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Inertia of Kwong matrices
Rajendra Bhatia and Tanvi Jain

Abstract. Let r be any real number and for any # let p1, ..., p, be distinct positive numbers.
A Kwong matrix is the n x n matrix whose (i, j) entry is (p} + p;)/(pi + pj). We determine
the signatures of eigenvalues of all such matrices. The corresponding problem for the family of
Loewner matrices [(p; — p]r- )/ (pi — p;)] has been solved earlier.

1. Introduction

Let f be a nonnegative C! function on (0, 00). Let n be a positive integer and p; <
p2 < -+ < pp distinct positive real numbers. The n x n matrix

f(pi) — f(pj)]

Lf(pl,...,pn) =[
Pi — Dj

is called a Loewner matrix associated with f. These matrices play an important role in

several areas of analysis, one of them being Loewner’s theory of operator monotone

functions. A central theorem in this theory asserts that f is operator monotone if and

only if all Loewner matrices associated with f are positive semidefinite. See [2,3,14].
Closely related to Loewner matrices are the matrices

f00 + S e

K (pl,...,p)z[
s " pi + pj

These too have been studied in several papers. In [11] Kwong showed that all matrices
Ky are positive semidefinite if (but not only if) f is operator monotone. Because
of this, the matrices Ky are sometimes called Kwong matrices. Audenaert [1] has
characterised all functions f for which all K are positive semidefinite.
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Of particular interest are the functions f(¢#) = t”, where r is any real number. For
these functions, we denote Ly and K¢ by L, and K, respectively. Thus,

Pir—l?,r-]

Lr(pl’-"vpﬂ):[
pPi — Dj

and

pi + P,r]
pi+pid
Another fundamental theorem by Loewner says that the function f(¢) = ¢ is operator
monotone if and only if 0 < r < 1. Thus, all matrices L, are positive semidefinite if
and only if 0 < r < 1. From the work of Kwong and Audenaert cited above, it follows
that all matrices K, are positive semidefinite if and only if —1 < r < 1, and they are

Kr(pl,---,pn)=[

positive definite if and only if —1 < r < 1.

In their work [5] Bhatia and Holbrook studied the matrices L, for values of r
outside the interval [0, 1]. Among other things, they showed that, when 1 < r < 2,
every matrix L, has exactly one positive eigenvalue. This is in striking contrast to the
case 0 < r < 1, in which all eigenvalues of L, are positive. This led them to make a
conjecture about the signature of eigenvalues of L, as r varies over real numbers.

Let A be any n x n Hermitian matrix. The inertia of A is the triplet

In(4) = ((A4),(4).v(4)),

where 7(A), {(A), and v(A) are respectively the numbers of positive, zero and nega-
tive eigenvalues of A. By the results of Loewner cited above, In L, = (n, 0,0) when
0 < r < 1, and the result of Bhatia and Holbrook says that In L, = (1,0,n — 1) when
1 < r < 2. The conjecture in [5] described the inertia of L, for other values of r.

In [7] Bhatia and Sano made two essential contributions to this problem. They
provided a better understanding of the problem for the range 1 < r < 2, and they
also obtained a solution for the range 2 < r < 3. Let #; be the (n — 1)-dimensional
subspace of C” defined as

n
F ={xe(C":in =0}.
i=1

An n x n Hermitian matrix is said to be conditionally positive definite (cpd) if one has
(x,Ax) > 0forall x € #;.Itis said to be conditionally negative definite (cnd) if —A is
cpd. If A is nonsingular and cnd with all entries nonnegative, thenIn A = (1,0,n — 1).
Bhatia and Sano [7] showed that the matrix L, is cnd when 1 < r < 2, thus explaining
the result in [5]. They also showed that L, is cpd when 2 < r < 3.

In the same paper [7], the authors found an interesting difference between the
inertial properties of L, and K, in the range 2 < r < 3. They showed that K, is
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nonsingular and cnd in the interval 1 < r < 3, and hence In K, = (1,0,n — 1) for
such r. Thus, there arises the problem of studying In K, parallel to that of In L.

The inertia of L, was completely determined by Bhatia, Friedland, and Jain in [4].
The corresponding theorem on K, was proved by us shortly afterwards. This was
announced in [6]. The aim of the present paper is to publish our proof. Our main
result is the following.

Theorem 1. Let p1 < py < -+ < py and r be any positive real numbers and let K,
be the matrix defined in (1).

(i) K, is singular if and only if r is an odd integer smaller than n.

(i) When r is an odd integer smaller than or equal to n, the inertia of K, is

([ghn-r (3] =1 wos,
(hn-rT3) =3 moss:

(iii) If0 <r < 1, then K, is positive definite, and hence In K, = (n,0,0).

given as follows:

InK, =

(iv) Suppose k <r <k + 2 < n, where k is an odd integer. Then

(5o T5]) =1 st
- [5105]) £=5 o

) Ifnisodd thenln K, =In K, forr >n —2; and ifn is even, then In K, =

Ink, = (%,0, %)forr >n—1.

InK, =

At the beginning of Section | we observe that for every real number r, In K_, =
In K. So, Theorem 1 describes the inertia of K, for every real number r.

There is a striking similarity and a striking difference between the behaviour of the
signs of eigenvalues of L, and K,. As r moves over (0, c0), the eigenvalues of both
flip signs at certain integral values of r. For L, these flips take place at all integers
r <n — 1, and each time all but one eigenvalue change signs. For K, the flips take
place at all odd integers r < n — 1. At r = 1 all but one eigenvalue change signs, and
after that all but two eigenvalues change signs.

Figure 1 is a schematic representation of the eigenvalues of K, for n = 6 and
r>0.

In an earlier paper [6], we studied the inertia of another family P, = [(p; + p;)"].
The structure of the proof there has been the template of subsequent works on this kind
of problem. See, e.g., [4] and the recent work [13] on the Kraus matrix. (Warning: The
authors of [13] use the symbol K, for something different from our Kwong matrix.)
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Figure 1. Eigenvalues of K,;n — 6,0 <r < 10.

Our proof here follows the same steps as in these papers; the details are different at
some crucial points.

2. Proof of Theorem 1

Two Hermitian matrices A and B are said to be congruent if there exists an invertible
matrix X such that B = X*AX. The Sylvester law of inertia says that A and B are
congruent if and only if In A = In B.

Let D be the diagonal matrix D = diag(p1, ..., pn). Then, for every r > 0,

K_,=DT"K,D", Q2.1

and hence,
InK_, =Ink,.

The substitution p; = e2*, x; € R, gives

K, = AK,A,
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where A = diag(e"~D*1 . e ~D¥n) and

=~ rcoshr(x; —x;)
- [ cosh(x; — x;) ]

By Sylvester’s law, In K, =InK,. When n = 2, we have

{ coshr(x; — x3)
R. = cosh(x; — x3)
r coshr(x; — x3) !

cosh(x; — x3)
So, det E, =1- c::jzr(;%;;)) This is positive if 0 < r < 1, zero if r = 1, and
negative if r > 1. The inertia of K, is (2,0, 0) in the first case, (1, 1, 0) in the second
case, and (1,0, 1) in the third. All assertions of Theorem 1 are thus valid in the case
n=2.
We will use the following extension of Sylvester’s law. A proof is given in [6].

Proposition 2. Let n > r, and let A be an r x r Hermitian matrix and X anr X n
matrix of rank r. Then

InX*AX =InA + (0,n —r,0). (2.2)

We now prove part (ii) of the theorem. Let r be an odd integer, r < n. Then

pi +pj

r—1 r—2 r—=3 2 r—1
pi + D Pi Pi Dj Pi p] p]
So, the matrix K, can be factored as
K, =W*VWw,
where W is the r X n Vandermonde matrix given by
1 1 1
P1 p2 t Dn
W = . . .
p;—l ps—l . pr.—l
n
and V is the r x r antidiagonal matrix with entries (1,—1,1,—1,...,—1,1) down its

sinister diagonal. So, by the generalised Sylvester’s law (2.2), we have for every odd
integer r < n,
InK, =InV 4+ (0,n —r,0).
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The matrix V' is nonsingular and its eigenvalues are 1. In the case » = 1 (mod 4),
tr V' = 1 and the multiplicity of 1 as an eigenvalue of V' exceeds by one the multi-
plicity of —1. In the case r = 3 (mod4), tr V = —1 and the multiplicity of —1 as
an eigenvalue of I/ exceeds by one the multiplicity of 1. This establishes part (ii) of
Theorem 1.

Next, let ¢1,¢a, . . ., ¢y be real numbers, not all of which are zero, and let f be the
function on (0, co) defined as

n r+pj

f(x) = Zc,

Theorem 3. Let n be an odd number. Then for every positive real numberr >n — 1,

(2.3)

the function f in equation (2.3) has at most n — 1 zeros in (0, 00).
Proof. Consider the function g defined as
n
g@) = 0 []x + p)-
j=1
Expanding the product, we can write
g(x) =ap +oa1x + - oy x"7!
+ Box” + Brx" T - By x" T
The function g can be written as
g(x) = x"hy(x) + ha(x),
where
n n
) =Y [[x+p) and hax) =3 cpl T[]0+ pp).
i=1  j#i i=1 j#i

Since both /; and 4, are Lagrange interpolation polynomials of degree at most n — 1
and not all ¢; are zero, neither of the polynomials /7 and /5 is identically zero. Hence,
g is not identically zero. Now, consider the function g defined as

go(x) = Zc, 1‘[(x—m

i=1 j=1

l

Then a calculation shows that

-1 -1
go(x) = —ap+or1x + -+ apox" — a1 x"

+ Box" — x4 B XL (2.4)
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By the Descartes rule of signs [12, p. 46], the number of positive zeros of g is no more
than the number of sign changes in the sequence of coefficients

(0507051,--~7an—17,30’ﬂls~-~’ﬁn—l)-

Let this number of sign changes be s, and let sobe the number of sign changes in the
coefficients in (2.4). Since n is odd, we have s + 59 < 2n — 1. We know that g has
at least n positive zeros pi,..., pn. S0, S9 > n, and hence s < n — 1. Hence, g has at
most n — 1 positive zeros, and therefore so does f. n

We can deduce the following.

Corollary 4. Let n be an odd number, and let py, ..., p, and q1, ..., qn be two
n-tuples of distinct positive numbers. Then for every r > n — 1, the n X n matrix
pi +4;
[ LA ] (2.5)
pi +4q;

is nonsingular. So, in particular if n is odd, then for every r > n — 1, the matrix K,
is nonsingular.

Proof. If the matrix (2.5) is singular, then there exists a nonzero tuple (cy, ..., cp)
such that .,
J
X Cj
OR Z L
has at least n zeros pi,..., pn. But thls is not possible by Theorem 3. So, the

matrix (2.5) and hence, the matrix K, is nonsingular foralloddn andr >n—1. =

We complete the proof of Theorem 1 using “snaking” process: the validity of the
theorem is extended by alternatively increasing n and r.
For any positive numbers p and g and any real r, we have

pr +qr o pr—2 +qr—2 1

p q+4q
rP+tq P+tq
This gives us the identity
K, =D"'E—-DK,_,D+ ED" !, (2.6)
where D is the diagonal matrix diag(py, ..., pn) and E the matrix all whose entries

are one. For 1 < j < n, let #; be the subspace of C" defined as
= {x:in =O,Zpix,- =0,...,Zp.j_1x,- =O}
—{x Ex=0,EDx=0,...,ED’'x =0}.

Evidently, dimej =n—jand ij.}.l - e%j.
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It will be convenient to use the notation K f”) to indicate an n X n matrix of the
type K,. When the superscript n is not used, it will be understood that a statement
about K, is true for all n.

Recall that part (iii) of the theorem is known, i.e., K, is positive definite for 0 <
r < 1. Relation (2.1) then shows that it has the same property for —1 < r < 0. Ky is
the Cauchy matrix [
—1l<r<l.

Now, let 1 < r < 3. Then —1 < r —2 < 1. Using identity (2.6), we see that if x
is a nonzero vector in J¢1, then

#] and is positive definite. Thus, K, is positive definite for
1 J

(x,Kyx) =—(Dx,K,_,Dx) <0.

So, the matrix K, is conditionally negative definite and has at least n — 1 negative
eigenvalues. Since all entries of K, are positive, it has at least one positive eigenvalue.
Thus,

InkK, =(1,0,n—1),

for 1 < r < 3. By Corollary 4, K,(3) is nonsingular for r > 2. So, In Kr(3) does not
change for r > 2. This shows that In Kr(3) = (1,0,2) forall r > 1. So, the theorem is
established when n = 3.

Now, let n > 3 and 3 < r < 5. Using the identity (2.6) and the case 1 <r < 3
of the theorem that has been established we see that if x is a nonzero vector in J5,
then (x, K,x) > 0. So, the matrix K, has at least n — 2 positive eigenvalues. By the
n = 3 case already proved, we know that K, has a 3 x 3 principal submatrix with two
negative eigenvalues. So, by Cauchy’s interlacing principle, K, must have at least two
negative eigenvalues. We conclude that

InkK, =mn-2,0,2), if3<r<?5.

In particular, this shows that In K,(S) = (3,0,2) if 3 < r < 5, and since Kr(s) is non-
singular for r > 4, it has the same inertia for all r > 3. So, Theorem 1 is established
when n = 5. Next consider the case n = 4. Let r > 3. The matrix K,(4) has a principal
submatrix K,(3) whose inertia is (1, 0, 2). So, by the interlacing principle K,(4) has at
least two negative eigenvalues. On the other hand, K r(4) is a principal submatrix of
K,(S) whose inertia is (3, 0, 2). So, again by the interlacing principle Kr(4) has at least
two positive eigenvalues. Thus, In Kr(4) = (2,0,2) for all » > 3, and Theorem 1 is
established for n = 4.

This line of reasoning can be continued. Use the space #3 at the next stage to go
to the interval 5 < r < 7. Then use the established case n < 5 to extend the validity
of the theorem to first the case n = 7, and thenn = 6.
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3. Remarks

Remark 1. In [4, Theorem 1.1 (v)] it was shown that all nonzero eigenvalues of L,
are simple. We have not been able to prove a corresponding statement for K.

Remark 2. An n x n real matrix A is said to be strictly sign-regular (SSR) if for
every 1 <k <n, all k x k sub-determinants of A are nonzero and have the same sign.
If this is true for all 1 < k < m for some m < n, then we say A is in the class SSRm.
See [9] for a detailed study of such matrices. In [4] it was shown that the matrix L, is
in the class SSRrif r = 1,2,...,n — 1, and in the class SSR for all other » > 0. This
fact was then used to prove the simplicity of nonzero eigenvalues of L,.

Let n = 4 and consider the matrix K3(1,2,5, 10). It can be seen that the leading
2 x 2 principal subdeterminant of this matrix is —5, while the determinant of the top
right 2 X 2 submatrix is 35. So, this matrix is not in the class SSR».

Remark 3. Let p; < p, and g1 < g, be two ordered pairs of distinct positive numbers
such that {p1, p2} N {q1, g2} is nonempty. With a little work, it can be shown that the

D; i

determinant of the 2 x 2 matrix [p‘ +Z{ ] is positive if 0 < r < 1 and negative if r > 1.
U J

Using this, one sees that for n = 3 and r # 1, the matrix K, is SSR.

Remark 4. There is a curious and intriguing connection between the inertia of K,
and that of another family. For » > 0, let B, be the n x n matrix

B, =llpi —p;I'].

This family has been studied widely in connection with interpolation of scattered
data and splines. The inertias of these matrices were studied by Dyn, Goodman, and
Micchelli in [8]. In [8, Theorems 4], they prove results akin to our Theorem 1 for the
matrices B;. Together, these results imply that

InB, =InK,4+; 3.1

for all » > 0. It will be good to have an understanding of what leads to this remarkable
coincidence. By Sylvester’s law (3.1) is equivalent to saying that B, and K, are
congruent. In a recent work [10] the authors construct an explicit congruence between
the matrices B, and K, ;. This provides an alternative proof of (3.1), and thus also
an alternative (but indirect) proof of our theorem.
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