J. Spectr. Theory (Online first) DOI 10.4171/JST/479

Inertia of Kwong matrices

Rajendra Bhatia and Tanvi Jain

Abstract. Let r be any real number and for any n let p_1, \ldots, p_n be distinct positive numbers. A Kwong matrix is the $n \times n$ matrix whose (i, j) entry is $\frac{p_i^r + p_j^r}{p_i + p_j}$. We determine the signatures of eigenvalues of all such matrices. The corresponding problem for the family of Loewner matrices $[(p_i^r - p_j^r)/(p_i - p_j)]$ has been solved earlier.

1. Introduction

Let f be a nonnegative C¹ function on $(0, \infty)$. Let n be a positive integer and p_1 < $p_2 < \cdots < p_n$ distinct positive real numbers. The $n \times n$ matrix

$$
L_f(p_1,\ldots,p_n) = \left[\frac{f(p_i) - f(p_j)}{p_i - p_j}\right]
$$

is called a *Loewner matrix* associated with f. These matrices play an important role in several areas of analysis, one of them being Loewner's theory of operator monotone functions. A central theorem in this theory asserts that f is operator monotone if and only if all Loewner matrices associated with f are positive semidefinite. See [\[2,](#page-9-0)[3,](#page-9-1)[14\]](#page-9-2).

Closely related to Loewner matrices are the matrices

$$
K_f(p_1,\ldots,p_n)=\Big[\frac{f(p_i)+f(p_j)}{p_i+p_j}\Big].
$$

These too have been studied in several papers. In [\[11\]](#page-9-3) Kwong showed that all matrices K_f are positive semidefinite if (but not only if) f is operator monotone. Because of this, the matrices K_f are sometimes called *Kwong matrices*. Audenaert [\[1\]](#page-8-0) has characterised all functions f for which all K_f are positive semidefinite.

Mathematics Subject Classification 2020: 15A18 (primary); 15B48, 15B57, 42A82 (secondary).

Keywords: Kwong matrix, inertia, positive definite matrix, conditionally positive definite matrix, Loewner matrix, Sylvester's law, Vandermonde matrix.

Of particular interest are the functions $f(t) = t^r$, where r is any real number. For these functions, we denote L_f and K_f by L_r and K_r , respectively. Thus,

$$
L_r(p_1,\ldots,p_n)=\Big[\frac{p_i^r-p_j^r}{p_i-p_j}\Big]
$$

and

$$
K_r(p_1,\ldots,p_n) = \left[\frac{p_i^r + p_j^r}{p_i + p_j}\right].
$$

Another fundamental theorem by Loewner says that the function $f(t) = t^r$ is operator monotone if and only if $0 \le r \le 1$. Thus, all matrices L_r are positive semidefinite if and only if $0 \le r \le 1$. From the work of Kwong and Audenaert cited above, it follows that all matrices K_r are positive semidefinite if and only if $-1 \le r \le 1$, and they are positive definite if and only if $-1 < r < 1$.

In their work [\[5\]](#page-9-4) Bhatia and Holbrook studied the matrices L_r for values of r outside the interval [0, 1]. Among other things, they showed that, when $1 < r < 2$, every matrix L_r has exactly one positive eigenvalue. This is in striking contrast to the case $0 < r < 1$, in which all eigenvalues of L_r are positive. This led them to make a conjecture about the signature of eigenvalues of L_r as r varies over real numbers.

Let A be any $n \times n$ Hermitian matrix. The *inertia* of A is the triplet

$$
\text{In}(A) = (\pi(A), \zeta(A), \nu(A)),
$$

where $\pi(A)$, $\zeta(A)$, and $\nu(A)$ are respectively the numbers of positive, zero and negative eigenvalues of A. By the results of Loewner cited above, In $L_r = (n, 0, 0)$ when $0 < r < 1$, and the result of Bhatia and Holbrook says that In $L_r = (1, 0, n - 1)$ when $1 < r < 2$. The conjecture in [\[5\]](#page-9-4) described the inertia of L_r for other values of r.

In [\[7\]](#page-9-5) Bhatia and Sano made two essential contributions to this problem. They provided a better understanding of the problem for the range $1 < r < 2$, and they also obtained a solution for the range $2 < r < 3$. Let \mathcal{H}_1 be the $(n - 1)$ -dimensional subspace of \mathbb{C}^n defined as

$$
\mathcal{H}_1 = \Big\{ x \in \mathbb{C}^n : \sum_{i=1}^n x_i = 0 \Big\}.
$$

An $n \times n$ Hermitian matrix is said to be *conditionally positive definite* (cpd) if one has $\langle x, Ax \rangle \ge 0$ for all $x \in \mathcal{H}_1$. It is said to be *conditionally negative definite* (cnd) if $-A$ is cpd. If A is nonsingular and cnd with all entries nonnegative, then In $A = (1, 0, n - 1)$. Bhatia and Sano [\[7\]](#page-9-5) showed that the matrix L_r is cnd when $1 < r < 2$, thus explaining the result in [\[5\]](#page-9-4). They also showed that L_r is cpd when $2 < r < 3$.

In the same paper [\[7\]](#page-9-5), the authors found an interesting difference between the inertial properties of L_r and K_r in the range $2 < r < 3$. They showed that K_r is

nonsingular and cnd in the interval $1 < r < 3$, and hence In $K_r = (1, 0, n - 1)$ for such r. Thus, there arises the problem of studying In K_r parallel to that of In L_r .

The inertia of L_r was completely determined by Bhatia, Friedland, and Jain in [\[4\]](#page-9-6). The corresponding theorem on K_r was proved by us shortly afterwards. This was announced in [\[6\]](#page-9-7). The aim of the present paper is to publish our proof. Our main result is the following.

Theorem 1. Let $p_1 < p_2 < \cdots < p_n$ and r be any positive real numbers and let K_r *be the matrix defined in* [\(1\)](#page-0-0)*.*

- (i) K_r *is singular if and only if* r *is an odd integer smaller than* n .
- (ii) When r is an odd integer smaller than or equal to n, the inertia of K_r is *given as follows:*

$$
\ln K_r = \begin{cases} \left(\left\lceil \frac{r}{2} \right\rceil, n-r, \left\lfloor \frac{r}{2} \right\rfloor \right) & r = 1 \pmod{4}, \\ \left(\left\lfloor \frac{r}{2} \right\rfloor, n-r, \left\lceil \frac{r}{2} \right\rceil \right) & r = 3 \pmod{4}. \end{cases}
$$

- (iii) *If* $0 \le r < 1$, *then* K_r *is positive definite, and hence* In $K_r = (n, 0, 0)$.
- (iv) *Suppose* $k < r < k + 2 < n$ *, where* k *is an odd integer. Then*

$$
\ln K_r = \begin{cases} \left(\left\lceil \frac{k}{2} \right\rceil, 0, n - \left\lceil \frac{k}{2} \right\rceil \right) & k = 1 \pmod{4}, \\ \left(n - \left\lceil \frac{k}{2} \right\rceil, 0, \left\lceil \frac{k}{2} \right\rceil \right) & k = 3 \pmod{4}. \end{cases}
$$

(v) If n is odd, then $\text{In } K_r = \text{In } K_n$ for $r > n - 2$; and if n is even, then $\text{In } K_r =$ In $K_n = \left(\frac{n}{2}, 0, \frac{n}{2}\right)$ for $r > n - 1$.

At the beginning of Section [1](#page-2-0) we observe that for every real number r, In K_{-r} = In K_r . So, Theorem [1](#page-2-0) describes the inertia of K_r for every real number r.

There is a striking similarity and a striking difference between the behaviour of the signs of eigenvalues of L_r and K_r . As r moves over $(0, \infty)$, the eigenvalues of both flip signs at certain integral values of r. For L_r these flips take place at all integers $r \leq n - 1$, and each time all but one eigenvalue change signs. For K_r the flips take place at all odd integers $r \le n - 1$. At $r = 1$ all but one eigenvalue change signs, and after that all but two eigenvalues change signs.

Figure [1](#page-3-0) is a schematic representation of the eigenvalues of K_r for $n = 6$ and $r > 0.$

In an earlier paper [\[6\]](#page-9-7), we studied the inertia of another family $P_r = [(p_i + p_j)^r]$. The structure of the proof there has been the template of subsequent works on this kind of problem. See, e.g., $[4]$ and the recent work $[13]$ on the Kraus matrix. (Warning: The authors of [\[13\]](#page-9-8) use the symbol K_r for something different from our Kwong matrix.)

Figure 1. Eigenvalues of K_r ; $n - 6$, $0 \le r \le 10$.

Our proof here follows the same steps as in these papers; the details are different at some crucial points.

2. Proof of Theorem [1](#page-2-0)

Two Hermitian matrices A and B are said to be *congruent* if there exists an invertible matrix X such that $B = X^* A X$. The Sylvester law of inertia says that A and B are congruent if and only if In $A = \text{In } B$.

Let D be the diagonal matrix $D = \text{diag}(p_1, \ldots, p_n)$. Then, for every $r > 0$,

$$
K_{-r} = D^{-r} K_r D^{-r}, \qquad (2.1)
$$

and hence,

$$
\ln K_{-r} = \ln K_r.
$$

The substitution $p_i = e^{2x_i}$, $x_i \in \mathbb{R}$, gives

$$
K_r = \Delta \widetilde{K}_r \Delta,
$$

where $\Delta = \text{diag}(e^{(r-1)x_1}, \dots, e^{(r-1)x_n})$, and

$$
\widetilde{K}_r = \left[\frac{\cosh r(x_i - x_j)}{\cosh(x_i - x_j)}\right].
$$

By Sylvester's law, In $\tilde{K}_r = \text{In } K_r$. When $n = 2$, we have

$$
\widetilde{K}_r = \begin{bmatrix} 1 & \frac{\cosh r(x_1 - x_2)}{\cosh (x_1 - x_2)} \\ \frac{\cosh r(x_1 - x_2)}{\cosh (x_1 - x_2)} & 1 \end{bmatrix}.
$$

So, det $\widetilde{K}_r = 1 - \frac{\cosh^2 r (x_1 - x_2)}{\cosh^2 (x_1 - x_2)}$ $\frac{\cosh^2 r (x_1 - x_2)}{\cosh^2 (x_1 - x_2)}$. This is positive if $0 < r < 1$, zero if $r = 1$, and negative if $r > 1$. The inertia of K_r is $(2, 0, 0)$ in the first case, $(1, 1, 0)$ in the second case, and $(1, 0, 1)$ $(1, 0, 1)$ $(1, 0, 1)$ in the third. All assertions of Theorem 1 are thus valid in the case $n = 2.$

We will use the following extension of Sylvester's law. A proof is given in [\[6\]](#page-9-7).

Proposition 2. Let $n \geq r$, and let A be an $r \times r$ Hermitian matrix and X an $r \times n$ *matrix of rank* r: *Then*

$$
\ln X^* A X = \ln A + (0, n - r, 0). \tag{2.2}
$$

We now prove part (ii) of the theorem. Let r be an odd integer, $r \leq n$. Then

$$
\frac{p_i^r + p_j^r}{p_i + p_j} = p_i^{r-1} - p_i^{r-2} p_j + p_i^{r-3} p_j^2 - \dots + p_j^{r-1}.
$$

So, the matrix K_r can be factored as

$$
K_r = W^* V W,
$$

where *W* is the $r \times n$ Vandermonde matrix given by

$$
W = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ p_1 & p_2 & \cdots & p_n \\ \vdots & \vdots & \ddots & \vdots \\ p_1^{r-1} & p_2^{r-1} & \cdots & p_n^{r-1} \end{bmatrix}
$$

and V is the $r \times r$ antidiagonal matrix with entries $(1, -1, 1, -1, \ldots, -1, 1)$ down its sinister diagonal. So, by the generalised Sylvester's law [\(2.2\)](#page-4-0), we have for every odd integer $r \leq n$,

$$
\ln K_r = \ln V + (0, n - r, 0).
$$

The matrix V is nonsingular and its eigenvalues are ± 1 . In the case $r = 1 \pmod{4}$, tr $V = 1$ and the multiplicity of 1 as an eigenvalue of V exceeds by one the multiplicity of -1 . In the case $r = 3 \pmod{4}$, tr $V = -1$ and the multiplicity of -1 as an eigenvalue of V exceeds by one the multiplicity of 1. This establishes part (ii) of Theorem [1.](#page-2-0)

Next, let c_1, c_2, \ldots, c_n be real numbers, not all of which are zero, and let f be the function on $(0, \infty)$ defined as

$$
f(x) = \sum_{j=1}^{n} c_j \frac{x^r + p_j^r}{x + p_j}.
$$
 (2.3)

:

Theorem 3. Let n be an odd number. Then for every positive real number $r > n - 1$, *the function* f *in equation* [\(2.3\)](#page-5-0) *has at most* $n - 1$ *zeros in* $(0, \infty)$ *.*

Proof. Consider the function g defined as

$$
g(x) = f(x) \prod_{j=1}^{n} (x + p_j).
$$

Expanding the product, we can write

$$
g(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_{n-1} x^{n-1} + \beta_0 x^r + \beta_1 x^{r+1} + \dots + \beta_{n-1} x^{r+n-1}
$$

The function g can be written as

$$
g(x) = x^r h_1(x) + h_2(x),
$$

where

$$
h_1(x) = \sum_{i=1}^n c_i \prod_{j \neq i} (x + p_j)
$$
 and $h_2(x) = \sum_{i=1}^n c_i p_i^r \prod_{j \neq i} (x + p_j).$

Since both h_1 and h_2 are Lagrange interpolation polynomials of degree at most $n - 1$ and not all c_i are zero, neither of the polynomials h_1 and h_2 is identically zero. Hence, g is not identically zero. Now, consider the function g_0 defined as

$$
g_0(x) = \sum_{i=1}^n c_i \frac{x^r - p_i^r}{x - p_i} \prod_{j=1}^n (x - p_j).
$$

Then a calculation shows that

$$
g_0(x) = -\alpha_0 + \alpha_1 x + \dots + \alpha_{n-2} x^{n-1} - \alpha_{n-1} x^{n-1}
$$

+ $\beta_0 x^r - \beta_1 x^{r+1} + \dots + \beta_{n-1} x^{r+n-1}$. (2.4)

By the Descartes rule of signs $[12, p. 46]$ $[12, p. 46]$, the number of positive zeros of g is no more than the number of sign changes in the sequence of coefficients

$$
(\alpha_0,\alpha_1,\ldots,\alpha_{n-1},\beta_0,\beta_1,\ldots,\beta_{n-1}).
$$

Let this number of sign changes be s, and let s_0 be the number of sign changes in the coefficients in [\(2.4\)](#page-5-1). Since *n* is odd, we have $s + s_0 \le 2n - 1$. We know that g_0 has at least *n* positive zeros p_1, \ldots, p_n . So, $s_0 \ge n$, and hence $s \le n - 1$. Hence, g has at most $n - 1$ positive zeros, and therefore so does f.

We can deduce the following.

Corollary 4. Let *n* be an odd number, and let p_1, \ldots, p_n and q_1, \ldots, q_n be two n-tuples of distinct positive numbers. Then for every $r > n - 1$, the $n \times n$ matrix

$$
\left[\frac{p_i^r + q_j^r}{p_i + q_j}\right] \tag{2.5}
$$

is nonsingular. So, in particular if n is odd, then for every $r > n - 1$, *the matrix* K_r *is nonsingular.*

Proof. If the matrix [\(2.5\)](#page-6-0) is singular, then there exists a nonzero tuple (c_1, \ldots, c_n) such that

$$
f(x) = \sum_{j=1}^{n} c_j \frac{x^r + q_j^r}{x + q_j}
$$

has at least *n* zeros p_1, \ldots, p_n . But this is not possible by Theorem [3.](#page-5-2) So, the matrix [\(2.5\)](#page-6-0) and hence, the matrix K_r is nonsingular for all odd n and $r > n - 1$.

We complete the proof of Theorem [1](#page-2-0) using "snaking" process: the validity of the theorem is extended by alternatively increasing n and r .

For any positive numbers p and q and any real r , we have

$$
\frac{p^r + q^r}{p + q} = p^{r-1} - p \frac{p^{r-2} + q^{r-2}}{p + q} q + q^{r-1}.
$$

This gives us the identity

$$
K_r = D^{r-1}E - DK_{r-2}D + ED^{r-1},\tag{2.6}
$$

where D is the diagonal matrix diag (p_1, \ldots, p_n) and E the matrix all whose entries are one. For $1 \le j \le n$, let \mathcal{H}_j be the subspace of \mathbb{C}^n defined as

$$
\mathcal{H}_j = \left\{ x : \sum x_i = 0, \sum p_i x_i = 0, \dots, \sum p_i^{j-1} x_i = 0 \right\}
$$

=
$$
\left\{ x : Ex = 0, EDx = 0, \dots, ED^{j-1}x = 0 \right\}.
$$

Evidently, dim $\mathcal{H}_j = n - j$ and $\mathcal{H}_{j+1} \subset \mathcal{H}_j$.

It will be convenient to use the notation $K_r^{(n)}$ to indicate an $n \times n$ matrix of the type K_r . When the superscript *n* is not used, it will be understood that a statement about K_r is true for all n.

Recall that part (iii) of the theorem is known, i.e., K_r is positive definite for $0 \le$ $r < 1$. Relation [\(2.1\)](#page-3-1) then shows that it has the same property for $-1 < r < 0$. K_0 is the Cauchy matrix $\left[\frac{2}{p_i+p_j}\right]$ and is positive definite. Thus, K_r is positive definite for $-1 < r < 1.$

Now, let $1 < r < 3$. Then $-1 < r - 2 < 1$. Using identity [\(2.6\)](#page-6-1), we see that if x is a nonzero vector in \mathcal{H}_1 , then

$$
\langle x, K_r x \rangle = -\langle Dx, K_{r-2} Dx \rangle < 0.
$$

So, the matrix K_r is conditionally negative definite and has at least $n - 1$ negative eigenvalues. Since all entries of K_r are positive, it has at least one positive eigenvalue. Thus,

$$
\ln K_r = (1, 0, n-1),
$$

for $1 < r < 3$. By Corollary [4,](#page-6-2) $K_r^{(3)}$ is nonsingular for $r > 2$. So, In $K_r^{(3)}$ does not change for $r > 2$. This shows that In $K_r^{(3)} = (1, 0, 2)$ for all $r > 1$. So, the theorem is established when $n = 3$.

Now, let $n > 3$ and $3 < r < 5$. Using the identity [\(2.6\)](#page-6-1) and the case $1 < r < 3$ of the theorem that has been established we see that if x is a nonzero vector in \mathcal{H}_2 , then $\langle x, K_r x \rangle > 0$. So, the matrix K_r has at least $n - 2$ positive eigenvalues. By the $n = 3$ case already proved, we know that K_r has a 3 \times 3 principal submatrix with two negative eigenvalues. So, by Cauchy's interlacing principle, K_r must have at least two negative eigenvalues. We conclude that

$$
\ln K_r = (n-2, 0, 2), \quad \text{if } 3 < r < 5.
$$

In particular, this shows that In $K_r^{(5)} = (3, 0, 2)$ if $3 < r < 5$, and since $K_r^{(5)}$ is nonsingular for $r > 4$, it has the same inertia for all $r > 3$. So, Theorem [1](#page-2-0) is established when $n = 5$. Next consider the case $n = 4$. Let $r > 3$. The matrix $K_r^{(4)}$ has a principal submatrix $K_r^{(3)}$ whose inertia is (1, 0, 2). So, by the interlacing principle $K_r^{(4)}$ has at least two negative eigenvalues. On the other hand, $K_r^{(4)}$ is a principal submatrix of $K_r^{(5)}$ whose inertia is (3, 0, 2). So, again by the interlacing principle $K_r^{(4)}$ has at least two positive eigenvalues. Thus, In $K_r^{(4)} = (2, 0, 2)$ for all $r > 3$, and Theorem [1](#page-2-0) is established for $n = 4$.

This line of reasoning can be continued. Use the space \mathcal{H}_3 at the next stage to go to the interval $5 < r < 7$. Then use the established case $n < 5$ to extend the validity of the theorem to first the case $n = 7$, and then $n = 6$.

3. Remarks

Remark 1. In [\[4,](#page-9-6) Theorem 1.1 (v)] it was shown that all nonzero eigenvalues of L_r are simple. We have not been able to prove a corresponding statement for K_r .

Remark 2. An $n \times n$ real matrix A is said to be *strictly sign-regular* (SSR) if for every $1 \le k \le n$, all $k \times k$ sub-determinants of A are nonzero and have the same sign. If this is true for all $1 \le k \le m$ for some $m < n$, then we say A is in the class SSR_m. See [\[9\]](#page-9-10) for a detailed study of such matrices. In [\[4\]](#page-9-6) it was shown that the matrix L_r is in the class SSR_r if $r = 1, 2, ..., n - 1$, and in the class SSR for all other $r > 0$. This fact was then used to prove the simplicity of nonzero eigenvalues of L_r .

Let $n = 4$ and consider the matrix $K_3(1, 2, 5, 10)$. It can be seen that the leading 2×2 principal subdeterminant of this matrix is -5 , while the determinant of the top right 2×2 submatrix is 35. So, this matrix is not in the class SSR_2 .

Remark 3. Let $p_1 < p_2$ and $q_1 < q_2$ be two ordered pairs of distinct positive numbers such that $\{p_1, p_2\} \cap \{q_1, q_2\}$ is nonempty. With a little work, it can be shown that the determinant of the 2 \times 2 matrix $\left[\frac{p_i^r + q_j^r}{p_i + q_j}\right]$ is positive if $0 < r < 1$ and negative if $r > 1$. Using this, one sees that for $n = 3$ and $r \neq 1$, the matrix K_r is SSR.

Remark 4. There is a curious and intriguing connection between the inertia of K_r and that of another family. For $r \ge 0$, let B_r be the $n \times n$ matrix

$$
B_r = [|p_i - p_j|^r].
$$

This family has been studied widely in connection with interpolation of scattered data and splines. The inertias of these matrices were studied by Dyn, Goodman, and Micchelli in [\[8\]](#page-9-11). In [\[8,](#page-9-11) Theorems 4], they prove results akin to our Theorem [1](#page-2-0) for the matrices B_r . Together, these results imply that

$$
\ln B_r = \ln K_{r+1} \tag{3.1}
$$

for all $r \geq 0$. It will be good to have an understanding of what leads to this remarkable coincidence. By Sylvester's law [\(3.1\)](#page-8-1) is equivalent to saying that B_r and K_{r+1} are congruent. In a recent work [\[10\]](#page-9-12) the authors construct an explicit congruence between the matrices B_r and K_{r+1} . This provides an alternative proof of [\(3.1\)](#page-8-1), and thus also an alternative (but indirect) proof of our theorem.

References

[1] K. M. R. Audenaert, [A characterisation of anti-Löwner functions.](https://doi.org/10.1090/S0002-9939-2011-10935-3) *Proc. Amer. Math. Soc.* 139 (2011), no. 12, 4217–4223 Zbl [1298.15030](https://zbmath.org/?q=an:1298.15030) MR [2823067](https://mathscinet.ams.org/mathscinet-getitem?mr=2823067)

- [2] R. Bhatia, *[Matrix analysis](https://doi.org/10.1007/978-1-4612-0653-8)*. Grad. Texts in Math. 169, Springer-Verlag, New York, 1997 Zbl [0863.15001](https://zbmath.org/?q=an:0863.15001) MR [1477662](https://mathscinet.ams.org/mathscinet-getitem?mr=1477662)
- [3] R. Bhatia, *[Positive definite matrices](https://doi.org/10.1515/9781400827787)*. Princeton Series in Applied Mathematics, Princeton Ser. Appl. Math., Princeton, NJ, 2007 Zbl [1133.15017](https://zbmath.org/?q=an:1133.15017) MR [2284176](https://mathscinet.ams.org/mathscinet-getitem?mr=2284176)
- [4] R. Bhatia, S. Friedland, and T. Jain, [Inertia of Loewner matrices.](https://doi.org/10.1512/iumj.2016.65.5869) *Indiana Univ. Math. J.* 65 (2016), no. 4, 1251–1261 Zbl [1354.15005](https://zbmath.org/?q=an:1354.15005) MR [3549200](https://mathscinet.ams.org/mathscinet-getitem?mr=3549200)
- [5] R. Bhatia and J. A. Holbrook, [Fréchet derivatives of the power function.](https://doi.org/10.1512/iumj.2000.49.1761) *Indiana Univ. Math. J.* 49 (2000), no. 3, 1155–1173 Zbl [0988.47011](https://zbmath.org/?q=an:0988.47011) MR [1803224](https://mathscinet.ams.org/mathscinet-getitem?mr=1803224)
- [6] R. Bhatia and T. Jain, [Inertia of the matrix](https://doi.org/10.4171/JST/91) $[(p_i + p_j)^r]$. *J. Spectr. Theory* 5 (2015), no. 1, 71–87 Zbl [1321.15017](https://zbmath.org/?q=an:1321.15017) MR [3340176](https://mathscinet.ams.org/mathscinet-getitem?mr=3340176)
- [7] R. Bhatia and T. Sano, [Loewner matrices and operator convexity.](https://doi.org/10.1007/s00208-008-0323-3) *Math. Ann.* 344 (2009), no. 3, 703–716 Zbl [1172.15010](https://zbmath.org/?q=an:1172.15010) MR [2501306](https://mathscinet.ams.org/mathscinet-getitem?mr=2501306)
- [8] N. Dyn, T. Goodman, and C. A. Micchelli, [Positive powers of certain conditionally nega](https://doi.org/10.1016/s1385-7258(86)80004-x)[tive definite matrices.](https://doi.org/10.1016/s1385-7258(86)80004-x) *Nederl. Akad. Wetensch. Indag. Math.* 48 (1986), no. 2, 163–178 Zbl [0602.15018](https://zbmath.org/?q=an:0602.15018) MR [849716](https://mathscinet.ams.org/mathscinet-getitem?mr=849716)
- [9] S. Karlin, *[Total positivity.](https://doi.org/10.1017/s0013091500009305)* Vol. I. Stanford University Press, Stanford, CA, and Oxford University Press, London, 1968 Zbl [0219.47030](https://zbmath.org/?q=an:0219.47030) MR [0230102](https://mathscinet.ams.org/mathscinet-getitem?mr=0230102)
- [10] Y. Kapil and M. Singh, [On a Question of Bhatia and Jain III.](https://doi.org/10.1007/s00025-023-02064-5) *Results Math.* 79 (2024), no. 2, article no. 51 Zbl [07791781](https://zbmath.org/?q=an: 07791781) MR [4687516](https://mathscinet.ams.org/mathscinet-getitem?mr=4687516)
- [11] M. K. Kwong, [Some results on matrix monotone functions.](https://doi.org/10.1016/0024-3795(89)90577-6) *Linear Algebra Appl.* 118 (1989), 129–153 Zbl [0679.15026](https://zbmath.org/?q=an:0679.15026) MR [995371](https://mathscinet.ams.org/mathscinet-getitem?mr=995371)
- [12] G. Pólya and G. Szegő, *Problems and theorems in analysis*. Vol. II. German edn., Springer Study Ed., Springer, Berlin etc., 1976 Zbl [0338.00001](https://zbmath.org/?q=an:0338.00001) MR [465631](https://mathscinet.ams.org/mathscinet-getitem?mr=465631)
- [13] T. Sano and K. Takeuchi, [Inertia of Kraus matrices.](https://doi.org/10.4171/jst/431) *J. Spectr. Theory* 12 (2022), no. 4, 1443–1457 Zbl [1519.15018](https://zbmath.org/?q=an:1519.15018) MR [4590009](https://mathscinet.ams.org/mathscinet-getitem?mr=4590009)
- [14] B. Simon, *[Loewner's theorem on monotone matrix functions](https://doi.org/10.1007/978-3-030-22422-6)*. Grundlehren Math. Wiss. 354, Springer, Cham, 2019 Zbl [1428.26002](https://zbmath.org/?q=an:1428.26002) MR [3969971](https://mathscinet.ams.org/mathscinet-getitem?mr=3969971)

Received 2 August 2023; revised 16 October 2023.

Rajendra Bhatia

Department of Mathematics, Ashoka University, Rajiv Gandhi Education City, P.O.Rai, Sonepat, Haryana 131029, India; rajendra.bhatia@ashoka.edu.in

Tanvi Jain

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 7 S. J. S. Sansanwal Marg, New Delhi 110016, India; tanvi@isid.ac.in