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The Emerton–Gee stack of rank one .'; �/-modules

Dat Pham

Abstract. We give a classification of rank one .'; �/-modules with coefficients in a p-adically
complete Zp-algebra. As a consequence, we obtain a new proof of the explicit description of the
Emerton–Gee stack of .'; �/-modules in the rank one case. In fact, our method also applies in the
context of rank one étale '-modules (i.e. in the absence of a �-action), generalizing another result
of Emerton–Gee.

1. Introduction

For simplicity, we fix our local field to be Qp in this introduction. Let A0Qp be the p-
adic completion of the Laurent series ring Zp..T //, endowed with the usual commuting
semilinear actions of ' and � D Z�p . An étale .'; �/-module is, by definition, a finite
A0Qp -module endowed with commuting semilinear actions of ' and � , with the property
that the linearized action of ' is an isomorphism. The most important feature of étale
.'; �/-modules is that they are naturally equivalent to continuous representations of GQp
on finite Zp-modules (cf. [5]).

In [4], Emerton and Gee define and study moduli stacks parametrizing families of
étale .'; �/-modules. More specifically, they consider the stack Xd over Spf Zp whose
groupoid of A-valued points, for any p-adically complete Zp-algebra A, is given by the
groupoid of rank d projective étale .';�/-modules over A0Qp ;A WDA0Qp y̋ Zp A. The geom-
etry of the stack Xd has been studied extensively in [4]. In particular, the authors show
that Xd is a Noetherian formal algebraic stack, and moreover, its underlying reduced sub-
stack is an algebraic stack of finite type over Fp , whose irreducible components admit a
natural labelling by Serre weights.

The goal of this note is to prove the following classification of families of rank one
étale .'; �/-modules.

Theorem 1.1 (Theorem 3.1). Let A be a p-adically complete Zp-algebra. Let M be a
rank one étale .'; �/-module with A-coefficients. Then M has the form A0Qp ;A.ı/˝A L
for some character ı WQ�p !A� and some invertibleA-moduleL. Here, A0Qp ;A.ı/ denotes
the free .';�/-module of rank 1 with a basis v for which '.v/D ı.p/v and 
.v/D ı.
/v
for 
 2 Z�p .
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As a consequence, we deduce the following explicit description of the stack X1.

Corollary 1.2 (Corollary 3.2). There is an isomorphism��
Spf ZpJZ�p K � yGm

�
=yGm

� �
�! X1;

where yGm denotes the p-adic completion of yGm;Zp , and in the formation of the quotient
stack, the action of yGm is taken to be trivial.

We emphasize that the above description is already given in [4, Prop. 7.2.17]. How-
ever, our argument here is different; in particular it avoids the use of uniform bounds on
the ramification of families of characters valued in finite Artinian algebras (see [4, §7.3]).

Remark 1.3. In fact, our method also applies to give explicit descriptions of the stacks of
rank one étale '-modules (i.e. in the absence of a �-action), generalizing [4, Prop. 7.2.11]
to a large class of coefficient rings. See Section 3.3.

Notation. We mostly follow the notation in [4]. In particular, we fix a finite extension
K=Qp with residue field k and inertia degree f . Fix also an algebraic closure xK of K,
with absolute Galois group GK , Weil group WK , and inertia group IK . As usual, W ab

K

denotes the abelianization of WK , while I ab
K denotes the image of IK in W ab

K . We denote

by C[ the tilt of the completion C WD yxK, by Kcyc the cyclotomic Zp-extension of K and
by k1 its residue field. We also fix a finite extensionE=Qp with ring of integers O, which
will serve as the base of our coefficients. As usual, $ (resp. F) denotes a uniformizer
(resp. the residue field) of O. We will fix throughout an embedding k ,! F.

We refer the reader to [4, §2.2] for the definition of the coefficient rings AK;A of our
.'; �/-modules. Finally, as the fieldK is fixed throughout, we will often dropK from the
notation in what follows.

2. .'; �/-modules associated to characters of the Weil group
In this section, we explain how to associate a free étale .'; �/-module of rank 1 to any
character of WK .

First recall the following result of Dee, which is a generalization of Fontaine’s equiv-
alence between Galois representations on finite Zp-modules and étale .'; �/-modules to
the context with coefficients. For simplicity, we only state the result for Artinian coeffi-
cients.

Theorem 2.1 ([1]). Let A be a finite Artinian local O-algebra, and let

W.C[/A WD W.C[/˝Zp A:

Then the functor
M 7! TA.M/ WD

�
W.C[/A ˝AK;A M

�'D1
defines an equivalence between the category of finite projective étale .'; �/-modules with
A-coefficients, and the category of finite free A-modules with a continuous action of GK .
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We want to extend the above construction of rank one étale .'; �/-modules from
Galois characters to the case where A is an arbitrary $ -adically complete O-algebra.
We begin with the case of unramified characters.

Lemma 2.2. Let A be an O-algebra, and let a 2 A�. Then, up to isomorphism, there is
a unique free étale '-module Dk;a of rank one over W.k/˝Zp A with the property that
'f D 1˝ a on Dk;a.

Proof. We need to show that the norm map�
W.k/˝Zp A

��
! A�; x 7! N.x/ WD x'.x/ � � �'f �1.x/

is surjective with kernel given by the set ¹'.y/=y j y 2 .W.k/ ˝Zp A/
�º. Since F is

assumed to contain k, O (and hence A) is naturally aW.k/-algebra. In particular, we have
an A-algebra isomorphism W.k/˝Zp A!

Q
A, x ˝ 1 7! .x; '.x/; : : : ; 'f �1.x//. The

lemma then follows easily using this isomorphism.

Definition 2.3. Let A be a $ -adically complete O-algebra, and let a 2 A�. Define

AK;A.ura/ WD Dk;a ˝W.k/˝ZpA
AK;A:

This is a rank one étale .'; �/-module with A-coefficients, where we let ' act diagonally,
and � act on the second factor.

Lemma 2.4. Let A be a finite Artinian local O-algebra, and let a 2 A�. Then, under
Dee’s equivalence (Theorem 2.1), AK;A.ura/ corresponds to the unramified character ura
of GK sending geometric Frobenii to a.

Proof. By definition, the rank one A-representation of GK corresponding to AK;A.ura/ is
given by

V WD
�
W.C[/A ˝AK;A AK;A.ura/

�'D1
Š
®
hv j h 2 W.C[/˝Zp A such that '.hv/ D hv

¯
;

where v is a basis of Dk;a. Assume V has a basis hv with h 2 W.xFp/˝Zp A. We verify
that GK acts on this basis via the unramified character taking geometric Frobenii to a.
First, for � 2 IK , we have �.hv/D �.h/vD hv (note that �.h/D h as h2W.xFp/˝Zp A).
Now, let � D '�1q be an arithmetic Frobenius. From the relation '.hv/ D hv and the fact
that 'f .v/D av, we obtain �.h/avD 'f .hv/D hv whence �.hv/D �.h/vD a�1.hv/,
as desired.

It remains to find a basis as stated. If A is a field, say AD Fq for some finite extension
Fq=F, this can be done by using the ring isomorphism C[ ˝Fp Fq

�
�!

Q
C[. Indeed, h

is a vector in
Q

C[ whose coordinates satisfy a finite set of polynomial equations with
coefficients in xFp , so it necessarily lies in

Q
xFp . In general, by factoring A � A=mA as

a chain of square-zero thickenings, we may assume that, for some ideal I with I 2 D 0,
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there is a basis Nhv of V=IV with Nh 2 W.xFp/ ˝Zp .A=I /. Let h 2 W.xFp/ ˝Zp A be a
lift of Nh. Then '.hv/ D g.hv/ for some g 2 1CW.xFp/˝ I , say g D 1C g1 ˝ m1 C
� � � C gn ˝ mn with gi 2 W.xFp/ and mi 2 I . For each i , choose hi 2 W.xFp/ such that
'.hi / � hi D �gi . Let f WD 1 C h1 ˝ m1 C � � � C hn ˝ mn 2 1 C W.xFp/ ˝ I . Then
'.f / D f=g, and hence '.hf v/ D hf v. Finally, as .hf /v lifts a basis of V=IV , it is a
basis of V by Nakayama’s lemma.

Recall that yGm denotes the $ -adic completion of Gm;O . We denote the resulting map
yGm ! X1, a 7! AK;A.ura/ by urx (where we can think of x as the coordinate on yGm D

Spf OŒx; x�1�), and refer to it simply as the universal unramified character.1

We now consider the case of a general character of the Weil groupWK . It is convenient
to introduce some notation.

Definition 2.5. Let X an be the functor on $ -adically complete O-algebras taking A to
the set of (continuous) characters ı W WK ! A�.

As a first remark, we note that fixing a geometric Frobenius � 2 GK (or equivalently,
an isomorphism W ab

K Š I
ab
K � Z) is equivalent to fixing an isomorphism of (Noetherian)

affine formal schemes
X an
' Spf OJI ab

K K � yGm

over Spf O. Concretely, at the level of A-valued points (with A a $ -adically complete
O-algebra), this is given by the assignment .ı W WK ! A�/ 7! .ıjI ab

K
; ı.�//.

In what follows, we will always endow X an with the trivial action of yGm.

Lemma 2.6. There is a morphism X an ! X1, ı 7! AK;A.ı/ with the property that for
any finite Artinian O-algebra A, the .'; �/-module AK;A.ı/ corresponds, under Dee’s
equivalence (Theorem 2.1), to the character ı.

Proof. Fix a geometric Frobenius � 2 GK , and hence an isomorphism

X an
Š Spf OJI ab

K K � yGm:

For each finite Artinian quotient A of OJI ab
K K, we extend the map I ab

K ! A� to a character
GK ! A� by taking � to 1. Under Dee’s equivalence (Theorem 2.1), this gives rise to a
rank one étale .'; �/-module with A-coefficients, i.e., an object of X1.A/. As OJI ab

K K is
the inverse limit of all such quotients A, we obtain a map Spf OJI ab

K K!X1. We can now
define X an ! X1 as the composite

X an
Š Spf OJI ab

K K � yGm ! X1 �
yGm ! X1;

where the last map is given by taking tensor product with the universal unramified charac-
ter urx . That the map is compatible with Dee’s equivalence in case of Artinian coefficients
follows immediately from construction and Lemma 2.4.

1Note that the definition given in [4, §5.3] of the map urx is slightly incorrect in the sense that it does
not agree with the construction of Dee for Artinian coefficients.
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It is easy to check that the construction ı 7! AK;A.ı/ is independent on our choice
of � (see also Remark 3.8 below), and that AK;A.ı1ı2/ Š AK;A.ı1/˝AK;A AK;A.ı2/ for
all ıi . Of course, in case ı D ura is an unramified character, this agrees with the notation
introduced earlier. For a .'; �/-module M with A-coefficients, we set

M.ı/ WDM ˝AK;A AK;A.ı/;

equipped with the obvious (diagonal) .'; �/-structure.

3. Explicit descriptions of the rank one stacks

3.1. Statement

Our main result in this text is the following.

Theorem 3.1. Let A be a $ -adically complete O-algebra. Let M be a rank one étale
.'; �/-module with A-coefficients. Then there exist a unique continuous character ı W
WK ! A� and a unique (up to isomorphism) invertible A-module L, such that M Š
AK;A.ı/˝A L.

Corollary 3.2 ([4, Prop. 7.2.17]). The map X an!X1, ı 7! AK;A.ı/ induces an isomor-
phism

ŒX an=yGm�
�
�! X1:

Proof of Corollary 3.2. Since X an is endowed with the trivial action of yGm, the quotient
stack ŒX an=yGm� is naturally identified with ŒSpf O=yGm� �Spf O X

an. In other words, for
any $ -adically complete O-algebra A, its groupoid of A-valued points is equivalent to
the groupoid of pairs .L; ı/ consisting of an invertible A-module L, and a character ı 2
X an.A/. Via this identification, the map X an ! X1 factors through the map

ŒX an=yGm�! X1

defined by .L; ı/ 7! AK;A.ı/˝A L. The result now follows from Theorem 3.1, and the
fact that the automorphism group of any rank one étale .'; �/-module is given simply by
the scalars:

AutAK;A;';�.M/ D
�
.M ˝M_/';�D1

��
D
�
A';�D1K;A

��
D A�I

here we have used [4, Lem. 2.2.19 and Prop. 2.2.12] for the last equality.

3.2. Proof

This subsection is devoted to proving Theorem 3.1. In order to streamline the arguments,
we postpone the proof of one key result (Lemma 3.6) to Section 3.2.1 below.

We begin with the uniqueness statement.
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Lemma 3.3. The uniqueness part of Theorem 3.1 holds.

Proof. As .AK;A/'D1 D A, we necessarily have LŠM.ı�1/'D1. It remains to show that
if AK;A.ı/ Š AK;A.ı0/ as .'; �/-modules, then ı D ı0. Using that X an and X1 are both
limit preserving (this is easy for X an by its definition; for X1, see [4, Lem. 3.2.19]), we
may assume that A is a finite type O=$a-algebra for some a � 1. In this case, A embeds
naturally into the product of its Artinian quotients, and so we may assume further that A is
a finite Artinian O-algebra. The lemma now follows since the map ı 7! AK;A.ı/ recovers
the equivalence between rank one étale .';�/-modules and Galois characters for Artinian
coefficients (Lemma 2.6).

Remark 3.4. By Lemma 3.3 and the fact that the automorphism group of any rank one
.';�/module is simply yGm, we see that the map ŒX an=yGm� ,!X1 is at least a monomor-
phism. Showing that it is in fact essentially surjective (i.e., an isomorphism) is equivalent
to showing the existence part of Theorem 3.1.

The next lemma allows us to reduce to the case where our test object A is a reduced
F-algebra.

Lemma 3.5. If Theorem 3.1 holds for reduced finite type F-algebras A, then it holds for
any $ -adically complete O-algebra A.

Proof. Let A be an O=$a-algebra for some a � 1, and let M be a rank one étale .'; �/-
module with A-coefficients. We want to show thatM Š AK;A.ı/˝A L for some ı and L.
As X1 is limit preserving, we may assume A is of finite type over O=$a. We will induct
on the nilpotency index e of the nilradical Aıı. The case e D 1 is just our assumption.
Assume now that e � 2. Let I WD .Aıı/e�1 and xA WD A=I . By the induction hypothesis,
M xA WD M ˝A xA has the form AK; xA.xı/ ˝ xA zL for some character xı and some invert-
ible xA-module zL. Lifting xı to a character ı 2 X an.A/, zL to an invertible A-module L
(recall that finite projective modules always deform uniquely through nilpotent thick-
enings), and replacing M with M.ı�1/ ˝A L_, we may assume that M xA is trivial. By
[4, Prop. 5.1.33], the set of isomorphism classes of such M is given by H 1.C�.AK;I //,
where C�.AK;I / is the Herr complex of AK;I WD IAK;AŠ .W.k1/˝Zp I /..t//. Namely,
given suchM , there is an AK;A-basis v ofM so that '.v/D f v and 
.v/D gv for some
f; g 2 ker..AK;A/�! .AK; xA/

�/D 1CAK;I , where 
 is a fixed topological generator of
�K Š Zp . The corresponding cohomology class is then given by Œ.f � 1; g � 1/�.

Let .O=$a/ŒI � be the usual square-zero thickening defined by I. Using the above de-
scription in terms ofH 1.C�.AK;I //, we see thatM arises as the base change of some rank
one .'; �/-module with .O=$a/ŒI �-coefficients via the natural map .O=$a/ŒI �! A.
Thus we may reduce to the case A D .O=$a/ŒI �. By writing I as the colimit of its
finite sub-O-modules and using again the fact that X1 is limit preserving, we may assume
further that I is finite over O. But in this case .O=$a/ŒI � is a finite Artinian O-algebra,
so we are done by using (again) the fact that the construction

ı 7! AK;A.ı/
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recovers the equivalence between Galois representations and .'; �/-modules for Artinian
coefficients.

Lemma 3.6. The map urx W yGm ! X1 induces a closed immersion ŒyGm=yGm� ,! X1.

The proof of Lemma 3.6 takes up Section 3.2.1 below. Armed with this crucial result,
we now finish our proof of Theorem 3.1.

Proof of Theorem 3.1. It remains to show that the monomorphism ŒX an=yGm� ,!X1 is an
isomorphism. In view of Lemma 3.5, it suffices to show that the induced map between
underlying reduced substacks

ŒX an=yGm�red ,! .X1/red

is an isomorphism. As our stacks will all live over Spec F in the rest of this proof, we
will drop the subscript F for ease of notation. For each “Serre weight” ı W I ab

K ! F�

(recall that F is assumed to contain k), we abusively denote also by ı a fixed choice of
an extension of it to GK . By twisting ı W Spec F ! X an by unramified characters, we
obtain a map Gm ! X an. The induced map

`
ı Gm ! .X an/red is then easily seen to be

an isomorphism. In particular, we have an isomorphisma
ı

ŒGm=Gm�
�
�! ŒX an=yGm�red:

Thus, it suffices to show that the mapa
ı

ŒGm=Gm� ,! .X1/red

is an isomorphism. Of course, by construction the component ŒGm=Gm�!.X1/red indexed
by ı is just obtained by twisting the residual gerbe ŒSpec F=Gm� ,! .X1/red associated to
ı by unramified characters. In particular, for ı D 1, we recover the map ŒGm=Gm� ,!

.X1/red induced by the universal unramified character urx .
By Lemma 3.6, this last map is a closed immersion. After twisting by ı, we see that the

same is true of the map ŒGm=Gm� ,! .X1/red indexed by ı. As any character ı WGK! xF�p
is an unramified twist of exactly one of the ı, it is now straightforward (see Lemma 3.7
below) to deduce that the map

`
ı ŒGm=Gm� ,! .X1/red is indeed an isomorphism, as

desired.

Lemma 3.7. Let Z be a reduced algebraic stack locally of finite type over a field k. Let
Z1; : : : ;Zn be a family of closed algebraic substacks of Z with the property that every
Nk-point of Z factors through exactly one of the Zi . Then the natural map

`
i Zi ! Z is

an isomorphism.

Proof. As usual, we denote by jZj the underlying topological space of Z, and similarly
for jZi j. We first show that jZj D

`
i jZi j set-theoretically. Let Z0 be the scheme-theoretic
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image of the map
`
i Zi ! Z. Then Z0 is a closed algebraic substack of Z with Z0. Nk/ D

Z. Nk/. Since Z is reduced, this forces Z0 D Z (this can be checked after passing to a
smooth cover of Z by a reduced scheme, where the result is standard). In particular, we
have jZj D jZ0j. As jZ0j is the closure of

S
i jZi j in jZj (cf. [9, Tag 0CML]), and each jZi j

is a closed subset of jZj, we see that jZj D
S
i jZi j. Now for each i ¤ j , Zi �Z Zj is an

algebraic stack locally of finite type over k with .Zi �Z Zj /. Nk/ D ; by our assumption.
This forces jZi j \ jZj j D jZi �Z Zj j D ;. Thus we have a disjoint decomposition jZj D`
i jZi j, and hence each jZi j is also an open subset of jZj. Let Ui be the unique open

substack of Z with underlying space jUi j D jZi j (cf. [9, Tag 06FJ]). In particular, we
have a decomposition ZD

`
i Ui into open substacks. Now for each i , the map Zi ,! Z

necessarily factors through a closed immersion Zi ,! Ui . Since Ui is reduced (being an
open substack of Z) and jZi j

�
�! jUi j by construction, this closed immersion is necessarily

an isomorphism.

Remark 3.8. Assume f W X an ! X1 is a morphism of stacks over Spf O with the prop-
erty that f .ı/ Š AK;A.ı/ for all characters ı valued in a finite Artinian O-algebra. We
claim that in fact f .ı/ Š AK;A.ı/ everywhere, or equivalently, that the map g W X an !

X1; ı 7! f .ı/AK;A.ı/�1 satisfies g.ı/ŠAK;A for any ı. Indeed, by [4, Lem. 7.1.14], our
assumption on f implies that g factors through the closed immersion ŒSpf O=yGm� ,!X1

(induced by the map Spf O ,! X an classifying trivial characters). It therefore suffices to
show that any mapX an! ŒSpf O=yGm� is “trivial”, i.e. that any line bundle on the Noethe-
rian affine formal scheme X an is trivial. For this, it suffices to check the same result for
the underlying reduced subscheme .X an/red. But we have seen that .X an/red is just a dis-
joint union of finitely many copies of Gm;F D Spec FŒx; x�1�, and hence (as FŒx; x�1� is
a PID), we have the claimed result. Thus we see that there is a unique functorial way to
extend the construction ı 7! AK;A.ı/ appearing in Dee’s equivalence (Theorem 2.1) from
Artinian coefficients to all $ -adically complete O-algebras A.

3.2.1. Proof of Lemma 3.6.

First proof of Lemma 3.6. As in Remark 3.4, the map

urx W yGm ! X1

induces a monomorphism
urx W ŒyGm=yGm� ,! X1:

(More formally, this map is given by composing the monomorphism ŒX an=yGm� ,! X1

with the closed immersion ŒyGm=yGm� ,! ŒX an=yGm� induced by the closed immersion
yGm ,! X an classifying unramified characters.) We want to show that this is in fact a
closed immersion. As proper monomorphisms are closed immersions, it suffices to show
that urx is (representable by algebraic spaces and) proper. Note also that it suffices to work
over O=$a for some a � 1 (for our proof of Theorem 3.1 it suffices to take a D 1, but
this will not simplify the argument).

https://stacks.math.columbia.edu/tag/0CML
https://stacks.math.columbia.edu/tag/06FJ
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Let C1;0 be the stack of rank 1 projective Breuil–Kisin modules over SA of height
at most 0 (in the terminology of [4]). Concretely, objects of C1;0 are rank 1 projective
SA-modules M equipped with an isomorphism '�M 'M; here SA denotes the ring
.W.k/˝Zp A/JtK, equipped with the A-linear Frobenius ' taking t 7! tp (and restricting
to the natural Frobenius on W.k/). Let R1 be the corresponding stack of rank 1 projec-
tive étale '-modules over OE;A, where OE;A WD SAŒ1=t �. Our strategy is to relate urx to
the natural map C1;0 ! R1, M 7!MŒ1=t �, which is known to be proper. Intuitively, as
the source of urx classifies unramified characters, and as crystalline representations (e.g.
unramified characters) are of finite height, it is natural to guess that the composition

ŒGm=Gm�
urx
��! X1 ! R1

factors through the map C1;0!R1. Here X1!R1 is the natural map given by “restric-
tion toGK1 �GK”, whereK1 WDK.�1=p

1

/ for a compatible system �1=p
1

of p-power
roots of some fixed uniformizer � of K (see [4, §3.7]). We claim that this is indeed the
case. More precisely, we will show that there is an isomorphism ŒGm=Gm�' C1;0 making
the diagram

ŒGm=Gm� C1;0

X1 R1

urx

'

(3.1)

commute. Indeed, as finite projective modules over SA are Zariski locally free on Spec.A/
(see e.g. [3, Prop. 5.1.9]), we see that

C1;0 ' ŒLG
C=' �

whereLGC denotes the functorA 7!S�A and the quotient =' is via the action ofLGC.A/
on itself by '-twisted conjugation: g �M WD gM'.g/�1. We have

SA D .W.k/˝Zp A/JtK '
Y

0�j�f �1

AJtK; x ˝ a 7! .'j .x/a/j :

Under this identification, the action of ' on SA is given by ' W .hj /j 7! .'.hjC1//j ; here
we also denote by ' the A-linear action on AJtK taking t 7! tp . It is then easy to see that
the map

Q
j AJtK� ! AJtK�; .hj /j 7!

Q
j '

j .hj / induces an equivalence of groupoids

LGC.A/=' ' AJtK�='f :

Now since AJtK� D A� � .1 C tAJtK/ and elements in 1 C tAJtK are “killed” in the
quotient ='f (given any h 2 1 C tAJtK, the series g WD

Q
n�0 '

f n.h/ 2 1 C tAJtK is
well-defined and satisfies h D g='f .g/), we obtain AJtK�='f ' A�=A� with A� acting
trivially on itself, whence C1;0 ' ŒGm=Gm�. Unwinding definitions, one checks that a
quasi-inverse is given by a 2 A� 7! Dk;a ˝W.k/˝ZpA

SA, where Dk;a is the rank one '-
module from Lemma 2.2. This description also implies that the diagram (3.1) commutes
(again by unwinding definitions), as claimed.
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In conclusion, we deduce that the composition ŒGm=Gm�
urx
��! X1 ! R1 is proper

by [3, Thm. 5.4.11 (1)].2 As the diagonal of the second map is a closed immersion by
[4, Prop. 3.7.4], the usual graph argument shows that the first map is proper, as wanted.

The following proof was actually our first approach; it is somewhat more complicated
than the previous proof in that it makes use of the existence of a certain crystalline substack
of X1.

Second proof of Lemma 3.6. We want to show that the monomorphism urx W ŒyGm=yGm� ,!

X1 is a closed immersion. First recall that by [4, Thm. 4.8.12], X1 admits a closed O-flat
p-adic formal algebraic substack Xur

1 , which is uniquely characterized by the property
that, for any finite flat O-algebra ƒ, Xur

1 .ƒ/ is the subgroupoid of X1.ƒ/ consisting of
characters GK ! ƒ� which are (after inverting p) crystalline of Hodge–Tate weights 0,
or equivalently, unramified characters GK ! ƒ�. (Note that we are free to enlarge the
field of coefficients E; in particular we may assume that it contains the Galois closure of
K so that the running assumption of [4, Thm. 4.8.12] is satisfied.) We will show that the
map urx factors through an isomorphism ŒyGm=yGm� ' Xur

1 , proving the lemma. Before
continuing, we note that here it will be crucial to work directly over O (as opposed to the
previous proof where we work modulo $a for some a � 1).

We begin by showing that urx factors through the closed substack Xur
1 , or equivalently,

that the closed immersion

Xur
1 �X1

ŒyGm=yGm� ,! ŒyGm=yGm�

is an isomorphism. As the target is a p-adic formal algebraic stack of finite type and flat
over Spf O (since it admits a smooth cover by the p-adic formal algebraic space yGm,
which is of finite type and flat over Spf O), it follows from [7, Lem. 7.2.6 (3)] that it
suffices to show that for any morphism Spfƒ! ŒyGm=yGm� whose source is a finite flat
O-algebra (endowed with the p-adic topology), the composite Spfƒ! ŒyGm=yGm� ,!X1

factors through Xur
1 . This is clear as ŒyGm=yGm�.ƒ/ is also equivalent (via the monomor-

phism ŒyGm=yGm� ,!X1) to the subgroupoid of X1.ƒ/ consisting of unramified characters
GK ! ƒ�.

It remains to show that the induced monomorphism

ŒyGm=yGm� ,! Xur
1 :

is in fact an isomorphism. As the source and target are both p-adic formal algebraic stacks
which are of finite type and flat over Spf O, and moreover Xur

1 is analytically unramified

2In this context (of usual Breuil–Kisin modules), a similar properness is first proved in [8, Cor. 2.6].
Note however that the definition of étale '-modules in [3] (and [4]) is slightly less restrictive than that
in [8]: namely, in loc. cit., the authors demand furthermore that such a module M is free fpqc locally on
Spec.A/. In the rank 1 case, it follows a posteriori from the explicit description in Corollary 3.12 below
that this local freeness is a consequence of M being projective (and even holds Zariski locally), and hence
the two definitions yield the same stack; in general we do not know whether or not this is true.
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by Lemma 3.10 below, it suffices, by [7, Lem. 7.2.6 (1)], to check that the above map
induces an isomorphism on any finite flat O-algebra ƒ. This follows again from the fact
that both sides admit the same moduli description (namely, as unramified characters) on
these points.

The following lemma is presumably standard, but for lack of a reference, we include
a proof here.

Lemma 3.9. Let X be a p-adic formal algebraic stack locally of finite type over Spf O.
If X admits reduced Noetherian versal rings at all finite type points, then X is (residually
Jacobson and) analytically unramified in the sense of [2, Rmk. 8.23].

Proof. Let X0 be the associated reduced formal algebraic substack of X, as defined in
[2, Ex. 9.10]. We claim that X0 is analytically unramified. Choose a smooth (in partic-
ular, representable by algebraic spaces) surjection

`
i SpfBi ! X where each Bi is a

p-adically complete O-algebra. By construction of X0, we know that the base change
X0 �X SpfBi is identified with Spf.Bi /red (see [2, Ex. 9.10]), and furthermore that each
Spf.Bi /red is analytically unramified (e.g., by [2, Cor. 8.25], applied to the finite type adic
map Spf.Bi /red ! Spf O). As X0 receives a smooth surjection from the disjoint union`
i Spf.Bi /red of analytically unramified affine formal algebraic spaces, it is analytically

unramified by definition.
We now show that the closed immersion X0 ,!X is in fact an isomorphism (this will

imply that X is analytically unramified, as desired). As this can be checked at the level
of Artinian points (e.g. by [4, Lem. 7.1.14]), it in turn suffices to work with versal rings.
More precisely, let x 2 X.A/ be a point valued in a finite Artinian local O-algebra A.
By assumption, X admits a reduced Noetherian versal ring SpfB at the finite type point
induced by x. By versality, the map x W SpecA! X factors through SpfB ! X, so it
suffices to show that the latter map factors through X0. Choose a smooth covera

i

SpfBi ! X

as before. It suffices to show that each base change SpfB �X SpfBi ! SpfBi factors
through Spf.Bi /red, which in turn will follow once we show that given any smooth mor-
phism SpfC ! SpfB �X SpfBi , the composite SpfC ! SpfB �X SpfBi ! SpfBi
factors through Spf.Bi /red. As any ring map from Bi to a reduced ring necessarily factors
through .Bi /red, it suffices to show that C is reduced. As B is complete local Noethe-
rian and reduced, it is analytically unramified by definition. The upshot is that we have a
smooth morphism SpfC ! SpfB whose target is analytically unramified (and residually
Jacobson, as .SpfB/red D SpecB=mB is just a point). It then follows from [2, Lem. 8.20]
that the source SpfC is also analytically unramified, and in particular that C is reduced,
as required.

Lemma 3.10. The stack Xur
1 is analytically unramified.

Proof. This follows from Lemma 3.9, [4, Prop. 4.8.10] and [6, Thm. 3.3.8].
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3.3. The case of étale '-modules

We end this note by briefly explaining how our method can also be used to give explicit
descriptions of the stacks of rank one étale '-modules (i.e. in the absence of a �-action),
generalizing [4, Prop. 7.2.11] to a large class of coefficient rings. We will put ourselves in
the context of Situation 2.2.15 in [4]. Namely, fix a finite field k ' Fpf and write AC WD
W.k/JtK. Let A be the p-adic completion of ACŒ1=t �. Let ' W A! A be a ring map lifting
the Frobenius modulo p (we do not assume that ' preserves the subring AC). We note
that ' necessarily induces the natural Frobenius on W.k/. If A is a p-adically complete
Zp-algebra, we write ACA WD .W.k/ ˝Zp A/JtK and let AA be the p-adic completion of
ACA Œ1=t �, equipped with the A-linear extension of '. Let R1 denote the stack of rank 1
projective étale '-modules over AA, as defined in [4, §3.1] (we continue to assume that
the coefficient ring O is large enough so that k ,! F). By Wk..t// (resp. Gk..t//), we will
mean the Weil group (resp. the Galois group) of the local field k..t//.

Proposition 3.11. There is a natural isomorphism

ŒX an
k..t//=

yGm�
�
�! R1I

here X an
k..t//

denotes the functor on p-adically complete O-algebras taking A to the set of
continuous characters ı W Wk..t// ! A�, and in the formation of the quotient stack, the
yGm-action is taken to be trivial.

Proof. Since the proof is very similar to that of Theorem 3.1, we will content ourselves
with indicating the main steps.

• Recall firstly that Dee’s equivalence (Theorem 2.1) also admits a variant for étale '-
modules: if A is a finite Artinian O-algebra, then there is a natural equivalence from
the category of finite projective étale '-modules over AA, to the category of finite free
A-modules with a continuous action of Gk..t// (see [1, Thm. 2.1.27]).

• Construct a mapX an
k..t//

!R1; ı 7!AA.ı/ extending Dee’s equivalence from Artinian
coefficients to all p-adically complete O-algebras A; the main point is again the con-
struction of the universal unramified character, which can be done similarly as in
Definition 2.4 (namely, given a 2 A�, we define AA.ura/ WD Dk;a ˝W.k/˝ZpA

AA,
where Dk;a is the '-module from Lemma 2.2).

• Show that the automorphisms of a rank one étale '-modules are simply the scalars.
This amounts to showing that .AA/'D1 DA for any O=$a-algebra A. The case aD 1
is clear as then '.t/D tp . The general case then follows easily from this by dévissage.
Combining with the previous item, one obtains a natural monomorphism

ŒX an
k..t//=

yGm� ,! R1; (3.2)

which we want to show is an isomorphism.

• Reduce to proving essential surjectivity of (3.2) for reduced test rings. The proof is
similar to that of Lemma 3.5, except that we have to be slightly more careful as
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we do not know a priori if R1 is limit preserving in general (recall that we do not
assume that AC is '-stable). To overcome this, the idea is to reduce first to the case
A is an F-algebra by mimicking the argument there for the ideal $A. Note that the
set of isomorphism classes of objects in R1.A/ lifting the trivial object in R1.A=I /

(I being a square-zero ideal) is now given by AI=.' � 1/, or more precisely, by H 1

of the complex ŒAI
'�1
��! AI � (concretely, any such object admits an AA-basis v so

that '.v/ D f v for some f 2 ker.A�A ! A�
A=I

/ D 1C AI ; the corresponding coho-
mology class is then given by Œf � 1�). Again, here we cannot immediately reduce
to the case where I is a finite O-module as in the proof of Lemma 3.5. Instead,
we will show directly that if $I D 0 (which is the only case that we need), then
AI=.' � 1/ D lim

�!
AIi =.' � 1/ where ¹Iiº is the system of the finite sub-F-modules

of I . As k ˝Fp F '
Q

F, we have AI=.' � 1/ ' I..t//=.'f � 1/ (here '.t/ D tp as
$I D 0). As elements in tI JtK are killed in the quotient (given h 2 tI JtK, the series
g WD

P
n�0 '

f n.h/ 2 tI JtK is well-defined and satisfies h D .1 � 'f /.g/), it suf-
fices to prove the analogous claim for I Œ1=t �, which is obvious (as we are working
with polynomials, as opposed to (infinite) series). Finally, over F, the subring AC is
'-stable (as '.t/ D tp), and we can invoke [3, Thm. 5.4.11 (3)] to deduce that .R1/F
is limit preserving, and hence reduce to the case A is a finite type F-algebra. We now
run the same argument, but for the (nilpotent) ideal A00.

• By the previous item, it suffices to show that the map (3.2) induces an isomorphism on
underlying reduced substacks. Again as there are only finitely many mod p characters
of Gk..t// up to unramified twist, we are reduced to showing that the map

ŒGm=Gm�F ,! .R1/F (3.3)

induced by the universal unramified character is a closed immersion (see Lemma 3.7).
Again, over F, the subring AC is '-stable (this is automatic in our first proof of
Lemma 3.6), and we can invoke [3, Thm. 5.4.11 (1)] to see that the natural map
C1;0!R1 is proper, where the source denotes the stack (over F) of rank 1 projective
'-modules over ACA of height at most 0. The rest of the proof is now as before: namely,
we show that the map (3.3) factors as

ŒGm=Gm�
'
�! C1;0 ! R1

with the first map being given by a 2 A� 7! Dk;a ˝W.k/˝ZpA
ACA .

Specializing to the case A D AK , and combing with the Fontaine–Wintenberger iso-
morphism GKcyc ' Gk1..t// (which restricts to an isomorphism of Weil subgroups), we
recover the following result.

Corollary 3.12 ([4, Prop. 7.2.11]). There is an isomorphism��
Spf OJI ab

Kcyc
K � yGm

�
=yGm

� �
�! RK;1

(again, in the formation of the quotient stack, the yGm-action is taken to be trivial).
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