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Remarks on discrete Dirac operators
and their continuum limits

Shu Nakamura

Abstract. We discuss possible definitions of discrete Dirac operators, and discuss their con-
tinuum limits. It is well known in the lattice field theory that the straightforward discretization
of the Dirac operator introduces unwanted spectral subspaces, and it is known as the fermion
doubling. In oder to overcome this difficulty, two methods were proposed. The first one is to
introduce a new term, called the Wilson term, and the second one is the KS-fermion model or
the staggered fermion model. We discuss mathematical formulations of these, and study their
continuum limits.

1. Introduction

In a recent paper by Cornean, Garde, and Jensen [3], they studied the continuum limit
of discretized Dirac operators in the sense of norm resolvent convergence, and they
found that they do not converges to the (usual) Dirac operators. They found that if
one adds another term, then these operators converge to the Dirac operators. This
corresponds to the Wilson term in the lattice field theory. We discuss this method
briefly, and then discuss another method, the KS-fermion (or the staggered fermion)
model, which is mathematically ingenious and interesting in itself. Thus, this note is
partly a survey of these methods, but they are rigorously reformulated in relatively
general settings, and we prove some new results on their continuum limits.

The continuum limit of a quantum Hamiltonian on the square lattice in the sense of
(generalized) norm resolvent convergence was studied by Nakamura and Tadano [8],
and several papers have been published based on the idea of the norm resolvent con-
vergence (see also [9] for the concept of generalized resolvent convergence). Cornean,
Garde and Jensen [2] studied the convergence for more general Fourier multipliers,
and Exner, Nakamura, and Tadano [4] considered continuum limit for quantum graph
Hamiltonians. As mentioned above, Cornean, Garde, and Jensen [3] considered the
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continuum limit of discretized Dirac operators, and identified the main difficulty in
showing the convergence to the continuous Dirac operators. See also Schmidt and
Umeda [11] and Isozaki and Jensen [5] for closely related results.

It turned out that such difficulty was widely known in the lattice field (gauge)
theory (see, e.g., [1, 10]), and it is generally called the fermion doubling. There are
two standard methods to avoid the problem. The first one is adding an additional term
to the Hamiltonian (or the Lagrangian), and it is called the Wilson term. The other
method is called the KS-fermion model after Kogut and Susskind [6, 12]. We try to
reformulate these methods, especially the KS-fermion method so that it is appropriate
to study the continuum limit in the norm resolvent sense, and prove the convergence
of the continuum limit.

The paper is constructed as follows. In Section 2, we prepare several basic tools.
At first we explain the notations concerning the square lattices, function spaces,
Fourier transforms, and several kinds of difference operators. Then in Section 2.2,
we introduce an embedding operator from the function space on the lattice to the
Lebesgue space on the Euclidean space, which is necessary to study the continuum
limit following [8]. In Section 2.3, we recall the definition of the Dirac operators on
the Euclidean spaces. In Section 3, we consider the discretization of the Dirac opera-
tor using the symmetric difference operators, and explain why it is not appropriate to
consider the continuum limit. In Section 4, we introduce the Wilson term, and show
the convergence of the continuum limit in the norm resolvent sense for Hamiltonians
with the Wilson term under suitable conditions. Section 5 is devoted to the discus-
sion of the KS-fermion model. We introduce the one-component KS-Hamiltonian on
d -dimensional lattice (with fermion doubling problem), and then transform it to a 2d

components operator without the fermion doubling problem in Section 5.1. We briefly
examine the spectral properties of this operator in Section 5.2, and prove the conver-
gence to a continuum limit in Section 5.3. Here the number of components, 2d , can
be higher than those of the standard Dirac operator on Rd . We discuss the model for
the dimensions 1, 2, and 3 in Section 6, and show that for d D 1 the model is appro-
priate (and in fact studied in [3] already), and for d D 2 and 3, the continuum limit is
decomposed to a direct sum of two standard Dirac operators.

2. Preliminaries

2.1. Notations

We denote the square lattice in Rd with the lattice spacing h > 0 by hZd D
®
hn
ˇ̌
n 2

Zd
¯
. Let ¹ej ºdjD1 be the standard basis of Rd , i.e., ej D .ıj;k/dkD1 2Zd , j D 1; : : : ;d ,

where ıj;k denotes the Kronecker delta symbol. The basis (or the generators) of hZd
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is given by ¹he1; : : : ; hed º. We recall the dual space (or the dual module) of hZd

is given by h�1Td D Rd=.h�1Zd /. We note the dual lattice of hZd is h�1Zd , and
hence the inner product z � � is well-defined modulo Z for z 2 hZd , � 2 h�1Td .

We denote the standard L2 space on the d -dimensional Euclidean space by
L2.Rd /. We use the square summable function space on hZd , namely `2.hZd /, and
we use the norm defined by

kuk2
`2.hZd /

D hd
X
z2hZd

ju.z/j2; u 2 `2.hZd /:

We denote the Fourier transform on Rd by

F u.�/ D

Z
Rd

e�2�ix��u.x/dx for u 2 L1.Rd /; � 2 Rd ;

and the inverse Fourier transform by F �. On the lattice hZd , the Fourier transform
FhW `

2.hZd /! L2.h�1Td / is defined by

Fhu.�/ D h
d
X
z2hZd

e�2�iz��u.z/; � 2 h�1Td :

for u 2 `2.hZd /. Fh is unitary, and the inverse is given by

F �h v.z/ D

Z
h�1Td

e2�iz��v.�/d�; z 2 hZd

for v 2 L2.h�1Td /.
The partial differential operator on Rd , or the momentum operator is denoted by

Dj D
1

i

@

@xj
; j D 1; : : : ; d:

On the lattice hZd , we set the symmetric difference operators

DS
hIju.z/ D

1

2ih
.u.z C hej / � u.z � hej //; j D 1; : : : ; d; z 2 hZd ;

as an approximation of Dj on hZd , where u 2 `2.hZd /. We also write the forward
and backward difference operators by

D˙hIju.z/ D ˙
1

ih
.u.z ˙ hej / � u.z//; z 2 hZd

for u 2 `2.hZd /.
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2.2. Embedding of `2.hZd/ into L2.Rd/

We need an embedding operator JhW `2.hZd /! L2.Rd / when we consider the con-
tinuum limit. We employ the following operators ([8], see also [2]).

We need a function ' 2 �.Rd / such that ¹'.� � n/ j n 2 Zd º is an orthonormal
system in L2.Rd /. It is well-known that this condition is equivalent toX

n2Zd

j O'.� C n/j2 D 1 for � 2 Rd ; (2.1)

where O' D F '. We then set, for z 2 hZd ,

'hIz.x/ D '.h
�1.x � z//; x 2 Rd ;

and we define
Jhu.x/ D

X
z2hZd

u.z/'hIz.x/; x 2 Rd :

It is easy to see Jh is an isometry from `2.hZd / to L2.Rd / provided ' satisfies (2.1),
and the adjoint operator is given by

J �h v.z/ D h
�d

Z
Rd

'hIz.x/v.x/dx; z 2 hZd ;

where v 2 L2.Rd /. (We remark that our notations are slightly different from [8]. In
particular, Jh D P �h in [8]). In this paper, we make the following assumption.

Assumption A. ' satisfies the condition (2.1), and suppŒ O'� � .�1; 1/d .

We note there exists various such '’s, and we simply choose one and fix it here.
See [8] for the detail.

2.3. Free Dirac operators

We recall the definition of the Dirac operators on Rd . See, e.g., Thaller [13] for the
survey on Dirac operators. For simplicity, we mainly discuss the free operators with-
out perturbations here. Let ˛1; : : : ; ˛d and ˇ be a set of N � N Hermitian matrices
such that

˛i j̨ C j̨˛i D 0; ˛iˇ C ˇ˛i D 0; i ¤ j;

and ˛2j D ˇ2 D 1N , where N 2 2N and 1N denotes the N � N identity matrix.
Typical choices for d D 1; 2; 3 are as follows. We denote a set of Pauli matrices by

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
:
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For d D 1, we set N D 2 and ˛1 D �1 and ˇ D �3. For d D 2, we set N D 2 and
˛1 D �1, ˛2 D �2 and ˇ D �3. For d D 3, we set N D 4 and

j̨ D

�
0 �j

�j 0

�
for j D 1; 2; 3I ˇ D

�
12 0

0 �12

�
:

We then define the (free) Dirac operator by

H0 D

dX
jD1

Dj j̨ Cmˇ on ŒL2.Rd /�˚N ;

where Dj D �i@=@xj , j D 1; : : : ; d , and m � 0.
It is easy to see by the anti-commuting properties,

H 2
0 D

dX
jD1

D2
j ˛

2
j Cm

2ˇ2 D .�4Cm2/1N ;

and hence H0 is elliptic. It is also straightforward to show H0 is self-adjoint with
D.H0/ D ŒH

1.Rd /�˚N . We note

FH0F
�u.�/ D yH0.�/u.�/; where yH0.�/ D

dX
jD1

2��j j̨ Cmˇ:

Since yH0.�/2 D j2��j2 Cm2, it can be easily shown that the eigenvalues of yH0.�/
are˙

p
j2��j2 Cm2 with multiplicities N=2 each.

3. Straightforward discretization of Dirac operators and the fermion
doubling

We now discretize the Dirac operators on hZd . Using DS
hIj

, we may define the dis-
cretized Dirac operator by

HS
0Ih D

dX
jD1

DS
h;j j̨ Cmˇ on Œ`2.hZd /�˚N ;

which is a bounded symmetric operator. The symbol of HS
0Ih

, yHS
0Ih
.�/, is defined by

yHS
0Ih.�/v.�/ D FhH

S
0IhF

�
h v.�/ D

� dX
jD1

h�1 sin.2�h�j / j̨ Cmˇ
�
v.�/
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for v 2 ŒL2.h�1Td /�˚N . The eigenvalues of yHS
0Ih
.�/ are given by

E˙;h.�/ D ˙
�
h�2

dX
jD1

sin2.2�h�j /Cm2
�1=2

; � 2 h�1Td :

We note the eigenvalues of H0 are given by E˙.�/ D ˙
p
j2��j2 Cm2 and

jE˙.�/j have only one critical point (local minimal point) at � D 0 in Rd with the
minimal value m if m > 0. If m D 0, E˙.�/ D 0 only at � D 0. On the other hand,
jE˙;h.�/j has 2d local minimal points in h�1Td

¹0; .2h/�1ºd D ¹� 2 h�1Td
j �j D 0 or .2h/�1; j D 1; : : : ; dº

(with the minimal value m) if m > 0, and the 2d zero points ¹0; .2h/�1ºd if m D 0.
Hence, when h! 0, the resolvent ofHS

0Ih
converges to the direct sum of 2d copies of

the resolvent of H0 with suitable identification. In particular, HS
0Ih

cannot converges
to the resolvent of H0 in the norm resolvent sense (see [3, Theorems 4.7 and 5.7]). In
physics terminology, this implies HS

0Ih
describes 2d different fermion particles, and

thus this phenomenon is called the fermion doubling ([1,10]). For this reason,HS
0Ih

is
not considered a reasonable discretization of the Dirac operator.

4. The Wilson term

One standard procedure to avoid the fermion doubling is adding a term of the form

SW D �.�4h/ˇ;

to the Hamiltonian, where4h is the standard difference Laplacian defined by

�4hu.z/ D h
�2

dX
jD1

.2u.z/ � u.z C hej / � u.z � hej //; z 2 hZd ;

and � > 0 is a small coupling constant. SW is called the Wilson term (see [1] and
[10, Section 4.3]). We set

zH0Ih D H
S
0Ih C SW :

If �! 0 and �h�2 !1 as h! 0, one can show that zH0Ih converges to H0 in the
norm resolvent sense as h! 0 (Theorem 4.1. See also [3, Sections 5.1], where the
coupling constant is chosen as � D h).
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The Wilson term destroys the fermion doubling for the following simple reason.
The symbol of zH0Ih is given by

yH0Ih.�/ D

dX
jD1

h�1 sin.2�h�j / j̨ C
�
mC �

dX
jD1

2h�2.1 � cos.2�h�j //
�
ˇ;

and its eigenvalues are given by

zE0I˙.�/ D ˙
� dX
jD1

h�2 sin2.2�h�j /C
�
mC �

dX
jD1

2h�2.1 � cos.2�h�j //
�2�1=2

:

These eigenvalues j zE0I˙j still have 2d local minimal points in the case m > 0, but
j zE0I˙j � m C �h

�2 at these local minima, except for � D 0, and they diverge to
C1 as h! 0. In the case m D 0, these eigenvalues are at least of order O.�h�2/
away from any neighborhood of � D 0, and hence the absolute values of eigenvalues
diverges toC1 as h! 0. On the other hand, if �! 0, the Wilson term is negligible
in a neighborhood of � D 0 as h! 0. Specifically, we have

Theorem 4.1. Suppose �! 0 and �h�2 !1 as h! 0. Then for z 2 C nR,

k.H0 � z/
�1
� Jh. zH0Ih � z/

�1J �h kB.L2.Rd // ! 0; as h! 0:

Since Jh is an isometry, this also implies

kJ �h .H0 � z/
�1Jh � . zH0Ih � z/

�1
kB.`2.hZd // ! 0; as h! 0:

Proof. The proof is essentially the same as the argument in [8, Section 2], and [3,
Sections 4.1 and 5.2]. We only sketch the argument. We follow the notations of [8],
and we write Qh D FhJ �h F � and yH0 D FH0F

� D yH0.�/�. Then we have

k.1 � JhJ
�
h /.H0 � z/

�1
k D k.1 �Q�hQh/.

yH0 � z/
�1
k � Ch (4.1)

by the same proof as in [8, Lemma 2.2]. Now, we note

j yH0Ih.�/ � yH0.�/j � Ch
2
j�j3 C C j�j j�j2

for � 2 Rd , where j � j in the left-hand side denotes the operator norm in CN . We also
note

j. yH0.�/ � z/
�1
j � j�j�1

and
j. yH0Ih.�/ � z/

�1
j � max

˙
j zE0I˙.�/ � zj

�1
� C.j�j�1 C j�j�1h2/
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on the support of O'.h�/. Combining these, we have

j. yH0.�/ � z/
�1
� . yH0Ih.�/ � z/

�1
j � Ch2j�j C C j�j C C j�j�1h4j�j2

� ChC C j�j C C j�j�1h2

on the support of O'.h�/. This implies

k. zH0Ih � z/
�1J �h � J

�
h .H0 � z/

�1
k � C.hC j�j C j�h�2j�1/

as well as [8, Lemma 2.3]. Combining this with (4.1), we arrive at the conclusion.

5. The KS-fermion model

5.1. The construction of the KS-Hamiltonian

Here we describe an interpretation of an idea by Susskind [12] (see also Kogut and
Susskind [6] and Rothe [10, Section 4.4]), which is called the KS-fermion (or the
staggered fermion) model. We write

sj .n/ D

jX
kD1

nk; for n 2 Zd ; j D 1; : : : ; d;

and we also set s0.n/ D 0. We define operators XhIj and Yh on `2.hZd / by

XhIju.z/ D .�1/
sj�1.z=h/DS

hIju.z/; z 2 hZd ;

Yhu.z/ D .�1/
sd .z=h/u.z/; z 2 hZd ;

where u 2 `2.hZd / and j D 1; : : : ; d . By direct computations, we can easily show

XhIjXhIk CXhIkXhIj D 0 if j ¤ kI XhIjYh C YhXhIj D 0 for j D 1; : : : ; d;

and X2
hIj
D .DS

hIj
/2, Y 2

h
D 1. These properties suggest that

zHKSIh D

dX
jD1

Xj CmY

may be considered as a discrete Dirac operator on `2.hZd /. In particular, we have

. zHKSIh/
2u.z/ D

dX
jD1

.DS
hIj /

2u.z/Cm2u.z/

D

dX
jD1

.2h/�2
�
2u.z/ � u.z C 2hej / � u.z � 2hej /

�
Cm2u.z/

D .�42h Cm
2/u.z/
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for u 2 `2.hZd /. Whereas zHKSIh is a scalar operator, i.e., an operator acting on the
one-component function space, it still has the fermion doubling problem. In order
to solve this problem, we transform the operator zHKSIh to an operator HKSIh on
Œ`2..2h/Zd /�˚2

d
. By doubling the lattice spacing, we reduce the period of the dual

space by half, i.e., ..2h/Zd /0 D .2h/�1Td , and remove the problematic periodic
critical points. In order to double the lattice spacing, we increase the number of com-
ponents to 2d , in the following way. We define the set of indices ƒ by

ƒ D ¹0; 1ºd � Zd ; jƒj D 2d ;

and we write a D .a1; : : : ; ad / 2 ƒ, where aj 2 ¹0; 1º, j D 1; : : : ; d . We consider
2d � 2d -matrices of the form L D .La;b/a;b2ƒ. We denote

Œ`2..2h/Zd /�˚ƒ D
®
.ua.z//a2ƒ

ˇ̌
ua 2 `

2..2h/Zd /; a 2 ƒ
¯
:

We define a unitary operator UhW `2.hZd /! Œ`2..2h/Zd /�˚ƒ as follows:

.Uhu/a.z/ D 2
�d=2u.z C ha/; z 2 .2h/Zd ; a 2 ƒ;

for u 2 `2.hZd /. The adjoint operator is given by

.U �hw/.z C ha/ D 2
d=2wa.z/; z 2 .2h/Zd ; a 2 ƒ;

where w D .wa/a2ƒ 2 `2..2h/Zd /�˚ƒ. Now, we define the KS-Hamiltonian by

HKSIh D Uh zHKSIhU
�
h :

By direct computations, we learn the .a; b/-component of the matrix operator

UhXhIjU
�
h

is given by

.UhXhIjU
�
h /a;bub.z/ D

8̂̂<̂
:̂
.�1/sj�1.a/DC

2hIj
ub.z/ if b D a � ej ;

.�1/sj�1.a/D�
2hIj

ub.z/ if b D aC ej ;

0 otherwise;

for ub 2 `2..2h/Zd /, a; b 2 ƒ, j D 1; : : : ; d . Thus, we have

.HKSIh/a;bub.z/ D

8̂̂̂̂
<̂
ˆ̂̂:
.�1/sj�1.a/DC

2hIj
ub.z/ if b D a � ej ;

.�1/sj�1.a/D�
2hIj

ub.z/ if b D aC ej ;

m.�1/sd .a/ub.z/ if a D b;

0 otherwise;

for ub 2 `2..2h/Zd /, a; b 2 ƒ.
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5.2. KS-Hamiltonian in the Fourier space and its eigenvalues

At first we note

.HKSIh/
2
D Uh. zHKSIh/

2U �h D Uh.�42h Cm
2/U �h D .�42h Cm

2/1jƒj

since �42h acts on each .2h/Zd C ha, a 2 ƒ.
For simplicity, we denote Fh1jƒj on Œ`2.hZd /�˚ƒ by the same symbol Fh. We set

yHKSIh D F2hHKSIhF
�
2h;

then it is a matrix with multiplication operators as the entries. Namely, if we denote
the symbols of the forward/backward difference operators by

d˙hIj .�/ D ˙
e˙2�ih�j � 1

ih
; j D 1; : : : ; d;

then we have

. yHKSIh.�//a;b D

8̂̂̂̂
<̂
ˆ̂̂:
.�1/sj�1.a/dC

2hIj
.�/ if b D a � ej ;

.�1/sj�1.a/d�
2hIj

.�/ if b D aC ej ;

m.�1/sd .a/ if a D b;

0 otherwise:

By the above observation, we also have

. yHKSIh.�//
2
D

� dX
jD1

.2h2/�1.1 � cos.4�h�j //Cm2
�

1jƒj:

In particular, this implies the eigenvalues of yHKSIh.�/ are given by

˙ yEKSIh.�/ D ˙
� dX
jD1

.2h2/�1.1 � cos.4�h�j //Cm2
�1=2

:

We recall that yEKSIh.�/ is defined on .2h/�1Td , and hence it has a unique minimal
point � D 0. In other words, HKSIh has no fermion doubling problem in the Fourier
space, though it has many components.

5.3. Continuum limit of the KS-Hamiltonian

Now, if we take the limit h! 0, at least formally,D˙
2hIj

.�/!Dj , and henceHKSIh!

HKSI0 with a certain differential operator with constant matrix coefficients HKSI0 on
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ŒL2.Rd /�˚ƒ. For j D 1; : : : ; d and a; b 2 ƒ, we set

.Aj /a;b D

´
.�1/sj�1.a/ if b D aC ej or b D a � ej ;

0 otherwise;

and
Ba;b D .�1/

sd .a/ıa;b:

Then we have

HKSI0 D

dX
jD1

AjDj CmB on ŒL2.Rd /�˚ƒ:

We can actually show HKSIh converges to HKSI0 in the generalized norm resolvent
sense.

Theorem 5.1. For z 2 C nR,

k.HKSI0 � z/
�1
� J2h.HKSIh � z/

�1J �2hkB.L2.Rd // ! 0; as h! 0:

Since J2h is an isometry, this also implies

kJ �2h.HKSI0 � z/
�1J2h � .HKSIh � z/

�1
kB.`2.hZd // ! 0; as h! 0:

Proof. We first note

jd˙2hIj .�/ � 2��j j �
.4�h�j /

2

2 � 2h
� 4�2hj�j2;

and
j. yHKSI0.�/ � z/

�1
j � max

˙
j.˙.j2��j2 Cm2/ � z/�1j � C j�j�1;

uniformly in � 2 Rd , h > 0, where yHKSI0.�/ D
Pd
jD1 2��jAj CmB . We also have

j. yHKSIh.�/ � z/
�1
j D max

˙
j.˙ yEh.�/ � z/

�1
j � C j�j�1

on the support of O'.h�/. Combining these, we have

j. yHKSIh.�/ � z/
�1
� . yHKSI0.�/ � z/

�1
j � Ch

on the support of O'.h�/, and then it is straightforward to show the claim as in the
proof of Theorem 4.1, or [8]. See also [3, Section 3.1].

We note A1; : : : ; Ad and B satisfy the following properties as well as ˛1; : : : ; ˛d
and ˇ, i.e.,

AjAk C AkAj D 0 if j ¤ k; AjB C BAj D 0;
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andA2j DB
2 D 1jƒj, j D 1; : : : ; d . Thus, we may considerHKSI0 as a Dirac operator,

but the number of components are not necessarily the same as the standard Dirac
operators. Namely, if d D 1, then 21 D 2 and the number of components is the same
as the standard one, but if d D 2, then 22 D 4 > 2, and if d D 3 then 23 D 8 > 4,
and the number of components are twice as that of the standard Dirac operators. We
expect HKSI0 is decomposed to a direct sum of the standard Dirac operators, and we
confirm it for d � 3 in Section 6.

6. Examples

Here we consider KS-Hamiltonians and their continuum limit for d D 1; 2, and 3.

6.1. 1-dimensional case

For d D 1, the model is transparent and easy to understand. It is also essentially
the same model discussed in [2, Section 3.1] as the 1D forward-backward difference
model.

At first, we have

zHKSIhu.x/ D
1

2ih
.u.x C h/ � u.x � h//C .�1/x=hmu.x/; x 2 hZ;

for u 2 `2.hZ/, and hence

HKSIh D

�
m DC

2h;1

D�
2hI1

�m

�
:

Its eigenvalues are˙
p
.2h2/�1.1 � cos.4�h�//Cm2, and the continuum limit is

HKSI0 D

�
m D

D �m

�
D D�1 Cm�3; on L2.R/;

where D D �i @
@x

, and thus we recover the standard 1D Dirac operator.

6.2. 2-dimensional case

If d D 2, the one component operator is given by

zHKSIhu.x; y/ D D
S
hI1u.x; y/C .�1/

x=hDS
hI2u.x; y/C .�1/

.xCy/=hmu.x; y/

for .x; y/ 2 hZ2, where u 2 `2.hZ2/. We set

u1.x; y/ D u.x; y/; u2.x; y/ D u.x C h; y C h/;

u3.x; y/ D u.x; y C h/; u4.x; y/ D u.x C h; y/
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for .x; y/ 2 2hZ2 and u 2 `2.hZ2/, and then we set Uhu D .uj /4jD1. Applying the
formula in Section 5.1 we have

HKSIh D

0BBB@
m 0 D�

2h;1
D�
2hI2

0 m �DC
2hI2

DC
2hI1

DC
2hI1

�D�
2hI2

�m 0

DC
2hI2

D�
2hI1

0 �m

1CCCA ;
and in the continuum limit, we obtain

HKSI0 D

0BBB@
m 0 D1 D2

0 m �D2 D1

D1 �D2 �m 0

D2 D1 0 �m

1CCCA :
This does not look like the standard 2D Dirac operator, but if we set

M D

0BBB@
1 0 1 0

i 0 �i 0

0 1 0 1

0 i 0 �i

1CCCA ;
then

M�1HKSI0M D

0BB@
m D1 C iD2 0 0

D1 � iD2 �m 0 0

0 0 m D1 � iD2

0 0 D1 C iD2 �m

1CCA
D

 
D1�1 CD2�2 Cm�3 0

0 D1�1 CD2�2 Cm�3

!
:

Thus, we arrive at a direct sum of two standard 2D Dirac operators, one of which is
simply the complex conjugate.

6.3. 3-dimensional case

For d D 3, the computations look somewhat complicated. We omit to write down the
definition of zHKSIh. We set

u1.x; y; z/ D u.x; y; z/; u2.x; y; z/ D u.x C h; y C h; z/;

u3.x; y; z/ D u.x; y C h; z C h/; u4.x; y; z/ D u.x C h; y; z C h/

u5.x; y; z/ D u.x; y; z C h/; u6.x; y; z/ D u.x C h; y C h; z C h/;

u7.x; y; z/ D u.x; y C h; z/; u8.x; y; z/ D u.x C h; y; z/;
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for .x; y; z/ 2 2hZ3, u 2 `2.hZ3/, and we set Uhu D .uj /8jD1. Then we have

HKSIh D

0BBBBBBBBBB@

m 0 0 0 D�
3

0 D�
2

D�
1

0 m 0 0 0 D�
3

DC
1

�DC
2

0 0 m 0 DC
2

D�
1

�DC
3

0

0 0 0 m DC
1
�D�

2
0 �DC

3

DC
3

0 D�
2

D�
1

�m 0 0 0

0 DC
3

DC
1

�DC
2

0 �m 0 0

DC
2

D�
1

�D�
3

0 0 0 �m 0

DC
1
�D�

2
0 �D�

3
0 0 0 �m

1CCCCCCCCCCA
;

and the continuum limit is

HKSI0 D

0BBBBBBBBBBB@

m 0 0 0 D3 0 D2 D1

0 m 0 0 0 D3 D1 �D2

0 0 m 0 D2 D1 �D3 0

0 0 0 m D1 �D2 0 �D3

D3 0 D2 D1 �m 0 0 0

0 D3 D1 �D2 0 �m 0 0

D2 D1 �D3 0 0 0 �m 0

D1 �D2 0 �D3 0 0 0 �m

1CCCCCCCCCCCA
:

By setting

M D

0BBBBBBBBBB@

1 0 0 0 1 0 0 0

i 0 0 0 �i 0 0 0

0 1 0 0 0 1 0 0

0 �i 0 0 0 i 0 0

0 0 1 0 0 0 1 0

0 0 i 0 0 0 �i 0

0 0 0 1 0 0 0 1

0 0 0 �i 0 0 0 i

1CCCCCCCCCCA
;

we have

M�1HKSI0M

D

0BBBB@
m 0 D3 �iD1CD2 0 0 0 0
0 m iD1CD2 �D3 0 0 0 0
D3 �iD1CD2 �m 0 0 0 0 0

iD1CD2 �D3 0 �m 0 0 0 0
0 0 0 0 m 0 D3 iD1CD2

0 0 0 0 0 m �iD1CD2 �D3

0 0 0 0 D3 iD1CD2 �m 0
0 0 0 0 �iD1CD2 �D3 0 �m

1CCCCA
D

 
m12 D1�2CD2�1CD3�3 0 0

D1�2CD2�1CD3�3 �m12 0 0
0 0 m12 D1�2CD2�1CD3�3

0 0 D1�2CD2�1CD3�3 �m12

!

D

 
D1˛2 CD2˛1 CD3˛3 Cmˇ 0

0 D1˛2 CD2˛1 CD3˛3 Cmˇ:

!
:
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This gives a direct sum of a representation of 3D Dirac operator and its complex
conjugate (another representation). Of course, the final form depends on the choice of
the diagonalization matrix M . These matrix computations were aided by a symbolic
computation tool SymPy on Python.
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