 4

�Z
��

dnSn.y/ cos.2� .0/n .y// dy: (3.31)

and � .0/n is as in (3.22). Indeed, (3.30) follows readily from

j sin.2�n.y// � sin.2� .0/n .y//j � C j�n.y/ � �
.0/
n .y/j � Cd2n ; y 2 Œ��;��:

Returning back to (3.29), notice that (3.30) together with jQnj � Cdn yields

R.kI xn C�/
4
� R.kI xn�1 ��/

4.1C jQnj C CQ
2
n/

� R.kI xn�1 ��/
4.1C j zQnj C Cd

2
n /:
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To obtain (3.28), multiply the above inequalities by g.k/ and integrate over .0;1/;
then,

Bn � Bn�1.1C Cd
2
n /CEn; En´

Z
g.k/R.kI xn�1 C�/

4 zQn dk: (3.32)

Recalling (3.31) and exchanging the order of integration, we obtain

En D

�Z
��

2dnTn.y/

Z
g.k/

k
R.kI xn�1 C�/

4 sin.2� .0/n .y// dk dy

�

�Z
��

2d2nS
2
n .y/

Z
g.k/

k
R.kI xn�1 C�/

4 sin.2� .0/n .y// dk dy

�

�Z
��

4dnSn.y/

Z
g.k/R.kI xn�1 C�/

4 cos.2� .0/n .y// dk dy; (3.33)

where note that all terms above are of the form

En´

�Z
��


nwn.y/

Z
‰.k/R.kI xn�1 C�/

4u.2� .0/n .y// dk dy; (3.34)

with


n 2 ¹dn; d
2
n º; ‰ 2 C

1
0 .RC/; u 2 ¹sin.x/; cos.x/º;

wn 2 ¹Tn; Sn; S
2
nº � L

1.R/; sup
n�1

kwnkL1.R/ <1: (3.35)

Claim. For Bn and En defined in (3.27) and (3.34) respectively, and ˇ > 1 as in
Hypothesis 3.1, there is a sequence ¹snºn�1 2 `1.N/ such that

En � C.ˇ
�n=2
C Bn�1sn/: (3.36)

Proof of the claim. Let v be either sin or cos so that one has u D v0, and rewrite En

as

En D

�Z
��


nwn.y/

Z
‰.k/R.kI xn�1 C�/

4 1

2@�
.0/
n

@k
.y/

@v

@k
.2� .0/n .y// dk dy:

Next, we integrate by parts with respect to k to obtain three integrals, each corres-
ponding to applying @k to one of the three functions in

‰.k/ � R.kI xn�1 C�/
4
�

1

2@�
.0/
n

@k
.y/

: (3.37)
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Case 1. @k lands on the first term in (3.37). Then,ˇ̌̌̌ �Z
��


nwn.y/

Z
@‰.k/

@k
R.kI xn�1 C�/

4 v.2�
.0/
n .y//

2@�
.0/
n

@k
.y/

dk dy

ˇ̌̌̌

�
Cdn

xn
exp

� n�1X
mD1

dmBigr/ � Cˇ
�ndn exp

�n logˇ
2

�
� Cˇ�n=2;

where ˇ > 1 is such that xn � Cˇn (Hypothesis 3.1) and in the first inequality, we
used

log.R.kI xn�1 C�// � C
n�1X
mD1

dm (by (3.4iii)),

1

2@�
.0/
n

@k
.y/
�
C

xn
(by (3.25)),

jv.2� .0/n .y//j � 1;

and
�Z
��

Z
wn.y/‰.k/dy dk � C (by (3.35))I (3.38)

in the second inequality, we used dn D o.1/.

Case 2. @k lands on the middle term in (3.37). We employ @kR4 D R4@k logR4

and (3.4iv) to estimate the R-term, and (3.25) to estimate the � .0/n -term asˇ̌̌̌ �Z
��


nwn.y/

Z
‰.k/R.kI xn�1 C�/

4@k log.R.kI xn�1 C�/4/
v.2�

.0/
n .y//

2@�
.0/
n

@k
.y/

dk dy

ˇ̌̌̌

� Cdn

�n�1X
mD1

dmxm

� 1
xn
Bn�1 � C�nBn�1;

where in the first inequality, we used (3.38) and

R.kI xn�1 C�/
4
� C

n�1X
mD1

dmxm; (by (3.4iv)); (3.39)

in the second inequality, we used dm D o.1/, (3.2), and

�n´
dn

xn

n�1X
mD1

dmxm; with
1X
nD1

�n <1; (3.40)

with (3.40) proved in Remark 3.8.
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Case 3. @k lands on the last term in (3.37). In this case, we haveˇ̌̌̌ �Z
��


nwn.y/

Z
‰.k/R.kI xn�1 C�/

4 1�
@�
.0/
n

@k
.y/
�2 @2� .0/n .y/

@2k
v.2� .0/n .y//dk dy

ˇ̌̌̌

� Cdn

�
1C

n�1X
mD1

dmx
2
m

� 1
x2n
Bn�1 � C�nBn�1;

where in the first inequality, we used (3.4ii) and (3.38); in the second inequality, we
set

�n´
dn

x2n

�
1C

n�1X
mD1

dmx
2
m

�
; with

1X
nD1

�n <1; (3.41)

with (3.41) proved in Remark 3.8.
Combining Cases 1–3, we obtain (3.36).

Since all three terms on the right-hand side of (3.33) are of the type En,

En � C.ˇ
�n=2
C Bn�1sn/; with ¹sn D �n C �nºn2N 2 `

1.N/

Combining this with (3.32), for sufficiently large n,

Bn � Bn�1.1C Cd
2
n C Csn/C Cˇ

�n=2:

Therefore, max.1; Bn/ � .1 C Cd2n C sn C ˇ
�n=2//max.1; Bn�1/ and thus (3.27)

holds.

Remark 3.8. In the setting of Theorem 1.12 (a), the numerical series introduced in
(3.40) and (3.41) are convergent due to [37, Lemma 5.3]; we expand the concise proof
provided therein. For a numerical sequence d D ¹dnºn2N , consider the convolution
operator

.T
d/n´

1X
mD1


�jm�njdm; for 
 > 1:

By Young’s inequality, T
 is a bounded linear operator on `2.N/. Let 
 > 1 be such
that xm

xn
� C
�jm�nj, m � n. Then, (3.40) follows from

1X
nD1

dn

n�1X
mD1

dm
xm

xn
�

1X
nD1

dn

1X
mD1

dm

�jm�nj

D hd; T
d i`2

� kT
kB.`2.N//kdk
2
`2.N/ <1; (3.42)
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and (3.41) follows from

1X
nD1

dn

�
1C

n�1X
mD1

dm

�xm
xn

�2�
�

1X
nD1

�
Cˇ�2n C dn

n�1X
mD1

dm

�2jm�nj

�
� C C kT
2kB.`2.N//kdk`2.N/ <1;

where ˇ is as in Hypothesis 3.1 in the second inequality.

3.4. Purely singular continuous spectrum

In this section, we provide the proof of Theorem 1.12 (b). Since Proposition 3.7 rules
out the presence of positive eigenvalues, to demonstrate the absence of absolutely
continuous spectrum, the strategy is to verify the conditions of Theorem 1.4 via (2.43)
and

lim
j!1

R.xnj C�; k/ D1:

We begin with a set of auxiliary results concerning the Fourier transform of the
potential. We will use the notation

Of .k/´

1Z
�1

e2ikyf .y/dy; Ar. Of .z//´

´
arg. Of .z//; Of .z/ 6D 0;

0; Of .z/ D 0;
(3.43)

Lemma 3.9. Assume Hypothesis 3.1.

(i) For j D 0; 1; 2 one has

d j

dzj
Ar. yTn.z//!

d j

dzj
Ar. yT .z//; n!1;

uniformly for z in compact intervals 	 � .0;1/ that contain no roots of yT .
In particular, for such 	 one has

lim sup
n!1

sup
z2	

ˇ̌̌ d j
dzj

Ar. yTn.z//
ˇ̌̌
<1; j D 0; 1; 2:

Identical assertions hold with T replaced by S .

(ii) Letˆ.z/´ .2z/�1 yT .z/� i yS.z/ and suppose that a compact interval J �
.0;1/ contains no roots of ˆ. Then one has

lim inf
n!1

inf
z2J

ˇ̌̌ yTn.z/
2z
� i ySn.z/

ˇ̌̌2
> 0: (3.44)

Proof. (i) Denote for simplicity fn.z/´ yTn.z/, f .z/´ yT .z/. Clearly, f is entire
function which is not identically zero and fn converges to f uniformly on compacts.
We claim that there exists n0 2 N such that
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(1) for all n � n0 and z 2 	, fn.z/ ¤ 0;

(2) for j D 0; 1; 2, argf .j /n ! argf .j / uniformly on 	 and, in particular,

sup
n�n0

sup
z2J

jargf .j /n .z/j <1:

To prove these two basics facts from complex analysis, first, recall that if fn ! f

uniformly on some compactK, then for any compactK 0 � intK, f 0n! f 0 uniformly
on K 0; this holds by Cauchy’s differentiation formula

f 0n.z/ D
1

2�i

I
jw�zjD"

fn.w/

.w � z/2
dw

applied with " D dist.K 0; C n K/. Next, denote D D ¹z 2 C j f .z/ D 0º, d D
dist.D;	/ > 0, and 	"´ ¹z 2 C j dist.z;	/ � "º.

On the set 	d=2, fn converge uniformly to f , so there exists n0 such that for all
n� n0 and z 2	d=2, fn.z/¤ 0. By the above argument, f 0n! f 0 uniformly on 	d=3.
Thus, .logfn/0 D f 0n=fn ! f 0=f D .logf /0 uniformly on 	d=3. Thus, .logfn/00 !
.log f /00 uniformly on 	d=4. Taking imaginary parts, we conclude arg f 0n ! arg f 0

and arg f 00n ! arg f 00 uniformly on 	. Choosing branches so that log fn.min 	/!

logf .min 	/ and taking limits of

logfn.x/ D logfn.min 	/C

xZ
min 	

f 0n.y/

fn.y/
dy

and taking imaginary parts shows uniform convergence of argfn to argf on 	.
(ii) The proof follows directly from complex analytic facts (1), (2) stated above

with f .z/´ yT .z/ � 2zi yS.z/, fn.z/´ yTn.z/ � 2zi ySn.z/.

Assuming Hypothesis 3.1, we say that a compact interval J � RC ´ .0;1/ is
.S; T /-admissible if J avoids zeros of yS.z/, yT .z/, and .2z/�1 yT .z/ � i yS.z/, that is,

J \ ¹z 2 .0;1/ W yT .z/ D 0 or yS.z/ D 0 or .2z/�1 yT .z/ � i yS.z/ D 0º D ;:

In the following lemma, we derive a third order expansion for the increment of
logR.xn C�; k/ with respect to dn. For ¹znºn�0 � C we denote ızn´ zn � zn�1.

Lemma 3.10. Assume Hypothesis 3.1, fix a finite interval ŒE1; E2� � .0;1/ such
that Œ

p
E1;
p
E2� is .S; T /-admissible, and define Yn.k/´ logR.xn C�; k/. Then

the following asymptotic expansion holds uniformly for k 2 Œ
p
E1;
p
E2�

ıYn.k/ D
n!1

Xn.k/C zXn.k/C VXn.k/CO.d3n /;
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where the oscillatory terms Xn; zXn and are given by

Xn.k/´ dn

�Z
��

hTn.y/
2k

i
sin.2� .0/n .y// �

�
dnTn.y/

4k2

yZ
��

Tn.s/ds

�
cos.2� .0/n .y// dy

(3.45)

� dn

�Z
��

�
dnSn.y/

2k

yZ
��

Tn.s/ ds

�
sin.2� .0/n .y//C Sn.y/ cos.2� .0/n .y// dy

(3.46)

� d2n

�Z
��

hS2n .y/
2k

i
sin.2� .0/n .y//dy; (3.47)

and

zXn.k/´
d2n j
yTn.k/j

2

8k2
cos .4� .0/n .0/C 4�n.k//

�
d2n j
ySn.k/j

2

2
cos .4� .0/n .0/C 4 n.k//

C
d2n
2k
j ySn.k/ yTn.k/j sin.4� .0/n .0/C 2 n.k/C 2�n.k//; (3.48)

where

�n.k/´
Ar. yTn.k//

2
;

 n.k/´
Ar. ySn.k//

2
;

cf. (3.43), and the non-oscillatory term VXn is given by

VXn.k/´
dn

2

ˇ̌̌ yTn.k/
2k
� i ySn.k/

ˇ̌̌2
; n � 1: (3.49)

Proof. Integrating both sides of (2.42) over the interval Œxn ��; xn C��, we get

ıYn.k/ D

�Z
��

qn.s/ sin.2�.xn C s// � �n.s/ cos.2�.xn C s// ds: (3.50)

Combining (3.21) and Taylor expansions for sin, cos near 2� .0/n .s/,

sin.2�.xn C s// D
n!1

sin.2� .0/n .s//C 2dn�
.1/
n .s/ cos.2� .0/n .y//CO.d2n /; (3.51a)

cos.2�.xn C s// D
n!1

cos.2� .0/n .s// � 2dn�
.1/
n .s/ sin.2� .0/n .s//CO.d2n /; (3.51b)
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uniformly for s 2 Œ��; ��. Replacing the trigonometric terms in (3.50) by their
second-order approximations (3.51), one infers

ıYn.k/ D
n!1

�Z
��

qn.y/ sin.2� .0/n .y// � �n.y/ cos.2� .0/n .y// dy

C 2

�Z
��

dn�
.1/
n .y/qn.y/ cos.2� .0/n .y//

C dn�
.1/
n .y/�n.y/ sin.2� .0/n .y//dy CO.d3n /; (3.52)

where the last cubic term was obtained by combining the linear (3.20) and the quad-
ratic (3.51) asymptotic formulas. In order to facilitate integration by parts in the
subsequent argument, let us rewrite the terms in (3.52) containing � .1/n . First, use
the double angle formula to replace sin2 term in (3.23),

� .1/n .y/ D
1

dn

yZ
��

Œ�n.s/ sin.2� .0/n .s//C qn.s/ cos.2� .0/n .s//� � qn.s/ ds: (3.53)

Then, substitute this identity into the first term under the integral in (3.52) to get

�Z
��

dn�
.1/
n .y/qn.y/ cos.2� .0/n .y//dy

D �

�Z
��

� yZ
��

qn.s/ds

�
qn.y/ cos.2� .0/n .y//dy

C

�Z
��

� yZ
��

�n.s/ sin.2� .0/n .s//C qn.s/ cos.2� .0/n .s// ds

�
qn.y/ cos.2� .0/n .y//dy

(3.54)

and similarly, substitute (3.53) into the second term under the same integral to get

�Z
��

dn�
.1/
n .y/ sin.2� .0/n .y//�n.y/dy

D �

�Z
��

� yZ
��

qn.s/ ds

�
�n.y/ sin.2� .0/n .y//dy

C

�Z
��

� yZ
��

�n.s/ sin.2� .0/n .s//C qn.s/ cos.2� .0/n .s//ds

�
�n.y/ sin.2� .0/n .y//dy:

(3.55)
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Returning to ıYn.k/, we plug (3.54), (3.55) in (3.52), use (3.57) with

f D �n.y/ sin.2� .0/n .y//

and

g D qn.s/ cos.2� .0/n .s//I

then, we obtain

ıYn.k/ D
n!1

�Z
��

�
qn.y/ �

yZ
��

qn.s/ ds �n.y/

�
sin.2� .0/n .y//dy

�

�Z
��

� yZ
��

qn.s/ds qn.y/C �n.y/

�
cos.2� .0/n .y// dy

�

� �Z
��

�n.y/ sin.2� .0/n .y//dy C

�Z
��

qn.y/ cos.2� .0/n .y//dy

�2
CO.d3n /: (3.56)

Next, denote the quadratic term above byL and note that � .0/n .y/D �
.0/
n .0/C ky;

then,

L D
�
dnIme2i�

.0/
n .0/ ySn.k/C

dn

2k
Re e2i�

.0/
n .0/ yTn.k/

�2
D

�
dnIme2i�

.0/
n .0/C2i n.k/j ySn.k/j C

dn

2k
Re e2i�

.0/
n .0/C2i�n.k/j yTn.k/j

�2
D
�
dn sin .2� .0/n .0/C 2 n.k//j ySn.k/j

�2
C

�dn
2k

cos.2� .0/n .0/C 2�n.k//j yTn.k/j
�2

C
d2n
k
j ySn.k/ yTn.k/j sin

�
2� .0/n .0/C 2�n.k/

�
cos
�
2� .0/n .0/C 2�n.k/

�
D
d2n j
ySn.k/j

2

2
�
d2n j
ySn.k/j

2 cos
�
4�
.0/
n .0/C 4 n.k/

�
2

C
d2n j
yTn.k/j

2

8k2
C
d2n j
yTn.k/j

2 cos
�
4�
.0/
n .0/C 4�n.k/

�
8k2

C
d2n
k
j ySn.k/ yTn.k/j sin

�
2� .0/n .0/C 2 n.k/

�
cos
�
2� .0/n .0/C 2�n.k/

�
:

To conclude the derivation, we plug the above expression for L in (3.56), expand
qn; �n in terms of dn; Sn; Tn and combine the third order terms (with respect to dn as
n!1) with O.d3n /.



Schrödinger operators with locally H�1 potentials 109

Remark 3.11. Suppose that f; g 2 L1.��;�/, then

1

2

� �Z
��

f .y/dy C

�Z
��

g.y/dy

�2

D

�Z
��

f .y/

yZ
��

g.s/ds dy C

�Z
��

g.y/

yZ
��

f .s/ds dy

C

�Z
��

f .y/

yZ
��

f .s/ds dy C

�Z
��

g.y/

yZ
��

g.s/ds dy: (3.57)

This identity follows from

�Z
��

f .s/ds

�Z
��

g.y/dy D

�Z
��

f .y/

yZ
��

g.s/ds dy C

�Z
��

g.y/

yZ
��

f .s/ds dy; (3.58)

which is derived by changing the order of integration in the first integral on the right-
hand side of (3.58).

Lemma 3.12. Recall Yn; VXn from Lemma 3.10 and define

Qn.k/´ Yn.k/ �

nX
mD1

VXm.k/: (3.59)

Then for arbitrary non-negative g 2C10 .0;1/with supp.g/�J for a .S;T /-admiss-
ible interval J we have

lim
n!1

R1
0
g.k/jQn.k/jdkPn

mD1 d
2
m

D 0:

Proof. Setting Q0 D X0 D zX0 D VX0 D 0, we note that

Qn.k/ D

nX
mD1

ıQn.k/ D

nX
mD1

�
Xm.k/C zXm.k/CO.d3n /

�
: (3.60)

Define

Bn´

1Z
0

g.k/
ˇ̌̌ nX
mD1

Xm.k/
ˇ̌̌2
dk; zBn´

1Z
0

g.k/
ˇ̌̌ nX
mD1

zXm.k/
ˇ̌̌2
dkI
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then, by Cauchy–Schwarz inequality in L2.RC; dk/,

1Z
0

g.k/jQn.k/jdk � k
p
gkL2.RC/.

p
Bn C

q
zBn/CO.d3n /: (3.61)

Following the proof of [37, Theorem 1.6], we notice that by Stolz lemma (the discrete
version of L’Hospital’s rule),

Pn
mD1 d

3
m=
Pn
mD1 d

2
m ! 0 as n!1; hence, in order

to show (3.60), it suffices to provep
Bn

. nX
mD1

d2m ! 0;

q
zBn

. nX
mD1

d2m ! 0; n!1: (3.62)

To derive the first limit, recall Xn from Lemma 3.10 and denote the integral terms
in (3.45), (3.46), (3.47) byUn;Vn;Zn respectively; thus,XnD dnUn � dnVn � d2nZn.
Put Mn�1.k/´

Pn�1
mD1Xm.k/; then,

Bn � Bn�1 C

Z
g.k/jXn.k/j

2dk (3.63)

C 2

ˇ̌̌̌Z
g.k/Mn�1.k/dnUn.k/ dk

ˇ̌̌̌
C2

ˇ̌̌̌Z
g.k/Mn�1.k/dnVn.k/ dk

ˇ̌̌̌
(3.64)

C 2

ˇ̌̌̌Z
g.k/Mn�1.k/d

2
nZn.k/ dk

ˇ̌̌̌
(3.65)

Note that Un; Vn; Zn contain sin.2� .0/n .y//, cos.2� .0/n .y// terms which we split in
(3.64), (3.65) using the triangle inequality. The resulting terms are of the form

Z �Z
��


nwn.y/‰.k/Mn�1.k/u.2�
.0/
n .y//dy dk;

with 
n;wn;‰;u as in (3.35). As in the proof of Theorem 1.12 (a), rewrite this quantity
as

�Z
��


nwn.y/

Z
‰.k/Mn�1.k/

1

2@�
.0/
n

@k
.y/

@v

@k
.2� .0/n .y// dk dy

where v is either sin or cos so that u D v0. Next, integrate by parts with respect to
k and obtain three integrals, each corresponding to applying @k to one of the three
functions in

‰.k/ � Mn�1.k/ �
1

2@�
.0/
n

@k
.y/

: (3.66)
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Case 1. @k lands on the first term in (3.66). In this case,ˇ̌̌̌ �Z
��


nwn.y/

Z
@‰.k/

@k
Mn�1.k/

1

2@�
.0/
n

@k
.y/

v.2� .0/n .y// dk dy

ˇ̌̌̌
�
Cdn.n � 1/

xn
;

(3.67)
where we used (3.38) and Mn�1.k/ � C.n � 1/.

Case 2. @k lands on the second term in (3.66). Then,ˇ̌̌̌ �Z
��


nwn.y/

Z
‰.k/

@Mn�1.k/

@k

1

2@�
.0/
n

@k
.y/

v.2� .0/n .y// dk dy

ˇ̌̌̌
�
Cdn

xn

n�1X
mD1

xm!m

(3.68)

where and we used (3.38) and

@Mn�1.k/

@k
�

n�1X
mD1

xmdm:

Case 3. @k lands on the third term in (3.66). We first replace ‰ by ‰
g
g and then

estimateˇ̌̌̌ �Z
��


nwn.y/

Z
g.k/Mn�1.k/

‰.k/

g.k/

1�
@�
.0/
n

@k
.y/
�2 @2� .0/n .y/

@2k
v.2� .0/n .y//dk dy

ˇ̌̌̌

�
Cdn

x2n

�
1C

n�1X
mD1

dmx
2
m

�ˇ̌̌̌Z
g.k/Mn�1.k/dk

ˇ̌̌̌
�
Cdn

x2n

�
1C

n�1X
mD1

dmx
2
m

��Z
g.k/jMn�1.k/j

2dk

�1=2
µ ˛n

p
Bn�1; (3.69)

where in the second to last inequality, we used (3.38) and

@2�
.0/
n .y/

@2k
� C

�
1C

n�1X
mD1

xm!m

�
(by (3.4i) and (3.4ii));

in the last inequality, we used the Cauchy–Schwarz inequality in L2.RC; dk/ and
denoted

˛n´
Cdn

x2n

�
1C

n�1X
mD1

dmx
2
m

�
: (3.70)
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We are now ready to derive the first limit in (3.62): combine (3.64), (3.65), (3.67),
(3.68), (3.69), and estimate the last term in (3.63) from above by Cd2n , we have

Bn � Bn�1 C 2˛n
p
Bn�1 C ˇn; (3.71)

where ˛n is as in (3.70) and

ˇn´ C
�dn.n � 1/

xn
C
dn

xn

n�1X
mD1

xmdm C d
2
n

�
:

Then, (3.71) together with [37, Lemma 6.2] yieldsp
Bn �

p
B0 C

nX
mD1

˛m C
� nX
mD1

ˇm

�1=2
: (3.72)

Consequently, the first limit in (3.62) holds as asserted due to

nX
mD1

˛m

. nX
mD1

d2m ! 0;
� nX
mD1

ˇm

�1=2. nX
mD1

d2m ! 0; n!1; (3.73)

these two limits are discussed in Remark 3.13 below.
Let us now derive the second limit in (3.62). First, we write

zXn D d
2
n
zUn C d

2
n
zVn C d

2
n
zZn

where zUn; zVn; zZn denote k-dependent functions in (3.48). Then, denoting

zMn�1.k/´

n�1X
mD1

zXm.k/;

we obtain

zBn � zBn�1 C

Z
g.k/jXn.k/j

2dk

C 2

ˇ̌̌̌Z
g.k/ zMn�1.k/d

2
n
zUn.k/ dk

ˇ̌̌̌
C2

ˇ̌̌̌Z
g.k/ zMn�1.k/d

2
n
zVn.k/ dk

ˇ̌̌̌
(3.74)

C 2

ˇ̌̌̌Z
g.k/ zMn�1.k/d

2
n
zZn.k/ dk

ˇ̌̌̌
: (3.75)

Note that all three terms in (3.74), (3.75) are of the formZ

n‰.k/ zMn�1.k/u.�n.y// dk dy; (3.76)

with ‰ 2 C10 .0;1/, 
n´ d2n and

�n.k/ 2 ¹4�
.0/
n .0/C 2 n.k/C 2�n.k/; 4�

.0/
n .0/C 4 n.k/; 4�

.0/
n .0/C 4�n.k/º:
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Using (3.25), (3.4ii), and Lemma 3.9 (i), we get

@�n.k/

@k
> Cxn; (3.77)ˇ̌̌@2�n.k/

@k2

ˇ̌̌
� C

�
1C

nX
mD1

dmx
2
m

�
: (3.78)

As in the first part of the proof, we proceed by rewriting (3.76) in the formZ

n‰.k/ zMn�1.k/

1
@�n.k/
@k

@v

@k
.�n.k// dk;

and integrating by parts with respect to k. This approach, as before, leads to three
integrals, each corresponding to applying @

@k
to one of the three functions in

‰.k/ � zMn�1.k/ �
1

@�n.k/
@k

: (3.79)

Case 1. @k lands on the first term of (3.79). In this case,ˇ̌̌̌Z

n
@‰.k/

@k
zMn�1.k/

1
@�n.k/
@k

v.�n.k// dk

ˇ̌̌̌
�
Cdn.n � 1/

xn

where we used zMn�1.k/ � C.n � 1/ and

1
@�n.k/
@k

�
C

xn
by (3.77); ‰ 2 C10 .0;1/; jv.2�

.0/
n .y//j � 1: (3.80)

Case 2. @k lands on the second term of (3.79). In this case,ˇ̌̌̌Z

n‰.k/

@ zMn�1.k/

@k

1
@�n.k/
@k

v.�n.k// dk

ˇ̌̌̌
�
Cdn

xn

n�1X
mD1

xmdm

where we used (3.80) and

@ zMn�1.k/

@k
�

n�1X
mD1

xmdm:

Case 3. @k lands on the third term of (3.79). We first replace ‰ by ‰
g
g and then

estimateˇ̌̌̌

n

Z
g.k/ zMn�1.k/

‰.k/

g.k/

1�
@�n.k/
@k

�2 @2�n.k/@k2
v.�n.k//dk dy

ˇ̌̌̌
�
Cdn

x2n

�
1C

n�1X
mD1

dmx
2
m

�ˇ̌̌̌Z
g.k/ zMn�1.k/dk

ˇ̌̌̌
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�
Cdn

x2n

�
1C

n�1X
mD1

dmx
2
m

��Z
g.k/j zMn�1.k/j

2dk

�1=2
µ ˛n

q
zBn�1;

where in the second to last inequality, we used (3.78) and (3.80); in the last inequality,
we used the Cauchy–Schwarz inequality in L2.RC; dk/ and the notation (3.70).

Combining Cases 1–3, we get a version of (3.72) withB replaced by zB . As before,
using [37, Lemma 6.2] and Proposition 3.8, we infer the second limit in (3.62).

Remark 3.13. Assuming the setting of Theorem 1.12 (b). To prove the first limit
in (3.73), recall 
 from Remark 3.8 and write

kX
nD2

dn

n�1X
mD1

dm

�xm
xn

�2
� C

kX
nD2

dn

�xn�1
xn

�2 n�1X
mD1

dm

� xm
xn�1

�2
� C

kX
nD2

dn

�xn�1
xn

�2 n�1X
mD1

dm

�2jm�n�1j

� C
� kX
nD2

d2n

�xn�1
xn

�4�1=2� kX
nD2

d2n

�1=2
where in the last inequality, we used boundedness of the convolution operator, as in
Remark 3.8. Note that

kX
nD2

d2n !1; k !1I and
xn�1

xn
! 0; n!1I

thus, first limit in (3.73) holds. To prove the second limit in (3.73), use (3.42) to get

p
ˇn � C

p
1C

kX
mD1

d2m D o
� kX
nD2

d2n

�
; k !1:

Lemma 3.14. Assume Hypothesis 3.1, fix a finite interval ŒE1;E2�� .0;1/ such that
Œ
p
E1;
p
E2� is .S; T /-admissible. Then there exists a subsequence ¹nj ºj�1 such that

for Lebesgue almost every k 2 Œ
p
E1;
p
E2� one has

lim
j!1

R.xnj C�; k/ D1: (3.81)

Proof. Let g 2 C10 .0;1/ be a strictly positive function with

Œ
p
E1;

p
E2� � supp.g/ � J;
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for an .S; T /-admissible J , and
R

RC
g.k/dk D 1. Consider two sequences

�n´ Qn (cf. (3.59)),

�n´

nX
mD1

VXm (cf. (3.49)),

of random variables in the probability space .�;P /´ ..0;1/; g.k/dk/, and denote
˛n´

Pn
mD1 d

2
m. Lemma 3.12 and (3.44) yield

lim
n!1

˛�1n E�n D 0 and �n � C˛n:

Then, by [37, Lemma 6.1 (i), (ii0)], there exists a subsequence ¹nj ºj�1 such that for
almost every k 2 	,

lim
j!1

.�nj .k/C �nj .k// D1I

that is, lim
j!1

Ynj .k/ D1 and therefore (3.81) holds as claimed.

Proof of Theorem 1.12 (b). By Lemma 1.7, Specess.H
˛/D Œ0;1/. Moreover, by Pro-

position 3.7, H˛ has no positive eigenvalues.
For every .S; T /-admissible interval Œ

p
E1;
p
E2�, by Lemma 3.14 for some sub-

sequence ¹nj º1jD1 we have

lim
j!1

R.xnj C�; k/ D1; a:e: k 2 Œ
p
E1;

p
E2�:

Next, by Theorem 1.4, Specac.H
˛/ \ ŒE1; E2� D ; and, since the union of all

.S; T /-admissible intervals gives RC up ot a discrete set, we conclude that
Specac.H

˛/ D ;. Therefore, the spectrum of H˛ is purely singular continuous on
.0;1/.
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M. Lukić, S. Sukhtaiev, and X. Wang 120

[64] D. A. W. White, Schrödinger operators with rapidly oscillating central potentials. Trans.
Amer. Math. Soc. 275 (1983), no. 2, 641–677 Zbl 0548.35030 MR 0682723

[65] G. M. Žislin, A study of the spectrum of the Schrödinger operator for a system of several
particles. Trudy Moskov. Mat. Obšč. 9 (1960), 81–120 MR 0126729
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