
© 2023 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 26, 2191–2209 (2024) DOI 10.4171/JEMS/1319

Benjamin Bakker · Yohan Brunebarbe · Bruno Klingler · Jacob Tsimerman

Definability of mixed period maps

Received November 19, 2020; revised September 10, 2021

Abstract. We equip integral graded-polarized mixed period spaces with a natural Ralg-definable
analytic structure, and prove that any period map associated to an admissible variation of integral
graded-polarized mixed Hodge structures is definable in Ran;exp with respect to this structure. As a
consequence we re-prove that the zero loci of admissible normal functions are algebraic.
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1. Introduction

1.1. Summary

The purpose of this paper is to continue the development of o-minimality as a natural
setting for the study of Hodge theory. In [3] it was shown that the moduli of integral
polarized pure Hodge structures—known as period spaces—admit natural structures of
definable analytic spaces, in such a way that all period maps from algebraic varieties are
definable. The general functorial setting of definable analytic spaces was studied in [2].
The purpose of this article is to extend this technology to the setting of mixed Hodge
structures.

One complication that enters when studying variations of mixed Hodge structures
(VMHS) is that one must additionally restrict to admissible ones in the sense of Steen-
brink–Zucker and Kashiwara, instead of just ones that are holomorphic and Griffiths
transverse. This apparent complication, crucial for the internal coherence of Hodge the-
ory as developed in the theory of Hodge modules [20], fits perfectly with the o-minimal
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setting. For any smooth complex algebraic variety S the (not necessarily admissible)
VMHSs extensions of ZSan.0/ by ZSan.1/ are parametrized by �.S;O�San/, corresponding
to holomorphic period maps ' WS an!Ext1Z-MHS.Z.0/;Z.1//ŠC� from S an to the mixed
period space C�. For S D A1 the period map exp W C! C� cannot possibly be definable
in any o-minimal structure; however, the VMHS on A1 it defines is not admissible.

In contrast to the pure case, there is some ambiguity in the choice of definable struc-
ture. Indeed, if we think only of the “unipotent” fibers1 we end up with a quotient of
unipotent groups for which there are many choices of definable structure—this is already
the case for C�. The definable structure appearing in Theorem 4.4 is built using the “sl2”
real splitting (also known as the “canonical” real splitting), but it is not inconceivable to
us that one could use other natural definable structures and retain our main results.

1.2. Results

In §3 we equip any graded-polarized integral mixed period space �nM with the structure
of an Ralg-definable analytic space which is functorial with respect to morphisms of mixed
period spaces (see Theorem 6.4). Our main result is the following:

Theorem 1.1 (cf. Theorem 4.4). Let �nM be a graded-polarized integral mixed period
space equipped with the Ralg-definable structure associated to the sl2-splitting. Let S be
a reduced complex algebraic space and ' W S ! �nM an admissible period map. Then
' is Ran;exp-definable.

It should be noted that the work of Brosnan–Pearlstein [6] building on the mixed SL2-
orbit theorem of Kato–Nakayama–Usui [14] is a key ingredient in our proofs, giving the
necessary boundedness statement for us to prove definability.

In [3] we recovered as an immediate corollary of the definability of the period map
for pure VHS the algebraicity of the corresponding Hodge loci proven in [9]. Simi-
larly, as an immediate corollary of Theorem 4.4 we recover the algebraicity of (possibly
non-reduced) mixed Hodge loci (in particular the zero loci of admissible normal func-
tions) obtained in [5–8]. Recall that for a graded-polarized integral mixed Hodge struc-
ture V D .VZ; W; F; qk/ the set of integral weight zero Hodge classes is Hdg0.V /Z WD
HomZ-MHS.Z.0/; V /D .W0/Z \ F 0, and we define Hdgd0 .V /Z � Hdg0.V /Z as the sub-
set of Hodge classes v with q0.v; v/ � d , where q0 is the polarization form on GrW0 VZ.
The locus Hdgd0 .�nM/ � �nM of points V for which Hdgd0 .V / ¤ 0 is a definable ana-
lytic subspace, and for any period map ' W S ! �nM we define Hdgd0 .S/ � S to be the
pull-back of Hdgd0 .�nM/ with its natural, not necessarily reduced, structure as a defin-
able analytic subspace.

Corollary 1.2. Let ' W S ! �nM be as in the theorem. Then the Hodge subspace
Hdgd0 .S/ � S is algebraic.

1Formally, the fibers of the map from the mixed period space to the product of the pure period
spaces corresponding to taking the associated graded variation.
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Without too much difficulty, the same can be shown for the locus Hdgd0 .V/ � VC of
bounded-norm Hodge classes in the total space of an admissible variation .V ;W ;F /, but
we leave this to the reader.

1.3. Outline

In §2 we recall some facts about how definable quotients work, and the relation between
definable structures on quotients and choices of fundamental sets. In §3 we recall relevant
background from mixed Hodge theory and the various real splittings that we use, and
put a definable structure on graded-polarized integral mixed period spaces. In §4 we give
a notion of variations of mixed Hodge structure and period maps on arbitrary algebraic
varieties, review the notion of admissibility and its consequences, and state our main
theorem. In §5 we prove our main theorem. Finally, in §6 we generalize the construction
of §3 to place a definable structure on mixed Hodge varieties and prove functoriality.

2. Definable quotients

In this section we fix an o-minimal structure and we work in the category of definable
locally compact Hausdorff topological spaces and definable continuous maps.

Let X be a locally compact Hausdorff definable topological space and � a group
acting onX by definable homeomorphisms. We assume throughout (as it will be sufficient
for our purposes) that � has a finite index normal subgroup which acts freely.

Definition 2.1. A fundamental set for the action of � on X is an open definable subset
F � X such that

(1) � � F D X ,

(2) the set ¹
 2 � j 
 � F \ F ¤ ;º is finite.

Remark 2.2. The existence of a fundamental set for the action of � on X implies that
� equipped with the discrete topology acts properly on X . In particular, the set �nX
equipped with the quotient topology is a locally compact Hausdorff topological space.

Proposition 2.3. If F is a fundamental set for the action of � on X , then there exists a
unique definable structure on �nX such that the canonical map F ! �nX is definable.

Proof. The claim is clear for a finite group action, so we may assume � acts freely.
Let R � X � X be the equivalence relation associated to the action of � on X , that
is, R D ¹.x; 
 � x/º. As observed before, the action of � on X is necessarily proper,
hence R is a closed subset of X � X . It follows that the induced equivalence relation
RF WD R \ .F � F / on F is closed. Moreover, the set

RF D
[

2�

¹.x; 
 � x/ 2 F � F º

is definable, since only matter the finite number of 
 for which 
 � F \ F ¤ ;. We con-
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clude using the fact that �nX D F=RF as topological spaces and that the equivalence
relation RF on F is closed, definable and étale.

Remark 2.4. (1) The definable structure on �nX depends on the choice of F . (For
example, two strips in C with different slopes give different definable structures on
the quotient C=Z D C�.)

(2) Two fundamental sets F and F 0 define the same definable structure on �nX if and
only if F is contained in a finite union of translates of F 0 under elements of � .

(3) The map F ! �nX admits locally on the base some continuous definable section.
Therefore, giving a morphism from a definable space Y to �nX is equivalent to giving
a finite definable cover Y D

S
Yi and morphisms Yi ! F such that the induced maps

Yi ! �nX coincide on overlaps.

(4) In case X is a complex manifold and � acts by definable biholomorphisms, the con-
struction above is compatible with the complex structure.

Proposition 2.5. If F is a fundamental set for the action of � on X and � 0 � � is a
finite index subgroup, then for any finite subset C � � mapping surjectively onto �=� 0

the set
S

2C 
 � F is a fundamental set for the action of � 0 on X . Moreover, the induced

definable structure on � 0nX is independent of C and the map � 0nX ! �nX is definable.

Proposition 2.6. LetX and Y be locally compact Hausdorff definable topological spaces
and � a group acting on both X and Y by definable homeomorphisms. Let f W X ! Y

be a �-equivariant continuous map.

� If F is a fundamental set for the action of � on Y , then f �1.F / is a fundamental set
for the action of � on X .

� The induced continuous map �nX ! �nY is definable.

Proof. First note that � � f �1.F /D f �1.� � F /D f �1.Y /D X . On the other hand, the
set

¹
 2 � j 
 � f �1.F / \ f �1.F / ¤ ;º

is finite, since it is clearly a subset of ¹
 2 � j 
 � F \ F ¤ ;º, and the latter is finite by
assumption.

2.1. Fundamental sets for arithmetic groups

Arithmetic quotients of reductive groups are endowed with Ralg-definable structures using
a Siegel set fundamental domain:

Theorem 2.7 ([3, Theorem 1.1]). Let G be a reductive algebraic group over Q, � �
G.Q/ an arithmetic subgroup and M � G.R/ a compact subgroup. Then the quotient
�nG.R/=M admits the structure of an Ralg-definable analytic space, functorial in the
triple .G; �;M/ and characterized by the following property. Let G.R/=M be endowed
with its natural semialgebraic structure and S � G.R/=M be an open semialgebraic
Siegel set. Then S! �nG.R/=M is Ralg-definable.
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Note that the statement in [3] is for G semisimple (and that is all we will need),
although the reductive case easily follows.

3. Background in mixed Hodge theory

3.1. Splittings (cf. [10, §2])

Fix a field K of characteristic zero and a finite-dimensional K-vector space V equipped
with an increasing filtration ¹Wkº. Note that any K-vector space obtained from V using
duals, tensor products and subspaces inherits an increasing filtration from ¹Wkº.

Definition 3.1. A splitting of ¹Wkº is a direct sum decomposition V D
L
k Vk such that

Wl D
L
k�l Vk .

Let �.W / denote the variety of all splittings of ¹Wkº. It is a smooth algebraic variety
defined over K (a Zariski-open set in a product of Grassmannians) such that �.W /.L/ is
the set of all splittings of ¹Wk ˝K Lº for every field L � K.

The natural left action of GL.V / on V induces an algebraic left action of the K-
algebraic group GL.V /W D ¹g 2GL.V / j g.Wk/�Wk for all kº on �.W /. Its unipotent
radical is the K-algebraic subgroup U WD exp.W�1 End.V //. One easily checks that for
every field L � K the group U.L/ acts simply transitively on �.W /.L/ (cf. [16, §3.6] or
[10, Prop. 2.2]).

There is a natural closed immersion �.W / ,! W0 End.V / which on K-points asso-
ciates to any given splitting V D

L
k Vk the semisimple endomorphism T 2 End.V /with

integral eigenvalues whose l-eigenspace is Vl . This realizes �.W / as an affine subspace
of W0 End.V / directed by the vector subspace W�1 End.V /. In this realization, the left
action of GL.V /W on �.W / is induced by the adjoint action of GL.V / on End.V /, and
the K-algebraic group U acts on �.W / by affine transformations.

There is an exact sequence of K-algebraic groups

1! U ! GL.V /W ! GL.GrW V /! 1;

and the choice of a splitting T 2 �.W /.K/ induces a section GL.GrW V /! GL.V /W ,
whose image we denote by GL.V /T .

Notation 3.2. We will frequently identify a splitting of W with the corresponding semi-
simple endomorphism T of V .

3.2. Mixed Hodge structures (cf. [11])

A decreasing filtration F of an object V is said to be finite if there exist two integers m
and n such that FmV D V and F nV D 0, and similarly for increasing filtrations. In what
follows, all filtrations are implicitly supposed to be finite.

LetRDZ;Q or R. A mixedR-Hodge structure is a triple V D .VR;W;F / consisting
of



B. Bakker, Y. Brunebarbe, B. Klingler, J. Tsimerman 2196

� an R-module VR of finite type,

� an increasing filtration ¹Wkº of VR (the weight filtration),

� a decreasing filtration ¹F pº of VC WD VR ˝R C (the Hodge filtration),

such that GrpF Grq
F

GrWl VC D ¹0º when pC q ¤ l , where we denote by the same symbol
W the filtration induced by W on VC and by F the conjugate filtration of F defined by
F
q
WD F q .
A morphism of mixed R-Hodge structures is an R-linear morphism of the underlying

R-modules that preserves both filtrations. The category of mixed R-Hodge structures is
abelian, and it admits both duals and tensor products (hence internal homs).

Let V D .VR;W;F / be a pureR-Hodge structure of weight n, meaning that GrWl .VR/
D ¹0º when l ¤ n. In that case, we have the Hodge decomposition

VC D
M

pCqDn

V p;q

with V p;q WD F p \ F
q
, so that V q;p D V p;q . The Weil operator C 2 End.VR/ is then

the real endomorphism satisfying

CC D
M
p;q

ip�q � idV p;q :

Let q W VR ˝ VR ! R be a .�1/n-symmetric bilinear form—that is, q is symmetric
if n is even, and skew-symmetric if n is odd. We say that the pure R-Hodge structure
V is polarized by q if the hermitian form h on VC defined by h.u; v/ D qC.Cu; v/ is
positive-definite and the Hodge decomposition of VC is h-orthogonal.

3.3. Bigradings

Definition 3.3. A bigrading of a real mixed Hodge structure .V; W; F / is a direct sum
decomposition VC D

L
p;q J

p;q such that

F p D
M
r�p;s

J r;s and .Wk/C D
M
rCs�k

J r;s :

The bigradings of a real mixed Hodge structure .V;W;F / are easily seen to be in bijec-
tion with the splittings T 2 �.WC/ such that T .F p/ � F p , via Vl .T / D

L
pCqDl J

p;q .

Lemma 3.4 (Deligne [11]). If .V;W; F / is a real mixed Hodge structure, then it admits
a unique bigrading ¹Ip;qº which satisfies

Ip;q D I q;p mod
M

r<p;s<q

I r;s :

Deligne bigrading is functorial and is given explicitly by the formula

Ip;q WD .F p \ .WpCq/C/

\

�
F
q
\ .WpCq/C C

X
j�0

F
q�1�j

\ .WpCq�2�j /C

�
:
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3.4. Real splittings

Definition and Proposition 3.5. A real mixed Hodge structure .V;W; F / is said to split
over R if it satisfies one of the following equivalent properties:

(1) it is a direct sum of pure real Hodge structures of different weights,

(2) it admits a real splitting, i.e. a bigrading ¹J p;qº such that J p;q D J
q;p

,

(3) there exists T 2 �R.W / such that T .F p/ � F p .

If .V;W; F / admits a real splitting ¹J p;qº, then necessarily

J p;q D F p \ F
q
\WpCq;

so that it is unique and coincides with Deligne bigrading.

3.5. Graded-polarized mixed period domains (cf. [18, 23])

Let V be a finite-dimensional R-vector space equipped with an increasing filtration ¹Wkº
and a collection of non-degenerate bilinear forms qk W GrWk V ˝R Gr

W
k
V ! R that are

.�1/k-symmetric. Fix a partition of dimR V into non-negative integers ¹hp;qº such that
hp;q D hq;p .

For any integer k, we denote by �k the Griffiths period domain parametrizing all
decreasing filtrations ¹F p

k
ºp on GrWk VC with dimC F

p

k
D
P
r�p h

r;k�r that define a real
pure Hodge structure of weight k polarized by qk , and by L�k its compact dual parametriz-
ing the .qk/C-isotropic filtrations ¹F p

k
ºp on GrWk VC with dimC F

p

k
D
P
r�p h

r;k�r .
Letting L� WD

Q
k
L�k and � WD

Q
k �k , and denoting by H the real algebraic groupQ

k Aut.qk/, it follows from Griffiths theory that L� is a smooth projective complex variety
on which the complex algebraic group H.C/ acts transitively by algebraic automorphisms
and � � L� is a real semialgebraic open subset on which the real algebraic group H.R/
acts transitively by semialgebraic automorphisms.

Let M denote the corresponding mixed period domain, i.e. the set of decreasing filtra-
tions ¹F pº of VC such that .V; W; F / is a real mixed Hodge structure graded-polarized
by the qk’s and such that

dimC

�
.F p GrWpCq VC/ \ .F

q
GrWpCq VC/

�
D hp;q :

By definition, M is a semialgebraic open subset of the smooth projective complex
variety LM that parametrizes the decreasing filtrations ¹F pº of VC by complex vector
subspaces such that the filtration induced on the graded pieces GrWk VC is inside L�k for
each k.

Let G denote the real algebraic group defined as the preimage of H � GL.GrW V /

through the natural homomorphism GL.V /W ! GL.GrW V /, and let U be its unipo-
tent radical. Let G denote the preimage of H.R/ by the homomorphism G.C/! H.C/.
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It is naturally a group object in the category of Ralg-definable topological spaces, and the
following inclusions hold in this category:

G.R/ � G D U.C/ �G.R/ � G.C/:

Moreover, the action of G.C/ on LM induces an action of G on M. The following propo-
sition is well-known (see [23, Prop. 2.11] for instance):

Proposition 3.6. The real algebraic group G acts transitively on M by semialgebraic
automorphisms.

Proof. Recall that �.W / denotes the variety of splittings of W (see Section 3.1). The
complex variety � � �.W /.C/ parametrizes the elements of M equipped with a bigrad-
ing (see Section 3.3). Thanks to the existence of Deligne bigrading, the natural map � �
�.W /.C/!M is surjective. Since this map is also G-equivariant and the G-action on
�� �.W /.C/ is transitive by [10, Prop. 2.2], it follows thatG acts transitively on M.

Note that the morphism M ! � which is equivariant with respect to the homomor-
phism G ! H.R/ is the restriction of a complex algebraic map LM! L� which is equiv-
ariant with respect to the homomorphism G.C/! H.C/.

Let MR � M denote the subset consisting of those Hodge filtrations for which the
corresponding mixed Hodge structure is split over R. The group G.R/ acts transitively
on MR, so that it is a smooth real semialgebraic subset of M. Moreover, MR is naturally
in bijection with � � �.W /.R/, and this bijection is compatible with the G.R/-actions,
so that it is an isomorphism of real semialgebraic spaces.

Observe that the action of G on M is not proper, since the stabilizer of a point is
non-compact.

Proposition 3.7. The actions of G.R/ on MR and M are proper.

Proof. Let BR denote the set of real Hodge frames of mixed Hodge structures that are
split over R. It is a G.R/-torsor, hence the G.R/-action on BR is proper. But the surjective
and proper morphism BR!MR is G.R/-equivariant, therefore the G.R/-action on MR

is proper too [4, Prop. 5.i) in TG III.29]. By [4, Prop. 5.ii) in TG III.29], the properness
of the action of G.R/ on M follows, once we know the existence of a G.R/-equivariant
continuous map M!MR, for which we can refer for example to Proposition 3.10.

Corollary 3.8. If � is a discrete subgroup of G.R/, then the induced action of � on M

is proper and the quotient �nM admits a canonical structure of complex analytic space
such that the natural map M! �nM is holomorphic.

3.6. The ı-splitting

Given a real mixed Hodge structure .V;W; F / with Deligne bigrading ¹Ip;qº, we define
a nilpotent Lie subalgebra of End.V /C by

L
�1;�1
.W;F /

D

°
X 2 End.VC/

ˇ̌̌
X.Ip;q/ �

M
r<p; s<q

I r;s
±
:
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It is defined over R with real form .L
�1;�1
.W;F /

/R WD L
�1;�1
.W;F /

\ End.V /.

Proposition 3.9 (Deligne, cf. [10, Prop. 2.20]). Given a real mixed Hodge structure
.V;W;F /, there exists a unique ı 2 .L�1;�1

.W;F /
/R such that .V;W; e�iı � F / is a real mixed

Hodge structure which splits over R.

This splitting is functorial (ı commutes with every morphism of real mixed Hodge
structures) and satisfies L�1;�1

.W;F /
D L

�1;�1

.W;e�iı �F /
.

Proposition 3.10 ([10, Prop. 2.24]). The Deligne ı-splitting yields a G.R/-equivariant
smooth real semialgebraic retraction M!MR of the inclusion MR �M .over �/.

3.7. The sl2-splitting .= canonical splitting, = �-splitting/

Theorem 3.11 (Deligne, cf. [6, Theorem 2.18]). The sl2-splitting is the unique, functorial
splitting of real mixed Hodge structures which is given by universal Lie polynomials in
the Hodge components of the Deligne ı-splitting such that if .exp.zN / � F; W / is an
admissible nilpotent orbit with limit mixed Hodge structure .F;M/ which is split over R
then the Deligne grading of the splitting of .exp iN � F;W / is a morphism of type .0; 0/
for .F;M/.

Corollary 3.12. The sl2-splitting yields a G.R/-equivariant smooth real semialgebraic
retraction r WM!MR of the inclusion MR �M .over �/.

3.8. The definable structure on arithmetic quotients of period domains

In the following proposition we continue to identify MR D � � �.W /.R/.

Proposition 3.13. Let � �G.Q/ be an arithmetic subgroup. Then �nMR admits a struc-
ture of an Ralg-definable analytic space characterized by the following property: for any
semialgebraic Siegel set S � � and bounded semialgebraic † � �.W /.R/, the map
S �†! �nMR is Ralg-definable.

Proof. Let U be the unipotent radical of G, �U WD � \ U.Q/, and �H the image of �
in H.Q/. By [10, Prop. 2.2], U.R/ acts simply transitively on �.W /.R/. Taking B �
�.W /.R/ to be a bounded semialgebraic fundamental set for the cocompact action of �U

and F to be a definable fundamental set for �Hn�, we use F � B as a definable funda-
mental set to induce the definable structure on �nMR via Proposition 2.3. Let S � � be
any semialgebraic Siegel set and † � �.W /.R/ be any bounded semialgebraic subset.
Then S meets only finitely many �H-translates of F , and for any 
 2 G.Q/, † meets
only finitely many �U-translates of 
B , so S � † meets only finitely many �-translates
of F � B . Therefore the map S �†! �nMR is Ralg-definable.

Definition 3.14. Let � � G.Q/ be an arithmetic subgroup and r W M ! MR the sl2-
splitting. Let „ �MR be a definable fundamental set for �nMR. We endow �nM with
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the structure of an Ralg-definable analytic space via Proposition 2.6 using r�1.„/ as a
definable fundamental set.

Be careful that two different retractions will yield in general two different definable
structures on �nM.

4. Variations of mixed Hodge structures and their period maps

4.1. Variation of mixed Hodge structures

Let R D Z;Q or R. A variation of mixed R-Hodge structures over a (possibly non-
reduced) complex analytic space S is the data of

� an R-local system L on the underlying topological space,

� an increasing filtration W of L by sublocal systems (the weight filtration),

� a decreasing filtration F of L˝R OS by locally split OS -submodules (the Hodge fil-
tration)

such that

� F satisfies Griffiths transversality in the usual sense on the reduced2 regular locus of S ,

� for every s 2 S , .Ls;Ws; Fs/ is a mixed R-Hodge structure.

We say the variation is graded-polarized if we are given a parallel polarization on each of
the associated variation of pure Hodge structures.

Lemma 4.1. Consider a variation of integral mixed Hodge structures over a complex
analytic space S . Then, up to replacing S by a finite étale cover, the pull-back of the
underlying local system by any holomorphic map �� ! S has unipotent monodromy.

Proof. We can assume without loss of generality that S is connected. Fix s 2 S and
let �1.S; s/! GL.Ls/ denote the monodromy representation of the underlying Z-local
system L. Consider the pull-back of the variation of integral mixed Hodge structures to
the finite étale cover corresponding to the kernel of the group homomorphism �1.S; s/!

GL.Ls ˝Z Fp/ for a prime number p, so that all the monodromy operators are now trivial
modulo p. By applying Borel’s monodromy theorem [21, Lemma 4.5] to the associated
variations of pure Hodge structures, one sees that the eigenvalues of the monodromy oper-
ator corresponding to a holomorphic map �� ! S are roots of unity of degree bounded
by the rank of L. Since roots of unity of a fixed degree inject modulo p for sufficiently
large p, the claim follows.

2Note in particular that we do not require the nilpotent tangent directions to be Griffiths trans-
verse, though it is not clear that this level of generality is useful: variations coming from geometry
will satisfy Griffiths transversality in the nilpotent directions as well.
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4.2. Period maps

Let S be a (possibly non-reduced) complex analytic space. By a mixed period map from
S we mean a locally liftable analytic map ' W S ! G.Z/nM which is tangent to the
Griffiths transverse foliation of M on the reduced regular locus of S . Evidently, a mixed
period map from S is equivalent to giving a variation of graded-polarized integral mixed
Hodge structures on S in the sense of the previous section.

4.3. Admissibility

The notion of admissibility for a variation of mixed Hodge structures was introduced by
Steenbrink and Zucker over one-dimensional bases [22] and by Kashiwara [13] in higher
dimensions. Let us recall the definitions.

Let .L;W ;F / be a graded-polarizable variation of real mixed Hodge structures on��

with unipotent monodromy. Let xV and xWk denote the canonical extensions of L˝R O��

and Wk ˝R O�� to � respectively, equipped with their logarithmic connections. The
variation .L;W ; F / is called pre-admissible if the following conditions hold:

(1) The residue at the origin of the logarithmic connection on xV , which is an endomor-
phism of the fiber xVj0 of xV at the origin, admits a weight filtration relative to xWj0.

(2) The Hodge filtration F extends to a subbundle xF of xV such that Grp
xF

Gr xWk xV is locally
free for all p and k.

Given a Zariski-open subset S in a reduced complex analytic space xS , we say that a
graded-polarized variation of real mixed Hodge structures .L;W ; F / on S is admissible
with respect to the inclusion S � xS if for any holomorphic map f W �! xS such that
f .��/ � S and f �L has unipotent monodromy, the pull-back variation on �� is pre-
admissible.

One easily verifies that a variation of real mixed Hodge structures on �� with unipo-
tent monodromy which is pre-admissible is admissible with respect to the inclusion
�� � � (cf. [13, Lemma 1.9.1]).

Proposition 4.2. If a graded-polarizable variation of real mixed Hodge structures over a
complex algebraic variety S is admissible with respect to an algebraic compactification
xS of S , then it is admissible with respect to any other algebraic compactification of S .

Proof. Indeed, a holomorphic map f W��! S is the restriction of a holomorphic�! xS
exactly when it is definable in Ran, hence this property is independent of the compactifi-
cation.

4.4. Nilpotent orbit theorem

Consider a graded-polarized variation of real mixed Hodge structures over .��/n with
unipotent monodromies. Let H denote the Poincaré upper half-plane and e WHn! .��/n

the uniformizing map given by e.z1; : : : ; zn/D .exp.2�i � z1/; : : : ;exp.2�i � zn//. Choos-
ing a reference point in Hn, we get a period map Q' WHn!M. Denoting byNj (1� j �n)
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the logarithm of the monodromy operators corresponding to counterclockwise simple cir-
cuits around the various punctures, the holomorphic map Q‰ WHn! LM given by Q‰.z/ WD
exp.�

Pn
jD1 zj � Nj / � Q'.z/ factorizes through the projection map e W Hn ! .��/n. Let

‰ W .��/n ! LM denote the factorization. Thanks to Schmid’s nilpotent orbit theorem
[21, Theorem 4.12], the composition of ‰ with the projection LM! L� extends to a holo-
morphic map �n ! L�. If one assumes from now on that the variation is admissible with
respect to the inclusion .��/n � �n, then by definition the restriction of ‰ to any punc-
tured disk �� � .��/n extends to a holomorphic map � ! LM. Since the projection
LM ! L� is an affine holomorphic map, it follows that ‰ extends to a holomorphic map
�n ! LM. Indeed, since the projection LM is locally on L� a closed analytic subspace of
L� � CN for some positive integer N , this reduces eventually to the fact that a holomor-
phic map .��/n ! C extends to a holomorphic map �n ! C if it does in restriction to
any punctured disk �� � .��/n. Therefore we have proved

Proposition 4.3. Let S be the complement of a normal crossing divisor in a complex
manifold xS . Let .L;W ; F / be a graded-polarized variation of real mixed Hodge struc-
tures over S with unipotent monodromies at infinity which is admissible with respect to
the inclusion S � xS . If xV and xWk denote the canonical extensions of L ˝R O�� and
Wk ˝R O�� to xS respectively, then the Hodge filtration F extends to a subbundle xF
of xV such that Grp

xF
Gr xWk xV is locally free for all p and k.

4.5. Admissible period maps are definable

Theorem 4.4. Consider an admissible variation of graded-polarized integral mixed
Hodge structures over a reduced complex algebraic variety S , and let ' W S ! G.Z/nM
be the associated period map. Then ' is definable in Ran;exp, where we equip G.Z/nM
with the Ralg-definable structure associated to the sl2-splitting .see Section 3.8/.

This generalizes to the mixed case [3, Theorem 1.3] for pure variations of Hodge
structures.

5. Proof of Theorem 4.4

Recall that it is sufficient to prove the definability of the map obtained by precomposing '
with a surjective definable holomorphic map. In particular, by looking at a desingulariza-
tion of S , one can assume from the beginning that S is smooth. Moreover, up to replacing
S by a finite étale cover, one can assume that the monodromies at infinity are unipotent
(see Lemma 4.1).

Taking a covering of S in Ralg (or just Ran;exp) by open subsets isomorphic to .��/n,
one sees that we are reduced to proving:

Theorem 5.1. Consider an admissible variation of graded-polarized integral mixed
Hodge structures with unipotent monodromies over the punctured polydisk .��/n, and
let ' W .��/n ! G.Z/nM be the associated period map. Then ' is definable in Ran;exp.
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Let H denote the Poincaré upper half-plane and e W Hn ! .��/n the uniformizing
map given by e.z1; : : : ; zn/ D .exp.2�i � z1/; : : : ; exp.2�i � zn//. By choosing a lifting
Q' of the period map ', we obtain a commutative diagram of holomorphic maps

Hn M

.��/n G.Z/nM

Q'

e

'

A vertical strip in Hn is by definition a product of sets of the form

¹.x; y/ 2 H j a < x < b; c < yº

for some real numbers a < b and c > 0. Let S � Hn be a vertical strip mapped by e
surjectively onto .��/n, and consider the induced commutative diagram of holomorphic
maps

S M

.��/n G.Z/nM

Q'jS

ejS

'

Since the holomorphic map ejS is definable and surjective, the definability of ' will
be proved if we show that Q'jS W S! M is definable and that the image of S by Q' is
contained in a finite union of definable fundamental sets. This is the content of the next
two results.

Proposition 5.2. If Q' WHn!M is a lifting of the period map of an admissible variation
of mixed Hodge structures over .��/n with unipotent monodromies, then its restriction to
any vertical strip is definable in Ran;exp.

Proof. Denoting by Nj (1 � j � n) the logarithm of the monodromy operators corre-
sponding to counterclockwise simple circuits around the various punctures, the holomor-
phic map Q‰ W Hn! LM given by Q‰.z/ WD exp.�

Pn
jD1 zj �Nj / � Q'.z/ factorizes through

the projection map e W Hn ! .��/n. If ‰ W .��/n ! LM denotes the factorization, it fol-
lows from the admissibility condition that ‰ extends to a holomorphic map �n ! LM

(see Proposition 4.3). For any vertical strip S �Hn, the restriction of ‰ to its image by e
is the restriction to a relatively compact set of a holomorphic map, therefore it is defin-
able in Ran. As ejS W S! �n is Ran;exp-definable, it follows that .S!M; z 7! Q‰.z/ D

‰.e.z// is Ran;exp-definable. Since both the action of G.C/ on the compact dual LM and
the morphism Cn ! G.C/ given by .z1; : : : ; zn/ 7! exp.

Pn
jD1 zj �Nj / are algebraic, it

follows from the equality Q'.z/D exp.
Pn
jD1 zj �Nj / �

Q‰.z/ that the restriction of Q' to any
vertical strip is definable in Ran;exp.

Proposition 5.3. If Q' WHn!M is a lifting of the period map of an admissible variation
of mixed Hodge structures over .��/n, then the image by Q' of a vertical strip is contained
in a finite union of definable fundamental sets.
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Given the definition of the definable structure in Definition 3.14, Theorem 4.4 is a
consequence of its special pure case proved in [3] and the following result of Brosnan–
Pearlstein.

Theorem 5.4 ([6, Cor. 2.34]). Let Hr!M be a lifting of the period map of an admissible
variation of mixed Hodge structures over .��/r . If M! �.W /.R/ is the map associated
to the sl2-splitting, then the composition Hr! �.W /.R/ is bounded on any vertical strip.

6. Mixed Hodge varieties

6.1. Mixed Mumford–Tate groups (cf. [1] and [15, §2])

We first briefly summarize Mumford–Tate groups of mixed Hodge structures. For simplic-
ity we focus on rational mixed Hodge structures, though the same holds for any subfield
of R. Let S D ResC=R Gm, and define the weight torus to be the diagonal w W Gm ! S.
For a rational mixed Hodge structure V D .VQ;W;F /, the associated Deligne torus is the
homomorphism h W SC ! GL.VC/ by which .z1; z2/ 2 SC.C/ D C� �C� acts as zp1 z

q
2

on Ip;q in the Deligne splitting of V . Recall that the weight zero Hodge classes of V are
defined as Hdg0.V /Q WD .W0/Q \ F

0.
Let hV i be the smallest full subcategory of the category of rational mixed Hodge

structures which contains both V and Q.0/ and is closed under subquotients, ˚, and ˝.
The Mumford–Tate group MT.V / � GL.V / is then the Tannakian group associated
to hV i with its obvious tensor functor. By [1, Lemma 2], MT.V / is equal to the largest
Q-subgroup of GL.V / which fixes Hdg0.T

m;n.V // for all m; n � 0 where Tm;n.V / WD
V m ˝ .V _/n. It is connected and equal to the Q-Zariski closure of h in GL.V /, is con-
tained in GL.V /W , and if GrW V is polarizable then MT.GrW V / is the quotient of
MT.V / by its unipotent radical (cf. [15, §2.4]).

The Mumford–Tate group of an integral mixed Hodge structure is simply the Mum-
ford–Tate group of the associated rational mixed Hodge structure.

6.2. Mixed Hodge varieties

In this section we largely follow the setup in [15, §3], which we refer to for details (see
also [19]). The following definition serves as an abstract model for a Mumford–Tate
group.

Definition 6.1. A mixed Hodge datum is a pair .G; XG/ where G is a connected linear
algebraic Q-group andXG is a G.R/U.C/-conjugacy class of homomorphisms SC!GC

where U is the unipotent radical of G satisfying the following conditions. For some (hence
any) h 2 XG, with H D G=U,

(1) SC
h
�! GC ! HC is defined over R;

(2) Gm
w
�! SC

h
�! GC ! HC is defined over Q;
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(3) the rational mixed Hodge structure on the Lie algebra g of G induced by the adjoint
action has W�1g D u.

A morphism of mixed Hodge data � W .G; XG/! .G0; X 0G0/ is a Q-homomorphism � W

G! G0 sending XG to X 0G0 .

The first two conditions guarantee that if � WG!GL.VQ/ is a Q-representation, then
� ı h endows VQ with the structure of a rational mixed Hodge structure for each h 2 XG.
If � is moreover faithful, the third condition ensures that U is the group acting trivially on
the associated graded. When � is faithful the map

XG ! ¹rational mixed Hodge structures on V º

factors through a complex manifold DG;XG which is independent of �.

Definition 6.2. (1) A connected mixed Hodge datum is a triple .G; XG;D
C/ where

.G; XG/ is a mixed Hodge datum and DC is a connected component of DG;XG ; the
stabilizer G.R/C of DC in G.R/ is a connected component. We refer to DC as a
connected mixed Hodge domain.

(2) For .G; XG;D
C/ a connected mixed Hodge datum and � � G.Q/C WD G.Q/ \

G.R/C an arithmetic subgroup, the associated connected mixed Hodge variety is the
complex manifold �nDC.

(3) A morphism f W D ! D 0 of connected mixed Hodge domains corresponding to
connected mixed Hodge data .G.0/; X

.0/

G.0/ ;D
.0// is a map induced from a Q-homo-

morphism � W G! G0 sending XG to X 0G0 and D to D 0. If in addition � is sent to � 0

we call the induced map xf W �nD ! � 0nD 0 a morphism of connected mixed Hodge
varieties.

(4) A Hodge datum .G; XG/ is graded-polarizable if for some (hence any) h 2 XG and
some (hence any) faithful representation � W G! GL.VQ/ the induced mixed Hodge
structure on VQ is graded-polarizable. In this case we say the associated connected
mixed Hodge domains and varieties are graded-polarizable as well.

Remark 6.3. For simplicity we only deal with connected mixed Hodge varieties, as this
is all that is needed for definability questions: a general mixed Hodge variety as in [15] is
a finite union of connected ones.

Note that any connected mixed Hodge domain DC has a functorial Ralg-definable
structure for which the action of G.R/C is definable.

For any graded-polarizable connected mixed Hodge datum .G;XG;D
C/ and a faithful

Q-representation � W G ! GL.VQ/ we obtain a holomorphic embedding of DC in a
graded-polarizable mixed period domain M as a �.G.R/CU.C//-orbit after choosing an
integral structure for VQ and graded polarization forms. For a generic V in this orbit we
have:

(1) MT.V / D �.G/;
(2) �.G.C// � V is a closed algebraic subvariety of LM;
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(3) �.G.R/CU.C// � V is a semialgebraic open subset of �.G.C// � V , equal to the com-
ponent of .�.G.C// � V / \M containing V .

Theorem 6.4. Any connected graded-polarizable mixed Hodge variety has the struc-
ture of an Ralg-definable analytic space which is functorial with respect to morphisms
of connected mixed Hodge varieties and which agrees with the structure of Ralg-definable
analytic space on �nM from Definition 3.14.

Before the proof we make some preliminary observations. For any connected mixed
Hodge datum .G; XG;D

C/ we define the real split locus DCR � DC as the locus of
h 2 DC whose Deligne torus is defined over R, and likewise define the real split locus
of any connected mixed Hodge variety as .�nDC/R WD �nDCR . Evidently both are Ralg-
definable subspaces and morphisms preserve the real split loci and their definable struc-
tures.

For any graded-polarized connected mixed Hodge datum .G; XG;D
C/, we have a

natural mixed Hodge datum .H;XH;D
C
Gr/ of the associated graded. As in Section 3.5, we

have a semialgebraic G.R/C-equivariant identification

DCR Š DCGr � U.R/: (1)

The map to DCGr is the obvious one; the map to U.R/ is obtained by taking the Deligne
splitting of the weight filtration of the induced mixed Hodge structure on g in �.W g/.R/,
and observing that the image is a U.R/-orbit. The identification is not canonical but the
semi-algebraic structure is.

Proposition 6.5. The real split locus .�nDC/R of any connected graded-polarizable
mixed Hodge variety admits the structure of an Ralg-definable topological space char-
acterized by the following property: for any semialgebraic Siegel set S � .DCGr/R and
bounded semialgebraic†�U.R/, the map S�†! .�nDC/R is Ralg-definable. More-
over, the definable structure is compatible with morphisms of connected mixed Hodge
varieties.

Proof. The first part is the same as in the proof of Proposition 3.13. As the identifica-
tion (1) is clearly functorial in morphisms of connected mixed Hodge data, the second
statement follows from Theorem 2.7 and the fact that a bounded set of Deligne gradings
Gm ! G is mapped to a bounded set.

Proof of Theorem 6.4. We start by generalizing the sl2-splitting:

Lemma 6.6. For any connected graded-polarized mixed Hodge domain DC there is an
Ralg-definable G.R/C-equivariant retraction r W DC ! DCR which is compatible with
morphisms of connected mixed Hodge domains.

Proof. A faithful Q-representation � W G! GL.VQ/ yields an embedding � W DC !M

into a graded-polarizable mixed period domain and we may pull back the sl2-retraction
r WM!MR to DC.
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It remains to show that the sl2-retraction commutes with a morphism DC ! D 0C

induced by a morphism of mixed Hodge data � W .G; XG/! .G0; X 0G0/. For any h 2 XG,
� induces a morphism d� W g! g0 of mixed Hodge structures induced by h and � ı h.
The Deligne ı-splitting of g is Ad.e�iı/ � h where ı 2 .L�1;�1g /R is the unique element
for which T D Ad.e�2iı/ xT , where T is the Deligne grading [10, Prop. 2.20]. From the
proof of [10, Prop. 2.2], ı is contained in ad gR, in fact in the Lie algebra generated by the
weight torus and its conjugate. Obviously d�.T / is the Deligne grading of � ı h, and so
d�.ı/ is the ı operator for g0. As the sl2-splitting is defined by universal Lie polynomials
in ı, the result follows.

As in Definition 3.14, we endow �nM with a definable structure coming from the
definable set r�1.„/ for a definable fundamental set „ for .�nM/R. By the lemma this
definable structure is compatible with morphisms.

6.3. (Weakly) special subvarieties

Briefly, as in [15] we define the collection of weakly special subvarieties of connected
mixed Hodge varieties to be the minimal collection which is closed under finite unions,
taking connected components, and taking images and preimages under morphisms of
mixed Hodge varieties and which contains points. For an algebraic variety S with an
admissible variation of integral graded-polarized mixed Hodge structures .L;W ; F / with
monodromy contained in � , we define the weakly special subspaces of S to be the pull-
backs of weakly special subvarieties of �nM along the associated period map ' W S !
�nM with their natural structure as locally closed Ran;exp-definable analytic subspaces,
by Theorem 4.4. From definable GAGA [2, Theorem 3.1] we deduce

Corollary 6.7. Weakly special subspaces of S are algebraic.

As a concrete example of the corollary, we specifically treat the case of Noether–
Lefschetz loci in more detail, and leave the general setup to the reader. For any V 2M,
define the Noether–Lefschetz locus

N L.V / D ¹V 0 2M jMT.V 0/ �MT.V /º �M

and let NL.V / � �nM be the image. The following is the mixed analog of [12, Theorem
II.C.1]; the same proof works with essentially no modification.

Proposition 6.8. For V 2M, let G WDMT.V / with unipotent radical U and letXG be the
G.R/U.C/-conjugacy class of the Deligne torus of V . Then the component of N L.V /

passing through V is the connected mixed Hodge domain for .G; XG/ containing V .

Corollary 6.9. NL.V / � �nM is a definable analytic subspace.

Proof. From the proposition and Theorem 6.4, each connected component of NL.V / is
a definable analytic subspace, and it remains to check there are finitely many compo-
nents. For V 0 2M, to have MT.V 0/ �MT.V / we must check if finitely many vectors in
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finitely many Tm;n.V 0/ are Hodge, that is, contained in F 0Tm;n.V 0/ \ W0Tm;n.V 0/.
Thus, N L.V / D zN L.V / \M for a natural algebraic subvariety zN L.V / � LM. As
zN L.V / intersects a definable fundamental set for �nM in finitely many components,
the result follows.

For any algebraic variety S with an admissible variation of integral graded-polarized
mixed Hodge structures .L;W ; F / with monodromy contained in � and any s 2 S we
define NLs � S to be the pull-back of NL.Ls;Ws; Fs/ � �nM with its natural structure
of a definable analytic subspace.

Corollary 6.10. NLs � S is algebraic.

Recall the definition of Hdgd0 .S/ � S from the introduction. Using the fact that there
are finitely many O.GrW0 VZ;q0/-orbits of primitive vectors v with fixed square q0.v;v/D
d ¤ 0 (for instance using [17]), and therefore finitely many �-orbits of v 2 W0VZ with
q0.v; v/ D 0, we deduce in the same fashion

Corollary 6.11. Hdgd0 .S/ � S is algebraic.
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