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Resonance expansion for quantum walks
and its applications to the long-time behavior

Kenta Higuchi, Hisashi Morioka, and Etsuo Segawa

Abstract. In this paper, resonances are introduced to a class of quantum walks on Z. Res-
onances are defined as poles of the meromorphically extended resolvent of the unitary time
evolution operator. In particular, they appear inside the unit circle. Some analogous properties
to those of quantum resonances for Schrödinger operators are shown. Especially, the resonance
expansion, an analogue of the eigenfunction expansion, indicates the long-time behavior of
quantum walks. The decaying rate, the asymptotic probability distribution, and the weak limit
of the probability density are described by resonances and associated (generalized) resonant
states. The generic simplicity of resonances is also investigated.

1. Introduction

Resonances, a generalization of eigenvalues, are known as characteristic quantities to
observe the long-time behavior in various problems. The real and imaginary parts of
a resonance are interpreted as the rate of oscillations and that of decay of a physical
state, respectively. For example, in the study of Schrödinger equations, the imaginary
part of each resonance gives the reciprocal of the half-life time of an associated state.
In this manuscript, we introduce resonances to the discrete-time quantum walk on Z.
We observe some properties such as local decaying rate and asymptotic behavior of
probability distribution induced by the quantum walk from the resonance expansion,
which is similar to the eigenfunction expansion. We first briefly explain our results
in Section 1.1–1.3, and then mention backgrounds, motivations, and related works in
Section 1.4.
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1.1. Motivating example

Let us introduce a discrete-time quantum walk on Z. For a given initial state  2
H ´ l2.ZIC2/, the state at the time n 2 Z is given by

 n´ U n :

Here, the unitary operator U D SC is defined for a given sequence .C.x//x2Z of
2 � 2 unitary matrices as follows:

.C /.x/ D C.x/ .x/;

.S /.x/ D
�
1 0

0 0

�
 .x C 1/C

�
0 0

0 1

�
 .x � 1/ .x 2 Z;  2 H /:

We call C and S coin and shift, respectively.
As a motivating example, let us start with the simplest case called double barrier

problem (see Figure 1 and Proposition 4.2). Let k be a positive integer and let 0�r�1.
Define Ur D SCr by Cr.x/ D I2 (the identity matrix) for x 2 Z n ¹0; kº and

Cr.0/ D Cr.k/ D
�p

1 � r2 r

�r
p
1 � r2

�
:

Suppose that  .x/ D 0 holds except for a finite number of x 2 Z. Then for the free
quantum walk U0 D S , the first (resp. second) entry of each vector  .x/ 2 C2 shifts
to left (resp. right) each time U0 is applied, and we do not find any non-zero vector in
each compact set after a certain time passing. Contrary, forU1, we find 2k eigenvalues
�1; : : : ; �2k .�j D exp.i�.2j � 1/=2k// and  n varies periodically with its period 2k
(with respect to n� 1) in each compact set. Moreover, the behavior in the compact
set is given by a linear combination of eigenstates.

For the intermediate cases 0 < r < 1, the time evolution is similar to neither of the
above cases. We may find non-zero vector  n.x/ between 0 and k also for large n.
However, there is no eigenvalue of Ur . Moreover,  n is 2k-quasi-periodic in each
compact set. Let J � Z be a large interval of integers. There exists nJ 2 N such that

 nC2k.x/ D �r2 n.x/

for any x 2 J and n � nJ . This behavior is explained in a similar way to that of U1
by generalizing eigenvalues to resonances. In this case, �1; : : : ; �2k given by

�j D r 1k �j D r 1k ei
�.2j�1/
2k .j D 1; 2; : : : ; 2k/

are resonances (in the sense of Definition 1.1). Let 'j be a map Z! C2 defined by

'j .x/ D
�

.1.�1;�1�.x/
p
1 � r2 C 1Œ0;k�1�.x//�

x
j

�r.1ŒkC1;C1/.x/
p
1 � r2 C 1Œ1;k�.x//�

�x
j

�
;
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Figure 1. Time evolution of kU tr .x/kC2 with k D 5,  .1/ D t .0; 1/,  .x/ D 0 .x ¤ 1/.
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Figure 2. Resonant state '1 with r D 2�1=2, k D 10.

with 1A standing for the characteristic function of each subset A of Z (replace A with
A \ Z when A is a subset of R):

1A.x/ D
´
1 when x 2 A;
0 when x … A:

Then 'j satisfies the eigenequation

Ur'j D �j'j :

Since k'j .x/kC2 grows exponentially as jxj ! 1, 'j does not belong to H , and �j
is not an eigenvalue ofUr (see Figure 2). However, in J , each initial state supported
on J is decomposed into a linear combination

 D
2kX
jD1

cj'j C '0;

where c1; : : : ; c2k are constants, and '0 2 H is such that U n'0 D 0 for n� 1. This
implies that in J , we have

 n D U nr  D
2kX
jD1

cj�
n
j 'j
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for large n. This is the resonance expansion of n by resonant states ofUr (Theorem 1
for general cases). In particular, this is quasi-periodic since �2kj D .r1=k�j /2k D�r2.
From this formula, we easily see the decaying rate of the probability measure induced
by  n in J :

k1J nkH D rn=k



1J

2kX
jD1

cj �
n
j 'j





H
� rn=k

� 2kX
jD1

jcj jk1J'j kH
�
DM. /rn=k;

where M. / is a constant determined by  . The decaying rate is the modulus of the
resonances: r1=k D j�j j (Corollary 1.4).

1.2. Definition of the resonance and resonance expansion

Let us make precise and generalize the above argument. The resonances are defined
as poles of the (meromorphically continued) resolvent operator of U . Throughout this
manuscript, we consider finite rank perturbations without any “isolations” on Z.

Assumption 1. The diagonal entries of each C.x/ never vanishes for x 2 Z, and
C.x/ D I2 except a finite number of x 2 Z.

Under Assumption 1, the perturbations

U � U0 D SCp; Cp ´ C � I2
are of finite rank. Since U is unitary, the spectrum is a subset of the unit circle.
Moreover, under Assumption 1, there is no eigenvalue of U , the spectrum of U is
the unit circle, and is absolutely continuous [23, Lemmas 2.1 and 2.2]. We note that
the non-existence of eigenvalues is not necessary for studying resonances. For most
of our results, one may find an analogue even if the diagonal entries of C.x/ van-
ishes for some x 2 Z. However, the unique continuation principle for the equation
.U � �/ D 0 follows from the condition (shown for example by the method of
transfer matrices e.g., proof of Lemma 5.1), and it simplifies arguments.

Let R.�/´ .U � �/�1 for j�j > 1 be the resolvent operator (bounded on H !
H ), and let J � Z be a bounded interval of integers, that is,

J D ¹x 2 ZI minJ � x � maxJ º
D ŒminJ;maxJ � \ Z with �1 < minJ � maxJ < C1:

In this paper, an interval means an interval of integers. For integers a � b, we denote
the interval by

Œa; b�Z ´ Œa; b� \ Z:

As we will see in Proposition 2.1, the cut-off resolvent RJ .�/´ 1JR.�/1J extends
meromorphically to whole � 2 C. Moreover, the poles of RJ and the multiplicity of
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each non-zero pole are invariant with respect to the choice of the interval J containing
the perturbed region J � chs.Cp/. Here, we denote the convex hull in Z of the support
supp.Cp/ D ¹x 2 ZI C.x/ ¤ I2º of Cp by

chs.Cp/´ Œinf supp.Cp/; sup supp.Cp/�Z:

Taking these facts into account, we define resonances in the following way.

Definition 1.1. We say � 2C is a resonance of U if it is a pole of the extended family
¹RJ .�/I � 2 Cº, where J is a bounded interval containing chs.Cp/. We denote the
set of resonances by Res.U /. We define the (algebraic) multiplicity m.�/ of each
non-zero resonance � 2 Res.U / n ¹0º by

m.�/´ rank
I
�

RJ .�
0/d�0;

where the integral runs over a small circle enclosing � counterclockwise.

As an analogue of the L2-theory, we define the vector space of compactly suppor-
ted states Hcomp and that of locally H maps Hloc by

Hcomp ´ ¹ 2 H I supp is compactº;
Hloc ´ ¹ W Z! C2I 1J 2 H for any compact J � Zº:

Note that Hloc coincides with the set of maps from Z to C2: HlocD¹ WZ!C2º. We
have seen in Section 1.1 that for the free quantum walk U0 D S , the motion of each
entry of  is trivial. Let us denote the first and the second entry of a map  2Hloc by
 L and  R, respectively. Then we have

.U0 /.x/ D
�
 L.x C 1/
 R.x � 1/

�
for each x 2 Z. We say  is outgoing if there exists r > 0 such that

 L.x/ D  R.�x/ D 0

holds for any x > r . We also define the incoming support of  2 Hloc by

supp[ D Œinf supp R; sup supp L�Z:

Then  is outgoing if and only if supp[ is compact.
The resolvent operator .U � �/�1 is characterized as the bounded operator which

assigns to each f 2 H the solution  2 H to the equation

.U � �/ D f:
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If �0 is an eigenvalue, a solution belonging to H to the above equation is not unique
since there is an eigenvector  2H , that is, a non-trivial solution to .U � �0/ D 0.
Especially, �0 is a pole of the resolvent operator. Similarly, the extended operator is
characterized as the operator which assigns to f 2Hcomp the outgoing solution of the
above equation (Proposition 2.3 (1)). A complex number � 2 C n ¹0º is a resonance
if and only if there exists an outgoing solution '� to the eigenequation (Proposi-
tion 2.3 (2)). We call '� a resonant state associated with the resonance �. Moreover,
for each non-zero resonance � 2 Res.U / n ¹0º, there exists '�;1; : : : ; '�;m.�/ 2 Hloc

which corresponds to the Jordan chain of an eigenvalue (Proposition 2.3 (3)). They
are also outgoing with N1.supp['�;k/ � chs.Cp/, and we call each linear combina-
tion of them a generalized resonant state. For a non-negative integer r 2 N and an
interval A � Z, we denote by

Nr.A/´ ŒminA � r;maxAC r�Z;

the r-neighborhood of A.
Contrary, the pole at � D 0 is different from the others. The space

VJ .0/´ Ran
I
0

RJ .�/ d� � ¹ 2 HcompI supp � J º

depends on the choice of an interval J . For any '0 2 VJ .0/, we have

U n'0.x/ D 0 on J;

for any n > 2jJ j, where we put jJ j ´ Card.J /, the cardinality of J .

Theorem 1. For any compactly supported state  2Hcomp and any bounded interval
J � .supp [ chs.Cp//, there exist coefficients c�;k .� 2 Res.U / n ¹0º, 1 � k �
m.�// and '0 2 VJ .0/ such that

 D 1J
X

�2Res.U /n¹0º

m.�/X
kD1

c�;k'�;k C '0: (1.1)

Moreover, we have

U n .x/ D
X

�2Res.U /n¹0º

�n
m.�/X
kD1

c�;k

k�1X
lD0

�
n

l

�
��l'�;k�l.x/ on Nn�1�2jJ j.J /;

(1.2)
for n > 2jJ j. Here, the (usual) binomial coefficient is defined for n; l 2 N by�

n

l

�
D nŠ

lŠ.n � l/Š with 0Š D 1:
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Since the number of resonances and their multiplicity is bounded by 2jchs.Cp/j �
2jJ j (Proposition 2.3 (4)), the sums in (1.1) and (1.2) are finite and the binomial
coefficient is well defined. As an analogue of the Schrödinger equation, these exact
formulae may look strange. However, it is natural since the finiteness of the rank of
the perturbation makes this problem essentially finite dimensional.

The latter formula (1.2) is a consequence of the former with Lemma 2.5, which
states that if  2 Hloc is outgoing, then

U n1J D 1Nn.J /U
n (1.3)

holds for any n � 0 and for any interval J containing supp[ [ chs.Cp/.

Remark 1.2. We will see in Theorem 2 that in generic cases, all non-zero resonances
of U are simple. Then formula (1.2) turns into a simpler form

U n .x/ D
X

�2Res.U /n¹0º

�nc�'�.x/ on Nn�1�2jJ j.J /:

Most of the formulae in the next section follow from formula (1.2), and each of them
also turns into a simpler form by using the above formula.

Remark 1.3. The existence of a non-identically vanishing outgoing solution '� to
.U � �/' D 0 for each non-zero resonance implies that the scattering matrix also has
a pole there. In fact, we can equivalently define resonances as poles of the scattering
matrix (Corollary 5.4).

1.3. Long-time behavior

We observe some properties of long-time behavior of quantum walks by using the
resonance expansion (1.2) of Theorem 1.

The decaying rate of the survival probability on each compact interval is given in
terms of the modulus of resonances and their multiplicity.

Corollary 1.4. For any compactly supported initial state 2Hcomp and any bounded
interval J � Z containing supp [ chs.Cp/, there exists a constantM DM. / > 0
such that

k1JU n kH �M
�

n

m0 � 1
�
ƒn0 �Mnm0�1ƒn0; (1.4)

for n large enough, where 0 � ƒ0 < 1 and m0 � 1 stand for the maximal modulus
of resonances and for the maximal multiplicity of non-zero resonance whose modulus
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attains ƒ0:

ƒ0´ max
�2Res.U /

j�j;

m0´ p.ƒ0/;

p.ƒ/´ max¹m.�/I � 2 Res.U / n ¹0º; j�j D ƒº:

Moreover, there also exists M 0 DM 0. / > 0 such that

k1JU n kH �M 0
�

n

p.ƒ. // � 1
�
ƒ. /n �M 0np.ƒ. //�1ƒ. /n; (1.5)

for n large enough. We here put

ƒ. /´ max
²
j�jI

I
�

R.�0/ d�0 ¤ 0
³
� ƒ0: (1.6)

Note that the decaying rate given by (1.4) is independent of the choice of the
initial state  whereas that given by (1.5) is not. In general, the latter is sharper. The
sentence “for n large enough” means that there exists n0 > 0 such that the statement
is true for any n � n0. Estimate (1.4) (resp. (1.5)) holds for any n 2 N if ƒ0 ¤ 0

(resp. ƒ. / ¤ 0).
For a given initial state  2 H and n 2 Z, as usual, let �n W Z¹0;1º ! Œ0; 1� be a

probability distribution defined by

�n.A/´ k k�2H

X
x2A

kU n .x/k2C2 .A � Z/;

and let Xn be the random variable induced by �n. Since U is unitary, �n.Z/ D
k k�2

H
kU n k2

H
D 1 holds for any n. The probability �n.x/ is asymptotic to that

given by resonant states.

Corollary 1.5. For any compactly supported initial state  2 Hcomp and any x 2 Z,
we have

�n.x/Dƒ. /2n



 X
�2Res.U /
j�jDƒ. /

einarg�
m.�/X
kD1

c�;k

k�1X
lD0

�
n

l

�
e�ilarg�'�;k.x/




2
C2
Co.ƒ. /2n/

(1.7)
as n! C1, where ƒ D ƒ. / is given by (1.6). Especially, if the initial state is a
restricted resonant state  D 1J'� with an interval J � chs.Cp/µ Œx�; xC�Z, there
exists constants c˙ such that

�n.x/D
´
c˙j�j2.n�x/ for x 2 Nn.J / n chs.Cp/ with ˙ .x�x˙/ > 0;
j�jnk'�k�2H

k'�.x/k2C2 for x 2 chs.Cp/:
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Remark 1.6. The estimate for the remainder o.ƒ. /2n/ in (1.7) is improved as fol-
lows:

O.n2p.ƒ
0. //�2ƒ0. /2n/; ƒ0. /´ max

²
j�jI j�j < ƒ. /;

I
�

R.�0/ d�0 ¤ 0
³
:

For an initial state  2Hcomp and an interval J �Z containing supp [ chs.Cp/,
the mean of the survival time in J is defined by

� D �.J;  /´
1X
nD1

n�n.N1.J / n J /:

Corollary 1.4 shows the following upper bound of � in terms of resonances.

Corollary 1.7. Suppose k kH D 1 and that there exists at least one non-zero res-
onance. We use the same notations as those in Corollary 1.4. Let n1 � m0 � 1 (resp.
n2 � p.ƒ/� 1) be such that (1.4) (resp. (1.5)) is true for every n� n1 (resp. n� n2).
Then we have the estimate

�.J;  / � min¹n1 CM. /2‡m0�1.ƒ0/; n2 CM 0. /2‡p.ƒ. //�1.ƒ. //º:

where the function ‡k is defined by

‡k.r/´
r2k�1

22k
d2k

dr2k

� r

1 � r2
�
D 2kŠ

22k

kX
lD0

�
2k C 1
2l C 1

�
r2.kCl/

.1 � r2/2kC1 : (1.8)

In particular, when m0 D p.ƒ/ D 1 and n1 D n2 D 0, it turns into

� � min
°M. /2
1 �ƒ20

;
M 0. /2

1 �ƒ. /2
±
:

Remark that identity (1.8) can be shown by the partial fraction decomposition:

d2k

dr2k

� r

1 � r2
�
D 1

2

� 1

.1 � r/2kC1 �
1

.1C r/2kC1
�
D

kX
lD0

�
2k C 1
2l C 1

�
r2lC1

.1 � r2/2kC1 :

Remark 1.8. When the initial state  D 1J'� is a restriction of a resonant state '�
associated with a non-zero resonance � 2 Res.U / n ¹0º, the mean � is explicitly given
by

� D 1

1 � j�j2 D
� M 0. /

1 �ƒ. /2
�2
;

where we have M 0. / D 1, ƒ. / D j�j.
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Figure 3. Evolution of kU t1Œ�1;11�'1k with r D 2�1=2, k D 10.

Corollary 1.9. For any compactly supported initial state  2 Hcomp (suppose
k kH D 1 for simplicity), there exists the weak limit W D w- limn!C1.Xn=n/. Its
density function w can be written in the form

w D c�ı�1 C cCı1; c˙ � 0; cC C c� D 1:

Furthermore, for each n 2 N, we have

jc˙ � k�]˙U n k2H j � k�[U n k2H D O.ƒ. /2n/; (1.9)

where we put �[´ 1 � �]C � �]� with

�
]
C.x/D

8̂̂<̂
:̂
�
0 0

0 1

�
x > max chs.Cp/;

0 otherwise;

�]�.x/D

8̂̂<̂
:̂
�
1 0

0 0

�
x < min chs.Cp/;

0 otherwise:

Especially, if  D 1J'� with a resonant state '� associated with a non-zero reson-
ance � and an interval J � Z containing supp [ chs.Cp/, we have

c� D a�

a� C aC ; cC D aC

a� C aC
with

a� D j'�.minJ /j2; aC D j'�.maxJ /j2:
Note that .1��[/ is outgoing with supp[.1��[/ � chs.Cp/ for any 2Hloc.
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1.4. Background, motivation, and related works

Quantum walks have been studied under various motivations, such as spectral graph
theory [8], quantum information theory [26], and probability theory [15]. One can also
find their experimental implementations in quantum optics [17]. Recently, discrete-
time quantum walks are also studied as discrete analogue of the scattering of Schrö-
dinger equations [6, 9, 18, 27, 30]. From the viewpoint of probability theory, quantum
walks are seen as a “quantum version” of random walks. As we have seen in
Section 1.3, the resonances are deeply connected with the long-time behavior of
the quantum walk. There are also many attempts to consider suitable models which
describe diverse quantum effects. As one of such attempts, non-unitary time evolu-
tion (corresponding to a non-hermitian, non-self-adjoint Hamiltonian) is introduced
for quantum walks to describe open systems [20]. In the study of quantum mech-
anics, resonances and associated resonant states are one of main objects to analyze
non-hermitian systems, especially the particle decay [21]. At least for our present set-
ting, we can observe the decaying rate in terms of resonances also for quantum walks
(Corollary 1.4). We also mention that there are many similarity with the problems
of finite absorbing quantum walks (see e.g., [15, 16]). Resonances are equivalently
defined as eigenvalues of a matrix of a finite size (see Corollary 2.7).

Resonances have been studied in many branches of mathematics, physics, and
engineering (see the survey [34] and references therein). Among the problems in
which resonances are studied, many quantities of quantum walks are concretely com-
putable since both the space and time are discrete. We can chase by a concrete and
simple computation the dynamics of a quantum walk which is interpreted as the prob-
ability distribution of a quantum particle. We expect that descriptions of quantum
effects by such a simple model will clarify what the essential property which causes
the effect is. For example, Feynman and Hibbs introduced the Feynman checkerboard
to explain their idea of the path integral [7]. The Feynman checkerboard is considered
as one of primitive models of quantum walks (see e.g., [19] for another primitive
model). Resonances for discrete models are also studied for other discrete problems
such as discrete Laplacians [2,13], Jacobi operators [10], and discrete-time dynamical
system [1] (discrete version of the Pollicott–Ruelle resonances [25, 28]) .

We consider the unitary time evolution operator although the generating Hamilto-
nian is usually considered in various situations of studying resonances. The Hamilto-
nian generating quantum walk is given [4], but at least for position dependent quantum
walks, the unitary operator seems to be easier to see the properties. The continuation
from outside the unit circle j�j > 1 to j�j � 1 for our spectral parameter � D e�i�
for the unitary time-evolution operator corresponds to that from the upper half plane
Im � > 0 to Im � � 0 for the spectral parameter (or its square root) � of the Hamilto-
nian. Indeed, various objects and methods in the scattering theory are rehashed in
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the unitary framework (see e.g., [27, 29, 32]), especially in the study of the scattering
theory on quantum walks [6, 14, 18, 22, 27, 30]. We also mention that Kato and Kur-
oda [12] studied an abstract theory of wave operators for the discrete-time evolution
given by a unitary operator in 70’s.

The resonance expansion is a typical motivation to study resonances also in other
settings (e.g., [3,24,31] for wave and Schrödinger equations, [11,33] for Anosov flows
where these results are essential to show the validity of the expansion [34, Theorem
19]). Our resulting expansion (Theorem 1) is closer to that for Schrödinger operat-
ors in the sense that the time evolution is directly expanded, whereas the correlation
is expanded in that for Anosov flows. Since the number of resonances in our setting
is finite, our formula is much simpler than them. The authors will introduce an ana-
logous method to the complex scaling in the other manuscript which allows to study
resonances for the case with a perturbation not necessarily having a finite support [9].
Another reason of the simplicity is due to formula (1.3) on the time evolution of outgo-
ing states. In general, the discontinuity of the indication function makes some “noise.”
The formula is not true even for quantum walks finitely perturbed from zU0 ´ SC0

with some position independent (unitary) non-diagonal coin C0.
We also show the generic simplicity of resonances (Theorem 2). As we have seen

before, many formulae are reduced to simpler forms when every resonance is simple.
In the case of Laplacian, an analogue to this theorem is shown in [5, Theorem 2.25]
by employing the Grushin problem to reduce locally the distribution of resonances to
that of zeros of a holomorphic function. In our setting, resonances are just zeros of a
polynomial appearing in the transfer matrix. We can directly apply the Rouché-type
formula (Lemma 5.6).

1.5. Plan of the paper

In the next section, we prove the main theorem on the resonance expansion (The-
orem 1) and preliminarily propositions to define resonances and to show the properties
of the extended family of cut-off resolvent (especially, the existence of generalized
resonant states). Section 3 is devoted to the proofs of the corollaries on the long-time
behavior of quantum walks stated in Section 1.3. We then see the distribution, the mul-
tiplicity, and their symmetries of resonances in Section 4. We finally show the generic
simplicity of resonances in Section 5 by using characterizations of resonances by the
transfer matrix or the scattering matrix.
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2. Proof of the resonance expansion

In this section, we show that resonances are well defined under Assumption 1 and
prove our main theorem (Theorem 1).

2.1. Meromorphic continuation of the resolvent

We define resonances as poles of continued resolvent. We first prove the following
proposition. Recall that U is unitary and that each � 2 C with j�j > 1 belongs to the
resolvent. For such �, let R.�/´ .U � �/�1 be the resolvent operator on H .

Proposition 2.1. Under Assumption 1, the followings hold.

(1) For any bounded interval J � Z, the holomorphic family ¹1JR.�/1J I
j�j > 1º of operators on H can be extended meromorphically to whole C.

(2) For any choice of non-empty J , � D 0 is a pole of the extended operator.

(3) The non-zero poles and their multiplicity are invariant to the choice of J �
chs.Cp/.

We formally interpret Proposition 2.1 (1) and (3) as meaning that R.�/ is contin-
ued meromorphically to C n ¹0º as a family of operators from Hcomp to Hloc. In fact,
the linear mapR.�/ WHcomp!Hloc is well defined for � 2C nRes.U /. Let belong
to Hcomp and let J1; J2 be intervals containing chs.Cp/ [ supp . Then we have

RJ1.�/ D RJ2.�/ on J1 \ J2: (2.1)

This is true since for each x 2 J1 \ J2, RJj .�/ .x/ is a meromorphic function with
respect to � .j D 1; 2/. We see first that Identity (2.1) holds for j�j> 1, and it extends
by the identity theorem. However, the notion of analyticity is well defined only for
families of operators between Banach spaces, and “a meromorphic family of operators
Hcomp ! Hloc” is not precise.

To prove Proposition 2.1, we prepare a lemma. Recall that for � 2 C with j�j > 1,
the resolvent operator R0.�/ D .U0 � �/�1 for the free quantum walk U0 D S is
given by

R0.�/ .x/ D �
C1X
yD0

��y�1
�
 L.x C y/
 R.x � y/

�
: (2.2)

Lemma 2.2. The resolvent operator R0.�/ is bounded operator on H satisfying

kR0.�/kH!H � j�j�1.1 � j�j�2/�1=2 for j�j > 1: (2.3)
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Let J be a bounded interval, then the operator 1JR0.�/1J is extended meromorph-
ically to whole C. Its unique pole is � D 0. The norm is estimated as

k1JR0.�/1J k �
p
jJ jj�j�jJ j�1 for 0 < j�j � 1: (2.4)

Proof. For any  2 H , we have

kR0.�/ k2H �
X
x2Z

C1X
yD0

j�j�2y�2.j L.x C y/j2 C j R.x � y/j2/

D k k2H
C1X
yD0

j�j�2y�2;

and (2.3) follows. For 0 < j�j � 1, the infinite sum in the right-hand side of (2.2) does
not converge in general. It becomes a finite sum after cut-off, and we have

k1JR0.�/1J k2H �
X
x2J

X
y�0

j�j�2y�2.j1J L.x C y/j2 C j1J R.x � y/j2/:

By a change of the variable, we obtainX
x2J

X
y�0

j�j�2y�2j1J L.x C y/j2 D
X
z2J

j L.z/j2
X

y�0; z�y2J

j�j�2y�2

� jJ jj�j�2jJ j�2
X
z2Z

j L.z/j2:

This with a symmetric estimate for the other termX
x2J

X
y�0

j�j�2y�2j1J R.x � y/j2

implies (2.4).

The meromorphic continuation is due to the analytic Fredholm theory. We also
use the Neumann series argument with the estimate given in Lemma 2.2.

Proof of Proposition 2.1. Note that the resolvent operator R.�/ D .U � �/�1 of the
unitary operator U on H is well defined for j�j > 1. According to the standard
resolvent equation, for j�j > p5, R.�/ is expressed as

R.�/ D R0.�/ŒI C .U � U0/R0.�/��1; (2.5)

since U � U0 and R0.�/ are bounded operators with their norm bounded by 2 and
j�j�1.1 � j�j�2/�1=2, respectively (see (2.3)).
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Under Assumption 1, for any interval J containing chs.Cp/, we have

.I � 1J /.U � U0/ D 0

and
ŒI C .U � U0/R0.�/.I � 1J /�

�1 D I � .U � U0/R0.�/.I � 1J /:

This with the factorization

I C .U � U0/R0.�/ D
�
I C .U � U0/R0.�/.1 � 1J /

��
I C .U � U0/R0.�/1J

�
implies

ŒI C .U �U0/R0.�/��1D ŒI C .U �U0/R0.�/1J ��1ŒI � .U �U0/R0.�/.I � 1J /�:

(2.6)
Combining (2.5) and (2.6), we obtain the following representation of the resolvent

R.�/ D R0.�/ŒI C .U � U0/R0.�/1J ��1ŒI � .U � U0/R0.�/.I � 1J /�:

We see that for any intervals J1 and J2 � N1.J [ J1/,´
.I � 1J[J1/ŒI � .U � U0/R0.�/.I � 1J /�1J1 D 0;
.I � 1J2/ŒI C .U � U0/R0.�/1J ��11J[J1 D 0;

for j�j >
p
5: (2.7)

The second one follows from the Neumann series representation

ŒI C .U � U0/R0.�/1J ��1 D
X
k�0

.�.U � U0/R0.�/1J /k : (2.8)

According to Lemma 2.2, the cut-off free resolvent 1JR0.�/1J is a meromorphic
family of operators for �2C. The operator .U �U0/R0.�/1J D .U �U0/1JR0.�/1J
is of finite rank, in particular compact, and hence the analytic Fredholm theory (see
e.g., [5, Theorem C.8 and C.10]) shows that ŒI C .U � U0/R0.�/1J ��1 is extended
meromorphically to � 2C. By the identity theorem, the properties of the support (2.7)
still hold after the extension. Finally, the cut-off resolvent

1J1R.�/1J1 D 1J1R0.�/1J2 ŒI C .U � U0/R0.�/1J ��1
� 1J[J1 ŒI � .U � U0/R0.�/.I � 1J /�1J1

is extended meromorphically to � 2 C. In addition, the poles other than � D 0 of
this operator come from ŒI C .U � U0/R0.�/1J ��1. The Neumann series represent-
ation (2.8) shows that for any two intervals J3 and J4 containing J , we have

ŒI C .U � U0/R0.�/1J ��1.1J3 � 1J4/ D 1J3 � 1J4 for j�j >
p
5:

This invariance is true for all � 2 C. Therefore, the only dependence on the choice of
interval larger than J of the poles is the order of the pole at � D 0.
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2.2. Properties of the outgoing resolvent and resonant states

We observe some properties of the continued resolvent. It is characterized as the oper-
ator assigning the unique outgoing solution for the equation

.U � �/ D f (2.9)

to each f 2 Hcomp (Proposition 2.3 (1)). Under Assumption 1, the above equation is
trivial for jxj � 1, and for each solution  , there exist four constants c]

˙
and c[

˙
such

that

 .x/ D

8̂̂̂̂
<̂
ˆ̂̂:
�
c]��

x

c[��
�x

�
D c]�‰L.�; x/C c[�‰R.�; x/ for � x � 1;�

c[C�
x

c
]
C�
�x

�
D c]C‰R.�; x/C c[C‰L.�; x/ for C x � 1:

(2.10)

Here, ‰L.�; �/ and ‰R.�; �/ are left and right going solution to the non perturbed
equation .U0 � �/f .�; �/ D 0 defined by

‰L.�; x/ D
�
�x

0

�
; ‰R.�; x/ D

�
0

��x

�
:

More precisely, ˙x � 1 means outside the convex full of supp f [ supp.Cp/.
In this case,  is outgoing if and only if c[C D c[� D 0. In particular, for j�j > 1,
1.�1;0�‰L.�; �/ and 1Œ0;C1/‰R.�; �/ belong to H . Then the outgoing condition is
also equivalent for  to belonging to H .

Proposition 2.3. Under Assumption 1, the followings are true.

(1) For any � 2 C n Res.U / and for any ' 2 Hcomp,  ´ R.�/' is the unique
outgoing solution to (2.9). In particular,R.�/' …H for j�j<1. The incoming
support supp[.R.�/'/ is a subset of the convex hull of the union

N1.supp'/ [ supp.Cp/: (2.11)

(2) A complex number � 2 C n ¹0º is a resonance if and only if there exists a
non-identically vanishing, (unbounded) outgoing solution '� 2 Hloc to

.U � �/'� D 0: (2.12)

(3) There exists a tuple .'�;k/kD1;2;::: ;m.�/ of outgoing maps for each non-zero
resonance � such that

.U � �/'�;k D '�;k�1; N1.supp['�;k/ � chs.Cp/ .1 � k � m.�//;
holds with '�;0 D 0. In particular, '�;1 D '� is unique up to a multiplicative
constant (i.e., the geometric multiplicity of each non-zero resonance is one).
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(4) The number of non-zero resonances is bounded by 2.jchs.Cp/j � 1/, where
we count each resonance � the same time as its multiplicity m.�/.

Proof. (1) Let f 2 Hcomp and j�j > 1. Note that for j�j > 1 and for a solution  
to (2.9), the outgoing condition is equivalent to that  belongs to H . By definition,
we have

.U � �/R.�/f D f; .R.�/f /L.xC/ D .R.�/f /R.x�/ D 0

for x˙ 2 Z such that Œx�; xC�Z � N1.suppf / [ chs.Cp/. These identities extend to
all � by analyticity. For the uniqueness, let �0 2 C n Res.U /. It suffices to show the
identity

 D R.�0/.U � �0/ (2.13)

for any  2 Hloc such that there exist constants c˙ such that

 .x/ D
´
c�‰L.�0; x/ for x � �1;
cC‰R.�0; x/ for x � 1:

(2.14)

See (2.10) for the definition of ‰L and ‰R. In fact, let  1;  2 be two outgoing solu-
tions to (2.9) for f 2 Hcomp. Then it follows that

R.�0/.U � �0/ 1 D R.�0/.U � �0/ 2 D R.�0/f:

This with (2.13) implies the uniqueness:  1 D  2.
To show the identity (2.13), we decompose given  of the form (2.14) into three

parts,
 D 1.�1;�r�1� C 1Œ�r;r� C 1ŒrC1;C1/ ;

where r � 1 is so taken that Œ�r; r�Z � N1.chs.Cp// and

1.�1;�r�1� .x/ D c�1.�1;�r�1�‰L.�0; x/;

1ŒrC1;C1/ .x/ D cC1ŒrC1;C1/‰R.�0; x/;

holds with some constants c˙ for any x 2 Z. For � 2 C with j�j > 1, we have

R.�/.U � �/1Œ�r;r� D 1Œ�r;r� ;

R.�/.U � �/1.�1;�r�1�‰L.�; � / D 1.�1;�r�1�‰L.�; � /;
R.�/.U � �/1ŒrC1;C1/‰R.�; � / D 1ŒrC1;C1/‰R.�; � /:

Since .U ��/1Œ�r;r� , .U ��/1.�1;�r�1�‰L.�; � /, and .U ��/1ŒrC1;C1/‰R.�; � /
are compactly supported, the above identities are valid for � at which R.�/ is holo-
morphic, in particular at � D �0. Then (2.13) follows from this with the linearity.
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(2) Let �0 2 Res.U / n ¹0º and �´
p
�. By the meromorphic continuation, there

existK � 1, finite rank operators A1; : : : ; AK , and a holomorphic family A0.�/ such
that

R.�2/ D
KX
kD1

Ak

.�2 � �0/k
C A0.�2/;

holds for � near
p
�0. By the residue theorem, we have

A1 D �…�0 ´
1

2�i

I
�0

R.�/d� D 1

2�i

I
p
�0

R.�2/2�d�;

and
1

2�i

I
p
�0

R.�2/d� D
KX
kD1

.�1/k�1 .2k � 2/Š
.k � 1/Š .2�0/

�2kC1Ak :

Since .U � �2/R.�2/ D IdHcomp near � D p�0, modulo terms holomorphic nearp
�0 we have

0 � .U � �2/R.�2/ �
KX
kD1

.U � �0/Ak � AkC1
.�2 � �0/k

;

where we use the convention that AKC1 D 0. It follows that AkC1 D .U � �0/Ak for
k D 1; : : : ; K. As a consequence, we obtain

.U � �0/K…�0 D �.U � �0/KA1 D 0:

Since the operator U � �0 commutes with …�0 , U � �0 is nilpotent on Ran…�0 .
Hence, we can express it by a Jordan normal form. There exists a basis ¹'l;j I 1 � l �
L; 1 � j � klº of Ran…�0 such that

PL
lD1 kl D K and

.U � �0/'l;j D 'l;j�1; .1 � j � kl ; 'l;0 D 0/

holds for each l . Since 'l;j D R0.�0/.'l;j�1 � .U � U0/'l;j /, each 'l;j belongs to

jX
kD1

R0.�0/
k.Hcomp/ D

° jX
kD1

R0.�0/
k kI  k 2 Hcomp

±
:

In particular, 'l;1 2 R0.�/.Hcomp/ implies that 'l;1 is an outgoing solution to an
equation of type (2.9) with U D U0. This with the uniqueness of the continuation of
solutions to .U � �/ D 0 implies that 'l;1 is unique up to a multiplicative constant.
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Therefore, there is only one Jordan chain, i.e., L D 1, and k1 D K D dim Ran…�0 .
This also proves (3) with

m.�0/ D rank
I
�0

R.�/d� D rank…�0 D K:

The inclusion of the incoming support follows from U'l;j D �0'l;j C 'l;j�1 by
an induction with respect to j . Suppose that there existed x0 � min chs.Cp/ such
that 'R

l;j
.x0/ ¤ 0. Then it would follow from the above identity and .U'l;j /R.x0/ D

'R
l;j
.x0 � 1/ that

'Rl;j .x0 � 1/ D �0'Rl;j .x0/C 'Rl;j�1.x0/:

The induction hypothesis 'l;j�1.x0/D 0 would imply that 'R
l;j
.x0 � 1/¤ 0, and 'l;j

is not outgoing. This is a contradiction.
Conversely, suppose that there exists a resonant state '�0 for �0 2 C n ¹0º. The

uniqueness (2.13) shows

'�0 D R.�/.U � �/'�0 D .�0 � �/R.�/'�0 ;

for � 2 C n Res.U /, andI
�0

R.�/'�0d� D
I
�0

d�

�0 � �'�0 D �2�i'�0 :

(4) Since the resolvent equation .�0 � �/R.�/R.�0/DR.�0/�R.�/ extends ana-
lytically to � 2 C n Res.U /, for any resonances �1; �2 2 Res.U / with �1 ¤ �2, the
projections �.2�i/�1 H

�j
RJ .�

0/d�0 .j D 1; 2/ are mutually orthogonal. Thus, by
Cauchy’s integral theorem, we have

rank
I
j�jD1

RJ .�/d� D
X

�2Res.U /

rank
I
�

RJ .�
0/d�0

D rank
I
0

RJ .�/d�C
X

�2Res.U /n¹0º

m.�/:

Since RJ .�/ is analytic for j�j > 1, we also have rank
H
j�jD1

RJ .�/ d� D rank1J D
2jJ j. Recall that m.�/ is independent of the choice of J � chs.Cp/. Let us take
J D chs.Cp/. We will see in Remark 2.8 that rank

H
0
RJ .�/d� � 2. This ends the

proof.
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2.3. Time evolution of resonant states

The time evolution of restricted (generalized) resonant states is given by the following
proposition.

Proposition 2.4. Let � 2 C n ¹0º be a resonance. For any interval J � chs.Cp/ and
n 2 N, we have

U n.1J'�/ D �n.1Nn.J /'�/;

for an associated resonant state '�, and

U n.1J'�;k/ D �n
�
1Nn.J /

k�1X
lD0

�
n

l

�
��l'�;k�l

�
;

for a generalized resonant state '�;k , where .'�;k/kD1;2;::: ;m.�/ forms a Jordan chain.
Here we use the convention . nl / D 0 for n < l .

Proposition 2.4 is a straightforward consequence of the following lemma with
the fact that each generalized resonant state is outgoing with its incoming support
contained in chs.Cp/ (Proposition 2.3 (3)).

Lemma 2.5. For any outgoing map  2Hloc and for any interval J � Z containing
supp[ [ chs.Cp/, we have

U 1J D 1N1.J /U : (2.15)

Proof. By definition, for each x 2 Z, .U /.x/ depends only on  .x � 1/ and
 .x C 1/. This implies (2.15) away from the extremal points of J µ Œa; b�Z, namely
for x 2Z n ¹a� 1;a;b;bC 1º. Recall that the dependence on .x � 1/ and .xC 1/
is shown explicitly by

.U /.x/ D
�
1 0

0 0

�
C.x C 1/ .x C 1/C

�
0 0

0 1

�
C.x � 1/ .x � 1/:

Note that a � 1 … J implies that

C.a � 2/ D C.a � 1/ D I2

and
 R.a � 2/ D  R.a � 1/ D 0:

As a consequence, for x 2 ¹a � 1; aº, we have

.U /.x/ D
�
1 0

0 0

�
C.x C 1/ .x C 1/ D .U 1J /.x/:
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We also obtain .U /.x/ D .U 1J /.x/ for x 2 ¹b; b C 1º in the same way. In par-
ticular, this also holds for x D a � 1 and x D b C 1 even though they do not belong
to J but N1.J /.

2.4. Resonance expansion

The following lemma shows that the non-zero resonances are eigenvalues of a finite
rank operator.

Lemma 2.6. For any interval J � chs.Cp/, we have

RJ .�/ D .1JU 1J � �/�1 for � 2 C n Res.U /:

Proof. For � 2 C n Res.U /, one has

1J D 1J .U � �/R.�/1J D 1J .U � �/1JR.�/1J C 1J Œ1J ; U �R.�/1J :

It suffices to show that the second term of the right-hand side is zero:

1J Œ1J ; U �R.�/1J D 0: (2.16)

According to (2.11), R.�/1J is outgoing with supp[.R.�/1J / � N1.J / for any
 2 Hloc. Then Lemma 2.5 implies that

Œ1J ; U �R.�/1J D .1N1.J / � 1J /UR.�/1J :

Clearly, this is supported only on N1.J / n J , and (2.16) follows.

Corollary 2.7. A complex number � 2 C is a resonance of U if and only if it is an
eigenvalue of 1JU 1J . For � 2 Res.U /, the generalized eigenspace associated with
the eigenvalue � of 1JU 1J is given by the range

VJ .�/´ Ran
I
�

RJ .�
0/d�0

D ¹1J'I ' is a generalized resonant state associated with �º:
In particular, a state  2 H with supp � J belongs to VJ .0/ if and only if

U n .x/ D 0 on J; (2.17)

for any n > 2jJ j.
Proof of Theorem 1. According to Corollary 2.7, the resonance expansion (1.1) is
nothing but the expansion by (generalized) eigenvectors. The time evolution (1.2)
is just a summation of that of each generalized resonant states given by Proposi-
tion 2.4.
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Remark 2.8. We have dimVJ .0/ � dimVchs.Cp/.0/ � 2 for any J � chs.Cp/. It is a
consequence of the fact that

detCC D detC� D 0;

with

CC´
�
1 0

0 0

�
C.max chs.Cp//; C�´

�
0 0

0 1

�
C.min chs.Cp//:

Let v˙ be an eigenvector associated with the zero eigenvalue of C˙. Then

' ´ cC1max chs.Cp/v
C C c�1min chs.Cp/v

�

satisfies 1JU 1J' D 0 for any constants c˙.

Remark 2.9. The bound n > 2jJ j for (2.17) is optimal. For example, let C.0/ be
the only non-diagonal coin, and let J D Œ0; N �Z for some N � 1. Then for the state
 .x/ D t .ıN;x; 0/, we have

1JU
n 6� 0 .n � 2N/; 1JU

n � 0 .n > 2N/:

Remark that VJ .0/D ¹
P2N
nD0 cnU

n C c �I cn; c 2Cº and dimVJ .0/D 2.jJ j C 1/
(see also Proposition 4.1 for the non-existence of non-zero resonancs).

3. Proof of long-time behavior

We prove the corollaries stated in Section 1.3. They follows almost trivially from the
resonance expansion (Theorem 1).

By applying the triangular inequality to the resonance expansion (1.2), we obtain
the decaying rate of Corollary 1.4. Note that for �0 2 Res.U / n ¹0º, the operator

� 1

2�i

I
�0

R.�/d�

is the projection to the space of generalized resonant states associated with �0 (see
proof of Proposition 2.3 (2)).

Corollary 1.5 is also a straightforward consequence of the resonance expansion.
Since each resonant state is outgoing solution to the eigenequation (2.12) (see defin-
ition and Proposition 2.3 (2)), its behavior outside chs.Cp/ is given by (2.10) with
c[
˙
D 0.
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Corollary 1.7 follows from the estimates (1.4) and (1.5) in Corollary 1.4. Indeed,
we have

� D
1X
nD1

n�n.N1.J / n J / D
1X
nD1

n.k1JU n�1 k2H � k1JU n k2H /

D
1X
nD0

k1JU n k2H :

We have k1JU n k2H � 1 for any n 2 N. By applying (1.4), we have

M�2
1X

nDn1

k1JU n k2H �
1X

nDn1

�
n

m0 � 1
�2
ƒ2n0

� ƒ
2.m0�1/�1
0

22.m0�1/
.
d2.m0�1/

dr2.m0�1/

1X
nDn1

r2nC1/
ˇ̌̌
rDƒ0

:

The required estimate follows from this with

1X
nDn1

r2nC1 D r2n1C1

1 � r2 D �
n1X
lD1

r2l�1 C r

1 � r2 :

Proof of Corollary 1.9. Since the initial state  has a compact support, so does U n 
with supp.U n / � Nn.supp /. This implies that for any � > 0, there exists n� 2 N

such that
U n .x/ D 0

holds for any n � n� and any x 2 Z n Œ�.1 C �/n; .1 C �/n�. Hence, the density
function w satisfies

suppw � Œ�1; 1�: (3.1)

Conversely, inside Œ�n; n�Z, we have the resonance expansion. It also shows for any
initial state  2 Hcomp that there exists n. / 2 N such that U n is outgoing with
N1.supp[.U n //� chs.Cp/ for any n� n. /. This with Lemma 2.5 implies that for
any interval J � chs.Cp/ and n � n. /, we have

k1Nn�n. /.J/U
n kH D kU n�n. /.1JU n. / /kH D k1JU n. / kH : (3.2)

On the other hand, the time evolution outside chs.Cp/ is trivial:

U nCk .x/ D U n .x � k/ for k � 0; ˙x � 1; .x � k/ … chs.Cp/:

Then for any � > 0, the values

k1Œ.1��/n;.1C�/n�U n kH and k1Œ�.1C�/n;�.1��/n�U n kH
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monotonically increasing with respect to n � n. /. In fact, we have

k1Œ.1��/.nCk/;.1C�/.nCk/�U nCk kH D k1Œ.1��/.nCk/;.1C�/.nCk/�U n .� � k/kH
� k1Œ.1��/n;.1C�/n�U n kH ;

since Œ.1 � �/nC k; .1C �/nC k� � Œ.1 � �/.nC k/; .1C �/.nC k/�.
By combining (3.2) and the monotonicity, we obtain

k1Œ�.1��/n;.1��/n�U n k ! 0;

as n!C1. This with (3.1) implies

suppw � ¹˙1º;

and in particular, the existence of c˙ in Corollary 1.9.
The equality

�[U n D 1chs.Cp/U
n 

holds for n � n. /. Thus, the estimate of (1.9) follows from Corollary 1.4.

4. Distribution of resonances

In the previous sections, we have seen the usefulness of resonances for quantum
walks. In this section, we study where the resonances distribute and when they have
multiplicity.

4.1. Concrete examples

We start with simple models such that all the resonances are computable.

Proposition 4.1. If the number of non-diagonal coins

Card¹x 2 ZI C.x/ is not diagonalº

is strictly less than two, then there is no resonance other than zero: Res.U / D ¹0º.
Proof. In this setting, there is no outgoing solution (except the zero function) to (2.12)
for any �2C. This fact can be shown by using the method of transfer matrices (in par-
ticular, the transfer matrix T�.x/ introduced in (5.2) is diagonal if C.x/ is diagonal).
Then the statement follows from Proposition 2.3 (2).

According to Proposition 4.1, the double barrier problem is the simplest case with
non-zero resonances. The distribution of resonances reflects a quasi-periodic dynam-
ics of the quantum walk.
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Proposition 4.2. Assume that C.x/ is a diagonal matrix for x 2 Z n ¹0;N º for some
N 2N n ¹0º. Then there exists a constant ˛ 2 C such that for any initial state  2H

with supp[ � Œ1; N � 1�Z, one has

 nC2N .x/ D ˛ n.x/ for any n 2 N; x 2 Œ0; N �Z:

The set of resonances Res.U / consists of 0 and the 2N -roots of �2N D ˛, which are
simple.

Without loss of generalities, we can assume that chs.Cp/ D Œ0; N �Z (see Lemma
5.1).

Remark 4.3. The constant ˛ is the “probability amplitude” associated with the
dynamics. Let  .1/D t .0; 1/ and  .x/D 0 for x 2Z n ¹1º. Then for 0� n�N � 1,
we have U n .nC 1/ D t .0; an/ and  .x/ D 0 for x 2 Z n ¹nC 1º with

anC1 D anc22.n/ a0 D 1; (4.1)

where cjk.x/ stands for the .j; k/-entry of C.x/. After that, for N � n � 2N � 1, we
have U n .N � n� 1/D t .bn; 0/, U n .x/D 0 for x 2 Z n ¹N � n� 1; nC 1º with

bnC1 D bnc11.N � n/; bN D aN�1c12.N /: (4.2)

Then at the time 2N , we have

U 2N .1/ D
�
0

˛

�
; U 2N .x/ D 0 x 2 Z n ¹˙1º with ˛ D b2N�1c21.0/

Therefore, we have

˛ D c21.0/c12.N /
N�1Y
xD1

detC.x/: (4.3)

Let � be one of the roots of �2N D ˛, where ˛ is given by (4.3). Put

'�.x/´
�

1.�1;N�1�.x/�
x�2N b2N�1�x

1Œ1;C1/.x/�
�xax

�
;

where an and bn are defined by (4.1) and by (4.2), respectively. We can easily see that
'� is a resonant state associated with �.

Proof. According to Lemma 2.6, the non-zero resonances of U are the non-zero
eigenvalues of a 2N � 2N -matrix. It is not difficult to see that the characteristic poly-
nomial associated with this matrix is factorized as

�2.�2N � ˛/;

with the constant ˛ defined by (4.3). This implies the above proposition.
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As we see in Proposition 4.2, non-zero resonances in the double barrier problem
are simple. We give an example of multiple resonances in the triple barrier problem.

Proposition 4.4. Assume that C.x/ D I2 holds for x … ¹0;˙1º. Then each non-zero
resonance is a root of the equation

�4 � .c21.0/c12.1/C c21.�1/c12.0//�2 � c21.�1/c12.1/ detC.0/ D 0; (4.4)

where cjk.x/ stands for the .j; k/-entry of C.x/. Its multiplicity coincides with that
as a root. In particular,

˙ 1p
2
.c21.0/c12.1/C c21.�1/c12.0//1=2;

are non-zero resonances of multiplicity two if and only if

.c21.0/c12.1/C c21.�1/c12.0//2 C 4c21.�1/c12.1/ detC.0/ D 0: (4.5)

Proof. This proposition is proved also by a direct computation of the roots of the
characteristic polynomial. Let J D Œ�1; 1�Z D chs.Cp/. Then 1JU 1J is identified
with the matrix

EJ ´

0BBBBBBB@

0 0 c11.0/ c21.0/ 0 0

0 0 0 0 0 0

0 0 0 0 c11.1/ c21.1/

c21.�1/ c22.�1/ 0 0 0 0

0 0 0 0 0 0

0 0 c21.0/ c22.0/ 0 0

1CCCCCCCA ;

in the sense that we have0B@1JU 1J .�1/
1JU 1J .0/

1JU 1J .1/

1CA D EJ
0B@ .�1/ .0/

 .1/

1CA for any  2 Hloc:

Then the characteristic polynomial of this matrix is �2 times (4.4).

Remark 4.5. Let us simplify the condition (4.5). The modulus of the two terms
necessarily coincide when the equality holds:

jc12.0/j D 2
p
jc21.�1/c12.1/j

jc21.�1/C c12.1/.c21.0/=c12.0//j :

Hence, by putting rx ´ jc12.x/j D jc21.x/j, they need to satisfy

r0 � 2
p
r�1r1

r�1 C r1 :
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It is required that r�1 ¤ r1 since the right-hand side is equal to one when r�1 D r1
and r0 < 1.

Let us restrict ourselves to the case with c11.x/D c22.x/D
p
1 � r2x and c12.x/D

�c21.x/ D rx . Then the condition (4.5) turns into

r0 D 2
p
r�1r1

r�1 C r1 :

For any r�1 ¤ r1, the right-hand side is between 0 and 1. The following gives an
example:

r�1 D 3

4
; r0 D 12

13
; r1 D 1

3
:

4.2. Symmetries

The distribution of resonances is symmetric in the following sense.

Proposition 4.6. If � is a resonance of U , then �� is also a resonance andm.��/D
m.�/. In general, for any k 2 N n ¹0º satisfying supp c12 � kZ, we have

m.eil�=k�/ D m.�/ .l D 0; 1; 2; : : : ; 2k � 1/

for any � 2 C. Moreover, if '� is a (generalized) resonant state associated with � 2
Res.U / n ¹0º, then ' 2 Hloc given by

'.x/´
�
eil�x=k 0

0 e�il�x=k

�
'�.x/

is that associated with eil�x=k�.

Proof. Let us suppose that supp c12 � kZ with k 2 N n ¹0º. It suffices to show

U

�
eil�x=k 0

0 e�il�x=k

�
D eil�=kU; (4.6)

for any l 2 ¹0;1; : : : ; 2k � 1º. The matrix diag.ei�x=k; e�i�x=k/ commutes withC.x/
for any x 2 Z. Note that the latter matrix C.x/ is also a diagonal matrix for x … kZ,
and the former matrix is I2 for x 2 kZ. Hence, identity (4.6) follows from

S

�
ei�x=k 0

0 e�i�x=k

�
D ei�=kS:

Remark 4.7. If each C.x/ is a (real) orthogonal matrix, then we have

m.�/ D m. N�/
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for any � 2 C n ¹0º, and for a (generalized) resonant state '� associated with � 2
Res.U / n ¹0º,

' D '�
is that associated with N�. These facts follows from

U D U x 

for any  2 Hloc.

We can also define incoming resonances as poles of meromorphic family of oper-
ators .1J .U � �/�11J /�2C extended from j�j < 1 to whole C. They have similar
properties with (outgoing) resonances. Especially, � 2 C is a incoming resonance if
and only if there exists an incoming map '[ 2 Hloc satisfying (2.9). Here, we say a
map  2 Hloc is incoming if there exists r > 0 such that

 L.�x/ D  R.x/ D 0

holds for any x > r . We denote the multiplicity of an incoming resonance � bym[.�/.

Proposition 4.8. If c11.x/ D c22.x/ holds for any x 2 Z, we have for � 2 C n ¹0º,

m.�/ D m[. N��1/:

Moreover, if '� is a (generalized) resonant state for an outgoing resonance � 2
Res.U / n ¹0º, then

' ´ S

�
0 1

1 0

�
'�

is a (generalized) resonant state for the incoming resonance N��1.

Proof. The assumption c11.x/ D c22.x/ implies that

PC.x/� D C.x/P; withP ´
�
0 1

1 0

�
;

for each x 2 Z. Since we also have PS� D SP , it follows that

SPU � D SPC �S� D SCPS� N D USP N :

Hence, .U � �/ D f (equivalently U � D ��1.U �f �  /) implies that

USP N D SPU � D N��1.SP N � USP Nf /;

and .U � N��1/.SP N / D �N��1USP Nf . This ends the proof.
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5. Generic simplicity of resonances

We show Theorem 2 which tells us that “most of” quantum walks satisfying Assump-
tion 1 have only simple resonances except the zero resonance, that is, the image of
the multiplicity function m on Res.U / n ¹0º is a subset of ¹1º (either ; or ¹1º itself).
In the preliminaries for the proof, we also give other characterizations of resonances
using the transfer matrix (Lemma 5.1) or the scattering matrix (Corollary 5.4).

For any k 2 N, let Qk be the set of equivalence classes of quantum walks sat-
isfying Assumption 1 and jchs.Cp/j D k, where two quantum walks U1 D SC1 and
U2 D SC2 are said to be equivalent if the coins are translation of each other, that is,
there exist y 2 Z such that C1.x/ D C2.x � y/ holds for all x 2 Z. We introduce the
group topology of Ck (C´ ¹C 2 U.2/I C11 ¤ 0º) to Qk by the trivial bijection. We
define later the group operation and the topology here of C which make C a Hausdorff
topological group.

Theorem 2. For any k 2N, the set of U ’s satisfyingm.Res.U / n ¹0º/� ¹1º is dense
in Qk .

We introduce the topology by using the transfer matrices. Let T be the set of 2� 2
matrices given by

T D ¹ei�T I T 2 SL.2/; T11 D xT22; T21 D xT12; � 2 Œ0; �/º:
Here we denote the .j; k/-entry of a matrix T by Tjk . Then T and C are isomorphic
to G ´ .¹.z;w/ 2 C2I jzj2 � jwj2 D 1º � .R=2�Z//= �, where we define an equi-
valence relation .p; q; �/ � .�p;�q; � � �/. The isomorphisms from G to T and to
C are given respectively by

.p; q; �/ 7! Tp;q;� ´ ei�
�
p Nq
q Np

�
and .p; q; �/ 7! Cp;q;� ´ Np�1

�
ei� Nq
�q e�i�

�
:

These are well defined and one-to-one after divided by �. We consider the topology
induced by G . On T , we consider the usual multiplication of matrices. Then the
group product � on C is induced by that on T through the isomorphism MWT 3
Tp;q;� 7! Cp;q;� 2 C.

5.1. Other characterization of non-zero resonances

We discuss on the other characterization of non-zero resonances.

Lemma 5.1. Let �0 2 C n ¹0º. Under Assumption 1, �0 is a resonance of U if and
only if �

1 0
�

T .�0/

�
1

0

�
D 0; (5.1)
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where we put

T .�/ D T�.xC/T�.xC � 1/ � � �T�.x�/; Œx�; xC�Z ´ chs.Cp/;

and T�.x/ for each x 2 Z is the analytic continuation of

T�.x/ DM�1.��1C.x// D ei�.x/
�
�p.x/ q.x/

q.x/ ��1p.x/

�
; (5.2a)

p.x/ D e�i�.x/

jc11.x/j ; q.x/ D e�i�.x/c21.x/

jc11.x/j ; (5.2b)

�.x/ D 1

2
arg.

c22.x/

c11.x/
/; �.x/ D arg.c11.x/c22.x//

2
; (5.2c)

defined for j�j D 1. Moreover, .1; 0/T .�/.t .1; 0// is rational function with respect
to �, and

�.�/´ �jchs.Cp/j
�
1 0

�
T .�/

�
1

0

�
is a polynomial of degree 2jchs.Cp/j. The multiplicity as a zero of this polynomial
coincides with that as a resonance.

We call each matrix T�.x/ or their product T .�/ transfer matrix.

Remark 5.2. Under Assumption 1, �0 2 C n ¹0º is an incoming resonance of U if
and only if .0; 1/T .�0/.t .0; 1// D0. The function ��jchs.Cp/j.0; 1/T .�0/.t .0; 1// is
a polynomial of degree 2jchs.Cp/j with respect to ��1. The multiplicity of ��10 as a
zero of this polynomial coincides with m[.�0/.

Remark 5.3. The scattering matrix S.�/ is expressed as�
�x
��1 0

0 ��.x
CC1/

�
S.�/

�
��x

C
0

0 �x
�

�
DM.T .�// D 1

t11.�/

�
1 �t12.�/

t21.�/ �

�
; (5.3)

where tjk.�/ stands for the .j; k/-entry of T .�/, Œx�; xC�Z D chs.Cp/, and � D
det T .�/ is independent of � (since each factor det T�.x/ is independent of � by
definition (5.2)). Recall that the scattering matrix is a unitary 2 � 2-matrix which can
be introduced as the linear relationship

.z‰�L.�/; z‰CR .�//S.�/ D .z‰CL .�/; z‰�R.�//;

between the bases consist of Jost solutions to the equation .U ��/gD 0 characterized
by

z‰˙L .�; x/ D ‰L.�; x/; z‰˙R .�; x/ D ‰R.�; x/; for ˙ x � 1:
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Corollary 5.4. Under Assumption 1, for � 2 C n ¹0º, one has

m[.�/ �m.�/ D 1

2�i

I
�

tr..@�S.�//S.�/�1/d� D 1

2�i

I
�

@� detS.�/
detS.�/

d�:

Note that m[.�/ D 0 for 0 < j�j < 1 and m.�/ D 0 for j�j > 1. In fact, one
deduces detS.�/D �2.xC�x�C2/t22.�/=t11.�/ from (5.3). The multiplicity as a zero
of t22.�/ and of t11.�/ coincides withm[.�/ andm.�/, respectively (Remark 5.2 and
Lemma 5.1). Then the equality follows from the argument principle.

In order to use the transfer matrices, we introduce a unitary operatorQ WH !H

(naturally extended to Hloc ! Hloc) by

Q .x/ D
�
1 0

0 0

�
 .x � 1/C

�
0 0

0 1

�
 .x/ D

�
 L.x � 1/
 R.x/

�
:

It is clear (and known) that for any 2Hloc and �2C n ¹0º, the equality .U��/ D0
is equivalent to that

Q .x C 1/ D T�.x/Q .x/; (5.4)

holds for every x 2 Z. In particular, it follows that

Q .xC C 1/ D T .�/Q .x�/; Œx�; xC�Z ´ chs.Cp/: (5.5)

Proof of Lemma 5.1. By definition,  is outgoing if and only if�
0 1

�
Q .x�/ D �1 0

�
Q .xC C 1/ D 0: (5.6)

Then the characterization (5.1) for each non-zero resonance follows from (5.5) and
(5.6).

Let '� 2 Hloc be defined inductively by

Q'�.x/´ T�.x/
�1Q'�.x C 1/

for x < x� and
Q'�.x/´ T�.x/Q'�.x � 1/

for x > x� with

Q'�.x
�/´

�
1

0

�
:

This is well defined as a solution to .U � �/' D 0 for any � 2C n ¹0º, and is outgoing
if and only if (5.1) holds. Since T�.x/ is analytic with respect to � away from � D 0,
we have for k � 1,

@k�.U � �/'� D .U � �/@k�'� � @k�1� '�:
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By definition, @k
�
' is outgoing if and only if � .k/.�/ vanishes. Moreover, a Jordan

chain .'1; : : : ; 'kC1/ is constructed by

'lC1´
1

lŠ
@l�'�

ˇ̌̌
�D�0

.l D 0; 1; : : : ; k/: (5.7)

This with Proposition 2.3 (3) implies that the multiplicity of the zero of the polynomial
�.�/ at � D �0 2 C n ¹0º is bounded by m.�0/.

It suffices to show for each non-zero resonance �02Res.U / n ¹0º that � .l/.�0/D0
for l D 0;1; : : : ;m.�0/� 1 (note that l D 0 has been already shown). We prove it by a
mathematical induction. Assume for anm0 2 ¹0; 1; : : : ;m.�0/� 1º that � .l/.�0/D 0
holds for l D 0; 1; : : : ; m0 � 1. We prove � .m

0/.�0/ D 0 under this induction hypo-
thesis.

From the hypothesis, there exists the Jordan chain .'1; : : : ; 'm0/ defined by (5.7)
up to m0. The definition is rewritten as

Q'l.x/ D
1

.l � 1/Š .@
l�1
� T�.x � 1//

ˇ̌̌
�D�0

e1;

where we put

T�.x/ D
´
T�.x/T�.x � 1/ � � �T�.x�/ x > x�;

T�.x C 1/�1T�.x C 2/�1 � � �T�.x�/ x < x�;
e1 D

�
1

0

�
:

From the argument above, � .m
0/.�0/ D 0 is equivalent to say that z 2 Hloc defined

by

Q Q .x/ D 1

m0Š
.@m

0
� T�.x � 1//

ˇ̌̌
�D�0

e1 (5.8)

is outgoing.
According to Proposition 2.3 (3), there exists a generalized resonant state 2Hloc

such that

.U � �/k ¤ 0 .k D 0; : : : ; m0/; .U � �/m0C1 D 0:

Furthermore, we can take such  that

.U � �/ D 'm0 ; Q .x�/ D 0:

This is due to the uniqueness of the Jordan chain (Proposition 2.3 (3)) and to the
fact that Q .x�/ is parallel to Q'1.x�/. Then our aim (5.8) is reduced to proving
 D Q , namely the identity

Q .x/ D 1

m0Š
.@m

0
� T�.x � 1//

ˇ̌̌
�D�0

e1: (5.9)
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In an almost same way as (5.4), we see for any u; f 2Hloc that .U � �/u D f is
equivalent to

Qu.x C 1/ D T�.x/Qu.x/

� A�.x/
��
1 0

0 0

�
Qf.x/C

�
0 0

0 1

�
Qf.x C 1/

�
; for all x 2 Z;

(5.10)

with

A�.x/ D
1

c11.x/�

�
c11.x/ 0

c21.x/ ��
�
:

By Lemma 5.5, it follows from (5.10) and the definition of 'm0 that

Qu.x/ D T�.x � 1/Qu.x�/C
1

m0Š
.@m

0
� T�.x � 1//

ˇ̌̌
�D�0

e1: (5.11)

Then Q .x�/ D 0 implies the identity (5.9).

Lemma 5.5. If u 2 Hloc satisfies .U � �/u D 'm0 , then the identity (5.11) is true.

Proof. By a straightforward computation, we see

� A�.x/
��
1 0

0 0

�
C
�
0 0

0 1

�
T�.x/

�
D @�T�.x/;

� A�.x/
�
0 0

0 1

�
@l�T�.x/ D

1

l C 1@
lC1
�
T�.x/ .l � 1/:

Then it follows that

� A�.x/
��
1 0

0 0

�
Q'm0.x/C

�
0 0

0 1

�
Q'm0.x C 1/

�
D � 1

.m0 � 1/ŠA�.x/
��
1 0

0 0

�
.@m

0�1
� T�.x � 1//C

�
0 0

0 1

�
.@m

0�1
� T�.x//

�
e1

ˇ̌̌̌
�D�0

D 1

m0Š

m0�1X
lD0

�
m0

l C 1
�
.@lC1
�
T�.x//.@

m0�1�l
� T�.x � 1//e1

ˇ̌̌̌
�D�0

:

(5.12)
We prove (5.11) by using the mathematical induction with respect to x. We here

only show it for x � x�. For xD x�, the identity is just a convention T .x� � 1/D I2.
Assume that (5.11) holds for an x � x�. Then for x C 1, we have

Qu.x C 1/ D T�.x/T�.x � 1/Qu.x�/C
1

m0Š
T�.x/.@

m0
� T�.x � 1//

ˇ̌̌
�D�0

e1

� A�.x/
h�1 0

0 0

�
Q'm0.x/C

�
0 0

0 1

�
Q'm0.x C 1/

i
:

The required formula is obtained by substituting (5.12) to this.
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5.2. Proof of the generic simplicity

The characterization due to the previous subsection shows that the resonances are
zeros of a polynomial. The following lemma gives the instability of zeros of a holo-
morphic function under a small perturbation.

Lemma 5.6 ([5, Theorem 2.26]). Let " 7! f".z/ be a family of functions holomorphic
in a complex disc D.0; r0/ D ¹z 2 CI jzj � r0º satisfying

f".z/ D zm � "CO."2/CO."jzj/; jzj � r0:

Then for " sufficiently small, f".z/ has exactly m simple zeros in D.0; r0/.

Proof of Theorem 2. LetU 2Qk . We assume for simplicity that chs.Cp/D Œ1;k�. Let
¹U#;"I # 2 .R=2�Z/; 0 < "� "0º be a family of quantum walks defined by modifying
U in the following way. We replace the coin matrix C.k/ by

B.#; "/´ Cp.#;"/;q.#;"/;0 � C.k/;

p.#; "/ D 1C "ei#p
1C 2" cos#

;

q.#; "/ D "ei#p
1C 2" cos#

:

Then B.#; "/! C.k/ as "! 0C uniformly with respect to # . Hence, it suffices to
show that for any "0 > 0, there exist 0 < "1 � "0 and #1 2 R=2�Z such that every
non-zero resonance of U#1;"1 is simple. Put

�k.�/´ �k
�
1 0

�
T .�/

�
1

0

�
D ��� 0

�
T�.k/

��
T�.k � 1/ � � �T�.1/

�
�k�1

0

��
µ ei�.k/

�
�2p.k/ �q.k/

� ��k�1.�/
�k�1.�/

�
:

Then �k , �k�1, and �k�1 are polynomials of degree 2k, 2k � 2, and 2k � 3, respect-
ively. For each perturbed quantum walk U#;", the transfer matrix T#;".�/ is given by
replacing T�.k/ by the analytic continuation of M�1.��1B.#; "//, and we have

�k.�; #; "/´ �k
�
1 0

�
T#;".�/

�
1

0

�
D �k.�/C "ei�.k/

�
�2˛.#/ �ˇ.#/

� ��k�1.�/
�k�1.�/

�
CO."2/;

with

˛.#/ D i.sin#/p.k/C ei#q.k/; ˇ.#/ D i.sin#/q.k/C e�i#p.k/:
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Note that the vector t .�k�1.�/; �k�1.�// is the first column vector of the product
�k�1T�.k � 1/ � � � T�.1/. It does not equal t .0; 0/ for any � since the determinant of
these matrices never vanishes.

Let �0 2 Res.U / n ¹0º be a multiple resonance:m.�0/ � 2. According to Lemma
5.1, �0 is a zero of multiplicity m.�0/ of �k.�/. By the Taylor expansion near �0, we
have

�k.�; #; "/ D c.� � �0/m.�0/ � "
.#; �0/
CO.j� � �0jm.�0/C1/CO."2/CO."j� � �0j/;

for some constant c ¤ 0 and


.#; �0/ D ei�.k/.�20˛.#/�k�1.�0/C �0ˇ.#/�k�1.�0//:

There are at most finite number of # for each � ¤ 0 such that 
.#; �0/ D 0. Remem-
ber that the number of non-zero resonances is at most finite, and hence there exists
#0 2 R=2�Z such that 
.#0; �/ ¤ 0 for any � 2 Res.U / n ¹0º with m.�/ � 2. Then
Lemma 5.6 implies that there are only simple zeros of �k.�;#0; "/ for any small " > 0
near each �0. This ends the proof.
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