
J. Spectr. Theory 14 (2024), 355–396
DOI 10.4171/JST/487

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Isospectrum
of non-self-adjoint almost-periodic Schrödinger operators

Xueyin Wang, Jiangong You, and Qi Zhou

Abstract. For non-self-adjoint almost-periodic Schrödinger operators, a criterion is given to
guarantee that they have both the same spectrum and the same Lyapunov exponents with the
discrete free Laplacian. As a byproduct, we show that the Moser–Pöschel argument for opening
gaps may not be valid for non-self-adjoint operators.

1. Introduction

Benefiting from methods of dynamical systems and harmonic analysis, enormous
breakthroughs have been made in recent years in the study of self-adjoint almost-
periodic Schrödinger operators on `2.Z/ (resp. L2.R/)

HV D �C V.�/; (1.1)

where V.�/ are almost-periodic on Z (resp. R). These breakthroughs include, for
example, the Cantor spectrum [5, 9, 30], the interval spectrum [21, 31], the Ander-
son localization [6, 8, 17, 39, 40], the reducibility of Schrödinger cocycles [7, 24, 35],
and Avila’s global theory [2]. However, little progress has been made for non-self-
adjoint almost-periodic operators (non-Hermitian quasicrystals in physical literature),
and even the fundamental spectral theorem has not been established so far (may
not be possible). In comparison, non-Hermitian Hamiltonians received wide atten-
tion from physicists in recent years because (i) the recent experimental advances in
controlling dissipation have brought about unprecedented flexibility in engineering
non-Hermitian Hamiltonians in open classical and quantum systems [1, 32]; (ii) non-
Hermitian Hamiltonians exhibit rich phenomena without Hermitian counterparts, e.g.,
P T (parity-time) symmetry breaking [11], topological phase transition [49], non-
Hermitian skin effects [36]. Of course, these observations and predictions in physical
literature deserve rigorous mathematical proofs.
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There are also other motivations for the mathematical study of the non-self-adjoint
almost-periodic operators. Firstly, a striking result worth highlighting is Avila’s global
theory of the one-frequency quasi-periodic Schrödinger operators [2]. However, if one
wants to establish the quantitative global theory [27], the core is to study

.H /n D  nC1 C  n�1 C v.x C n˛ C i�/ n;

which is a family of non-self-adjoint operators. Secondly, the spectrum of non-self-
adjoint Schrödinger operators has deep connection with problems of the elliptic oper-
ators, such as ground states, steady states and averaging theory [45, 47].

1.1. Isospectrum

In this paper, we study the spectrum of the following non-self-adjoint almost-periodic
Schrödinger operator on `2.Z/:

.H�v;˛;x /n D  nC1 C  n�1 C �v.x C n˛/ n; (1.2)

where � 2 R is the coupling constant, x 2 Td D .R=2�Z/d is called the phase with
d 2 NC [ ¹1º, vWTd ! C is the potential, ˛ 2 Td is the frequency satisfying that
.1; ˛/ is independent among Q. In this case, the spectrum of H�v;˛;x is independent
of x [27, 41], and thus we denote it by †�v;˛ .

P T symmetric operators constitute an important class of non-self-adjoint oper-
ators coming from quantum mechanics [44]. Recall that (1.1) is P T symmetric, if
xV.n/ D V.�n/ [10]. In the almost-periodic setting where the potential vWTd ! C,
one can extend the definition to Nv.x/ D v.�x/, since the spectrum †v;˛ is indepen-
dent of x.

It was first observed by Bender and Boettcher [10] that a large class of P T sym-
metric operators have real spectrum. This observation has a profound significance in
that it not only suggests a possibility of P T symmetric modification of the conven-
tional quantum mechanics that considers observables as self-adjoint operators [44],
but also goes far beyond quantum mechanics and has spread to many branches of
physics [54]. Thus, a basic mathematical question is to ask which class of P T sym-
metric operators have real spectrum.

As a warm-up example, let us first look at the heuristic example

.H� exp;˛ /n D  nC1 C  n�1 C �ei.xCn˛/ n; (1.3)

proposed by Sarnak [55], whose spectrum has already been completely known.
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Theorem 1.1 ([13, 15, 55]). For any ˛=2� 2 RnQ, we have the following.

(1) If j�j 6 1, then the spectrum of (1.3) is a real interval:

†� exp;˛ D Œ�2; 2�:

(2) If j�j > 1, denote � D ln j�j, then the spectrum of (1.3) is an ellipse given by

†� exp;˛ D

°
E 2 C W

� ReE
cosh �

�2
C

� ImE

sinh �

�2
D 4

±
:

Theorem 1.1 was proved by Sarnak [55] in the case j�j ¤ 1 and ˛ is Diophantine.
It was generalized to all � 2 R and ˛ 2 RnQ by Boca [13] and by Borisov and
Fedotov [15] independently. In this paper, we will give a simple proof of Theorem 1.1
by Avila’s global theory of one-frequency analytic SL.2;C/ cocycles [2].

The phenomenon of being isospectral to the free LaplacianH0, described by The-
orem 1.1 (1), is of particular interest. It has roots in the study of the non-self-adjoint
differential operator with periodic potential, see [57, 58]. The famous Borg’s unique-
ness theorem [14] for the Hill operator

.Hv /.t/ D � 
00.t/C v.t/ .t/;

states that if v 2 L2loc.R/ is periodic and real-valued, then †v D Œ0;1/ if and only if
v � 0 a.e. The modern proofs of Borg’s uniqueness statement replace the condition
of periodicity of the potential by the property of being reflectionless. Details can be
found in [22, Theorem 4.1] and the comment following its proof. [22, Theorem 4.4]
provides a more general version in the matrix-valued context. The actual trace formula
on which these considerations rely on is due to [28]. For the discrete Borg’s theorem,
see [29, 56] for the Z1 version and [48] for the Zd version. However, in the case of a
complex-valued periodic potential v, the situation is very different, as it was proved
by Gasymov [26] (see also [34]) that if the Hill operator satisfies

v.t/ D

1X
kD1

Ovkeikt with
1X

kD1

j Ovkj <1; (1.4)

then †v D Œ0;1/ or say Hv is isospectral to H0. However, it is still open whether,
under some smoothness requirements, any operator with periodic potential v.x/ isospec-
tral to H0 must be a “Gasymov potential”, i.e., of the form given by (1.4), or the
complex conjugate of a Gasymov potential [52].

In the non-periodic discrete setting, Killip and Simon [43] largely extended Borg’s
uniqueness theorem [14], and proved that for self-adjoint discrete Schrödinger opera-
tor (1.1) with V WZ! R, HV is isospectral to H0 if and only if V � 0. Theorem 1.1
shows that being isospectral to H0 does not imply v � 0 for complex quasi-periodic
potential (1.2).
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The main ambition of this paper is to explore the structure of complex potential
(not necessarily P T symmetric), and to give a criterion to ensure the corresponding
operators (1.2) are isospectral to H0. Before stating the results, we first introduce
some notations. For any k 2 Zd , we define jkj� D

P
j2Nhj i

�jkj j, where hj i ´
max¹1; j º and � > 0 is a fixed constant. Let Zd� be the set of integer vectors with
finite support Zd� D ¹k W 0 < jkj� <1º. Clearly, if d 2 NC, then Zd� D Zdn¹0º. Let
Td
h

be the complexified torus defined by

Td
h ´ ¹x 2 Cd

W Re xj 2 T ; j Im xj j < hhj i
�
º;

and denote by C!.Td
h
;C/ the space of bounded analytic complex-valued functions

equipped with norm kvkh D
P

k j Ovkjehjkj� .
Let d 2 NC [ ¹1º. We assume that the frequency ˛ D . j̨ / belongs to the

d -dimensional cube R0 ´ Œ1; 2�d , which is endowed with the probability measure
P induced by the product measure of the d -dimensional cube R0. The following
almost-periodic Diophantine frequencies were first defined by Bourgain [16]:

Definition 1.1 ([16]). Given  2 .0; 1/; � > 1, we denote by DCd;� the set of Dio-
phantine frequencies

inf
n2Z
jhk; ˛i � 2�nj > 

Y
j2N

1

1C hj i� jkj j�
; for all k 2 Zd� ; (1.5)

and denote DCd D
S
>0 DCd;� .

As proved in [12,16], for any � > 1, Diophantine frequencies DCd;� are typical in
the set R0 in the sense that there exists a positive constant C.�/ such that

P .R0nDCd;� / 6 C.�/:

We also denote

�r D Zd� \
°

k W
X
j

hj i�kjwj > r jkj�; with
X
j

wj D 1;wj > 0
±
; (1.6)

where �r is an integer cone whose angle is less than � strictly, as shown in Figure 1.
Once we have these, now we are ready to state our main theorem.

Theorem 1.2. Let d 2 NC [ ¹1º, � > 0, h > 0, r 2 .0; 1�, ˛ 2 DCd . Suppose that

v.x/ D
X

k2�r

Ovkeihk;xi
2 C!.Td

h ;C/:

Then there exists �0 D �0.�; h; r; ˛; kvkh/ such that †�v;˛ D Œ�2; 2� if j�j < �0.
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�r

Figure 1. Integer cone.

Remark 1.1. The smallness condition of the coupling constant j�j is necessary due
to Theorem 1.1.

Remark 1.2. If d <1, then the assumption (1.5) can be replaced by the standard
Diophantine condition

DCd;� 0 ´
°
˛ 2 Rd W inf

n2Z
jhk; ˛i � 2�nj >



jkj� 0
for all k 2 Zdn¹0º

±
:

Remark 1.3. If Ovk 2 R for any k 2 �r , then the potential v is P T symmetric. How-
ever, the key assumption for us is the cone structure �r , whether Ovk is real or not is
not important.

Note that Sarnak [55] also extended his result to multi-frequency case: for any
Diophantine frequency ˛, he constructed one P T symmetric v, and showed that
H�v;˛;x is isospectral to the discrete free Laplacian if j�j is small enough.1 Our result
not only generalizes Sarnak’s result [55] to the almost-periodic case, but also (more
importantly) finds that the cone structure �r in (1.6) for the Fourier coefficients of v
is a sufficient (almost optimal) condition to ensure that H�v;˛;x is isospectral to the
discrete free Laplacian.

To understand Theorem 1.2 more clearly, we look at the case d D 1, where �r D
ZC, consequently we have the following.

Corollary 1.1. Suppose that h > 0, ˛ 2 DC1, and that v.x/ D
P

k>0 Ovkeikx . If j�j <
�1.h; ˛; kvkh/ which is small enough, then †�v;˛ D Œ�2; 2�.

We remark that the phenomenon described in Theorem 1.2 is totally different from
the self-adjoint case where having open gaps is a typical phenomenon [3, 24, 30, 31,
53]. The most important example is the almost Mathieu operator:

.H2� cos;˛;x /n D  nC1 C  n�1 C 2� cos.x C n˛/ n;

1While Sarnak stated the result in the continuous setting, the method can clearly be carried
out in the discrete case, as point out by him at the end of [55, Section 2].
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whose spectrum is a Cantor set for all � ¤ 0, ˛ 2 RnQ and all x 2 T [5]. We also
remark that the cone structure assumption (1.6) is necessary due to the following
counter-example where the angle of the cone is � .

Proposition 1.1. Let ˛ 2 RnQ, j�j 2 .0; 1/, j�j < � log j�j, and

v�.x/ D 2� cos.x C i�/:

Then †v� ;˛ D †2� cos;˛ is a Cantor set.

1.2. Lyapunov exponent

The Lyapunov exponents ofH�v;˛;x in Theorem 1.2 can be exactly calculated. Recall
that the eigenvalue equations H�v;˛;x D E are equivalent to a certain family of
the discrete dynamical systems, the so called Schrödinger cocycle .˛; SE;�v/ 2 Td �

SL.2;C/, i.e.,�
 nC1

 n

�
D SE;�v.x C n˛/

�
 n

 n�1

�
; where SE;�v.x/ D

�
E � �v.x/ �1

1 0

�
:

Any formal solution . n/n2Z can be reconstructed from the transfer matrix Sn, which
is defined by S0 D id, and for n > 1, by

Sn.x/ D SE;�v.x C .n � 1/˛/ � � �SE;�v.x/; S�n.x/ D Sn.x � n˛/
�1:

The Lyapunov exponent of .˛; SE;�v/, denoted by L.E/, is defined by

L.E/ D lim
n!1

1

n

Z
Td

log kSn.x/k d x:

In general, it is hard to give a precise expression of the Lyapunov exponent L.E/
except for some very special examples. It is well known that L.E/ D max¹0; log j�jº
in the spectrum [2,18] for the almost Mathieu operator, however, the formula ofL.E/
for E outside the spectrum is not known. For other analytic quasi-periodic operators,
it is almost impossible to have a precise expression of L.E/ even though E is in
the spectrum [2]. Up to now, the only quasi-periodic Schrödinger operator whose
Lyapunov exponent can be calculated explicitly for all E 2 C is the Maryland model,
but this is due to the unboundedness and monotonicity of the potential [33, 38].

In the following, for any E 2 C, we give the exact expression of L.E/ for the
operators defined in Theorem 1.1 and Theorem 1.2. For Sarnak’s example (1.3), we
have the next theorem.
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Theorem 1.3. Let ˛ 2 RnQ and v.x/D �eix . Then for any � 2 Rn¹0º, its Lyapunov
exponent satisfies

L.E/ D max¹0; log j�jº; for all E 2 †� exp;˛: (1.7)

Moreover,

L.E/ D max
°

log
ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌
; log j�j

±
for all E 2 C: (1.8)

Remark 1.4. Equation (1.7) was also proved by Borisov and Fedotov [15], while (1.8)
is totally new. Our proofs are new and based on Avila’s global theory [2].

If the potential has cone structure �r , Theorem 1.2 states that the corresponding
Schrödinger operator is isospectral to the discrete free Laplacian. The following the-
orem shows that they also share the same Lyapunov exponent with the discrete free
Laplacian.

Theorem 1.4. Under the same assumptions as in Theorem 1.2, we have

L.E/ D log
ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌
for all E 2 C:

In particular,
L.E/ D 0 for all E 2 †�v;˛:

1.3. Failure of Moser–Pöschel argument

Almost reducibility is an effective approach to deal with the spectral problems of
almost-periodic operators, especially for the small potentials [6, 19, 20, 23, 24, 46,
51]. Now, we give the definition of almost reducibility. Recall that two cocycles
.˛; A/; .˛; A0/ 2 Td � C!.Td ; SL.2;C// are analytically conjugated if there exists
B 2 C!.2Td ;SL.2;C// such that

B.x C ˛/�1A.x/B.x/ D A0.x/:

We say the cocycle .˛; A/ is almost reducible if the closure of its analytic conjugates
contains a constant matrix. Moreover, we say the cocycle is reducible if it is analyt-
ically conjugated to a constant matrix. For the self-adjoint operator, the reducibility
of .˛; SE;�v/ is closely related to the rotation number of the cocycle. Specifically, for
small analytic potentials and ˛ 2 DCd with d 2 NC, Eliasson’s famous result [24]
states that .˛; SE;�v/ is reducible if the rotation number is Diophantine with respect
to ˛ or rationally dependent. For the non-self-adjoint operator, the rotation number is
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not well defined since the projection of SL.2;C/ cocycle is not a circle diffeomor-
phism. However, we can find another object � that plays the same role as the rotation
number. Indeed, for any E 2 Œ�2; 2�, if we define

� D �.E/´ arccos
�E
2

�
mod �;

then we have the following.

Theorem 1.5. Under the same assumptions as in Theorem 1.2, we have that

(1) if � 2 DC.˛/ D
S
�>0 DC�;� .˛/, where

DC�;� .˛/´
°
� 2R W k2�� hk;˛ikT >�

Y
j2N

1

1C hj i� jkj j�
for all k2Zd�

±
;

then .˛; SE;�v/ is reducible to
�
˛;
�

ei� 0
0 e�i�

��
;

(2) if 2� D hk; ˛i mod 2� for some k 2 Zd� , then .˛; SE;�v/ is reducible to
.˛; A/ where A D

�
1 0
0 1

�
or A D

�
1 �
0 1

�
with � ¤ 0.

In the self-adjoint case, by the well-known Moser–Pöschel argument [51], it is
known that .˛; SE;�v/ is reducible to the identity if and only if E is located at the
edges of the collapsed gaps. However, in the non-self-adjoint case, one may need
more caution due to the following result.

Theorem 1.6. Let d 2 NC [ ¹1º, ˛ 2 DCd , and v.x/ D eihm;xi. Then there exists
E 2 .�2; 2/ such that .˛; SE;�v/ is reducible to

�
1 �
0 1

�
with � ¤ 0, provided that j�j

is sufficiently small.

By Theorem 1.2 and Theorem 1.6, we see that even though all gaps are collapsed,
the cocycle .˛; SE;�v/ may still not be reducible to identity. Therefore, the Moser–
Pöschel argument [51] does not work for non-self-adjoint almost-periodic operators.

1.4. Methods and mechanism

Although Theorem 1.2 is an extension of Sarnak’s result [55], our method is com-
pletely different. In fact, the operator (1.3) is very special, as taking Fourier transforms
in trying to solve .H� exp;˛ �E/ D 0, one finds

� O .p C ˛/ D .E � 2 cosp/ O .p/;

which is easily iterated. Sarnak [55] studied the behavior of
Qn
pD0.E � 2cos.pC ˛//

by combining Birkhoff ergodic theorem and nature of ˛ˇ-sets studied initially by
Engelking [25] and Katznelson [42]. As we can see, the method of [55] depends on
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the duality transformation, clearly fails if ˛ 2 Td with d D 1, i.e., the true almost-
periodic case.

We know that the spectrum of self-adjoint operators always stays in the real axis,
and the non-self-adjointness would push the spectrum out. In this paper, we give
a criterion for non-self-adjoint almost-periodic Schrödinger operators (1.2) to have
real interval spectrum. More importantly, one can see the mechanism of the spectrum
being real and staying an interval from our proof. Let us explain the main ideas. Our
approach is based on the quantitative almost reducibility of the Schrödinger cocycle.
In the self-adjoint case [24, 46], the potential v is real ( Ov�k D Ovk) which implies that
double resonances2

khk; ˛i ˙ 2�kT � 0

must occur, which causes the uniform hyperbolicity of the Schrödinger cocycle and
makes the corresponding gap open. In the non-self-adjoint case, the potential is not
real anymore, which gives us a chance to avoid the double resonances. For the poten-
tial v defined in Theorem 1.2, we have Ovk � Ov�k D 0. During the KAM iteration steps,
we will prove that at the cost of shrinking r , the cone structure �r is preserved and
there exists only single resonance (k or �k) in each iteration step. Thus, the interval
spectrum may survive.

More precisely, we can prove that the Schrödinger cocycle is reducible to
.˛; AneFn/ where An 2 SL.2;C/ with eigenvalues e˙i�n and Fn goes to zero. The
structure of �r guarantees that the average of the perturbation Fn is always zero, and
thus Im �n is fixed during the KAM iteration, this is the reason why the Schrödinger
operator (1.2) has real spectrum. In addition, we will prove that the Schrödinger cocy-
cle .˛; SE;�v/ is always almost reducible to the Laplace cocycle .˛; SE;0/, which
implies that the Schrödinger operator shares both the spectrum and the Lyapunov
exponent with the discrete free Laplacian.

Organization of the paper. The rest of this paper is organized in the following way.
Some basic definitions are given in Section 2. In Section 3, we study the one step of
KAM iteration for SL.2;C/-valued cocycle with integer cone condition. In Section 4,
we obtain the reducibility of SL.2;C/-valued cocycle. In Section 5, as applications,
we prove Theorem 1.2, Theorem 1.4, Theorem 1.5 and Theorem 1.6. Finally, we prove
Theorem 1.1, Theorem 1.3 and Proposition 1.1 in Section 6. In Appendix A, we give
the proof of Lemma 3.1.

2Second Melnikov condition in Hamiltonian systems.
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2. Preliminary

2.1. Almost-periodic cocycle, Lyapunov exponent

Let� be a compact metric space and .�;�;T / be ergodic. A cocycle .˛;A/ 2RnQ�

C!.�;SL.2;C// is a linear skew-product:

.T; A/W� �C2
! � �C2;

.x; �/ 7! .T x;A.x/�/:

For n 2 Z, An is defined by .T; A/n D .T n; An/. Thus, A0.x/ D id,

An.x/ D

0Y
jDn�1

A.T jx/ D A.T n�1x/ � � �A.T x/A.x/ for all n > 1;

and A�n.x/ D An.T �nx/�1. The Lyapunov exponent is defined as

L.T;A/ D lim
n!1

1

n

Z
�

log kAn.x/k d �.x/:

We are mainly interested in the case � D Td , d � D d x is Lebesgue measure, and
T DR˛ , with .1;˛/ rationally independent. If d 2NC, then .˛;A/µ .R˛;A/ defines
a quasi-periodic cocycle. If d D1, then .˛; A/ defines an almost-periodic cocycle.

We say .˛; A/ is uniformly hyperbolic if there exist two continuous functions
u; sWTd ! PC2, called the unstable and stable directions such that for any n > 0,

kAn.x/�k 6 C e�cnk�k for all � 2 s.x/;

kA�n.x/�k 6 C e�cnk�k for all � 2 u.x/;

for some constants C; c > 0. Moreover, u.�/; s.�/ are invariant under the dynamics:

A.x/ � u.x/ D u.x C ˛/; A.x/ � s.x/ D s.x C ˛/;

where A � x denoted the SL.2;C/ action on the projective space PC2. If .˛; A/ is
uniformly hyperbolic, then L.A/ > 0. From now on, .˛; A/ 2 UH means .˛; A/ is
uniformly hyperbolic.

2.2. Schrödinger operators and Schrödinger cocycles

Let � be a compact metric space, T W� ! � a homeomorphism, and vW� ! C

a complex-valued continuous function. We consider the following complex-valued
dynamical defined Schrödinger operators:

.Hx /n D  nC1 C  n�1 C v.T
nx/ n; n 2 Z;
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and denote †x by the spectrum of Hx . Note that any formal solution  D . n/n2Z

of Hx D E satisfies�
 nC1

 n

�
D SE;v.T

nx/

�
 n

 n�1

�
; n 2 Z;

where

SE;v.x/´

�
E � v.x/ �1

1 0

�
; E 2 C:

We call .T; SE;v/ Schrödinger cocycles. The spectrum †x is closely related with the
dynamical behavior of the Schrödinger cocycle .T;SE;v/. In the self-adjoint case, i.e.,
the potential v is real-valued, then by the well-known result of Johnson [41], E … †x
if and only if .T; SE;v/ 2 UH . The following result extends Johnson’s result [41] to
the non-self-adjoint case.

Proposition 2.1 ([27]). Suppose that vW�! C a complex-valued continuous func-
tion, .�; T / is minimal. Then there is some † � C such that †x D † for all x 2 �.
Moreover, E … † if and only if .T; SE;v/ 2 UH .

2.3. Global theory of one-frequency quasi-periodic cocycles.

We give a short review of Avila’s global theory of one-frequency quasi-periodic
SL.2;C/ cocycles [2]. Let ˛ 2 RnQ, suppose that A 2 C!.T ; SL.2;C// admits
a holomorphic extension to ¹j Im xj < hº. Then for j�j < h, we define A� 2 C!.T ;
SL.2;C// by A�.�/ D A.� C i�/, and define the acceleration of .˛; A�/ as follows:

!.˛;A�/ D lim
h!0C

L.˛;A�Ch/ � L.˛;A�/

h
:

It follows from the convexity and continuity of the Lyapunov exponent that the
acceleration is an upper semi-continuous function of parameter �. The key property
of the acceleration is that it is quantized.

Theorem 2.1 (Quantization of acceleration [2]). Suppose that

.˛; A/ 2 RnQ � C!.T ;SL.2;C//;

then !.˛;A�/ 2 Z.

For uniformly hyperbolic cocycles, Avila [2] proved the following equivalent
characterization.

Proposition 2.2 ([2]). Let .˛;A/ 2RnQ�C!.T ;SL.2;C//. Assume thatL.˛;A/ >
0. Then .˛; A/ 2 UH if and only if L.˛;A.� C i�// is affine with respect to � around
� D 0.
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3. Quantitative almost reducibility

As mentioned in the introduction, our approach is based on quantitative almost reducibil-
ity. The philosophy is that nice quantitative almost reducibility brings the precise
estimates of the growth on the Schrödinger cocycle.

3.1. Auxiliary Banach space

We first introduce the auxiliary Banach space related to the integer cone �r . Recall
that the integer cone �r is defined as

�r D Zd� \ ¹k W ŒŒk�� > r jkj�º;

where ŒŒk��D
P
j hj i

�kjwj with
P
j wj D 1;wj > 0. For a given integer cone �r , we

define the space

Bh;r Œ�� D ¹F 2 C
!.Td

h ;�/ W
yFk D 0 for all k 2 Zdn�rº;

where � could be C or sl.2;C/, and we abbreviate Bh;r Œsl.2;C/� by Bh;r without
ambiguity. Since 0 … �r , it holds that yF0 D 0 for any F 2 Bh;r Œ��.

For any setW � �r and N > 0, we define the truncated set and residual set ofW
as

TNW D ¹k 2 W W jkj� 6 N º; RNW D ¹k 2 W W jkj� > N º:

And we also define the truncated operator TN and residual operator RN by

.TNF /.x/ D
X

k2TN�r

yFkeihk;xi; .RNF /.x/ D
X

k2RN�r

yFkeihk;xi:

The following are some basic properties of the space Bh;r Œ��.

Proposition 3.1. For any 0 < r < r 0 6 1, h > 0, we have the following:

(1) .Bh;r Œ��; k � kh/ is a Banach space with Bh;r 0 � Bh;r ;

(2) kŒF; G�kh 6 2kF khkGkh where Œ�; �� is the Lie bracket defined by ŒF; G� D
FG �GF , and thus .Bh;r ; Œ�; ��/ is a Lie algebra.

Proof. Proposition 3.1 (1) follows directly from the definition, so we only need to
check the second one. Let F;G 2 Bh;r with expansions

F.x/ D
X

k2�r

yFkeihk;xi; G.x/ D
X

n2�r

yGneihn;xi;

where yFk; yGn 2 sl.2;C/ for any n;k 2 �r . By direct calculation,

ŒF;G�.x/ D
X

k;n2�r

Œ yFk; yGn�eihkCn;xi: (3.1)
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Since ŒŒk�� > r jkj�; ŒŒn�� > r jnj� , we have ŒŒk C n�� > r.jkj� C jnj�/ > r jk C nj� ,
which means that kC n 2 �r . On the other hand, rewrite (3.1) as

ŒF;G�.x/ D
X

m2�r

� X
nCkDm

Œ yFk; yGn�
�

eihm;xi:

Then Proposition 3.1 (2) follows from Œ yFk; yGn� 2 sl.2;C/,

kFGkh D
X

n

�X
k

j yFk
yGn�kj

�
ehjnj�

6
X
m

�X
k

j yFkjj yGmj

�
ehjmCkj�

6
�X

k

j yFkjehjkj�
��X

m

j yFmjehjmj�
�
D kF khkGkh;

and the same estimate on kGF kh.

3.2. Non-resonance cancellation lemma

We give a non-resonance cancellation lemma, which serves as the starting point of
our proof. Let A 2 SL.2;C/. For any Y 2 Bh;r , we define the linear operator LA by

.LAY /.x/´ A�1Y.x C ˛/A � Y.x/:

Suppose that Bh;r D Bnre
h;r
.�/˚Bre

h;r
.�/, where Bnre

h;r
.�/ is the closed invariant sub-

space in Bh;r such that LA restricted on Bnre
h;r
.�/ is invertible and

kL�1A k 6
1

�
on Bnre

h;r.�/:

In the following lemma, we prove that all non-resonant terms in the perturbation
can be eliminated.

Lemma 3.1 ([19,35]). Let d 2NC [ ¹1º, h > 0, r 2 .0; 1�, ˛ 2 Td , � > 0. Suppose
that A 2 SL.2;C/, and F 2 Bh;r with

kF kh < " < min¹10�8; �2º:

Then there exist Y 2 Bnre
h;r
.�/ and F re 2 Bre

h;r
.�/ such that eY conjugates the cocycle

.˛; AeF / to .˛; AeF
re
/, i.e.,

e�Y.xC˛/AeF.x/eY.x/ D AeF
re.x/;

with kY kh 6 "
1
2 , kF rekh 6 2" and kF re � PreF kh 6 2"

4
3 .
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3.3. One step of KAM iteration

In this section, we give one step of KAM iteration for .˛; AeF.x// with A 2 M �

SL.2;C/ and F.x/ 2 Bh;r , where

M´

²�
ei� �

0 e�i�

�
W �; � 2 C

³
[

²�
ei� 0

� e�i�

�
W �; � 2 C

³
:

To eliminate the perturbation F.x/ in the cocycle, we need to deal with non-
resonant case and resonant case separately. Here we say A is non-resonant up to N ,
denoted by A 2 N R.N; ı/, if for any k 2 TN�r ,

jei.hk;˛i˙2�/
� 1j > ı:

Otherwise, we say A is resonant and denoted by A 2 R�.N; ı/, which means there
is a k� 2 TN�r such that

jei.hk�;˛iC2�/
� 1j < ı or jei.hk�;˛i�2�/

� 1j < ı:

In this subsection, we always fix N D 2j log "j
h�hC

where hC 2 .0; h/. Once we have these,
we introduce the following key quantitative almost reducibility result, which gives the
one step of KAM iteration.

Proposition 3.2. Let d 2 NC [ ¹1º, � > 0, h > 0, r 2 .0; 1�,  2 .0; 1/, � > 1,
˛ 2 DCd;� . Suppose that A 2M with j Im �j 6 1

2
, F 2Bh;r , then for any hC 2 .0; h/,

rC 2 .0; r/, there exist " D ".�; h; hC; r; rC; ; �; j�j/, c D c.�; ; �/ such that if

kF kh < " <
c

.1C j�j/10
min¹e

�

�
1

h�hC

� 10
�

; e
�

�
1

r�rC

� 10
�

º; (3.2)

then there exist B 2 C!.2Td
h
;SL.2;C//, AC 2M, and FC 2 BhC;rC such that

B.x C ˛/�1AeF.x/B.x/ D ACeFC.x/:

Moreover, we have the following estimates.

Non-resonant case. If A 2 N R.N; "
1
10 /, then B.�/ D eY.�/ with

kY kh 6 "
1
2 ; kFCkhC 6 2"3; AC D A:

Resonant case. If A 2 R�.N; "
1
10 /, then there exists k� 2 TN�r such that

(1) AC takes the form

AC D

�
ei�C �C

0 e�i�C

�
or AC D

�
ei�C 0

�C e�i�C

�
;
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where �C 2 C, �C D � �
hk�;˛i
2

with estimates

j�Cj 6 "
1
10 ; j�Cj 6 "

9
10 I

(2) it holds that

kBk0 6 ej log "j
2
2C�

; kFCkhC 6 "100:

Proof. We distinguish the proof into two cases.

Case 1. Non-resonant case. Let � D "
1
3 and decompose Bh;r as Bnre

h;r
.�/˚Bre

h;r
.�/,

where

Bnre
h;r.�/ D ¹F 2 Bh;r W F.x/ D TNF.x/º;

Bre
h;r.�/ D ¹F 2 Bh;r W F.x/ D RNF.x/º: (3.3)

It is easy to see that Bnre
h;r
.�/ is a closed invariant subspace of Bh;r . Moreover, we

have the following simple observation.

Lemma 3.2. The operator L�1A WB
nre
h;r
.�/! Bnre

h;r
.�/ is bounded with kL�1A k 6 1

�
.

Proof. We only consider the caseAD
�

ei� �

0 e�i�

�
, the proof for the caseAD

�
ei� 0
� e�i�

�
is similar. For any F 2 Bnre

h;r
.�/, we only need to solve

A�1Y.x C ˛/A � Y.x/ D F.x/:

Expand Y.x/D
P

k
yYkeihk;xi and F.x/D

P
k
yFkeihk;xi respectively. Comparing the

Fourier coefficients, one obtains that for k 2 �r ,

yY
2;1

k D

yF
2;1
k

ei.hk;˛iC2�/ � 1
; (3.4a)

yY
1;1

k D �yY
2;2

k D

yF
1;1
k C �ei.hk;˛iC�/ yY

2;1
k

eihk;˛i � 1
; (3.4b)

yY
1;2

k D

yF
1;2
k C �2eihk;˛i yY

2;1
k � 2�ei.hk;˛i��/ yY

1;1
k

ei.hk;˛i�2�/ � 1
: (3.4c)

Recall the following estimate for ˛ 2 DCd;� :

Lemma 3.3 (Small denominators [50]). Let d 2 NC [ ¹1º, � > 1, � > 0, then for
any k 2 Zd� we have the following estimate:

sup
k2Zd� ;jkj�6N

Y
j2N

.1C hj i� jkj j
� / 6 .1CN/C1N

1
�C1

;
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where C1 D C1.�; �/. Moreover,Y
j2N

.1C hj i� jkj j
� / 6 .1C jkj�/

C1jkj
1
�C1
� :

Combining Lemma 3.3 with (3.2), for any k 2 TN�r we have

khk; ˛ikT > .1CN/�C1N
1
�C1

> "
1
10 :

Besides, it follows from A 2 N R.N; "
1
10 / that jei.hk;˛i˙2�/ � 1j > "

1
10 for any k 2

TN�r . Thus, the denominators in (3.4) are well controlled and Lemma 3.2 follows.

By Lemma 3.1, there exist Y 2 Bnre
h;r
.�/ and F re 2 Bre

h;r
.�/ such that

e�Y.xC˛/AeF.x/eY.x/ D AeF
re.x/;

with the following estimates:

kY kh 6 "
1
2 ; kF re

kh 6 2":

Let B D eY , AC D A, and FC.x/ D F re.x/. By the construction in (3.3), FC can be
expressed as

FC.x/ D
X

k2RN�r

yF re
k eihk;xi:

Therefore, for any hC 2 .0; h/, we have the estimate

kFCkhC D
X

k2RN�r

k yF re
k ke

hCjkj� 6 e�.h�hC/N
X

k2RN�r

k yF re
k ke

hjkj�

6 2e�.h�hC/N kF kh < 2"3;

where the last inequality follows from our choice that N D 2j log "j
h�hC

.

Case 2. Resonant case. In view of ˛ 2 DCd;� and A 2 R�.N; "
1
10 /, Lemma 3.3

and (3.2) imply

k2Re �kT > khk�; ˛ikT C 2j Im �j � "
1
10 >



2
.1CN/�C1N

1
�C1

; (3.5)

as a consequence,

.jei.hk�;˛iC2�/
� 1j � "

1
10 / � .jei.hk�;˛i�2�/

� 1j � "
1
10 / < 0; (3.6)

which shows that the concept of resonance is well defined. In fact, if

jei.hk�;˛i�2�/
� 1j < "

1
10 ;
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then (3.6) directly follows from (3.5) that

jei.hk�;˛iC2�/
� 1j D khk�; ˛i � 2�kT > j4�j � "

1
10 � "

1
10 :

Note that (3.5) also implies that in the resonant case k2 Re �kT always has a
lower bound, which allows us to diagonalize the constant matrix A. Just assume
A D

�
ei� �

0 e�i�

�
, then there exists P D

�
1 �

e�i��ei�
0 1

�
, such that

P�1AP D

�
ei� 0

0 e�i�

�
D zA:

Moreover, just note

je�i�
� ei�
j D j cos Re � � .eIm �

� e� Im �/ � i sin Re � � .eIm �
C e� Im �/j

>
1

4
k2Re�kT ;

then we have estimate

kP k 6 1C
4j�j

k2Re �kT
6 1C

8j�j


.1CN/C1N

1
�C1 6

1

2
ej log "j

2
2C�

:

Moreover, P�1AeF.x/P D zAe zF.x/, where zF D P�1FP 2 Bh;r satisfies

k zF kh 6 kF khkP k2 6 e2j log "j
2
2C�

"µ Q": (3.7)

By the choice of " in (3.2) we have Q" 6 "
9
10 .

After the diagonalization, we are ready to solve the non-resonant terms of the
perturbation. For this purpose, we need to analyze the fine structure of the small
denominators. We just consider the case

jei.hk�;˛i�2�/
� 1j < "

1
10 ; (3.8)

since the other case can be dealt with similarly. The following lemma shows that the
integer cone �r implies that the resonant site in TN 0�r is unique under the proper
truncation N 0 � N .

Lemma 3.4 (Uniqueness). Let N 0 D C2j log "j1C
�
2 �N and C3 D 1

10
C
� 2
2C�

2 , where
C2 D C2.�; ; �/ is the constant such that

1

10

� x
C2

� 1

1C
�
2 > � log.



2
/C C1x

1
1C� log.1C x/ for all x > 0: (3.9)

Then for any k 2 TN 0�r we have

jeihk;˛i
� 1j > "

1
10 ; (3.10)

jei.hk;˛i˙2�/
� 1j > "

1
10 ; whenk ¤ k�: (3.11)
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Proof. If (3.10) does not hold, then by using ˛ 2 DCd;� , Lemma 3.3 and (3.9),

"
1
10 > khk; ˛ikT > .1C jkj�/

�C1jkj
1
�C1
� > e�C3jkj

2
2C�
� :

Thus, combining the above inequality with the choice of N 0, we have

jkj� > C2j log "j1C
�
2 > N 0; (3.12)

which shows a contradiction to k 2 TN 0�r .
If (3.11) does not hold, then there exists k0¤ k� such that jei.hk0;˛iC2�/ � 1j< "

1
10

or jei.hk0;˛i�2�/ � 1j < "
1
10 . This implies that

2"
1
10 > max¹khk0; ˛i C 2� C .hk�; ˛i � 2�/kT ; khk0; ˛i � 2� � .hk�; ˛i � 2�/kT º:

Since k0 2 �r , it follows from the structure of the integer cone �r that

ŒŒk0 C k��� > r.jk0j� C jk
�
j�/ > 0;

which implies that k0 C k� ¤ 0. Moreover, by ˛ 2 DCd;� and Lemma 3.3,

2"
1
10 > khk0 � k�; ˛ikT > .1C jk0 � k�j�/

�C1jk
0�k�j

1
�C1
� :

Same as (3.12), the inequality (3.9) would imply that

jk0 � k�j� > C2j log "j1C
�
2 ;

and consequently
jk0j� > C2j log "j1C

�
2 �N D N 0:

This contradicts to k0 2 TN 0�r , and thus we finish the proof.

Let � D Q"
1
3 and rewrite the k-th Fourier coefficient of zF by yFk D

�
ak bk
ck �ak

�
for

any zF 2Bh;r . By (3.8) and Lemma 3.4, the space decomposition with respect to zA;�
takes the form as

Bnre
h;r.�/ D

²
zF.x/ D TN 0 zF.x/ �

�
0 b�k
0 0

�
eihk�;xi

³
;

Bre
h;r.�/ D

²
zF.x/ D RN 0

zF.x/C

�
0 b�k
0 0

�
eihk�;xi

³
:

It follows directly that Bnre
h;r
.�/ is a closed invariant subspace of Bh;r . Moreover, we

have the following.

Lemma 3.5. The operator L�1
zA
WBnre

h;r
.�/! Bnre

h;r
.�/ is bounded with kL�1

zA
k 6 1

�
.
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Proof. For any zF 2 Bnre
h;r
.�/, in order to solve zF.x/ D L zAY.x/, we only need to

expand Y.x/ D
P

k
yYkeihk;xi and zF.x/ D

P
k
yFkeihk;xi respectively. Direct calcula-

tion shows

yYk� D

�
ak�=.eihk�;˛i � 1/ 0

ck�=.ei.hk�;˛iC2�/ � 1/ �ak�=.eihk�;˛i � 1/

�
;

yYk D

�
ak=.eihk;˛i � 1/ bk=.ei.hk;˛i�2�/ � 1/

ck=.ei.hk;˛iC2�/ � 1/ �ak=.eihk;˛i � 1/

�
for all k ¤ k�:

Then the result follows from Lemma 3.4.

Once we have Lemma 3.5, we then apply Lemma 3.1 to obtain Y 2 Bnre
h;r
.�/ and

F re 2 Bre
h;r
.�/ such that

e�Y.xC˛/ zAe zF.x/eY.x/ D zAeF
re.x/;

with the following estimates

kY kh 6 Q"
1
2 6 "

9
20 ; kF re

kh 6 2Q" 6 2"
9
10 :

Next, the resonant term
�
0 b�k
0 0

�
eihk�;xi in F re.x/ can be eliminated by the rotation

conjugation Qk�.x/, where

Qk.x/´ R hk;xi
2

D

�
e

i
2 hk;xi 0

0 e�
i
2 hk;xi

�
;

which is defined on 2Td . Indeed, direct calculation shows that

Qk�.x C ˛/
�1 zAQk�.x/ D

�
ei.�� hk

�;˛i
2 / 0

0 e�i.�� hk
�;˛i
2 /

�
µ xA;

and

Qk�.x/
�1F re.x/Qk�.x/ D

�
0 b�k
0 0

�
CQ�k�.x/RN 0F

re.x/Qk�.x/

µ LCG.x/µ xF.x/:

Let B D P � eY �Qk� 2 C
!.2Td

h
;SL.2;C//, then

B.x C ˛/�1AeF.x/B.x/ D e xAe xF.x/;

with estimate

kB.x/k0 6 kP k � keY.x/k0 6 ej log "j
2
2C�

:
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Rewrite the cocycle as

xAe xF.x/ D xAeLe�Le xF.x/ D
�

ei�C �C

0 e�i�C

�
eFC.x/µ ACeFC.x/;

where �C D � � hk
�;˛i
2

, �C D b�kei�C . By the decay of Fourier coefficient jb�kj 6
kF rekhe�hjk

�j� and (3.7), it follows that

j�Cj 6 kF re
khe�hjk

�j�e"
1
10 6 "

9
10 :

Furthermore, by the Baker–Campbell–Hausdorff formula, we have

FC.x/ D G.x/C
1

2
Œ�L;G.x/�C

1

12
Œ�L; Œ�L;G.x/��C � � � : (3.13)

The following result is important for us, which says that the rotation Qk�.x/ pre-
serves the cone structure, at the cost of shrinking r a little, as shown in Figure 2.
Consequently, FC also has the cone structure. This is the key step why this modified
KAM iteration can be iterated.

�rnC1

�rn

�rn�1

rnC1 < rn < rn�1

Figure 2. Integer cones in the KAM iteration.

Lemma 3.6. For any F re 2 Bre
hC;r

.�/ and k� 2 TN�r , we have

G.x/ D Q�k�.x/ � .RN 0F
re.x// �Qk�.x/ 2 BhC;rC :

Consequently, we have FC 2 BhC;rC .

Proof. Since RN 0F
re 2 Bre

hC;r
, then the k-th term in its Fourier series is

yFkeihk;xi
D

�
ak bk

ck �ak

�
eihk;xi for all k 2 RN 0�r :
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Let Dk.x/ D Q�k�.x/ yFkeihk;xiQ�k.x/. By direct calculation we have

Dk.x/ D

�
ak 0

0 �ak

�
eihk;xi

C

�
0 bk

0 0

�
eihk�k�;xi

C

�
0 0

ck 0

�
eihkCk�;xi:

On the one hand, since k� 2 TN�r and k 2 RN 0�r , we conclude that

ŒŒk � k��� > r jkj� � ŒŒk
���

> r jkj� �N

D rCjkj� C .r � rC/jkj� �N

> rCjkj� C .r � rC/.C2j log "j1C
�
2 �N/ �N

> rCjkj� C C2j log "j�
�
10 j log "j1C

�
2 � 2N

> rCjkj� CN

> rCjkj� C rCjk
�
j�

> rCjk � k�j�;

where we use the fact N 6 j log "j1C
�
8 and j log "j > .r � rC/

� 10� . This just means
k � k� 2 �rC . On the other hand, ŒŒkC k���> r.jkj� C jk

�j�/ > rCjkC k�j� means
kC k� 2 �rC . We conclude that k;k � k�;kC k� 2 �rC and thusDk.x/ 2BhC;rC .

By Proposition 3.1, we haveG.x/D
P

k2RN 0�rC
Dk.x/ 2BhC;rC . RewriteG D�

G11 G12
G21 �G11

�
, then

Œ�L;G.x/� D

��
0 �b�k
0 0

�
; G

�
D

�
�b�kG21 2b�kG11

0 b�kG21

�
2 BhC;rC ;

which implies that the right-hand side in (3.13) belongs to BhC;rC . Therefore, we
finish the proof again by Proposition 3.1.

By (3.13) and Lemma 3.6, we have

kFCkhC 6 2kGkhC 6 2kRN 0F
re.x/khCkQk�k

2
hC

6 4Q"e�N
0.h�hC/ehCjk

�j� :

Since N 0 D C2j log "j1C
�
2 �N � j log "j

�
10N and k� 2 TN�r , one can get that

kFCkhC 6 "
9
10 e�100N.h�hC/"

�hC
h�hC 6 "100:

This finishes the proof.
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4. Reducibility of almost-periodic cocycles

By the KAM iteration developed in the last section, we now prove the reducibil-
ity results of the almost-periodic cocycle .˛; AeF / with perturbation F 2 Bh;r . We
always choose

A0 D A; F0 D F; "0 D "; h0 D h; r0 D r:

For n > 0, we define the sequences

"nC1 D 2"
3
n;

hnC1 D hn �
h � h0

.nC 2/2
;

rnC1 D rn �
r � r 0

.nC 2/2
;

Nn D
2j log "nj
hn � hnC1

:

(�)

Two situations need to be treated separately for A 2 M, i.e., the eigenvalues of A
are e˙i� with � 2 R (elliptic case and parabolic case) or e˙i� with � … R (hyperbolic
case).

4.1. Elliptic case and parabolic case

Suppose that A D
�

ei� �

0 e�i�

�
with � 2 R, the following Proposition 4.1 shows that

.˛; AeF / is almost reducible.

Proposition 4.1. Let d 2NC [ ¹1º, � > 0, h > 0, h0 2 .0; h/, r 2 .0; 1�, r 0 2 .0; r/,
 2 .0; 1/, � > 1, ˛ 2 DCd;� . Suppose that F 2 Bh;r . There exists

" D ".�; h; h0; r; r 0; ; �; j�j/; c D c.�; ; �/

such that if

kF kh < " <
c

.1C j�j/10
min¹e�

�
1

h�h0

� 10
�

; e�
�

1
r�r0

� 10
�

º;

then there exist ˆn 2 C!.2Td
hn
;SL.2;C// with kˆnk0 6 eC�j log "nj

2
2C� ,

C� ´ .2
2
2C� � 1/�1;
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and Fn 2 Bhn;rn with kFnkhn 6 "n such that

ˆn.x C ˛/
�1AeF.x/ˆn.x/ D AneFn.x/;

where An D
�

ei�n �n
0 e�i�n

�
or An D

�
ei�n 0
�n e�i�n

�
with �n 2 R and j�nj < j�j.

Moreover, if we denote ‚n D
S

k2TNn�rn
‚n.k/, where

‚n.k/ D ¹� 2 R W jei.hk;˛iC2�n/ � 1j 6 "
1
10
n º [ ¹� 2 R W jei.hk;˛i�2�n/ � 1j 6 "

1
10
n º;

then we have the following.

(1) If � … ‚n, then ˆnC1 D ˆn � eYn with

kYnkh 6 "
1
2
n ; �nC1 D �n; �nC1 D �n:

(2) If � 2 ‚n.k�n/, then ˆnC1 D ˆn � Bn with

kBnk0 6 ej log "nj
2
2C�

; �nC1 D �n �
hk�n; ˛i
2

;

j�nC1j 6 "
1
10
n ; j�nC1j 6 "

9
10
n :

(3) If � 2 ‚nj .k
�
nj
/ \‚njC1.k

�
njC1

/, then

jk�njC1 j� > jk�nj j
1C �

4C�
� :

Proof. We are going to prove Proposition 4.1 inductively. Suppose that we are at n-th
step, i.e., we already constructed ˆn such that

ˆn.x C ˛/
�1AeF.x/ˆn.x/ D AneFn.x/;

with following estimates:

kˆnk0 6 eC�j log "nj
2
2C�

; kFnkhn 6 "n; �n 2 R; j�nj 6 j�j:

By the selection of (�) and j�nj 6 j�j, for any n > 0 we have

"n <
c

.1C j�nj/10
min¹e

�

�
1

hn�hnC1

� 10
�

; e
�

�
1

rn�rnC1

� 10
�

º:

By Proposition 3.2, there exist Bn 2 C!.2Td
hnC1

; SL.2;C//, FnC1 2 BhnC1;rnC1 ,
AnC1 2M such that

Bn.x C ˛/
�1AneFn.x/Bn.x/ D AnC1eFnC1.x/:
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Let ˆnC1 D ˆn � Bn. Then

ˆnC1.x C ˛/
�1AeF.x/ˆnC1.x/ D AnC1eFnC1.x/:

To obtain the estimates of ˆnC1, FnC1, AnC1, we need to distinguish between two
cases according to the nature of �.

Non-resonant case. If � … ‚n, which means An 2 N R.Nn; "
1
10
n /. Then by Proposi-

tion 3.2, we have Bn D eYn with estimates

kYnkhn 6 "
1
2
n ; kFnC1khnC1 6 2"3n D "nC1; AnC1 D An:

Hence, �nC1 D �n 2 R and j�nC1j D j�nj 6 j�j. It is obvious that

kˆnC1k0 D kˆn � Bnk0 6 eC�j log "nC1j
2
2C�

:

This proves Proposition 4.1 (1).

Resonant case. If � 2 ‚n.k�n/, which means An 2 R�.Nn; "
1
10
n /. Then by Proposi-

tion 3.2, we have following estimates:

kBnk0 6 ej log "nj
2
2C�

; kFnC1khnC1 6 "100n < "nC1:

Moreover, AnC1 takes the form

AnC1 D

�
ei�nC1 �nC1

0 e�i�nC1

�
or AnC1 D

�
ei�nC1 0

�nC1 e�i�nC1

�
;

where �nC1D �n �
hk;˛i
2
2R with j�nC1j6 "

1
10
n and j�nC1j6 "

9
10
n . This proves Propo-

sition 4.1 (2). It is easy to see that

kˆnC1k0 D kˆn � Bnk0 6 eC�j log "nj
2
2C� ej log "nj

2
2C� 6 eC�j log "nC1j

2
2C�

:

When � 2 ‚nj .k
�
nj
/ \‚njC1.k

�
njC1

/, on the one hand, it follows from

k2�njC1 � hk
�
njC1

; ˛ikT 6 "
1
10
njC1

and Lemma 3.3 that

2j�njC1 j > .1C jk�njC1 j�/
�C1jk�njC1 j

1
�C1
�
� "

1
10
njC1 > e�C3jknjC1 j

2
2C�
� :

On the other hand, there is no resonance between nj -th step and njC1-th step, and
according to Proposition 3.2, we have

�1Cnj D �njC1 and j�1Cnj j 6 "
1
10
nj :
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To sum up, we obtain that

1

2
exp.�C3jk�njC1 j

2
�C2
� / 6 "

1
10
nj 6 exp

�
�
1

10
jk�nj j

8
8C�
�

�
;

where the second inequality uses jk�nj j� 6 Nnj 6 j log "nj j
1C �8 , which shows that

jk�njC1 j� > jk�nj j
1C �

4C�
� :

Hence, we finish the whole proof.

4.1.1. Reducibility of almost-periodic cocycle. The following Corollary 4.1 shows
that .˛; AeF / is reducible provided that � belongs to at most finitely many sets ‚n.
Let x‚ D lim supn!1‚n.

Corollary 4.1. If � … x‚, then there exists ‰0 2 C!.2Td ;SL.2;C// such that

‰0.x C ˛/�1AeF.x/‰0.x/ D A0:

Indeed, let Qn such that � … ‚n for any n > Qn. Then A0 takes the precise form:

(1) if �Qn ¤ 0, then A0 D
�

ei� Qn 0
0 e�i� Qn

�
;

(2) if �Qn D 0, then A0 D
�
1 � Qn
0 1

�
.

Proof. By Proposition 4.1, there exist ˆQn, FQn, AQn such that

ˆQn.x C ˛/
�1AeF.x/ˆQn.x/ D AQneF Qn.x/:

Since no resonance occurs for any n > Qn by the definition of �, we use Proposi-
tion 4.1(1) iteratively to obtain Yn and Fn for n > Qn such that

e�Yn.xC˛/AQneFn.x/eYn.x/ D AQneFnC1.x/;

with kYnkhn 6 "
1
2
n and kFnkhn 6 "n.

If �Qn ¤ 0, then there exists P 2M such that

P�1AQnP D

�
ei� Qn 0

0 e�i� Qn

�
µ A0:

We let ‰0 D ˆQn �
Q1
nDQn eYn � P .

If �Qn D 0, then we let ‰0 D ˆQn �
Q1
nDQn eYn for the case AQn D

�
1 � Qn
0 1

�
. Otherwise

we choose H D
�
0 i
i 0

�
so that

H�1
�
1 0

�Qn 1

�
H D

�
1 �Qn
0 1

�
µ A0;

which finishes the proof by letting ‰0 D ˆQn �
Q1
nDQn eYn �H .
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4.1.2. Growth of the cocycles. Corollary 4.1 shows that the cocycle is reducible if
� … x‚. In the following, we will show the cocycle has sublinear growth if � 2 x‚.

Corollary 4.2. If � 2 x‚, then

kAj k0 6 o.1C j /;

where .j˛;Aj .x//´ .˛; AeF.x//j .

Proof. To control the growth of the cocycles, we need the following.

Lemma 4.1 ([4, 59]). We have that

Ml.idCyl/ � � �M0.idCy0/ DM .l/.idCy.l//;

where M .l/ DMl � � �M0 and

ky.l/k 6 e
Pl
kD0 kM

.k/k2kykk � 1:

By Proposition 4.1, .˛; AeF.x// is almost reducible. Thus, we have

Aj .x/ D ˆn.x C j˛/
� 0Y
sDj�1

AneFn.xCs˛/
�
ˆn.x/

�1:

Then by Lemma 4.1 and kAjnk 6 1C j j�nj, it follows that

kAj k0 6 kˆnk20 � kAnk � kA
j�1
n k � ekFnk0kAnk

Pj
lD1

.1Cj�nj.j�l//

6 .1C 2j�j/ � .1C j j�nj/ � kˆnk
2
0 � e

10"n.jCj
2j�nj/:

For any j 2 N, one can construct an interval In such that

j 2 In´ ."
� 18
n ; "

� 12
n /:

Since In \ InC1 ¤ ¿, we conclude that ¹Inºn2N cover all the j tending to1, and

kAj k0 6 2j.1C 2j�j/ � kˆnk
2
0j�nj:

Note that if � 2 ‚n, by Proposition 4.1(2) we have

kˆnC1k
2
0 � j�nC1j 6 "

1
4

nC1;

then the result follows from the assumption.
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4.2. Hyperbolic case

Recall that

M´

²�
ei� �

0 e�i�

�
W �; � 2 C

³
[

²�
ei� 0

� e�i�

�
W �; � 2 C

³
:

To obtain the reducibility result for hyperbolic A 2 M, first we need the following
simple observation.

Lemma 4.2. Let d 2 NC [ ¹1º, � > 0, h > 0, r 2 .0; 1�,  > 0, � > 1, ˛ 2 DCd;� .
Suppose that A 2M with Im � ¤ 0 and � D 0, F 2 Bh;r with

kF kh < " < min¹10�8; j Im �j3º; (4.1)

then .˛; AeF / is reducible to .˛; A/.

Proof. Let � D "
1
3 and

ƒ1 D ¹k 2 �r W jeihk;˛i
� 1j > �º;

ƒ2 D ¹k 2 �r W jei.hk;˛i˙2�/
� 1j > �º:

Then we define the decomposition Bh;r D Bnre
h;r
.�/˚Bre

h;r
.�/ with respect to A, � ,

where Bnre
h;r
.�/ is defined to be the space of all F 2 Bh;r of the form

F.x/ D
X

k2ƒ1

�
ak 0

0 �ak

�
eihk;xi

C

X
k2ƒ2

�
0 bk

ck 0

�
eihk;xi; (4.2)

and Bre
h;r
.�/ is defined to be the space of all F 2 Bh;r of the form

F.x/ D
X

k2�rnƒ1

�
ak 0

0 �ak

�
eihk;xi

C

X
k2�rnƒ2

�
0 bk

ck 0

�
eihk;xi: (4.3)

For any Y 2 Bnre
h;r
.�/, we have

.LAY /.x/ D
X

k2ƒ1

�
ak.eihk;˛i � 1/ 0

0 �ak.eihk;˛i � 1/

�
eihk;xi

C

X
k2ƒ2

�
0 bk.eihk;˛i�2� � 1/

ck.eihk;˛iC2� � 1/ 0

�
eihk;xi:

Thus, LA is invertible on Bnre
h;r
.�/ and kL�1A k 6 1

�
, which means the decomposition

for (4.2) and (4.3) is well defined.
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Just note by assumption (4.1), we have

jei.hk;˛i˙2�/
� 1j > 2j Im �j > � for all k 2 Zd� ;

which implies �rnƒ2 D ¿. Thus, by Lemma 3.1, there exist Y 2 Bnre
h;r
.�/ and F re 2

Bre
h;r
.�/ such that

e�Y.xC˛/AeF.x/eY.x/ D AeF
0re.x/
µ

�
ei�ef .x/ 0

0 e�i�e�f .x/

�
:

Since ˛ 2 DCd;� , and Of0 D 0 by f 2 Bh;r ŒC�, then

'.x C ˛/ � '.x/ D f .x/; f 2 Bh;r ŒC�;

always has a solution ' 2 C!.Td
h0
;C/ with h0 2 .0; h/. Let‰ D eY �

�
e'.x/ 0
0 e�'.x/

�
2

C!.Td
h0
;SL.2;C//. It follows that

‰.x C ˛/�1AeF.x/‰.x/ D A:

The proof is finished.

As a consequence, we have the following.

Proposition 4.2. Let d 2NC [ ¹1º, � > 0, h > 0, h0 2 .0; h/, r 2 .0; 1�, r 0 2 .0; r/,
 > 0, � > 1, ˛ 2 DCd;� . Suppose that A D

�
ei� �

0 e�i�

�
with Im � ¤ 0 and F 2 Bh;r .

There exist " D ".�; h; h0; r; r 0; ; �; j�j/ and c D c.�; ; �/ such that if

kF kh < " <
c

.1C j�j/10
min¹e�

�
1

h�h0

� 10
�

; e�
�

1
r�r0

� 10
�

º;

then .˛; AeF / is reducible to .˛; A0/, where A0 D
�

ei�0 0

0 e�i�0

�
with Im � 0 D Im � .

Proof. We distinguish the proof into two cases.

Case 1. Strong hyperbolic case. If j Im �j > 1
2

, then there exists P 2M with kP �
id k 6 2j�j such that

P�1AeF.x/P D
�

ei� 0

0 e�i�

�
eP
�1F.x/P

µ A0eF
0.x/;

where F 0 2Bh;r with kF 0kh 6 "
9
10 . By Lemma 4.2, .˛;A0eF

0

/ is reducible to .˛;A0/
with � 0 D � .
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Case 2. Weak hyperbolic case. If j Im �j < 1
2

, by Proposition 3.2 there exist Bn 2
C!.2Td

hn
;SL.2;C//, Fn 2 Bhn;rn and An 2M such that

Bn.x C ˛/
�1AneFn.x/Bn.x/ D AnC1eFnC1.x/;

where An D
�

ei�n �n

0 e�i�n

�
or An D

�
ei�n 0
�n e�i�n

�
with Im �n D Im � and j�nj 6 j�j.

According to the selection of (�), the iteration is ensured by

"n <
c

.1C j�nj/10
min¹e

�

�
1

hn�hnC1

� 10
�

; e
�

�
1

rn�rnC1

� 10
�

º:

Let ˆ0 D id and ˆn D ˆn�1 � Bn�1. Then for n > 0,

ˆn.x C ˛/
�1AeF.x/ˆn.x/ D AneFn.x/;

with kFnkhn 6 "n. Furthermore, there exists Pn 2M with kPnk 6 ej log "nj
2
2C� such

that

P�1n AneFn.x/Pn D
�

ei�n 0

0 e�i�n

�
eP
�1
n Fn.x/Pn µ A0neF

0
n.x/;

with kF 0nkhn 6 "
9
10
n . Since Im �n D Im � , let us choose the smallest Qn such that

"
9
10

Qn
6 min¹10�8; j Im �Qnj

3
º:

By Lemma 4.2, .˛; A0
Qn
eF
0
Qn
.x// is reducible to .˛; A0

Qn
/. Denote A0 D A0

Qn
and � 0 D �Qn.

This finishes the proof.

5. Applications in Schrödinger operators

In this section, we give the applications for Schrödinger operators. Let us rewrite the
Schrödinger cocycle SE;�v.x/ D

�
E��v.x/ �1

1 0

�
D AEeFv.x/, where

AE D

�
E �1

1 0

�
and Fv.x/ D

�
0 0

�v.x/ 0

�
:

Since AE 2 SL.2;C/ one knows that the eigenvalues of AE are E
2
˙

p
E2�4
2

.

5.1. Proof of Theorem 1.2 and Theorem 1.4.

Note that one can always conjugateAE to the upper triangular matrixAwhose upper-
right term is �. To apply Proposition 4.1 and Proposition 4.2 for all E 2 C, and to
obtain uniform smallness condition of j�j, the key observation is that j�j is uniformly
bounded with respect to E.



X. Wang, J. You, and Q. Zhou 384

Case 1. E 2 Œ�2; 2�. The eigenvalues of AE are e˙i� with � 2 R. Let

U0 D
1
p
2

�
ei� �1

1 e�i�

�
I

then we have

U�10 AEU0 D

�
ei� �

0 e�i�

�
µ A 2M;

where � D�1� e�2i� and thus j�j6 2. Let F D U�10 �Fv �U0 2Bh;r . Then kF kh D
�kvkh. If we choose �0 such that

�0kvkh <
c

310
min¹e�

�
2
h

� 10
�

; e�
�
2
r

� 10
�

º; (5.1)

then one can apply Proposition 4.1 to show .˛; SE;�v/ is almost reducible; conse-
quently one can use Corollary 4.1 and Corollary 4.2 to obtain that

L.E/ D L.˛;AeF / D 0 D log
ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌
;

Therefore, .˛; SE;�v/ … UH , and by Proposition 2.1 we have E 2 †�v;˛ .

Case 2. E 2 CnŒ�2; 2�. The eigenvalues of AE are e˙i� with Im � < 0. We can
choose U0 D 1p

je2i� jC1

�
ei� �1
1 ei�

�
and � D �1 � e�2i� so that

U�10 AEU0 D

�
ei� �

0 e�i�

�
µ A 2M:

Let F D U�10 � Fv � U0. By j�j 6 2, one can also choose �0 satisfying (5.1). It fol-
lows from Proposition 4.2 that the cocycle .˛; SE;�v/ is reducible to some hyperbolic
matrix A0 2 SL.2;C/, with

L.E/ D L.˛;A0eF0/ D j Im �j D log
ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌
:

Therefore, .˛; SE;�v/ 2 UH , and by Proposition 2.1 we have E … †�v;˛ .

5.2. Proof of Theorem 1.5

If (5.1) holds, then by Proposition 4.1 and Corollary 4.1, it is enough to show that
� … x‚ if 2� D hk; ˛i mod 2� or � 2 DC�;� .˛/. We show � … x‚ by contradiction. In
fact, if � 2 x‚, then we label the resonant steps ¹nj º � N such that

k2�nj � hk
�
nj
; ˛ikT 6 "

1
10
nj ; k�nj 2 TNnj �rnj : (5.2)
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Let dj D
Pj
sD1 k�ns for each j 2 N. By Proposition 4.1(2) and Lemma 3.3, for suf-

ficiently large nj ,

k2�nj � hk
�
nj
; ˛ikT D k2� � hdj ; ˛ikT

> min¹�; º.1C j2dj j�/�C1j2dj j
1
�C1
� : (5.3)

By Proposition 4.1 (3),

jdj j� 6 .1C 2j log "nj�1 j
�

�
4C� /jk�nj j� 6 2jk�nj j�:

Combining the above inequality with (5.3), one has

k2�nj � hk
�
nj
; ˛ikT > C4.�; �; ; h; h

0/e�.2j log "nj j/
2
�C2

;

which contradicts to (5.2). Let us choose Qn such that � … ‚Qn for any n > Qn.
If � 2 DC.˛/, we have �Qn ¤ 0 and by Corollary 4.1 (1),

‰0.x C ˛/�1AeF.x/‰0.x/ D
�

ei� Qn 0

0 e�i� Qn

�
:

Let ¹nsºJ
�

sD1 be the all resonant steps with J � <1. Denote m D
PJ�

sD1 k�ns and let
Q.x/ D R hm;xi

2

. Then

Q.x C ˛/�1
�

ei� Qn 0

0 e�i� Qn

�
Q.x/ D

�
ei� 0

0 e�i�

�
:

Let ‰´ ‰0 �Q. This finishes the proof.
If 2� D hk; ˛i mod 2� , the proof follows from Corollary 4.1 (2) if �Qn D 0. If

�Qn ¤ 0, by using Corollary 4.1 (1),

‰0.x C ˛/�1AeF.x/‰0.x/ D
�

ei� Qn 0

0 e�i� Qn

�
:

Choose m 2 Zd� such that 2�Qn D hm; ˛i mod 2� and let Q.x/ D R hm;xi
2

. Then

Q.x C ˛/�1
�

ei� Qn 0

0 e�i� Qn

�
Q.x/ D

�
1 0

0 1

�
:

Let ‰´ ‰0 �Q. This finishes the proof.
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5.3. Proof of Theorem 1.6

Let E D 2 cos 2� with �2� D hm; ˛i mod 2� . Choose j�j sufficiently small such
that

j�j < min¹�0; e�2hjmj�º: (5.4)

To prove Theorem 1.6, we only need to show resonant case only appears once in the
setting of Proposition 4.1. For simplicity, we denote "´ k�vkh, and thus by (5.4),

" < e�hjmj� : (5.5)

We sketch the proof into the following five steps.

Step 1. Upper triangularization. Let U0 D 1p
2

�
ei� �1
1 e�i�

�
. Then

U�10 AEeFv.x/U0 D AeF.x/;

where A D
�

ei� �

0 e�i�

�
with �0 D �1 � ei� and F D U�10 FvU0. We have

yFm D U
�1
0

�
0 0

� 0

�
U0 D

�

2

�
ei� �1

e2i� �ei�

�
;

and thus F 2;1.x/ D �
2

e2i�eihm;xi with j. yFm/
2;1j D

"
2

e�hjmj� .

Step 2. Diagonalization. Let

P D

�
1 �

e�i��ei�

0 1

�
:

By (5.5), we have jmj� 6 N0 D
2j log "j
h�h1

and thus � 2 ‚0.m/. So, by Lemma 3.3, we

have kP k 6 ej log "j
2
2C� . Direct calculation shows that

P�1AeF.x/P D A0eF
0.x/;

where A0 D
�

ei� 0
0 e�i�

�
and F 0.x/D

�
g1.x/ g2.x/

F 2;1.x/ �g1.x/

�
with kg1kh;kg2kh 6 kF 0kh 6

"
9
10 µ "0.

Step 3. Eliminate non-resonant terms. Let N 0 D C2j log "j1C
�
2 �N and � D "0

1
3 .

One can check that the space decomposition with respect to A0; � is well defined:

Bnre
h;r.�/ D

²
F.x/ D TN 0F.x/ �

�
0 0

cm 0

�
eihm;xi

³
;

Bre
h;r.�/ D

²
F.x/ D RN 0F.x/C

�
0 0

cm 0

�
eihm;xi

³
:
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By Lemma 3.1, there exist Y 2 Bnre
h;r
.�/ and F re 2 Bre

h;r
.�/ such that

e�Y.xC˛/A0eF
0.x/eY.x/ D A0eF

re.x/

with kF re � PreF
0kh 6 2"0

4
3 6 2"

6
5 .

Step 4. Eliminate resonant terms. LetQ.x/´ R hm;xi
2

. By Lemma 3.6, there exists
F1 2 Bh1;r1 such that

Q.x C ˛/�1A0eF
re.x/Q.x/ D

�
1 0

cm 1

�
eF1.x/µ A1eF1.x/;

where cm D .bF re
m/
2;1 and kF1kh1 6 "100. Hence,

jcm � . yFm/
2;1
j D j.bF re

m/
2;1
� .Pre yF

0
m/
2;1
j 6 kF re

� PreF
0
khe�hjmj� 6 2"

6
5 e�hjmj� ;

which shows that jcmj > j. yFm/
2;1j � 2"

6
5 e�hjmj� > 0.

Step 5. Reducibility. We claim that � …‚n for any n > 1. In fact, by ˛ 2 DCd;� , one
can apply inductively Proposition 4.1(1) to show that for n > 1 and k 2 TNn�rn ,

�n D 0; and k2�n � hk; ˛ikT D khk; ˛ikT > ej log "nj
2
2C�

:

Then there exist Yn 2 Bhn;rn and Fn 2 Bhn;rn such that for any n > 1,

e�Yn.xC˛/A1eFn.x/eYn.x/ D A1eFnC1.x/;

with kYnkhn 6 "
1
2
n and kFnkhn 6 "n. Finally, we choose H D

�
0 i
i 0

�
, then

H�1A1H D

�
1 �

0 1

�
with � D cm:

Let ‰ D U0 � P � eY �Q �
Q1
nD1 eYn �H . The proof is finished by cm ¤ 0.

6. One-frequency examples

In this section, by Avila’s global theory of one-frequency analytic SL.2;C/ cocycles
[2], we determine the spectrum of two examples of one-frequency non-self-adjoint
Schrödinger operators.
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6.1. Proof of Theorem 1.3

To calculate the Lyapunov exponent of .˛; S/ with S.x/ D
�
E��eix �1
1 0

�
, let us com-

plexify the phase

S�.x/´ S.x C i�/ D
�
E � �ei.xCi�/ �1

1 0

�
:

Denote by L.E; �/´ L.˛; S�/ the Lyapunov exponent of .˛; S�/ and by !.E; �/´
!.˛; S�/ the acceleration of that. For sufficiently large � > 0,

S�.x/ D

�
E �1

1 0

�
C o.1/;

then by the continuity of Lyapunov exponent [18, 37],

L.E; �/ D log
ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌
C o.1/:

According to the quantization of acceleration in Theorem 2.1, for � > 0 large enough,

!.E; �/ D 0; L.E; �/ D log
ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌
: (6.1)

A similar argument works for sufficiently small � < 0,

S�.x/ D eixe��
�
�� 0
0 0

�
C o.1/;

and furthermore,

!.E; �/ D �1; L.E; �/ D �� C log j�j: (6.2)

Abbreviate the spectrum †� exp;˛ by †. Let us calculate L.E/ for E 2 † firstly.
For j�j 6 1, by the convexity of L.E; �/ with respect to � and (6.1)–(6.2), we always
have !.E; 0/ D 0, then by Proposition 2.1 and Proposition 2.2, we have

L.E/ D 0:

For j�j > 1, by Proposition 2.1 and Proposition 2.2, L.E; �/ cannot be affine, which
means !.E; �/ ¤ !.E;��/ for any small j�j. By the convexity and (6.1)–(6.2), we
have !.E; 0/ D 0 and !.E; �/ D �1 for any � < 0, which implies

L.E/ D log j�j:

To show L.E/ for allE 2C, we need to add the calculation forE …†. Note that,
by Proposition 2.1 and Proposition 2.2, !.E; �/ is locally constant around � D 0. By
the convexity of L.E; �/, it is easy to see that if !.E; 0/ D 0,

L.E/ D lim
�!C1

L.E; �/ D log
ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌
: (6.3)
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For j�j 6 1, we have !.E; 0/ D 0; then the result follows directly from (6.3). For
j�j > 1, for better understanding the case, denote

	 D
°
E 2 C W log j�j > log

ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌±
;

O D
°
E 2 C W log j�j < log

ˇ̌̌E
2
C

p
E2 � 4

2

ˇ̌̌±
: (6.4)

As shown in Figure 3, if !.E; 0/ D �1, by (6.2) we have

L.E/ D log j�j;

which corresponds to E 2 	, i.e., the interior of the ellipse; if !.E; 0/ D 0, then the
result follows from (6.3) again, which corresponds to E 2 O, i.e., the outside of the
ellipse.

�

L.E; �/

E 2 †

0log j�j

E … †

j�j < 1

�

L.E; �/

E 2 †

log j�j

E … †

j�j D 1

�

L.E; �/

E 2 	

log j�j

log j�j E 2 †

0

E 2 O

j�j > 1

Figure 3. Lyapunov exponent L.E; �/ for E 2 C.

6.2. Proof of Theorem 1.1

We need to distinguish between two cases.

Case 1. j�j6 1. Note that log jE
2
C

p
E2�4
2
j D 0 if and only ifE 2 Œ�2;2�. IfE 2†,

by Theorem 1.3 we have L.E/ D 0 D log jE
2
C

p
E2�4
2
j which implies that E 2

Œ�2; 2�. On the contrary, if E … †, then L.E/ > 0 according to .˛; S/ 2UH , which
implies that log jE

2
C

p
E2�4
2
j D L.E/ > 0 by Theorem 1.3 and thus E … Œ�2; 2�.

Case 2. j�j> 1. Recall that E� D ¹E WE D �ei� C ��1e�i� ; � 2 Œ0; 2��º andE 2 E�

if and only if log j�j D log jE
2
C

p
E2�4
2
j. If E 2 †, by Theorem 1.3 we deduce that

E 2 E�. If E … †, by Proposition 2.1 and Proposition 2.2, we have L.E/ > 0 and
L.E; �/ is affine with respect to � around � D 0. Hence, we have either E 2 	 or
E 2 O, see the definition in (6.4) and the explanation in Figure 3, and thus E … E�.



X. Wang, J. You, and Q. Zhou 390

6.3. Proof of Proposition 1.1

The proof is essentially contained in [49], we include the proof here just for complete-
ness.

�

L.E; �/

j�j C log j�j

0 � log j�jlog j�j

L.E; 0/

�0

Figure 4. Lyapunov exponent L.E; �/ with j�j 2 .0; 1/.

Denote by L.E; �/ the Lyapunov exponent of Hv� ;˛ . As shown in Figure 4,
Avila [2] proved that for any E 2 C, any � 2 R,

L.E; �/ D max¹log j�j C j�j; L.E; 0/º: (6.5)

In particular,

L.E; �/ D max¹log j�j C j�j; 0º for all E 2 †2� cos;˛: (6.6)

Suppose thatE 2†2� cos;˛ . Since j�j< 1 and j�j< � log j�j, it follows from (6.6)
thatL.E;�/D 0 andL.E;�C t /D 0when jt j6 log j�j � j�j, thusE 2†v� ;˛ accord-
ing to Proposition 2.1 and Proposition 2.2.

Suppose that E … †2� cos;˛ . By Proposition 2.1, we have L.E; 0/ > 0 and .˛;
SE;v0/ 2 UH . Then it follows from (6.5) that

L.E; �0/ D L.E; 0/ for j�0j 6 L.E; 0/ � log j�j.

Since j�j< � log j�j by assumption, we haveL.E; �/D L.E;0/ > 0 and L.E; �C t /
is affine for jt j < L.E; 0/, it follows from Proposition 2.1 and Proposition 2.2 again
that E … †v� ;˛ . We thus finish the whole proof.

A. Proof of Lemma 3.1

We are going to use induction to show

e�Yj�1.xC˛/AeF
nre
j�1

.x/CF re
j�1

.x/eYj�1.x/ D AeF
nre
j
.x/CF re

j
.x/
; j > 1;



Isospectrum of non-self-adjoint almost-periodic Schrödinger operators 391

with estimates

kYj�1kh 6 "
3
4

j�1; kF
re
j � F

re
j�1kh 6 "

1
3 "j�1; kF

nre
j kh 6 "j ; (A.1)

where the sequences are defined as

"j D "
3
2

j�1; "0 D "; F0 D F; F
nre
0 D PnreF; F

re
0 D PreF:

Suppose that for j D n, we obtain .˛; AeF
re
n CF

nre
n / and (A.1) holds. For any Y 2

Bnre
h;r
.�/, we define

zJ.Y /´ log e�Y eF
re
n C Y � F re

n ;

zK.Y /´ log e�Y eF
re
n C log eF

re
n eY � 2F re

n :

Let J.Y / (resp. K.Y /) be the linear part of zJ.Y / (resp. zK.Y /) with respect to Y ,

J.�/;K.�/WBh;r ! Bh;r :

Define the sequences for j 2 N as

QjC1 D .�1/
jJ.Qj /; RjC1 D .�1/

jPnreJ.Rj /; Q0 D K.Y /; R0 D F
nre
n :

Let us consider the linear operator IAWBnre
h;r
.�/! Bnre

h;r
.�/ given by

IAY D LAY �

2n�1X
jD0

Qj .Y / D A
�1Y.x C ˛/A � Y.x/ �

2n�1X
jD0

Qj .Y.x//:

Since kF re
n kh 6 2", we have kIAY k > 3

4
"
1
2 kY kh, and thus kI�1A k is bounded by

4
3
"�

1
2 . There exists Yn such that IAYn D Pnre

P2n�1
jD0 Rj , i.e.,

A�1Yn.x C ˛/A � Yn.x/ �

2n�1X
jD0

Qj .Yn/ D Pnre

2n�1X
jD0

Rj :

Moreover, kYnkh 6 4
3
"�

1
2 ."n C 4""n/ 6 2"�

1
2 "n. Thus,

eF
nre
nC1

.x/CF re
nC1

.x/
D e�A

�1Yn.xC˛/AeF
nre
n .x/CF re

n .x/eYn.x/

D e�Yn.x/�Pnre
P2n�1
jD0 Rj�

P2n�1
jD0 Qj eF

nre
n .x/CF re

n .x/eYn.x/;

Let us recall the Baker–Campbell–Hausdorff formula,

log.eXeW eZ/ D X CW CZ C
1

2
ŒX;W �C

1

2
ŒW;Z�C

1

2
ŒX;Z�CO3.X;W;Z/;
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where O3.X;W;Z/ stands for the sum of terms whose Lie brackets involving three
elements of X;W;Z. By the construction of Rj ;Qj and B-C-H formula,

F re
nC1.x/ D F

re
n .x/C Pre

°
�
1

2
ŒF nre
n ; F re

n �C ŒF
re
n ; Yn�C � � �

±
;

F nre
nC1.x/ D Pnre

°
�
1

4
ŒYn; ŒF

re
n C; Yn�� �

1

2
ŒR2n�1; F

re
n � �

1

2
ŒQ2n�1; F

re
n �C � � �

±
:

Since kQj kh 6 2"kQj�1kh and kRj kh 6 2"kRj�1kh, we get that

kQ2n�1kh 6 .2"/2
n�1
kQ0kh 6 .2"/2

n

kYnkh;

kR2n�1kh 6 .2"/2
n�1
kF nre

0 kh 6 .2"/2
n

:

Thus, we deduce that

kF re
nC1 � F

re
n kh 6 "

1
3 "n; kF

nre
nC1kh 6 "

3
2
n D "nC1:

Now, we let Y D log.
Q1
nD0 eYn/ and F re D limn!1 F

re
n . Since Bre

h;r
.�/ and

Bnre
h;r
.�/ are closed subspace in Bh;r , it follows from Proposition 3.1 that Y 2 Bh;r

and F re 2 Bre
h;r
.�/. By direct calculation, we have kY kh 6 "

1
2 and kF re � PreF kh 6

2"
4
3 .
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