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Quotient graphs of symmetrically rigid frameworks

Sean Dewar, Georg Grasegger, Eleftherios Kastis, and Anthony Nixon

Abstract. A natural problem in combinatorial rigidity theory concerns the determination of the
rigidity or flexibility of bar-joint frameworks in Rd that admit some non-trivial symmetry. When
d D 2 there is a large literature on this topic. In particular, it is typical to quotient the symmetric
graph by the group and analyse the rigidity of symmetric, but otherwise generic frameworks, using
the combinatorial structure of the appropriate group-labelled quotient graph. However, mirroring
the situation for generic rigidity, little is known combinatorially when d � 3. Nevertheless in the
periodic case, a key result of Borcea and Streinu in 2011 characterises when a quotient graph can be
lifted to a rigid periodic framework in Rd . We develop an analogous theory for symmetric frame-
works in Rd . The results obtained apply to all finite and infinite 2-dimensional point groups, and
then in arbitrary dimension they concern a wide range of infinite point groups, sufficiently large
finite groups and groups containing translations and rotations. For the case of finite groups we also
derive results concerning the probability of assigning group labels to a quotient graph so that the
resulting lift is symmetrically rigid in Rd .

1. Introduction

A bar-joint framework .G; p/ in Rd is an ordered pair consisting of a finite simple graph
G D .V; E/ and a map p W V ! Rd (referred to as a placement of G). The framework
.G; p/ is rigid if the only edge-length preserving continuous motions of the vertices arise
from isometries of Rd , and .G; p/ is flexible otherwise.

Determining the rigidity of a given framework is a computationally challenging prob-
lem [1]. Hence, most works in the combinatorial rigidity literature proceed by linearising
and considering infinitesimal rigidity. In particular the rigidity map fG W Rd jV j ! RjE j,
for the framework .G; p/, is defined by putting fG.p/ D .kp.v/� p.w/k2/vw2E , where
k � k denotes the Euclidean norm. Then the Jacobean derivative matrix dfG jp (up to scale)
is known as the rigidity matrix and .G; p/ is infinitesimally rigid if G is complete on at
most d C 1 vertices or dfG jp has maximum rank (D d jV j �

�
dC1
2

�
). In the generic case,

when the coordinates of p form an algebraically independent set over Q, infinitesimal
rigidity is equivalent to rigidity [2, 3], both depend only on the underlying graph, and one
may apply matrix rank algorithms to test rigidity.

When d � 2 the situation is even better and there are complete combinatorial descrip-
tions of rigidity. More precisely, a folklore result says that a graph is rigid on the line if
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and only if it is connected, while Pollaczek-Geiringer [30] characterised generic rigidity
in the plane. Her result is often referred to as Laman’s theorem, since it was his paper
[23] that popularised the result. Pollaczek-Geiringer’s characterisation leads quickly to
fast deterministic algorithms for testing generic rigidity, see [4, 19, 24]. However, when
d � 3 it remains an important open problem to understand rigidity in purely combinator-
ial terms. Details on this problem and further rigidity theoretic background may be found
in [17, 20, 37].

Many results in rigidity theory are motivated by applications, including those in sensor
network localisation, protein structure determination and mechanical engineering. How-
ever, the genericity hypothesis is unrealistic in many applications, for example due to
measurement error. In fact, in many applications the structures in question exhibit non-
trivial symmetry. This has motivated a number of groups to explore symmetric rigidity
over the past two decades. We refer the reader to [5, 12, 13, 16, 18, 21, 22, 26, 28, 32] and
the references therein for details.

In this article we consider forced symmetric rigidity. That is, we take a graph G with
a non-trivial automorphism group � and realise G as a framework .G; p/ that is sym-
metric with respect to a particular geometric realisation of � . We then ask if .G; p/ has a
symmetry preserving finite flex. As in the generic case, for symmetrically generic frame-
works, this is equivalent to having a symmetry preserving infinitesimal flex, which can
be expressed as a matrix condition using an analogue of the well-known rigidity matrix
(details on this may be found in [32]). Complete combinatorial descriptions of symmetric,
but otherwise generic, rigidity for various symmetry groups, including all cyclic groups,
have been obtained in the plane [21, 22, 26]. However, important open problems remain.
For example, plane frameworks admitting even order dihedral symmetry groups are open.
Moreover, when d � 3, characterising symmetric rigidity in combinatorial terms is a fun-
damental but wide open problem for all symmetry groups. (It is worth remarking that
the alternative rigidity problem using direction, rather than distance, constraints has been
analysed in the d -dimensional symmetric setting by Tanigawa [33].)

In this article we prove combinatorial results both in R2 for arbitrary point groups
(subgroups of the orthogonal group O.d/) and in general dimensions for infinite or suffi-
ciently large point groups and for groups containing translations and rotations. To achieve
this, the viewpoint we adopt is inspired by a theorem of Borcea and Streinu [8]. They stud-
ied periodic frameworks in d -dimensions and proved an analogue of Laman’s theorem in
all dimensions utilising additional freedom provided by the periodicity. Their theorem,
roughly speaking, says given a multigraph G, we can choose elements of Zd to label
the edges of G such that the covering graph is periodically rigid in Rd . An earlier result
due to Whiteley [36], reformulated as Theorem 5.1 below, while not presented as a result
about periodic frameworks, essentially considered the special case of periodic frameworks
with fixed lattice representations and we give an alternative proof of that result using our
new perspective. An extension to periodic body-bar frameworks was analysed by Borcea,
Streinu and Tanigawa in [6].
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In the context of symmetry groups we prove analogues of the theorem of Borcea
and Streinu in R2 for arbitrary point groups. As mentioned, characterisations of forced-
symmetric rigidity in the plane are already known for many finite point groups [21,26] but
our results include the remaining open finite groups as well as infinite point groups. We
then prove analogues in Rd for a variety of “large” groups including translation groups,
translation groups with additional point group symmetry, sufficiently dense point groups
and sufficiently large point groups respectively. Our final main contribution concerns finite
point groups. We present theoretical and computational results concerning the probability
that a gain assignment (labelling of the edges by elements of the symmetry group) results
in a symmetrically rigid framework.

We conclude the introduction with a brief outline of what follows. In Section 2 we
introduce the relevant background on symmetric rigidity. Then, in Sections 3 and 4, we
prove combinatorial results in 2-dimensions for all possible point groups using recurs-
ive construction techniques. We comment that, to the best of our knowledge, the case of
infinite point groups has not previously been studied in rigidity theory. However the tech-
niques in these sections do not seem to be amenable to higher dimensions. Nevertheless
we extend our analysis in Section 5 to arbitrary dimensions for a wide variety of groups
providing sufficient conditions for symmetric rigidity. The proofs here use classical com-
binatorial decomposition results and new geometric-analytic techniques. Here we briefly
consider periodic frameworks and translational symmetry, and then develop analytic res-
ults for sufficiently dense symmetry groups and point groups of sufficient size. In the final
section (Section 6) we take a probabilistic approach to symmetric rigidity when the group
is finite. After giving a number of examples and considering the effect of construction
operations on the probability of a gain assignment giving a symmetrically rigid frame-
work, we then prove that there exist infinitely many multigraphs whose probability of
being assigned rigid gains, for any finite group, is positive but close to zero.

2. Symmetric frameworks

We assume throughout that graphs have no loops or parallel edges, while multigraphs
allow both loops and parallel edges. We mostly assume that G has a finite set of vertices
and edges. Infinite graphs are allowed in certain circumstances, but these will be clearly
designated.

Let G D .V; E/ be a multigraph. We define EE to be the set of all possible ordered
triples .e; v;w/ where e 2 E and v;w 2 V are the source and sink of e. Let � be a group.
A gain map is a map � W EE ! � where the following holds:

(i) �.e; v; w/ D �.e; w; v/�1 for all .e; v; w/ 2 EE where v ¤ w,

(ii) for every distinct pair of edges e; e0 between vertices v;w we have �.e; v;w/¤
�.e0; v; w/, and

(iii) �.e; v; v/ ¤ 1 for every loop e 2 E.

We refer to the pair .G; �/ as a �-gain graph or just simply a gain graph.
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The covering graph of a �-symmetric gain graph .G;�/ is the graph GD .V;E/where
V WD V �� and ¹.v;v/; .w;w/º is an edge if and only if there exists .e;v;w/ 2 EE where
�.e; v; w/ D �1v w . We note that there is a unique map ' W � ! Aut.G/ defined by its
construction, and G=' D G. It is also immediate that G is finite if and only if � is finite.

Given a �-symmetric gain graph .G; �/, we denote by zV the set of vertex representat-
ives Qv D .v; 1/ for v 2 V . Moreover, we fix an orientation on the edges of G, so that each
edge e 2E is an ordered pair .v;w/. For each edge eD .v;w/ 2E, its edge representative
Qe be the unique edge in E, given by Qe D .v; 1/; .w; /. The set of edge representatives is
denoted by zE.

Definition 2.1. Let � be a subgroup of Isom.Rd / and let .G; �/ be a �-gain graph with
covering graph G. We say that a placement p W V! Rd of G is �-symmetric if it satisfies

p.v; / D p.v; 1/; for all  2 �; v 2 V:

We also say that .G;p/ is a �-symmetric framework with gain graph .G; �/.

Every isometry on Rd is the composition of a linear isometry followed by a transla-
tion. For each  2 � , we denote by ` the linear isometry on Rd that is uniquely defined
by the linear part of the affine isometry  .

Recall that a map u W V ! Rd is an infinitesimal flex if it lies in the kernel of the
associated rigidity matrix R.G; p/ (see, for instance, [17]). The flex u is trivial if there
exists a skew-symmetric matrix T and vector x so that u.v; / D T p.v; / C x for all
v 2 V and  2 � . The flex u is �-symmetric if it also satisfies u.v; / D `u.v; 1/ for all
v 2 V and  2 � .

Definition 2.2. Let .G; p/ be a �-symmetric framework with gain graph .G; �/. The
framework .G; p/ is �-symmetrically rigid if every �-symmetric infinitesimal flex u W
V ! Rd is trivial. The covering graph G is �-symmetrically rigid if there exists a �-
symmetrically rigid placement of it, otherwise G is �-symmetrically flexible.

The framework in Figure 1 is rigid, whereas Figure 2 shows a flexible one.
There is an alternative way to determine whether a �-symmetric framework .G; p/ is

�-symmetrically rigid. Given a �-symmetric placement p of G, define the orbit place-
ment p W V ! Rd , v 7! p.v; 1/ of .G; �/, and define the triple .G; �; p/ to be an orbit
framework. Define the orbit rigidity matrix R.G;�;p/ to be the jEj � d jV jmatrix where
the entry in the row corresponding to e and the column corresponding to .v; j / is�

p.v/ � p.w/
�
j

if .e; v; w/ 2 EE; v ¤ w and �.e; v; w/ D ;�
2p.v/ � p.v/ � �1p.v/

�
j

if .e; v; v/ 2 EE and �.e; v; v/ D ; or

0 otherwise:

Proposition 2.3. Let � � Isom.Rd / and .G;�/ be a �-gain graph with covering graph G.
Then u is a �-symmetric flex of .G; p/ if and only if R.G; �; p/u D 0, where u.v/ WD
u.v; 1/ for all v 2 V .
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Figure 1. A gain graph (left) and its covering graph (right) with respect to 4-fold rotational sym-
metry.
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Figure 2. A gain graph (left) and its covering graph (right) with respect to 4-fold rotational sym-
metry yielding a flexible framework.

Proof. Let u W V! Rd be a vector such that u.v; /D `u.v; 1/ for all v 2 V and  2 � .
Fix some edge e D .v; /; .w;  0/ 2 E with v ¤ w. Then�
R.G;p/u

�
e D

�
p.v; / � p.w;  0/

�
�
�
u.v; / � u.w;  0/

�
D
�
`
�
p.v; 1/ � p.w; �1 0/

��
�
�
`
�
u.v; 1/ � u.w; �1 0/

��
D
�
p.v; 1/ � p.w; �1 0/

�
�
�
u.v; 1/ � u.w; �1 0/

�
D
�
p.v; 1/�p.w; �1 0/

�
� u.v; 1/C

�
p.w; �1 0/�p.v; 1/

�
� u.w; �1 0/

D
�
p.v; 1/ � p.w; �1 0/

�
� u.v; 1/

C
�
.�1 0/`p.w; 1/

�
�
�
p.v;  0�1/ �

�
.�1 0/`u.w; 1/

��
D
�
p.v; 1/ � p.w; �1 0/

�
� u.v; 1/C

�
p.w; 1/ � p.v;  0�1/

�
� u.w; 1/

D
�
R.G; �; p/u

�
e
;

where u.v/ WD u.v; 1/ for all v 2 V . We work similarly for v D w, so the result now
follows.
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We now define a map u W V ! Rd to be a �-symmetric infinitesimal flex (or flex for
short) of .G; �;p/ if it lies in the kernel of the associated orbit rigidity matrix R.G;�;p/.
The flex u is trivial if the corresponding flex u of the framework .G;p/ is trivial. With this
we can now make the following definition of �-symmetric rigidity for the orbit framework
.G; �; p/.

Definition 2.4. Let .G;�/ be a �-gain graph and let .G;�;p/ be an orbit framework. The
orbit framework .G; �;p/ is �-symmetrically (infinitesimally) rigid if every �-symmetric
infinitesimal flex u W V ! Rd of .G; �; p/ is trivial. The gain graph .G; �/ is �-symmet-
rically rigid if there exists a �-symmetrically rigid orbit placement of it, otherwise .G; �/
is �-symmetrically flexible.

We define an orbit framework .G; �; p/ to be regular if the rank of the orbit rigidity
matrix is maximal over the set of orbit placements of .G; �/. The set of regular orbit
placements of a gain graph .G;�/ can be seen to be a Zariski open subset of the set of orbit
placements. It follows that either all orbit placements of a gain graph are �-symmetrically
flexible, or almost all orbit placements of a gain graph are �-symmetrically rigid.

LetGD .V;E/ be a (multi)graph and let k;`;m be non-negative integers where `�m.
ForX � V , let iG.X/ denote the number of edges ofG in the subgraph induced byX . We
sayG is .k; l/-sparse if i.X/ � kjX j � l for allX � V with jX j � k andG is .k; l/-tight
if it is .k; l/-sparse and jEj D kjV j � l . Now suppose � is a �-symmetric gain map. A
subgraph H � G is balanced if for all closed walks

.v1; e12; v2; : : : ; vn�1; e.n�1/n; vn/

(i.e., eij has ends vi ; vj and vn D v1) in H we have

�.e.n�1/n; vn�1; vn/ : : : �.e12; v1; v2/ D 1:

We define .G; �/ to be .k; `; m/-gain-sparse (respectively, .k; `; m/-gain-tight) if G is
.k;m/-gain-sparse (respectively, .k;m/-gain-tight) and every balanced subgraph is .k; `/-
gain-sparse.

For a group � � Isom.Rd /, let Isom.�/ be the Lie group of isometries that pre-
serve �-symmetry; i.e., isometries g W Rd ! Rd where for any �-symmetric framework
.G; p/, the framework .G; g ı p/ is also a �-symmetric framework. We define k.�/ WD
dim Isom.�/. It can be shown that k.�/ is exactly the dimension of the space of trivial
infinitesimal flexes of a �-symmetric framework with an orbit placement whose vertices
affinely span Rd .

Example 2.5. If � is a group of rotations in the plane, then k.�/ D 1. Likewise, if �
is a group generated by a reflection in a given line, then k.�/ D 1 also. However, if �
is generated by a reflection and at least one rotation, then k.�/ D 0. See Lemma 3.1 for
more details.

We now finish this section by describing a necessary condition for a �-symmetric
graph to be �-symmetrically rigid.
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Proposition 2.6. For a group � � Isom.Rd /, let .G; �/ be a �-symmetric gain graph
with at least d vertices. Fix D D

�
dC1
2

�
and k D k.�/. If .G; �/ is �-symmetrically rigid

and jV j � d , then it contains a .d;D; k/-gain-tight spanning subgraph.
Proof. Choose a regular orbit placement p of .G;�/ so that every subset of t � d C 1 ver-
tices is affinely independent.1 By our choice of orbit placement, we have that the nullity
of R.G; �; p/ is k. We may assume that the orbit rigidity matrix R.G; �; p/ has inde-
pendent rows (and hence jEj D rankR.G; �; p/), as deleting edges of G that correspond
to dependent rows in R.G; �; p/ does not affect the rank or nullity of R.G; �; p/. By the
rank-nullity theorem, jEj D rankR.G; �; p/ D d jV j � k.

Choose a subsetX�V with jX j�d , letG0D.X; i.X//, and let p0 and �0 be the restric-
tions of p and � toH . As the rows of R.G0; �0; p0/� 0i.X/�jV nX j are a subset of the rows
ofR.G;�;p/, the rows ofR.G0; �0;p0/ are independent. Since the nullity ofR.G0; �0;p0/
must be at least the dimension of the space of trivial infinitesimal flexes of .G0; �0; p0/
(i.e. k), we have i.X/ D rankR.G; �; p/ � d jX j � k by the rank-nullity theorem.

Now suppose that the subgraphG0 is balanced. We first note thatG0 cannot have loops
or parallel edges as it is balanced. Choose a vertex v0 2 X and for every other vertex
v 2 X choose a directed path Pv D .ev1 ; : : : ; e

v
n/ from v0 to v. Now define q to be the orbit

placement of G0 where q.v/ D �.evn/ : : : �.e
v
1/p.v/ for every vertex v 2 X , and define

�q to be the gain map of G0 that assigns only trivial gains to edges. Since X is balanced,
we have that R.G0; �q; q/ D R.G0; �q; q/. However, R.G0; �q; q/ is exactly the rigidity
matrix of the pair .G0; q/ when they are considered as defining a framework, thus the
nullity of R.G0; �0; p0/ is at least D. We now have i.X/ D rankR.G; �; p/ � d jX j �D
by the rank-nullity theorem.

3. Cyclic plane symmetry groups

In the next two sections we consider symmetric frameworks in the plane for all possible
symmetry groups � . We emphasise that this includes infinite point groups, such as any
group generated by a rotation of irrational degree. The study of such groups seems to
be new in rigidity theory. It is well known that there is at most a 1-dimensional space
of isometries that preserve �-symmetry. Since the only subgroups of O.2/ are the n-fold
rotation groups, the two element groups generated by a single reflection or the groups
generated by an n-fold rotation group and a single reflection, we have the following.

Lemma 3.1. Let � � O.2/ with n WD j�j � 2 and k WD k.�/. Then k 2 ¹0; 1º and the
following holds;

(i) if k D 1 and n D 2 then either � is the 2-fold rotation group or � is generated
by a single reflection,

(ii) if k D 1 and 3 � n <1 then � is the n-fold rotation group,

(iii) if k D 1 and n D1 then � is an infinite rotational group, i.e., � � SO.2/,

1This is sometimes referred to as p being in general position.
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(iv) if k D 0 and n <1 then n is even and � is generated by n
2

-fold rotation group
and a single reflection, and

(v) if k D 0 and n D 1 then � is generated by an infinite rotational group and a
single reflection.

We first focus on the 1-dimensional case and then analyse symmetry groups with no
continuous isometries in Section 4. We split this section into two parts depending on the
number of elements in the group.

3.1. Symmetry groups with at least 3 elements

In this section we consider symmetry groups with at least three elements.
Let G D .V; E/ and G0 D .V 0; E 0/ be multigraphs with V 0 D V C v0. We define

the following graph extensions which are used throughout the paper. See Figure 3 for
illustrations.

• We say G0 is formed from G by a 0-extension if E 0 D E C ¹e01; e
0
2º, where the edges

e01; e
0
2 have endpoints v0; v1 and v0; v2 respectively for some v1; v2 2 V (where v1

and v2 may be the same vertex).

• We sayG0 is formed fromG by a 1-extension ifE 0 DE � eC¹e01; e
0
2; e
0
3º, where each

edge e0i has endpoints v0; vi and e 2 E has endpoints v1; v2 for some v1; v2; v3 2 V
(where v1 and v2 may be the same, and v3 may be the same as one or both of v1; v2).

• We say G0 is formed from G by a loop-1-extension if E 0 D E C ¹`; e0º, where e0 has
endpoints v0; v for some v 2 V and ` is a loop at v0.

The inverse of a graph extension is known as a reduction, e.g., if G0 is formed from a
multigraph G by a 0-/1-/loop-1-extension, we say that G is formed from G0 by a 0-/1-/
loop-1-reduction.

We utilise the following special case of [15, Theorem 1.6]. Define Kj1 to be the mul-
tigraph comprised of a single vertex incident to j loops.

Theorem 3.2. A multigraph G is .2; 1/-tight if and only if G can be constructed fromK11
by a sequence of 0-extensions, 1-extensions and loop-1-extensions.

Let � � O.2/ and let .G; �/ be a �-gain graph. Let .G0; �0/ be a �-gain graph where
G0 is formed from G by either a 0-extension, 1-extension or loop-1-extension. We say
that .G0; �0/ is formed from .G; �/ by a gained 0-extension (respectively, gained 1-
extension, gained loop-1-extension) if �0.e; v;w/D �.e; v;w/ for all .e; v;w/ 2 EE \ EE 0.
If .G0; �0/ is formed from .G; �/ by a gained 1-extension then we also require that
�0.e02;v0;v2/�.e

0
1;v1;v0/D �.e;v1;v2/ (with e;e01; e

0
2;v0;v1;v2 as given in the definition

of a 1-extension).

Lemma 3.3. Let .G; �/ be a �-gain graph for a finite or infinite group � � O.2/. Let
.G0;�0/ be a �-gain graph formed from .G;�/ by a gained 0-extension, gained 1-extension
or gained loop-1-extension. If .G; �/ is �-symmetrically rigid in R2 then .G0; �0/ is �-
symmetrically rigid in R2 also.
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Figure 3. Extensions of multigraphs.

Proof. The lemma is proved in [21, Lemma 6.1] for finite groups. Their method is based
on manipulating the orbit rigidity matrix which indeed applies independently of whether
the group elements occurring in the matrix are elements of a finite group or an infinite
group.

It was shown in [21] that for any group � with k.�/ D 1, a �-gain graph is .2; 3; 1/-
gain-tight if and only if it can be constructed from a vertex with a single loop by a sequence
of gained 0-extensions, 1-extensions, and loop-1-extensions. Further, the analogues of
Proposition 2.6 and Lemma 3.3 in [21] were only stated for finite point groups. Since our
results apply to infinite point groups, we can very easily characterise exactly which �-
symmetric gain graphs are �-rigid when k.�/ D 1. To be exact: given a finite or infinite
point group � � O.2/ with k.�/ D 1, any �-gain graph is minimally �-rigid if and only
if it is .2; 3; 1/-gain-tight.

Lemma 3.4. Let .G; �/ be a �-gain graph where � � O.2/ is a subgroup with j�j � 3,
and letG0 D .V 0;E 0/ be a multigraph formed fromG by either a 0-extension, 1-extension
or loop-1-extension. If .G;�/ is �-symmetrically rigid in R2, then there exists a gain map
�0 W EE 0 ! � where �0.e; v; w/ D �.e; v; w/ for all .e; v; w/ 2 EE \ EE 0 and .G0; �0/ is
�-symmetrically rigid in R2.
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Proof. First suppose that G0 is formed from G by a 0-extension. Let e1; e2 be the added
edges with ends ¹v0; v1º; ¹v0; v2º respectively, where v1; v2 2 V . If v1 ¤ v2 we define
�0 to be the gain map with �0.e; v; w/ D �.e; v; w/ for all e 2 EE and �0.e1; v0; v1/ D
�0.e2; v0; v2/ D 1, while if v1 D v2 we define �0 to be the gain map with �0.e; v; w/ D
�.e; v; w/ for all e 2 EE, �0.e1; v0; v1/ D 1 and �0.e2; v0; v2/ D  for some non-trivial
 2 � . By Lemma 3.3, .G0; �0/ is �-symmetrically rigid in R2.

Next assume G0 is formed from G by a 1-extension. Let e1; e2; e3 be the added edges
with ends ¹v0;v1º, ¹v0;v2º, ¹v0;v3º respectively; by relabelling if required we suppose the
(possibly equal) vertices v1;v2 2 V are the ends of the removed edge e, and if v3 2 ¹v1;v2º
then v3 D v1. Choose  2 � such that  ¤ 1; if v1 D v2 D v3 then we also require that
 ¤ �.e; v1; v2/, which we can guarantee as j�j � 3. Define �0 to be the gain map with
�0.e; v; w/ D �.e; v; w/ for all .e; v; w/ 2 EE \ EE 0, �0.e1; v0; v1/ D 1, �0.e2; v0; v2/ D
�.e; v1; v2/ and �0.e3; v0; v3/ D  . By Lemma 3.3, .G0; �0/ is �-symmetrically rigid
in R2.

Finally suppose G0 is formed from G by a loop-1-extension. Let ` be the added loop
at v0 and e1 the added edge with ends ¹v0; v1º. Choose any non-trivial  2 � . Define �0

to be the gain map with �0.e; v; w/ D �.e; v; w/ for all .e; v; w/ 2 EE, �0.e1; v0; v1/ D 1
and �0.`; v0; v0/ D  . By Lemma 3.3, .G0; �0/ is �-symmetrically rigid in R2.

Theorem 3.5. Let � be a rotational subgroup of O.2/ with j�j � 3, and let G be a
.2; 1/-tight multigraph. Then there exists a gain map � W EE ! � such that .G; �/ is �-
symmetrically rigid in R2.

Proof. By Theorem 3.2, G can be formed from K11 by a sequence of 0-extensions, 1-
extensions and loop-1-extensions. Choose any non-identity element  2 � and define �0 W
EE.K11 /! � to be the gain map that maps the single loop of K11 to  . It is immediate that

.K11 ; �
0/ is �-symmetrically rigid in R2. By applying Lemma 3.4 inductively we see that

there exists a gain map � W EE ! � so that .G; �/ is �-symmetrically rigid in R2.

3.2. Groups with 2 elements

Unfortunately Theorem 3.5 does not hold when j�j D 2. For example, take the multi-
graph with two vertices and three non-loop edges. Any gain map would require two edges
to have identical gains, so no gain map is possible. To avoid this problem, we next refine
Theorem 3.2, using the same operations, to the more restrictive class of .2; 1/-tight mul-
tigraphs with no triple of parallel edges.2 This result is then deployed to show that triples
of parallel edges are the only block stopping Theorem 3.5 from holding when j�j D 2.

Lemma 3.6. Let G D .V; E/ be a multigraph with no triple of parallel edges. Then G is
.2; 1/-tight if and only if G can be constructed from K11 by a sequence of 0-extensions,
1-extensions and loop-1-extensions that do not form a triple of parallel edges.

2This is a smaller class, so certainly every multigraph in it can be constructed, as guaranteed by
Theorem 3.2, however for our inductive rigidity application we must refine the construction so that no
intermediate multigraph in the construction contains a triple of parallel edges.
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Proof. One direction is trivial. For the converse suppose G D .V; E/ is a .2; 1/-tight
multigraph, distinct from K11 , with no triple of parallel edges. Since jEj D 2jV j � 1, G
has a vertex of degree at most 3. If there exists a degree 2 vertex the multigraph can be
reduced to a smaller one with the required properties by a 0-reduction. So we may suppose
v 2 V has degree 3. If v is incident to a loop then a loop-1-reduction is always possible.
So v is not incident to a loop. It follows from the proof of Theorem 3.2 (see [15]) that
there is a 1-reduction at v to a smaller .2; 1/-tight multigraph. Suppose that every such
reduction at v creates a triple of parallel edges. Note that two of the possible 1-reductions
add only a new loop so cannot create a triple of parallel edges.

If N.v/ D ¹x; y; zº then without loss we may assume that G contains two parallel
edges between x and y. We now consider the 1-reduction at v that adds xz. This fails to
result in a .2; 1/-tight multigraph if and only if there is a .2; 1/-tight subgraph H of G
such that x; z 2 V.H/ and y; v … V.H/. (To see that y … V.H/, simply note that if it
was thenH C v would violate .2; 1/-sparsity.) However, if such a subgraphH exists then
we may add y, its two parallel edges to x, v and its three edges to obtain a subgraph of
G that is not .2; 1/-sparse. Hence, the 1-reduction at v adding xz results in a .2; 1/-tight
multigraph, so there must exist two parallel edges between x and z. By a similar argument,
there must also exist two parallel edges between y and z. Thus the subgraph ofG induced
by v and its neighbours has 9 edges and 4 vertices, contradicting .2; 1/-sparsity.

Therefore, v has two distinct neighbours x; y with a double edge from v to x. We now
know two things from our assumptions: (i) the vertex x lies in a .2; 1/-tight subgraphH of
G (as otherwise we could perform the 1-reduction at v that adds a loop at x which does not
form a triple of parallel edges), and (ii) there exists a pair of parallel edges between x; y
(since the only remaining possible 1-reduction at v to a smaller .2; 1/-tight multigraph
adds an edge between x; y, and this must form a triple of parallel edges). However, the
subgraph of G formed from adding the vertices y; v and the edges between the vertices
x; y; v to H is not .2; 1/-tight, contradicting our original assumption. This completes the
proof.

Lemma 3.7. Let .G; �/ be a �-gain graph where � is a cyclic group, and let G0 D
.V 0; E 0/ be a multigraph formed from G by either a 0-extension, 1-extension or loop-
1-extension. Suppose neither G or G0 contain a triple of parallel edges. If .G; �/ is �-
symmetrically rigid in R2 then there exists a gain map �0 W EE 0 ! � where �0.e; v; w/ D
�.e; v; w/ for all .e; v; w/ 2 EE \ EE 0 and .G0; �0/ is �-symmetrically rigid in R2.

Proof. This follows from Lemma 3.4 by noting that the only extension moves that require
j�j � 3 are those that create a triple of parallel edges.

Theorem 3.8. Let � be a cyclic subgroup of O.2/ with j�j D 2, and letG be a .2; 1/-tight
multigraph with no triple of parallel edges. Then there exists a gain map � W EE ! � such
that .G; �/ is �-symmetrically rigid in R2.

Proof. By Lemma 3.6, G can be formed from K11 by a sequence of 0-extensions, 1-
extensions and loop-1-extensions that do not form a triple of parallel edges and edge
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joining. Choose the non-identity element  2 � and define �0 W EE.K11 /! � to be the gain
map that maps the single loop ofK11 to  . It is immediate that .K11 ; �

0/ is �-symmetrically
rigid in R2. By applying Lemma 3.7 inductively we see that there exists a gain map
� W EE ! � so that .G; �/ is �-symmetrically rigid in R2.

4. Dihedral plane symmetry groups
We now extend the results of the previous section to apply when the symmetry group,
whether finite or infinite, contains both rotations and reflections.

4.1. Groups with at least 6 elements

We have defined 0-extensions, 1-extensions and loop-1-extensions earlier. In the follow-
ing we need additional extension constructions. Let G D .V; E/ and G0 D .V 0; E 0/ be
multigraphs with V 0 D V C v0. See Figure 4 for visualisations.

• We say G0 is formed from G by a 2-extension if E 0 D E � ¹e1; e2º C ¹e01; e
0
2; e
0
3; e
0
4º,

where the edges e1; e2 2 E have endpoints v1; v2 and v3; v4 respectively, and each
edge e0i has endpoints v0; vi . Note that the v1; v2; v3; v4 do not need to be different.

• We sayG0 is formed fromG by a loop-2-extension if E 0 D E � eC ¹e01; e
0
2; `º, where

e 2 E is an edge with endpoints v1; v2, each edge e0i has endpoints v0; vi and ` is a
loop at v0. Note that v1 and v2 do not need to be distinct.

• We sayG0 is formed fromG by a loop-0-extension if E 0 D E C ¹`1; `2º, where `1; `2
are loops at v0.

The following is another special case of [15, Theorem 1.6]. Since .2; 0/-tight mul-
tigraphs can be disconnected we must add a loop-0-extension where the new vertex is
incident to two loops (and is not connected to the original multigraph). Clearly this was
unnecessary in the .2; 1/-tight case.

Theorem 4.1. Let G be a multigraph. Then G is .2; 0/-tight if and only if G can be
constructed fromK21 by a sequence of 0-extensions, loop-0-extensions, 1-extensions, loop-
1-extensions, 2-extensions and loop-2-extensions.

Let � � O.2/ and let .G; �/ be a �-gain graph. Let .G0; �0/ be a �-gain graph where
G0 be formed from G by either a 2-extension or a loop-2-extension. We say that .G0; �0/
is formed from .G; �/ by a gained 2-extension (respectively, gained loop-2-extension,
gained loop-0-extension) if �0.e; v; w/ D �.e; v; w/ for all .e; v; w/ 2 EE \ EE 0, plus the
following extra requirement:

• If .G0; �0/ is formed from .G; �/ by a gained 2-extension then we additionally require
that

�0.e02; v0; v2/�.e
0
1; v1; v0/ D �.e1; v1; v2/;

�0.e04; v0; v4/�.e
0
3; v3; v0/ D �.e2; v3; v4/

(with ei ’s, e0i ’s, vi ’s as given in the definition of a 2-extension).
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2-extensions

loop-2-extension
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v3 v4

v1 D v2
v3 v4

v0

v1 D v2 D v3
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v1 D v2 D v3

v4
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v1 D v2
v3 D v4
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v3 D v4

v1 D v2 D
v3 D v4

v0

v1 v2 v1 v2

v0

v1 D v2 v1 D v2
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Figure 4. Extensions of multigraphs.

• If .G0; �0/ is formed from .G; �/ by a gained loop-2-extension then we also require
that �0.e02; v0; v2/�.e

0
1; v1; v0/ D �.e; v1; v2/ (with e; e01; e

0
2; v0; v1; v2 as given in the

definition of a loop-2-extension).

• If .G0; �0/ is formed from .G; �/ by a gained loop-0-extension then we also require
that the generated subgroup h�0.`1; v0; v0/; �.`2; v0; v0/i is dihedral.

Similarly to Lemma 3.3 we have the following extension lemma for both finite and
infinite groups which was proved in the finite case in [21, Lemmas 8.5 and 8.7].

Lemma 4.2. Let .G; �/ be a �-gain graph for a finite or infinite group � � O.2/ that
contains both rotations and reflections. Let .G0; �0/ be a �-gain graph formed from .G;�/
by a gained 2-extension or a gained loop-2-extension. If .G; �/ is �-symmetrically rigid
in R2 then .G0; �0/ is �-symmetrically rigid in R2 also.
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With this we can obtain the following result.

Lemma 4.3. Let .G; �/ be a �-gain graph where � � O.2/ is a subgroup with j�j � 6
that contains both rotations and reflections, and letG0 D .V 0;E 0/ be a multigraph formed
from G by either a 2-extension or a loop-2-extension. If .G; �/ is �-symmetrically rigid
in R2 then there exists a gain map �0 W EE 0 ! � , where �0.e; v; w/ D �.e; v; w/ for all
.e; v; w/ 2 EE \ EE 0 and .G0; �0/ is �-symmetrically rigid in R2.

Proof. First suppose G0 is constructed by a 2-extension. Let 1 D �.e1; v1; v2/ and 2 D
�.e2; v3; v4/. We now need to show that we can choose pairwise-disjoint �1;�2;�3;�4 2
� so that if we set �0 to be the gain map of G0 where �0.e0i ; v0; vi / D �i for each edge e0i
and �0.e; v;w/D �.e; v;w/ otherwise, and where ��12 �1 D 1 and ��14 �3 D 2, then �0

is a gain map of G0; i.e., if e0i and e0j are parallel in G0, then �i ¤ �j . By switching v1; v2
and/or switching v3; v4 if required, we see that there are 5 possibilities to deal with.

(1) e1; e2 share no endpoints: In this case neither of the edges e01 and e02 is parallel to
either e03 or e04. Set �1 D 1, �3 D 2 and �2 D �4. If 1 D 1 then e01 and e02 are
parallel if and only if e1 is a loop, which contradicts that no loop may have trivial
gain. Hence �0 is a gain map of G0.

(2) v1¤ v2, v1¤ v4 and v2D v3: Choose �2� so that �1¤ 1. We now set�1D 1,
�2 D 1, �3 D �2 and �4 D � to obtain the desired gain map �0 of G0.

(3) v1 D v3, v2 D v4 and v1 ¤ v2: By applying switching operations, we may assume
that 1 D 1. Since .G; �/ is a gain graph, it follows that 2 ¤ 1. As j�j � 3 and
every element of a group has exactly one inverse, we can choose an element � 2 �
so that � ¤ 1 and �2 ¤ 1. We now set �1 D �2 D 1, �3 D �2 and �4 D � to
obtain the desired gain map �0 of G0.

(4) v1 D v2 D v3 and v1 ¤ v4: As e1 is a loop, we have 1 ¤ 1. As j�j � 3, we can
choose an element � 2 � so that �2 … ¹1; 1º. We now set �1 D 1, �2 D 1,
�3 D �2 and �4 D � to obtain the desired gain map �0 of G0.

(5) v1D v2D v3D v4: As e1; e2 are both loops at the same vertex, we have 1; 2¤ 1
and 1 ¤ 2. Since j�j � 5, there exists � 2 � n ¹1; 1º so that �2 … ¹1; 1º. We
note that � ¤ �2 since 2 ¤ 1. We now set �1 D 1, �2 D 1, �3 D �2 and
�4 D � to obtain the desired gain map �0 of G0.

Now suppose G0 is formed by a loop-2-extension. Let  D �.e; v1; v2/. We now need
to show that we can choose pairwise-disjoint �1; �2; � 2 � so that if we set �0 to be
the gain map of G0, where �0.e0i ; v0; vi / D �i for each edge e0i , �

0.`; v0; v0/ D � and
�0.e; v; w/ D �.e; v; w/ otherwise, and where ��12 �1 D  and � ¤ 1, then �0 is a gain
map of G0; i.e., if e01 and e02 are parallel in G0, then �1 ¤ �2. If e01; e

0
2 are not parallel,

any �1; �2; � 2 � where ��12 �1 D  and � ¤ 1 suffice. Suppose that e01; e
0
2 are parallel.

Then e is a loop and  ¤ 1. We now set �1 D 1, �2 D 1 and choose any � 2 � n ¹1º to
obtain the desired gain map �0 of G0.
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Figure 5. Flexible symmetric framework of K4;4.

Theorem 4.4. Let � be a subgroup of O.2/ with k.�/ D 0 and j�j � 6, and let G be
a .2; 0/-tight multigraph. Then there exists a gain map � W EE ! � such that .G; �/ is
�-symmetrically rigid in R2.

Proof. By Lemma 3.1, � contains both rotations and reflections. By Theorem 4.1, G can
be formed fromK21 by a sequence of 0-extensions, loop-0-extensions, 1-extensions, loop-
1-extensions, 2-extensions and loop-2-extensions. Choose any distinct non-identity ele-
ments 1; 2 2 � so that the group h1; 2i is dihedral. Define �0 W EE.K21 /! � so that the
loops of K21 have gains 1 and 2. It is immediate that .K21 ; �

0/ is �-symmetrically rigid
in R2. Moreover, since k.�/ D 0, this implies loop-0-extensions preserve �-symmetric
rigidity. By applying Lemmas 3.4 and 4.3 inductively we see that there exists a gain map
� W EE ! � so that .G; �/ is �-symmetrically rigid in R2.

4.2. Groups with 4 elements

Theorem 4.4 unfortunately does not hold when j�j D 4. For example, take the multigraph
with two vertices and four non-loop edges. The only possible gain map produces the cover
graph shown in Figure 5. However, the created gain graph is �-symmetrically flexible;
see [10, 14, 38] for more details. We now show that quadruples of parallel edges are the
only block to extending Theorem 4.4. We first begin with a result of a similar nature to
Lemma 3.6.

Lemma 4.5. Let G D .V; E/ be a multigraph with no quadruple of parallel edges. Then
G is .2;0/-tight if and only ifG can be constructed fromK21 by a sequence of 0-extensions,
loop-0-extensions, 1-extensions, loop-1-extensions, 2-extensions and loop-2-extensions
that do not form a quadruple of parallel edges.

Proof. One direction follows immediately from Theorem 4.1. For the converse we first
note that G is .2; 0/-tight if and only if every connected component is .2; 0/-tight, so we
may suppose G D .V; E/ is a connected .2; 0/-tight multigraph distinct from K21 with
no quadruple of parallel edges. By applying the hand-shaking lemma we see that G has
a vertex of degree 2, 3 or 4. If there exists a degree 2 vertex, then the multigraph can be
reduced to a smaller one with the required properties by a 0-reduction. On the other hand,
if G has minimum degree 4 then the fact that jEj D 2jV j immediately implies that it is
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4-regular. Fix a vertex v. Since G ¤ K21 , the result of a 2-reduction at v is 4-regular and
hence .2; 0/-tight (if a subgraph violates .2; 0/-sparsity then the average degree in that
subgraph is strictly greater than 4). Thus we are done unless we have added a 4th parallel
edge between two vertices. This is only possible if the 2-reduction adds a 4th copy of an
edge between two vertices. This implies that either there is a pair or a triple of parallel
edges between two distinct neighbours x; y of v in G. In the former case it must be that
there are two copies of the edge vx and two copies of the edge vy, and so the reduction
adding a loop on x and a loop on y is always possible. Suppose the latter case holds.
Then x has exactly two neighbours y; v with a triple of parallel edges to y. Consider the
2-reduction at x which adds a loop at y and an edge between yz. The fact that G is 4-
regular implies that the multigraphH resulting from this 2-reduction at x is 4-regular and
has no quadruple of parallel edges.

So we may suppose the minimal degree ofG is 3. IfG has a vertex of degree 3 incident
to a loop then a loop 1-reduction is always possible at that vertex. So suppose no degree 3
vertex of G is incident to a loop. We now argue exactly as in Lemma 3.6. It follows from
the proof of Theorem 3.2 (see [15]) that there is a 1-reduction at a vertex v to a smaller
.2; 0/-tight multigraph. Suppose that every such 1-reduction at v creates a quadruple of
parallel edges. Note that two of the possible 1-reductions add only a new loop so cannot
create a quadruple of parallel edges.

If N.v/ D ¹x; y; zº then without loss we may assume that G contains three parallel
edges between x and y. We now consider the 1-reduction at v that adds xz. This fails
to result in a .2; 0/-tight multigraph if and only if there is a .2; 0/-tight subgraph H of
G such that x; z 2 V.H/ and y; v … V.H/. (To see that y … V.H/ simply note that if
it was then H C v would violate .2; 0/-sparsity.) However, if such a subgraph H exists
then we may add y and its three parallel edges to x to obtain a subgraph of G that is not
.2; 0/-sparse. Hence, the 1-reduction at v adding xz results in a .2; 0/-tight multigraph
and we are done unless there are already three parallel edges between x and z. However,
this implies that the subgraph of G induced by v and its neighbours has at least 9 edges
and only 4 vertices, contradicting .2; 0/-sparsity.

Therefore, v has two distinct neighbours x; y with a double edge from v to x. We now
know two things from our assumptions: (i) the vertex x lies in a .2; 0/-tight subgraphH of
G (as otherwise we could perform the 1-reduction at v that adds a loop at x which does not
form a triple of parallel edges), and (ii) there exists a triple of parallel edges between x; y
(since the only remaining possible 1-reduction at v to a smaller .2; 0/-tight multigraph
adds an edge between x; y, and this must form a quadruple of parallel edges). However,
the subgraph of G formed from adding the vertex y and the edges between the vertices
x; y to H is not .2; 0/-tight, contradicting our original assumption. This completes the
proof.

Lemma 4.6. Let .G; �/ be a �-gain graph where � is a dihedral group, and let G0 D
.V 0; E 0/ be a multigraph formed from G by either a 0-extension, 1-extension, loop-1-
extension, 2-extension or loop-2-extension. Suppose neither G or G0 contain a quadruple
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of parallel edges. If .G; �/ is �-symmetrically rigid in R2 then there exists a gain map
�0 W EE 0 ! � where �0.e; v; w/ D �.e; v; w/ for all .e; v; w/ 2 EE \ EE 0 and .G0; �0/ is
�-symmetrically rigid in R2.

Proof. This follows from Lemmas 3.4 and 4.3 by noting that the only extension moves
that require j�j � 5 are those that create a quadruple of parallel edges.

Theorem 4.7. Let � be a subgroup of O.2/ with k.�/ D 0 and j�j D 4, and let G be a
.2; 0/-tight multigraph with no quadruple of parallel edges. Then there exists a gain map
� W EE ! � such that .G; �/ is �-symmetrically rigid in R2.

Proof. By Lemma 4.5, G can be formed from K21 by a sequence of 0-extensions, loop-
0-extensions, 1-extensions, loop-1-extensions, 2-extensions and loop-2-extensions that do
not form a quadruple of parallel edges. Choose any distinct non-identity elements 1; 2 2
� so that the group h1; 2i is dihedral. 1; 2 2 � so that h1; 2i D � . Define �0 W
EE.K21 /! � so that the loops ofK21 have gains 1 and 2. It is immediate that .K21 ; �

0/ is
�-symmetrically rigid in R2. Moreover, we note that this implies that loop-0-extensions
preserve �-symmetric rigidity. By applying Lemma 4.6 inductively we see that there exists
a gain map � W EE ! � so that .G; �/ is �-symmetrically rigid in R2.

We remark that a special case of Theorems 4.4 and 4.7 gives a weak resolution to
the even order dihedral symmetry problem showing that there is a gain assignment that
suffices. However, it does not give a target conjecture for what conditions a gain assign-
ment must satisfy. Motivated by potential future strengthening of these results towards a
complete solution we consider, in Section 6, how many gain assignments result in sym-
metrically rigid frameworks.

5. Higher dimensional symmetry groups

In the previous sections we have focused on symmetry groups in the plane. We now instead
focus on symmetry groups in d -space. We begin the section by investigating symmetry
groups of translations, where we recap a result of [36]. This illustrates some of the tech-
niques we use later on when we move on to point groups that are dense in O.d/.

In Proposition 2.6 we derived necessary gain graph sparsity conditions for �-symmet-
ric rigidity. The results of this section consider sufficient conditions for a graph to admit a
gain assigment resulting in a �-symmetrically rigid framework. In each case the proposi-
tion tells us the necessary class of graphs to start from. Note also that each of Theorems 5.1
to 5.3, 5.5 and 5.7 trivially generalises to the case when G contains a spanning subgraph
of the given sparsity type.

5.1. Periodic frameworks

Periodic structures arise naturally in material science and crystallography, where the rigid-
ity of polytope networks is of particular interest [9, 35]. During the last 15 years, these
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structures have been studied from a theoretical approach, since periodicity admits a block
diagonalization of the rigidity matrix over the integers. These diagonal blocks give rise
to periodic flexes, which can be considered in the fixed [31] or the flexible lattice case
[7, 25]. More results from an operator-theoretic perspective were initiated in [29], which
gave applications on factor periodic flexes and the rigid unit mode (RUM) spectrum were
initiated. Further studies on the RUM spectrum are discussed in [22].

We first give a proof of a reformulation of [36, Theorem 13], as a warm up for what
follows.

Theorem 5.1. LetG be a .d;d/-tight multigraph and � be a group of translations with d
linearly independent generators. Then there exists a gain map � W EE! � such that .G;�/
is �-symmetrically rigid in Rd .

It is worth noting that this is not the same as the main theorem given in [8] since we
are not allowing the lattice of periodicity to deform.

Proof. Since � is a group of translations, we consider � to be a subgroup of Rd (with
respect to addition). We also define Œx�j to be the j -th coordinate of any vector x 2 Rd .

As G is .d; d/-tight then, by Nash-Williams theorem [27], there exist d edge-disjoint
spanning trees T1; : : : ; Td . We shall assign each tree some arbitrary orientation so that
they are directed. Let 1; : : : ; d denote linearly independent generators of � . We define
� W EE ! � to be the gain map where, given .e; v; w/ 2 Ti , we have �.e; v; w/ D i . We
now define the jEj � d jV j matrix M with entries, where

Me;.v;j / WD

8̂̂<̂
:̂
�Œi �j if .e; v; w/ 2 Ti ;

Œi �j if .e; w; v/ 2 Ti ;

0 otherwise:

As 1; : : : ; d are linearly independent, we have that kerM consists exactly of the vectors
.x/v2V; 1�j�d for x 2 Rd .

Let p W V! Rd be the placement of G with p.v; 0/ D 0 for all v 2 V . We now note
that M D R.G; �; p/, hence .G;p/ is �-symmetrically rigid as required.

5.2. Periodic frameworks with additional symmetry

We next extend Theorem 5.1 to frameworks with additional symmetry. We do this in
the next two theorems for all groups containing translations and certain additional linear
isometries. In both cases we use a combinatorial decomposition of .d; 0/-tight graphs into
d .1; 0/-tight spanning subgraphs (see [36, Corollary 3]). In the first theorem we need the
additional assumption that each .1; 0/-tight subgraph is connected; we conjecture that this
hypothesis can be removed.

Theorem 5.2. Let G D .V; E/ be a .d; 0/-tight multigraph with a spanning .d; d/-tight
subgraph H D .V; F /, and let � be a d -dimensional symmetry group generated by a
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group �t of translations with d linearly independent generators and a point group �` �
O.d/ where

T
2�`

ker.I � / D ¹0º. Then there exists a gain map � W EE ! � such that
.G; �/ is �-symmetrically rigid in Rd .

The condition
T
2�`

ker.I � /D ¹0º is trivially satisfied if � contains a single linear
isometry with no non-zero fixed point. For example, in the cases of d D 3, d D 4 and
d D 5, the linear isometries

0@0 �1 0

1 0 0

0 0 �1

1A ;
0BB@
0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

1CCA ;
0BBBBB@
0 �1 0 0 0

1 0 0 0 0

0 0 0 �1 0

0 0 1 0 0

0 0 0 0 �1

1CCCCCA
have no non-zero fixed points in R3, R4 and R5, respectively. There are other ways the
shared fixed-point condition can be satisfied, however: for example, if d D 3 and �` con-
tains two rotations with different axes, then

T
2�`

ker.I � / D ¹0º. An example whereT
2�`

ker.I � / ¤ ¹0º can be seen in the case where d D 3 and �` is generated by a
single rotation about the x-axis.

Proof. Let p W V ! Rd be the map where p.v/ D 0 for all v 2 V . By using the methods
from Theorem 5.1, we see that there exists a gain map �t W EF ! �t such that .H; �t ; p/
is �t -symmetrically rigid in Rd . Label the remaining edges e1; : : : ; ed 2 E n F , and let
vi ; wi be the end-points of ei .

Fix d linearly independent translations 1; : : : ; d 2 �t , and let ¹x1; : : : ; xd º � Rd be
the basis where i .x/D xC xi for each i 2 ¹1; : : : ;dº. For every i 2 ¹1; : : : ;dº and  2�`,
define the linear space Vi; WD ¹x 2 Rd W .I � �1/.xi / � x D 0º. We note two things; if
xi … ker.I � �1/, then Vi; has dimension d � 1, and

Td
iD1 Vi; D ker.I � �1/. Hence,

there exist n1; : : : ; nd 2 ¹1; : : : ; dº and �1; : : : ; �d 2 �` where
Td
iD1 Vni ;i D ¹0º.

Define � W EE! � , where �.e; v;w/D �t .e; v;w/ for each e 2 F , and �.ei ; vi ;wi /D
ni ı�i for each i 2 ¹1; : : : ; dº. Now choose a �-symmetric flex u W V !Rd of .G;�;p/.
Since .H; �t ; p/ is �t -symmetrically rigid in Rd , there exists z 2 Rd so that u.v/ D z
for all v 2 V . For each edge .ei ; vi ; wi /, we note that

0 D
�
p.vi / � ni ı �i

�
p.wi /

��
� u.vi /C

�
p.wi / � �

�1
i ı 

�1
ni

�
p.vi /

��
� u.wi /

D �.I � ��1i /.xni / � z;

and so z 2
Td
iD1 Vni ;i D ¹0º. Hence, u is trivial and .G; �; p/ is �-symmetrically rigid

in Rd .

We can improve Theorem 5.2 when �` contains the reflection through the origin.

Theorem 5.3. LetG D .V;E/ be a .d; 0/-tight multigraph, and let � be a d -dimensional
symmetry group containing a subgroup �t of translations with d linearly independent
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generators and the map �I W x 7! �x. Then there exists a gain map � W EE ! � such that
.G; �/ is �-symmetrically rigid in Rd .

Proof. As G is .d; 0/-tight, we can partition G into d spanning .1; 0/-tight graphs, say
G1; : : : ;Gd . For eachGi D .V;Ei /, letGi;1 D .Vi;1;Ei;1/; : : : ;Gi;ni D .Vi;d ;Ei;d / be the
connected components ofGi , let Ti;j D .Vi;j ;Fi;j / be the spanning tree ofGi;j and let ei;j
be the unique edge in Ei;j n Fi;j . We shall assign each edge some arbitrary orientation,
and we label the source and sink of each edge ei;j as vi;j and wi;j respectively. Now
define � W EE ! Rd be the �-gain map, where �.e; v; w/ D i for every edge e 2 Fi;j ,
and �.ei;j ; vi;j ; wi;j / D i ı .�I /.

Fix p W V ! Rd where p.v/ D 0 for all v 2 V , and choose a �-symmetric flex u W
V ! Rd of .G;�;p/. Fix i; j and choose any adjacent vertices v;w 2 Vi;j in Ti;j . Given
the edge e 2 Fi;j has source v and sink w, we have that

xi �
�
u.w/ � u.v/

�
D
�
p.v/ � ip.w/

�
� u.v/C .p.w/ � �1i p.v/

�
� u.w/ D 0;

hence, xi � u.v/D xi � u.w/. It now follows from transitivity that xi � u.v/D xi � u.w/ for
any pair of vertices v; w 2 Vi;j . From observing the edge condition for .ei;j ; vi;j ; wi;j /,
we see that

0 D
�
p.vi;j / � .i ı �I /p.wi;j /

�
� u.vi;j /C

�
p.wi;j / � .i ı �I /

�1p.vi;j /
�
� u.wi;j /

D �xi � u.vi;j / � xi � u.wi;j /;

hence, xi � u.vi;j / D �xi � u.wi;j /. As vi;j ; wi;j 2 Vi;j , it follows that xi � u.vi;j / D
xi � u.wi;j / D 0, hence, xi � u.v/ D 0 for all v 2 Vi;j . By applying this method for each
j 2 ¹1; : : : ; niº, we have that xi � u.v/ D 0 for all v 2 V . For each v 2 V we have xi �
u.v/ D 0 for each i 2 ¹1; : : : ; dº, and thus u.v/ D 0. Hence, u is trivial and .G; �; p/ is
�-symmetrically rigid in Rd .

5.3. Infinite point groups

We next consider infinite point groups with a suitable density property. For the following
we remember that for higher dimensions, a linear isometry  2O.d/ is a rotation if det D
1, and we denote by SO.d/ the set of all d -dimensional rotations. A reflection is any
linear isometry � 2 O.d/ with det� D �1 that has a linear hyperplane of fixed points. An
important property of reflections is that they are involutory (i.e., ��1 D � ) and �1� is
a reflection for any rotation  .

Lemma 5.4. Let � �O.d/ be a dense subgroup. Choose an orthonormal basis f1; : : : ;fd
of Rd . Then for every " > 0, there exist d � 1 rotations 1; : : : ; d�1 2 � and isometries
�1; : : : ; �d�1 2 � so that for all k 2 ¹1; : : : ; d � 1º we have � fk � fd � kfd

kfd � kfdk

 < "; fk � fd � 
�1
k
fd

kfd � kfdk

 < ";
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kfd � �kfdk

 < ";  � fk � fd � �
�1
k
fd

kfd � �kfdk

 < "; � fk � 2fd � �kfd � ��1k fd

2kfd � �kfdk

 < ";
and there exists an isometry �d 2 � so thatfd � fd � �dfd

kfd � �dfdk

 < "; fd � fd � �
�1
d
fd

kfd � �dfdk

 < ";fd � 2fd � �dfd � ��1d fd

2kfd � �dfdk

 < ":
Proof. Let � be the reflection with �fd D �fd . For each k 2 ¹1; : : : ; d � 1º and 0 �
� < 2� , define Rk.�/ 2 SO.d/ to be the rotation in the fkfd -plane where Rk.�/fd D
.cos�/fd C .sin�/fk . Similarly, define for each k 2 ¹1; : : : ;d � 1º the reflection Sk.�/ WD
Rk.� � �=2/

�1�Rk.� � �=2/. Then for suitably small �k we have � fk � fd �Rk.�k/fd

kfd �Rk.�k/fdk

 < "; fk � fd �Rk.�k/�1fdkfd �Rk.�k/fdk

 < "; � fk � fd � Sk.�k/fd

kfd � Sk.�k/fdk

 < ";  � fk � fd � Sk.�k/�1fdkfd � Sk.�k/fdk

 < "; � fk � 2fd � Sk.�k/fd � Sk.�k/�1fd2kfd � Sk.�k/fdk

 < ":
Since � is dense in O.d/, we can now choose for each k 2 ¹1; : : : ; d � 1º the rotation
k 2 � suitably close to Rk.�k/ so as to satisfy the required properties. Similarly, we can
choose for k 2 ¹1; : : : ; d � 1º the isometry �k 2 � suitably close to Sk.�k/ so as to satisfy
the required properties also. Finally, sincefd � fd � �fd

kfd � �fdk

 D fd � fd � ��1fdkfd � �fdk

 D fd � 2fd � �fd � �fd2kfd � �fdk

 D 0;
we may choose �d to be suitably close to � to satisfy the required properties.

Theorem 5.5. Let G be a .d; 0/-tight multigraph and let � � O.d/ be a dense subgroup.
Then there exists a gain map � W EE ! � such that .G; �/ is �-symmetrically rigid in Rd .

Proof. As G is .d; 0/-tight, it can be decomposed into d edge-disjoint spanning .1; 0/-
tight subgraphs T1; : : : ; Td (see [36, Corollary 3]). Define n1; : : : ; nd to be the number
of connected components of T1; : : : ; Td respectively, and define T 1

k
; : : : ; T

nk
k

to be the
connected components of Tk . For each T j

k
, fix an edge ej

k
in the unique cycle3 in T j

k
.

Label the vertices of G as v1; : : : ; vn.

3A multigraph is .1; 0/-tight if and only if every connected component contains exactly one cycle.
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Fix a unital basis f1; : : : ;fd where �fd D�fd , and choose any "> 0. Let 1; : : : ;d�1
and �1; : : : ; �d�1 be the rotations and reflections described in Lemma 5.4, define d to be
the identity map and define �d to be sufficiently close to � , as demanded in Lemma 5.4.
We define �" W EE ! � to be the gain map where for any edge .e; vi ; vj / 2 Tk with i � j ,
we have

�".e; vi ; vj / D

´
k if k 2 ¹1; : : : ; dº and e … ¹e1

k
; : : : ; e

nk
k
º;

�k if k 2 ¹1; : : : ; dº and e 2 ¹e1
k
; : : : ; e

nk
k
º:

We note that every loop has gain �k for some k 2 ¹1; : : : ; dº.
Define the jEj � d jV j matrix M with entries, where for every vertex v 2 V and for

every edge e 2 Tk with end points vi ; vj (i � j ),

Me;v WD

8̂̂̂̂
<̂
ˆ̂̂:
�fk if v D vi and e … ¹e1

k
; : : : ; e

nk
k
º;

fk if v D vj and e … ¹e1
k
; : : : ; e

nk
k
º;

�fk if v 2 ¹vi ; vj º and e 2 ¹e1
k
; : : : ; e

nk
k
º;

.0; 0; 0/ otherwise:

(This is a slight abuse of notation, as the entries here are d -coordinate vectors.) By con-
struction it is evident that rankM D d jV j.

Choose 0 < ı < " and let p W V ! Rd be the map where p.vi / D .1C ıi/fd for all
vi 2V . Choose a non-looped edge .e; vi ; vj / (i <j ) with �".e; vi ; vj /Dk for k¤d . Thenp.vi / � kp.vj /C kfd � kfdkfk

D
.1C ıi/fd � k�.1C ıj /fd �C kfd � kfdkfk

D
.fd � kfd /C kfd � kfdkfk C ı.ifd � j kfd /

� kfd � kfdk

 � fk � fd � kfd

kfd � kfdk

C ıkifd � j kfdk
< "kfd � kfdk C ıkifd � j kfdk;

and hence, we may choose ı > 0 sufficiently small so thatp.vi / � kp.vj /kfd � kfdk
� .�fk/

 < ":
By a similar method, we can choose a sufficiently small ı to ensurep.vj / � �1k p.vi /

kfd � kfdk
� fk

 < "
holds. Likewise, for any edge .e; vi ; vj / (i � j ) with �".e; vi ; vj / D �k and k ¤ d , we
can choose ı sufficiently small so thatp.vi / � �kp.vj /kfd � �kfdk

� .�fk/

 < "; p.vj / � ��1k p.vi /

kfd � �kfdk
� .�fk/

 < ";2p.vi / � �kp.vi / � ��1k p.vi /

2kfd � �kfdk
� .�fk/

 < ":
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Finally, for any edge .e; vi ; vj / (i � j ) with �".e; vi ; vj / D �d , we can choose ı suffi-
ciently small so thatp.vi / � �dp.vj /kfd � �dfdk

� fd

 < "; p.vj / � ��1d p.vi /

kfd � �kfdk
� fd

 < ";2p.vi / � �dp.vi / � ��1d p.vi /

2kfd � �dfdk
� fd

 < ":
Define zR.G; �"; p/ to be the matrix formed from R.G; �"; p/ by multiplying each row
corresponding to an edge .e; vi ; vj / by ˛, where (i) ˛ D kfd � �fdk if it is a non-loop
edge with gain � … ¹I;�d ; ��1d º, (ii) ˛D 2kfd � �fdk if it is a loop with gain �¤ �d , (iii)
˛D�kfd � �dfdk if it is a non-loop edge with gain �d or ��1

d
, (iv) ˛D�2kfd � �dfdk

if it is a loop with gain �d , and (v) ˛ D ıji � j j if it is an edge .e; vi ; vj / with trivial gain.
By our choice of entries, every entry of zR.G; �"; p/ lies within " of the corresponding
entry in the matrixM . SinceM is non-singular, we must have for sufficiently small " that

rankR.G; �"; p/ D rank zR.G; �"; p/ D rankM D d jV j:

Now fix � D �" for some " > 0 where the above holds. Then .G;�;p/ is �-symmetrically
rigid as required.

Example 5.6. Define the rotations

�1 D
1

5

0@ 3 4 0

�4 3 0

0 0 5

1A ; �2 D
1

5

0@5 0 0

0 3 4

0 �4 3

1A :
The element �1 defines an irrational rotation in the xy-plane, while the element �2 defines
an irrational rotation in the yz-plane. The group h�1; �2i is isomorphic to F2 (see [34])
and dense in SO.3/; the latter property can be seen from observing that the closure of h�1i
contains every rotation in the xy-plane and the closure of h�2i contains every rotation in
the yz-plane. We can now apply Theorem 5.5 to the group � WD h�1; �2; �i for any choice
of reflection � . Note that any finitely generated group F that is dense in SO.3/ contains a
dense free subgroup of rank 2 [11].

5.4. Large finite point groups

Let A be a subset of a metric space .M; d/. For a given " > 0, we say that A is an "-dense
subset of M if for every x 2 M there exists a 2 A so that d.a; x/ < ". By observing the
proofs of Lemma 5.4 and Theorem 5.5, we can easily see that the following generalisation
is also true.

Theorem 5.7. Let G be a .d; 0/-tight multigraph. Then there exists " > 0 so that the
following holds for any "-dense subgroup � � O.d/; there exists a gain map � W EE ! �

such that .G; �/ is �-symmetrically rigid in Rd .



S. Dewar, G. Grasegger, E. Kastis, and A. Nixon 584

Proof. Define the matrixM as in Theorem 5.5. Since the matrix M is non-singular, there
exists an " > 0, such that for every matrixR that satisfies kR�Mk � ", we have rankRD
rankM . Let � be an "-dense subgroup in O.d/. Then there exist rotations 1; : : : ; d�1 2
� and isometries �1; : : : ; �d�1; �d 2 � , satisfying the properties of Lemma 5.4. Hence,
by repeating the proof of Theorem 5.5, the result follows.

Given a .d; 0/-tight multigraph, it would be interesting to quantify how large a point
group � , where k.�/ D 0, needs to be for there to exist a rigid gain map.

6. Probabilities for rigid gain assignments
Let G be a multigraph and let � � O.d/ be a finite group. We say that a �-gain map
� of G is a rigid gain assignment of G if .G; �/ is �-symmetrically rigid. We define
P .G; �/ 2 Œ0; 1/ to be the probability that a random gain map � W EE ! � is a rigid
gain assignment. If � is the identity group then P .G; �/ 2 ¹0; 1º since there is exactly
one gain map. Suppose � is non-trivial. Note that for any simple graph G we must have
P .G; �/ < 1 as the gain map � that assigns every edge trivial gain forces the gain graph
.G; �/ to be �-symmetrically flexible.

For a group � containing just a few elements, the probability of choosing gains which
result in a �-symmetrically rigid framework can be experimentally checked using a com-
puter algebra system. Due to the number of possible gain maps, this method, however,
gets infeasible even for moderate numbers of vertices. While we show later that the relat-
ive number of �-symmetrically rigid choices of gains can be arbitrarily low, we see that
for a small number of vertices, and for two basic groups � , we get probabilities not lower
than 0:96 for rigidity of a random choice.

Figure 6 shows some multigraphs with different probabilities for gains to be �-sym-
metrically rigid with respect to the group of 90 degree rotations in the plane. We were
able to compute the probability for all possible multigraphs with at most five vertices.
To get suitable multigraphs we need to check all multigraphs with the respective number
of vertices for .2; 1/-tightness and then check all gains for �-symmetric rigidity. On 5
vertices there are 3765 .2; 1/-tight multigraphs and up to 49 possible gain maps. However,
already on six vertices the numbers seem out of computational reach: there are 281384
non-isomorphic .2; 1/-tight multigraphs, and for each of these multigraphs there are many
possible gain maps, with exactly 411 (over 4 million) possibilities in the worst case.4

Figure 7 shows a similar analysis for 180 degree rotations in three-dimensional space.
Here the underlying multigraph should be .3; 0/-tight. We were able to compute all prob-
abilities for multigraphs with at most four vertices. While there are only 3440 non-iso-
morphic .3; 0/-tight multigraphs on four vertices, in the worst case there are 412 (over
16 million) possible gain maps. Across all of the multigraphs we computed, there are no
multigraphs with less than 96% rigid gain assignments.

4The total number of gain maps depends on the number of multiple edges, with 411 achieved for any
simple graph.
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262144 gains
� 96:1% rigid

98304 gains
� 98:4% rigid

196608 gains
� 99:6% rigid

147456 gains
100% rigid

4194304 gains
� 96:8% rigid

4194304 gains
� 97:8% rigid

4194304 gains
� 98:7% rigid

4194304 gains
� 98:9% rigid

Figure 6. The percentage of gain maps that are rigid gain assignments with respect to the group of
90 degree rotations in R2, for a selection of .2; 1/-tight multigraphs.

46656 gains
� 96:1% rigid

6912 gains
100% rigid

20736 gains
100% rigid

2985984 gains
� 98:4% rigid

1119744 gains
� 99:8% rigid

55296 gains
100% rigid

1327104 gains
100% rigid

Figure 7. The percentage of gain maps that are rigid gain assignments with respect to the group of
180 degree rotations around the three axes in R3, for a selection of .3; 0/-tight multigraphs.

In general such computations are mainly time constrained by the shear number of mul-
tigraphs and possible gain maps. Single multigraphs with more vertices could be computed
given computational time. However, computing all appropriate multigraphs and checking
all possible gain maps for �-symmetric rigidity soon gets infeasible.

In spite of these computational results, it is actually possible to construct multigraphs,
for any finite symmetry group � � O.d/, for which the probability of choosing a �-
symmetrically rigid gain assignment is positive and close to zero. We prove this below. To
do that we first consider the effect of extension operations on this probability.

6.1. Probabilities under extension operations

We begin with the d -dimensional analogue of the 0-extension introduced in Section 3
which produces no parallel edges.
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Proposition 6.1. Let � � O.d/ be a finite group and G D .V; E/ be a multigraph with
at least d vertices. Let G0 D .V 0; E 0/ be a multigraph formed from G by adding a vertex
and connecting it to d distinct vertices. Then P .G; �/ D P .G0; �/.

Proof. Fix a gain map � of G and let p be a regular orbit placement of .G; �/. Since
the group � is finite, we choose p so that for any d vertices w1; : : : ; wd 2 V and any
d gains �1; : : : ; �d 2 � , the set ¹�1p.w1/; : : : ; �dp.wd /º is linearly independent. Let
v0 be the vertex added to G to G0 that has neighbours v1; : : : ; vd 2 V . Now choose any
gain map �0 of G0 so that �0.e; v; w/ D �.e; v;w/ for all edges .e; v; w/ 2 EE, and define
p0 to be the orbit placement of G0 with p0.v0/ D 0 and p0.v/ D p.v/ for all v 2 V .
For each i 2 ¹1; : : : ; dº, fix i to be the gain of the edge ei from v0 to v1 in G0, i.e.,
i WD �0.ei ; v0; vi /. We now note that the orbit rigidity matrix of .G0; �0; p0/ is of the
form "

R.G; �; p/ 0jE j�d
A B

#
;

where 0jE j�d is the jEj � d zero matrix,A is a d � d jV jmatrix andB is the d � d square
matrix 264�1p.v1/:::

�dp.vd /

375 :
By our choice of p, the matrix B has independent rows, hence

R.G0; �0; p0/ D R.G; �; p/C d:

We note that due to the layout of the orbit rigidity matrix for .G0; �0; p0/, the orbit frame-
work .G0; �0; p0/ is regular. It now follows that .G0; �0/ is �-symmetrically rigid if and
only if .G; �/ is �-symmetrically rigid.

For every gain map � of G, there exist exactly j�jd gain maps �0 of G that agree
with � on the edges of G, and, as we have just proven, each gain graph .G0; �0/ is �-
symmetrically rigid if and only if .G; �/ is. Hence P .G; �/ D P .G0; �/.

It is important in Proposition 6.1 that the d vertices are distinct. For example, let � be
the symmetry group of the 4-dimensional hypercube; i.e., the group of all matrices with
exactly one non-zero entry per row and column, which can be either 1 or �1. Let G be a
multigraph with 0 < P .G; �/ < 1 and let G0 be a multigraph formed from G by adding a
new vertex v0 and connecting to one vertex v1 of G by four parallel edges e1; e2; e3; e4.
Fix the elements

1 WD

26664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

37775 ; 2 WD

26664
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

37775 ;
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3 WD

2664
1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

3775 ; 4 WD

2664
�1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

3775 :
Now fix a gain map � of G and a regular orbit placement p of .G; �/ with p.v1/ D
.w; x; y; z/ ¤ .0; 0; 0; 0/. From this we define the gain map �0 of G0 with �0.e; v; w/ D
�.e; v; w/ for all .e; v; w/ 2 EE and �0.ei ; v0; v1/ D i for each i 2 ¹1; 2; 3; 4º, and we
define the orbit placement p0 of .G0; �0/ with p0.v/ D p.v/ for all v 2 V and p0.v0/ D
.0; 0; 0; 0/. We now note that

R.G0; �0; p0/ WD

�
R.G; �; p/ 0jE j�4

A �B

�
;

where 0jE j�4 is the jEj � 4 zero matrix, A is a 4 � 4jV j matrix and B is the 4 � 4 square
matrix 2664

w x y z

�w x y z

w �x y z

�w �x y z

3775 :
As rankBD3, it follows that .G0;�0;p0/ is �-symmetrically flexible regardless of whether
.G; �; p/ is �-symmetrically rigid or not. Hence P .G; �/ > P .G0; �/.

A similar construction for d D 2 is impossible. In fact, we can even extend Proposi-
tion 6.1 so that it covers some other graph extension moves also.

Proposition 6.2. Let � � O.2/ be a finite group and G D .V; E/ be a multigraph. Let
G0 D .V 0; E 0/ be a multigraph formed from G by a 0-extension or a loop-1-extension.
Then P .G; �/ D P .G0; �/.

Proof. If G0 is formed from G by a 0-extension of G that adds two edges that are not
parallel, then P .G; �/ D P .G0; �/ by Proposition 6.1. For the other cases, we always be
adding a vertex v0 which is adjacent to exactly one vertex v1 of G. Fix a gain map � of
G and an orbit placement p of the gain graph .G; �/; we assume the latter has the added
property that for every distinct pair ;� 2 � we have p.v1/¤ �p.v1/. We now split into
the two remaining cases.

(G0 is a 0-extension ofG): Let e1; e2 be the two edges joining v0 and v1 inG0. Choose
any gain map �0 of G0 so that �0.e; v; w/ D �.e; v;w/ for all .e; v; w/ 2 EE. Since �0 is a
gain map, the group elements 1 WD �0.e1;v0;v1/ and 2 WD �0.e2;v0;v1/must be distinct,
and hence 1p.v1/ ¤ 2p.v2/. Choose an orbit placement p0 of .G0; �0/ where p0.v/ D
p.v/ for all v 2 V and p0.v0/ does not lie on the line through the points 1p.v1/; 2p.v2/.
We now note that the orbit rigidity matrix of .G0; �0; p0/ is of the form�

R.G; �; p/ 0jE j�2
A B

�
; (1)
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where 0jE j�2 is the jEj � 2 zero matrix, A is a 2 � 2jV j matrix and B is the 2 � 2 square
matrix �

p.v0/ � 1p.v1/

p.v0/ � 2p.v2/

�
:

By our choice of p, the matrix B has independent rows, hence

R.G0; �0; p0/ D R.G; �; p/C 2:

It now follows that .G0; �0/ is �-symmetrically rigid if and only if .G; �/ is �-symmetri-
cally rigid. We note that due to the layout of the orbit rigidity matrix for .G0; �0; p0/, the
orbit framework .G0; �0; p0/ is regular.

For every gain map � of G, there exist exactly j�j.j�j � 1/ gain maps �0 of G that
agree with � on the edges of G, and, as we have just proven, each gain graph .G0; �0/ is
�-symmetrically rigid if and only if .G; �/ is. Hence P .G; �/ D P .G0; �/.

(G0 is a loop-1-extension ofG): Let ` be the loop at v0 inG0 and e1 be the edge joining
v0 and v1 in G0. Choose any gain map �0 of G0 so that �0.e; v; w/ D �.e; v; w/ for all
.e; v;w/ 2 EE. Fix the group elements 1 WD �0.e1; v0; v1/ and ` WD �0.`; v0; v0/. Choose
an orbit placement p0 of .G0; �0/ where p0.v/ D p.v/ for all v 2 V and p0.v0/ is chosen
so that p0.v0/ � 1p0.v1/ and 2p0.v0/ � `p0.v0/ � �1` p0.v0/ are linearly independent;
this can be seen to be possible as .2I � ` � �1` / is never the zero matrix. We now note
that the orbit rigidity matrix of .G0; �0; p0/ is of the form given in Equation (1), except
now B is the 2 � 2 square matrix�

p.v0/ � 1p.v1/

2p0.v0/ � `p
0.v0/ � 

�1
`
p0.v0/

�
:

By our choice of p, the matrix B has independent rows, hence

R.G0; �0; p0/ D R.G; �; p/C 2:

It now follows that .G0; �0/ is �-symmetrically rigid if and only if .G; �/ is �-symmet-
rically rigid. We note that due to the layout of the orbit rigidity matrix for .G0; �0; p0/, the
orbit framework .G0; �0; p0/ is regular.

For every gain map � of G, there exist exactly j�j.j�j � 1/ gain maps �0 of G that
agree with � on the edges of G, and, as we have just proven, each gain graph .G0; �0/ is
�-symmetrically rigid if and only if .G; �/ is. Hence P .G; �/ D P .G0; �/.

There is no version of Proposition 6.2 for 1-extensions however; in fact, we cannot
even tell if the probability will increase or decrease. For example, let � be the group of all
90ı rotations in the plane. Figure 8 (left) depicts a 1-extension where the probability of a
gain map describing a �-symmetrically rigid gain graph decreases, while Figure 8 (right)
depicts a 1-extension where the probability increases.

6.2. Approximating probabilities

All of the examples illustrated above have a very large percentage of rigid gain assign-
ments. We shall prove that the other extreme is possible.
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100% rigid � 98:4% rigid

� 96:1% rigid � 97:8% rigid

Figure 8. 1-extensions with different effects on the relative number of rigid gains.

Theorem 6.3. Let � �O.d/ a finite group and q 2 .0;1/. For every " > 0, there existsN 2
N so that for each n�N there exists a multigraph on n vertices with jP .G; �/�qj<".

We first note that we can multiply the probabilities for any pair of multigraphs with
the following two results.

Lemma 6.4. Let � be a subgroup of O.d/ and k be the dimension of the group of trivial
isometries for all �-symmetric frameworks. Let .G1; �1/ and .G2; �2/ be �-gain graphs
with at least max¹d C 1; kº vertices each. Let .G; �/ be a �-gain graph formed by join-
ing .G1; �1/ and .G2; �2/ by k edges that share no vertices with arbitrary gains. Then
.G; �/ is �-symmetrically rigid in Rd if and only if both .G1; �1/ and .G2; �2/ are �-
symmetrically rigid in Rd .

Proof. We first note that we may assume that the gain of each edge connecting G1 to G2
has trivial gain.5 Let v1w1; : : : ; vkwk be the k independent edges between G1 and G2,
where each vi lies in G1 and each wi lies in G2. Choose a regular orbit placement p1 of
.G1; �1/. Let u1; : : : ; uk be a basis of the trivial infinitesimal of .G1; �1; p1/. We may
assume by perturbing vertices that for every element ui of the basis we have ui .v/ ¤ 0
for each v 2 V.G1/; this is as trivial infinitesimal flexes are defined by multiplying each
p.v/ by a skew-symmetric matrix that is non-zero on an open dense set of points. Define
for each i 2 ¹1; : : : ; kº the open dense subsetWi WD ¹x 2 Rd W p.vi / � u.vi /¤ x � u.vi /º.
Now define p2 to be a regular orbit placement of .G2; �2/ in general position where
p2.v/¤p2.w/ for all v 2V.G1/ andw 2V.G2/, and p2.wi /2Wi for each i 2 ¹1; : : : ;kº.
Now define .G; �; p/ to be the regular framework with p.v/ D pi .v/ for all v 2 V.Gi /;
we may assume p is regular by perturbing the orbit placements p1 and p2 whilst keeping
all the previous properties discussed.

5It is well known that one may multiply the gains on all edges incident to a vertex by a common group
element without changing the �-symmetric rigidity [21].
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G1

G2

Figure 9. Joining two multigraphs G1 and G2 by k independent edges when k D 3.

Define Ki WD kerR.Gi ; �i ; pi / and K WD kerR.G; �; p/. Any infinitesimal flex of
.G; �; p/ is a subset of K1 ˚ K2. We note that as the k edges v1w1; : : : ; vkwk form k

linear constraints, we have dimK1 C dimK2 � k � dimK � dimK1 C dimK2 It now
suffices to prove that there are k linearly independent elements in K1 ˚ K2 that are not
in K. By our choice of framework, each of the elements ui ˚ 0 2 K1 ˚K2 does not lie
in K, hence the result holds.

Lemma 6.5. Let � � O.d/ be a finite group. For any pair of multigraphs G1;G2, with at
least d vertices, there exists a multigraph G where P .G; �/ D P .G1; �/P .G2; �/.

Proof. Define k to be the dimension of the group of trivial isometries for all �-symmetric
frameworks. By applying Proposition 6.1, we may assume that both G1 and G2 have at
least max¹d C 1; kº vertices each. Let G be the multigraph formed from joining G1 and
G2 by k independent edges (see Figure 9).

If we choose any �-gain map � for G and define �i to be the restriction of � to
the edges of Gi , then .G; �/ is �-symmetrically rigid if and only if both .G1; �1/ and
.G2; �2/ are �-symmetrically rigid by Lemma 6.4. Hence, P .G;�/D P .G1;�/P .G2;�/
as required.

We now wish to construct a multigraph with an arbitrarily high probability. To do so
we first need the following result.

Lemma 6.6. For each finite subgroup � � O.d/, there exists a simple graph H with at
least d C 1 vertices where 0 < P .H; �/ < 1.

Proof. Define .H 0; �0/ to be the complete loopless �-gain graph with d C 1 vertices, i.e.,
H 0 has vertices v0; : : : ; vd , and for every pair of distinct vertices vi ; vj and every  2 � ,
there exists an edge .e; vi ; vj / with �0.e; vi ; vj / D  (unless  is trivial and vi D vj ).
Choose p0 to be a �-symmetrically rigid orbit placement of .H 0; �0/ where the points
p.v0/; : : : ; p.vd / are affinely independent. Using methods similar to those in the proof of
Proposition 6.1, we see that .H 0; �0; p0/ is �-symmetrically rigid.

We now define the �-symmetric framework .H;�;p/ in the following way. The graph
H D .V;E/ is a simple graph with

V WD ¹v0; : : : ; vd º [ ¹vi; W 0 � i � d;  2 �º
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v0

v1 v2

v0;I

v1;I v2;I

v0;�I

v1;�I v2;�I

Figure 10. Example of the graph constructed in Lemma 6.6 with d D 2 and � D ¹I;�I º. Edges
with gain �I are marked in red.

and, with I denoting the d � d identity matrix,

E WD ¹vi;Ivj; W 0 � i; j � d; i ¤ j;  2 �º

[ ¹vivj W 0 � i < j � dº

[ ¹vivj; W 0 � i; j � d; i ¤ j;  2 �º:

To define the gain map �, for an edge .e; vi;I ; vj; / we set �.e; vi;I ; vj; / D  . The
remaining edges are assigned trivial gains. See Figure 10 for an example of .H; �/ for
the case when d D 2 and � D ¹I;�I º. Finally, we set p.vi / D p0.vi / for every vi 2 V
and p.vi; / D p0.vi / for every vi; 2 V .

Let u be a �-symmetric flex of .H; �; p/. For any 0 � i; j � d and  2 � , the edge
vi;vj has trivial gain, hence .p.vi; / � p.vj // � .u.vi; / � u.vj // D 0. By using the
substitution p.vi; / D p.vi / and rearranging for each j , we see that u.vi; / is the unique
element that satisfies the d affine conditions�

p.vi / � p.vj /
�
� u.vi; / D

�
p.vi / � p.vj /

�
� u.vj / for all 0 � j � d; j ¤ i:

Hence, u.vi; / D u.vi / for all  2 � . Choose any 0 � i; j � d , i ¤ j , and  2 � . As
.vi;Ivj; ; vi;I ; vj; / is an edge with gain  , it follows that�
p.vi / � p.vj /

�
�
�
u.vi / � u.vj /

�
D
�
p.vi;I / � p.vj; /

�
�
�
u.vi;I / � u.vj; /

�
D 0:
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w1
w2

D
D

D
D

D

D

Š H

Š H

Figure 11. Construction of Gm for d D 2 where each H has D > d vertices adjacent to w1; w2.

Define the map u W V.H 0/! Rd by setting u0.vi / WD u.vi /. By our choice of .H; �; p/,
u0 is a �-symmetric flex of .H 0; �0; p0/, hence there exists a skew-symmetric matrix A
and a point x 2 Rd so that u0.vi /D Ap0.vi /C x. It follows that u.vi /D Ap.vi /C x and
u.vi; / D Ap.vi; /C x for all vertices vi ; vi; ofH , hence .H; �; p/ is �-symmetrically
rigid. Since H is simple, P .H; �/ < 1, thus 0 < P .H; �/ < 1.

Lemma 6.7. Let � � O.d/ a finite group. For every " > 0, there exists N 2 N so that for
each n � N there exists a multigraph on n vertices with 1 � " < P .G; �/ < 1.

Proof. Fix ". By Lemma 6.6, there exists a simple graph zH where 0 < P . zH; �/ < 1

with vertices ¹v1; : : : ; vDº (with D > d ). Now define H to be the graph formed from
zH by adding d vertices w1; : : : ; wd and every edge of the form wivj for 1 � i � d

and 1 � j � D. Importantly, 0 < P .H; �/ < 1; we have that P .H; �/ � P . zH; �/ by
Proposition 6.1, and we must have P .H;�/ < 1 sinceH is a simple graph. Choosem 2N
so that .1 � P .H; �//m < ". For each 1 � i � m, define Hi to be a graph isomorphic to
H with vertices ¹vi1; : : : ; v

i
D; w1; : : : ; wd º; note that we have

V.Hi / \ V.Hj / D ¹w1; : : : ; wd º for all i ¤ j:

Now defineGm to be the graph formed by taking the union of the graphsH1; : : : ;Hm (see
Figure 11).

Choose any gain map � of Gm. We note that if any gain graph .Hi ; �jHi / is �-
symmetrically rigid, then .Gm; �/ is �-symmetrically rigid also. This holds since every
vertex vj

k
is connected to each of the vertices w1; : : : ; wd . Hence, 1 � P .Gm; �/ <

.1 � P .H; �//m. Since Gm is a simple graph, it follows that 1 � " < P .Gm; �/ < 1 as
required.
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Now set N D jV.Gm/j. For every n > N , we can form a graph G with P .G; �/ D
P .Gm; �/ by applying Proposition 6.1 n �N times.

We are now ready to prove the main result of this section.

Proof of Theorem 6.3. Let " > 0. By Lemma 6.7, there exists a multigraph H such that
P .H; �/ D 1 � ı, for some ı 2 .0; "/. By applying Lemma 6.5 to copies of H , we can
obtain for every k 2 N a multigraph G with P .G; �/ D P .H; �/k D .1 � ı/k . Define
ak D .1 � ı/k . Since for every k we have ak � akC1 2 .0; ı/ and ak ! 0 as k !1,
there exists m 2 N such that jam � qj < ". By applying Lemma 6.5 to copies of H , we
can obtain a multigraphG with P .G;�/D P .H;�/m D .1� ı/m. The result now follows
by applying Proposition 6.1.
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