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Inertia of Kwong matrices

Rajendra Bhatia and Tanvi Jain

Abstract. Let r be any real number and for any n let p1; : : : ; pn be distinct positive numbers.
A Kwong matrix is the n� nmatrix whose .i; j / entry is .pr

i
C pr

j
/=.pi C pj /:We determine

the signatures of eigenvalues of all such matrices. The corresponding problem for the family of
Loewner matrices Œ.pr

i
� pr

j
/=.pi � pj /� has been solved earlier.

1. Introduction

Let f be a nonnegative C 1 function on .0;1/: Let n be a positive integer and p1 <

p2 < � � � < pn distinct positive real numbers. The n � n matrix

Lf .p1; : : : ; pn/ D
hf .pi / � f .pj /

pi � pj

i
is called a Loewner matrix associated with f: These matrices play an important role in
several areas of analysis, one of them being Loewner’s theory of operator monotone
functions. A central theorem in this theory asserts that f is operator monotone if and
only if all Loewner matrices associated with f are positive semidefinite. See [2,3,14].

Closely related to Loewner matrices are the matrices

Kf .p1; : : : ; pn/ D
hf .pi /C f .pj /

pi C pj

i
:

These too have been studied in several papers. In [11] Kwong showed that all matrices
Kf are positive semidefinite if (but not only if) f is operator monotone. Because
of this, the matrices Kf are sometimes called Kwong matrices. Audenaert [1] has
characterised all functions f for which all Kf are positive semidefinite.
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Of particular interest are the functions f .t/D t r ; where r is any real number. For
these functions, we denote Lf and Kf by Lr and Kr ; respectively. Thus,

Lr.p1; : : : ; pn/ D
hpr

i � p
r
j

pi � pj

i
and

Kr.p1; : : : ; pn/ D
hpr

i C p
r
j

pi C pj

i
:

Another fundamental theorem by Loewner says that the function f .t/D t r is operator
monotone if and only if 0 � r � 1: Thus, all matrices Lr are positive semidefinite if
and only if 0� r � 1: From the work of Kwong and Audenaert cited above, it follows
that all matrices Kr are positive semidefinite if and only if �1 � r � 1, and they are
positive definite if and only if �1 < r < 1:

In their work [5] Bhatia and Holbrook studied the matrices Lr for values of r
outside the interval Œ0; 1�: Among other things, they showed that, when 1 < r < 2,
every matrix Lr has exactly one positive eigenvalue. This is in striking contrast to the
case 0 < r < 1; in which all eigenvalues of Lr are positive. This led them to make a
conjecture about the signature of eigenvalues of Lr as r varies over real numbers.

Let A be any n � n Hermitian matrix. The inertia of A is the triplet

In.A/ D .�.A/; �.A/; �.A//;

where �.A/; �.A/, and �.A/ are respectively the numbers of positive, zero and nega-
tive eigenvalues of A: By the results of Loewner cited above, InLr D .n; 0; 0/ when
0 < r < 1; and the result of Bhatia and Holbrook says that InLr D .1; 0; n� 1/ when
1 < r < 2: The conjecture in [5] described the inertia of Lr for other values of r:

In [7] Bhatia and Sano made two essential contributions to this problem. They
provided a better understanding of the problem for the range 1 < r < 2; and they
also obtained a solution for the range 2 < r < 3: Let H1 be the .n � 1/-dimensional
subspace of Cn defined as

H1 D

°
x 2 Cn

W

nX
iD1

xi D 0
±
:

An n� n Hermitian matrix is said to be conditionally positive definite (cpd) if one has
hx;Axi � 0 for all x 2H1: It is said to be conditionally negative definite (cnd) if�A is
cpd. IfA is nonsingular and cnd with all entries nonnegative, then InAD .1;0;n� 1/:
Bhatia and Sano [7] showed that the matrixLr is cnd when 1 < r < 2; thus explaining
the result in [5]. They also showed that Lr is cpd when 2 < r < 3:

In the same paper [7], the authors found an interesting difference between the
inertial properties of Lr and Kr in the range 2 < r < 3: They showed that Kr is
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nonsingular and cnd in the interval 1 < r < 3; and hence InKr D .1; 0; n � 1/ for
such r: Thus, there arises the problem of studying InKr parallel to that of InLr :

The inertia ofLr was completely determined by Bhatia, Friedland, and Jain in [4].
The corresponding theorem on Kr was proved by us shortly afterwards. This was
announced in [6]. The aim of the present paper is to publish our proof. Our main
result is the following.

Theorem 1. Let p1 < p2 < � � � < pn and r be any positive real numbers and let Kr

be the matrix defined in (1).

(i) Kr is singular if and only if r is an odd integer smaller than n:

(ii) When r is an odd integer smaller than or equal to n; the inertia of Kr is
given as follows:

InKr D

8̂<̂
:
�lr
2

m
; n � r;

jr
2

k�
r D 1 .mod 4/;�jr

2

k
; n � r;

lr
2

m�
r D 3 .mod 4/:

(iii) If 0 � r < 1; then Kr is positive definite, and hence InKr D .n; 0; 0/:

(iv) Suppose k < r < k C 2 < n, where k is an odd integer. Then

InKr D

8̂<̂
:
�lk
2

m
; 0; n �

lk
2

m�
k D 1 .mod 4/;�

n �
lk
2

m
; 0;

lk
2

m�
k D 3 .mod 4/:

(v) If n is odd, then InKr D InKn for r > n� 2; and if n is even, then InKr D

InKn D
�

n
2
; 0; n

2

�
for r > n � 1:

At the beginning of Section 1 we observe that for every real number r; InK�r D

InKr : So, Theorem 1 describes the inertia of Kr for every real number r:
There is a striking similarity and a striking difference between the behaviour of the

signs of eigenvalues of Lr and Kr : As r moves over .0;1/, the eigenvalues of both
flip signs at certain integral values of r: For Lr these flips take place at all integers
r � n � 1; and each time all but one eigenvalue change signs. For Kr the flips take
place at all odd integers r � n� 1: At r D 1 all but one eigenvalue change signs, and
after that all but two eigenvalues change signs.

Figure 1 is a schematic representation of the eigenvalues of Kr for n D 6 and
r � 0:

In an earlier paper [6], we studied the inertia of another family Pr D Œ.pi C pj /
r �:

The structure of the proof there has been the template of subsequent works on this kind
of problem. See, e.g., [4] and the recent work [13] on the Kraus matrix. (WarningW The
authors of [13] use the symbol Kr for something different from our Kwong matrix.)
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Figure 1. Eigenvalues of Kr ; n � 6; 0 � r � 10.

Our proof here follows the same steps as in these papers; the details are different at
some crucial points.

2. Proof of Theorem 1

Two Hermitian matrices A and B are said to be congruent if there exists an invertible
matrix X such that B D X�AX: The Sylvester law of inertia says that A and B are
congruent if and only if InA D InB:

Let D be the diagonal matrix D D diag.p1; : : : ; pn/: Then, for every r > 0,

K�r D D
�rKrD

�r ; (2.1)

and hence,
InK�r D InKr :

The substitution pi D e2xi ; xi 2 R; gives

Kr D � zKr�;
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where � D diag.e.r�1/x1 ; : : : ; e.r�1/xn/; and

zKr D

hcosh r.xi � xj /

cosh.xi � xj /

i
:

By Sylvester’s law, In zKr D InKr : When n D 2, we have

zKr D

2664 1
cosh r.x1 � x2/

cosh.x1 � x2/
cosh r.x1 � x2/

cosh.x1 � x2/
1

3775 :
So, det zKr D 1 � cosh2 r.x1�x2/

cosh2.x1�x2/
: This is positive if 0 < r < 1; zero if r D 1; and

negative if r > 1: The inertia of Kr is .2; 0; 0/ in the first case, .1; 1; 0/ in the second
case, and .1; 0; 1/ in the third. All assertions of Theorem 1 are thus valid in the case
n D 2:

We will use the following extension of Sylvester’s law. A proof is given in [6].

Proposition 2. Let n � r; and let A be an r � r Hermitian matrix and X an r � n
matrix of rank r: Then

InX�AX D InAC .0; n � r; 0/: (2.2)

We now prove part (ii) of the theorem. Let r be an odd integer, r � n: Then

pr
i C p

r
j

pi C pj

D pr�1
i � pr�2

i pj C p
r�3
i p2

j � � � � C p
r�1
j :

So, the matrix Kr can be factored as

Kr D W
�V W;

where W is the r � n Vandermonde matrix given by

W D

26664
1 1 � � � 1

p1 p2 � � � pn

:::
:::

: : :
:::

pr�1
1 pr�1

2 � � � pr�1
n

37775
and V is the r � r antidiagonal matrix with entries .1;�1; 1;�1; : : : ;�1; 1/ down its
sinister diagonal. So, by the generalised Sylvester’s law (2.2), we have for every odd
integer r � n;

InKr D InV C .0; n � r; 0/:
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The matrix V is nonsingular and its eigenvalues are ˙1: In the case r D 1 .mod 4/;
tr V D 1 and the multiplicity of 1 as an eigenvalue of V exceeds by one the multi-
plicity of �1: In the case r D 3 .mod 4/; tr V D �1 and the multiplicity of �1 as
an eigenvalue of V exceeds by one the multiplicity of 1: This establishes part (ii) of
Theorem 1.

Next, let c1; c2; : : : ; cn be real numbers, not all of which are zero, and let f be the
function on .0;1/ defined as

f .x/ D

nX
jD1

cj
xr C pr

j

x C pj

: (2.3)

Theorem 3. Let n be an odd number. Then for every positive real number r > n� 1;
the function f in equation (2.3) has at most n � 1 zeros in .0;1/:

Proof. Consider the function g defined as

g.x/ D f .x/

nY
jD1

.x C pj /:

Expanding the product, we can write

g.x/ D ˛0 C ˛1x C � � � C ˛n�1x
n�1

C ˇ0x
r
C ˇ1x

rC1
C � � � C ˇn�1x

rCn�1:

The function g can be written as

g.x/ D xrh1.x/C h2.x/;

where

h1.x/ D

nX
iD1

ci

Y
j¤i

.x C pj / and h2.x/ D

nX
iD1

cip
r
i

Y
j¤i

.x C pj /:

Since both h1 and h2 are Lagrange interpolation polynomials of degree at most n� 1
and not all ci are zero, neither of the polynomials h1 and h2 is identically zero. Hence,
g is not identically zero. Now, consider the function g0 defined as

g0.x/ D

nX
iD1

ci

xr � pr
i

x � pi

nY
jD1

.x � pj /:

Then a calculation shows that

g0.x/ D � ˛0 C ˛1x C � � � C ˛n�2x
n�1
� ˛n�1x

n�1

C ˇ0x
r
� ˇ1x

rC1
C � � � C ˇn�1x

rCn�1: (2.4)
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By the Descartes rule of signs [12, p. 46], the number of positive zeros of g is no more
than the number of sign changes in the sequence of coefficients

.˛0; ˛1; : : : ; ˛n�1; ˇ0; ˇ1; : : : ; ˇn�1/:

Let this number of sign changes be s; and let s0be the number of sign changes in the
coefficients in (2.4). Since n is odd, we have s C s0 � 2n � 1: We know that g0 has
at least n positive zeros p1; : : : ; pn: So, s0 � n; and hence s � n� 1: Hence, g has at
most n � 1 positive zeros, and therefore so does f:

We can deduce the following.

Corollary 4. Let n be an odd number, and let p1; : : : ; pn and q1; : : : ; qn be two
n-tuples of distinct positive numbers. Then for every r > n � 1; the n � n matrixhpr

i C q
r
j

pi C qj

i
(2.5)

is nonsingular. So, in particular if n is odd, then for every r > n � 1; the matrix Kr

is nonsingular.

Proof. If the matrix (2.5) is singular, then there exists a nonzero tuple .c1; : : : ; cn/

such that

f .x/ D

nX
jD1

cj
xr C qr

j

x C qj

has at least n zeros p1; : : : ; pn: But this is not possible by Theorem 3. So, the
matrix (2.5) and hence, the matrix Kr is nonsingular for all odd n and r > n � 1:

We complete the proof of Theorem 1 using “snaking” processW the validity of the
theorem is extended by alternatively increasing n and r:

For any positive numbers p and q and any real r; we have

pr C qr

p C q
D pr�1

� p
pr�2 C qr�2

p C q
q C qr�1:

This gives us the identity

Kr D D
r�1E �DKr�2D CED

r�1; (2.6)

where D is the diagonal matrix diag.p1; : : : ; pn/ and E the matrix all whose entries
are one. For 1 � j � n; let Hj be the subspace of Cn defined as

Hj D

°
x W

X
xi D 0;

X
pixi D 0; : : : ;

X
p

j�1
i xi D 0

±
D
®
x W Ex D 0;EDx D 0; : : : ; EDj�1x D 0

¯
:

Evidently, dim Hj D n � j and HjC1 � Hj :
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It will be convenient to use the notation K.n/
r to indicate an n � n matrix of the

type Kr : When the superscript n is not used, it will be understood that a statement
about Kr is true for all n:

Recall that part (iii) of the theorem is known, i.e., Kr is positive definite for 0 �
r < 1: Relation (2.1) then shows that it has the same property for �1 < r < 0: K0 is
the Cauchy matrix

�
2

piCpj

�
and is positive definite. Thus, Kr is positive definite for

�1 < r < 1:

Now, let 1 < r < 3: Then �1 < r � 2 < 1: Using identity (2.6), we see that if x
is a nonzero vector in H1; then

hx;Krxi D �hDx;Kr�2Dxi < 0:

So, the matrix Kr is conditionally negative definite and has at least n � 1 negative
eigenvalues. Since all entries ofKr are positive, it has at least one positive eigenvalue.
Thus,

InKr D .1; 0; n � 1/;

for 1 < r < 3: By Corollary 4, K.3/
r is nonsingular for r > 2: So, InK.3/

r does not
change for r > 2: This shows that InK.3/

r D .1; 0; 2/ for all r > 1: So, the theorem is
established when n D 3:

Now, let n > 3 and 3 < r < 5: Using the identity (2.6) and the case 1 < r < 3

of the theorem that has been established we see that if x is a nonzero vector in H2;

then hx;Krxi > 0: So, the matrix Kr has at least n � 2 positive eigenvalues. By the
nD 3 case already proved, we know thatKr has a 3� 3 principal submatrix with two
negative eigenvalues. So, by Cauchy’s interlacing principle,Kr must have at least two
negative eigenvalues. We conclude that

InKr D .n � 2; 0; 2/; if 3 < r < 5:

In particular, this shows that InK.5/
r D .3; 0; 2/ if 3 < r < 5; and since K.5/

r is non-
singular for r > 4; it has the same inertia for all r > 3: So, Theorem 1 is established
when nD 5: Next consider the case nD 4: Let r > 3: The matrixK.4/

r has a principal
submatrix K.3/

r whose inertia is .1; 0; 2/: So, by the interlacing principle K.4/
r has at

least two negative eigenvalues. On the other hand, K.4/
r is a principal submatrix of

K
.5/
r whose inertia is .3; 0; 2/: So, again by the interlacing principle K.4/

r has at least
two positive eigenvalues. Thus, InK.4/

r D .2; 0; 2/ for all r > 3; and Theorem 1 is
established for n D 4:

This line of reasoning can be continued. Use the space H3 at the next stage to go
to the interval 5 < r < 7: Then use the established case n � 5 to extend the validity
of the theorem to first the case n D 7; and then n D 6:
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3. Remarks

Remark 1. In [4, Theorem 1.1 (v)] it was shown that all nonzero eigenvalues of Lr

are simple. We have not been able to prove a corresponding statement for Kr :

Remark 2. An n � n real matrix A is said to be strictly sign-regular (SSR) if for
every 1� k � n; all k � k sub-determinants of A are nonzero and have the same sign.
If this is true for all 1 � k � m for some m < n; then we say A is in the class SSRm:
See [9] for a detailed study of such matrices. In [4] it was shown that the matrix Lr is
in the class SSRr if r D 1; 2; : : : ; n� 1; and in the class SSR for all other r > 0: This
fact was then used to prove the simplicity of nonzero eigenvalues of Lr :

Let n D 4 and consider the matrix K3.1; 2; 5; 10/: It can be seen that the leading
2 � 2 principal subdeterminant of this matrix is �5; while the determinant of the top
right 2 � 2 submatrix is 35: So, this matrix is not in the class SSR2:

Remark 3. Let p1 <p2 and q1 <q2 be two ordered pairs of distinct positive numbers
such that ¹p1; p2º \ ¹q1; q2º is nonempty. With a little work, it can be shown that the

determinant of the 2� 2matrix
�pr

i
Cqr

j

piCqj

�
is positive if 0 < r < 1 and negative if r > 1:

Using this, one sees that for n D 3 and r ¤ 1; the matrix Kr is SSR.

Remark 4. There is a curious and intriguing connection between the inertia of Kr

and that of another family. For r � 0; let Br be the n � n matrix

Br D Œjpi � pj j
r �:

This family has been studied widely in connection with interpolation of scattered
data and splines. The inertias of these matrices were studied by Dyn, Goodman, and
Micchelli in [8]. In [8, Theorems 4], they prove results akin to our Theorem 1 for the
matrices Br : Together, these results imply that

InBr D InKrC1 (3.1)

for all r � 0: It will be good to have an understanding of what leads to this remarkable
coincidence. By Sylvester’s law (3.1) is equivalent to saying that Br and KrC1 are
congruent. In a recent work [10] the authors construct an explicit congruence between
the matrices Br and KrC1: This provides an alternative proof of (3.1), and thus also
an alternative (but indirect) proof of our theorem.
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