J. Eur. Math. Soc. 26, 1933-2089 (2024) DOI 10.4171/JEMS/1317

© 2023 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

JEMS

Bjoern Bringmann

Invariant Gibbs measures for the three-dimensional wave
equation with a Hartree nonlinearity II: Dynamics

Received November 13, 2020; revised July 9, 2021

Abstract. In this two-paper series, we prove the invariance of the Gibbs measure for a three-
dimensional wave equation with a Hartree nonlinearity. The novelty lies in the singularity of the
Gibbs measure with respect to the Gaussian free field.

In this paper, we focus on the dynamical aspects of our main result. The local theory is based
on a paracontrolled approach, which combines ingredients from dispersive equations, harmonic
analysis, and random matrix theory. The main contribution, however, lies in the global theory. We
develop a new globalization argument, which addresses the singularity of the Gibbs measure and its
consequences.
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Continuation of the series

This paper is the second part of a two-paper series and we refer to the first part [12] for a
more detailed introduction to the series.

We study the renormalized wave equation with a Hartree nonlinearity and random
initial data given by

{—8%tu—u—|—Au=:(V*u2)u:, (t,x) e R x T3, @
a

Ulj=0 = ¢o. 0suli=0 = ¢P1.

Here, the three-dimensional torus T3 is understood as [—7, 7] with periodic boundary
conditions. The interaction potential V: T3 — R satisfies V(x) = cg|x|~®~#) for all
x € T3 close to the origin, where 0 < 8 < 3, satisfies V(x) = 1 for all x € T3, is even,
and is smooth away from the origin. The nonlinearity :(V * u?)u: is a renormalization of
(V * u?)u and defined in (1.16) below.

The nonlinear wave equation (a) is corresponding to the Hamiltonian H given by

1
Hlu, 0;u](t) = 5(””(0”%;{ + ||Vu(l)||i% + ||3zu(f)||i§)
1
+ —/ (Vs u?)(t, x)u(t, x)*: dx,
4 Jr3
where L2 = L2(T?3). The formal Gibbs measure u® corresponding to the Hamiltonian

has been rigorously constructed in the first paper of this series. All necessary properties
of this construction will be recalled in Theorem 1.1 below.
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The main result of this series is the invariance of the Gibbs measure u® under the
flow of the nonlinear wave equation (a). We first state a formal version of our main result
and postpone a rigorous version until Theorems 1.1 and 1.3 below.

Main result (Global well-posedness and invariance, formal version). The formal Gibbs
measure u® exists and, for 0 < B < 1/2, is singular with respect to the Gaussian free
field g®. The renormalized wave equation with Hartree nonlinearity (a) is globally well-
posed on the support of u® and the dynamics leave u® invariant.

1. Introduction

The second paper in this series deals with the dynamical aspects of our argument. As a
result, it is inspired by recent advances in random dispersive equations. The interest in
random dispersive equations stems from their connections to several areas of research,
such as analytic number theory, harmonic analysis, random matrix theory, and stochastic
partial differential equations (cf. [49]). In fact, much of the recent progress have been
fueled through similar advances in singular stochastic partial differential equations, such
as Hairer’s regularity structures [40] or Gubinelli, Imkeller, and Perkowski’s paracon-
trolled calculus [36].

The most classical problem in random dispersive equations is the construction of
invariant measures for (periodic and defocusing) nonlinear wave and Schroédinger equa-
tions. This has been an active area of research since the 1990s, and we refer the reader to
Figure 1 for an overview of some of the most important contributions.

The first results in this direction were obtained in one spatial dimension by Friedlander
[35], Zhidkov [75] and Bourgain [4]. Friedlander [35] and Zhidkov [75] proved the invari-
ance of the Gibbs measure for the one-dimensional nonlinear wave equation. Inspired by
earlier work of Lebowitz, Rose, and Speer [46], Bourgain [4] proved the invariance of the
Gibbs measure for the one-dimensional nonlinear Schrodinger equations

i0u+ 02u = [ulP'u, (t,x) e RxT.

Dimension & nonlinearity Wave Schrodinger
d=1,ulP"lu [35,75] (4]
d =2, ulu [5]
d = 2’ |u|p—1u [58] [28]
B> 1:[55] p> 210l

d=3,(x"C B xju?) u 2> B > 1/2: feasible
1/2 > B > 0:open

d =3, |ul?u open open

B > 0: this paper

Fig. 1. Invariant Gibbs measures for defocusing nonlinear wave and Schrodinger equations.
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In this seminal paper, Bourgain introduced his famous globalization argument, which will
be described in detail below. Even though Friedlander [35], Zhidkov [75] and Bourgain [4]
consider random initial data (drawn from the Gibbs measure), the local theory is entirely
deterministic. The reason is that the Gibbs measure is supported at spatial regularity 1/2—,

which is above the (deterministic) critical regularities Sgey = % — % (cf. [15]) and s4e¢ =

% - % for the one-dimensional wave and Schrddinger equations (in H¥), respectively.

The first result in two spatial dimensions was obtained by Bourgain [5]. He proved
the invariance of the Gibbs measure for the renormalized cubic nonlinear Schrodinger
equation

i0:u + Au = :Jul?u:, (t,x) e Rx T2 (1.1)

In (1.1), the renormalized (or Wick-ordered) nonlinearity is given by [u[*u — 2[|ul|7 ,u.
In this specific case, the renormalized equation (1.1) is related to the cubic nonlinear
Schrodinger equation through a gauge transformation. In contrast to the one-dimensional
setting, the Gibbs measure is supported at spatial regularity 0—, which is just below the
(deterministic) critical regularity s = 0. To overcome this obstruction, the local theory
in [5] exhibits probabilistic cancellations in several multi-linear estimates. Very recently,
Fan, Ou, Staffilani, and Wang [34] extended Bourgain’s result from the square torus T2
to irrational tori.

The situation for two-dimensional nonlinear wave equations is easier than for two-
dimensional nonlinear Schrodinger equations. While the Gibbs measure is still supported
at spatial regularity 0—, this is partially compensated by the smoothing effect of the
Duhamel integral. In [58], Oh and Thomann prove the invariance of the Gibbs measure
for

—B?u—u—i-Au =w?:;, (t,x) e RxT?2, (1.2)

where p > 3 is an odd integer. The renormalized nonlinearity :u?: in (1.2) is the Wick-
ordering of u?; see e.g. [58, (1.9)]. In contrast to the nonlinear Schrédinger equation (1.1),
it cannot be obtained from the original equation via a gauge transformation. However,
the renormalization is likely necessary to obtain nontrivial dynamics for random low-
regularity data (see e.g. [54,57]). We emphasize that their argument for the cubic (p = 3)
and higher-order (p > 5) nonlinearity is essentially identical. Due to its clear and detailed
exposition, we highly recommend [58] as a starting point for any beginning researcher in
random dispersive equations.

In a recent work [28], Deng, Nahmod, and Yue proved the invariance of the Gibbs
measure for the nonlinear Schrodinger equations

i0;u 4+ Au = :[ul”u:, (t,x) e RxT?2, (1.3)

where p > 5 is an odd integer. In contrast to the situation for the two-dimensional nonlin-

ear wave equations, this result is much harder than its counterpart for the cubic nonlinear

Schrodinger equation (1.1). The main difficulty is that all highxlowx - - - xlow interactions

between the random initial data with itself or smoother remainders only have spatial reg-
2

ularity 1/2—, which is strictly below the (deterministic) critical regularity sgee = 1 — o1
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To overcome this difficulty, Deng, Nahmod, and Yue worked with random averaging oper-
ators, which are related to the adapted linear evolutions in [10]. Their framework was
recently generalized through the theory of random tensors [30], which will be further
discussed below.

Unfortunately, much less is known in three spatial dimensions. The reason is that the
Gibbs measure is supported at spatial regularity —1/2—, which is far below the determin-
istic critical regularity sge = % — %.
both the cubic nonlinear wave and Schrodinger equation are famous open problems. Pre-

In fact, the invariance of the Gibbs measure for

vious research has instead focused on simpler models, which are obtained either through
additional symmetry assumptions, a (slight) regularization of the random initial data, or a
(slight) regularization of the nonlinearity.

In the radially-symmetric setting, the invariance of the Gibbs measure for the three-
dimensional cubic wave and Schrodinger equation has been proven in [8,23,74] and [7],
respectively. The radially-symmetric setting was also studied in earlier work on the two-
dimensional nonlinear Schrédinger equation [26, 68, 69].

In [56], Oh, Pocovnicu, and Tzvetkov studied the cubic nonlinear wave equation with
Gaussian initial data. While the Gaussian initial data in [56] does not directly correspond
to a Gibbs measure, the local theory in [56] still yields partial progress towards the (local
aspects of) the Gibbs-measure problem. The Gaussian initial data in [56] has regularity
s > —1/4 and, as a result, is more than 1/4 derivatives smoother than the Gibbs measure.
Using some of the methods in this paper, Oh, Wang, and Zine [60] very recently improved
the regularity condition from s > —1/4 to s > —1/2. In particular, the Gaussian data in
[60] is only € derivatives smoother than the support of the Gibbs measure.

In [6], Bourgain studied the defocusing and focusing three-dimensional Schrodinger
equation with a Hartree nonlinearity given by

i0;u 4+ Au=£:(V = [uPu:, (t,x) e RxT3, (1.4)

where the interaction potential V behaves like +|x|~G~#). He proved the invariance of
the Gibbs measure for 8 > 2, which corresponds to a relatively smooth interaction poten-
tial. In the focusing case, this is optimal (up to the endpoint 8 = 2), since the Gibbs
measure is not normalizable for 8 < 2 (cf. [55]). From a physical perspective, the most
relevant cases are the Coulomb potential |x|~! (corresponding to B = 2) and the New-
tonian potential |x|~2 (corresponding to B = 1). Since the cubic nonlinear Schrodinger
equation formally corresponds to (1.4) with the interaction potential V' given by the Dirac
measure, it is also interesting (and challenging) to take B close to zero. After the first ver-
sion of this manuscript appeared, Deng, Nahmod, and Yue [29] used random averaging
operators (as in [28]) to cover the regime > 1 — € in the defocusing case, where € > 0
is a small unspecified constant. As discussed in [29], it is likely possible to use the more
sophisticated theory of random tensors from [30] to cover the regime f > 1/2. In the
regime 0 < B = 1/2, the Gibbs measure becomes singular with respect to the Gaussian
free field (see Theorem 1.1). As described in [29, Section 1.2.1], the extension of the the-
ory of random tensors to singular Gibbs measures remains a challenging open problem
(see also Remark 1.6).
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After the completion of this series, the author learned of independent work by Oh,
Okamoto, and Tolomeo [55]. The authors study (the stochastic analogue of) the focusing
and defocusing three-dimensional nonlinear wave equation with a Hartree nonlinearity
given by

—E)fu —u—+ Au =1V xu)u:, (t,x) e Rx T3,

where A > 0. The main focus of [55] lies on the construction and properties of the Gibbs
measures, which are discussed in the first part of the series (cf. [12, Remark 1.2]). Regard-
ing the dynamical results of [55], the authors prove the invariance of the Gibbs measure
in the following cases:

(i) focusing (—): B > 2 or B = 2 in the weakly nonlinear regime.

(ii) defocusing (+): 8 > 1.

In light of the nonnormalizability of the focusing Gibbs measure for 8 < 2 and f = 2 in
the strongly nonlinear regime (cf. [55]), the result is optimal in the focusing case. In the
defocusing case, however, the restriction § > 1 excludes all Gibbs measures which are
singular with respect to the Gaussian free field. In contrast, Theorem 1.3 below covers the
complete range f > 0, which includes singular Gibbs measures. In fact, this is the main
motivation behind our two-paper series.

In the preceding discussion, we have seen several examples of invariant Gibbs mea-
sures supported at regularities even below the deterministic critical regularity. In [28,
30], Deng, Nahmod, and Yue describe a probabilistic scaling heuristic, which takes into
account the expected probabilistic cancellations. We denote the critical regularity with
respect to the probabilistic scaling by s,op and the spatial regularity of the support of the
Gibbs measure by sg. Based on the probabilistic scaling heuristic, we then expect prob-
abilistic local well-posedness as long as sg > Sprob. We record the relevant quantities for
nonlinear wave and Schrodinger equations in Figure 2. For comparison, we also include
the deterministic critical regularity sq.c. The probabilistic scaling heuristic, however, does

Dimension Wave Schrodinger
& nonlinearity SG Sprob Sdet SG Sprob Sdet
T e S T e
d=2,ulP"lu 0— —% 1—% 0 _ﬁ _%
d =3, (V*|u|2)-u —%— —mln(# 3) ax(l_zzﬂ,O) -5 —mln(#,l) max(1 22’3,0)
I = e ;

Fig. 2. Relevant spatial regularities for the invariance of the Gibbs measure: sg (support of the Gibbs
measure), Sprob (probabilistic scaling), sqet (deterministic scaling). The value of sprop for power-type
nonlinearities can be found in [28]. The probabilistic critical regularity spop for the wave equa-
tion with a Hartree nonlinearity is a result of highxhighxhigh—low and (highxhigh—low)xhigh
—high interactions. For the Schrodinger equation with a Hartree nonlinearity, spob is a result of
(highxhigh—high)xhigh—high and (highxhigh—low)xhigh—high interactions.
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not address any obstructions related to the global theory, renormalizations, or measure-
theoretic aspects. As a result, it does not capture some of the difficulties for dispersive
equations with singular Gibbs measures, such as the cubic nonlinear wave equation in
three dimensions.

Our discussion so far has been restricted to invariant Gibbs measures for nonlinear
wave and Schrodinger equations. While this is the most classical problem in random
dispersive equations, there exist many more active directions of research. Since a full
overview of the field is well beyond the scope of the introduction, we only mention a few
directions and refer to the given references for more details.

(1) Invariance of white noise [44,52,62].

(2) Invariant measures (at high regularity) for completely integrable equations [31,
71,72].

(3) Quasi-invariant Gaussian measures for non-integrable equations [39, 59, 70].

(4) Non-invariance methods related to scattering, solitons, and blow-up [9,11,32,43,61].
(5) Wave turbulence [13,17,18,27].

(6) Stochastic dispersive equations [21,22,24,37,38].

After this overview of the relevant literature, we now turn to a more detailed descrip-
tion of the most relevant methods. Our discussion will be split into two parts, separating
the local and global aspects. As a teaser for the reader, we already mention that our
contributions to the local theory will be of an intricate but technical nature, while our
contributions to the global theory will be conceptual.

As mentioned above, the first local well-posedness result for dispersive equations rely-
ing on probabilistic methods was proven by Bourgain [5]. He considered the renormalized
cubic nonlinear Schrodinger equation

0,u —u + Au = :ulu:;, (¢, x)eRxT2,
{zt + Jul (1, x) 0s)

Ult=0 = ¢.

The additional —u-term has been introduced for convenience, but can be easily removed
through a gauge transformation. The random initial data ¢ is drawn from the correspond-
ing Gibbs measure, which coincides with the (complex) ©§-model. Since the <I>§—model
is absolutely continuous with respect to the Gaussian free field and the local theory does
not rely on the invariance of the Gibbs measure, we can represent ¢ through the random

¢ = Z g_"ei(n,x)- (16)

nez? fm)

Fourier series

Here, (n) e V1 + |n]? and (gn),cz2 is a sequence of independent and standard complex-
valued Gaussians. The independence of the Fourier coefficients, and more generally the
simple structure of (1.6), is an essential ingredient for many arguments in [5]. A direct
calculation shows that almost surely ¢ € H*(T?)\ L?(T?3) for all s < 0. Since (1.5)
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is mass-critical, ¢ lives below the (deterministic) critical regularity. To overcome this
obstruction, Bourgain decomposed the solution by writing

u(r) = e"CHBg 4oy (r).

This decomposition is commonly referred to as Bourgain’s trick, but is also known in the
stochastic PDE literature as the Da Prato—Debussche trick [20]. Using this decomposition,
we see that the nonlinear remainder v satisfies the evolution equation

130 —v+ Av =" CHFD g L 2 CHVg L y):, (1,x) e Rx T2,

Through a combination of probabilistic and PDE arguments, Bourgain proved that the
Duhamel integral
][:|eit(71+A)¢|2eit(71+A)¢:]

lives at spatial regularity 1/2— (see also [19]). This opens the door to a contraction argu-
ment for v at a positive (and hence subcritical) regularity. The contraction argument
requires further ingredients from random matrix theory to handle mixed terms, but can
in fact be closed. We emphasize that the nonlinear remainder v is treated purely determin-
istically and is not shown to exhibit any random structure.

We now discuss the more recent work of Gubinelli, Koch, and Oh [37], which covers
the stochastic wave equation

—%u—u+ Au=u*+E (t,x) e RxT3,
ul0] = 0.

Here, ¢ denotes space-time white noise. Inspired by a (higher-order version of) Bourgain’s

trick, we decompose
u= ? + OYO + v.

The linear stochastic object ? solves the forced wave equation
2 -1+8)¢f=¢

The black dot represents the stochastic noise £ and the arrow represents the Duhamel inte-
gral. An elementary arguments shows that ? has spatial regularity —1/2—. The quadratic

stochastic object Qro is the solution of the forced wave equation

(—8% -1 +A)(‘f= ().

Based on similar arguments for stochastic heat equations, one may expect that QYO has
spatial regularity 2 - (—1/2—) + 1 = 0—, where the gain of one spatial derivative comes
from the Fourier multiplier (V)™! in the Duhamel integral. Using multi-linear dispersive
estimates, however, Gubinelli, Koch, and Oh proved that Qro has spatial regularity 1/2—.
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Using the definition of our stochastic objects, we obtain the evolution equation

(—8?—1+A)v=2( +v)-?+(oyo+v)2

for the nonlinear remainder v. In the following discussion, we let @ and & be the
lowxhigh and highxhigh paraproducts from Definition 2.1. Due to low xhigh interactions
such as v @ ¥, we expect v to have spatial regularity at most (—1/2—) +1 =1/2—. We
emphasize that, unlike highxhigh to high interactions, the lowxhigh interactions are not
affected by multi-linear dispersive effects. However, this implies that the spatial regulari-
ties of v and ? do not add up to a positive number, which means that the highxhigh term
v @? cannot even be defined (without additional information on v). This problem cannot
be removed through a direct higher-order expansion of u and persists through all orders of
the Picard iteration scheme. Instead, Gubinelli, Koch, and Oh [37] utilize ideas from the
paracontrolled calculus for singular stochastic PDEs [36]. We write v = X + Y, where
X and Y solve

(—83—1+A)X=2( +X+Y)@$ (1.7)
and
2

=148 =2(3F+x +7)O+ (R +x + 1) (1.8)

The paracontrolled component X only has spatial regularity 1/2—, but exhibits a random
structure. In the analysis of the highxhigh interactions X @?, this random structure can
be exploited by replacing X with the Duhamel integral of the right-hand side in (1.7).
Since this leads to a double Duhamel integral in the expression for Y, this approach is
often called the “double Duhamel trick”. In contrast to X, Y lives at a higher spatial
regularity and can be controlled through deterministic arguments. The local theory in this
paper will follow a similar approach, but relies on more intricate estimates, which will be
further discussed below.

After this discussion of the local theory, we now turn to the global theory. We discuss
Bourgain’s globalization argument [4], which uses the invariance of the truncated Gibbs
measures as a substitute for a conservation law. We first recall the definition of the differ-
ent modes of convergence for a sequence of probability measures, which will be needed
below.

Definition (Convergence of measures). Let # be a Hilbert space and let B(#) be the
Borel o-algebra on % . Furthermore, let (ux)n>1 and p be Borel probability measures
on #. We say that

(1) un converges in total variation to p if

lim  sup |u(A) — pun(A)] =0,
N—00 geB (%)

(1) un converges strongly to u if

lim puny(A) = pn(A) forall A € B(%),
N—o0
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(iii) pun converges weakly to p if
lim uny(A) = u(A) forall A € B(¥) satistying u(dA) = 0.
N—o0

To isolate the key features of the argument, we switch to an abstract setting. Let 7% be
a Hilbert space and let ®5: R x # — # be a sequence of jointly continuous flow maps.
Let un be a sequence of Borel probability measures on # . Most importantly, we assume
that u is invariant under @ for all N, i.e.,

un(@y () 14) = uy(A) forallt e R and A € B(¥).

In our setting, & will be the flow for a frequency-truncated nonlinear wave equation
and p will be the corresponding truncated Gibbs measure. Our main interest lies in the
removal of the truncation, i.e., the limit of the dynamics ® and measure puy as N tends
to infinity. Let u be a limit of the sequence 1, where the mode of convergence will be
specified below. In order to construct the limiting dynamics on the support of u, we need
uniform bounds on ®x on the support of . At the very least, we require an estimate of
the form

lim sup /L( sup ||On ()Pl < e_1> > 1—o0(1), (1.9)
N—o0 t€[0,1]
where 0 < € < 1 and o is the small Landau symbol. Bourgain’s globalization argument
[4] proves (1.9) in two steps.

In a first measure-theoretic part, we use the inequality

i(sup NNl =€) = pun( sup |ON Dl = 7))
t€f0,1] t€[0,1]

< sup |u(A4) —pun(A4)|
AeB(%)

As long as uy converges in fotal variation to u, we can reduce (1.9) to

N—oc0

limsup,uN( SElp] PN ()Pl < e_l) >1—0¢(1), (1.10)
tef0,1

In a second dynamical part, we use the invariance of ;y under @y and the probabilistic
local well-posedness. Let J > 1 be a large integer and define the step size r = J . Then

J—1
pn(swp NoxOla > ) <Y (s [N Ol > €7)
tef0,1] =0 teljr,(j+1)7]

J—1
= > un( sup On@OON (DBl > €7).
=0 t€l0,7]

Using the invariance of pn under @y (jt), we obtain

v sup 1on Ol > €)= e sup [ On Ol > €7F). (LD
t€f0,1] tel0,7]
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The right-hand side of (1.11) can then be controlled through an appropriate choice of ©
and the local theory (as well as tail estimates for wy).

In (this sketch of) Bourgain’s globalization argument, the convergence in total varia-
tion played an essential role. In all previous results on the invariance of (defocusing) Gibbs
measures [4-6,28,55, 58,75], the truncated Gibbs measures converge in total variation,
so that this assumption does not pose any problems. In our case, however, the truncated
Gibbs measures  only converge weakly to the Gibbs measure . The weak mode of
convergence is related to the singularity of the Gibbs measure u with respect to the Gaus-
sian free field ¢, which necessitates softer arguments in the construction of p. Using the
weak convergence of 1y to w, we can only reduce (1.9) to

lim sup[lim sup MM( sup || Pn (@)l < 6_1)] >1—o0(1), (1.12)
N—oo - M—o0 te€f0,1]

In (1.12), we will typically have M > N, and hence we cannot (directly) use the invariance

of the truncated Gibbs measures.

In [50], Nahmod, Oh, Rey-Bellet, and Staffilani prove the invariance of a Wiener
measure for the periodic derivative nonlinear Schrodinger equation. The truncated Wiener
measures in [50] are defined using a frequency-truncation not only in the interaction but
also in the Gaussian free field (cf. [50, (5.13)]. As a consequence, the truncated Wiener
measures only converge weakly (cf. [50, Proposition 5.13]). In order to prove (1.12), the
authors rely on the (quantitative) mutual absolute continuity of the (truncated) Wiener
measure with respect to the (truncated) Gaussian free field (cf. [50, (6.7)]). Unfortunately,
the singularity of the Gibbs measure in this work (as stated in Theorem 1.1) prevents us
from using a similar approach.

1.1. Main results and methods

Before we can state our main results, we need to define the renormalized and frequency-
truncated Hamiltonians, wave equations, and Gibbs measures. For any dyadic N > 1, we
define the renormalized and frequency-truncated potential energy by

% [T3:(V * (P<n$)*)(P<n)*:dx

a1

£ L0 5 Pand)Pen)? ~ 2an (Pone?

— 4(My P<nd)P<nd + V(0)a3 + 2by]dx + cw.
Here, the renormalization constants ay, by, cy are given by Definition 2.6, Definition

2.8, and Proposition 3.2 in the first paper of this series [12], but their precise values are
not needed in this paper. The renormalization multiplier My is defined by

s ron 2 (3 F0 v w2) Fon (1.13)

keZ3
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where py is a truncation to frequencies of size < N. The Hamiltonian H is then defined
as

def 1

=3
1
'y / (V * (P<n®)?)(P<y)?:dx. (1.14)
']1*3

Hy o, ¢11 = S (llgoll72 + 1{V)oll7> + l11172)

The renormalized and frequency-truncated nonlinear wave equation corresponding to H
is given by

(1.15)

(=02 — 1+ A)u = P<y(:(V * (P<yu)®*)P<yu:), (t,x) e Rx T3,
Ult=0 = ¢o, 0uli=0 = ¢1,

where the renormalized nonlinearity is given by

(V% (P<yu)®)P<yu: = (V % (P<yu)?) P<yu —an V (0) P<yu — 2My P<yu.
(1.16)

We remark that frequencies much larger than N are not affected by the nonlinearity (1.16).
As aresult, the nonlinear component of the solution of (1.16) is always smooth. For a fixed
N > 1, the coercivity of Hy implies the global well-posedness of (1.15). We also define
the renormalized square

Z(PSNM)ZZ déf(PSNM)Z—aN, (1.17)

which will simplify the notation below. The Gibbs measure u% corresponding to Hy is
given by M% =uny ® ({(V))gg, where up is defined in [12, (1.10)] and ({V))sg is the
pushforward of the three-dimensional Gaussian field (defined in the introduction of [12])
under (V). Before we state the properties of the truncated Gibbs measures ,u%, we recall
the assumptions on the interaction potential from the first paper of the series. In these
assumptions, 0 < 8 < 3 is a fixed parameter.

Assumptions A. We assume that the interaction potential V' satisfies
1) V(x) = cﬂ|x|_(3_5) for some cg > 0 and all x € T3 satisfying || x| < 1/10,
(2) V(x) zp 1forall x € T3,
(3) V(x) = V(—x) forall x € T3,
(4) V is smooth away from the origin.
The following properties of the Gibbs measures ,u% are a direct consequence of [12,
Theorem 1.1], which is phrased in terms of 5. For notational reasons related to the weak
convergence instead of convergence in total variation, we use a second parameter M for

the frequency-truncation. Our notation for the random variables, which is based on dots,
will be discussed below the theorem.

Theorem 1.1 (Gibbs measures). Let k > 0 be a fixed positive parameter, let 0 < 8 <3 be a
parameter, and let the interaction potential V be as in Assumptions A. Then the truncated
Gibbs measures (u;’a) M>1 weakly converge to a limiting measure u&, on #x 1/2-« (T3),
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which is called the Gibbs measure. If in addition 0 < < 1/2, then the Gibbs measure
wE is singular with respect to the Gaussian free field g®. Furthermore, there exists a
sequence (Ug) M>1 of reference measures on H 1/2-x (T3) and an ambient probability
space (2, ¥, P) satisfying the following two properties:

(1) (Absolute continuity and L?-bounds) The truncated Gibbs measure ,u,fa is absolutely
continuous with respect to the reference measure v;?l. More quantitatively, there exists
a parameter ¢ > 1 and a constant C > 1 independent of M such that

1S (A) < Cvl (A1

for all Borel sets A C Je /27 (T3).
(2) (Representation of vﬁ) Let y = min(1/2 + B, 1). Then there exist two random vari-

ables o,0,: (2, ¥) — %x_l/z_K (T3) and a large integer k = k(B) > 1 such that,
forall p > 2,

)I/P k/2

vfj[ = Lawp (e 4 0y), g® = Lawp(e), (E]p||oM||§€;,,K(T3) <p

Remark 1.2. After the completion of this series, the author learned of independent work
by Oh, Okamoto, and Tolomeo [55], which yields an analogue of Theorem 1.1. We refer
to [12, Remark 1.2] for a more detailed comparison.

We will require that the ambient probability space (2, ¥, IP) is rich enough to con-
tain a family of independent Brownian motions, which is clear from the definition of
(2, F,P) in [12] and detailed in Section 4.5.

Let us further explain the notation in Theorem 1.1. We use dots to represent the
random data, since they can be used as building blocks in more complicated stochastic
objects. We already saw this graphical notation in our discussion of [37] and we refer the
reader to [48] for a detailed discussion of similar diagrams. We use the blue dot e for the
Gaussian random data, since it lives at low spatial regularities and is primarily viewed as
a high-frequency term. We use the red dot o,,; to denote the more regular component of
the random data, since we primarily view it as a low-frequency term. Furthermore, the
blue dot e is filled while the red dot o, is not filled. The reason is that the manuscript
should be accessible to colorblind readers and also readable as a black and white copy.

In the following, we often write ¢ for a generic element ¢ € ¥, 12—« (T?3). The
purple diamond will be used as a building block for further stochastic objects. When
working with the reference measure vﬁ, we have

Lawvg (e) = Lawp (e + oy)).

Naturally, we chose the color purple since it is a mixture of blue and red. The change in
shape, i.e., from a dot to a diamond, is primarily made for colorblind readers. We also
only use diamonds for intrinsic objects in 1/2- (T?3), while dots are used for objects
defined on the ambient probability space (2, ¥, P). The significance of this distinction
will be further discussed in Sections 2 and 3.
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While Theorem 1.1 already contains the measure-theoretic results of this series, we
now state the dynamical results.

Theorem 1.3 (Global well-posedness & invariance). There exists a Borel-measurable set

S CH V2% (T3) satisfying 1 (8) = 1 and such that the following two properties hold:

(1) (Global well-posedness) Let ®y be the flow of the renormalized and frequency-
truncated wave equation (1.15). Then the limit

Doolt] e = Jim @y[r]e

exists in V2% (T3) forallt € R and & € S.

(2) (Invariance) The Gibbs measure u%, is invariant under ®, i.e., forall t € R,

D[ty = 1S,

Remark 1.4. In the proof of Theorem 1.3, we restrict ourselves to the case 8 € (0,1/2).
The purpose of this restriction is purely notational. The same argument also works for
B €[1/2,3), as long as B in each estimate is replaced by min(3, 1/2).

Remark 1.5. While Theorem 1.3 shows that the limiting dynamics ®[¢] are well-
defined, we have not been able to show that @, [¢] satisfies the group property. The author
believes that the estimates in this paper (from Sections 5-8) are strong enough to prove
the group property, but the stability theory (Sections 2.4 and 3.3) would need to be mod-
ified. Instead of working with a single flow ®y[¢], one needs similar statements for the
mixed flows ®y, [t1] P, [2]. We refer the reader to [65] for a more detailed discussion of
the group property and its relation to the recurrence properties of the flow.

We now describe individual aspects of our argument. As in our discussion of the
previous literature, we separate the local and global aspects. As mentioned above, our
contributions to the local theory are of an intricate but technical nature, whereas our con-
tributions to the global theory are conceptual.

In the local theory, we use the absolute continuity /L}?} < vjiejl and the representation
of vﬁ from Theorem 1.1. As a result, the reference measure vys serves the same purposes
as the Gaussian free field in earlier results on invariant Gibbs measures. We then follow
the paracontrolled approach of [37] and decompose the solution u y (¢) of (1.15) as

uy =1+ i/ + XN + Yn. (1.18)

where the stochastic objects T and \I/V , the paracontrolled component X, and the
smoother nonlinear remainder Yy are defined in Section 2. The smoother component o,

in the representation of vg will be placed inside Y. In comparison to [37], however,
there is an increase in the complexity of the evolution equation for Y. We split the terms
into four different categories, which correspond to the methods used in their estimates.
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e Stochastic objects: These terms are explicit and include

& and ’%L\T/Ié‘

In contrast to the previous literature, we use multiple stochastic integrals for the non-
resonant/resonant decompositions, which significantly decreases the algebraic com-
plexities. We also use counting estimates related to the dispersive symbol of the wave
equation.

o Random matrix terms: The terms include
(V«\/)P<nYn.

They will be controlled through a recent random matrix estimate of Deng, Nahmod,
and Yue [30, Proposition 2.8], which is based on the moment method.

o Contributions of paracontrolled terms: These terms include

V % (PsNT®PsNXN)P5NYN-

We use the double Duhamel trick to exploit stochastic cancellations between T and Xy .

In our definition of Xy, we use the paradifferential operators (<) and intro-
duced in Section 2, which form a technical novelty.

e Physical terms: These terms include

Vx (P<yT- P<yYn)P<n \1/' and (V% (P<nYN)?)P<nYN.

The first term should be viewed as a random operator in Yy, but is mainly treated
through physical-space arguments. We believe that our approach is of independent
interest, since it provides an alternative to the more Fourier-analytic estimates in [5,
28,30, 37]. The second term is treated deterministically and we rely on the refined
Strichartz estimates of Klainerman and Tataru [45].

As we mentioned before, all stochastic objects have been based on e, and the smoother
component oy, is simply placed inside Y. This approach yields the convergence of the
flows @ on the support of u& for a short time interval (see Corollary 2.12). The struc-
tural information in the decomposition (1.18), however, cannot (directly) be carried over
to the support of u& , since e is only defined on the ambient probability space (2, F, P).
This defect will be addressed below, since the structural information is required for the
global theory.

Remark 1.6. As was already mentioned in our overview of the literature, Deng, Nahmod,
and Yue recently developed a theory of random tensors [30], which forms a comprehen-
sive framework for the local theory of random dispersive equations. The theory of random
tensors (and its precursor [28]) rely more intricately on the independence of the Fourier
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coefficients than the paracontrolled approach. Even under the reference measure v}?} , how-
ever, the random data ¢ = e 4 o, has dependent Fourier coefficients. This presents a
challenge for the theory of random tensors, which was already mentioned in [30, Sec-
tion 9.1]. In addition, there are further technical problems related to the switch from
Schrodinger to wave equations, which are described in Section 4.4. As a result, the author
views the extension of the theory of random tensors to a local theory even for singular
Gibbs measures and/or nonlinear wave equations as an interesting open problem.

After this discussion of the local theory, we turn to the global dynamics on the support
of the Gibbs measure u% . As we have seen in our earlier discussion of Bourgain’s glob-
alization argument, its original version requires the convergence of the truncated Gibbs
measures in total variation. Unfortunately, Theorem 1.1 only yields the weak convergence
of the truncated Gibbs measures Mﬁ’j’ to n& . We now give an informal description of our
new globalization argument, but postpone a rigorous discussion until Section 3.

We let T > 1 be a large time, B > 1 be a large parameter describing the size of the
evolution, K > 1 be a large frequency scale, and t > 0 be a small step size. Forany j > 1,
we let Ex (B, jt) € #H~Y/27%(T3) be the set of initial data « such that, for all z € [0, j7]
and N > K,

@N(t).zT(z)Jr’\I/:(t)erN(r), (1.19)

where wy has size at most B in “structured high-regularity”” norms. In our rigorous argu-
ment, B will depend on j, but we ignore this during our informal discussion. We also omit
a smallness condition for the difference of @y (¢) ¢ and ®x (¢) ¢. The goal is to prove by
induction over j < T/t that

limsup u’5, (® € Ex (B, j7))

M —o0
is close to 1 as long as B, K, and t are chosen appropriately. The proof relies on four
separate ingredients:

(1) (Structured local well-posedness) This is the base case j = 1. Using our local the-
ory, we only have to convert the stochastic objects in (1.18), which are based on e,
into stochastic objects based on .

(i) (Structure and time-translation) Using the induction hypothesis, we now assume
that the probability ,ufa(o € 8k (B, (j —1)7)) is close to 1. In order to increase the

time interval, we let © < @, [t]e. Using the invariance of /,L;?} under @7, we obtain

1y (o € Ek(B.(j — 1)) = pyy (Pumlr]e € Ex(B.(j — 1)1))
= iy (* € E(B.(j — D)),
which is close to 1. After unpacking the definitions, we obtain information on the

mixed flow ®y[t — t]Dps[r] ¢ for ¢ € [, jr]. It therefore remains to analyze the
difference between @y [t — t]Dps[r] ® and Oy [t — t] Dy [T] @
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(iii) (Structure and the cubic stochastic object) The lowest regularity term in @ (7)  —
®)s(7) ¢ is given by a portion of the cubic stochastic object. In this step, we add the
linear evolution of this portion to the mixed flow @y [t — t]Pps[7] », which yields a
function #% . It is then shown that i y (¢) is an approximate solution of the nonlinear
wave equation (1.15) for ¢ € [z, jz].

(iv) (Stability theory) We develop a paracontrolled stability theory and construct a solu-
tion u i close to the approximate solution %y, which also accounts for the remaining
portion of ®x () ¢ — Oy (1) #. Since our stability theory preserves the structure of
Uy, this yields (1.19) on the time interval [z, jt]. Since the base case already yields
the desired structure on [0, 7], this completes the induction step.

As is evident from this sketch, the proof of global well-posedness is much more involved
than in Bourgain’s original setting [4,5]. While not perfectly accurate, the author finds the
following comparison with the deterministic global theory of dispersive equations illustra-
tive. Bourgain’s globalization argument [4,5] is the probabilistic version of a deterministic
global theory using a (subcritical) conservation law. The conservation law is replaced by
the invariance, which implies that t — uy (On (¢)¢ € &) is constant. In both cases, the
global well-posedness is obtained by iterating the local well-posedness, but the estimates
used in the local theory are no longer needed. In contrast, the new globalization argument
is the probabilistic version of a deterministic global theory using almost conservation
laws (cf. [16]). The place of the almost conserved quantities is taken by the functions
t = up(®dy(t)¢ € &), which should be close to a constant function. In addition, the
proof of global well-posedness often intertwines the local estimates and the choice of
the almost conserved quantities. For entirely different reasons, the similarity with almost
conserved quantities also appears in the globalization argument of [50], which proves the
invariance of a Wiener measure for the periodic derivative nonlinear Schrddinger equa-
tion. The truncated dynamics in [50, (3.1)] only approximately conserve the energy (cf.
[50, Theorem 4.2]). Even with the same truncation parameter in the measure and the
dynamics, the truncated Wiener measure is then only almost invariant (cf. [50, proof of
Lemma 6.1]).

Our globalization argument for the nonlinear wave equation also differs from the glob-
alization argument for the parabolic stochastic quantization equation as in [42]. While the
invariant measure is singular in both situations, the dependence on the initial data in the
parabolic setting is continuous even at spatial singularity —1/2—. As a result, it is pos-
sible to iterate the local theory over the time intervals {[(j — 1)z, jt]};=1,..,s using only
bounds in the C =12 (T?3)-norm. As can be seen from the sketch above, iterating the
local theory for the nonlinear wave equation (1.15) requires more detailed information on
the solution.

Once the global well-posedness has been proven, the proof of invariance is essentially
the same as in [4].

Remark 1.7. A paper of this length creates both mathematical challenges and different
options for the exposition. The author does not claim to have found the perfect solutions
or made the best expository choice in every single instance. While we postpone a more
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detailed discussion to Remarks 1.6, 2.3, 3.4, 4.43, 8.2, and 9.11, the author wanted to
make this point in a central location of the paper. The author hopes that this encourages
the reader to think more about our result and related open problems.

1.2. Overview

Due to the excessive length of this paper, we include a few suggestions for the reader. We
also display the (main) relationship between the sections in Figure 3.

Theorem 1.3:
Global well-posedness and invariance

Global Theo

Section 3.1:
Global well-posedness

Section 2.1:
Paracontrolled ansatz

Section 2.2:
Multi-1 master
estimate

Section 3.2:
Invariance

Section 3.3:
Structure and stability
theory

Section 2.3:
Local well-pos

Section 2.4:
Stability theory

Section 4: i H
Tools From free to Gibbsian
random structures
Section 5:
Stochastic objects
Section 6:
Random matrix theory
Section 7:
Paracontrolled estimates

Section 8:

Physical-space methods

Fig. 3. This figure illustrates the main dependencies between the different sections. The heart of the
paper lies in the local and global theory (Sections 2 and 3), which, as long as the reader believes
certain estimates, can be read independently of the rest of the paper. A few minor dependencies
between the different sections are not included in this illustration. For instance, basic properties of
os-b -spaces, which are recalled in Section 4, will also be used in Sections 2 and 3.
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The local and global theory are described in Sections 2 and 3, respectively. These
sections contain the main novelties of this paper and should be interesting to most readers.
As long as the reader believes several estimates, these sections are also self-contained. We
therefore encourage the expert to focus on these sections.

Section 4 contains a collection of tools from dispersive equations, harmonic analysis,
and probability theory. The reader should be familiar with the content of each subsection
before moving on, but the expert should be able to only skim most content.

Sections 5—8 contain the main technical aspects of this paper. They are concerned with
separate terms in the evolution equation and rely on different methods. As a result, they
can (essentially) be read independently.

In Section 9, we extend the multi-linear estimates from Sections 5—8, which have been
phrased in terms of the Gaussian initial data e, to random initial data ¢ drawn from the
Gibbs measure. Each proof consists of a concatenation of previous results, and hence this
section can safely be skipped on first reading.

1.3. Notation
We recall and introduce notation that will be used throughout the rest of the paper.

Dyadic numbers: Throughout this paper, we denote dyadic integers by K, L, M, and N.
In limits or sums, such as limp,o or D5, we implicitly restrict ourselves to dyadic
integers.

Parameters: We first introduce several parameters which are used in our function spaces,
in the paradifferential operators, and our estimates. We fix

€>0, 8,6,>0, «>0, n,n >0 byr>b>1/2>b_>0. (1.20)

We use € > 0 in our paradifferential operators, x > 0 to capture small losses in probabilis-
tic estimates, 7, ' > 0 to capture gains in the highest frequency scale, and 81,85, b, b, b—
in the definition of our function spaces. We impose the condition

1/2—b_- Kb—1/2<Kbs — 12K KKKk K8 Ke K6 (1.21)

In (1.21), the implicit constant in each “<” is allowed to depend on all parameters appear-
ing to its right. We also define

S1=1/2—81 and S2=1/2+82.

In several statements of this paper, we will alsouse 0 < ¢ < 1 and C > 1 as parameters.
However, they may change their values between different lines and are allowed to depend
on all parameters in (1.20).

Wave equation and flows: We denote the solution of the nonlinear wave equation (1.15)
by uy (t). We also write
un[r] = (un (0). dun (1)),
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which is standard in the literature on nonlinear wave equations. If ¢ € % 1/2-e (T3), we
also write @ (¢) ® and @y [¢] & for the solution with initial data ¢. When working with
the flows @ [¢] and the Gibbs measures ,ufj,, we write ® N[t]#,ufa for the pushforward
of %, under @y [7].

Furthermore, we denote the Duhamel integral operator of the wave equation by I.
More precisely, we define

def /t sin((t —1')(V)) F(l/) dr'.

)0 £ )

Fourier transform: With a slight abuse of notation, we write dx for the normalized
Lebesgue measure on T3 = R3/(27Z)3, i.e., we require that

/ ldx = 1.
T3

We then define the Fourier transform of a function f: T3 — C by
NOE / F(x)e " dx. (1.22)
T3

For any k € N and any ny,...,n; € 7.3, we define

k
def
ni2..k = E nj.
Jj=1

For example, n1, = ny + np and ny23 = ny + np + ns.

Interaction potential: For a given interaction potential V' satisfying Assumptions A, we
define

~ of 1 ~
Vs(ni,na, n3) = g Z V(”nl +7’ln2)'

weS3

Truncations and Littlewood—Paley operators: For each t > 0, we let p;: Z3 — [0, 1] be
the same truncation to frequencies n € Z3 satisfying |n| < () as in [12, Section 1.3]. For
each dyadic N > 1, we define the Littlewood—Paley multiplier P<y by

Pen f (n) = pw () f ().
We further set
Pif=P<f and Pyf =P<nf— Ponjpof forallN >2.
The corresponding Fourier multipliers are denoted by
x(n) = yx1(n) = p1(n) and  yn(n) = pn(n) — pyj2(n) forall N = 2.

We also define fattened Littlewood—Paley multipliers by

Py = > px

N/16<K<16K
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Function spaces: For any s € R, the €5(T 3)-norm is defined as

def

I fllescr3y = ;UP NP Py fllpse(r3)- (1.23)
>1

We then define the corresponding space €5 (T ?) by

def

ET) {17 > R[S ey <00, Jim N°IPy fllLzeasy =0f.  (124)

We let HS (T ?) be the usual L2-based Sobolev space. More precisely, forany f: T3 — C,
we define the corresponding norm by

def

I/ 1agersy = 1)’ F 2 z3)-

def

Furthermore, we define %3 (T3) = H$(T3) x HS~1(T?3). In this paper, we will also use
the Bourgain spaces X% () and the low-frequency modulation space L. (g ), which are
defined in Definitions 4.1 and 7.1, respectively.

2. Local theory

In this section, we show that the truncated and renormalized nonlinear wave equations

2.1)

{(—8% — 1+ Auy = Py (:(V % (P<yun)?) P<yun:).
uy[0] = ¢,

are locally well-posed on the support of the Gibbs measures /Lfa uniformly in M. It is
important in the definition of the limiting dynamics and the globalization argument that
the truncation parameter N in the dynamics and the truncation parameter M in the Gibbs
measure M?ﬁ, are allowed to be different.

Due to the truncation, a soft argument based on the coercivity of the Hamiltonian
shows that (2.1) is globally well-posed for a fixed truncation parameter N. We denote the
corresponding flow by @ (¢).

2.1. Paracontrolled ansatz

We now introduce our paracontrolled approach. As discussed in the introduction, we will
use a graphical notation for the several stochastic objects appearing in this paper. We
denote the random initial data by . In the local theory, we can work with the reference
measure vﬁl and, more precisely, the representation of the reference measure with respect
to the ambient measure [P.

Based on Theorem 1.1, we find that vg = Lawp(e + o,;), where e is the Gaus-
sian low-regularity component and o, is has regularity min(1/2 4 8, 1)—. Naturally, we
chose the color purple for the random initial data e since it is a mixture of the blue and red
random initial data. We emphasize that e and o,; are probabilistically dependent! Fortu-
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nately, this does not introduce any major difficulties in our treatment of the wave equation
with a Hartree nonlinearity. We believe, however, that the proof of the invariance of the
Gibbs measure for both the cubic wave equation and the three-dimensional Schrédinger
equation with cubic or Hartree nonlinearity will require a more detailed understanding of
the relationship between e and o,;. This additional information is provided in the first part
of the series [12].

Before we introduce our stochastic and paracontrolled objects, we discuss the follow-
ing question: Should we define our stochastic objects based on e or based on & ? Due to
the independence of the Fourier coefficient under P and its simple structure, it is much
more convenient to work with e. However, the decomposition ¢ = e 4 o,, of the samples

of vf} is based on the ambient measure P. It cannot be performed intrinsically on the
samples of vﬁ?, and has no meaning for the Gibbs measure ,ufa. In particular, if we want
to examine the probability of an event under Mfa, we must phrase the event in terms of
the full initial data e . Fortunately, there is a convenient solution to our conundrum: We
first carry out most of our (local) analysis in terms of e and with respect to the ambient
measure [P. Once all the estimates in terms of e are available, we can convert the stochas-
tic objects and paracontrolled structures from e into ¢ (see Section 9). Then the absolute
continuity of uf\)} with respect to the reference measure v;'?l allows us to obtain the same
stochastic objects and paracontrolled structures on the support of the Gibbs measure ,u,fa.

We now begin with the construction of the stochastic objects and paracontrolled struc-
tures, which were briefly discussed in the introduction. We define T as the linear evolution
of the random initial data e. More precisely, T solves the evolution equation

2 —-1+A)1=0, 0= (2.2)

The black line in the stochastic object reflects the linear propagator of the wave equation.
For future use, we define the frequency-truncated and renormalized square of T by

V= (P (2.3)

The multiplication is reflected by the joining of the two lines and the frequency-truncation
is reflected in the subscript N. We then define the renormalized nonlinearity *J/* by

YL E Pan (((V 5 (P<y DD (Pr ). @H

The orange asterisk reflects the convolution with the interaction potential. The color
orange has no significance and we only chose it for aesthetic reasons. As before, the
nonlinearity is reflected in the joining of the three lines and the truncation parameter N in

the nonlinearity appears as a subscript. Finally, we define the Duhamel integral of '\T/N.

by
(92— 1+ A)'\I/N =<y, '\I/N[O] — 0. (2.5)

The line with an arrow reflects the integration in the Duhamel operator. In contrast to T,

we note that the distribution of \I/N is not stationary in time. Naively, one may expect
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that \}N has spatial regularity —1/2 + f—. Namely, one would expect spatial regularity
3. (—1/2)— from the cube of the random initial data e, a gain of one spatial derivative
from the multiplier (V)~! in the Duhamel operator, and a gain of B derivatives from the
convolution with the interaction potential. In Proposition 5.1, however, we will see that

\I/N actually has spatial regularity f—, which is half of a derivative better. The additional

gain is a result of multi-linear dispersive effects. We now decompose our solution u 5 by

writing
Uy =T+ %x + wy. (2.6)

The remainder wy has initial data wy[0] = o,, and solves the forced nonlinear wave
equation

(—8%—1+A)w1v

= Pan[ (V5 (Pan (T4 +uw)) ) o (14N + )= 02

= P<y [Z(V x (PsNT' Py ('\I/ + U)N))PSNT—MN Py ('\I/ + wN)) 2.7)
(v (Paw (NP +uw)) ) P 2.8)
+2V s (Pant-Pen (N uw) ) Pew (NX + ) (2.9)

+(V*\/:)P§N(\I/N.+UJN> (2.10)

+(V*(PSN(\IA'+wN))2)PSN('\K +wN>]. @2.11)

If we intend to construct (or control) wy via a “direct” contraction argument, we would
need the following conditions on the regularity of wy (uniformly in N):

(1) Due to the highxhigh—low interactions in factors such as P< NT - P<ywpy, the reg-
ularity of wy needs to be greater than 1/2.

(2) Due to “deterministic” nonlinear terms such as (V * (P<ywy)?) P<ywy, the regu-
larity of wx needs to be greater than or equal to the deterministic critical regularity,
which is given by 1/2 — B.

Clearly, the first regularity condition is more restrictive. Unfortunately, the contribution of

the first two summands (2.7) and (2.8) has regularity at most 1/2—. The lowxlowxhigh

interaction gains one derivative from the multiplier (V)~! in the Duhamel operator, but
does not benefit from the convolution with V' and does not experience any multi-linear
dispersive effects. Thus, we are “e-away” from a working contraction argument. As was
observed in [36,37], the term responsible for the low regularity exhibits a paracontrolled
structure. Even though P< NT - P<ywy is not well-defined for a general wy at spatial
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regularity 1/2—, we will see in Proposition 7.8 below that it is well-defined for a para-
controlled wy at the same regularity! We therefore decompose the solution wy into two
components: a paracontrolled component Xy at regularity 1/2— and a smoother nonlin-
ear remainder Yy at a regularity greater than 1/2.

Before we can define the decomposition, we need to introduce our paraproduct oper-
ators.

Definition 2.1 (Paraproduct operators). Let € > 0 be the fixed parameter from Section 1.3
and let f, g, h: T3 — R. We define the lowxhigh, highxhigh, and highxlow paraproducts
by

f@g= Y Py f-Pwmg.

N1<N>/8

fGg= > Pyf-Pyg.
N2/4<N1<4N;
f(%gg Z Ple'PNzg'

N1>8N>

We also define

fOg=E Qg+ fOg and fOg= fQg+ fOg.

In most of this paper, it will be convenient to replace “low” frequencies by “very low”
frequencies. To this end, we define the bilinear operator

f@gE Y Pnf Pn,g (2.12)

Ni{,N>:
N 1 §N2€
and the trilinear operator

@&Q|V «(fo)h)E Y Vo (Py, f - Pn,8)Pnsh. (2.13)

Ni,N2,N3:
Ni,N2<Nj§

Furthermore, we define the negations of (<) and by
R CIFENIENIOrS
(CEL@DW * (fm £V * (fh ~[@<EV * (f)h).

Remark 2.2. The notation “<” is seldom used in the mathematical literature, which is
precisely the reason why we use it in Definition 2.1. Its meaning would otherwise easily
be confused with projections to Ny < N,, N1 < N3, or N; < N, which are again more
common, but less suitable in our situation than N; < N;. Comparing our notation for the

operators (<) and , it may seem more natural to write
v (f2@x
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instead of (2.13). We found, however, that the notation in (2.13) is much cleaner once it is
combined with the stochastic objects. We also point out that the negation of (<) is not ).

We are now ready to define Xy and Y. We define the paracontrolled component X y
by Xn[0] = 0and

(=2 — 1+ A)Xy = PSN[Z(V * (PsNT- PSN('\IK n XN>)P5NT)

+2(V # (P<nT- P<y (Yw) @ P=n?)

+ (v (Pan (\I/‘ + wN)>2) @ Pl (2.14)

Remark 2.3. As far as the author is aware, the operator has not been used in
previous work on random dispersive equations. The reason for introducing the operator
lies in the first term in (2.14), which contains P< NT - P<y X . In order to define this term
(uniformly in N), the spatial regularity of X alone is not sufficient. It is also difficult to
use the structure of Xy, since this term appears in the evolution equation for X (and not

for Y ), and hence one may run into a circular argument. By using , however, this
problem does not occur, since we can borrow a small amount of regularity from the third

argument in (D& Q|(V * (P<nT- P<yXn) P<n). We mention, however, that using
has a small drawback, which is explained in Remark 9.11.

We also did not include any component of My P<x Y in the second term of (2.14). It
turns out that the contribution coming from the (<)-portion of the renormalization can be
controlled at regularities bigger than 1/2 and is therefore placed in the evolution equation
for Yy below.

As determined by our choice of X, the nonlinear remainder Yy satisfies Y [0] = o,,
and

(=02 =1+ A)Yy

- 2PSN[(_' )(V x (PsNT. Py (\I/N'JFXN))PsNT)
—MNPSN(\I/N' +XN)] (2.15)

+ P<n [2(V # (P<nY- P<y(YN)) (T @) Popt) — My P<y(Y) (2.16)

+ (V * (PgN ('\I/' + U)N>>2) (7®) Ppt (2.17)
+ 2V (Pant- Py (N 4w ) ) Paw (N + ww) (2.18)

+ (VL) Py (\I/ + wN) (2.19)

+ (V * (PSN (\I/' n wN)>2)P5N (\I/' + wN)]. (2.20)
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To facilitate the analysis in the body of this paper, we further organize the terms in the
evolution equation for Y. We write

(=02 — 1 + A)Yy = So + CPara + RMT + Phy, (2.21)

where the stochastic objects So, the contributions of the paracontrolled terms CPara, the
random-matrix terms RMT, and the physical terms Phy are defined as follows:
We define the individual stochastic objects by

e (v 4 (pent pan () ) — st e (7).

(2.22)
(@@ I & @@V (Pert e (N2 Per)

— My Py (\I/) (2.23)

‘\IJﬁ‘ SN \/;)pﬁN\I/:, (2.24)

'L*L&T)JA” =V (PsN\I/N. : PsNT> PsN\K, (2.25)
% = (V * (PSN\K)Z)PSNT, (2.26)

(—E)&E L7 (PSN\I/N)Z (—R) Pyl (2.27)
We then define
So = Sopn
= PsN[2 (T@«E) w +\T»JA¢'+ (—@)% +2'%LI)JA¢'].

(2.28)

In works on singular SPDEs, such as [48], the paradifferential operators are usually placed
at the joints of the different lines. The advantage is that it works for arbitrary “trees” and
can accommodate multiple paradifferential operators. Since this level of generality will
not be needed here, we prefer our notation, since it is slightly easier to read.

We define

CPara = CParay (XN, wN)
=2P<y [((_' @@V * (P<nT- P<nXn)P<nT) — My PsNXN)]
+2P<N[V * (P<nT@ Py Xn)P<nwy]

+ 2P5N[V % (PSNT(%PSNXN)PSA,\K]. (2.29)
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In our analysis of CPara, we will use the double Duhamel trick, i.e., we will replace X
by the Duhamel integral of the right-hand side in (2.14).
The random matrix term is defined as

RMT = RMTN(YN, wN)

def

= Pon[(V /) P<ywn] (2.30)
+2P_N[(V % (P<nT- P<n(YN) (TP Ponl) — My Py (Yy)]. (2:31)

Our reason for calling (2.30) the random matrix term lies in the method used in its esti-

mate. We will view the summands as random operators in wy and Yy, respectively, and

estimate the operator norm using the moment method (as in [30, Proposition 2.8]).
Finally, we define the physical term by

Phy = Phyy (Xn. YN, wn)

et PSN[ZV x (PSNT« PEN\I/N')PstN (2.32)
+2(V (PSN.\I/: Peywy ) (TQ@) Pen? (2.33)
F2V x (PsNT@PSNwN)PsN\IK (2.34)
20 # (P10 Pen Y Pen ™K (2.35)
+2V * (P<n1@ P<ywn) P<ywy (2.36)
+ 2V % (P<yYEO P<NYN)P<ywy (2.37)
+ (V # (P<ywy)?) (TQ) Pep? (2.38)

+ (Ve (Pav(NP o+ uw)) ) pen (NP Huw)]| @39

Similarly to RMT, we call Phy the physical term due to the methods used in its esti-
mate. We point out, however, that (2.33) and (2.34) are “hybrid” terms and their estimates
rely on both random matrix techniques and physical methods. In the estimates of the
other terms in Phy, we also make use of the refined Strichartz estimates by Klainerman—
Tataru [45].

2.2. Multi-linear master estimate

In this subsection, we combine all multi-linear estimates from Sections 5-8 into a single
proposition, which we refer to as the multi-linear master estimate (Proposition 2.8). In
particular, the multi-linear master estimate will include estimates of So, CPara, RMT,
and Phy, even though the proofs of the individual estimates are quite different. Before we
can state the multi-linear master estimate, however, we require additional notation. For
the definition of the function spaces X**? and L., we refer to Definitions 4.1 and 7.1.
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Definition 2.4 (Types). Let ¢ C [0, c0) be a bounded interval and let ¢: J x T3 — R.
We say that ¢ is of type

o Tifp=T1,

\I/ ifp = \I/N for some N > 1,

w if ”ﬁo”sxh.h(g) < land ZL1~L2 ||PL1T' Psz”L?Hx—“Bl (4xT?) =1

Xifo=PnI[lg,PCtrl(H, P<y T)] for a dyadic integer N > 1, a subinterval $o C ¢,
and a function H € LUl (o) satisfying || H ||¢u(g) < 1,

Let 1,02, ¢03: 4 x T3 > Rand 77,75, T3 € {T, \} ,w, X,Y}. We write

(01.92) Z (71, T

if either ¢; is of type 77 and ¢, is of type T3 or ¢; is of type 7, and ¢, is of type 73.
Furthermore, we write

(1. 92:93) £ (7. T2: T3
if (91, 92) = (71, T) and @3 is of type T3.

Remark 2.5. The types w, X, and Y are designed for the functions wy, Xu, and Yy
from Section 2.1. Our notation for the type of (¢1, ¢2; ¢3) respects the symmetry in the
first two arguments of the nonlinearity (V * (¢1¢2))¢@3. We also mention that the types w
and X implicitly depend on e. In Section 9, we will therefore refer to the types w and X
as w*® and X°®, respectively.

In the next lemma, we show that functions of type X and Y are multiples of func-
tions of type w. This allows us to prove several estimates for functions of type X and Y
simultaneously.

Lemma2.6. Let A> 1, T > 1, and let { = {(e,s1,52,k,0,7, by, b) > 0 be sufficiently
small. Then there exists a Borel set Oype(A, T) S /2=« (T3) satisfying

P(e € OPP(A,T)) > 1 — ¢ Lexp(—2AY)
and such that the following holds for all e € @Lylﬁz(A, T):Ifo:d x T3 = Ris of type X
orY, then T~* A7\ ¢ is of type w.

Proof. We treat the types X and Y separately. First, we assume that ¢ is of type X,
and hence there exists a dyadic integer N > 1, a subinterval o € &, and a function
H e L(go) satisfying || H ||¢u(g,) < 1 such that ¢ = Py I[l4, PCtrl(H, PsNT)]~
Using the inhomogeneous Strichartz estimate (Lemma 4.9) and Lemma 7.3, we obtain

I P<n X llgs1.og) S 110 PCOIH. P<n Dl 26 11 g ps)

5 T” H”&)-/%(g)” T ||L;’°H;1_l+8s(gXT3) 5 T” b ”%;1/2*’((']1‘3)'
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This is bounded by T4 on a set of acceptable probability. Using Proposition 7.8, we find
that, on a set of acceptable probability

> Pt PLz‘p”LfH;““l(gxqu) < T*A|lH | 2o < T*A.
Li~Lo

By combining both estimates, we see that 7=* 47 1¢ is of type w.
Second, we assume that ¢ is of type Y. Then we have [|@]lqsi.0 gy < [@llops2.b gy < 1.
This implies

Z ||PL1T'PL2¢||L%H;481(2XT3)
Li~L>

-5
STI/Z Z L’I ZHPLlT”L?me;l/z*K(ngS)”PL2¢||L?OH;2(gXT3)
Li~L;

ST M o2 grers)

As above, this is bounded by 7'/2 4 on a set of acceptable probability. By combining
both estimates, we see that T~1/2471¢ is of type w. ]

In order to state the multi-linear master estimate, we need to introduce a multi-linear
version of the renormalization in (1.16).

Definition 2.7 (Renormalization). Let § be a compact interval, let ¢;, ¢, @3 be as in
Definition 2.4, and let N > 1. Furthermore, assume that

type

(1 p2:03) # (1.1 D).

Then, we define the renormalized and frequency-truncated nonlinearity by

2V x (P<ng1 - P<n92) P<n@3:
(V *\2)P<ngs if (p1.02) Z (1. 1),

w |V (PanT- Pango) Pan = My Paner it (o) = (M1, ) 0
V% (P<ngr- PanDP<n 1 — My Pyor if (92,03) Z (T, 1),

V x (P<n¢1 - P<ng2) P<n@3 else.

type
If (p1,02) # (T , T), we define the action of the paradifferential operators (<) and
on the renormalized and frequency-truncated nonlinearity by

WV ok (P<n@1 - P<n92) D Pangs: EV % (P<yg1 - P<ng2) @ P<ngs,

(3V * (P<no1 - P5N¢2)P§N¢3:) = (V * (P<n¢1 - P§N¢2)P§N‘P3)’

which does not involve a renormalization. We also define the negated paradifferential
operators by
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Vx (P<n¢1 - P<yg2) (—E®) Poygs:
Z .V % (P<n@1 - P<yg2) P<n@s: —:V % (P<y¢1 - P<n92) D P<no3:,

(T @&Q)(V * (P<ne1 - P<np2) P<np3)
=V % (P<ng1 - P<ng2) P<no3: —(3V * (P<n¢1 - P<ng2) P<n¢3:),

which contains the full renormalization.

Equipped with our notion of types and the renormalization, we can now state and
prove the multi-linear master estimate.

Proposition 2.8 (Multi-linear master estimate). Let { = {(e,s1,52,4,1, 1 ,b+,b) > 0 be
sufficiently small, let A > 1, and let T > 1. Then there exists a Borel set Oy (A, T) C
%x_l/z_'c (T3) satisfying

P(e € Oe(4, 7)) = 1 - exp(—£4°) (2.41)

and such that for all e € ©pp (A, T) the following hold:
Let § < [0, T] be an interval and let N > 1. Let o1, ¢2,¢3: 3 x T3 — R be as in
Definition 2.4 and let

@) 2 (LD (L ),
() If (1, 92:903) Z (T, \I/; . (1.x: 1), then

[(C@&@D(V * (Pengr - P<ng2) P<ngs:) | gsa-tns—10gy < TA.

type

i) If (p1.02:03) = (1. Y: V) oror.gx # Yand o3 = 1, then
[:V % (P<y@1 - P<y@s) (T(®) P§N(p3:||sxsz—l,h+—l(g) <7134,
(iii) In all other cases,
[:V 5 (P<ng1 - P<ng2) P<n @3l a1 g < TP0A.

Remark 2.9. The frequency-localized versions of each estimate in Proposition 2.8 gain
an 7n’-power in the maximal frequency scale. Furthermore, functions of the type \I/ can
be replaced by \I/. as defined in (3.4). For more details on these minor modifications,
we refer the reader Eo the proof of the individual main estimates (Sections 5-8).

Proof of Proposition 2.8. 1t suffices to prove the estimates with A on the right-hand side
replaced by CA€, where C = C (51,82, b, b4, €). Then the desired estimate follows by

replacing A with a small power of A and adjusting the constant £. In the following, we
freely restrict to events with acceptable probabilities.
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Proof of (i). If (1, ¢2; ¢3) has type

. (T \I/ ; T) we use Proposition 5.7,

° (T , X; T), we use Proposition 7.9.
Proof of (ii). If (g1, ¢2;93) Z (T, Y, T), this follows from Proposition 6.3. Using Lem-

ma 2.6, we may assume in all remaining cases that ¢, and ¢, have type \I/ or w, as

long as we obtain the estimate with 78 instead of T3%. If (¢;, ¢2: ¢3) has type
o ( \} , \I/ ; T), we use Lemma 7.4 and Proposition 5.10,

e (w, \I/ ; T), we use Lemma 7.6 and Proposition 8.12,

o (w,w; T), we use Lemma 7.6 and Proposition 8.6.

Proof of (iii). Using Lemma 2.6, we may assume that all functions ¢; are of type T,
\I/ , or w, as long as we prove the estimate with 718 instead of 73°. If no factor is of

type T, the desired estimate follows from Propositions 5.1 and 8.10. The remaining cases
can be estimated as follows: If (¢1, ¢2; ¢3) has type

SRE \I ), we use Proposition 5.8,

(1. 7 w), we use Proposition 6.1,

(1, % ; \} ), we use Proposition 5.10,

(1, \I/ ;w), we use Proposition 8.12,

(T ,W; \I/ ), we use Lemma 8.8 and Proposition 8.12,

(T , w; w), we use Proposition 8.7 and Lemma 8.8. [

2.3. Local well-posedness

In this subsection, we obtain our first local well-posedness result. It is phrased in terms of
the ambient measure P and the random structure is based on the Gaussian initial data e.

Proposition 2.10 (Structured local well-posedness with respect to the ambient measure).
Let M > 1,let A>1,let0 <1 < 1,andlet{ = {(e,s1,52.k,1,1,bs,b) > 0 be suffi-
ciently small. Denote by éﬁ';“‘l“b(A, T) the event in the ambient space (2, ¥) defined by the
following conditions:

(i) Forany N > 1, the solution of (2.1) with initial data ¢ = e + o\, exists on [0, t].

(ii) For all N > 1, there exist wy € X*V2([0, t]), Hy € LA([0, t]), and Yy €
X520 ([0, t]) such that
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on()e=10) + \I/N'(r) +wy(t).
wn (1) = P<y I[PCul(Hy, P<yD(t) + YN (1)

forallt € [0, t]. Furthermore, we have the bounds

lwn lagsi o qo,epy» 1 HN o, enys 1YN lagsz b 0,27y = A4

Z ”PLIT'PszN”LrZHx_‘ml ([0,‘[]XT3) 5 A
Li~L,

(iii) Forall N,K > 1,

[®nr]® — Pklr] o.ery < Amin(N, K)77

¢ lgesep—q

We further require that
| Hy — Hi llzaqo.ey: 1 YN — Yillgsob oy < Amin(N, K)™"".
If Atb+=0 < 1, then :C?\}’b(A, T) has a high probability and
P(£37°(4, 7)) = 1 =" exp(=£A°). (2.42)

Remark 2.11. The superscript “amb” in Ij‘l}“b(A, 7) emphasizes that the event lives in
the ambient probability space. The first item (i) is only stated for expository purposes.
Indeed, since (i) is a soft statement and does not contain any uniformity in the frequency-
truncation parameter, it follows from the global well-posedness of (2.1) (which is also not
uniform in N). The interesting portions of the proposition are included in (ii) and (iii),
which contain uniform structural information about the solution and allow us to locally
define the limiting dynamics.

By combining Theorem 1.1 and Proposition 2.10, we easily obtain the local well-
posedness of the renormalized nonlinear wave equation on the support of the Gibbs
measure.

Corollary 2.12 (Local well-posedness for Gibbsian initial data). Let0 <t <1 andlet{ =
L(€, 81,82, 6,1,1,by,b) > 0 be sufficiently small. Then there exists a Borel set £(t) C
%x_l/z_'c (T 3) such that ® y [t] & converges in Cto%;l/z_K([O, 7] xT3) as N — oo and

pE(£(x) > 1 - exp(—Lt75). (2.43)

Corollary 2.12 shows that the limiting dynamics ®(¢) ¢ = limy_co Py (¢) & are
locally well-defined on the support of the Gibbs measure. However, it does not contain
any structural information about the solution, which will be essential in the globalization
argument (Section 3). The main difficulty, which was described in detail in Section 2.1, is
that the free component of the initial data e is only defined on the ambient space. Never-
theless, in Proposition 3.3 below, we obtain a structured local well-posedness theorem in
terms of e.



Invariant Gibbs measures for the three-dimensional wave equation 1965

We first use the structured local well-posedness result for the ambient measure (Propo-
sition 2.10) to prove the unstructured local well-posedness for Gibbsian random data
(Corollary 2.12). Then we present the proof of Proposition 2.10.

Proof of Corollary 2.12. Let M > 1 and let A satisfy Ar?+~2 < 1. We define a closed
set £(A,7) C %;I/Z_K(T3) by requiring that ¢ € £(A4, ) if and only if

(a) forany N > 1, the solution of (2.1) with initial data e exists on [0, 7],
(b) forall N, K > 1,

[On(2)e— Pk(2) 0||L?O%£7K([O’T]X1F3) < Amin(N, K)™".

It is clear from the definition that £(7) C £ (A, t). We emphasize that £ (A, 1) is defined
intrinsically through ¢ and does not refer to the ambient probability space (2, ¥, IP).
From the definition of cf‘;\}“b (A, 7) in Proposition 2.10, it follows that

LA, 1) C {o+0y € £(A4, 7).
By using the representation of the reference measure in Theorem 1.1, we deduce that
Lawp (e + o) = vjy. This yields

V2 (£(A, 7)) = P(e 40y € £(A4,7)) > P(LE(4, 7)) > 1 — ¢ exp(—¢AY).

By using the quantitative version of the absolute continuity /JLfEI < vi?, in Theorem 1.1,
we obtain

p& 2T\ £(A, 1)) S vE (T2 (T?)\ £(4, 1) 71
< lexp(—¢(1— g1 A%).

After adjusting the value of ¢, this yields the desired estimate (2.43) with u% replaced
by uy. Since £(A4, 1) is closed in %, 1/27€(T3) and a subsequence of Wy weakly con-

verges to u2 , we obtain the same probabilistic estimate for the limiting measure u3. m

Proof of Proposition 2.10. As discussed in Remark 2.11, (i) follows from a soft argument.
We now turn to the proof of (ii), which is the heart of the proposition. We let B = c A€,
where ¢ = c(e, 51, 52, b+, b) is a sufficiently small constant.

Using Theorem 1.1, Lemma 2.6, Proposition 2.8, and Proposition 5.1, we may restrict
to the event

{o € OR(B. D} N (e € OB D} I poop /24 g0 113y = B

gving

We now define a map

Let oy = F O oulgyzenssy < BY. 2440

Ty = (Cnx, Twvy): T2([0, 7)) x L2:8([0, 7)) — X2 ([0, 7]) x X2 ([0, ])
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by

Tnx(Xn,Yn) = Poy I[2<V * (PsNT' P5N<\I/N + XN))PsNT>
+2(V * (P<nT- PgN(YN))®P§NT) V * P<N .\I/ + wN ®P<NT]

and

Ty (Xn,Yn) =T +1[Soy + CParay (T x(Xn, Yn), wy)

+ RMTy (Yy, wy) + Phyy (Xn. Y. wy)],
where wy = Xy + Yn. We emphasize our use of the double Duhamel trick, which is
manifested in the argument 'y x (Xn, Yn) of CParay. Our goal is to show that I'y is
a contraction on a ball in X51-2([0, £]) x X524([0, £]), where the radius remains to be
chosen.

Using Lemmas 7.4 and 7.6, it follows that there exists a (canonical) Hy =
Hy (Xy, Yy ) satisfying the identity

Tn.x (Xn.Yn) = P<y I[PCtil(Hy, P<y)]
and the estimate
2 2
||HN||§£M([0,T]) 5 B + ”XN”ﬁrsl’b([(),‘c]) + ”YN”%.Q b( 0,7])° (245)

Using the energy estimate (Lemma 4.8), the inhomogeneous Strichartz estimate (Lemma
4.9), Lemma 7.3, and 51 — 1 + 8¢ < —1/2 — «, we obtain

ITNx (XN YW lgs1.0 0,21 S IPCUICH N P Dlzsi=1.0-1 0,21
IPCtl(Hy, P<yT)

A

L22 B 7 ([0,2]xT3)

A

1
©27 [PCUICHN . <N T oo 311 0 cpers)

A

1
~ T2b ||HN ”iﬂ/ﬂ[([o,ﬂ) ” T ||L?°H;171+8€ ([O,r]XT3)

S 2 2 2
5 T2b B(B + ”XN”%slAh([OJ]) + ||YN||%52.})([0J]))°
(2.46)
Using the multi-linear estimates from Proposition 2.8, which are available due to our
restriction to the event (2.44), and the time-localization lemma (Lemma 4.3), we similarly
obtain

||FN,Y(XN, YN)”wzsb([o,t])
<I9 loes2.5 0,27 + IS0 + CPara + RMT + Phy||ys,-1.6-1 0 1)
< B + t7+7||So + CPara -+ RMT + Phy|| s, —1.5; -
S B+ B+ XN

(X))

*51-5([0,7]) + ” Yn ||Ex§‘2 ([0 ‘r])) (2.47)
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By combining (2.46) and (2.47), we obtain, for a constant C = C(¢, 51, $2, b4, b),

|| FN (XN 5 YN) ||5x51 -b([o,r])xﬁcslb([o,r])

< CB+Ct™+ (B> + | Xn |} p H YN

2 (o (2.48)

S2"’([O,r]))'
Since C4tb+7%B2 < 1/100, which follows from 2+7% A < 1 and our choice of B, we
see that 'y maps the ball in X512 ([0, 7]) x X*2:2 ([0, ]) of radius 2CB to itself. A minor
modification of the above argument also shows that I'y is a contraction, which implies
the existence of a unique fixed point (X, Yn ) of I'y satisfying

||XN ”EISI ’h([O,T])’ ||YN ||Ex‘s‘2’b([0,‘[]) < 2CB. (2.49)
Using (2.45), we obtain
Xy = Py I[PCtrl(Hy, P<yD]

with Hy satisfying || Hn ||l<u(o,)) < B?. Finally, using the triangle inequality and the
condition e € @Lylgz(B , 1) from (2.44), we find that wy = Xy + Yy satisfies

||U)N ||stl.b([05r]) f 4CB,

. 2 (2.50)
o 1P PLwn s ) S B2

Li~L>

Since B = c A€, (2.49) and (2.50) yield the desired estimates in (ii).

We now turn to (iii). This is a notationally extremely tedious but mathematically minor
modification of the arguments leading to (ii). Similar modifications are usually omitted
in the literature and we only outline the argument. In the frequency-localized versions of
our estimates leading to (ii), we always had an additional decaying factor N;a’z(/, where
Nmax Was the maximal frequency scale (see Remark 2.9 and Sections 5-8). So far, this
was only used to sum over all dyadic scales, but it also yields the smallness conditions in
(iii). Indeed, one only has to apply the same estimates as above to the difference equation

(Xy — Xk, YN —Yg) = 'n(Xn,YN) — Tk (Xk, Yk). L]

2.4. Stability theory

In this subsection, we prove a stability estimate (Proposition 2.14) on large time intervals.
Strictly speaking, the stability estimate is part of the global instead of the local theory, but
the argument is closely related to the proof of local well-posedness (Proposition 2.10).
While the stability estimate in this section is phrased in terms of e, it can be used to
obtain a similar estimate in terms of e (Proposition 3.8). This second stability estimate
will then be used in the globalization argument.

In order to state the stability result, we introduce the function space Z, which captures
the admissible perturbations of the initial data.
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Definition 2.13 (Structured perturbations). Let 7, N, K > 1 and #y € [0, T]. For any
€ %’;1/2_'((11"3) and Z[tg] € #;' (T 3), we define

: O
1 Z120]ll% 0,71, 1:10,N.5) = Zéngm maX(HZ [t0]ll ge31 13y ”ZO[IO]”J(;2(T3)7

Y0Pt Pz L2 741 o113y
Li~L>

I:V % (P<nT- P<n 2°) (7 @) PsNT:||3cs2“~b+“([o,T])’
|(=[@<@DEV * (Pt P ZD) Pant) a1 0.1 )

where the infimum is taken over all Z5[ty] € #3' (T3) and Z°[to] € %32 (Ti)\satisfying
the identity Z[to] = Z[to] + Z°[to] and the Fourier support condition supp Z"[te](n)
{n € Z3:|n| < 8max(N, K)}. Furthermore, we wrote Z", Z°, and Z for the correspond-
ing solutions to the linear wave equation.

The notation Z 1?, and Z 5 is motivated by the paradifferential operators used in their
treatment. The contributions of Z§, and ZY are estimated using (<) and , respec-
tively.

Itis clear that, for fixed parameters T, 7y, N, and K, the maximum is jointly continuous
in Z°[to] € 5" (T?3) (satisfying the frequency-support condition), ZP[te] € #52(T3),
and & € ¥, 1/27% This is the primary reason for including the frequency support con-
dition, since the sum in L; and L, would not otherwise be continuous in Z O[to]. In
particular, the norm || Z [#o] |5 (10,77, 111, N, k) 18 Borel-measurable in Z[to] € F;2(T3) and

e c %;I/Z_K.

1t0,

Proposition 2.14 (Stability estimate). Let T, A > 1, and let { = { (€, 51,52,%,0,1 ,b+,b)
> 0 be sufficiently small. There exists a constant C = C(¢, 51, 52,b4,b_) and a Borel set
Ol (A, T) 7 /> (T3) satisfying
P(e € O}in(4,T)) = 1 - " exp(—¢A°)

such that the following holds for all e € O (A, T):

Let N,B>1and0 <0 <1, let § C[0,T] be acompact interval, and tgy & min . Let
iiy: g x T3 — R be an approximate solution of (2.1) satisfying the following assump-
tions:

(A1) (Structure) We have the decomposition
Uy = T + iv + Wy.
(A2) (Global bounds) We have

||wN||§xA'1<b(J) <B and LZL ”PLlT' PLZwN||L%H;481(f,’xT3) =B
1~L>
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(A3) (Approximate solution) There exist Hy € LM(F) and Fy € g2 Lot —1 (&) sat-
isfying the identity
(=97 — 1+ D)ty = Py :(V * (P<yiin)*) P<niin:
— P<y PCl(Hy . P<n1) — Fy
and the estimates
IHNllzugy =0 and ||FNlgsr-1.61-14) < 0.

Furthermore, let Z y|[to] € Hy' (T3) be a perturbation satisfying the following assump-
tion.

(A4) (Structured perturbation) There exists a K > 1 such that

1Z1t0]ll5 (g, 12003 5) < O-

Finally, assume that
2 40

(A5) (Parameter condition) C exp(C(A4 + B)>+="T"+7%)0 < 1.

Then there exists a solutionuy: § x T3 — R of (2.1) satisfying the initial value condition
unto] = tnlto] + Zn|to] and the following conclusions:

(C1) (Preserved structure) We have the decomposition

MN=T+ ;N +LUN.

(C2) (Closeness) The difference uy — Uy = wy — Wy satisfies
2 40
lun =N llosioegy < C exp(C(A + B)P+PTP+77)6,

2 40
Z ||PL1T' PL2(uN_uN)”L$H;451 (4xT3) <C exp(C(A+B)b+—b Tb+—b)9_
Li~L>

(C3) (Preserved global bounds) We have

lwn llgsi.ocq) < B and Y ||PL1T-PszN||L%H;4sl(ng3)SBg,
Li~L>

2 40
where By = B + C exp(C(A + B)?+ 2 T5+7)4,

As mentioned above, the proof of Proposition 2.14 is close to the proof of local well-
posedness. The most important additional ingredient is a Gronwall-type argument in (-2 -
spaces, which is slightly technical due to their nonlocal nature in the time variable.

Proof of Proposition 2.14. Let N, B,0, $,to,un,Wn, Hn, Fn, Zy, ZIE, and Z;\), be as
in the statement of the proposition and assume that (A1)—(AS) are satisfied. We make the
Ansatz

un(t) =un() +un () + Zn (@),
where the nonlinear component vy (#) will be decomposed into a paracontrolled and
a smoother component below. Based on the condition uy[tg] = Un[te] + Zn][to], We
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require that vy [to] = 0. Using assumption (A3) and the fact that Zy solves the linear
wave equation, we obtain the evolution equation

(=97 — 1+ Aoy = Py :(V x (P<n(iin + vy + ZN)?)) P<n iy + vy + ZN):
— Py «(V * (P<niin)?) P<niiy:

+ Py PCtl(Hy, P<y1) + Fy.
Inserting the structural assumption (A1) and using the binomial formula, we obtain
(=07 — 1+ Ay
- PsN[Z V% (PsN (T n \I/' n wN) Py (uy + ZN)) Pyt

+V x (P<n (v + Zn))?) P<nT
+ PCtl(Hy, P<ny1)

+2V s« (Pen (T4 \1/ +wy ) Py oy + Zy)) Pen ('\I/' +wy)
+ Py (V % (:P<y(iiy + vn + Zn)%)) Py (vy + zN)] + Fy.

We then decompose vy = Xy + Yn, where Xy is the paracontrolled component and
Y is the smoother component. Since vy [fg] = 0, we impose the initial value conditions
Xn[to] = 0 and Yy [to] = 0. Similarly to Section 2.1, we define X and Yy through the
evolution equations

(=2 —1+ A)Xy = Pey [2(1/ « (P<nT- Py (Xy + ZJ)) PnY)
+2V % (P<n1- Py (Yy + ZR) @ P!
2V % (PsN (\I/' + wN) Py (Xy + Yy + ZN)) @ Pyt
+V % ((Pen(on + Zn)) @ Penl+ PCutl(Hy, PoyT)] (2.51)
and
(02 =1+ A)Yy = Pey[2 (T[@2E)) (V * (PenT- Pan (X + Z§) PenT)
+2:V % (P<nt- Py (Yy + Z3) (T Q) PonT:
+2V x (Pen (\1/' +wn ) - Py (o + ZN)) (@) Pt
+V x (P<n vy + Z3))?) (T @) Pyl

+2V s« (Pen (T4 '\I/ +wy ) P oy + Z)) PSN('\K +wy)

+ (V * (P<n(iin +vn + ZN)*)) P<n (vn + ZN)] + Fy. (2.52)
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Since the nonlinearity in (2.51) and (2.52) is frequency-truncated, a soft argument yields
the local existence and uniqueness of X and Yy in C to%’)il and Cto%;z, respectively.
Since X*?(¢) embeds into CO%5 (g x T3) for all s € R, the solutions exist as long as
the restricted 12~ and X*2°?-norms stay bounded.

In order to prove that X and Y exist on the full interval § and satisfy the desired
bounds, we let T be the maximal time of existence of X and Y on . We now proceed
through a Gronwall-type argument in X*-®-spaces. We first define

Inilto, T*) = [0,00), 1+ IXN lloes1 -2 11,1y F IYN Napsad g,y

We emphasize that we neither rely on nor prove the continuity of fy. By Lemmas 4.4
and 4.8, there exists an implicit constant Cg, = Cg,(s1, 52, b) such that

gn (1) = Cen(Ir.1(—07 = 1+ D) Xn |y —1.0-1 g)
+ || 1[t0’t](—a% - 1 + A)YN||%x2—l.h—l(R))

satisfies fy (1) < gn(¢) forallz € [tg, Tx). Due to Lemma 4.4, g (¢) is continuous. Now,
let T > 0 be a step size which remains to be chosen and assume that ¢, ¢’ € [tg, T%) satisfy
t <t' <t+rt. Using Lemma 4.3, we find that for an implicit constant C = C(s1, 52, b, b4.),

gn(t)
= Con (a0, (=07 =1+ D) XN g1 =1.0-1 gy + 1t (=07 =1+ D) YN [lpso—1.6-1 ))
+CEn(|| l(t,t’] (—a?—l + A)XN ”5{51 —Lb—1(R) + ” 1(1‘,[’] (_a%_ 1+ A)YN ”%52_1'}’_1 (R))
< gn()+CtP+70 (=2 =1+A) Xy llops1—1.64-1 @
+ (=07 = 1+ A)YNlgsa-104-1¢ 7))
<gn(@)+ Ctb+_b(||(—3f -1+ A)XN||5[51_1'b+_1([t0,t/])
107 = 1+ DYV lgso—104 -1 0)-

Similarly to the proof of local well-posedness (Proposition 2.10), we can use Lemma 2.6,
Proposition 2.8, and Proposition 5.1 to restrict to the event

{0 € OB (A, T)} N {0 € OFF(A T N I o172 o1y = A}

N {sup H \I/N ’
N
By combining assumptions (A2)—(A4), and the multi-linear master estimate, a similar
argument to the proof of Proposition 2.10 yields

< T3A}. 2.
L€~ ([0,1]xT3) — (2.53)

‘L’b+—b(||(—8% -1+ A)XN||&,5171,b+71([t0’t,]) + ||(—3% -1+ A)YN||%s271,b+71([t0’t/]))
S TO+=b (A + B + fn ()6 + fn(@)).
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Altogether, we have proven for all ¢,¢" € [to, Ty ) satisfying ¢t < ¢’ <t + 7 the estimate

f) <g(t) < gt) + CTP+72((A + B)* + fn ()0 + fn(t).

Using g(tp) = 0 and a continuity argument (Lemma 4.13), iterating the resulting bounds,
and assuming the conditions

C(A+ B)%T"0 <1/2 and 2CT°t>+72((A+ B2 +6)<1/4, (2.54)

we obtain
sup f(t) < sup g(r) < C(4+ B)*T/70. (2.55)

t€(tg,Tx) t€(to,Tx)
Using the case of equality in the second condition in (2.54) as a definition for 7, the first
condition follows from assumption (AS5). Recalling the definition of f, we obtain

2 40
te[stuPT )(”XN”frsl’b([to,t]) F YN lges20 qrg.01) = € exp(C(A + B)P+7TP+77).
04 %

This estimate rules out finite-time blowup on ¢ and implies that 7 = sup §. Together
with a soft argument, which is based on the integral equation for X and Yy as well as
the time-localization lemma (Lemma 4.3), we obtain

2 40
||XN ||%S1,b(g) + ||YN ||E‘X'S2'h(2) f C eXp(C(A + B) by—b Tb+_h ) (256)

With this uniform estimate in hand, we can now easily obtain the desired conclusions
(C1)—(C3). In order to obtain (C1), we (are forced to) choose

wy =Wy + Xy + YN+ Zn.

The conclusions (C2) and (C3) follow from (A4), (2.56), and the condition e € @E{Ez (A, T)
in our event (2.53). ]

3. Global theory

In this section, we prove the global well-posedness of the renormalized nonlinear wave
equation and the invariance of the Gibbs measure. As mentioned in the introduction, the
heart of this section is a new form of Bourgain’s globalization argument. In Section 3.1,
we prove the global well-posedness for Gibbsian initial data. We focus on the overall
strategy and postpone several individual steps to Section 3.3 below. In Section 3.2, we
prove the invariance of the Gibbs measure. Using the global well-posedness from Section
3.1, the proof of invariance is similar to that in Bourgain’s seminal paper [4].

3.1. Global well-posedness

We now prove the (quantitative) global well-posedness of the renormalized nonlinear
wave equation for Gibbsian initial data. In particular, we show that the structure

ch[t]o=T+’\I/N’+wN
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from the local theory (see Proposition 3.3) is preserved by the global theory. Here, the
linear and cubic stochastic objects are defined exactly as in (2.2) and (2.5), but with e
replaced by .

Proposition 3.1 (Global well-posedness). Let A, T > 1, let C = C(¢,s1,52,k,0,1 ,b+,b)
> 1 be sufficiently large, and let ¢ = C(€, 51, 82,k,1, 1, by, b) > 0 be sufficiently small.
Assume that B, D > 1 satisfy

def

B> B(A,T)E Cexp(C(A+T)®) and D> D(A,T)E Cexp(exp(C(A + T)C)).
(3.1)

Furthermore, let K > 1 satisfy the condition
Cexp(C(A+B+T)HK <1. (3.2)

Then the Borel set

€x(B.D.T)= ) ({. € HV2 (T3 wy (1) = Dy (t)e— T — ’\I/' satisfies

N>K

lwn llgsi.2qo,7y) = B and LX; 1P, 1 PLownl oz qo ey = B}
1~L2

—1/2—k (1 3y. o
Ni{e e T 27T | dnlr] e — Olr] oll cogsr go sy < DK })
satisfies the estimate

Jnf iy (Ek(B. D.T)) = 1= T¢™ exp(—¢A%). (3.3)

In the proof below, we need two modifications of the cubic stochastic object. We
define

‘% g 1[1[0,1—] (Z)O\VN’] and NT\M d:d I[I[O,‘L’](t)(w - .WM’)] (34)

Proof of Proposition 3.1. We encourage the reader to review the informal discussion of
the argument in the introduction before delving into the details of this proof.

Let 7 € (0,1) be such that 1/2 < Arb+=b <1 and J = T/t € N. We let B}, Dj,
where 1 < j < J, be increasing sequences which remain to be chosen. We will prove

below that our choice satisfies B; < Band D; < D forall 1 < j < J. We then have

Ex(Bj,D;, jtr) = m ({0 € %;I/Z_K(T3):w1v(t) = Dy(t)e— T— ‘\I/N‘ satisfies

N>K

”wN”ngl»b([o,jf]) < Bj and Z ||PL1T‘ PszN”L?%;‘ml ([0, 2]xT3) = Bj}
Li~L>

N {o €927 (T): [ @nlr) e — k] ol o o, yepersy < DiIK}):
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We now claim that for all M > K, under certain constraints on the sequences B; and
D; detailed below,

1S (Ex(By, D1, 7)) > 1 — ¢ Lexp(¢A4®) (3.5)

and

1S (Ex (B, Dj, jT)) = 1S (6x(Bj—1, Dj—1, (j — )1)) — L Texp(¢4%).  (3.6)

We refer to (3.5) as the base case and to (3.6) as the induction step. We split the rest of
the argument into several steps.

def

Step 1: The base case (3.5). We set By “ Aand D; E A If £(A, 7) is as in Proposition
3.3, we obtain £(4, 1) € Ex (B, D1, 7). This implies

15 (Ex(B1, D1,7)) > S (£(A, 7)) = 1 — ¢ exp(§4°).

Step 2: The induction step (3.6). We first restrict to the event

def

STP(A T, 1) = L(A, 1) N L(A,21) N SU™(A, T, 1) N SV°(A, T, 7) N §5°(A, T, 7).

(3.7)
Using Propositions 3.3, 3.5, 3.7, and 3.8, which also contain the definitions of the sets in
(3.7), we obtain
1 (SEP(A, T, 1)) = 1 - ¢ Vexp(64°).

Using the invariance of /1,}%, under ®,s, we also obtain
o (Pa[r] '€k (Bj—1, Dj—1,(j — 1)7)) = n% (Ex(Bj—1. Dj—1.(j — D1)).

In order to obtain the probabilistic estimate (3.0), it therefore suffices to prove the inclu-
sion

SEP(A, T, 1) N Ppr[t] ' €k (Bj—1, Dj_1,(j — 1)7) € Ex(B;, D;, jT).  (3.8)

For the rest of this proof, we assume that ¢ € $&P(A, T, 1) N Py [r] '€k (Bj—1, D)1,
(j = 1)) and N, M > K. To clarify the structure of the proof, we divide our argument
into further substeps.

Step 2.1: Time translation. We rephrase the condition © = ®ps[r]e € Ex(Bj—1, Dj—1,
(j — 1)7) in terms of e.
Since © € Eg(Bj—1,Dj—1,(j —1)7), we deduce for all ¢ € [z, jr] that

Oyt —1)Oyt]e = Dyt —1)o =t —1) + \I/ (t — 1) + w6 — 1),
where w1 [0, (j — D] x T? — R satisfies

gm
Wiy arlleesi o go,i-1yep = Bi-1-

. grn < )
LZL L PszN’M||L%H;481([0,(J'—1)r]><11‘3)_B]_l'
1~L2
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The superscript “grn” emphasizes that w%nM appears in the structure involving ¢ . Fur-
thermore, we also have

| PNt — <) Pasle] e = Pxlt — Tl @ar[] ¢l ot (o jepurs) = D; K. (3.9
Since ¢ € §m¢(A, T, 7) (as in Proposition 3.5), it follows for all ¢ € [r, jr] that
v —neulde =10+ Yo - Ko +uwuo. 310
where wy pr: [7, j7] x T3 — R satisfies
lwn st lgst e jey: Do NPT PLownal 2 y—son g oopsy STOABj1. - G
Li~L

Our next goal is to replace ®pz[7] in (3.10) by ®y [z], which is done in Steps 2.2 and 2.3.

Step 2.2: The cubic stochastic object. In this step, we correct the structure of
Dp(t — 1)Dpr[7] #, as stated in (3.10), by adding the “partial” cubic stochastic object.
We define iiy: [t, jt] x T3 — R by

T (1) = Ol = )yl o + Ko () = 1) + ’\I/N’(r) Fuvm@).  (3.12)

While iy depends on M, this is not reflected in our notation. The reason is that, as will be
shown below, % is a close approximation of uy (t) = @y (¢) #, which does not directly
depend on M. In order to match the notation of # 5, we also define Wy = wy,ar, which
leads to

v () =10 + \1/ (t) + By (©).
Using & € $°°°(A4, T, 7) (as in Proposition 3.7), it follows that there are Hy € LAL([z, jt])
and Fy € X527 15+~1([1, j]) satisfying the identity
(=87 — 1 + A)iiy — P<y (V * (P<niIN)?) P<niln:
= —P_yPCul(Hy, Py — Fy  (3.13)

and the estimate

|V e, e | F llgsamtog—1 o e < T*A*B3 K77 (3.14)
X ([z,jzD J

Thus, iy is an approximate solution to the nonlinear wave equation on [z, jt] x T?3.
Furthermore,

liin (] — @nt — Tl Py[e T4 A*B} K. (3.15)

Vll cogep— (fz,jrpx3) =

Step 2.3: Stability estimate. In this step, we turn the approximate solution % into an
honest solution and fully correct the initial data at ¢ = t.
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We now verify assumptions (Al)— (AS) in Proposition 3.8, where we replace B by
T*ABj_;andset 0 = T4°‘A4BJ3_1K n Assumption (A1) holds with Wy = wy,ar due
to (3.12); (A2) coincides with the bounds (3.11); and (A3) coincides with (3.13) and
(3.14).

For (A4), we rely on ¢ € £(A, ) (as in Proposition 3.3). First, we have

ﬁN[T] = CDM[T] *+ N\M [T] T[‘L’] + M [‘L'] + N\w ‘L'] + U)M[T]

= el + \I/N‘[ﬂ + wulr]
wirle = 1)+ "ol + wle]

Using (IV) of Proposition 3.3, this implies that Z [r] - Dy [t] — U n[t] satisfies

Second,

IZN Tt 2o, 7, 15ev,00) < AT*KTT (3.16)

which yields (A4). Finally, as long as B; < B, (AS5) follows from the parameter condition
(3.2). Thus, assumptions (A1)—(AS) in Proposition 3.8 hold. Since € $5°(A, T, ), we
conclude for all ¢ € [z, j7] that

on()e = 10) + ’\I/N’(t) + wy (0), (3.17)

where the nonlinear component wy satisfies

I lles1 gz, jer) LZL 1Pea T Prywnaell o sopers)
1~L2

<TYABj_1 + 1 <2T“AB;_;. (3.18)
Furthermore,
~ C —n
|PN[t]®— uN[t]||C?%(§—K([r’jr]xqr3) <Cexp(C(A+ Bj-1 +T)")K™". (3.19)
By combining (3.9), (3.15), and (3.19), we obtain
| @] — k[t — t]dp[r] ~||Co%,ﬁ-x([r )
< (Dj_1 + T*A*B? | + Cexp(C(A+ B;_1 + T)°)) K~ " (3.20)

By combining the general case N > K in (3.20) with the special case N = K, using the
triangle inequality, and increasing C if necessary, we also obtain

IPnlr]e — Pxlt]*ll cogp—r gz, jrrxts)

< (2Dj_1 + Cexp(C(A+ B + T))K™™.  (321)
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Step 2.4: Gluing. In this step, we “glue” together our information on [0, 27] (from local
well-posedness) and [z, jt] (from the previous step).
Since ¢ € £(A,27) (as in Proposition 3.3), the function wy uniquely determined by

oyt e=T10)+ ’\I/N’(z) +ww (1)
satisfies

lwn s b qo2eersy < A Y ||PL1T-PszN"L%HX—M]([0’2T]XT3) < A.
Li~L»

Furthermore,
[@x 1o — @Klr] ol cosmr o prpury < AK
Together with (3.18), (3.21), and the gluing lemma (Lemma 4.5), which is only needed

for the frequency-based X*1"-space, we obtain

I llgsin o jepersy 2o 1P T Prowy 2491 g0, jerxr)

Li~L
e <Crl2breyp . (3.22)
and
[Pn(r] e — Pkr] ’||C?7€)/:_K([O,jr]x']l‘3)
< (2Dj_1 + Cexp(C(A+ Bj_y + T)O)K™".  (3.23)

Step 2.5: Choosing B;j and D;. Based on (3.22) and (3.23), we now define

def

B; = Ct'>7°T%AB;_y, and D; =2Dj_; 4+ Cexp(C(A + Bj—1 + T)°).

1
Step 3: Finishing up. We recall that 1/2 < Atb+=2 <1, J =T/t ~ TA>+~? B, = 4,
and D, = A. After increasing C if necessary, we obtain

By <Cexp(C(A+T)°)<B and D;<Cexp(C(A+ By +T)°)<D. (3.24)

This implies &(By, Dy, Jt) C Ekx(B, D, T). By iterating (3.6) and using the base case
(3.5), we obtain (after decreasing ¢)

war (Ex(B.D.T)) = iy (Ex(By. Dy, J1) 2 1 = Tt exp(=¢4%).
This completes the proof. ]

In Proposition 3.1, we obtained a quantitative global well-posedness result. In particu-
lar, we obtained (almost) explicit bounds on the growth of wy, which are of independent
interest. In the proof of Theorem 1.3, however, a softer statement is sufficient, which we
isolate in Corollary 3.2 below.
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Corollary 3.2. Let T, K > 1 and 0 > 0. Define a closed subset of %, /2« (T3) by

def

SK(T.0)Z (e T2 (T): sup [ B, [1]e— P, 1]

ol 00t i s 50}.
NiN>>K Ct Ty ([-T,TIxT3)

(3.25)
Furthermore, we define the event

s=() () U sk(T.o). (3.26)
TeN 0eQ-o K>1

Then
Klgm i (Sk(T.0)) =1 and p2(S)=1. (3.27)

Proof. We first prove the limit identity. Using the time-reflection symmetry, it suffices to
prove the statement with Sk (7, 8) replaced by

def

SET.0)Z{e T (T sup [ By, [1]o = O, 1] ol o

Ni,N>>K

([0,T]xT3) = 9}

For any fixed T, A, B, D > 1 satisfying (3.1) and 6 > 0, and for all sufficiently large
K, L > 1 satisfying K > L, we have

SE(T.0) 2 6L(B.D.T),
where &, (B, D, T) is as in Proposition 3.1. Thus,

im i (Sk(T.0)) = liminf u (€L(B. D.T)) = 1 = {' T exp(¢A4°).

After letting A — o0, this yields the first identity in (3.27).
Using Theorem 1.1, we find that a subsequence of ,uf& converges weakly to u& . Since
Sk (T, 0) is closed, this implies

_ . ® . .
L= lim i (Sx(T.0)) < liminf u Sk (7.9)) < ug’g(g Sk(T.0)).

This yields the second identity in (3.27). |

3.2. Invariance

In this subsection, we complete the proof of Theorem 1.3. The global well-posedness
follows from Corollary 3.2 and it remains to prove the invariance. Our argument closely
resembles the proof of invariance for the one-dimensional nonlinear Schrodinger equation
by Bourgain [4]. The only difference is that we work with the expectation of test functions
instead of probabilities of sets, since they are more convenient for weakly convergent
measures.
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Proof of Theorem 1.3. The global well-posedness follows directly from Corollary 3.2.
Thus, it remains to prove the invariance of the Gibbs measure ©& .

Let 7 € R be arbitrary. In order to prove that ®oo[t]sul = n&, it suffices to prove
for all bounded Lipschitz functions f: % /27 (T3) — R that

E,o [f(®oolt] )] = E o [£(+)]. (328)

We first rewrite the left-hand side of (3.28). Using the global well-posedness and domi-
nated convergence, we have

E,o [/ (@xli]o)] = Jim E,e [f(@nli]e)]

Using the weak convergence of ufa to u& (from Theorem 1.1) and the continuity of
®y [t] (for a fixed N), we have

Jim o [f(@yl]e)] = lim (lim E,e [f(@nl]e)]).

We now turn to the right-hand side of (3.28). Using the weak convergence of /L}?ﬁ, to u&
and the invariance of /1’5, under @[], we obtain

E,g[f(e)] = lim Eof(s)] = lm E,e [f(Oxlr]e)]
Combining the last three identities, we can reduce (3.28) to

lim sup [E,¢ Lf(@nl]e)] —Ee [f (@] #)]] = 0. (329)

Wenow let T > 1 be such thatt € [T, T],let @ > 0, and let K > 1. We also let S (7, 6)
be as in Corollary 3.2. Then

limsup [E,,¢ [f(@n[1])] ~E, g [f(@arlt] ¢)]]

N,M —oc0

IA

sup [E, e [f(@n[t]o)] ~E, o [/(@alr] )]
N.M>K

IA

sup EM%[I{O € Sk(T.0)}| f(Pn[t]®) — f(Pplr]#)]]
N,M>K

+ sup E s [1{e & Sk(T.0)}|f(Pnlr]e) — f(Pulr] )]
N,.M>K

IA

Lip(f) -6 + 2||fllmﬂjug(uf?}(%;l/2_" \ 8k (T. 9)).

In the last line, Lip( f) is the Lipschitz constant of f and || f||co is the supremum of f.
Using Corollary 3.2, we obtain the estimate (3.29) by first letting K — oo and then letting
6 — 0. |
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3.3. Structure and stability theory

In this subsection, we provide the ingredients used in the proof of global well-posedness
(Proposition 3.1). As described in the introduction, we will further split this subsection
into four parts.

3.3.1. Structured local well-posedness. In Proposition 2.10, we obtained a structured
local well-posedness result in terms of e and PP. In Corollary 2.12, we already used
Proposition 2.10 to prove the local existence of the limiting dynamics on the support of
the Gibbs measure /L?g, but did not obtain any structural information on the solution. We
now remedy this defect, and obtain a structured local well-posedness result even on the
support of the Gibbs measure.

The statement of the proposition differs slightly from the earlier Proposition 2.10
for two reasons: First, we formulate the result closer to the assumptions in the stability
theory (Propositions 2.14 and 3.8), which is useful in the globalization argument. Second,
using the organization of this paper, it would be cumbersome to define the paracontrolled
component of @y (¢) ¢ intrinsically through e, i.e., without relying on the ambient objects.

Proposition 3.3 (Structured local well-posedness with respect to the Gibbs measure).
Let A>1,let 0 <t <1, let « > 0 be a sufficiently large absolute constant, and let
L =1C(e, 81,52, 6,1,1,by,b) > 0 be sufficiently small. Denote by ¢ a generic element of
%x_l/z_'c (T3) and by £(A, ) the Borel subset of%’x_l/z_K (T 3) defined by the following
conditions:

() Forany N > 1, the solution of (2.1) with initial data e exists on [—t, t].

(Il) Forall N > 1, there exists (a unique) wy € X5-2([0, t]) such that

ove =10+ L0 +uy ),
Furthermore,

lwonllgsioqoey <A and Y0 1Py T PLywnllap—ss o s < 4.
Li~L» :

(II) Forall N,K > 1,
[®n[t]e— Dklt] e ||CP%£—K([OJ]XT3) < Amin(N, K)™7.
V) Forall N,K,T > 1,

|wk (7] ”ft’”([O,T],T;r,N,K) < AT?,

”wN [T] - wK[T]”Z’([O,T],T;r,N,K) < AT® min(N, K)_’? .
If AT+~ < 1, then £(A, ©) has high probability under u}?ﬁ, forall M > 1, and

Wiy (£(A4, 7)) = 1= exp(—£4°). (3.30)
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Remark 3.4. Since we prove multi-linear estimates for & instead of e in Section 9, a dif-
ferent incarnation of this paper may omit Proposition 2.10 and instead prove Proposition
3.3 directly. The author believes that our approach illustrates an interesting conceptual
point: The singularity of the Gibbs measure does not enter heavily into the construction
of the local limiting dynamics (see Corollary 2.12), but does affect the global theory.
We believe, however, that this would be different for the cubic nonlinear wave equation.
The reason is an additional renormalization in the construction of the ®3-model (see e.g.
[1, Lemma 5: Step 3]).

We recall that the £-norm appearing in (IV) is defined in Definition 2.13.

Proof of Proposition 3.3. By using Theorem 1.1 and adjusting the value of ¢, it suffices
to prove the probabilistic estimate (3.30) with the Gibbs measure u}?ﬁ, replaced by the
reference measure vf}. Using the representation of the reference measure from Theorem
1.1, we have
v = Lawp (e +0y).
By applying this identity to the Borel set £(4, 7), we obtain
vl‘a(éﬁ(A, 7)) = P(e 4+ 0, € £(4,7)).

Let B = cA® < A, where ¢ = c(e, 51, 52, k, 0,1, b+, b) > 0 is sufficiently small. Let
ig}‘b(B, 7) C 2 be as in Proposition 2.10. We now show that

P({e+oy & L(A, D} NELG (B 1)) < 3¢ exp(—£A°). (3.31)

Property (i) in Proposition 2.10 directly implies its counterpart. The main part of the
argument lies in proving (II). Instead of (II), we currently only have the property

(ii) For all N > 1, there exist wj € %sl’b([O, t]), Hy € 2A([0. t]), and Yy, €
524 ([0, ) such that for all 7 € [0, 7],
on(0)e =10+ 0 +wy o).
wiy (1) = P<y I[PCul(Hy, P<nD](@) + Y30).
Furthermore, we have the bounds
Wi llecs1b 0.7y 1 H v lzaqto, ey 1Y ay llogsz g0,y < B-

Z ||PL1T Psz}V'”L%Hx_‘wl ([0,r]X']I‘3) S B
Li~L>

Comparing (ii) and (II) forces us to take

wN=T—T+\I/N'—'\1/N'+w§V. (3.32)

We now have to prove that the right-hand side of (3.32) satisfies the estimates in (II). Due
to the decomposition ¢ = e 4 o,,, we have

1--¥.
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Using Theorem 1.1, we see that outside a set of probability < exp(—cB?/¥) under P,

I lapstgo,07) S B-

Using Proposition 9.1, we find that outside an event with probability < ¢ ™! exp(—¢B%)

under P,
\h = \1/ + 1[PCul(HY, P<y D] + Y2, (3.33)

where H) € 2AL([0, 7]) and Y € X528 ([0, 7]) satisfy
IHP lsaqo.p < B and Y lgssqo.a < B-

To ease the reader’s mind, we mention that the proof of Proposition 9.1 is based on the
algebraic identity

{N: }N +2 iN—i_ iN‘i‘ il\' +2 iN—‘l_ iN,
which uses mixed cubic stochastic objects. Finally, we have

wy = P<y I[PCtrl(Hy, P<y D] + Yy
= P_y I[PCul(H )y P<y )] — P<y 1[PCtl(H}y, P<y D] + Y.

Using the inhomogeneous Strichartz estimate (Lemma 4.9) and Lemma 7.3, we find that

”PSN I[PCtrl(Hl/Vv PSN?)]”SISZb([(),-C]) S ”PCtrl(H]/Vs PsNT)”L?OH;Z_I([O,‘E]XT?’)

S NH lszao.en | Tl oo grsa=1+5¢ g epsy S B
Thus,
wy = Py I[PCtrl(Hy ., P<y )] + Y. (3.34)

where
Hy =Hy+HY and Yy =Yy - + VP — PoyI[PCul(H}y, P<yT)]

satisfy || Hn | 2o, |1 YN ||5r52,b([0,t]) < B2. Using Lemma 9.8, we also obtain

lon s ooy S B and 37 1Py T PLywnl s g g.ps) S B
Li~L;

Inserting our choice of B, this completes the proof of (II).

Statement (III) directly follows from (iii) of Proposition 2.10. It now remains to
prove (IV). We emphasize that T > 1 is arbitrary, which will be useful in the stability
theory below. We focus on the estimate for the difference, since the proof of the estimate
for wk [t] is easier (but similar). Using Lemma 9.9, we may restrictto e € ©;) (B, T) and
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o € OF,(B, T). Then we can replace the estimates in Z([0, 7], 170, N, K) by estimates
in £([0, T], T; t0, N, K). After rearranging (3.34), we have

wy = P<y I[PCul(Hy + H , Pay D] + Y5, =T+ Y + Py 1[PCul(HS, Py )]
Thus, we obtain
wy[t] —wk[r] = Z§ g[r] + Zy k7],

where

def

Z§ k1] £ Py 1PCul(Hy + HY, P<y DIl7]
— Pog I[PCul(Hy + HS, P<x D][r]

and

def

ZR k1 2V =Yg + Y0 -7
+ Py I[PCul(H, Py D] — P<g I[PCul(HS, P<gD)].

The desired estimate then follows from the frequency-localized version of the multi-linear
master estimate (Proposition 2.8), (iii) in Proposition 2.10, and Proposition 9.1. |

3.3.2. Structure and time translation. In the globalization argument, we use the invari-
ance of the truncated Gibbs measures under the truncated flows to transform our bounds
from the time interval [0, (j — 1)] to [z, jz]. As the reader saw in the proof of Proposition
3.1, however, the structural bounds are now phrased in terms of ¢ = ®ps[t]e. The next
proposition translates the structural bounds back into .

Proposition 3.5 (Structure and time-translation). Let A, T > 1, let 0 < t < 1, let
j € N satisfy jt < T, let @« > 0 be a sufficiently large absolute constant, and let { =
C(e,51,82,6,10,1 by, b) > 0 be sufficiently small. There exists a Borel set $i™¢(A, T, 1) C
£ (A, 7) satisfying

Wiy (8" (A, T, 1) = 1= exp(=¢AY) (3.35)
for all M > 1 and such that the following holds for all & € §°(A, T, 1):

Let N, K, B > 1, and define © = ®k|[t]e. Let wjg\;?K € X512 ([0, (j — 1)7]) satisfy

(A1) (Global structured bounds in <)

ern
lwy, & lasi-» qo,j-1yep = B

X grn
LZL 7 PszN,K”L%H;““l([o,(j—l)r]xw) =B
1~L2

Define wy i [t, jt] x T® — R through the identity

U —1)+ <>\I/f(z —0) s -1 =10 + '\I/N’(z) - 0 + wnx 0.

(3.36)
Then we obtain the following conclusion regarding Wy k:
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(C1) Incomplete structured global bounds in e :

”wN,KngS]vb([r’jr]) < TaAB,

PRI AL PLywN KN o prtsn 1 rgersy = T AB.
Li~L,

Remark 3.6. The superscript “grn” in w;"\;flK stands for “green”, which is motivated by
the identity (3.36). We refer in the conclusion to “incomplete structured global bounds”
since the right-hand side in (3.36) does not yet have the desired form. The partial cubic

stochastic object
I N\K
T

is subtracted from it and hence we regard the structure as incomplete.

Proof of Proposition 3.5. Before we turn to the analytical and probabilistic estimates,
we discuss the definition and Borel-measurability of Stime(4 T 7). We let $i™(A4, T, 1)
be the intersection of £(A, t) with the set of & € #, 1/2-« satisfying the implication

gm

(A1)—(C1) for all N, K, B, and wfv“jK. For fixed parameters and a fixed function wy .,

the set of ¢ € #, 1/2-x satisfying (A1) and/or (C1) is closed and hence Borel-measurable.
Using a separability argument, it suffices to require the implication (A1)—(C1) for count-
ably many wi;nK, which yields the measurability of $1™(A, T, 7).

‘We now tu,rn to the analytical and probabilistic estimates. If ¢ € £(A4, ), it follows
from (II) and (IV) of Proposition 3.3 that

o =Ml + LTl + Zglrl
where the remainder Z g [7] satisfies
||ZK[T]”z([o,T],T;f,N,K) < AT“.
By applying the linear propagator to ¢ we obtain, for all ¥ > t,
Ta—n =10+ 0+ zx 0. (337)

where we recall from (3.4) that

W0 =100 %8210

Regarding the cubic stochastic object, we have

=) = 1o X2 = D))
= Moo IO + Moo (LLC -0 = LON@) (338
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Combining the algebraic identity

I[I[Osf] iK ](t) + I[l[t,oo) \0/N ](t) = ; N (t) - Y\T\K (t)
with (3.37) and (3.38), it follows that

W,k (1) = Wi (O) + Zk (1) + [ z00) (RGP C = 1) = L)) (3.39)

Equipped with the identity (3.39) for wy, g, it remains to prove (C1) on an event satis-
fying (3.35). The second and third summands in (3.39) can be treated using Lemma 9.8,
Proposition 9.12 (combined with (3.37)), and Lemma 9.13. Thus, it remains to prove (C1)
for the first summand in (3.39). Using (3.37), we have

> PO PLawile (=0l oot g, e,

Li~L»
< 20 1P T PLowRe Ol 2 51 g0 _yepersy (3.40)
Li~L,
P i/ Prwsle 41
py H L f(l) LW, HY U ([e, jo]xT3) 341)
Ly~L;
+ 3 NPL Zk (1) - PLywy e (t — Ol 2 5991 o jeper” (3.42)
Li~L»

The first term (3.40) can be bounded using assumption (Al); the second term (3.41) is
bounded by Corollary 9.3; and the third term (3.42) is bounded by Lemma 8.8. ]

3.3.3. Structure and the cubic stochastic object. In Proposition 3.5 above, the right-hand

side of (3.36) does not have the desired structure. In the next proposition, we will show

that adding the “partial” cubic stochastic object \I/N\K only leads to a small error in the
T

nonlinear wave equation.

Proposition 3.7 (Structure and the cubic stochastic object). Let T,A>1,let0 <t < 1, let

a > 0 be a sufficiently large absolute constant, and let { = ¢ (€, s1,52,%,1,1 ,b4,b) > 0 be
sufficiently small. Then there exists a Borel set S (A, T, 1) € Hx 12« (T3) satisfying

1S (S (A, T, 1)) = 1 — ¢ exp(—¢A°)

for all M > 1 and such that the following holds for all « € $°(A, T, 7):
Let NK,B > 1,1let j €N, let § = [t, jr] C[0,T), and let uygx: § x T> — R.
Furthermore, we make the following assumptions:

(A1) (Incomplete structure) There exists a wy,kx(t) € L* b () satisfying for all t € §
the identity

un () =10 + ’\I/N’(r) -0 + ok ).
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(A2) (Incomplete structured global bounds)

lwn g lgsioggy < B and Y|P, T- PLwN ko py=ts1 g pay = B
Li~L

Define a functioniiy: g x T3 — R by
ﬁN(l‘)ZUN,K(I)'i‘ ‘JI\K (t)

Then u y satisfies the following three properties:
(C1) (Structure) Forallt € &,

un(t) = T(l) +‘\kv‘([) + Wy (t), where Wy = wyK.

(C2) (Approximate solution) There exist Hy € LAM() and Fy € X2~ 10+71(4) sat-
isfying
(=97 = 1+ A)iiy — P<y «(V * (P<niIN)?) P<n iiN:
= (=07 — 1 + Aun,k — P<n :(V x (P<nun,g)*) P<NUNK:
— Py PCul(Hy, P<y1) — Fy
and
| Hn ll2acg) ||FN||%s2—l,h+—l(4) < T*AB? min(N, K)™".
(C3) (Closeness)
I8 1] = un. & [11] cogp—+ (gery < T*AB> min(N, K)™" .

Proof. We simply choose $°(A, T, ) as the set of all € % V276 \where the implica-

tion (A1)&(A2) —(C1)&(C2)&(C3) holds for all N, K, B, j, and wy, k. As in the proof
of Proposition 3.5, a separability argument yields the Borel measurability of $°°°(4, T, 7).
We now show that $°(A, T, 1) satisfies the desired probabilistic estimate. The first con-
clusion (C1) follows directly from the definition of #y. We now turn to the second

conclusion, which is the main part of the argument. First, we recall that \I/M solves
T

the linear wave equation on § = [r, jt]. Together with the definition of %y, this implies

(=07 — 1+ A)iiy — P<y :(V * (P<niin)?) P<niln:
— (=87 =1+ Mun,gx — P<y :(V * (P<yun)*) P<ntn,k:)

2
:P§N:(V*<P§NUN,K+P§N %N\K) )PSN(UN,K+ N\K):
T T

— Py (V% (P<nun,k)*) P<NUNK:.
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We emphasize that in the cubic stochastic object \}N\K , the linear evolution T enters at
T

a frequency 2~ min(N, K) in at least one of the arguments. Using the frequency-localized

version of the multi-linear master estimate for Gibbsian initial data (Proposition 9.12), we
obtain the conclusion (C2).

Finally, (C3) directly follows from the frequency-localized version of Proposition 9.1.

(]

3.3.4. Stability theory. The last ingredient for the globalization argument is a stability
estimate. The proof will rely on our previous stability estimate for Gaussian random data
from Proposition 2.14. As a result, the argument closely resembles a similar step in the
local theory, where we proved Proposition 3.3 through Proposition 2.10.

Proposition 3.8 (Stability estimate). Let T, A > 1, let 0 < v < 1, and let { =
L(e, 51, 82, Kk, 1, 0, by, b) > 0 be sufficiently small. There exists a constant C =
C(e,s1.52, by, b_) and a Borel set $®(A, T, 1) C %’;]/Z_K (T?3) satisfying

1y (0 € SyR(A, T, 1)) = 1 — ¢ exp(—¢A4°) (3.43)

such that the following holds for all & € $®(A, T, 1):
Let NyB>1,0<60 <1, and let § = [to, t1] € [0, T], where to,t1 € tZ. Let iy
J x T3 — R be an approximate solution of (2.1) satisfying the following assumptions:

(A1) (Structure) We have the decomposition
iv =T+ i/ + y.

”wN”g[SlJ’(g) <B and LX; ”PL]T : PL2wN||L%H;451(ng3) =B
1~L2

(A2) (Global bounds)

(A3) (Approximate solution) There exist Hy € LM(F) and Fy € g2 Lot -1 (&) sat-
isfying the identity

(—8% —14+ Ay = P<y:(V % (PgNﬁN)Z)PSNﬁN:
— Py PCtrl(Hy, P<y1) — Fy
and the estimates
IHN lgacgy <0 and | Fnllogso-1.64-14) < 6.

Furthermore, let Zy[to] € H:' (T?3) be a perturbation satisfying the following assump-
tion:

(A4) (Structured perturbation) There exists a K > 1 such that

1Z1t0]ll% (g, t500.n.5) = -
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Finally, assume that
(AS5) (Parameter condition) C exp(C(A+ B +T)¢)0 < 1.

Then there exists a solutionun:J x T3 — R of (2.1) satisfying the initial value condition
unlto] = tnlto] + Zn|to] and the following conclusions:

(C1) (Preserved structure) We have the decomposition

uy =T+ i/ + wy.

(C2) (Closeness) The difference uy —uy = wy — Wy satisfies

lun = Tw llsi.b gy = € exp(C(A + B + T)€)0,

D NPT PryCun = w2 y—ssi gy < € exp(C(A + B +T))0.
Li~L»

(C3) (Preserved global bounds)

lwnllgsi gy < Bo and ||PL1T-PszN||L12H;4sl(M3)539,
Li~L>

where By = B + C exp(C(A + B + T)€)6.

Proof. As in the proof of Proposition 3.7, we can define §*%°(A, T, ) through the implica-
tions (A1)—(AS) — (C1)-(C3) and prove its measurability using a separability argument.
It remains to prove the probabilistic estimate (3.43). Using Theorem 1.1, it suffices to
prove that
P(o+0y € 84, T.1) 2 1= ¢  exp(¢4”).

Using Lemma 2.6, Corollary 9.3, Proposition 2.14, Lemma 2.6, and Lemma 9.9, which
also contain the definitions of the sites below, we may restrict to the event

{o € ORP(A.T) N OWR(A.T) N OFE(A.T) N OF (4. T)}
N{oy € OF(A,T)NOP (A, T)). (3.44)

red red

Our goal is to use Proposition 2.14 (with slightly adjusted parameters). To this end,
we need to convert assumptions (A1)—(AS) involving & into similar statements based on e.
We let D > 0 be a large implicit (but absolute) constant, which may change its value
between different lines. We now let N, B, 0, &, uy, Wy, Hy, Fy, and Z y|to] be as in
(A1)—(A5). We then define wy [¢ — o] by

T+ N =18 +unle — ol

ﬁNZT-i- %1\ + wyle — o] + Wy.

which implies
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Using Corollary 9.3 and Lemma 9.7, we obtain

e i a 4D
TN llepsi.bqy < B and LZL 1P Y PLonl o y—ssn g ps) < T*AP B
1~L2

as well as
|wy[e — .]”E[Slvh(g) < T%AP,

2 1P T Prywle = olll oy casy sy < AP
Li~L>
Thus, (A2) in Proposition 2.14 is satisfied with B’ = 2T* AP B. A similar argument based
on Lemmas 9.7 and 9.9 also yields (A3) and (A4) in Proposition 2.14 with 8’ = 2T* AP B.
Furthermore, the stronger assumption (AS5) in this proposition implies (as long as C is
sufficiently large) that

2 40
C exp(C(A + B))o+—° Tb+—b)9/ <1
Thus, Proposition 2.14 implies that
2 40
||uN - l’ZN ”E,r_slb(g) S C exp(C(A + B/) b+7b Tb+7b)9/,

2 40
Z ||PL1T . PLz(MN _ﬁN)||L%H;481(§,’XT3) < CCXp(C(A + B/)b+*b Tb+*b)9/.
Li~L>

Arguing as above to replace T by T proves conclusion (C2). Conclusion (C3) then follows
from the triangle inequality and assumption (A2). ]

4. Ingredients, tools, and methods

In this section we provide tools that will be used throughout the rest of this paper. In order
to make this section accessible to readers with a primary background in either dispersive
or stochastic partial differential equations, our exposition will be detailed. We encourage
the reader to skip sections covering areas of their expertise.

In Section 4.1, we cover X*P-spaces, which are also called Bourgain spaces. The
XL -spaces will allow us to utilize multi-linear dispersive effects. In Section 4.2, we
present a continuity argument. In Section 4.3, we prove an oscillatory sum estimate for
a series involving the sine function. While the proof is standard, its relevance to disper-
sive equations is surprising and the cancellation was first used by Gubinelli, Koch, and
Oh [37]. In Section 4.4, we state several counting estimates related to the dispersive sym-
bol of the wave equation. The counting estimates play an important role in the estimates
of our stochastic objects. In Section 4.5, we recall elementary properties of Gaussian pro-
cesses, which have been heavily used in the first part of the series [12]. In Section 4.6,
we provide background regarding multiple stochastic integrals. This section has an alge-
braic flavor and the multiple stochastic integrals will be used to separate the nonresonant
and resonant components of our stochastic objects. In Section 4.7, we discuss Gaussian
hypercontractivity and its implications for random matrices.
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4.1. Bourgain spaces and transference principles

In this subsection, we recall the definitions and elementary properties of X*-?-spaces,
which are often also called Bourgain spaces. Heuristically, 2(**?-spaces contain space-
time functions ¥ which behave like solutions to the linear wave equation. This principle
will be made more precise through the transference principles below. We refer the reader
to [67, Section 2.6] and [33, Section 3.3] for a more detailed introduction.

Definition 4.1 (%s’b-spaces). Forany s,b € R and u: R x T3 — R, we define the X50-

norm by
def

lullges.o = 1{n)* (1Al = (n)>bﬁ(lyn)I|L§gg(RxZ3)- 4.1)
If § € R is any interval, we define the restricted norm by
ullges.p gy = inf {[[v]lgsn: v(E, X)|g = u}. 4.2)
We denote the corresponding function spaces by X*? and X*?(g), respectively.

In (4.1), we could have used the symbol (|A| — |n|) instead of {|A| — (n)). Since
(n) = |n| + O(1), this would yield an equivalent definition. Our first lemma shows the
connection between the *?-spaces and the half-wave operators.

Lemma 4.2 (Characterization of X%?). Lets,b € R and let u:R x T3 — R. Then

llotllgps.p ) < min I{V)* exp(Fit (V)ull 2 o (p3xm)- (4.3)
Furthermore,
lleells.o my ~ " u_rgsi)cg.b(R):mfx IKV)* exp(Fit (VDuzll 2 go r3xry- 4.4)
1;=u++u_

Proof. Using Plancherel’s identity, we find that
1(V)® exp(Fit (VDull 2 o (pasgy = 100)°(EA = (1) 0O 12 3 @z

The first estimate (4.3) then follows from ||A| — (n)| < | £ A — (n)|. The inequality “<”
in (4.4) follows from the triangle inequality and (4.3). The inequality “Z” follows by
defining u 4 via

u(A,n) = 1{£A >0} -u(A,n). (]

Our next lemma plays an important role in the local theory. It yields the required
smallness of the nonlinearity on a small time interval.

Lemma 4.3 (Time-localization lemma). Let —1/2 <b; <b, <1/2andlet1/2 <b < 1.
Let € S(R) be a Schwartz function and let 0 < © < 1. Then for all F € X>%2(R),

br—b
||1//(t/T)F||5xSvh1(R) St2 1||F||§xsvh2(R)’

b 4.5)
||F||:xssb1([0,r]) <t ”F”fx&b2([0,r])'
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Furthermore, for all u € X%? (R),

19t/ Dulleeso gy S T3Pl llgps.omy- (4.6)

A proof of Lemma 4.3 or a similar result can be found in many textbooks on dispersive
PDE, such as [67, Section 2.6] or [33, Section 3.3]. Since the second estimate (4.6) is not
usually found in the literature, we present a self-contained proof.

Proof of Lemma 4.3. By using duality and a composition, we may assume that 0 < b; <
by <1/2.Let Fy, F_ € X%P2(R) satisfying F = F + F_. Using Lemma 4.2, we obtain

I/ D) F sy S max [t/ 2V exp(FiL (V) Pl 2 g gy &)

Using interpolation between b1 = 0 and b; = b, as well as the fractional product rule (or
a simple paraproduct estimate), one gets for all f € H tb 2(R) the estimate

ba—b
/DS g gy S 7211 g (438)

Combining (4.7) and (4.8) yields the first estimate in (4.5). The second estimate in (4.7)
then follows from the first estimate and the definition of the restricted norms. Finally, the
second estimate (4.8) follows from the same argument, except that (4.8) is replaced by

”w(t/f)f”th(R) = ”V’(t/f)”[-[tb(]R)”f”th(R) S Tl/z_b”f”Hrb(]R)v 4.9)
which follows from the algebra property of H ,b (R). |

Lemma 4.4 (Restricted norms and continuity). Lets € R and let —1/2 < b’ < 1/2. Then,
for any interval § < R and any F € X5 (R),

Mg Fllges.or my S N llges.or y- (4.10)
Furthermore, if G € X5 (), then
”G”%s,b’(g) ~ “ lgG”gxs,b’(R) (41 1)
Finally, if to < inf g, then the map
g S ||1[t0,t]G||gxs.b/(R) (412)
is continuous.

Proof. We begin with the proof of (4.10). By using a reduction as in the proof of Lemma
4.3, it suffices to prove that

11480 ep gy = 18D g, “.13)

By writing 14 as a superposition of different indicator functions, it suffices to prove the
estimate for (—oo, a) and (a, co), where a € R, instead of . Using the time-reflection
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and time-translation symmetry of H tl” (R), it suffices to prove the estimate for § replaced
by (0, 00). Thus, it remains to prove

110,008 Ol ay S 18Ol oy (4.14)

This follows from (a modification of) the fractional product rule or a simple paraproduct
estimate.

We now turn to the proof of (4.11). By the definition of the restricted norms, we
clearly have the upper bound ||G [|qps.07 gy < 119G |50 (g)- Now, let G € X*P (R) satisfy
é|g = G. Using (4.10), we obtain

||12G||5xs,h’(R) = ||13G||gxs,b’(R) < ”G”sxs,h’(]R)-

After taking the infimum in G, this yields the other lower bound in (4.11).
Finally, we prove the continuity of (4.12). By a density argument, it suffices to take
G € X>V2(R). Forany 0 < 8 < 1/2—b and 11,1, € ¢, we deduce from Lemma 4.3 that

|||1[to,z1]G||9csAh’(R) - ||1[to,t2]G”5xS~b’(R)| = ||1(t1,tz]G”5xs~b’(]R) <ln _[2|8||G||SIS-1/2(JR)~
This implies the Holder continuity. ]

The next gluing lemma will be used to combine %***-bounds on different intervals.
While such a result is trivial for purely physical function spaces, such as L7 L%, it is

slightly more complicated for the I**®-spaces, since they rely on the time-frequency vari-
able.

Lemma 4.5 (Gluing lemma). Let s € R, let —1/2 < b’ < 1/2, let 1/2 < b < 1, and
let §, &1, $2 be bounded intervals satisfying $1 N\ 2 # @. Then, for all F:($1 U ¢2)
x T3 = R,

1 Fllgest (gyUg0) < N Nlogs.o gyy + I1F s (4, (4.15)
Furthermore, let T = |91 N J2|. Then for allu: (§1 U $2) x T3 = R,

lelloes.o gy Uy S 7722 Utllopso gy + Nelloes.o(g,))- (4.16)

Proof. We begin with the proof of (4.15). Using Lemma 4.4, we have

||F||sr~v~”/(glugz) IS ||15(1U42F||9c-v~b/(R) < ||151F||9cs’h’(R) + ||142\$1F||3cs~b’(R)
) ”F”acs,b/(gl) + ”F”sxsvb’(gz\gl) < ||F||5xx,b’(gl) + ”F”%s,b’(frlz)'

The proof of the second estimate (4.16) is similar. Instead of working with an actual
indicator function, we use a smooth cut-off function on the spatial scale ~ t and a variant
of (4.9) instead of (4.14). ]

Our last two lemmas were concerned with the behavior of X%?-spaces over small
or overlapping time intervals. In this respect, the L*-?-spaces are more complicated than
purely physical function spaces. We now turn to transference principles, which do not
have a direct analog in purely physical function spaces.
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Lemma 4.6 (Linear transference principle; cf. [67, Lemma 2.9]). Letb > 1/2, let s € R,
and assume that the norm | - ||y satisfies

le'® e* M uyly < Clluol s (4.17)
foralla € R and all ug € HZ. Then, for allu € Qsb,
pe
lully < Cllullgs.s- (4.18)

The linear transference principle allows us to reduce linear estimates for functions in
X5-P-spaces to estimates for the half-wave operators.

Corollary 4.7. Forany b > 1/2, s € R, any 4 < p < oo, any compact interval J C R,
and any u: J x T3 — C, we have

el coses sy S Nllsry, (4.19)
VY F4 23 2u() | p Lo rwray S (L4 1TDYP [ullgen gy, (4.20)
VY w2 po0 sy S A+ 1DV g (y- (4.21)

The corollary follows directly from the linear transference principle (Lemma 4.6) and
the Strichartz estimates for the linear wave equation.

The next lemma is the most basic ingredient for any contraction argument based on
X3P -spaces.

Lemma 4.8 (Energy estimate; cf. [67, Lemma 2.12] and [33, Lemma 3.2]). Let 1/2 <
b <1, lets € R, let § C R beacompact interval, let ty € &, and let

(=02 =1+ A)u = F. (4.22)

Then
lullges.o gy < (4 1ED>Uluelto]ll e + IF llogs—1.0-1(g))- (4.23)

The statement of Lemma 4.8 in [33,67] only includes intervals of size ~ 1. The more
general version follows by using the triangle inequality, iterating the bound on unit inter-
vals, and applying (4.19). The square in the pre-factor can likely be improved but is
inessential in our argument, since the stability theory already loses exponential factors
in the final time 7.

The most important terms in the nonlinearity can only be estimated through multi-
linear dispersive effects and hence require a direct analysis of the 3~ 1*~!-norm. How-
ever, several minor terms can be estimated more easily through physical methods. In order
to pass back from the frequency-based X~ 1*~1-space to purely physical spaces, we pro-
vide the following inhomogeneous Strichartz estimate.

Lemma 4.9 (Inhomogeneous Strichartz estimate in X*?-spaces). Let 1/2 < b < 1, let
s €R, let § R be a compact interval, and let F: § x T3 — R. Then

||F||§rsfl,bfl(g) 5 ||F||L%bH§71(g><T3)’ (424)
2b—1

1
IF llzs=10-1¢2) S A+ IFDIVY 7270 F 173473 g3y (4.25)
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Remark 4.10. For 0 <s < 1, we will often simplify the right-hand side of (4.24) by using
the fact that

2b— 1
bb s <4(b—1/2).

Proof of Lemma 4.9. We first prove (4.24). Using (4.19) and duality, we have

I F llocs—1=p¢gy S IF Lt =1 gxT3)-

By Plancherel, we also have

IF llocs—100g) S 1F Ml L2 gr3=1(g3)-

Using interpolation, this implies (4.24). The proof of the second estimate (4.25) is similar
and relies on duality, (4.20), Plancherel, and interpolation. [

When utilizing multi-linear dispersive effects, we will often use the following lemma
to estimate the *~1-#~~1-norm.

Lemma4.11. Lets € R and let T > 1. Let A be a finite index set and let (ny)qep C 73,
(B)act C R, and (cy)qen S C. Define

F(t,x) £ Z Ca eXp(i (g, X) + i16y). (4.26)
aEA

Then

£ {logs—1.6-=110,77)

b_—1 -1 _ =
< Tmiax” AP S i = na) ca RTAF (n) — ea))‘ pomay @)

aEA

Proof. Forany G:R x T3 — €, we have

IG lges—1.5-—1 @y = A1 = ()= (1) TG )2 2 Rz

< max [[(A + (m)> ="My G2 2wz
= max [(1)*="H ) T G F (n). I3 5 ez

We then apply this inequality to G(¢,x) = y(¢/T)F(t, x). |

Finally, we present an estimate for the Fourier transform of a (localized) time integral.

Lemma 4.12. Let T > 1 andlet A, A1, A, € R. Then

‘%(X(I/T) exoian) [ exp(itar’) dr’) (x)'
ST2HA=A =) 104+ (A= A) 7107 (4.28)
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Furthermore, if § < [0, T is an interval, then

t
7 (ermyepiinn [ 1500 i) )
0
STHA =M =A) 7'+ (A=2)TH{) " @29
Proof. We first prove (4.28). A direct calculation yields

7 (X(t /T)exp(itit) /0 t exp(iAat’) dt/) )

- %(z(m =) = FTG =), (430)

For |A2| 2 1, the estimate follows from the decay of }. For |A»| < 1, the estimate follows
from the fundamental theorem of calculus and the decay of ¥’. We have alsoused T > 1,
which implies that (7-)710 < (-)710,

We now turn to (4.29). Since the restriction to ¢ only appears in the integral, we can
replace g by its closure. We now let § = [t—,1+] C [0, T']. By integrating the exponential,
we have

/ 1g(¢")exp(idat’)dt’ = %(Cxp(l‘lz(t Aty)) —exp(ida(t At2))),
0 2

where x A y denotes the minimum of x and y. This implies
t
7 (X(t/ T)exp(iAt) / 14(t") exp(iAat’) dz’) )
0

= % /R x(@/T)yexp(i(A + A)t)(exp(ira(t Aty)) —exp(ida(t At)))dr.

The estimate then follows by distinguishing the cases [A1] < 1, [A1] > 1 = |A2], and
[A1l, |[A2] > 1, together with the triangle inequality and a simple integration by parts. =

4.2. Continuity argument

In this short subsection, we present a modification of the standard continuity argument.
The modification is a result of the possible discontinuity of [0, 7] 3 ¢ > [[ulos.6(jo,.)»
where u € X%?([0, T]) and b > 1/2. As a replacement, we will rely on the continuity
statement in Lemma 4.4. A different approach to this problem was obtained in [66, The-
orem 3], which yields the quasi-continuity, and may even yield the continuity (see the
discussion in [66, Section 12]).

Lemma 4.13 (Continuity argument). Let § = [to, t1), let f: J — [0, 00) be a nonnega-
tive function, and let g: § — [0, 00) be a continuous, nonnegative function. Let A > 1,
0 < 0,8 < 1, and assume that

f(0) < g(t) < g(to) + 8(A% + f(O)(f (1) + 6) (4.31)
forallt € [ty, t1). Furthermore, assume that

g(to) + 82460 <1 and 8(A*> +6) <1/4. (4.32)
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Then
f(t) < g(t) <2(g(to) + 8A4%0) forallt € [ty 1y).

Proof. The estimate (4.31) implies that
(1) < glto) + (A% + g(1)*)(g(1) + 6)
for all ¢ € [to, ;). Using the condition (4.32), we also have
g(to) + 8(A% + 4(g(to) + 84%60)*)(g(to) + 84760 + 0) < 3(g(10) + 8A4%0).
Using the standard continuity method (see e.g. [67, Section 1.3]) implies

g(t) < 2(g(to) + 8426) forallt € [tg. ;). [

4.3. Sine-cancellation lemma

In this subsection, we prove an oscillatory sum estimate which critically relies on the
fact that the sine function is odd. The same cancellation was exploited in earlier work
of Gubinelli-Koch—-Oh [37, Section 4] and we present a slight generalization of their
argument.

Lemmad4.14. Let f:R xR xZ3 - C,acZ3, T >1,let g C [0, T] be an interval, and
let A, N > 1. Assume that |a| < A < N. Furthermore, assume that for all |t|,|t'| < T,

|f@. ' ) <An)> | f@.d' )= [t —n)| < An)™*, [0y f(t.t n)| < An)™H
Then

sup sup
AER |t|<T

Z )(N(n)/o 14(¢")sin((r—t"){a+n)) cos((t—t")(n)) exp(iAt") f(¢,¢',n)dt’

nez3

<T?4%10g2+ N)N~L.  (4.33)

The dependence on A is not essential and can likely be improved. In all our applica-
tions of this lemma, A is negligible compared to N. We emphasize that the estimate fails
if we only assume that | £(¢,¢',n)| < A{n)~3. Indeed, after removing the truncation ¥y,
the corresponding sum could diverge logarithmically.

Proof of Lemma 4.14. Using trigonometric identities, we have

2 Z )(N(n)/o 14(t")sin((t — t"){a + n)) cos((t — t')(n)) exp(irt") f(z,t',n) dt’

nez3

t
=y )(N(n)/0 1g(t")sin((t — ") ({a + n) — (n))) exp(iAt) f(z,1',n)dt"  (4.34)

nez3

+ Z )(N(n)/ Lg(t"ysin((t —")({a + n) + (n))) exp(iAt’) f(z,1',n) dt’.
nez3 0 (4.35)
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We estimate the terms (4.34) and (4.35) separately. We begin with (4.34), which is more
difficult. Since |[{(a + n) — (n)| < A, we do not expect to gain in N through the integration
in ¢’. Instead, we utilize a pointwise cancellation. By using the symmetry n <> —n in the
summation, we obtain

2 32 awysin((c =)@+ n) = () (1. m)|

nez3

= ‘ Z )(N(n)(sin((t —t)({n +a) - (n)))f(t, ¢, n)

neZz3
+ sin((t —t)((n —a) — (n)))f(t,t’, —n)))
< D7 an@)sin((t — 1) ({n +a) — () + sin((t — ) ({n —a) — (n))| - | £ (.1 .n)]
neZz3
+ Z XN(n)lf(tvt/’n) - f(tst/v_n)|'
nez3

By the assumptions on f, the second summand is easily bounded by AN ~!. We now
concentrate on the first summand. Using a Taylor expansion, we find that

(n+a)—(n) = :I:% +O(A2NTY). (4.36)

Using the fact that the sine function is odd, we obtain

|sin((r — ") ({n + a) — (n))) + sin((t — ') ((n — a) — (n)))]
= [sin((t — ') ({n + a) — (n))) —sin(=( — ")((n — a) — (n)))|
<Tln+a)—(n)+ (n—a)— (n)| < TA>N~L.
Putting both estimates together and integrating in ¢/, we see that the first term (4.34) is
bounded by T2 A3N ~!, which is acceptable.

We now turn to the estimate of (4.35). Since (n + a) + (n) Z N, we expect to gain a
factor of N through integration by parts. We have

‘ Z )(N(n)/ Lg(¢"ysin((t — ")({a + n) + (n))) exp(iAt’) f(z,1',n) dt’

nez3

< max

Z )(N(n)/ lg(t"yexp(iAt’ £ it'({a +n) + (n))) f(t.t',n)dt’

nez3

Smax Y yn(n)
neZz3

1
1+|(a+”)+(”)il|(oil,lgtv(tt n)|+T sup |8t/f(tt n)|)

1
1+ [{(a+n)+ (n)£A|

< TAN 3 max N

2 XZJ ()

In order to finish the estimate, it only remains to prove that
1

2w DT @+ + 0 £ 4]

neZz3

<log(2+ N)NZ.
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Since the function x +— (x) is 1-Lipschitz, we can estimate the sum by an integral and
obtain

> an () 1 < [ e~ 1 d
L+ [{a+n)+(n) £ ™~ Jr3 L+ (¢ +a)+ (&) £

nez3

.

Due to the rotation invariance of the Lebesgue measure, we can then reduce to a =
(0,0, |a]). To estimate the integral, we first switch into polar coordinates (7, 6, ). Since
A < N, we see for fixed angles 0 and ¢ that r — (§ + a) + (£) is bi-Lipschitzonr ~ N.
After a further change of variables, this yields

o0
1
dé < N? Wr~N—d
£3 [0 N = v

< N2log(2 + N). n

1
/Rs M~ N e v ey v ® A

4.4. Counting estimates

In this subsection, we record several counting estimates. The counting estimates are the
most technical part of our treatment of So, CPara, and RMT. Fortunately, they can be
used as a black-box, and we encourage the reader to only skim this section during first
reading.

Before we state our counting estimates, we discuss the main ingredients and the differ-
ences between the nonlinear wave and Schrodinger equations. In contrast to the counting
estimates for the nonlinear Schrodinger equation, the counting estimates for the wave
equation require no analytic number theory. The reason is that the mapping n + (n) is
globally 1-Lipschitz, whereas the Lipschitz constant of n + |n|? grows linearly. This
allows us to reduce all (discrete) counting estimates to estimates of the volume of (con-
tinuous) sets. More specifically, we will use the fact that the intersection of (most) thin
annuli has a smaller volume than the individual annuli.

Another difference between the wave and Schrodinger equation is related to the sym-
metries of the equation. The Schrédinger equation enjoys the Galilean symmetry, which
is useful in obtaining “shifted” versions of several estimates. For instance, it implies that
frequency-localized Strichartz estimates for the Schrodinger equation are the same for
cubes centered either at or away from the origin. On the frequency side, it is related to the
Galilean transform

A m—a,A—2a-n+|al?),

which preserves the discrete paraboloid and plays an important role in decoupling theory
(cf. [25, Section 4]). It often allows us to replace conditions such as |n| ~ N in counting
estimates by the more general restriction |n — a| ~ N for some fixed a € Z>. In contrast,
the Lorentzian symmetry of the wave equation on Euclidean space does not even preserve
the periodicity of u: R x T3 — R. As illustrated by the Klainerman—Tataru—Strichartz
estimates (cf. [45] and Lemma 8.1), the frequency-shifted Strichartz estimates are more
complicated for the wave equation than for the Schrodinger equation. As will be clear
from this section, similar difficulties arise in the counting estimates.
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The last difference between the Schrédinger and wave equation we mention here is
a result of the multiplier (V)~! in the Duhamel integral for the wave equation. Together
with multi-linear dispersive effects, we therefore obtain two separate smoothing effects in
the nonlinear wave equation, which are related to the elliptic symbol (n) and the dispersive
symbol (|A| — |n]). In contrast, the Schrodinger equation only exhibits a single smooth-
ing effect related to the dispersive symbol A — |z|2. In most situations, we expect that the
combined smoothing effects in the wave equation are stronger than the single smoothing
effect in the Schrodinger equation. However, it may be more difficult to capture the com-
bined smoothing effect in a single proposition, as has been done in [30, Proposition 4.9]
for the Schrodinger equation.

In Section 4.4.1, we prove basic counting estimates which form the foundation of the
rest of this section. In Sections 4.4.2—4.4.7, we state several cubic, quartic, quintic, and
septic counting estimates. In order not to interrupt the flow of the main argument, we
placed their (standard) proofs in the appendix. In Section 4.4.8, we present estimates for
the operator norm of (deterministic) tensors. The tensor estimates are not (yet) standard
in the literature on random dispersive equations, so we include their proofs in the body of
the paper.

4.4.1. Basic counting estimates.

Lemma 4.15 (Basic counting lemma). Leta € Z3, let A, N > 1, and assume that |a| ~ A.
Then

sup #{n € Z>:|n| ~ N, |{a +n) + (n) —m| < 1} < min(4, N)"'N3. 4.37)

mezZ

We emphasize that the upper bound in (4.37) cannot be improved to N 2. The reason
is that |{a 4+ n) — (n)| < A, which implies that

sup#{n € Z>: |n| ~ N, [{a +n)—(n) —m| <1} = A7IN3,

meZ

As already mentioned above, the main step in the proof converts the discrete estimate
(4.37) into a continuous analogue. After this reduction, the estimate boils down to multi-
variable calculus.

Proof of Lemma 4.15. Since (§) = |&| + O(1), we may replace (-) in (4.37) by | - | after
increasing the implicit constant. Furthermore, since & +— (¢ + a) + (€) is globally Lips-
chitz, we see that the 1-neighborhood of the set on the left-hand side of (4.37) is contained
in

{E € R g~ N, |la+ €| £ 5] —m| < 1).

Since the integer vectors are 1-separated, it follows that

#{neZ|n| ~N, |la+n|+n|—m| <1}
< Leb({§ e R:[§] ~ N,

la + £ £ |&] —m| < 1}).
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We now decompose

Leb({§ € R*: [§] ~ N, [la + £| £ |§] —m| < 1})
S ). Leb({E €R%:[E| ~ N, |a+ & =my + O). [§] = ma + O(1)})

mi,mp€el:
lmi£tmy—m|<1

SN sup Leb({§ e R*:[E| ~ N.Ja + & = my + O(1), |E] = my + O(1)}).
mi,myeZ
In the last line, we use the fact that there are at most ~ N non-trivial choices of 71,. Once
my is fixed, the condition |m; £ my — m| < 1 implies that there are at most ~ 1 non-
trivial choices for mi. Thus, it remains to prove for |m;| < max(4, N) and |m,| ~ N
that

Leb({€ e R*:|&| ~ N, |a + &| = m1 + O(1), €] = ma + O(1)}) < min(4, N)"'N2.
(4.38)

Using the rotation invariance of the Lebesgue measure, we may assume that a = |a|es,

i.e., a points in the direction of the z-axis. By switching to polar coordinates, we obtain

Leb({€ e R*: |E| ~ N, |a + &| = my + O(1), |§] = my + O(1)})

S Nz/w/” Kr =ma+0()}1{v/]al>+2r|a| cos(6)+r2 =m;+0O(1)} sin(6) d6 dr.
0 0

The condition /|a|? + 2r|a|cos() + r2 = m; + O(1) together with |m| < max(A4, N)
implies that
(la| +7r)?  m?

cos(f) = 1— + —L 4+ @(max(4, N)AT'N7D). (4.39)
2|alr 2lalr

For a fixed r, this shows that cos(6) is contained in an interval of size ~ min(4, N)~!.
After a change of variables from 6 to cos(6), this yields

N2/°°/” 1{r=m2+(9(1)}1{\/|a|2+2r|a|cos(9)+r2=m1+(9(1)}sin(9)d9dr
o Jo

o0
< min(A4, N)_1N2/ {r =my + O)}dr <min(4, N)"'N?2.  (4.40)
0
|

Remark 4.16. Our proof of the basic counting lemma (Lemma 4.15) easily generalizes
to spatial dimensions d > 3. In two spatial dimensions, however, only weaker estimates
are available. The reason lies in the absence of the sine-function in the area element
for polar coordinates, which breaks (4.40). From a PDE perspective, the parallel inter-
actions in two-dimensional wave equations are stronger than the planar interactions in
three-dimensional wave equations. Ultimately, this requires a modification in the proba-
bilistic scaling heuristic and we encourage the reader to compare [28, Section 1.3.2] and
[53, Proposition 1.5].
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We now present a minor modification of the basic counting lemma (Lemma 4.15). The
condition |n| ~ N is augmented by |n + a| ~ B. We emphasize that the vector a € Z3
in this constraint is the same as in the dispersive symbol.

Lemma 4.17 (“Two-ball” basic counting lemma). Let N, A, B > 1. Let a € 73 satisfy
|a| ~ A. Then

sup #{n € Z*:|n| ~ N, |n + a| ~ B, |(a + n) £ (n) —m|

meZzZ

< 1} <min(4, B, N) ' min(B, N)>.  (4.41)
Proof. Using the basic counting lemma (Lemma 4.15), we have

sup #{n € Z>:|n| ~ N, [n+a| ~ B, |[{a+n) £ (n)—m| <1}

meZ

<sup#{neZ3n|~N, [(a+n)+ n)—m| <1} <min(4, N)"IN3.

meZ
After a change of variables b L + a, we obtain similarly

sup #{n € Z3:|n| ~ N,|n +a| ~ B,|(a +n) £ (n) —m| < 1} <min(4, B)"' B3.

meZzZ

By combining both estimates we obtain (4.41). ]

4.4.2. Cubic counting estimate. As mentioned at the beginning of this section, we only
discuss and state the remaining counting estimates, but postpone the proofs until the
appendix.

The cubic counting estimates play an important role in our analysis of the nonlinearity

'\l/N' . In the following, we use max, med, and min for the maximum, median, and min-

imum of three frequency scales. Also, we assume +153, +1, £, 3 € {+, —} are given
signs and we define the phase function

@(n1,n2,n3) = £123(n123) 1 (1) £2 (n2) £3 (n3). (4.42)

Proposition 4.18 (Main cubic counting estimate). Let N1, N2, N3, N12, N123 > 1 and let
m € Z. Then we have the following counting estimates:

(1) In the variables n1,n,, n3, we have

#{(n1,nz,n3):|n1| ~ Ny, |n2] ~ Na, |n3| ~ N3, |[¢p —m| < 1}
< med(Ny, N2, N3) "' (N1 N2 N3)?,

(i1) In the variables n123,n1, n,, we have

#{(n123,n1,n2): [n123] ~ Ni2a, |n1| ~ N1, [n2| ~ Na, |9 —m| < 1}
S med(N123, Nl, Nz)_l(N123N1 N2)3.
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(ii1) In the variables n1,3,n12,n1, we have

#{(n123,n12,n1): |n123| ~ Ni23, [n12] ~ N1z, [n1] ~ Ny, l¢ —m| < 1}
< min(Ny2, max(Ny23, N1)) " (N123N12 N1 ).

(iv) In the variables ni>,n1,ns, we have

#(n12,n1,n3): [n12] ~ Ny2, [ny| ~ Ny, |n3] ~ N3, | —m| < 1}
< min(Ny2, max(Ny, N3)) ' (N2 Ny N3)3.

Remark 4.19. The four estimates in Proposition 4.18 are sharp. In our analysis of the
cubic nonlinearity, the frequencies n1, n,, and n3 represent the frequencies of the three
individual factors. The frequency n1, appears through the convolution with the interaction
potential V. Finally, the frequency 7123, which is the frequency of the full nonlinearity,
appears through the multiplier (V)~! in the Duhamel integral and in estimates of the H?-
and X*-?-norms.

Since we postpone the proof, let us ease the reader’s mind with the heuristic argument
behind (i). Without the restriction due to the phase ¢, the combined frequency variables
(n1.n2,n3) live in a set of cardinality (N; N, N3)3. As long as the level sets of ¢ have
comparable cardinalities, we expect to gain a factor corresponding to the possible values
of ¢ on the set {(ny,n,,n3): |n1| ~ Np, |na| ~ Na, |n3| ~ N3}. Since ¢ is globally
Lipschitz, one may ideally hope for a gain of the form max(Ny, N>, N3). Unfortunately,
since

[{n123) — (n1) + (n2) + (n3)| < max(Nz, N3), (4.43)

the highxlowxlow interactions rule out a gain in max(Ny, N, N3). As it turns out, how-
ever, our basic counting estimate allows us to obtain a gain of the form med(Ny, N2, N3),
which is consistent with (4.43).

Proposition 4.20 (Cubic sum estimate). Let 0 < s < 1/2, 0 <y < s + 1/2, and let
N1, N», N3 > 1. Let the phase function ¢ be as in (4.42). Then

3

o Z [(1—[ AN, (”1))(”123)2(s D(nya) 2}/(1_[ >1{|<ﬂ —m| < 1}]

mezZ

nl,nz,n3€Z3 Jj=1 -

< max(Ny, N», N3)26") 4+ max(Nl,Nz)l_zy max(Ni, Na, N3)>71. (4.44)

Remark 4.21. Proposition 4.20 plays an essential role in proving that \I/V has regularity
B—. In that argument, we will simply set y = 8.

4.4.3. Cubic sup-counting estimates. We now present cubic counting estimates involving
suprema, which will be used in the proof of the tensor estimates in Section 4.4.8. In turn,
the tensor estimates will then be used to prove the random matrix estimates in Section 6.
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Lemma 4.22 (Cubic sup-counting estimates). Let the phase function ¢ be as in (4.42).

(1) Taking the supremum in n and counting ni, n, n3, we have

sup #{(n1,n2,n3): [n1| ~ Ny, |na| ~ Na, [n3| ~ N3, n =nia3, ¢ —m| < 1}
nez3

< med(Ny, N2, N3)* min(Ny, N2, N3)?.

(i) Taking the supremum in n, and counting n,ny,ns, we have

sup #{(n,n1,n3):|n| ~ Niz3, |[n1| ~ N1, |n3| ~ N3, n =ni23, |[¢ —m| < 1}
ny€ez3

< med(N123, N1, N3)* min(Ni23, N1, N3).

(iii) Taking the supremum in n and counting ny,ni,n3, we have

sup #{(n12,n2,n3): [n12| ~ N1z, |n2| ~ Na, [n3| ~ N3, n = nia3, ¢ —m| < 1}
neZz3

< min(Ni2, N1) " H(N1aN,)3.

(iv) Taking the supremum in n3 and counting n,niz, n,, we have

sup #{(n,n12,n2):|n| ~ Niz3, |[n12| ~ Niz, [n2] ~ Na, 1 =ny23, |[¢ —m| < 1}
nez3

< min(Nyz, N1) "1 (N12N2)3.

4.4.4. Paracontrolled cubic counting estimate. We now present our final cubic counting
estimate. It will be used to control

(T @&E)):(V * (P<nT- Py Xn)P<nT):.

which appears in CPara.

Lemma 4.23 (Paracontrolled cubic sum estimate). Let N123, N1, N2, N3 > 1 andm € Z.
Let the phase function ¢ be as in (4.42). Then for all 0 <y < B,

sup D (T Hinj I~ M) (123) 227D m12) 28 (1) 2 (3) 2 Wl —m| <1}

3. .
ny€Z “ny,n3€eZ3 j=13

< max(Ny, No. N3)?2 N7V N2V (4.45)

4.4.5. Quartic counting estimates. Our expansion of the solution u  and So only con-
tains cubic, quintic, and septic stochastic objects. The quartic counting estimates will be

used to control products such as
P<n T P<n } N



B. Bringmann 2004

which occur as factors in the physical term Phy. We present two estimates which con-
trol the nonresonant (Lemma 4.24) and resonant portions (Lemma 4.26) of the product,
respectively. On our way to the resonant estimate, we also prove the basic resonance esti-
mate (Lemma 4.25).

Lemma 4.24 (Nonresonant quartic sum estimate). Let s < —1/2 — n and let
N1, N, N3, Ny > 1. Let the phase function ¢ be as in (4.42). Then

4

sup Z (H 1{|nj| ~ Nj}) (”1234)2s(”123)_2|175(’71,”lz,’13)|2

meZ
x (1i[<n,»>—2)1{|¢—m| <1

j=1

< max(Ny, N, N3)“2B+21 N 727

nl,ng,n3,n4€Z3 j=1

Lemma 4.25 (Basic resonance estimate). Let ny,n, € Z> be arbitrary and let N3 > 1.
Let the phase function ¢ be as in (4.42). Then

D0 im) T ns| ~ NaY(nias) " n3) 2 1{le —m| < 1}
meZ n3eZ3 <log(2 + N3)(n12)~'.  (4.46)

Lemma 4.26 (Resonant quartic sum estimate). Let N1, No, N3 > 1 andlet —1/2 <5 < 0.
Let the phase function ¢ be as in (4.42). Then

2

> [(TT tinst~ Ny ma) (m1) 2 na) 2
ny.no€Z3  j=1

(X3 ) sl ~ Najmaas) ™ ins) il —ml < 1)

meZ n3eZ3

< log(2 + N3)* max(Ny, N2)>°.

4.4.6. Quintic counting estimates. In order to estimate the quintic stochastic objects

\T,JNAAV‘ and &

we require quintic sum estimates. Even at the quintic level, we need to make full use of
dispersive effects. This is in contrast to the septic counting effects, which only rely on
dispersive effects for cubic sub-objects but do not require dispersive effects at the full
septic level.

We present three separate quintic sum estimates, which correspond to zero, one, or
two probabilistic resonances.
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Lemma 4.27 (Nonresonant quintic sum estimate). Lets < 1/2 —2nand N1, N2, N3, Ny,
N5 > 1. Furthermore, define three phase functions by

Y (n3,nq,n5) = t3a5(n3as) £3 (n3) £4 (n4) £5 (ns),

Q1. .. ns) = t12345(n123a5) F3as (n3a5) £1 (1) £2 (n2),
5
G(nr,....n5) = £123a5(n12345) Faas (n3a5) + Z(ij)(n_/)-
i=1

5
sup Z [(H Wn;| ~ Nj})<n12345)2(S_1)(n1345)_2'3 (n345) "% (n34) "2
R yeeny n5€Z3 j=1

5

o ([T )y =ml < 13- (g —m'| < 1+ 1417 = m'| < 1) |

j=1
< max(Ny, N3, Ny, Ns) 2P T4 N 720,

Lemma 4.28 (Single-resonance quintic sum estimate). Lef n4,ns € 73, Nas > 1, and
|n4s5| ~ Nas. Furthermore, let +3 € {+,—}. Then

sup Z [1{|n3] ~ N3} (nsas) " (n3) 2 1{(n3as) £3 (n3) € [m,m + 1} S N3

3
mezZ n3EZ3

After renaming the variables, Lemma 4.28 is essentially the same as Lemma 4.25. Our
reason for restating Lemma 4.28 is to make it easier for the reader to refer back to this
section.

Lemma 4.29 (Double-resonance quintic sum estimate). Let N3, N4, N5 > 1 and let
+3,d4, %5 € {+,—}. Then

4

sup  sup Z [(l—[ Kn;| ~ Nj})(n345>71(’145)7ﬁ (n3)(na) 7

3 ~ .
mez |n5| Ns n3,n4€Z3 Jj=3

X (n34s) 3 (n3) %4 (1) %5 (n5) € . m + 1)}
< max(Ng, N5) B+, (4.47)
4.4.7. Septic counting estimates. In order to state our septic counting estimates, we need

to introduce pairings, where our definition is motivated by a similar notion in [28, Section
1.9]. The pairings are designed to capture the resonances in the septic stochastic objects

’%L\L\Jé‘ and .%

N N
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Definition 4.30 (Pairings). Let J > 1. We call a relation & C {1,..., J}? a pairing if
(1) 2 is anti-reflexive, i.e., (j,j) € Pforalll < j < J,
(il) @ is symmetric, i.e., (i, j) € P if and only if (j,i) € P,
(iii) P is univalent, i.e., foreach 1 <i < J, (i, j) € P forat mostone 1 < j < J.
If (i, j) € P, the tuple (i, j) is called a pair (or P-pair). If 1 < j < J is contained in a
pair, we call j paired (or P-paired). With a slight abuse of notation, we also write j € P
if j is paired. If j is not paired, we also say that j is unpaired and write j & 9P.
Furthermore, let A = (/4;);—;,., be a partition of {1,...,J}. We say that &
respects A if i, j € A; for some 1 </ < L implies that (i, j) ¢ P. In other words,
P does not pair elements of the same set inside the partition.
Finally, we call a vector (n1,...,ny) € (Z*)’ of frequencies admissible (or -
admissible) if (i, j) € & implies that n; = —n;.

Using Definition 4.30, we can now state the septic sum estimate.

Lemma 4.31 (Septic sum estimate). Let 1/2 < s < 1 and let N1334567, N1234, N567, N4
> 1. For any £, +5, £3 € {+, —}, define the phase

@(nj,£;:1 < j <3) = (n123) £1 (1) £2 (n2) £5 (n3).
Furthermore, define

D(ny,np,n3)
3

= Z Z( “NVs(n1,na,n3)|(n123) (H )1{|<p—m| <1}

+,+5,£3 mezZ j=1

Finally, let P be a pairing of {1, . ..,7} which respects the partition {1,2,3},{4},{5,6,7}
and define the nonresonant frequency ny € 7> by

o = nj.
JgP
Then
*
Z (nnr>2(s_1)( Z KIn1234567| ~ Ni23as67}1{n1234] ~ Ni234}

;) ;g nj)jes

x Wnse7| ~ Nse7}1{|n4| ~ Na}
X 1P (11239 @01 12, 13) 14) ™ Bl n. 7))
< log2 + No* (Vi33ases N’ ™7 + Nizadser ") Nizda:
where Z?nj ) denotes the sum over admissible frequencies.

While the septic sum estimate (Lemma 4.31) may appear complicated, its proof is
much easier than the cubic sum estimate (Lemma 4.20) or the quintic sum estimate
(Lemma 4.27). The reason is that we do not rely on dispersive effects at the (full) septic
level, and only use the dispersive effects in the cubic stochastic sub-objects.
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4.4.8. Tensor estimates. The counting estimates from Sections 4.4.2-4.4.7 will be com-
bined with Wiener chaos estimates to control stochastic objects such as '\I/N' . The esti-

mates of the random matrix terms will follow a similar spirit. However, the Wiener chaos
estimates will be replaced by the moment method (see Proposition 4.50) and the counting
estimates will be replaced by deterministic tensor estimates. The tensor estimates, which
partially rely on the counting estimates, are the main goal of this subsection.

We first recall the tensor notation from [30, Section 2.1].

Definition 4.32 (Tensors and tensor norms). Let § C Ny be a finite set. A tensor h = hy,,
is a function from (Z3)'#! into C, where the input variables are given by n 4. A partition
of ¢ is a pair of sets (4, 8) such that AU B = ¢ and A (N B = @. For any partition
(A, B), we define the tensor norm

2

IRIZ, ny = sup{Z ‘Zhngzm‘ > lzn P = 1}. (4.48)
ne n4 n 4

For example, if &1 = h,,5 5,05, then

2 2
||h||n1n2n3—>n = Sup{ Z ‘ Z hnninynsZninons Z |Znynons|™ = 1}-

nezZ3 ny,ny,n3€Z3 ni,no,n3€Z3

2

Lemma 4.33 (First deterministic tensor estimate). Lets < 1/2 4+ 8 — 28, —6n, m € Z,
N1,Na2, N3, N12,N123 > 1, and +1,+,, 3, 123 € {+, —}. Let the phase function ¢ be
as in (4.42). and define the truncated tensor h by

3
hnn1n2n3 dzd XN123(N123)XN|2(n12)(1_[ PsN(”j)XN_,— (nj))
=1

Un = niaay g —m| < D(n)* 7'V (ni2) (n1) ™ (n2) 7 na) ™51, (4.49)

Then

maX(”h”nln2n3—>n» ||h||n3—>nn]n2» ||h||n]n3—>nn2» ||h||n2n3—>nn1)

< max(Ny, N2, N3)™7. (4.50)

Remark 4.34. The first deterministic tensor estimate (Lemma 4.33) is the main ingredi-
ent in the estimate of

wy = (V) Poywy,

which is the first term in RMT. In contrast to the second tensor estimate below, we only
impose s < 1/2 + f instead of s < 1/2 (up to small corrections). The reason is that both
instances of T are part of the convolution with V.

Proof of Lemma 4.33. The main ingredients are Schur’s test and the sup-counting esti-
mate (Lemma 4.22).
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Step 1: ||h|lnynyn3—n. Due to the symmetry n; <> n,, we may assume that Ny > N,.
Using Schur’s test, we have

17115

ninan3—n

3
SNETONGINCNANT s 3 (T Hingl ~ M)

3 N
nez ni ,nz,n3EZ3 Jj=1

x H{|ni2] ~ Ni2|}{|n| ~ Nias}l{n = ni23} l{le —m| < 1}
3

xsup S (T Wingl ~ V)

nina,n3€ld | o3 =g

X H|n1z2| ~ N2} {|n| ~ Ni23}l{n = ni23}1{|p —m| < 1}.

Since n is uniquely determined by ny, n,, and n3, the last factor can easily be bounded
by 1. By using Lemma 4.22 (iii) and max(N12, N») < max(Ny, N;) = Np, we obtain

W12 onson < NiaS VNP NTEN; 2N max(Ni2. N2)NG N2

2(s—1 2-2 — -2 2(s—1 1-28+2 -2 -2
5]\/12(§ )N12 ﬂNl 1]\[3 S1§N12(§ )N12 ¢ an nN3 Sl'

Furthermore, N1, < max(Nj23, N3) < Nia3 - N3. Inserting this into the last inequality
yields

2 2s—1-28+2 -2 1-2s1—28+2 -2
1| < NEITRERI N N2 2B < (N Ny

ninyn3—n ~

Step 2: |hllns—n nn. The argument follows Step 1 nearly verbatim, except that we use
Lemma 4.22 (iv).

Step 3: ||hlln,n3—>n,n. In this step, we ignore the dispersive effects, i.e., we simply bound
Hlg—m| <1} < 1.
By increasing s if necessary, we may assume s > 1/2. Using Schur’s test and a simple

volume argument, we find that

1k < NG TUNGPNTENT2NG S

ninz—nzn ~

3
x sup 3 (T Hinjl ~ Ned ) Himal ~ Nualy Uil ~ Nizsyin = mia)

n’n26Z3n1,n3EZ3 j=1
3

x sup Y (1‘[1{|n,|~Nk})1{|nu|~Nu|}1{|n|~N123}1{n=nm}

ny,n3€L? no,nez3 j=1
S NZSTUNCP NT2NS2NT 21 min(Ny, Nia. N3)* min(N,., Nip. Nia3)?
S Ni23 12 NVp TNy TN 1, N12, N3)” min(N2, N12, N123)

2(s—1) \7=2B A7—2 A7 =2 A7 —2 229 Ay 14+4n—2 251—210 n72—20 Ay 25—1427 A;2(s—1)
S1\7125 N12 Nl N2 N3 SlNl 7/N12 ! SIN3SI ”NZ anZS anZ;

< lezs_l_zﬂHSl%n (N1 Ny N3)™21,
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In the second last inequality, we have used s > 1/2. Since 2s — 1 — 28 + 28§; + 61 <0,
this is acceptable.

Step 4: ||h|lnyn3—n,n- Due to the symmetry ny <> n, the estimate follows from Step 3. =
We now turn to the second tensor estimate.

Lemma 4.35 (Second deterministic tensor estimate). Lets < 1/2 —n, let m € Z, and let
N1, N3, N3, N12, N123 > 1. Let the phase function ¢ be as in (4.42) be as in and define
the truncated tensor h by

3
hnn1n2n3 = XN123(N123)XN12(n12)(1_[ pr(nj)XNj (”]))
j=1

x Un = niaa}{|g —m| < 1H{n)* 71V (ni2) (n1) " na) =2 (n3) ™', (@4.51)

Then

maX(”h”nlnzn3—>na ||h||n2—>nn1n37 ||h||n2n3—>nn1 ) ||h||n1n2—>nn3)

IS Nl_zﬂ max(Ny, N, N3)™".  (4.52)

Remark 4.36. Lemma 4.35 is the main ingredient in the estimate of

Yy =V % (PSNT~ Py (Yy)) (T®) PSNT3»
which is the second term in RMT.

Proof of Lemma 4.35. The argument is similar to the proof of Lemma 4.33.

Step 1: ||h|ln nyns—n. Using Schur’s test, we see that
2 2(s—1) \7—2B A7 —2 A7 —252 p7—2
”h”n1n2n3—>n S N123 N12 Nl N2 N3
3

x sup 30 (T Wingl ~ Ned)1tn = miaabitle —ml < 1)
Inl~Niz3 o sez3 j=1

3

xsup (T Wingl ~ Ned)1tn = mioadile —m| < 1.

nina,n3€l3 | o3 =g
The last factor is easily bounded by 1, since n is uniquely determined by n;,n,, and n3.

By using Lemma 4.22 (i) and s, < 1, we obtain

1R12 onson < NESTVNP med(Ny, Na, N3)® min(Ny, Na, N3)2N2N; 22 Ny 2
< N2STUN2P max(Ny. Na. N3) 7252 med(Ny, Na. N3)>~2 min(Ny, Na, N3)> 2
< NZSTUN2P max(Ny, Na, N3)'=252,

This is acceptable since s < 1 and 1 < 8.
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Step 2: ||h|lny—nyn3n- This argument is similar to Step 1, but the roles of n, and n are
reversed. Using Schur’s test, we obtain

1h])2 < NG UNGPNTENTP2 NG

np—nin3n ~
3

x sup 3 (T iyl ~ Neb) Wil ~ Nizshtin = nioadile —m| < 1)

~N- :
In2| 2 ny,n3,neZ3 j=1

3

x sup 30 (T Hingl ~ Nid ) Hinl ~ Nuiaa}Hn = niasj e —m| < 13,

3 ;
nin3n€l> 73 j=1

As before, the last factor is easily bounded by 1. By using Lemma 4.22 (ii) and 2(s — 1)
> —2, we obtain

||h||3,2—>n1n3n < Nfz(i_l)Nfzzﬂ med(N123, N1, N3)* min(Ny23, Nl,Ns)szzNZ_zszN;2

< NP N2 max(Nyas, Ny, N3)»~!
SN N2 max(Ny, Ny, N3) =20,

In the last line, we have used s < 1/2 — 1.

Step 3: ||hlln,ny—nsn. In this step, we ignore the dispersive effects, i.e., we simply bound
Klg—m| <1} <1

Using Schur’s test and a simple volume bound, we obtain

K S NETONGP NN, NG

niny—>n3n ~

3
x sup 3 ([T Himgl ~ Ned ) il ~ Nizs}iin = miza)

n3’n€Z3n1,n2€Z3 Jj=1
3
x sup Y (]’[ 1{|n;| ~ Nk})1{|n| ~ Nizs} U = nias)
nin2€23 n3,nez3 j=1
< NZSTONENT2N; 22 N2 min(Ny, Ny)? min(Ns, Nias)?
S NG UNGP NN, 22NN 2N, TN 2N 2

< Nl_zz’3 max(Ny, No, N3)™27.

Step 4: ||h|lnyn3—n,n. Arguing exactly as in Step 3, we obtain

1212, s omm S N3 VNP NT2N, 22 N2 min(Na, N3)® min(Ny, Nis)?
< N2 max(Ny, Ny, N3)~2". .

4.5. Gaussian processes

We briefly review the notation from the stochastic control perspective of the first paper
in this series [12], which was used in the proof of Theorem 1.1. In comparison with the
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first part of this series, however, we change the notation for the stochastic time variable.
We use 3, a calligraphic “s”, to denote the time variable in the stochastic control perspec-
tive. While the chosen font in 3 may be slightly unusual, we hope that this prevents any
confusion with the time variable ¢ in the nonlinear wave equation.

We let (B]'),cz3\ (0} be a sequence of standard complex Brownian motions such that
B;™ = B and B!, B are independent for n # +m. We let B? be a standard real-
valued Brownian motion independent of (B}'), 73\ (oy- Furthermore, we let B, (-) be the
Gaussian process with Fourier coefficients (B}'), <73, i.e.,

B,(x) « Z e””’x)B;’.

nez3

For every 4 > 0, the Gaussian process formally satisfies E[B,(x)B,(y)] =3 - §(x — y)
and hence B;(-) is a scalar multiple of spatial white noise. We also let (¥;),>0 be the
filtration corresponding to the family (B}'),>o of Gaussian processes.

The Gaussian free field g, however, has covariance (1 — A)~!. To this end, we now
introduce the Gaussian process W,(x). We let 0,(§) = (%,oA (£)%)!/2, where p, is the
frequency truncation from Section 1.3. For any n € Z3, we then define

)
W / ) g (453)
o (n)

We note that W," is a complex Gaussian random variable with variance p,(n)?/(n)?. We

finally set
W, (x) = Z ellmxlpyn, (4.54)
nez3

Since the Gaussian random data e € /2« (T3) in Theorem 1.1 is a tuple of the initial

data and initial velocity, we now let (B, W) and (B*", W*") be two independent
copies of (B, W). Using this notation, we then take

o = (W3 (x). (V)W (x)). (4.55)
Using (4.55), we can represent the linear evolution as
Y1) = cos(t (V) WSS + sin(t (V) Wi,

which also motivates our notation.

4.6. Multiple stochastic integrals

In this section, we recall several definitions and results related to multiple stochastic inte-
grals. A similar but shorter section already appeared in the appendix of the first paper of
this series [12]. More detailed introductions can be found in the excellent textbook [51]
and lecture notes [47]. The usefulness of this section is best illustrated by Proposition 4.44
below.
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We define a Borel measure A on R>q x Z3 by

0, (n)2
(n)?

where ds is the Lebesgue measure and dn is the counting measure on Z3. We define the
corresponding inner product by

dA(d,n) =

ds dn,

2
02’(1';3 ds. (4.56)

= fo F6.n)gGom)

nez3
Forany f € L?(Rxo x Z3,d), we define

il =3 [ reman.

neZz3

The inner integral can be understood as an Itd integral. Then, we can identify W with
the family of complex-valued Gaussian random variables

W ={W[f]: f € L>(Rso x Z3,dA)}.

For any f € L?(Rx¢ x Z3,dX), we define the reflection operator R by

def

‘Rf(avn) = f(é)_n)
Clearly, R is a real-linear isometry. A short calculation using It6’s isometry yields
E[W[/IW[g]] = (f.5) and E[W[/IW[g]] = (/. Rg).
Since this will be important below, we note that the second identity reads

o,(n

{n)

[oe] 2
E[W[fIW]g]] = Z/O f(3.n)g(,—n) i ds. (4.57)

nez3

To emphasize the integral character of W[ f], we now write

def
Lif1=WIf]
In this notation, it becomes evident that we have been working with single-variable
stochastic calculus. In order to express the resonances in our stochastic objects, it is more
natural to work with multi-variable stochastic calculus. For k > 1, we define the measure
Ax on (Rsq x Z3)¥ by
def

Ak =AQ---®A.

ef

To simplify the notation, we set # = L2((R x Z3)¥, dAx). Forany f € J, the multiple
stochastic integral Zy [ /] can then be constructed as in [51, Section 1.1.2]. We only recall
the basic ingredients and refer to [51] for more details.
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We denote by & the set of elementary functions of the form

fOun . am) = Y an i Ay xexdy, G108k ).
Iyeees ke

{*1,....:L}
Here, {A1,A_1,..., AL, A_r} is a regular system (cf. [47, Chapter 4]), i.e.,
A_; ={(,—n):(5,n) € A;}

forall1 </ <L and A;, N A}, = @ for all [; # /5. Furthermore, we impose the condition
,,,,, i, = 0if Iy, = £y, for some ky # k. For an elementary function, we define the
multiple stochastic integral by

k
TIAE Y an.a [[WIALL (4.58)
11,...,lc€ j=1
{£1,...,£L}

Furthermore, we define the symmetrization of f by

~ 1
JOrn s = D fOr(y (). - - dnh) M) (4.59)

: meSk

Lemma 4.37 (Basic properties). Foranyk,l > 1, f € &, and g € &;, we have:
(i) Zy is linear.
(ii) The integral is invariant under symmetrization, i.e., Ir[ ] = Zx [ ]7 ]

(iii) We have the Ito-isometry formula

E[TiL]- Tilel] = 8uk! [ FF
(iv) We have the formula for the expectation

E[Zk[f]- Ti1g]]
o o0 ~
= Sr1k! Z / / f(al,nl,...,ék,nk)-§(01,—n1,...,5k,—nk)
R yeeny R 0 0 X )
o7 (nj)
x (H o ; )dak...dzn.
(nj)

Jj=1

Proof. Up to minor modifications, the proof can be found in [51, p. 9] or [47, Chapter 4].
[ ]

Using a density argument (see e.g. [S1, p. 10] or [47, Lemma 4.1]), we can extend Zy
from elementary functions to #%. In particular, for any fixed my, ..., my € 7.3, we have
that

k
l_[ Snj=m; € Hi

j=1
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and we can write

k
/ AW AW défzk[]_[ snj:mj]. (4.60)
[O,oo)" j=1

We vehemently emphasize that the stochastic integral (4.60) does not coincide with the
product ]_[f:1 Weo! . Instead, as will be clear from the product formula (Lemma 4.40)
below, the stochastic integral (4.60) only contains the nonresonant portion of this product.

If f = f(ny,...,ng) does not depend on the stochastic time variables 31, . .., 3, the
linearity of the multiple stochastic integral Z; and (4.60) naturally imply that

Llfl= Y.  fou.....m) dwik . dwy. (4.61)

[0,00)

Using Lemma 4.37 (iii), it follows that

E dWAZ"' del" . dW,);”k dWJI"l
[0,00)% [0,00)

" o, (n;)?
= %( Z Hng(y =mqy @y foralll < j < k}) /[0 oy 1_[ %dék... dasy
v’ €Sk s j=1
m
= (Z Hngy=mj;foralll < j < k}) H("j)_2-
ﬂESk j=1

Up to permutations, the family of multiple stochastic integrals (4.60) is therefore orthog-
onal. Naturally, a similar formula holds without the complex conjugate. More generally,
if f depends on the stochastic time variables 31, . . ., ;, we have

Te[f] = Z / kf(ol,nl,...,sk,nk)dmﬁk...dw/;}l. (4.62)
}’l],..‘,}’lkGZ:i [O’OO)

Here, the summands on the right-hand side are understood as multiple stochastic integrals
with fixed nq, ..., ng (by inserting an indicator as in (4.60)). As is shown in the next
lemma, this notation is consistent with iterated It6 integrals.

Lemma 4.38. Let k > 1 and let [ € ;. be symmetric. Then

o rd d—1
Te[f]=k! Z /0/0/0 FOLnL k) dWRE AW (4.63)

Rsenny N eZ3
where the right-hand side is understood as an iterated It6 integral.

This follows from the discussion of [51, (1.27)]. As a consequence of this lemma, we
could also work with iterated It6 integrals instead of multiple stochastic integrals. While
the iterated It0 integrals are more natural whenever martingale properties are utilized, the
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multiple stochastic integrals have a much simpler product formula, which simplifies many
of our computations.
Before we can state the product formula, we need to define the contraction.

Definition 4.39 (Contraction). Letk,! > 1,let f € #Hy,andlet g € H;. Forany 0 <r <
min(k, /), we define the contraction of r indices by

(f ®r )01, 11, .., dkgi—2r Nkti—2r)
def o0 o0
= Z / / I:f(él,nl,...,ék_r,nk_r,ﬁ,ml,...,v,,m,)
5J0 0
mi,....mr€Z
X GOkfimrs Mkglmrs -+ s Okpl—2rs Bl —2p s ¥1, =M1, . .., ¥, —Iy)

k 2
o, (m;
X | | sz)]dvr...drl.
i1 tmj)

We note that even if f € H; and g € H; are both symmetric, the contraction f ®, g
may not be symmetric. The reader should note the similarity of the contraction with the
formula for the expectation in Lemma 4.37 (iv), which is no coincidence. If f, g € %1,
then

E[Zi[f]-Tulgl] = f ®1 g (4.64)

Thus, f ®; g describes the (full) resonance portion of the product Z;[ f] - Z1[g]. The
product formula is a (major) generalization of this simple fact.

Lemma 4.40 (Product formula for multiple stochastic integrals; cf. [51, Prop. 1.1.3]). Let
k,l > 1andlet f € Hy and g € H; be symmetric. Then

min(k,)

gt = 3 n(5)() ) fnals @ gl (65

r=0

Using the product formula (Lemma 4.40), we can compute the nonresonant, partially
resonant, and fully resonant portions of products such as

(P, x) - (P<yN(t.x) and 8/ (t,x) - 32 (2. x).

Once the Duhamel operator occurs in the expression, however, we also need to consider
two different physical times ¢ and ¢’. For instance, in our estimate of the quintic stochastic

object
\'; 4 b

N

we need to control

VN (1. x)) - (P sin(( = ) (VI(V) T AL ().
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In order to consider two different physical times ¢ and ¢’, we need to consider multiple
stochastic integrals with respect to two different (correlated) Gaussian processes, which
we abstractly denote by W and W?. We will assume that Lawp (W %) = Lawp (W?) =
Lawp (W). Regarding the relationship between W and W?, we assume that W4” and
Wbm are independent for m # 4-n. Furthermore, let €: Z3 — [—1, 1] be an even function.
We assume that

51 A2 2
E(W" W™ = b4e i € () / “"(’ (’;2 ds, (4.66)
0 n
- 31 A2 2
EW, D W) = 8y C(n) / “‘Z’S’Q ds. (4.67)
0

Thus, € is the (appropriately normalized) correlation of W¢ and W?. We can then set
up the theory of multiple stochastic integrals with respect to a mixture of W¢ and W?
as before. In order to fit this theory into the same framework as in [51], one only has
to replace R x Z3 by R x Z3 x {a, b}. A short calculation shows for any bounded and
compactly supported £, g:R x Z3 x {a, b} — C that

E[(Z Z/o f(a,n,L)dm(t),n)(Z Z/(; g(é,n,[)dm(t),n)]

1=a,b nez3 t=a,b nez3
e’} 2
=Y Z(I{LZL/}—F@(n)l{t;éL/})/O f(é,n,t)og(é,—n,t/)az:;z d.  (4.68)
t,t/=a,b neZ3
and
IE[(Z 3 /mf(a,n,t)dm(‘)’”)(z 3 /Oog(é,n,t)dWA(’)’")]
1=a,bnez3”° 1=a,bnez3”°
[} 2
= X S a= G [ fmo g T b @6
t,U'=a,b neZ3

The sesquilinear form in (4.69), viewed as a function f and g, is no longer positive
definite. For instance, if W@ = —W® and hence € = —1, f = g, and f(4,n,a) =
f(,n,b)forall s € Rsg and n € Z3, it vanishes identically. Nevertheless, due to the con-
dition |€] < 1 imposed on the correlation function €, it is bounded by (a scalar multiple
of) the inner product

[} 2
Z Z/{; fG,n,0)-g6G,n,0) 02:)2 ds.

t=a,b nez3

After defining a measure A onR x Z3 x {a,b} by dA = dA du, where d is the integra-
tion with respect to the counting measure on {a, b}, this allows us to construct multiple
stochastic integrals for functions in

L2((R x Z2 x {a,b})*, Xp).
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Similarly to (4.60), this allows us to define mixed multiple stochastic integrals such as
/ RVASER VASKEN VASES (4.70)
[0,00)3 ’

Unfortunately, the general theory now becomes notationally cumbersome. We therefore
decided to only state the much simpler special case of the product formula needed in this

paper.

Lemma 4.41 (Quadratic-cubic product formula). Let f:(Z3)?> — C and g: (Z3)? — C.
We assume that g is symmetric but do not require any symmetry of f. Then

Z f(nhnz)/ dW(“) M2 dW(a) n1)

ni n2€Z3

x Y g(nzng.ns) dw,Pns g (Pna dmgb)’"3)

0,00)3
n3,n4,n5€Z3 [ )

b b b
= )Y fowm)ganns) | dWD WD AW AW o

0,00
ny,n2,n3,n4,n5€Z3 [0,00)

n
+3 Z Z f(n1,n2)g(—ny,na,ns) (( )1)) /[0 o dWogb)’n5 dWogb)’n4 dm(zu)’"z

nonans€L3 “ni€Z3

+3 Y [ Y fOm)g(=nang,ns) <( )2)) /[000)3 dw, s aw e awfm

+6 Z Z S(ny1,n2)g(—ny, nz,ns)(?(";)i(:)ﬁ)/o aw B,

Remark 4.42. Instead of working with the product f(ny,n2)g(ns,na,ns), the formula
has a natural extension to functions i (ny, ..., ns) which are symmetric in n3, ny4, and ns.
To this end, one only has to decompose

ny1,n4,n5€Z3 “ny€Z3

n5EZ3 ni n26Z3

h(nl,nz,n3,n4,n5) = Z 1{(111,’12) = (ml,mz)} 'h(ml,mz,n3,n4,n5)-
my,my€Z3

We can then apply Lemma 4.41 to the individual summands.
Remark 4.43. While the formula in Lemma 4.41 is complicated, it is still an order of
magnitude easier than working with products of Gaussians directly. If the reader is not

convinced, we encourage him to work out (by hand) the corresponding resonant/nonreso-
nant decomposition of

( > S, nz)(G(“) G 8(11T=20))

ni n2€Z3

Onay= ) )
®) . ), B) _134=0 ~(b) _ 135=0 ~(b) _ n45=0 ~(b)
x E ég,f(ns,n4,ns)(Gn3 -G, Gl — )2 G,.— )2 Gp, )2 G, ))

n3,ng,ns€Z3

where G® = o(é) for ¢« = a, b are (correlated) families of Gaussian random variables.
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After establishing the important definitions and properties of multiple stochastic inte-
grals, it only remains to connect them with our stochastic objects. Let M(COS)’" and
Wfsm)m be the Gaussian processes defined in Section 4.5. We recall that the linear evolu-
tion of the random initial data e is given by

1) = D" (cos(t (n)) W™ + sin(e (n)) WE™") exp(i (. x))

nez3

= Z (/°° d(cos([ (n))m(cos),n + sin(¢ (n))m(sin),n)) exp(i (n, x)) “4.71)
0

neZz3

In order to obtain a similar expression for the stochastic objects \/: and . WE

define for any k > 1 and nq,...,ng € 7.3 the multiple stochastic integral

def
Ik[t,nl,...,nk] =

/[‘0 ) d(cos <nk>)Wf»§:OS)’nk + sin(t(n))Wg,Ejm)’nk) e
,00
d(cos(l(711))1/173(1005)’"1 + sin(z(nl))Wé(lsin),m). 4.72)

In the proof of multi-linear dispersive estimates, it is essential to separate the time
variable ¢ from the randomness. To this end, we define the Gaussian processes

m(:l:),n d:cf M(COS)’n + I’VA(Sin)’n. (473)

Similarly to (4.72), we define forany k > 1, any +4,..., £, € {4+,—},and any ny,...,ng
€ 73 the multiple stochastic integral

Tilnj:£j:1 < j <K] d=‘/ dw, e qwE0m (4.74)
[0,00)%

It then follows that there exist coefficients c: {4+, —}¥ — C depending only on the signs
such that

k

Tiltonn,...oml= Y c(:l:l,...,:l:k)<1_[exp(:i:jit(nj)))Ik[nj;:l:j:1§j <k
:|:1 ..... :|:k j:l
(4.75)
For convenience, we also define the normalized multiple stochastic integrals by
B k
Tknj: £j:1=j k] = (H(”j)) Tilnjs£j:1 = j <k] (4.76)

J=1

We close this subsection with the following stochastic representation, which expresses the
quadratic and cubic stochastic objects through multiple stochastic integrals.

Proposition 4.44. Lett € R and N > 1. Then, forallny,n, € 73,

s A 1
Y(tny)-Y(tno) — W(sm:o = D[t n1.n2). 4.77)
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Furthermore,

2
'\/:(t,x)z Z <l_[ ,oN(n,-))Iz[t,nl,nz], (4.78)

nl,n2€Z3 j=1

3
Vo= Y ([Tewe))Peu Tlennansl. @79
ni ,nz,n3€Z3 j=1
Proof. This follows from [12, Lemma 2.5 and Proposition 2.9], Lemma 4.38, and the fact
that the distribution of (3, 7) > cos(t (n)) W, + sin(z (n)) W,"™" is the same for all
t e R. ]

4.7. Gaussian hypercontractivity and the moment method

In this section, we first review Gaussian hypercontractivity and its consequences. To help
the reader with a primary background in dispersive equations, let us first illustrate this
phenomenon through a basic example. Let Z; be a Gaussian random variable with mean
zero and variance o2. Using the exact formula for the moments of a Gaussian, we find for
all m > 1 that

em!

-0

2Mm!

m

E[Z2] = 0% and E[Z2"] =

A simple estimate now yields

(E[Zi’”])ﬁ < (%)M .0 = 2em (E[Z2])V/2.

Using Holder’s inequality, for all p > 2 we obtain

1ZollLz < VP Zollp2- (4.80)

Thus, higher LZ-norms of Gaussians can be controlled through the lower qu-norm.
The “hyper” in Gaussian hypercontractivity refers exactly to this gain of integrability.
While (4.80) is not too interesting in itself, its significance lies in its generalizations to
polynomials in infinitely many Gaussians! Furthermore, Gaussian hypercontractivity has
connections with many different inequalities in analysis and probability theory, such as
logarithmic Sobolev inequalities.

Our first proposition is also known as a Wiener chaos estimate. A version of this
proposition can be found in [64, Theorem 1.22] or [51, Theorem 1.4.1].

Proposition 4.45 (Gaussian hypercontractivity). Let k > 1, let +1,..., £, € {+,—},
and let a: (Z?)* — C be a discrete function with finite support. Define the k-th order
Gaussian chaos 6y by

def

G = Y a0l < j <k (4.81)
R1seens nk€Z3
Then, for all p > 2,
16kl L2 @) S P2 1%k L2 @) (4.82)
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Proposition 4.45 will play an important role in the estimates of stochastic objects such
as °\T/\ While Proposition 4.45 bounds the moments of the Gaussian chaos, the reader

may prefer or be more familiar with a bound on probabilistic tails. As the next lemma
shows, the two viewpoints are equivalent.

Lemma 4.46 (Moments and tails). Let Z be a random variable and let y > 0. Then the
following properties are equivalent, where the parameters Ky, K, > 0 appearing below
differ from each other by at most a constant factor depending only on y.

(1) The tails of Z satisfy for all A > 0 the inequality
P(Z| = 2) = 2exp(=(A/K1)").
(2) The moments of Z satisfy for all p > 2 the inequality
1Zllr < K2p'.

The lemma is an easy generalization of [73, Proposition 2.5.2 or Proposition 2.7.1].
As we have seen above, a Gaussian random variable corresponds to y = 2. It is convenient
to capture the size of K, in Lemma 4.46 (and hence K;) through a norm.

Definition 4.47. Let y > 0 and let Z be a random variable. We define
1Zllw, = sup p~ V1 Z]z.
p=2

For more information regarding the W, -norms, we refer the reader to the excellent
textbook [73]. The next lemma shows that the ¥, -norm is well-behaved under taking
maxima of several random variables.

Lemma 4.48 (Maxima and the W,,-norm). Lety > 0, let J € N, and let Zy,...,Z  be
random variables on the same probability space. Then

.....

While this is only a minor generalization of [73, Exercise 2.5.10], we include the short
proof.

Proof of Lemma 4.48. Let p > 2. For any r > p, it follows from the embedding E; — Z;’o
and Holder’s inequality that

Imax(Zy..... Z)ly = 1Zjllgee = 1ZillLger = 1Z)lLse;

.....

Then we choose r = log(2 + J) p, which yields the desired estimate. ]
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We now turn to a combination of Gaussian hypercontractivity and the moment
method, which will be essential to our treatment of the random matrix terms RMT. The
following proposition, which is easy-to-use, general, and essentially sharp, was recently
obtained by Deng, Nahmod, and Yue in [30, Proposition 2.8]. Before we state the estimate,
we need the following definition, which relies on the tensor notation from Definition 4.32.

Definition 4.49 (Contracted random tensor). Let § C Ny, let (£;);eg be given, and let
Numax > 1. Let h = hy be a tensor and assume that all vectors in the support of /2 satisfy
Ingll < Nmax. Let § € ¢ and define k £ #§. We then define the contracted random tensor
he = (hc)ng\s by

he(nizi € 8)= " h(ng)-Li[+j.n:j €], (4.83)

(nj)jes
where the normalized multiple stochastic integrals are as in (4.76).
In the next proposition, we use the tensor norms from Definition 4.32.

Proposition 4.50 ([30, Propositions 2.8, 4.14]). Let &, S, Nuax, 1, he, and k be as in
Definition 4.49. Let A, B be a partition of {1,...,J} \'S. Then, forall p > 2 and 6 > 0,

0 k
H ”thn,A,—mB ”LZ(]P’) <o Nmax(r;é?';; ||h||nx—>ny)P /2’ (4.84)

where the maximum is taken over all sets X, Y which satisfy A C X, 8 C Y, and form a
partition of §.

In [30], the proposition is stated in terms of nonresonant products of Gaussians instead
of multiple stochastic integrals. Furthermore, the probabilistic estimate is stated in terms
of the tail behavior instead of the moment growth. Both of these modifications can be
obtained easily by replacing the large deviation estimate [30, Lemma 4.4] in the proof by
Proposition 4.45.

We often simply refer to Proposition 4.50 as the moment method, since it is the main
ingredient of the proof (cf. [30]). While the full generality of Proposition 4.50 is needed
in [30], we will only rely on the following special case.

Example 4.51. Let 4+, +, € {+,—}, let h = h(n,ny,n,,n3) be a tensor and assume
that ||(n,n1,n2,n3)|| < Nmax 0on the support of 4. Define the contracted random tensor /.
by

def

he(n,n3) = Z h(n,ni,na,n3)-Iy[+j,n;:j =1,2]. (4.85)

ni ,n2€Z3

Then, forall p > 2and 6 > 0,

[

<o N[gax max(”h”nlnzm—)m ||h||n3—>nn1nzv ||h||n1n3—>nn2» ||h||n2n3—>nn1) e
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5. Explicit stochastic objects

In this section, we estimate the stochastic objects appearing in the expansion of vy and
in the evolution equations for Xy and Y. The analysis of explicit stochastic objects is
necessary for both dispersive and parabolic equations. We refer the interested reader to
the treatment of the cubic stochastic heat equation in [14,41] and the quadratic stochastic
wave equation in [37] for illustrative examples. While the algebraic aspects in disper-
sive and parabolic settings are similar, the analytic aspects are quite different. In the
parabolic setting, the regularity of stochastic objects can be determined through simple
“power-counting”. In contrast, the optimal estimates in the dispersive setting require more
complicated multi-linear dispersive estimates. We remind the reader that, as explained in
Remark 1.4, we restrict ourselves to 0 < 8 < 1/2.

5.1. Cubic stochastic objects

In this subsection, we analyze the cubic stochastic object '\I/N' and the corresponding
solution \}N to the forced wave equation. Ignoring the smoother component o,; of the

initial data, they correspond to the first Picard iterate of (2.1).

Proposition 5.1 (Cubic stochastic objects). Let T > 1 and let s < B — 1. Then

sup | X2 || s—1.64 — < T2 p32. (5.1)
Hszl [IaNZe “EJC Lb+=1([0,T]) L2.(P) P
Furthermore,
su i/ < T?p32, 52
NZPIH )C,Otf;([o,T]XW) LE(P) P (5-2)

In the frequency-localized version of (5.1) and (5.2), which is detailed in the proof, we

gain an 1'-power of the maximal frequency scale. Furthermore, we can replace \I/N by

N = "2

Remark 5.2. We recall that the parameter 7" is important for the globalization argument,
but does not enter into the local well-posedness theory. In order to achieve smallness on a
short interval, we will instead use the time-localization lemma (Lemma 4.3) and b4 > b.

Proof of Proposition 5.1. We first prove (5.1), which forms the main part of the argu-
ment. In the end, we follow a standard and short argument to show that (5.1), Gaussian
hypercontractivity, and translation invariance imply (5.2). To simplify the notation, we
set Nmax = max(Ny, Na, N3). In this argument, we rely on multiple stochastic integrals.
Recalling the multiple stochastic integrals from (4.72) and the stochastic representation
formula (Proposition 4.44), we have
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3
o= Y enon)([]ew)) P ez)expli (s, x)Zaltnynz, sl

nl,nz,n3€Z3 j=1
3
= > > [eit=i =3([Tone)) V02 expl n12s, x))
il,iz,i3n1,n2,n3€Z3 j=1

3
x ([T expCsit o)) Taly 1 < j < 3],
=1

where ¢(%;:1 < j < 3) are deterministic coefficients. Using a Littlewood—Paley decom-
position, we obtain

N Do o1 <)L, N1 < <3,

+1,%2,%£3 N1,N2,N3>1

where

3
L Nl <j<3en=E Y [PN(nlza)(l_[ PN (nj) XN, (ﬂj))ﬁ(ﬂn)

nl,nz,n3EZ3 Jj=1
3
xexpi (s, ¥) ([ ] exp(jitn)) Tl oy 1 < j =3])
j=1

We estimate each dyadic block separately. We first prove the desired estimate for b_
instead of by and then upgrade the estimate. Using Minkowski’s integral inequality and
Gaussian hypercontractivity (Proposition 4.45), we obtain

L1 N1 < < Bllls—to—-1q0,7p 1z
Smax] e (1) TINYL [y Ny 12 2310.0) O Fa (000112 2 sy
<p’? max | Fox (/TN [, Ny 12 =31(.)
X (A F123 <n>’n)||L§,L§eg(QxRx1r3)' (5.3)
For a fixed sign +153, we define the phase ¢ by
@(n1.n2,n3) = £123(n123) £1 (n1) 2 (n2) +3 (n3).

Using the definition of ¢, we can write the space-time Fourier transform of a dyadic piece
in the cubic stochastic object y(z/ T)'\I/N' as

Fro () T)NYL (£, Ny 1 = j <311, %)) (A Frzs (n).n)
3
=T Z [l{n = n123}PN(n123)<1_[ PN (1) XN, (nj))f}(”lz)

nl,nz,n3€Z3 j=1

X H(T (O =gy mama) Tl 1 < j <31 54
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Using the orthogonality of the multiple stochastic integrals and the decay of y, we obtain

”ﬂ,x()((t/T) \T/N [:l:j7Nj: 1< ] = 3](t’x))(k F123 (n)’n)”i(zuL/zl(i%(QxRxT%

3
< T?N{?N; N5 Z [(l_[ AN; (”J'))(”123)2(5_1)|V(n12)|2
ny,ma,n3€Z3  j=1
« [ A QPOIIFTG = gl 2P
< T?N;2N;2N; 2
3
x> (TTaw, ) inasP 010 o).z, n3)) >0

ni ,n2,n3€Z3 j=1

< T?N;2N;2N;2

3
csup 3 (T, @) s~ 21P ) Pl — ] < 1.

3 N
meZ ny.np,n3eZ3 j=1

Combining this with (5.3) and using the cubic sum estimate (Proposition 4.20), we obtain

18821 Ny 1 < < 3lllas—1o1qom | p < TPY2NSE.

Since there are at most < 1log(10 4+ Np.x) nontrivial choices for N, we deduce from
Lemma 4.48 that

||1f]u>pl ”\M[ij’ Ni:1<j < 3]”513‘*‘1’—*‘([0]]) ”Lf)

< T'loglog(10 4+ Npax)2 N3P p3/2. (5.5)

m

After summing over the dyadic scales, (5.5) almost implies (5.1) except that b_ needs
to be replaced by b. To achieve this, we utilize the room of the estimate (5.5) in the
maximal frequency scale. Using Plancherel’s theorem, Minkowski’s integral inequality,
and Gaussian hypercontractivity, we have

I sup IN$L £ Nj: 1 = j < 3llzooqo.ry | 12
>1
< loglog(10 + Ning)? sup [|1{0 <t < TYNYL (£, Nj:1 < j <3ll2,212
N

3 1/2
< T2 loglog(10 + Nmax)2p3/2( >, Tlow, (”1')(”1')_2))

ny,np,n3eZ3j=1
< T2 10g10g(10 + Nunax)>N212 p3/2.
By interpolating this estimate with (5.5), we obtain
['sup INUL 17 Vi1 =/ = Sl o,y 1z
>

< T loglog(10 + Nmax)erfl;ﬂ+4(b+_b_)P3/2
S TNgP P00 372, (5.6)
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After summing over the dyadic scales, this finally yields (5.1). We prove the second esti-
mate (5.2) using the (frequency-localized version of the) first estimate. We present the
details of the (standard) argument, but skip similar steps in subsequent proofs. Using the
energy estimate (Lemma 4.8) and the (frequency-localized version of the) first estimate
(5.1), we obtain

sw”iﬁ&ﬁMﬂfjfﬂ
N>1

For any 2 < g < p, from Sobolev embedding (in space-time), Minkowski’s integral
inequality, and Gaussian hypercontractivity we have

INQEIRRENES|

4/q
s Nmax

S (14 TN PO+ 532 (5.7

Lg

L HS

LELYEY

(V)S.\I/:[ijij:l <j =3
(V)S.\I/:[ijij:l <j< 3]‘

< Nl |0y ol Ny 2 )

LGL{LS

4/q
s Nmax

(5.8)

LYLLLE

LILLLE

For a fixed ¢ € R, the distribution of (V)* \I/N [+, Nj:1 < j < 3](¢, x) is translation

invariant. Thus, we can replace the L%-norm in (5.8) by the L2-norm. Using Minkowski’s
integral inequality and (5.7) then yields

H \IN [£,Nj:1 < 53]‘

S N4/qp3/2

max

LhLees

‘(V)S\K[ijaNﬁl <j=< 3]‘

< T1+1/qNnia—xﬂ+5(b+—b7)+4/qp3/2.

L2 LYL%

By choosing g = ¢ (b4, b—) sufficiently large and then summing over dyadic scales, this
proves (5.2) for p Zp, p_ 1. The smaller values of p can be handled by using Holder’s
inequality in .
Finally, the statement for \I/N replaced by \I/N follows from the boundedness of
T

110,71(f) on x2=16+=1 which was proven in Lemma 4.4. [ ]

5.2. Quartic stochastic objects

The expansion uy = T + \I/h + wy or the explicit stochastic objects in So only con-

tain linear, cubic, quintic, or septic stochastic objects. However, the physical terms Phy
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contain terms such as

V*(PsNT'PgN \}N)PSNwN or V*(PsNT@PgNwN)PsN iN.

Since we treat wy € L°1? using deterministic methods, they can be viewed as quartic
expressions in the random initial data e. Furthermore, due to the convolution with the
interaction potential V' in the second term, we also have to understand the product of T

and \I/N at two different spatial points.

Proposition 5.3. Let Ni33, Ny > 1. Then, foralls < —1/2 —nandall T > 1,

sup sup
N>1yeT3

(Priss Pen Y 05 =) - Py, Penie. )|

< T3 p?max(Ni23, Na) V/2NE.  (5.9)

CPEX(0.TIXT3) || 1 2 ()

If Ni23 ~ Ny, then foralls < —1/2 + B —2n,

sup sup
N>1yeT3

(Prizs Pen ™Y 005 =) - Py, Penie. )|

CPeL(0.T1xT) || 12 ()
< T3p>Nf.  (5.10)

Finally, without the shift in y € T3, fors < —1/2 — n we have

sup H (PN123P§N\K(I»X)) : PN4P5NT(1»X)‘

N>1

CPEL0.TIXT?) ||, 7 ()

< T3 p?max(Ni2s, Na)™"10 (5.11)

Remark 5.4. In the fully frequency-localized version of Proposition 5.3, which is
detailed in the proof, we gain an #’-power of the maximal frequency scale. As in Propo-

sition 5.1, we may also replace \I/y by \I/N = 1[110,q3 1.
T

Remark 5.5. We recall that 1 is much smaller than « and hence the right-hand sides
of (5.9) and (5.10) diverge as N4 — oo. The third estimate (5.11) is quite delicate and
requires the sine-cancellation lemma. A similar estimate is not available for the partially
shifted process and it is likely that at least a logarithmic loss is necessary in (5.9) and
(5.10) as N4 tends to infinity.

Proof of Proposition 5.3. We prove (5.9) and (5.10) simultaneously. The third estimate
(5.11) will mainly utilize the same estimates, but also requires the sine-cancellation
lemma (Lemma 4.14). Using the representation based on multiple stochastic integrals
(Proposition 4.44), we find that
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(PN123P§N\K(LX_J7)) : PN4P§NT(t’X)

4
= Z Z PN(”123)2XN123(”123)<1_[ o (nj) XN, ("j))

N1,N2,N3>1ny,ny,n3,n4€Z3 Jj=1

x Vs (ny,na,n3)(n123) " exp(i (n1234, x) — i (1123, )
t
x ( [ st = 0128 Tal ] T dr’).
0

Using the product formula for multiple stochastic integrals, we obtain

(PrasPen K x =) - P Pen e )

= Y E90x N+ Y €P0xyiNa).
Ni,N2,N3=1 Ni,N>,N3>1

where the dependence on Nyz3, N1, Na, N3, N4 is indicated by N, and the quartic and
quadratic Gaussian chaoses are given by

C5(4)(t,x,y; Nyx)

= Z Z c(£;:1 < j <)X (n123)* 0N (14) XY Nyas (M123)

+1,%2,£3,F4 ny,np,n3,n4€Z3

4
X (l_[ p<n(nj)xn; ("j)) Vs(n1.n2.n3){n123) " exp(i {n1234. x) — i (n123., y))
j=1

; 3
x exp(im(nm( [ sintte =) (T expici' o) dt/)
j=1
XI4(:|:j,I’ljZl <j = 4):|
and

“5(2)(t,x,y;N*)

2
=3 Z Z |:C(Zt1,2|:2)(l—[pN(l’lj)XNj(l’lj))eXp(i(nlz,x»

+1,%2 ny,np€Z3 j=1
X ( Z |:PN(”123)2PN(”3)2XN123(n123)XN3(n3)XN4(”3)<”123>_1(n3>_217S(n17n2,”3)
n3€Z3

t 2
x exp(—i (1123, y))/o sin((r — 1")(n123)) cos((t —t')(n3)) 1_[ exp(£;it'(n;))) dt/:l)

Jj=1

XIz(:I:j,ndj = 1,2)].
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The quartic Gaussian chaos € and quadratic Gaussian chaoses €@ contain the
resonant and nonresonant terms of the product, respectively. We estimate both terms sep-
arately.

The nonresonant term € : We first let s < —1/2 — n. Using Gaussian hypercontractivity
and standard reductions (see e.g. the proof of Proposition 5.1), it suffices to estimate the
L% L2 H:-norm instead of the L L€ -norm. Let the phase function ¢ be as in (4.42).
Using the orthogonality of the multiple stochastic integrals, for a fixed ¢ € [0, T] we have

16D @ x, ¥ NOIZ2 s
4
< Y 3 [mzs(nlza)(l"[ 1, (1)) Vs (11,12, m3) 2
+1,%2,%3 n],nz,n3,n4EZ3 Jj=1
4 t 3 2
x (m234) 2 (m123) 2 ([T n)72) / sin((r — ') mia3) ([ T exp(ie' () ) ar ]
j=1 0 j=1
4
SA+7 ) > > [(m)_ZXN123(n123)<1_[ XN; (nj)>
+1,%2, %53 ny,np,n3,n4€2Z3 MEL j=1
4
X | Vs (n1,mama) 2 (n1236) (n123) 2 ([T 72) Wl = m| = 13
j=1
4
< T?sup Z Z [XN123(”123)(1_[ AN, (nj))|VS(”17”2J’l3)|2
mez +1,%2,%3 nl,nz,n3,n4EZ3 Jj=1
4
s (nizsa)® m123) 2 ([T )2 el — ] < 1}].
j=1

Using the nonresonant quartic sum estimate (Lemma 4.24), it follows that

6@ (1, x,y: N123. N1, Ny, N3, N4 T2 max(Ny, Na, N3)“2B+21 N 27,
y 4

i%,) HY =
This yields (5.9) for the nonresonant component. If N13 ~ N4, then

max(Ni, N2, N3) 2 N,

and hence we can raise the value of s by  — 7. Thus, we also obtain (5.10) for the
nonresonant component. Even when y # 0, our estimate for the nonresonant component
does not exhibit any growth in N4, and hence it also yields (5.11) for the nonresonant
component.

The resonant term €@ : This term exhibits a higher spatial regularity and we let —1/2 <
s < 0. Using Gaussian hypercontractivity and standard reductions (see e.g. the proof of
Proposition 5.1), it suffices to estimate the L% L2 H:-norm instead of the L5 L€3-
norm. Using the orthogonality of the multiple stochastic integrals, we have
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16 x, v NIIT 2 s

2
S % ([ 2
+1,%2n1,n€Z3- j=1

X -2

> |:PN(”123)2PN(”3)2XN123(n123)XN3(n3)XN4(n3)(n123>_1(n3>

}’BEZS

x Vs (1,12, n3) exp(—i {1123, 1)) /0 sin(( — ') {n123)) cos((t — ') (n3))

2 2
XHeXp(:I:jit'(nj)))dt’] ] (5.12)

J=1

We now present two estimates of (5.12). The first estimate will yield (5.9) and (5.10).
The second estimate is restricted to the case y = 0 and yields, combined with the first
estimate, (5.11). After computing the integral in ¢/ and decomposing according to the
dispersive symbol, we deduce from Cauchy—Schwarz that

2
(5.12) ST2H{N3 ~ Na} Y [(]_[ xN; (n_,-)) (n12)% (n1) "2 (ny) 2

n],n2€Z3 Jj=1

(X3 ) s (19)1 P . m)lGmias) ™ () 21l —ml < 1)

mezZ n3 €73
Using the resonant quartic sum estimate (Lemma 4.26), this implies that
(5.12) £ T?1{N3 ~ N4} log(2 + N4)* max(Ny, N»)*S.

This clearly implies (5.9) and (5.10). Except for the logarithmic divergence in N4 (and
hence N3), it also implies (5.11). We now need to restrict to y = 0 and we may assume
that Ny, N, < Ns. For fixed ny,n, € Z3, we can apply the sine-cancellation lemma
(Lemma 4.14) with A = max(N;, N;) and

Ft.1'n3) = py (1123)2 08 (13)% A N1s (1123) X N3 (13) X N, (13)

2
x (n123) " (n3) 2 Vs (n1.n2.n3) [ | exp(jit’ (n;)).
j=1

This yields
(5.12)ly=0

2

S TN ~ Napmax(Ni, N2)*N2 2 (m12)® ([ 1| ~ Ny ) 72)
}’L],ﬂzEZS j=1

< T*max(Ny, N2)''N;2

By combining our two estimates of (5.12)|,—¢ we arrive at (5.11). ]
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Remark 5.6. As we have seen in the proof of Proposition 5.3, the (probabilistic) resonant

portion of P<y \I/N - P NT has spatial regularity 0—, which is better than the sum of the

individual spatial regularities. As a result, the probabilistic resonances between linear and
cubic stochastic objects in Section 5.4 are relatively harmless.

5.3. Quintic stochastic objects

In this subsection, we control the quintic stochastic objects in So, i.e.,

(T@:a) $ and \IJA*

Since So is part of the evolution equation for the smoother nonlinear remainder Yy, the
quintic stochastic objects have to be controlled at regularity s, — 1.

Proposition 5.7 (First quintic stochastic object). Forany T > 1 and any p > 2,

(~Era) B

N

< T2p%2. (5.13)
LE (@)

sup
N>1

stz—l .b+—l ([O,T])
Proposition 5.8 (Second quintic stochastic object). Forany T > 1 and any p > 2,

N

N

< T?p%2, (5.14)
LE(®)

sup
N>1

%Sz—l.b_;’_—l ([O,T])

Remark 5.9. In the frequency-localized versions of Propositions 5.7 and 5.8, which
are detailed in the proof, we gain an n’-power of the maximal frequency scale. As in

Proposition 5.1, we may also replace \I/N by \I/,\ = I[110,,1"3]. We will not further
T

comment on these minor modifications.

Proof of Proposition 5.7. Throughout the proof, we ignore the supremum in N > 1 and
only prove a uniform estimate for a fixed N. Using the frequency-localized estimates
below and the same argument as in the proof of Proposition 5.1, we can insert the supre-
mum in N at the end of the proof.

We first obtain a representation of the quintic stochastic object using multiple stochas-
tic integrals. Using (2.23) and Proposition 4.44, we have

(~[EEE) .0 5
= Z Z [PN(”345)2XN345(’1345)(H PN () XN, (nj))
N345,N1,....N5: ny,..,n5€Z3 j=1

max(Nq ,1\/3,45)>N26

x V(n1345) Vs (13, 4, n5) (n345) " exp(i (n12345, X)) o[t 1, 112)]

X (/0 Sil‘l((l —l/)(l’l123))1-3[l/,n3,I’l4,ﬂ5]dl/)i|.
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Using the product formula for mixed multiple stochastic integrals (Proposition 4.44 and
Lemma 4.41), we obtain

(_| ) %([,X) = Z (cg(S) + g(:”) + %(3) + cg(l))(tvx’ N*),

N345,Nq,...,N5:
max(N1,N345)>N§ (5.15)

where the dependence on Ni4s, N1, ..., N5 is indicated by N, and the quintic, cubic, and
linear Gaussian chaoses are defined as follows. The quintic chaos is given by

def

NG E Y eFilsjs9)
+1,..,%5

5
x oy [pN(n345)2XN345(n345)(1_[PN(nj)XNj(nj))f}(nlﬂs)

Alyenns nsEZ3 Jj=1
2

x Vs (13, 14,15) (n345) ™" expi (mrosas., x)) ([ | exp(ejie ()
t 5 /=
x (f sin((¢ — ') (n123)) [ | exp(ijmnj))dz’)zs[ij,n,:1 <j< 5]].
0 ,
j=3
The two cubic Gaussian chaoses are given by
def

€ (1, x; Ny) = Z c(E2, 4, £5)
+g,%4,%5

<Y [( [T v, 1)V (nas) exp(i (nas. x))

nz,n4,n5€Z3 Jj=2,4,5
x Y (PN(”3)ZPN(”345)2XN345(”345)XN1 (n3) XN (n3)
n3GZ3
xVs(n3,na,ns)(nzas) ™" (n3) 72 exp(F2it (n2))
t
x/ sin((1—t")(n34s)) cos((t—t")(n3)) 1_[ exp(:l:jit’(nj))dt')I3[:I:j,nj:j=2,4,5]:|
0 A
j=4,5
and

def

EI.x:N) = Y (. Ea. Es)
+1,%4,%5

< 2 [(TT owonm, @) exptitnres.x)

nl,n4,n5EZ3 Jj=145

« 3 (pN<n3>2pN(n34s)2xN345(nm)m (1) 15 (13)
n3€Z3
xVs(n3,na,ns)V(ni3as)(nsas) " (n3) "> exp(£1it(n1))

X/o sin((z—t")(nsas)) cos((t—t"){ns)) 1_[ exp(£;it’(n;)) dt')1'3[:|:_,~,nj:j=1,4, 5]:|

j=4,5
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Finally, the linear Gaussian chaos (or simply Gaussian) is given by

D c(Es) Y pv(ns)xns(ns) expli(ns, x))

+5 nseZ3

def

c5(1)(t,x; Ny) =

x [pzv(n345)2p1v(ns)zpzv(n4)2xzv345(n34s)

ns3 ,n4€Z4

X 1y (13) X5 (13) v (1) X, (1) Vs (13,14 15)V (nas) (n3as) ™" (n3) 72 (na) 72
x / t sin((t — 1) {n34s)) cos((t — 1) {n3)) cos((t —1")(n4)) exp(sit’(ns)) dt’]

’ x Iy [£s,ns].
Each of the frequency-localized Gaussian chaoses in (5.15) is now estimated sepa-

rately. We encourage the reader to concentrate on the estimates for € and €, which
already contain all ideas and ingredients.

The nonresonant term € : Lets = 1/2 — 1. We will first estimate the X5~1*~~1-norm
of a dyadic piece and then use the condition max(/N;, N34s) > Nj to increase the value
of s. Using Gaussian hypercontractivity (Proposition 4.45), the orthogonality of multiple
stochastic integrals, and Lemma 4.12, we obtain

” 169 (7, x; N llgs—1.6—=1jo,77) ||ig’,

_ 1o~ 2
i‘ﬁ%’;'"'“’b_ Hn) T Fa (@) TSP (1 N A Faazas (). 12 2 oz 12

< p% max AP ) T B (et / TG0 x5 NOY R Fazsas ()2 ey 22

+12345
5
2,5 2(s—1 -2
ST7p> | max E |:XN345("345)(H AN, (”j))(n12345) D (nsss)
+12345,%345, 3 -
+1,..,45 n1,....,n5€Z j=1

5
X |I7(n1345)|2|173(n3,n4,n5)|2(1_[(nj)_2)

i=1
x (14 | 345 (n345) £3 (n3) £4 (n4) 5 (ns))~>

X /R()t)z(b_l)(l + min(M — (£12345(n12345) E345 (n345) £1 (n1) £2 (n2))],
5 )
’/\ - (:*:12345(1112345) Faas (n3as) + Z(ij)(nj))‘)) d)t:|~ (5.16)
i=1

To break down this long formula, we define the phase functions

Y (n3,nq,ns) = t345(nsas) £3 (n3) +4 (n4) £5 (ns),
Q(n1, ..., n5) = £123a5(M12345) T3as (M3as) £1 (1) £2 (n2),

5
F(ni.....ns) = £12345(n12345) Faas (M345) + Z(ij)(nj)-
i=1
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Integrating in A and decomposing according to the value of the phases, we obtain
(5.16) < T?p° log(2 + max(Ny, ..., Ns))

X max sup Z |:){N345 (n345)

+12345,%345, mom/ ez

+1,, +5 ni,...ns€Z3
5 5
X (1_[ IN; ("j)) (n12345)>C 7D (n345) 2|V (n1345) [ [Vs (13, na. n5)|2(1_[ (”j>_2)
Jj=1 =1

by =] < D00 = < 1+ 107 - < 1) |
Using the nonresonant quintic sum estimate (Lemma 4.27), we finally obtain

16® (. x: N llgs—16--1 0,7 Lz < Tp>/* max(Ny. Na, Na. Ns) P TN (5.17)

Due to the operator (_' ), we have
max(N1, N3, N4, Ns) = max(N1, Na, N3, N4, N5)<.
Thus, (5.17) implies
[ x5 No)llgss 10— 1 qorp |z < TP max(Ny, Na. Na, N, Ns)P2 317,
which is acceptable.

Single-resonance term € This term only yields a nontrivial contribution if Ny ~ Nj.
In particular, max (N1, N345) > N5 implies that max (N3, N4, N5s) 2 N5. Using the inho-
mogeneous Strichartz estimate (Lemma 4.9) and Gaussian hypercontractivity, we have

” ||Cg(3) (t,x; N*)”gxszflsb—*] (0,7 ”Lf) < ” ||C§(3) (, x; N*)”Lfb"' o2

S TPINED X NIl o o sy s

([0, T]xT3) ”LZ

<Tp¥? sup |€P @, x: N, 501 >, (5.18)
tE[O,T]” N H? (T3)||Lw
Using the orthogonality of the multiple stochastic integrals, we have
2 2B A =2 A1—2 A
sup ||||<§(3)(t,x;N*)IIHsz—l(Tz,)HL% §N455N2 2N2N;2
t€l0,T] x
x> awas(u)( TT vy 1)) 12452027 DS (2, ma,mss 1, N2, (5.19)
nz,n4,n56Z3 Jj=2,4,5
where

def

S(n27”4»n5;t7 N*) =

> [pN(na)sz(n34s)2xN345 (n1345) XNy (13) X N3 (13)

n3€Z3

x Vs (n3,na, ns)(nsas)~ (n3) "2 exp(£ait (n2))

x /0 sin((t — ') (n3as)) cos((t — 1) (n3) ] exp(ijir%nj))dﬂ}

j=4,5
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Define the phase function ¢ by

@(n3,n4,n5) = (n345) £3 (n3) 4 (n4) £5 (ns). (5.20)

By calculating the integral, using the triangle inequality, expanding the square, and using
Lemma 4.25, we obtain

S(nz,n4,n5;t, N*)Z
2
ST max (3030 m)7 s (03)(nsas) ™ ) Ml —m| < 1))

mezZ n3EZ3

< T?log(2 + max(N3, N4, Ns))

1 -2
) Ulo—m| <1 )
X (isr,li}:a:fisil;% =, AN (n3)(n3as)” (n3) "o —m| < 1}

X <:|:31:I:1|:2:1),(:|:5 ; %3("1)_1)(%(”3)(”345)_1(ﬂ3)_21{|¢ —m| < 1}>

< T?log(2 + max(Ns, Na, Ns))(nas) ™"
max YY" (m) " gy (n3){n3as) T (1) 2 1@ — m| < 1}

i +4,%
3,4, SmEZn3eZ*

By inserting this into (5.19) and summing in n, € Z3 first, we obtain

sup |62 (1. x: Nall s

3 H22
t€[0,T] Tyl

5
< T%1og(2 + max(Ns, N, N5))<1_[ Nj—z)
j=2
5
X | max, Z Z [(m)_l(l_[ XN, (nj)) (n245)¢271
PEETS ez no,n3,n4,ns€Z3 j=2
X (1345)™" (nas) " 1o — m| < 1}]
5
< T?1og(2 + max(Ns, Ny, N5)) N2 7! (]‘[ N].—Z)

5
X imZ > [(m)_l(l—[XN,/(”j))(n345)_1(”45)_1_2ﬂ1{|<ﬂ—m|51}]
j=3

meZ ny,n4,ns€Z3

< T?log(2 4+ max(N3, Ny, N5))N7*>~" max (N4, Ns) 25,

In the last line, we have used the cubic sum estimate (Proposition 4.20). In total, this
yields

sup |16 (1. x: Nl s

L2
1€[0,T] Tl

< T'log(2 4+ max(Ns. N, Ns))N32 ™2 max(Ny4, Ns) 8. (5.21)
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Recalling that max(N3, N4, N5) > N5, we are only missing decay in N3. By using the
sine-cancellation lemma (Lemma 4.14) to estimate S(n,, n4, ns;t, Ny), we easily obtain

S T2N27 V2 max(Ng, Ns)’Ny'. (5.22)

sup 16D .5 Noll oot gy 12 <

t€l0,T]
Combining (5.21), (5.22), and the condition max(N3, N4, N5) > N5, we obtain an accept-
able estimate.

Single-resonance term €3 This term can be controlled through similar (or simpler)
arguments to those for € and we omit the details.

Double-resonance term €™M This term only yields a non-trivial contribution when
Ny ~ N3 and N, ~ N4. We note that the sum in n3 € Z3 may appear to diverge log-
arithmically (once the dyadic localization is removed). However, the sine-function in the
Duhamel integral yields additional cancellation, which was first observed by Gubinelli,
Koch, and Oh [37] and generalized slightly in Lemma 4.14.

Using the inhomogeneous Strichartz estimate (Lemma 4.9), it follows that

1 . 1 .
10 @2 Nollgsaro-1 g0,y S NGV XN 20 ot o1y

1/2 1 ;
< 7126, x; N2 321 o, 11513y

Using Gaussian hypercontractivity (Proposition 4.45) and the orthogonality of multiple
stochastic integrals, we obtain
) . 2

T” ”@ (Zv X N*)||LI2H§2_1([0,T]XT3) HLZ

S ISP x: Nl 21 o rerny 12

ST?p sup Y xns(ns)(ns) >0 728 (nsi1, No)>  (5.23)

t€[0,T] nseZ3

where

S(”ls;l, N*)

def

=' > |:PN(”1345)2PN(”3)ZPN(”4)2XN345(”345)XN1(”3)XN3(HB)XNz(n4)XN4(n4)

n3,n4€Z4

x Vs (n3,na,ns)V (nas)(nsas) " (n3) 72 (ng) =2

X/O Sin((t—l/)(n34s))COS((t—t’)(na))COS((t—t’)(n4))eXp(isit’(ns))dt’]

We now present two different estimates of S(ns; ¢, N«). The first (and main) estimate
almost yields control over €(), but exhibits a logarithmic divergence in N3. The second
estimate exhibits polynomial growth in N4 and Ns, but yields the desired decay in Ns3.
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Using |I7(n45)| < (n45)7# and the crude estimate |I75 (n3,n4,n5)| < 1, we obtain
8(1’!5;[, N*)

< N3 N3N, 2 Z 1{|ns| ~ N3, |na| ~ Ny, [n345] ~ N3gs}(nas)™?

n3,n4€Z3
/t sin((t —1'){n345)) cos((t —1')(n3)) cos((t —1')(na)) exp(£sit'(ns)) d’
<T 10(;(2 + max(N3, Ng, N5))N3,s N3 2N, 2
X max sup Z [1{|n3| ~ N3, |ng| ~ Ny, |n3as| ~ Naast{(nas) P

+3,%4,%5 ez
x Yl —m| < 1}],

X

]

n3,n4€Z3

where the phase function ¢ is given by
@(n3,n4,15) = (n34s) 3 (n3) £4 (n4) £5 (ns).
Using the counting estimate from Lemma 4.29, it follows that
S(ns;t, Ni) S T log(2 + max(N3, N4, N5)) max(Ny, N5)_‘8+'7. (5.24)

Alternatively, it follows from the sine-cancellation lemma (Lemma 4.14) with A =
N42N52, say, that
S(ns;t,Nx) S T*N;7'N;NZ. (5.25)

By combining (5.23)—(5.25), it follows that

1/2 (1) .
T H € (t7x’N*)||L%H;2_l([0,T]xT3) ”Lf)
< T3p'? log(2 + max(Ns, Na, Ns)) N> min(N, ?, NP NTINSNS)
< T3 pV2NE2TH2PH20M max (N3, Ny, Ns)™ < T2 p'/? max(Ns, Ny, Ns) ™.
This contribution is acceptable. m

Proof of Proposition 5.8. This estimate is similar to (but easier than) Proposition 5.7 and
we therefore omit the details. Instead of gaining additional regularity through the para-
differential operator as in Proposition 5.8, we simply use the interaction potential I’ and
the crude inequality

(n12) 72 < (n12)7 < (n12345) 2 (n345)>  for0 <y < B. n

5.4. Septic stochastic objects
The next proposition controls the third and fourth term in So, i.e., in (2.28).

Proposition 5.10 (Septic stochastic objects). Let T, p > 1. Then

ok

N

<T4p"?, (5.26)

sup
N>1

227+ (o, 1) L8 ()
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o AT

Remark 5.11. In the frequency-localized version of Proposition 5.10, we gain an 7’'-

<T*p72, (5.27)
LE®P)

sup
N=1

%3‘271 by —1 {0,T]

power of the maximal frequency scale. As in Proposition 5.1, we may also replace \I/N

by \I/N = 1I[1[0,1"3"]. We will not further comment on these minor modifications.
T

Proof of Proposition 5.10. We only prove (5.26); the second estimate (5.27) follows from
similar (but slightly simpler) arguments. To simplify the notation, we formally set N =
oo. The same argument also yields the estimate for the supremum over N. Using the
inhomogeneous Strichartz estimate (Lemma 4.9) and Gaussian hypercontractivity (Propo-
sition 4.45), it suffices to prove that

|l

Using a Littlewood—Paley decomposition, we write

0= Z w3 *[N1234567. N1234. N4, Nsg7],

N1234567,N1234,N4,N567

sup <73 (5.28)

t€l0,T]

=227 (1322 P)

where

W *[N1234567. N1234. N4, N5g7]
= PNy334567 [(PN1234 f}) * ( I ’ PN4T) Pnse; I ] (5.29)

We now present two separate estimates of (5.29). The first estimate, which is the main
part of the argument, almost yields (5.28), but contains a logarithmic divergence in Ny.
The second (short) estimate exhibits polynomial decay in N4, and is only used to remove
this logarithmic divergence.

Main estimate: Using the stochastic representation of the cubic nonlinearity (Proposition
4.44) and (4.76), we obtain

I *[N1234567. N1234, N4, Ns67]

= > Y |:XN12345(,7(n1234567)XN1234(”1234)XN4(n4)XN567(n567)I7(n1234)

. 1
X O(t,nj,+;:1<j < 3)ei”<”4>ﬁc1>(z,nj, +;:5 < j < 7)exp(i (n1234567, X))
ng

x Dafny. +j:1 < j < 31T [na. 4] Taln;. £j:5 < j < 71]. (5.30)
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Here, the amplitude ® is given by

O, nj,+;:1<j <3) = (n123)_1I7S(”1,n2,n3)

3 ‘ 3
X (l_[(nj)_l)(/o sin((t —t"){(n123)) l_[ exp(:l:jil’(nj))dt/).
=1

j=1 Jj=
Comparing with ®(n1,n,,n3) as in Lemma 4.31, we have

sup |®(t,nj,£j:1 < j <3)| S TPni,n2,n3). (5.31)
t€l0,T]

We now rely on the notation from Definition 4.30 and Lemma 4.3 1. Using the product for-
mula for multiple stochastic integrals twice (Lemma 4.40), the orthogonality of multiple
stochastic integrals, and (5.31), we obtain

W *[N1234567. N1234, N4, N5g7]

§T4Z Z (nnr>2(s2—l)

P n))jgo
*
X ( > Hlnizaaser] ~ Nizaaser} 1{|n1234] ~ Ni2aa}1{|nse7| ~ Ns7}

n;)jes

~ 2
X 1l ~ Na} [P (11230)| (11, n2,13) (na) ™ (s, . n7))

2

sup
t€[0,T]

L2 B2 (@xT3)

The sum in & is taken over all pairings which respect to the partition {1,2,3},{4},{5,6,7}.
For a similar argument, we refer the reader to [28, Lemma 4.1]. Using Lemma 4.31, it
follows that

I *[N1234567. N1234. N4, Nse7] .
L2 H2™ (QxT3)

< 721082 + N (VS Vs 4 NpSsar N (532)

sup
t€[0,T]

Since N1234567 S max(N1234, Nse7) and Ni234567 ~ Nse7 if N1234 < Nsg7, we obtain

W *[N1234567, N1234, N4, Nse7] o
L2 H2 (QxT3)

< T?10g(2 + Ng) max(N1234567, N123a, Nsg7) " B71752) . (5.33)

sup
t€l0,T]

Removing the logarithmic divergence in N4: Using Proposition 5.1 and (5.11) from
Proposition 5.3, we obtain
sup

Wl *[N1234567, N1234, N4, Nse7] .
t€[0,T] L2 H2™ (QxT3)

< [Pras Y- 2] P |
H N1234 v L4 Lo L2@x[0,TIxT3) || - V567 LY L§° L (@x[0,T]xT3)

< T5N1234N4_n/10- (5.34)
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Combining (5.33) and (5.34), we obtain

W *[N1234567. N1234, Na, Nsg7]

sup L
t€0,T] L2 H2™ (QxT3)
_n2 —(B—p—
< T3N;" max(Ni234567, N1234, Nsg7) E777252) (5 35)
Summing over the dyadic scales yields (5.26). ]

6. Random matrix theory estimates

In this section, we control the random matrix terms RMT. Techniques from random
matrix theory, such as the moment method, were first applied to dispersive equations
in Bourgain’s seminal paper [5]. Over the last decade, they have become an indispens-
able tool in the study of dispersive PDE and we refer the interested reader to [6, 17,27,
28,34,37,63]. Very recently, Deng, Nahmod, and Yue [30, Proposition 2.8] obtained an
easy-to-use, general, and essentially sharp random matrix estimate, which is proved using
the moment method. We have previously recalled their estimate in Proposition 4.50. The
proofs of Propositions 6.1 and 6.3 combine their random matrix estimate with the count-
ing estimates in Section 4.4.

Proposition 6.1 (First RMT estimate). Let T, p > 1. Then

sup sup sup (Vv *\/:) - P<NW||orsa—1.64—1 ‘ <Tp. (6.1)
HNzl FE0.TTwll sy .6 () <1 27D | e (py

Remark 6.2. This proposition controls the first term in RMT, i.e., in (2.30). In the
frequency-localized version of (6.1), which is detailed in the proof, we gain an 7’-power
in the maximal frequency scale.

Proof of Proposition 6.1. The argument splits into two steps: First, we bring (6.1) into a
random matrix form. Then, we prove a random matrix estimate using the moment method
(Proposition 4.50).

Step 1: The random matrix form. By definition of the restricted norms,

sup sup I(V '\/:) . Pst||S[s2—1,b+—1(g)
FEI0.TT w5y .6 ) =<1

= sup lx(@/T)(V * \/:) : Pstllfxsz—l.b_;,_—l(R). (6.2)

<
10l 5y gy <1

We bound the right-hand side of (6.2) with b4 replaced by b_. Using the frequency-
localized estimate in the arguments below and a reduction similar to that in the proof of
Proposition 5.1, we can then upgrade the value from b_ to b,.. Let w € X2 (R) satisfy
[wllgsi .o gy < 1. We define wy € X518 (R) by

def

DA, n) E 1{£1 > 0B (A, n).
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Then w = w4+ + w— and
lwllegsr.p qy ~ max[|(n)”" ()P oL £ {n). MLz 2 @xt3)

Using this decomposition of w and the stochastic representation of the renormalized
square, we deduce that the nonlinearity is given by

VL) Poyw
3

=Y X X [e@s=([Tevem, @)

+1,%2,+3 N1,N2,N3 n1,n2,n3€Z3 j=1
2

x P (m12)Talyny: j = 12)([ expCsie () ) s (.m3) expli n12. ) |
j=1

= > X /Rd)t3 > [c(il,iz)(ﬁpN(nj)XN,(nj))

+1,%2,+3 N1,N2,N3 ni,no,n3€Z3 Jj=1
xV(ni2)Tal£j,n;:j = 1,2]
3
x expiths) ([T exp(ait (1)) ey (ks 3 (13).13) expli (123, %)) |
i=1

To simplify the notation, we define the phase function ¢: (Z3)3 — R by

@(n1,n2,n3) = £123(n123) £1 (n1) L2 (n2) £3 (n3). (6.3)

The space-time Fourier transform of the time-truncated nonlinearity is therefore given by

FxC/TYV «\L) - Panw)(A ip3 (n).n) =T > > /des

+1,%2,+3 N1,N2,N3

x 3 e g ln = M) TG~ 23 = ln1,nz.n3))

nl,nz,n3EZ3
3
< (TTon () aw, ) P (o) Dol iy j = 1,202, 03 &3 (n3).13)]- - (64)
J=1

To simplify the notation, we emphasize the dependence on the frequency scales Ny, N,
N3 by writing N, and omit the dependence on +1,3, +1, +5, +3, and T from our nota-
tion. We define the tensor h(n,ny,n,,n3; A, Az, Ny) by

def

h(n,ny,nz,n3; A, A3, Nu) = Te(£1, £2)H{n = n123} {(T(A = A3 — @(n1,n2,n3)))

3
< (TTon ) aw, )) P ()™= ()™ 2) " na) 1. (69)
j=1
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Furthermore, we define the contracted random tensor A, (n,n3; A, A3) by

he(n,n3; A, Az, Ny) = h(n,ny,na.nz; A A3 Ny) - Io[£;.n;: ) = 1,2, (6.6)
J J

ni ,n2€Z3

By combining our previous expression of the nonlinearity (6.4) with the definition (6.6),
we obtain

FxC/TYV «\L) - Panw) (A 123 (n).n) = (n)~27D 3~ 3" /}deg

+1,%2,%£3 N1,N2,N3
X Z he(n,nsz; A, Az, Ny)(n3)*' W4, (As £3 (n3),n3).

n3€Z3

We estimate each combination of signs and each dyadic block separately. Using the tensor
norms from Definition 4.32, the contribution to the Qs2=Lb—=1_horm is bounded by

07 [ @1 5 hetmnsidida Nyl s, 3 2 03}

n3€Z3

L33 (RXT3)
< AP As) P llhe(n, n3i AL A3, N llng—n HLng ®xcr) 10l R)-
3

In order to control the operator norm in (6.2), it therefore remains to prove that

P71 33) e 01,133 2 23, N o

||L§L§3(Rxﬂ«) ’ L2 (P)

< T'max(Ny, N, N3)"?p. (6.7)

Step 2: Proof of the random matrix estimate (6.7). Using Minkowski’s integral inequality,
we have that

Y 33y lhe (1,133 2 23, N o

“L§L§3 (RxR) ‘ LP.(P)

= |0 ) e n3: A 25 No)llnson | oy |

L§L§3(RxR)

b_—1 —b .
=< ”(k) (A3) ”L,ZIL}G(RXR) 'AT?ZRH||hc(n7”3akvk3»N*)”n3—>n HLZ(]P’)

< Ajl;zRH e (n,n3: 2, 23, N llns—n | 1p p)-

We emphasize that the supremum over A, A3 € R is outside the L2 (IP)-norm. Using the
moment method (Proposition 4.50), we get

sup H||hc(n,n3;k,)t3, N |lny—n HLZ(]P’) < max(Ny, N, N3)"/?
A,A3€R

X sup max(||h(, A? A37 N*)||n1n2n3—>n, ||h(7 Av A?n N*) ||n3—>nn1n2y
A,A3€R

IA(: A, A3, N*)||n1n3—>nn27 (LICRIVER N*)”n2n3—>nn1)P-
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In order to estimate the tensor norms of 2(+; A, A3, Ny), we further decompose it according
to the value of the phase function ¢. For any m € Z, we define

h(n,ny,np,n3;m, Ny)

def

=T1{n = ni3}1{{p(ny, na,n3)) —m| < 1}

3
< (T ew @, 1)) 17 Grao)l ()= (1) ™ ()~ (ma) .
j=1

Using the definition of £ in (6.5) and the decay of ¥, we obtain

|h(nan]7n2»n3;k9k3» N*)|
S Y AT =A3—@(n1.nz, n3)) | {|g(n1, nz, n3)—m| < 1}

meZz
xh(n.ny.ny.n3:m, Ny)

< Y (Aa—A—m)2h(n.ny.na.nzim. N.).

mezZ

Using the triangle inequality for the tensor norms and the first deterministic tensor esti-
mate (Lemma 4.33), it follows that

max(Nl’N27N3)n/2 Sup maX(Hh(';)‘v’x.’nN*)||n1n2n3—>nv”h(';/\vx%N*)||n3—>nn1n27
A,A3€R
”h(?A?A?” N*)||n1n3—>nn2a ||h(,),,k3, N*)”n2n3—>nn1)

< max(Ny, Na, N3)"2 sup max (|7 m, Na)llnynans—ns 12 C1, Ni)llns—snnyn
mez

IR G;m, Nollnyng—nnas 1BC 1, N llnons—nny )
< T max(Ny, Np, N3) /2, .

Proposition 6.3 (Second RMT estimate). Let T, p > 1. Then

[swp sup sup [V 5 (PenT- Pen¥) (T@) PenBilgmaroi1 )|
N=1g<[0.T] Y|,

L& (P)

<Tp. (68)

<1
.Yz,h(g)_

Remark 6.4. This proposition controls the second term in RMT, i.e., in (2.30). In the
frequency-localized version of (6.8), which is detailed in the proof, we gain an n’-power
in the maximal frequency scale.

Proof. Due to the operator (T(<)), the renormalization My P_nY does not just cancel
the probabilistic resonances between the two factors of T in

Vs (P<yl- P<yY) (TQ) Pyt
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As aresult, we need to decompose My = MSD + M;®, where the symbols correspond-
ing to the multipliers are given by

Vin+k
mg 3 EOEE 0 ko,

L.K:L<K€

- def f/\ k
my@mE 3 %u(n Rz )pw ()2,
L.K:L>K€

The random operator

Vx (P<nt- Pan¥) (T @) Peyt— My © oy

can then be controlled using the same argument as in the proof of Proposition 6.1, except
that we use Lemma 4.35 instead of Lemma 4.33. Thus, it only remains to show that

I MY PN szt gy S THY ligsanggy: (6.9)

1
€3]
The estimate (6.9) has a lot of room and can be established through the following simple

argument. On the support of the summand in the definition of mlc\?, we have |n + k|
< |k|€. Using only the fact that V' is bounded, this implies that

g 1< > S KU+ kS K<Y K<L

K>1kez3 K>1

Thus, the symbol mg,@ (n) is uniformly bounded and hence the corresponding multiplier

MSD is bounded on each Sobolev space H?3(T?). Using the Strichartz estimates (Corol-
lary 4.7 and Lemma 4.9), we obtain

I MY PenY lgsatos1(g) S 1M P<nY || 20 oo
t X

') ~1(gxT3)
S+ |3|)||Y||L?OH;2*1(3XT3) S A+ IEDNY Nlgpsab(gy- ™

7. Paracontrolled estimates

The main goal of this section is to estimate the terms in CPara. We remind the reader that
the paracontrolled approach to stochastic partial differential equations was introduced in
the seminal paper of Gubinelli, Imkeller, and Perkowski [36] and first applied to dispersive
equations by Gubinelli, Koch, and Oh [37].

The definitions of the low-frequency modulation space £/l and the paracontrolled
structure PCtrl given below follow similar ideas to the framework in [37].

Definition 7.1 (Low-frequency modulation space). Let H = {H(t,x; K)}x>1} be a fam-
ily of space-time functions from R x T3 into C satisfying

supp(H (¢, x; K)) C {k € Z>: |k| < 8K€). (7.1)
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We define the low-frequency modulation norm by

ef — Y
| Hllam) = sup K*IH Ak K)o 1t @oxmy: (7.2)

We define the corresponding low-frequency modulation space £LAL(R) by
ZMR) = {H:[|H|2um) < o0} (7.3)

Furthermore, let § € R be a time interval and let H = {H (¢, x; K)}k>1 be a family of
space-time functions from ¢ x T3 into R satisfying (7.1). As in the definition of X*2-
spaces, we define the restricted norm by

||H||gm(g) = inf{||H/||gML(R): H'(l‘) = H(l‘) forallt € 3,’} (7.4)

The corresponding time-restricted low-frequency modulation space LA () can then be
defined as in (7.2) after replacing the norm.

Definition 7.2 (Paracontrolled). Let § € R be an interval, let ¢: ¢ x T3 — C be a dis-

tribution, and let H be as in Definition 7.1. Then we define

PCUrl(H, $)(1.x) = > H(t,x: K)(Pg$)(1. x). (7.5)

K>1

If H € LAL(R), we have

PCtrl(H, $)(1, x)

=3 ¥ [ AGu ks KEpin Y xd k) explilkiz.x))
K>1pez3 7R koeZ3
(7.6)

The expression (7.6) will be used in all of our estimates involving PCtrl. The sum in k1,
the integral in A1, and the pre-factor H (A1, k1; K) will be inessential. The main step will
consist of estimates for

exp(idit) Y xk(ka)g(t, ka) exp(i (krz, ),
k2€Z3

which essentially behaves like Px ¢ (¢, x). For most purposes, the reader may simply think
of PCtrl(H, ¢) as ¢.

Lemma 7.3 (Basic mapping properties of PCtrl). Forany s € R, any interval § C R, any
¢ € LHS(J x T3), and any H € LM(), we have

IPCl(H. §) Lo grs—se(gxr3) S 1 H Il e g gxr)- (7.7)

Proof. We treat each dyadic piece in PCtrl separately. Using the Fourier support condition
(7.1), we have
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[ H(t, x: K)(Pr ) (1, %) || grg—se (13
=| X kA kKb ko) expli fkiz x))|

s—8e 3
kik2€Z3 s
< 2 kK| X axkabie k) explilhin D] o
k1€Z3 k2€Z3 o
K Y 1Ak K)) 16Oy S KN H leagole®l g ers).
k1 e€zZ3
The desired estimate follows after summing over K. ]

In the next two lemmas, we show that the terms appearing in the evolution equation
(2.14) for Xy fit into our paracontrolled framework.

Lemma 7.4. Let § C R be an interval and let f, g € X™Y(g). Then there exists a
(canonical) H € LAM(F) satisfying

(@&«E(V * (f g)¢) = PCul(H, $) (7.8)

for all space-time distributions ¢: § x T3 — €. Furthermore

1 H lzmcgy < 1S llc—1.0¢g) - 181lac—1.5(g)- (7.9)

Remark 7.5. Due to the overlaps in the support of the Littlewood—Paley multipliers yx,
the low-frequency modulation H € LA () is not quite unique. As will be clear from the
proof, however, there is a canonical choice. This canonical choice is also bilinear in f
and g.

Proof of Lemma 7.4. Using the definition of the restricted norms, it suffices to treat the
case § = R. We have

@@V * (f D)t x)

> S am ) (n2) xx (k)

N1,N2,K: ny,no,keZ3
Ni,N><K*¢

x V(n12) f(t,n0)8(t, n2)(t, k) exp(i (n12 + k, x))
PCtrl(H, ¢)(z, x),

where

At kK= Y Y om0 m2)V () f(t.n)gn2).  (7.10)
Ni,Na: n1,n2€Z3:
Ni,N><K¢€ ni2=k
It therefore remains to show H € LA (R) and the estimate (7.9). The Fourier support
condition (7.1) is a consequence of the multiplier y n, (1) xn, (n2) in (7.10). To see the
estimate (7.9), we first note that

AM kK= Y Y am ), (12)V (1) (f(om) = 8¢ n2)) ().

Ni,N2:  pynreZ3:
Ni,N2<K€ pir=k;
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Using Young’s convolution inequality and Cauchy—Schwarz, we obtain

1 Okers KDl 3 ry
S Y Y )@ V@) )l g 18R 21 g

N1,N2:  nynreZ3:
Nl 5N25K€ n12=k1

S Y Himldnal S KA = (1) F Aan)l 2 gy
n1m2€Z$

ma=ki x {121 = (12))° 8 (A m2)ll 12 )

R /
S (X Himl £ KA = 0 TGl )

n1€Z3
€ b~ 2 1/2
(D2 Uinal < KA = (128 Rn2)l 5 )
np€Z3

S K7 flla-1o¢g) - Ngllz—10(9)-
The desired estimate (7.9) now follows by taking the supremumin K > l andk; € Z3. =

Lemma 7.6. Let § C R be an interval, let s € [—1,1], let f € X750 (), and let g € X*P.
Then there exists a (canonical) H € LM(F) satisfying

V x (f g)&®¢ = PCtrl(H, ¢) (7.11)

for all space-time distributions ¢: J x T3 — C. Furthermore,

IH lacgy < NS Nag—s.g) - 18 lles.og)- (7.12)

Remark 7.7. We emphasize that Lemma 7.6 fails if we replace the assumptions by f, g €
L0 () as in Lemma 7.4. The reason is that the product f - g inside the convolution
with the interaction potential V' is not even well-defined.

Proof. Proof of Lemma 7.6] The argument is similar to the proof of Lemma 7.4. As
before, it suffices to treat the case § = R. A direct calculation yields the identity (7.11)
with R
Hk:K)y= Y gy k)Vk) Y fa.n)@na).  (1.13)
K <K< ny,na€Z3:
ni2=ki

Using Young’s convolution inequality and Cauchy—Schwarz, we obtain

||I:\I(/\,k1;K)||L}L(R) < Z ”f(k’”I)HL}L(R)”g(A’”Z)”L}L(R)

ni ,n2€Z3:
ni2=kj
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~ /
(3 ) I0A - <m>>bm,nl>||§§(m)1 i

nIEZ3
2s b~ 2 172
(D2 tm2 = k)X A = (1)) &) 22 )
ny€ez3
Using (ny — k1) < (k1) + (nz) < K¢(n,), we obtain the estimate (7.12). L]

7.1. Quadratic paracontrolled estimate

In this subsection, we show that P<y Xy @ P NT is well-defined uniformly in N even
though the sum of the individual spatial regularities is negative. Together with Lemma
8.8, this will control the second and third terms in Phyj, i.e.,

Vo (P<nXn @ Py - P<y \1/ and V% (P<yXy O Py - Poywy.

Proposition 7.8 (Quadratic paracontrolled object). Let T > 1. For any s < —2n — 10e
and p > 2, we have

2n
Z L H sup sup sup
Li~L N=1g<[0,T] | Hleug)=<1

I(PL, P<ny D[1g PCrl(H, P<y D] Pr, N 2oes o, 71213 ‘ <Tp,

L@ "~

where the supremum over & is taken only over intervals.

Proof. The supremum in N can be handled through the decay in the frequency-localized
version below and we omit it throughout the proof. Using the definition of the LA (F)-
norm, we may take the supremum over H € ZLJA((R) with norm bounded by 1. By
inserting the expansion (7.6), we obtain

(Pr, P<y D[14 PCtel(H, P<yD](t. x) - P, T2, x)

Y /Rdxlﬁ(xl,kl;zvl)

Ny ki€Z3

x |:PN(k1+7’ll)XL1(”1+k1)PN(n1)XN1(”I)XLz(nz)

n1m2€Z3

St ma) ( /0 14() Si“(“(_ktl l(i lj’“” exp(i i n1) dr’) expi (n12+k1,X))]-

Due to the definition of £/, we only obtain a non-trivial contribution if Ny ~ L1 ~ L.
Using the triangle inequality, it follows that
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sup  sup || (P, P<y D[1g PCl(H, P<ND] - PL, Tl 120eg o 1113
F<[0, T H llour)<1

SZNF sup sup  sup
N, #<l0.T] kiez3: A1€R
[k1|<8N}

S |owtha o + koo

ny,np€Z3

X 1y () ALy (12) expli 1z + by )Tt )

boosin(@ =) ki) S ,
x(/o 14(2") Ttnn exp(z)klt)T(t,nl)dl):|

L2€$([0,T]xT3)

To obtain the desired estimate, it suffices to prove for all Ny ~ L; ~ L that

S [owthr o+ )

sup sup  sup
g<l0,T] kyez3: A1€R 3
z

lk1|<8NE n2€

% o (1) 10, () L (12) exp(i {1z + K x) Tt n2)

! ’ Sin((l _t/)(kl +nl)) . / 0 / /
x (/0 14(t) Tt exp(l)tlt)T(t,nl)dt):|

L2es([0,TIxT3) 12 ()
ST3N7% (714

We claim that instead of (7.14), it suffices to prove the simpler estimate

sup sup  sup  sup
te[0,T]1 $<[0,T] kyez3: A1€R
|k1|<8Nf

> [pN(kl +ni) gL, (0 + k)

ni ,n2€Z3

% on (1) v, (1) XL (12) expi {1z + kv, x) Tt n2)

! ’ Sin((t _t/)<kl +n1)) . X /
X(/o 14(¢") ) exp(iAqt )T(t,nl)dt )i|

L% HS
STAN,2 % (715)

The reduction of (7.14) to (7.15) is standard and we only sketch the argument. The supre-
mum in k; can easily be moved outside the moment by using Lemma 4.48 and accepting
a logarithmic loss in N;. To deal with the supremum in A; € R, we treat two separate
cases. Using the Lipschitz estimate |exp(iA11') — exp(iA1)| < || |A1 — A1), the supre-
mum over |A;| < N,? can easily be replaced by the supremum over a grid on [N %, N|1°]
with mesh size ~ N !°. The discrete supremum can then be moved outside the proba-
bilistic moment using Lemma 4.48. For |A1| = N!°, a simple integration by parts gains a
factor of |A1|! and we can proceed using crude estimates. The supremum over ¢ € [0, T]
and § C [0, T], which is parametrized by its two endpoints, can be moved outside the
probabilistic moment using the first part of the argument for A;. Finally, Gaussian hyper-
contractivity allows us to replace L5€S by L2 HS.
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We now turn to the proof of the simpler estimate (7.15). Using the product formula
for multiple stochastic integrals, we have

> |:PN(kl +n)xL, (11 + k)pn () xn, (1) L, (n2) exp(i (12 + ki, x))

nl,nZEZ3
0 ! / Sin((t_t/)(kl +n1)) . /A / /
xT(t,nz>(/o 14(t") . eXp(l/\ﬂ)T(l,nl)dZ)}

= 6@t x) + 69, x),
where the Gaussian chaoses €® and €(© are given by
€2 (1, x)

= Z Z |:C(:|:1»:|:2)PN(k1+n1)XL1(”1+k1)PN(”1)XN1(n1)XL2(n2)

+1,%2 nl,n2€Z3

t : Y
x (/0 1y S (klt l“;l; M) ot 41 i (ny) 42 it(nz))dt’)

xexp(i{niz + ki1, x)) L [£j,n;:j = 1,2]j|,

GO, x) = exp(i(kr.x)) Y [pN(kl +n1)xe, (1 + ki)py (n1)
n1€z3

1
(ny +kq)(n1)?

X (/ 1g(¢")sin((t — t") (k1 + n1)) cos((t —t")(n1)) exp(iA1t) dt’)i|.
0

X XNy (nl)XLz(nl)

The quadratic Gaussian chaos € is the nonresonant part and the constant “Gaussian
chaos” €© is the resonant part. We now treat the two components separately.

Contribution of the quadratic Gaussian chaos €®: Using the orthogonality of multiple
stochastic integrals and taking absolute values inside the #’-integral, we find that

||(§(2)(t,x)||i£)H§(QXT3)
ST? Y an ), m2)(ka + ni2)> Gy +ny) 2 (n1) "2 (n2) 2
ny,ny€Z3
STANTS > aw () xL, (o) (ki + ni2)®
ni1€Z3

—4n—20.
S TN, 750

3

which is acceptable.
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Contribution of the constant “Gaussian chaos” €©): Using the sine-cancellation lemma
(Lemma 4.14), we have

169, ) | gs(r3)

‘nés [pzv(/ﬁ +n)xL, (1 +k)pn (1) xn, (nl)XLz(nl)m
X (/ 14 (") sin((t —t") (k1 + n1)) cos((t —t")(n1)) exp(i A1) dl/):H
0
< N3
which is also acceptable. ]

7.2. Cubic paracontrolled estimate

In this subsection, we control the cubic paracontrolled object, i.e., the first summand in
the definition of CPara in (2.29).

Proposition 7.9. Let T > 1. For any interval § < [0, T], any ¢:[0, T] x T3 - C, and
H e P (), define

PCuty) (H.¢: 9) = (T [@<EN)(V * ((P2y Dl1g PCul(H.9)] - ¢) - )
— My P2y 1[14 PCul(H. ¢)].

Then, for all p > 2,

S T3P,

3
H sup sup sup ||PCtr1§\,)(H, PSNT; 5()||9£S2*1’b+*1([0,T]) L2 )

N=>1 <0, T] | H lug =<1

where the supremum over § is only taken over intervals.

Remark 7.10. The notation PCtrlS)(H , P< NT; ) will only be used in Proposition 7.9
and its proof. The frequency-localized version of Proposition 7.9 also gains an n’-power
in the maximal frequency scale.

Proof of Proposition 7.9. As before, we ignore the supremum in N, which can be easily
handled through the decay in the frequency-localized version below. Using the decay in
the frequency-localized version and a crude estimate, we can also replace the X2:0+~1-
norm by the %2>~~'-norm. Using the definition of the restricted norms, it suffices to
consider H € LM (R) with || H ||¢u®) < 1. In order to use a Littlewood—Paley decom-
position, we need to break up the multiplier Mpy. We define My [Ny, Na, N3] as the
multiplier with symbol

mn Ny Na, Nsl(nz) = 3 %pw)zm<k)xN2(n2)xN3(k) (7.16)
keZ3
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We note that My [Ny, Na, N3] is only nonzero when N; ~ N3, and hence in particular

when N; > Nj5. We now face a notational nuisance: both PCtrl and contain
frequency projections. To handle this, we use N, and Nj for the respective frequency
scales, but encourage the reader to mentally set N, = N;. It then follows that

pCtl (H, Py T: 9)

= > [V (P, P<nT- Py P2y 1[1g PCul(H, P<yD)]) - Pyy P<n!
Ny ,Né,N3:
max(N1,N5)>N§

— My[N1. Nj. N3] P2y 1[14 PCul(H, Pl 71D

Using the stochastic representation formula (4.77) in Proposition 4.44 and the expansion
(7.6), we obtain

PCul? (H, P<yT; 9)(2, x)
- ¥ ) /R Ao Az ki N2) Y [’ON(nz+kz)2xN2/(nz+kz)

N1,N2,Nj,N3: kreZ3 ni,np,n3€z3
max(N1,N5)>N3,
Ny~N},

3
< ([T e, 1)) V 1z + k2)

j=1

! ’ sin((t — t/)(nZ + k2)) . ’ ’
X (/(; lg(l) (s + ka) exp(it'Az)Z1[t", ny] dl)

x exp(i (n123 + k2, x))15[t, ny, n3]]

Using the product formula for multiple stochastic integrals, we can decompose the inner
sum over 11,15, and n3 as

3
> [PN("Z +k2)? x iy (n2 + kz)(l_[ PN (1) XN; (nj)) V(nia + ka)Io[t.n1.n3]

rll,nz,ng,EZ3 Jj=1
! in((t — ¢’ k
X (/ 15((t/) Sln(( )<n2 + 2)) exp(l'tlkz).’[l [t/,nz] dt/) eXp(i (n123 + kz,x))}
0 (n2 + k») /
= 6O (1. x:1 A2, k2, §. Ni) + 6V (1. x1 02, k2, &, Ni) + €D (1. x1 42, k2, &, Na).

where the cubic and linear Gaussian chaoses are given by

€3 (1, x) ,
= Y cpigj<y Y [pN(nﬁkz)szé(nﬁkz)(]"[pN(n»xN_,-(n,-))
+1,%2,%3 n|,n2,n3€Z3 j=1

sin((t—1"){ny+k3))
(n2+k2)

xexp(£1it({n1)£3it{n3))exp(i{nizz+kz, x))Is[£;.nj: 1<) 53]],

t
><I7(n12+k2)(/ 14(¢") exp(it’)tzizit’(nz))dt’)
0
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5V, x)
= Y pn(3)xns(n3) exp((na+ka, x)) D [pN(nz+k2>2xN5<nz+k2)pN<nz>2
n3€Z3 n1€Z3

t
X XNy (n2) XN, (n2) ([0 Ly (t") sin((t =) {n2 +k2)) cos((t =1"){n2)) exp(it'A2) dt')

X‘?(kz)(nz-i-kz)_l(nz)_z} Tilrina),

€D (1, x)
= Z on (n1) xw, (1) exp({ny +kz, x)) Z pN (n2+k2)? X s (n2+k2) py (n2)*
YLIEZ3 n1€Z3

xxNz(nz>xN3<nz>( /0 Ly(t') sin((t—z’><n2+k2>)cos((t—r/)<n2>)exp(z’r’xz)dz’)

XV (n12+ka)(na+ky) ™! ('12)_2} Ii[t;m].

We refer to €@ as the nonresonant term and to €V and (1) as the resonant terms. Using
the triangle inequality and || H ||« @®) < 1, we obtain

| PCUlRY (H. Py T )lso104 1)
< Z NJ€ sup sup (Ilﬁ(”(-;lz,kz,ﬂ,N*)||ssz—1»hf—1([o,T])

3.
N1,N2,Nj,N3: A2€R |i2f<ZN.5
max(N1,N5)>N3, 21~
Na~N, Dy.
2 + ||?( )(',Az,kz,g,N*)||5xsz—l.b——l([0’T])

+ 18D (322 k2. g N lgsa—t0-—1qo,17)):

We now use Gaussian hypercontractivity and a reduction similar to the proof of Propo-
sition 7.8 to move the supremum outside the probabilistic moments. Then, it remains to
show for all frequency scales N1, N2, and N3 satisfying max(Ny, N») > N that

sup  sup [P (5 A2, k2, Gy Ni)llgpsn—1.0-—1 (0.7
A2€R kyez3:
k2| SNS
+ ”@(1)(, Az, kz, g, N*)||9652—1~b——1([0,T])
o FACYENCW A N llogsa—1.6-=1 0,17 HLg)

< T? max(Ny, N», N3)™ 7.
We treat the estimates for the nonresonant and resonant components separately.

Contribution of the nonresonant terms: To estimate the %2~ 1*~—1_norm, we calculate
the space-time Fourier transform of y(t/ T)€® (¢, x; A2, k2, &, N«). We have
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Fox(x@/TVED (X A2, ko, §, NO))AF (n),n) = Y e(:1<j<3)

+1,%2,%3
3
x Y [1{’1 = ni23 + ka}pn (n2 + kz)z(l_[ PN (nj) XN, (”j))
ni,no,n3€Z3 Jj=1

X )(Né(nz + k2)17(n12 + kz)Ig;[:l:_,’,ndl <j <3
x Fy (exp(j:lit(nl) +3it(n3z))

! A sin((t —t')(na + ka))
X/(; lg(l‘) (I’l2+k2)

exp(it’)tz +, l'l/(nz))dl/)(/\ + (Yl))]

Using the orthogonality of the multiple stochastic integrals and Lemma 4.12 to estimate
the Fourier transform of the time integral, we obtain

” ||C-§(3) ”stz_lj’*_l([O,T]) ”zﬁ,

< max| ()P 2!

X | Frx 2t/ TYED (0. x: Az ko, . N)) A TF (1)) 122 oz ’

L3
max max dA (/\)Z(b—_l)
+,%1,%£2,£312=-1,0,1 Jp

< T4

~

3
< 3 [(TT oy ) ) tmizs + k2270 1z + ka) ™8 (1) 2 n2) ™ 1) >

nl,nz,n3EZ3 Jj=1

X (14 [A = Az = (£(n123 + k2) £1 (n1) 2 (n2) + 12(n2 + k2) +3 (n3)‘)_2]

STON max supsup DT [(TT aw 00)) s i)

3. 3 .
IZZ\GZN' MEL> | nyez3 Jj=1,3
2|~N>

X (1) 2 (13) 21 (n123) 1 (m1) % {ns) € [, m + 1)} ]
< T*max(Ny, Ny, N3)22 N[26 N 1HTe

In the last line, we have used Lemma 4.23 with y = €. Since max(Ny, N2) > N5 and §,
is much smaller than €2, this contribution is acceptable.

Contribution of the resonant terms: We only estimate €. Due to the factor
V (n12 + k»), a simpler but similar argument also controls €V,
Using the inhomogeneous Strichartz estimate (Lemma 4.9), we have
(6)) (6]
1" Nzpso=r0-=10,7p) S 11 ||Lfb+H§2_l([0,T]xT3)

1/2 (1)
§ T ||$ ||L?H;2_1([O,T]XT3)'
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Using Fubini’s theorem and the sine-cancellation lemma (Lemma 4.14) yields

2 2
|| ||@(1)||Er52*1-b—*‘([0,T]) ”Lg, <T? t:‘;%] H||@(1)||H;2—1(T3)||Lg

<T? Z AN (13) (13 4 k2)2627D (n3) 72

n3€Z3

x ' Y on(na +k2)?pn (12)” vy (12) v, (12) A vy (12 + K2)

n2€Z3
2

sk ) ([ 1500 sin(e= )z cost(e=) oz x|

ST Ny ~ NoJNTPFO (ko) 07520 3"y (n3) (n3) 6270 (ng) 72

n3€Z3

S T4 l{Nl ~ N2}N1_2+8€N3282~

Since max(Ny, N2) 2 N5 and 6, is much smaller than e, this contribution is acceptable.
n

8. Physical-space methods

In this section, we estimate the terms in Phy. The main ingredients are paraproduct
decompositions and Strichartz estimates. In Section 8.1, we recall the refined Strichartz
estimates for the wave equation by Klainerman and Tataru [45]. In Section 8.2, we use
the Klainerman—Tataru—Strichartz estimate to control several terms in Phy. The remain-
ing terms in Phy are estimated in Section 8.3, which also requires estimates on the quartic
stochastic object from Section 5.2.

8.1. Klainerman—Tataru-Strichartz estimates
We first recall the refined (linear) Strichartz estimate from [45, (A.59)].

Lemma 8.1 (Klainerman-Tataru—Strichartz estimates). Let § be a compact interval. Let
QO be a box of sidelength ~ M at a distance ~ N from the origin. Let Pg be the
corresponding Fourier truncation operator and let 2 < p,q < oo satisfy the sharp wave-
admissibility condition 1/q + 1/p = 1/2. Then

M2V o
IPoulugagiprn S A1 (F) N Pgulang, 5)

Remark 8.2. The factor N3/271/473/P is the same as in the standard determinis-
tic Strichartz estimate. The gain from the stronger localization in frequency space is
described by the factor (M/N)'/2~1/P_ Naturally, there is no gain when p = 2.

We emphasize that (8.1) has a more complicated dependence on M and N than
the corresponding result for the Schrodinger equation. In the Schrodinger setting, the
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frequency-localized Strichartz estimates for the operator Pg and the standard Littlewood—
Paley operators P<js are equivalent, which follows from the Galilean symmetry. This
difference between the Schrodinger and wave equation already played a role in our count-
ing estimates (Section 4.4).

Corollary 8.3. Let § be a compact interval. Let Q be a box of sidelength ~ M at a
distance ~ N from the origin. Let Pg be the corresponding Fourier truncation operator
and let ¢ > 4. Then

[Poullpepegxrs < (1+ |G M3ESENYEY Poullqon gy- (8.2)

Proof. This follows by combining Lemma 8.1 (with ¢ = p = 4) and the Bernstein
inequality 3/2
[Poullpeereo(gxT3)y S M7 7[[Poullgo.n(g).- m

‘We now state a bilinear version of the Klainerman-Tataru—Strichartz estimate, which
is a consequence of Lemma 8.1 (cf. [45, Theorems 4 and 5]). However, since we only
require a special case, we provide a self-contained proof.

Lemma 8.4 (Bilinear Klainerman—Tataru—Strichartz estimate). Let T > 1, g > 4, lety <
3—10/q and let N1, N, > 1. Then

||(V>_V(PN1 /- PN2g)||L‘{/2L§/2([0,T]XT3)
< T max(Ny, N2)3_2S1_8/q_y LS s b ([0,T]) llgllgst b ([0,T])-
In particular,

1/2
D 1PN Pl o p=asn o ppepsy S T2 1 st o, I8 s o o, 7
Ni,N»

Furthermore, if N1 > 1, then
(PN, V) * (PN, f - PNzg)“L}L}([o,T]XTS)
—B—28 —
< T1/2N112/2 p2 "' max (N1, N2) 1248 ||f||5xs‘],b([O’T])||g||5xS],b([O’T])-

Remark 8.5. Bilinear Strichartz estimates are also important in the random data theory
for nonlinear Schrodinger equations in [2, 3]. In the proof of Proposition 8.10 below, we
will only require the case ¢ = 44 and the reader may simply think of g as 4.

Proof of Lemma 8.4. We begin with the first estimate, which is the main part of the argu-
ment. Using the definition of the restricted X**®-spaces, we may replace || f ||, (0.T])
and [gllgs1.o 0,77y BY 1S st 2wy and [[gllgs1.5 gy respectively. The proof relies on the
linear Klainerman—Tataru—Strichartz estimate (Corollary 8.3) and box localization. We
decompose

”(V>_y(PN1 /- PNZg)||L‘{/2L§’(/2([0,T]XT3)
< Z N1_2y||PN12(PN1f'PNzg)||L;1/2L31(/2([0’T]><T3)~

Niz:
Ni2<max(N1,N>)
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If Ny =~ N, then Ny, ~ max(Np, N,) and the desired estimate follows from Holder’s
inequality and the L7 L%-estimate from Corollary 8.3 with M ~ N. Thus, it remains
to treat the case N; ~ N,. Let @ = @Q(Ny, N12) be a cover of the dyadic annulus at
distance ~ N; by finitely overlapping cubes of diameter ~ Nj,. From Fourier support
considerations and Lemma 8.1, it follows that

||PN12(PN1f . PNzg)||L‘,I/2L§1/2([0,T]><']1’3)

< Z I Po, Pn, [ - PQzPN2g||L;I/2L;7€/2([0,T]XT3)
01,02€Q:
d(Q1,02)<N12
S Z 1P, Pny fllLe 14 qo,r1xT) 1 P02 PN2 &Il L9 14 0, 71xT3)
01,02€Q:
d(Q1,02)<N12
3—10 2/q—2
S TYANG N2 N P, Pay f llpsto @yl Pos P g st oy
01,02€Q:
d(Q1,02)<N12
1/2
3—10 2/q—2
STYANG N (S P, Py f IR )
01,02€Q:
d(Q1,02)<N12
2 1/2
X ( Z ||PQ2PN2g||SxS'1.h(R))
01,02€Q:
d(Q1,02)<N12

3—10 2/qg—2
S TN YN0 Fllos by 1€ st o ry-

The desired result then follows by using the upper bound y < 3 — 10/¢ and summing
over Nis.
We now turn to the second estimate. After estimating

(PN, V) 5 (Pw, f PN2g)||L%L§([0,T]xT3)
1/2—B—-26 —
S NPT Py, f - P2 o iy

the result follows from the first estimate. [

8.2. Physical terms

In this subsection, we use the Klainerman—Tataru—Strichartz estimate and a paraproduct
decomposition to control several terms in Phy.

Proposition 8.6. Let § be a bounded interval and let f, g € X2 (4). Then

sup |V * (P<y f - P<ng) (@) PgNT ||96x2—1.b+—1($)
N>1

S+ |5”|)2||f||sxfl‘h(g)”g”wl-b(g)” T ||L‘t’°‘6’;1/2_'((3><']1“3)

and
;‘ipln(_')(v * (P<n f - P<Ng) PSNTH

S+ |g|)2||f||9551-b(g)||g||9551~b(3)|| T ||L?O‘6x_1/2_’((gx’]r3)'

stz—l.b_;'_—l(g)
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In the frequency-localized versions of the two estimates, which are detailed in the proof,
we gain an 1’ -power in the maximal frequency scale.

Proof. After using a Littlewood—Paley decomposition, we obtain

|V * (PENf -Pong) (_'®) P§NT ||%s2—1,b+—l(g)
+ [ (@@ * (Pen f - Pang) P<nT) gzt -1
S Z ||(PN12V)*(PSNPN1 _f'PprNzg)PsNPN:;T||‘%S2—l.b+—l(g)v
Ni,N2,N3,N12:

max(N1.N2)Z N§

where we have also used the fact that N1, < max(Ny, N3). We estimate each dyadic piece
separately and distinguish two cases:

Case 1: N1 ~ N3. Using the inhomogeneous Strichartz estimate (Lemma 4.9) and Lem-
ma 8.4, we obtain

”(PN]zV) * (PSNPle : P§NPN2g)P5NPN3T”%52*1~b+*1(g)
S PN V) (PN Pry f - Pon Prag) Pen Pl 2o s o)
< (1 +|#D " max(Ni2, N3)*2 7| (Py,, V) * (P<n P, f - P<n Pn:8)I 1212 (gx13)
x | P<n PN;T oo oo gxm3)
< (1 + [¢]) max(Ni2, 1\’3)52_11\’112/2_/”281 maX(Nl,Nz)_l/HMlNgl/HK
< If Ngsio gy 18 last 2y I Tl oo 172 (grers)-
Since max(Ny, Np) > N5, we can bound the pre-factor by
max(Nya, N3)2 I N2AH250 max(Ny, Np)~1/2+46 N31/2+K
< max(Ny, Na) P HON2F < max (N1, Na, N3) ™.

Case 2: N1 ~ N3. By symmetry, we can assume that N; > N,. Furthermore, we have
N3 ~ Nip < N;. Using the inhomogeneous Strichartz estimate (Lemma 4.9), we obtain

1(Pn1> V) % (P<n Pry S - P<n Py @) P<n PasTllgsn—104—1 4
S (L4 gD (V)22 ((Py,, V) % (P<n Py, f

. PsNPNzg)PsNPNsT) ||L;‘/3L§/3(2><T3)

< (14 g AN RO

x || Py, f”L?oL}C(ng-?)”PN2g||L;*L§(ng3)||PN3 T||L§’°L§°(gx11“3)
S ([P N 2T N T

X 1L lgsro g I8 pms I T st /2s gy



B. Bringmann 2058

Since N, N3 > 1, the pre-factor can be bounded by
Nl—slNzl/z—s,N;2—1/2+4(b+—1/2)—ﬂ+1/2+;< < N11—251+s2—l/2+4(b+—1/2)—ﬂ+lc

281 +82+4(b1—1/2)+x—B
= N, ,

which is acceptable. L]

Proposition 8.7. Let T > 1, let § C [0, T| be an interval, and let f, g: § x T3 > R.
Then

sup ||V s (P<nT@ P< ) P<ngllysn—104-14
N=>1

S+ |5‘|)2||T||L§’°‘€—1/2—K(gx1r3)||f||9m-b(g)”g”x-fl»h(gy

In the frequency-localized version of this estimate, which is detailed in the proof, we gain
an n'-power in the maximal frequency scale.

Proof. By using a Littlewood—Paley decomposition and the definitions of (#), we have

Vs (P<y1@ Py f)P<ng = E V % (P<y PN,V - P<y Py, f) P<n Pn,g.
Ni,N>,N3:
Ni~N>

We treat each dyadic block separately and distinguish two cases.

Case 1: N1 > N,, N3. Using the inhomogeneous Strichartz estimate (Lemma 4.9), we
have

[V = (PsNPNlT ’ PﬁNPNzf)PSNPNg,g”ngZ_]‘bJr_](f,,f)

< .
S|V * (P<y Py, 1 PSNPsz)PSNPN3g||Lfb+H;2*1(gXT3)

_1_
< (1+[gD V2N '6||PN1T||L;>°L§°(gzx1r3)||PN1fllL;tLj;(ngs)||PN2g||L§L§(ng3)
—1- 1/2 1/2— 1/2—
S (LHIGDN T PN NG T gt gy 1 Do gy 18 s -

Since Ny, N3 < Ny, the pre-factor can be bounded by

s2—1—B+1/2+4k Ar1/2—s1 r71/2—5] 281+862+k—B
Nl N2 N3 S]vl ’

which is acceptable.

Case 2.a: Ny < N3, N3 < N,. Using the inhomogeneous Strichartz estimate (Lemma
4.9), we have

1V 5 (P<n P, T+ P<n Pr, ) P<n P;gllgsa—tn—1 (g,
SAHIGD ()22 OV s (Poy Py, VP P, )P Prsg) | 353 1473 gy
<(1+|g|)N;2—1/2+4(b+—1)

x|V #(P<y P, T-P<n Pry )l 1212 (95003 | P<v Pra gl 14 (gxm3)
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—1/244(b1—1)-B8
S(LHFDNY O N o Lo oy 1PN 222 ooy | Pra gl L ey

2 a7 1/24K pyS2—1/2+4(by—1)—B—s1 »,1/2—

<(LHFDN, N + LNy

X||T||L<t>o~€;l/2*/<(gxqp3)||f||w1,b(g)||g||grn<b(g)-
The pre-factor can now be bounded as before.
Case 2.b: N < Ny, N < N3. Using the inhomogeneous Strichartz estimate (Lem-
ma 4.9), we have
1V 5 (P<n Pn,T - P<n Pr, f) P<N PN € lqsn—ton—1 g
SAHGN (V)27 2DV (Poy Pu T -Pen Phy f) Pn P 8) | 1473473 gy
S(1+|g|) maX(Nl,Nz)_ﬁN;2_1/2+4(b+_l)
X||T||L§’°L§°(gx1r3) ||PN2f||L;‘L;‘C(3xT3)||PN3g||L§LJ2€(ng3)

<(14]4))? max(N, Nz)—ﬂ]\,11/2+K]\,21/2_s1

—1/244(b4—1)—
xN3? R | Sy N 13 e

The pre-factor can now be bounded by
max(Ny, No) =P NII/HKNZI/Z_S1 N;2_1/2+4(b+_1)_s'
< N11/2+/c—ﬂ Ngl N3—1/2+51+52+4(b+—1) < N3281+82+K—ﬂ’

which is acceptable. ]
Lemma 8.8 (Bilinear physical estimate). Let § € R be a bounded interval. If
U, f:d x T3 — C, then
”(V * \Ij)f||5x~“2_l~b+—l(3xj[*3)
S+ |g|)3/2”qj”L$Hx_48‘(g><’]1“3) min(”f”L?og)lj—K(ng3), ||f||sxsl’h(g))~

In the frequency-localized version of this estimate we also gain an 1/ -power in the maxi-
mal frequency scale.

Lemma 8.8 can be combined with our bound on T@ wy in the stability theory (see
Section 3.3). In the local theory, its primary application is isolated in the following corol-

lary.
Corollary 8.9. Let § € R be a bounded interval and let w,Y: J % T3 — R. Then,

uniformly in N > 1,

HV*(PsNT@PsNY)PSN \IN - lbr—1(g)

S A+ 10?1 N goep o x| sy |

Leeb~  (gxT3)’
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|V 5 (P<NY@ PanY) Penwllysr-1hi1 g,
S A+ IFDN T ootz (goewsy 1Y lpsa gy 10t 2 g
Proof. We have
IP<NTO PNl o py—ts1 goopsy S 1H I o2 gopa 1Y Lo 32 g
SIFY2IM soer1/2x goersy 1Y s o g
Together with Lemma 8.9, this implies the corollary. ]

Proof of Lemma 8.8. Let 0 < § < B remain to be chosen. Using the inhomogeneous
Strichartz estimate and (a weaker version of) the fractional product rule, we have

(V% \I/)f||%x2—1.h+—1(gxr]r3)
< (L [FDIV) 272 C=ID (W 5 0) )] 475 1473 (s

S (L4 [gDI(v)s27 12412 (1 \IJ)||L?L;16/2—9

x ”(V>52—1/2+4(b+—1/2)f|

(FxT3)

LALIT? (gxT3)

Using Sobolev embedding, the first factor is bounded by

(V)22 ZHACTID W 5 W) 4720 g s

< (V)S2—1/2+4(b+—1/2)+39/4—ﬂ \I'l”L%

L2(gxT3) ”‘lj”L%H;“‘ (FxT3’

Thus, it remains to present two different estimates of the second factor. By simply choos-
ing 6 = 0, we see that

H(Z)2 12D £y sy S U DYl sorps gy

which yields the first term in the minimum. Using Holder’s inequality in time and
Strichartz estimates, we also have

_ b —
[(V)s2m1/2 440 1/2)f||L?L;/1+9(ng3)

S (4 gDy PHCUD £l aico e

S A+ 1FDYHf llggsr g

(FxT3)

provided that

1 1 3
—— 4+ 4lby—=)+=-—1—-06/4—-31+06/4 <sy.
52 2 (+ 2) 2 / /4=

The last condition can be satisfied by choosing 8 = 4§, which also satisfies < . =
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Proposition 8.10. Let § C R be a bounded interval and let f, g, h: J x T3. Then
sup |V (P<n f + P<N&)P<Nh llqsr—1.04 14y
N>1

< (1 + |g|)2 1_[ min(”(p”Ltoo‘ef—K(ngS)» ”(p”ExSIvb(g))- (8.3)
p=r.g:h

In the frequency-localized version of this estimate we also gain an 1/ -power in the maxi-
mal frequency scale.

Remark 8.11. In applications of Lemma 8.10, we will choose f, g, and  as either \I/V ,
which is contained in L‘,’°‘€,’?_K, or wy, which is contained in 5! b,

Proof of Proposition 8.10. Since the proof is relatively standard, we only present the
argument when all functions f, g, and & are in the same space. The intermediate cases
follow from a combination of our arguments below.

Estimate for L‘,’o‘é’}c3 ~¥: Using the inhomogeneous Strichartz estimate (Lemma 4.9) and
s> < 1, we have

|V % (P<n f - PSNg)PSNh||%S2—1.b+—1(g)

< .
S|V (PN f PsNg)PsNh”Lfb-rL%(gxm)

SA+HED JT lelpregxrsy S A+1ED TT 19l coes+gers)
o=1.g.h o=1.g.h

Estimate for X51?(g): Let 0 < # < 1 remain to be chosen. Using the inhomogeneous
Strichartz estimate (Lemma 4.9), we have
IV 5 (Pan f - Peng) Panh gt g
s2—1/2+4(b4—1/2)
S (L +[FD][(V)* + (V % (P<n f - P<ng)P<n]) ”L?”Li”(ij)
S (L4 [gD (V)2 /2H8C=D (y s (Poy f - P<ng)) ||L‘,‘/2—"L§/2—9(gx1r3)

><||(V)Sz_l/24_4(17+_1/2)h|| 4 4 .
LT LIT9 (gxT3)

Using Lemma 8.4, the first term is bounded by (1 + |g|)2—9/4||f||w1 b(9) lglloes: b(g) as

long as
261+ 6 +4(b+—1/2)+ 0 < B. 8.4)

Using Holder’s inequality in the time variable and the linear Strichartz estimate, we have

_ b —
||<V)S2 1/24+4(b4 I/Z)h||L?/1+9L;/1+8(gx11‘3)

<1+ |3|)9/2||(V)S2_1/2+4(b+_1/2)h||L

4 49
FOLT (@xT)

146
SAHED T Nhllgsio g



B. Bringmann 2062

provided that
0/2> 681+ 6 +4(by —1/2). (8.5)

In order to satisfy both conditions (8.4) and (8.5), we can choose 6 = 4§;. ]

8.3. Hybrid physical-RMT terms

In this subsection, we estimate the remaining terms in Phy. Our estimates will be phrased
as bounds on the operator norm of certain random operators. In contrast to Propositions
6.1 and 6.3, however, we will not need the moment method (from [30]). Instead, we
will rely on Strichartz estimates and the estimates for the quartic stochastic object from
Section 5.2.

Proposition 8.12. Let T, p > 1. Then

sup sup sup V*(PSNT-PSN \I/N)PSNw‘ b

N21 0.1 Il 5 g <1 w2 @D L @)
STp?  (8.6)

sup sup sup V % (PﬁNT@Pst)PﬁN \}N b1

NZ14S0Twll 5. g <1 L2 D Lp e

<T3p% (87

sup sup sup
N=14C0.7 [wll s, b 4 <1

V (PSN\I/N' - Pst) (@) PsNT‘

%32_1‘h+_1(2) L{:)(]P’)
<Tp? (8.8)

Remark 8.13. In the frequency-localized versions of (8.6)—(8.8), we also gain an 7’'-
power of the maximal frequency scale. Similarly to Proposition 5.3 and Remark 5.4, we

may also replace \I/N by \I/N .
T

Proof of Proposition 8.12. We first prove (8.6), which is the easiest part. Using the inho-
mogeneous Strichartz estimate (Lemma 4.9), s, — 1 < —s1, and the (dual of) the fractional
product rule, we have

HV * <P5NT' P<n }N )Pwa’ g2 1b4 =1 (g
< HV * (PsNT' P<n \}N )Pst
< HV * (PsNT' P<n \}N )Pst
< THV % (PsNT- PsN\K)

Using now (5.11) implies (8.6).

2b iy —1
L,y TH? ()

2b —s
Ly THS N

e 1 ([0,11xT3) Il oo 31 gcrs)-
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We now turn to (8.7) and (8.8), which are more difficult. The main step consists in the
following estimate: For any M1, Ny, K1, K> > 1, we have

/T3 V x (PM1 PSN\K . P, Pst)

x Py, P<y1- Px, P<ygdx

sup sup sup
N21eel0.T1 171 51 Ng ] 01 <1

LEP)
< T3 max(K, Kz,Nl,Ml)_"(l + 1{N1 ~ KZ}Ml_ﬂ—HC—H?Kl_sl+nN1]/2+K_Sl)p2.
(8.9)

For notational convenience, we now omit the multiplier P<y . As will be evident from the
proof, the same argument applies (uniformly in N') with the multiplier. The proof of (8.9)
splits into two cases. The impatient reader may wish to skim ahead to Case 2.b, which
contains the most interesting part of the argument.

Case 1: My ~ Ny. From Fourier support considerations, it follows that max(K;, K3) =
max(Ny, M1). Then, we estimate the integral in (8.9) by

'/Ts V % (P, i/ - Pk, /)Pn,T- Pk, g dx
DS
L<max(N,K3)

Y ||PLV||L}CHPM1 \IN 'PKlf‘
L<max(N1,K>3)

We now further split the argument into two subcases.

/1?3(PLV) * (PMI\K 'PKlf) . ﬁL(PNlT'PKzg)dx

12 1PL(Pw, T+ Pk,g) dx| 2

Y L7PPL(Py,T Pryg)dx] . (8.10)
L<max(N,K5>)

S MI—,B+KK1—S1 e
ey

Case 1.a: My ~ Ny, K, ~ Nj. Then we only obtain a nontrivial contribution if L ~
max (N, K3). Using max(K;, K7) 2 max(M;, N;) > Np, we obtain

i ’ ”:sf—K P lhegr2s

ep-ell T2

(8.10) < M1—ﬂ+/<K1—S1 max (K>, Nl)—ﬁ K2—51N11/2+K

Y

The pre-factor is bounded by (M7 K1 K, N1)~", which is acceptable.

< M1—ﬁ+:< Kl—n Kz—n N11/2+x+n—ﬁ—s1

Case 1.b: My ~ Ny, K5 ~ Ni. In this case, the worst case corresponds to L ~ 1. Using

only Holder’s inequality, we obtain
N eI Tl

This case is responsible for the second summand in (8.9).

(8]0) S 1{K2 ~ Nl}Ml_ﬁ+KK1—S1N11/2+K—Sl
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Case 2: M| ~ N;. This case is more delicate and requires the estimates on the quartic
stochastic objects from Section 5.2. Inspired by the uncertainty principle, we decompose

/ V% (PM1 i/ -PKlf)PNlT-PKngx

T3

/ (Pan, V) * (PM1 \} 'PKlf)PNlT'PKzng

T3

w| [Py (PN P 1) Pt P
T3

We estimate both terms separately and hence divide the argument into two subcases.

=

Case 2.a: My ~ N, contribution of P«n,V. For this term, we only obtain a non-
trivial contribution if K; ~ K, ~ N;. Using Holder’s inequality and Young’s convolution
inequality, we obtain

‘/W(P<<N1V)*(PM1 i 'PKlf)PNlT'PKzgdx

Py, i/
W epmicll Tligzirams.

The pre-factor is easily bounded by (and generally much smaller than) (M K; K;N1)™7.

< KKy~ Ko ~ My ~ Nij[[Pen Vit

Lg®

< || P&, 2 I1Pw, VLo | Pagl 2

< UK ~ Ky ~ My ~ NI}N11/2+2K—/5—2s1

Case 2.b: My ~ Ny, contribution of Pzy,V. By expanding the convolution with the
interaction potential, we obtain

'A}(Ple V) (PMl\I/N' : PKlf)PN1T' Py, g dx
5/ [Pz, V(y)l‘/ (Px, f(x — y) - Pk,g(x))
T3 T3

(P =) Py ) ax

SIPem Vg - sup [1(V) 2P (P fx = 3) - Prag () .y
- yeT

Pu, i/ (t.x — ) - Py, 2. %) He_l/w_x

< NTPKTTKST sup | Pa \I/ (t.x —y)- Py, Nt %) Hf-um—w
ye x

dy

X sup
yeT3

By Proposition 5.3, this contribution is acceptable. We note that the pre-factor N, P is
essential, since Proposition 5.3 is not uniformly bounded over all frequency scales.
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By combining Cases 1 and 2, we have finished the proof of (8.9). It remains to show
that (8.9) implies (8.7) and (8.8). To simplify the notation, we denote the expression inside
the L5 -norm in (8.9) by

A(K1, K2, My, Ny)

def
= sup sup

te[0,TY I f 1,515 lgl 51 <1
X X

. (81D

/ V x (PM1 %N ‘PK1f>PN1T‘PK2ng
T3

To see (8.7), we use the self-adjointness of V', duality, and s; < 1 — s, which leads to

v« 1@<

S 1{](2*Nl}”PKl(V*(PNIT-Psz)PMl\I/"’.))

Ky,K>,M,N;

sy—1
H?

sy>—1
Hy?

< ( Z I{KzwN1}J\)(K1,Kz,Ml,N1)>||w||H;1'
K1,K>,M1,Ny

Using the inhomogeneous Strichartz estimate and (8.9) now completes the argument.
Finally, we turn to (8.8). Using duality, we have

e () O,

< Z H{max(Mi, K1) > Ny} PK2<V * (PM‘ L “Fry w)PN‘T) ”H*‘Z_l
Ky,K>,M,N; )

< Z H{max(My, Ky) > NfL K3 27
Ky,K>,M,N;

< i (v (P Y Pew) P

S > Hmax(My.Ky) = NfYKS 27 A(K Y Ko My, Ny [w| o
K1,K>,M,N; “

We now note that max(M;, K1) > N implies

Ny ~ Ko} My PHetn grsitn gsitsa=l y1/2+kes)
—emin(B—k—n,1/2—81—n) prc+8
< N N <,

In the last inequality, we have used the parameter conditions (1.21). We also empha-
size that the factor K' +5271 i5 essential for this inequality. Using the inhomogeneous

Strichartz estimate and (8.9), we then obtain the desired estimate. [

9. From free to Gibbsian random structures

In the previous four sections, we proved several estimates for stochastic objects, random
matrices, and paracontrolled structures based on e. In Section 2, these estimates were
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used to prove the local convergence of the truncated dynamics as N tends to infinity.
Unfortunately, the object e only exists on the ambient probability space and the global
theory requires (intrinsic) estimates for ¢ with respect to the Gibbs measure. If the desired
estimate does not rely on the invariance of /L}?ﬁ, under the nonlinear flow, however, we
can use Theorem 1.1 to replace the Gibbs measure ,uf& by the reference measure vﬁ. In
particular, this works for stochastic objects only depending on the linear evolution of e,
such as T or ’\T/\’ Once we are working with the reference measure vj‘lgj[, we can use the
fact that
vy = Lawp (e +0y).

Since o,, has spatial regularity 1/2 4+ S—, we expect that our estimates for e will imply
the same estimates for ¢. As a result, this section contains no inherently new estimates
and only combines our previous bounds.

9.1. The Gibbsian cubic stochastic object

This subsection should be seen as a warm-up for Section 9.2 below. We explore the rela-
tionship between the two cubic stochastic objects

’\I/’ and \I/'

This is already sufficient for the structured local well-posedness in Proposition 3.3 on the
support of the Gibbs measure. It will also be needed in the proof of several propositions
and lemmas in Section 9.3 below.

Proposition 9.1. Let A, T > 1, and let { = {(e,s1,52.k,1,1,by,b) > 0 be sufficiently
small. There exist Borel sets @3 (A4, T), @0 (A4, T) C %x_l/z_K (T 3) satisfying

red

P(e € OW° (A4, T) and oy, € OX (A, T)) > 1 — ¢ exp(£4°)

blue red

for all M > 1 and such that the following holds for all e € ®§?§6(A, T) and o, €
O (A, T): For all N > 1, there exist Hy[e — o], Hy[o — o] € LUL([0, T]) and

red

Yn[e — o], Yn[e — o] € X°2:2([0, T]) satisfying the identities
’\I/N' - \I/' + Py I[PCtrl(Hy[s — o], P<yD)] + Yu[s — o,
'\K = '\I/' + Py I[PCtrl(Hy[o — o], P<y D] + Yilo — o].

and the estimates

|Hn[o — olllwuqo, ). I Hn[® = ollzaqory < T?A4,

[Yn[o — ‘]”wzsb([o,r])a [Yn[e— ']||sxS2~b([o,T]) <T3A.

Furthermore, in the frequency-localized version of this estimate, we gain an 1’ -power of
the maximal frequency scale.
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Remark 9.2. The results in Proposition 9.1 do not yield a bound on \I/N in L‘t’off -,

since X2 does not embed into L?°‘€f ~* and we do not state any additional information
on Yy . However, such an estimate is possible and only requires the translation invariance
of the law of (e, 0,;), which is a consequence of [12, Theorem 1.4].

Before we start with the proof of Proposition 9.1, we prove the following corollary.

Corollary 9.3. Let A, T > 1, let « > 0 be a large absolute constant, and let { =
L(e, 51, 82, k, 1,1, by, b) > 0 be sufficiently small. Then there exists a Borel set
@bl (4, T) C %5 Y27 (T3) satisfying

pur

1S (O (A, T)), v (O (A, T)) = 1 — ¢ exp(CAY) 9.1)

pur pur

for all M > 1 and such that the following holds for all ¢ € @gﬂr(A, T):
For all intervals § < [0, T] and w € X°1°(g),

3 HPLI'\I/N'.Psz

Ly,L>

gy = 1 Al ©.2)
t X

Proof. We simply define @EEI(A, T) as the set of initial data & € %, 1/2-x (T3) where

(9.2) holds for a countable but dense subset of X! b (R), which is Borel-measurable, and

it remains to prove the probabilistic estimate (9.1). Using Theorem 1.1, it suffices to prove
P(e+0y € O (4. 7)) = 1 - ¢ exp(¢4°).

pur
This follows directly from Proposition 5.1, Lemma 8.4, and Proposition 9.1. [

We now turn to the proof of Proposition 9.1. The argument relies on the multi-linearity
of the stochastic objects in the initial data. In order to use the decomposition of &, we
define mixed cubic stochastic objects. In Section 3.1, we defined stochastic objects in &
instead of e, which had the exact same renormalization constants and multipliers. In the
proof of Proposition 9.1, we also work with stochastic objects that contain a mixture of
both e and o = o,,. In this case, only factors of e require a renormalization. The renormal-
ized mixed stochastic objects are then defined by

L = PonlV  (PanT PayD) - PanT = My PonT).
QP E Py[(V+ ) PenTl,

P L PoylV % (PenT- PnD) - Penll

QP E Py [V (PenT- PonT) - Pendl.

G2 £ PV # (P<nT- P<n) - PenTl.
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Furthermore, we define the solution to the nonlinear wave equation with forcing term

L by
(=02 — 1+ A)'\i/N =Xy, '\i/N[O] =0.

The solutions for the other forcing terms above are defined similarly. Using these defini-
tions, we deduce the identity

\K=%+2\%+W+\K+z\i/f+c\i/ﬁ 9.3)

With this identity, the proof of Proposition 9.1 is now split into two lemmas.

Lemma94. Let A,T > 1,andlet { = ¢(e,51,52,k,0,1 ,bs,b) > 0 be sufficiently small.
Then there exist Borel sets @f;fe’(l)(A, T), 0> W (A, Ty € %7 Y27°(T3) satisfying

red

P(ec O0M(A,T)and o, € OV (A, T)) = 1 — ¢ Lexp(cal)  (9.4)

red

for all M > 1 and such that the following holds for all e € @E‘ffe’(l)(A, T)ando,, €
®cub,(l)(A, T)

red

Forall N > 1, there exists an Hy € LAL([0, T)) satisfying the identity

2(@)'\% + (@)C\i/ﬂ = Py I[PCtrl(Hy . P<yT)] 9.5)
and the estimate
| Hn | 2aqo,ry < T>A.

Furthermore, the difference Hy — Hg gains an n/'-power of min(N, K).

Proof. From Lemma 7.6, it follows that there exists a (canonical) random variable
Hy:Q — ZAL([0, T]) such that

2@ + (@)L = ey IlPCi(Hy . Py

and

1N Izato.1 S (T =520 g0y + 1T loe=s20 0.7 T llesa- 0.7
< T2(|| b ”%;52(11‘3) + o ”%;2(11‘3)) o ”7[;2(']1“3)

The estimate for Hy then follows from elementary properties of e and the high-regularity
bound for o in Theorem 1.1. |

Lemma9.5. Let A,T > 1, and let { = {(€,51,52,k,1, 7, b4, b) > 0 be sufficiently small.
Then there exist Borel sets @f;ffe’(z) (A, T), 0@ (A, Ty C 9 Y?7(T3) satisfying

red

P(ec O824, T) ando,, € O (4,T)) = 1 -t exp(c4’)  (9.6)

red
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for all M > 1 and such that the following holds for all e ¢ :(2) (A, T)ando,, €
blue
@CUb’(z)(A T):

red
Forall N > 1, we have

max(”(_'®) .\%

SY Ki/ ‘ x°2:2([0,T])’ ”.\I/)
H\% ‘ €522 ([0,T])’ HC\%)

Furthermore, the difference of the cubic stochastic objects with two parameters N and K
gains an 1'-power of min(N, K).

2522 ([0,T])’ 252 ([0,T])’

T3A.

) <
as2:b (o, 1)/

Proof. This follows from our previous estimates for e from Sections 5-8 and the high-
regularity bound for o in Theorem 1.1. More precisely, we estimate the L5 X*2:?-norm
of

e (M) \i/: by T2 p2+5)/2 through Proposition 6.3,

° (_'@) (\%. by T3p(1+2k)/2 through Proposition 8.6,

o \K by T2 p?>*+*/2 through Proposition 6.1,

. \% by T3 p'*+2¥/2 through Proposition 8.7 and Corollary 8.9,

° \%N by Tp3*/2 through Proposition 8.10. ]

Proof of Proposition 9.1. The first algebraic identity and related estimates follow directly
from (9.3) and Lemmas 9.4 and 9.5. By using T - T = (f and the high regularity bound
for o, we obtain the second identity and the related estimates from the first identity. ]

9.2. Comparing random structures in Gibbsian and Gaussian initial data

In Definition 2.4, we introduced the types of functions occurring in our multi-linear master
estimate for e (Proposition 2.8). The types w and X in Definition 2.4 implicitly depend
on e and, as already mentioned in Remark 2.5, we now refer to type w and X as type w®
and X°®, respectively. We now introduce a similar notation for the generic initial data .
In order to orient the reader, we include an overview of the different types and their
relationship in Figure 4.

Definition 9.6 (Purple types). Let ¢ C [0, c0) be a bounded interval and let ¢: J x T3
— R. We say that ¢ is of type

o Tifp=1,

° \I/ if o = \I/N for some N > 1,
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) )
T Thm. 1.1 T
~— —
Y PI‘Op. 9.1 ‘Y‘
— —
S )

° Lem. 9.7 .
w w

— e/
/ Lem. 2.6\ / Lem. 9.8\
W

Fig. 4. We display the relationship between the different types of functions used in this paper. The
equivalence “<>” means that both types agree modulo scalar multiples and/or terms further down
in the hierarchy. The implication “—" means that, up to scalar multiples, the left type forms a sub-
class of the right type.

o wif [llysingy <land ¥, 1P, T PLywl 5 =181 (g gz < 1 forall N > 1,

o X*ifgp = Py I[1g, PCtrl(H, P<n T)] for a dyadic integer N > 1, a subinterval
Jo € &, and a function H € LA (Fo) satisfying || H | eu(gy) < 1.

Since the type Y in Definition 2.4 does not depend on the stochastic object, its mean-

ing remains unchanged. In Proposition 9.1, we have already seen that the types \I/ and
\I/ only differ by functions of type X® and ¥ (or X* and Y). In the next lemma, we

clarify the relationship between the types w® and w® as well as X® and X*.

Lemma 9.7 (The equivalences w® < w® and X°® < X‘). Let A, T > 1, and let { =
L(€,81,82,6,0,1 by, b)>0 be sufficiently small. Then there exists a Borel set @zEe (A4,7)
< 967274 (T 3) such that

P(oy € Ok (A. 7)) = 1 ¢ exp(¢4°)
and such that the following holds for ¢ = e 4 o,,:

o The types w® and w* are equivalent up to multiplication by a scalar A € R satisfying
A A< T2%24,

o The types X® and X* are equivalent up to addition/subtraction of a function in X*2°
with norm < TA.
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Proof. We will prove the desired statement on the event

Ont (A, T) = {¢p € H > (T2): 1§lly1/24 8 g3y < A},

red

where ¢ = c(e, 51, 52, b) is a small constant. Based on Theorem 1.1, this event has an
acceptable probability.

We start with the statement regarding the types w® and w*®. Let ¢ € X512 () satisfy
lllgsi.p gy < 1, which holds for ¢ of type either w® or w®. For any L > 1, we have

‘ Z ||PL1T .PL2¢||L%H;481({,’XT3)_ Z ||PL1T .PL2¢||L?H;481(gXT3)
Li~L> Li~L>

< D IPLT - PLogll oot gy
Li~L» !

By Lemma 8.4, it follows that
Z ||PL1? .PL2¢||L%H;481(3XT3)

Li~L»
3—s1—(1/2+B—x)—2
ng/Z(ZLI s1=(1/2+p ) )||?||951/2+,3_K.b(3)||<p||w1.b(3)
L,

S T2 onllgyztimsc sy 1@ lanogy = 5T ANl )

This yields the stated equivalence of the types w® and w*®.
We now turn to the statement regarding the types X® and X*. For any H € LJA((J),

| P<n 113, PCrl(H, P<y )] = P 1[1 g, PCtrA(H, Py D]l (g
S 1P<n 11 g, PCtA(H, P<y T)]llges.0(g)-

Using Lemmas 4.8, 4.9, and 7.3, we have

”PSN 1[130 PCtrl(H? PSN ?)]||va2b($) 5 T” PCtrl(Ha PSN ?)||L?OH;271(30XT3)

S T|IH||2/”(3()) ” ? ||L?OH;271+86(4XT3)

S Tlloyllggr/o+8- g3y < 5TA.
This yields the desired estimate. ]

Lemma 9.8 (The implication XY > w’). Let =C(e,81,52,%,1,10,by,b) > 0 be suf-
ficiently small, and let A, T > 1. Then there exists a Borel set @;yupre (A, T)C %’;1/2_K (T3)
satisfying

13 (O (A, T)), vy (O8F(A,T)) = 1 = ¢ exp(£4°) 0.7

pur pur

forall M > 1 and such that the following holds for all ¢ € @g{}ie(A, T):If ¢ is of type X *
or'Y, the scalar multiple T~7 A~ is of type w*.
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Proof. Using a separability argument, we can define ® 5" (4, T) through countably many

bounds of the same form as in the definition of the type w®. We first note that, after
adjusting ¢, we can replace A~! in the conclusion by A=3. Using Theorem 1.1, it suffices
to prove that

P(e+o0y € ORF (A T)) = 1 — ¢ exp(¢4®).

pur

Thus, we may restrict both e and o, to sets with acceptable probabilities under P. After
these preparations, we now start with the main part of the argument.

First, we let w be of type Y. Using Lemma 2.6, it follows that 7% A¢ is of type w®.
Using Lemma 9.7, it follows that T7~°A™2¢ is of type w®.

Now, let ¢ be of type X*. Using Lemma 9.7 and the first step in this proof, we can
assume that ¢ is of type X°®. Using Lemma 2.6, T=*A~ !¢ is of type w®. Finally, using
Lemma 9.7 again, we find that T~°A2¢ is of type w*. ]

In Definition 2.13 above, we introduced the function £-norms, which are used to
quantify structured perturbations of the initial data. We now prove the equivalence of the
Z([0,T], 1;te, N, K)-and ([0, T], 1; to, N, K)-norms, which is similar to the statements
in Lemmas 9.7 and 9.8.

Lemma 9.9 (Equivalence of the blue and purple structured perturbations). Let A > 1, let
a > 0 be a sufficiently large absolute constant, and let { = (€, 51, 82,k,0,17,b4+,b) >0
be sufficiently small. Then there exist Borel sets O} .(A), OF (A) € %’;I/Z_K (T?3) sat-
isfying

P(e € O (A), 0y € O (A) = 1 - exp(—£A°). (9.8)

and such that the following holds on this event:
ForallT > 1,ty €[0,T], N, K > 1, and Z[ty] € #;'(T?3), we have

T A7 ZTto) % (0.71. % 10.3.5)
<N Zltollxo.11.1 008,560 = T* Al Z [t q0,77,1:00.8, ) (9-9)

Proof. Tt suffices to prove (9.9) for events O (A, T) and © (4, T) satisfying the prob-
abilistic estimate (9.8) as long as the lower bound in (9.8) does not depend on 7. We can
then simply take the intersection of Oblue(T A,T) and ®F (T - A, T) over all integer
times and increase « by 1.

After using Lemma 9.7 to compare the highxhigh interaction terms (involving
Ly ~ L), it remains to prove that

red

(@GN * (Pent PanZB) PanT)gmamrnam1o )
— @@V * (PnT- PnZ]) PyT:)| 9652_1’b+_1([0,T])‘

ST A(1Z% 0l + Y2 1P PLaZll 2y s01 o pppy)
Li~L>
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and
1V 5 (Pt PnZ3) (F@) Pan Tl amro -1 g0 1
— -V 5 (P<nT- Pan ZR) (T @) PanTillysn—104=1 09 1)
< TANZ°to]lp2.-
Regarding the first estimate, we have
‘H (C[@&QN(V * (PnT- PnZT) PsNTi)} 521041 (0, T])
— [(C@e@NV * (P<nT- Pan ZF) PanT) | o102 0.1y
< [(CI@eQ@NV * (P<nT- P<nZF) PanD) | gsz-100 10,19, (9.10)
+ (T @@V * (P<nT- P<n ZF) P<n ) | ws2-165-1 0.1y 9.11)
+ | (T @@V * (P<nT- P<nZR) P<vT) [ ypsa-165-1qo.19)- ©.12)

We can then control

e (9.10) through Proposition 8.6,
e (9.11) through Proposition 8.7 and Lemma 8.8,
e (9.11) through Proposition 8.10.

The proof of the second estimate is similar, except that we use Corollary 8.9 instead of
Lemma 8.8.

9.3. Multi-linear master estimate for Gibbsian initial data

In this subsection, we prove a version of the multi-linear master estimate for Gaussian data
(Proposition 2.8) for the purple types (Definition 9.6) instead of the blue types (Definition
2.4). Since we will only need this estimate in Propositions 3.5 and 3.7, which do not
involve contraction or continuity arguments, we can be less precise than in the multi-
linear master estimate for Gaussian data and simply capture the size of the forcing term
in the following norm.

Definition 9.10. Let N > 1,let § € R be a compact interval, and let R, ¢: ¢ x T3 — R.
Then we define

ef

IRl wz o (7.0) = inf (| H || acg) + [F llgpsa—1.04-1(g):
R = P_y PCtl[H, P<y¢] + F on § x T3}.

Remark 9.11 (Drawback of ). As mentioned above, the N& y (J, ¢)-norm is less
precise than our estimates in Section 2.1, since it does not give an explicit description of



B. Bringmann 2074

the low-frequency modulation H . This allows us to circumvent a technical problem which
the author was unable to resolve. In Proposition 5.7, we proved that

(_' )(3V * (PsNT' PSN.\K>P5NT:>

lives in X2~ 16+ ~1_ One may therefore expect that

(_' )(:V * (PSNT' PfN‘\IA‘)PsNT3)

also lives in %2~ 1-2+~1 However, after using Proposition 9.1, we would need an estimate

for
(T @&Q))(:V * (P<nT- P<nYn)P<nT)

in %2~ 1+~ Unfortunately, this is not covered by Proposition 6.3. In fact, without any
additional assumptions on Y other than bounds in %2, the highxhigh—low interac-
tions in P< NT - PN Y rule out this estimate.

Equipped with the /& -norm, we now turn to the master estimate for Gibbsian initial
data.

Proposition 9.12 (Multi-linear master estimate for Gibbsian initial data). Let A, T > 1,
let o > 0 be a sufficiently large absolute constant, and let { = {(€,51,52,k,0,1 ,b+,b) >0
be sufficiently small. Then there exists a Borel set O™ (A, T) C % 1/2-« satisfying

pur

1iy (e € OM (A, T)) = 1 - ¢ exp(=¢A°) (9.13)

pur

for all M > 1 and such that the following estimates hold for all « € O~ (A, T):

pur

Let § C [0, T] be an interval and let N > 1. Let ¢y, @2, 93: § x T3 — R be as in
Definition 9.6 and let
@roaig) 2 (11D (Tu* 1,
Q) If o3 Z 1, then
| P<n (:V * (P<n1 - P<ng2) P<n¢3?) ”NSfN(J,PSN fH= T*A.
(i1) In all other cases,
[:V % (P<n¢1 - P§N¢2)PSN¢3:”%52_]:b+_](g) <T*A.

Proof. While the proof requires no new ingredients, it relies on several earlier results. For

the advantage of the reader, we break up the proof into several steps.
Step 1: Definition of O 1. (A, T') and its Borel-measurability. Using the definition of the

time-restricted norms, we see that the statement for all intervals § C [0, T] is equivalent
to the statement for only § = [0, T']. Thus, we may simply choose ®™5 (A, T') as the set

pur
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where (i) and (ii) hold for all N > 1. To see that this leads to a Borel-measurable set, we
note that both 2L ([0, T']) and X*2-?([0, T]) are separable. For a fixed N > 1, we also
find that the functions

(01,92, 93) = | P<n (:V * (P<n¢1 - P<n@2) P<n¢3:) ||/V5£N(g,},§1V 1

and
(@1, 92, 93) = |-V * (P<n@1 - P<n@2) P<n@3illqsa—164-1 gy

are continuous with respect to the C? Hy v 2_K([O, T] x T3)-norm. Thus, we can repre-
sent O (A, T) through countably many constraints of the same form as in (i) and (ii),
and hence as a countable intersection of closed sets. In particular, @g{fr(A, T) is Borel-

measurable.

Step 2: Reductions. It therefore remains to show the probabilistic estimate (9.13). Using
the absolute continuity and representation of the reference measures from Theorem 1.1,
it suffices to prove that

P(o+0y € O™ (4,T)) = 1 — ¢ exp(—¢AY)

pur

for all M > 1. Furthermore, we can replace the upper bound 7%A4 in (i) and (ii) by
CT*AC, where C = C(e,s1,52,6, 0,10 ,bs,b) > 1. After the estimate has been proven,
this can be repaired by adjusting A and ¢. Using Lemma 2.6, Proposition 2.8, Corol-
lary 9.3, Lemma 9.7, and Lemma 9.8, we may restrict to the event

{0 € O (4, T) N OYL(A, T) N OFR(A, T)} N {oy € Ot (4, T) N ORG(4, T)}

ue red red

N{e+oy € OJF(4.T)}.

pur
type
Step 3: Multi-linear estimates. The estimates for @3 # T follow directly from the multi-
linear master estimate for e and the equivalence of the types in Corollary 9.3 and Lemmas
9.7 and 9.8. It then remains to treat the case @3 = T We further separate the proof of the
estimates into two cases.

type
Step 3.1: 91,02 # T We first remind the reader that in this case the nonlinearity does not

require a renormalization. We then decompose

Pn(V * (P<no1 - P<np2)P<n1)
= Py (V * (P<yg1 - P<ng2) @ Py )
+ Py (V % (P<yg1 - P<ng2) (T@) PoyY)
+ Py (V % (P<n g1 - P<ng2) (T ) Py ).

Using Lemma 7.6, the first term is of the form P<y PCtl(Hy, P< NT) with
| HN |l 2auqo,r7) < T A%. The second and third terms can be controlled through the multi-
linear master estimate for Gaussian random data.
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type

Step 3.2: ¢1,¢3 w T 02 F T Using the equivalence of types (as in Corollary 9.3 and
Lemma 9.7) together with the previous cases, it suffices to treat

0Lo3ZY % i,X., Y.

We decompose the nonlinearity

Vox (PSNT‘ P5N<P2)P5NT

using if o \I/ , X® and using (9 if @, 2 Y. Then the bound follows from

the multi-linear master estimate for Gaussian initial data and Lemmas 7.4 and 7.6. [

In Definition 2.13, we also introduced a structured perturbation of the initial data,
which we briefly examined in Lemma 9.9 above. While the multi-linear estimate does not
apply to the type (T, w®; T), we now obtain a multi-linear estimate if the second argument
is a linear evolution with initial data as in Definition 2.13. Since the definition has been
tailored towards this estimate, the proof will be easy and short.

Lemma 9.13 (Multi-linear estimate for the structured perturbation). Let A, T > 1, let

a > 0 be a sufficiently large absolute constant, and let { = (€, 81, 82,6,0,17,b4+,b) >0

be sufficiently small. Then there exists a Borel set Ope(A, T) C #x 1/2-x satisfying
Wiy (e € OD (A, T)) = 1= " exp(—¢A°) (9.14)

pur

for all M > 1 and such that the following estimates hold for all & € O (A, T):
Let N, K > 1, let tg € [0, T], let Z[to] € %X_I/Z_K(T3), and let Z(t) be the corre-
sponding solution to the linear wave equation. Then

IP<n [V % (P<nT+ P<n Z) P<n Ty 0.1, pon
= TaA”Z[fO]||z([o,T],T;;0,N,K)-

Proof. Let ZP[ty] and Z°[to] be as in Definition 2.13. Then we can decompose

Py [V # (P<y1- P<n Z) Py T]
= [@«Gl(P<nlV * (P<nT- P<y 2D Poy))
+ (T @e«QN(PnV * (PnT- Py ZP) Py 1)
+ Py [V # (P<yT- PoyZ°)@ Py ]
+ Poy[V % (P<yT- P<yZ°) () Pyl

The estimate then follows directly from Definition 2.13 and Lemmas 7.4 and 7.6. ]
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Appendix A. Proofs of counting estimates

A.l. Cubic counting estimate
We start with the proof of the cubic counting estimate.
Proof of Proposition 4.18. We separately prove the four counting estimates (i)—(iv).

Proof of (i): By symmetry, we can assume that Ny > N, > Nj. Using the basic counting
estimate to handle the sum over n, € Z3, we obtain

#H(n1,n2,n3): [n1| ~ Ny, |na| ~ Na, |n3| ~ N3, |¢p —m| < 1}
> (T insl~ Npb) min(Gnis), N2) ™' N3

nl,n3EZ3 Jj=L3
< NENSN; + NPNIN; < Ny YN NaN3)?,
which is acceptable.

Proof of (ii): We emphasize that n,3 is viewed as a free variable. In the variables
(n123,n1,n2), the phase takes the form

¢ = £123{n123) £1 (n1) £2 (n2) £3 (n123 — 11 —n2).

After changing (ny,n,) — (—n1, —n,), we obtain the same form as in (i) and hence the
desired estimate.

Proof of (iii): In the variables (1123, 712, 711), the phase takes the form
@ = £123{n123) £1 (n1) E2 (n12 —n1) £3 (M123 —n12).

By first summing over n; and using the basic counting lemma, we gain a factor of
min(Ny, N1z). Alternatively, by first summing over n1,3 and using the basic counting
lemma, we gain a factor of min(Ny23, N12). By combining both estimates, we gain a
factor of

max(min(Nl,N12),min(N123, le)) = min(le,max(N123, Nl)).
While not part of the proof, we also remark that
[(n123) + (n1) — (n12 —n1) — (n123 —n12)| < Nz
This shows that we cannot gain a factor of the form med(Ni,3, N1z, N1).
Proof of (iv): In the variables (115,11, 1n3), the phase takes the form
¢ = 12312 +n3) =1 (1) £2 (n12 —n1) £3 (n3).

By first summing over n; and using the basic counting lemma, we gain a factor of
min(Njz, N1). Alternatively, by first summing over n3 and using the basic counting
lemma, we gain a factor of min(Np,, N3). Combining both estimates completes the argu-
ment. The same obstruction as described in (iii) shows that the estimate is sharp. [
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We now use the cubic counting estimate to prove the cubic sum estimate.

Proof of Proposition 4.20. Due to the symmetry n; <> 1, we may assume that Ny > N5.
To simplify the notation, we set

€(m) = €(N1, N2, N3, Ni2, Ni23,m)

={(n1,n2,n3) € (Z*)*:|n;| ~ N;, 1 <j <3, |n12| ~ N1z, |n123] ~ Ni23, o —m| < 1}.

We then have
3 3
> (T ) tm2)>e =)= ([T ) 2) 18l = m| < 13]
ni.no,n3eZ3  j=1 j=1
> ONESTUN ‘ZV(]_[N 2)#e(m). (A1)
N123,N12

To obtain the optimal estimate, we unfortunately need to distinguish five cases, which
we listed in Figure 5. Cases 1 and 2 distinguish between the highxhigh and highxlow
interactions in the first two factors. This distinction is necessary to utilize the gain in Ny5.
The subcases mostly deal with the relation between Nj, and N3, which is important to
use the gain in Ny,3.

Case | N1 < N2 | N1 < N3 | N3 < N1 | Basic counting estimate
la N1 ~ N N1 < N3 @iv)
1.b.i Ni ~ Ny N1 = N3 N3 K N1z @iv)
1.bii | Ny ~ N N1 Z N3 N3 Z Ni2 (iii)
2.a N1 > Ny | N1 » N3 6]
2.b N1 > Ny | N1 ~ N3 (ii)

Fig. 5. Case distinction in the proof of Proposition 4.20.

Case 1.a: Ny ~ N, N < N3. Inthis case, Nj23 ~ N3. Using Proposition 4.18 (iv), the
contribution is bounded by

Z N1—22VN 4N2S 4#'€(m) < Z N122 ZJ/N INZS 1 < Nl 2)/N2S l’

Niz: Niz:

Ni23N) Ni123N)

which is acceptable. In estimating the sum, we have used the fact that y < 1.
Case 1.b.i: Ny ~ N3, N1 Z N3, N3 < Ni,. Inthis case, Nj23 ~ Np2. Using Proposition
4.18 (iv), the contribution is bounded by

> NGTTENIANTHEm) s Y N UNT'N

Nia: Nia:
N3<KN12<Ny N3<KN12SN;
25—2y+1 nr—1 2(s—y)
E N Ny §N1 >
Nia:
Ni123N)

which is acceptable. In estimating the sum, we have used the fact that y < s + 1/2.



Invariant Gibbs measures for the three-dimensional wave equation 2079

Case 1.b.i: Nl ~ N2, N1 2 N3, N3 Z le. We note that N123 5 max(le, N3) 5 N3.
Using Proposition 4.18 (iii), the contribution is bounded by

> NETENGNTANSH#E(m)

Ni2,Ni23:
Ni2,N12335N3 . —1 A7 2541 Ar3=2Y nr—1 A7 —2
< E min(Ny23, Ni2) N3 N, "Ny N;
Ni12,Ni23:
N12,N123SN3

—1As25—2y+1 2(s—
§N11N3s y+ le(s y),

which is acceptable. In the last inequality, we have used y < s + 1/2 again.

Case 2.a: N1 > N, N1 ~ N3. In this case, Nj; ~ N; and Nip3 ~ max(Ny, N3). Using
Proposition 4.18 (i), the contribution is bounded by
max(Ny, N3)2 72N> Ny 2N H€ (m)

< max(Ny, N3)» 2 min(Ny, N3) "' N/ 7> N, N3

< max(Ny, N3)> "2 min(Ny, N3) N7 N3 = max(Ny, N3)> 7N/ 7,
The restriction s < 1/2 is not strictly necessary for the statement of the proposition, but
ensures that the first factor does not grow in Nj or N3, which is essential in applications.
Case 2.a: N1 > N, N1 ~ N3. In this case, N1 ~ N;. Using Proposition 4.18 (ii), the

contribution is bounded by

25—2 A7—4—2Y A1 —2 25 ar—1-2y 252y

E . NBTAN, Ny “#E(m) < E N3N, N2 S Ny ;
Ni23: Ni23:
Ni123<N; Ni23<N;

which is acceptable. In estimating the sum, we have used the fact that s > 0. ]

A.2. Cubic sup-counting estimates
Proof of Lemma 4.22. We prove the four estimates separately.
Proof of (1): By symmetry, we can assume without loss of generality that Ny > N, > Nj.

Using the basic counting estimate in 1, € Z3, we have

#{(n1,n2,n3): [n1| ~ Ny, |n2| ~ Na, |n3| ~ N3, n =nia3, l¢ —m| < 1}
S #{(n2,n3): |na| ~ Na, [n3| ~ N3, |£123 (n) £ (n—n23) £2 (n2) £3(n3)—m| < 1}
< Y Wins| ~ N3} min((n—n3), No)"' N3 < N3 N3.

n3ez3

Proof of (ii): The proof is essentially the same as the proof of (i) and we omit the details.
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Proof of (iii): Using the basic counting estimate in n, € Z3, we have

#{(n12,n2,n3): [n12| ~ Niz, [n2| ~ Na, |n3| ~ N3, n = niz3, ¢ —m| < 1}
< #{(n12,n2): |n12| ~ Nia, [n2| ~ N,
|£123 (n) £1 (n12 —n2) £2 (n2) £3 (n —n12) —m| < 1}
S ) Hlnwz| ~ Niz}y min(Ni2, N2) 7' N3 S min(Niz, N2) ' N, N3 .

nip€Z3

Proof of (iv): The proof is essentially the same as the proof of (iii) and we omit the
details. ]

A.3. Paracontrolled cubic counting estimates

Proof of Lemma 4.23. To simplify the notation, we set Ny.x = max(Ny, N», N3). For
0 <y < B, wehave

(n12)72P < (n12)72 < ()7 (n2)?.

Together with Lemma 4.22 (ii), this yields

> (1"[ 1{|nj|~N,-})<n123>2“2—“<nu>—2f’<n1>—2<n3>—21{|<p—m| <1

ny,n3€Z3 j=1,3
=22y Ar2Y A7 —2
5 Nl N2 N3

< N V#{(n1,n3): In12s] ~ Nizs, | ~ Ny, [ns| ~ Na, g —m]| < 1}
Ni23

< NT2 N2V N2 Z NZS2™D med(Nygs, Ni, N3)® min(Nyas, Ny, N3)?.

~

‘N123‘ Nmax

Since med(N123, N] s N3)3 min(N123, Nl, N3)2 5 N123N12N32, we obtain

NNV NG Z lez(gz_l)med(N123,N1,N3)3 min(Ni23, N1, N3)?
‘N123‘<Nmax

—2Y A72Y 2s52—1 28> A7 2V 2)/
S NN, Z N2V S N2 NTPY N

max

‘N123‘<Nmax

A.4. Quartic counting estimate

Proof of Lemma 4.24. Using the upper bound on s, we can first sum over n4 € Z> to
obtain
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4
> (1_[ Klnj| ~ Nj}) (n1234)** (n123) 72

nl,n2,n3,n4€Z3 j=1 4

x D5, mz,na) ([T n)72) Ll —ml < 1)

3 J=1
SN (Tt~ Nid) )2
ny,na,n3eZ3 j=1 R 3
x [Psn1.nana) (TT00)72) Ul = m| = 1.
j=1

The remaining sum over n1, n,, and n3 can then be estimated using Proposition 4.20,
which yields the desired estimate. ]

Having proved the nonresonant quartic sum estimate (Lemma 4.24), we now turn to
the resonant quartic sum estimate. We begin with the basic resonance estimate (Lemma
4.25), which forms the main part of the proof.

Proof of Lemma 4.25. Since ny,n, € 7> are fixed and the phase ¢ is globally Lipschitz,
there are at most ~ Np nontrivial choices of m € Z. Due to the log-factor in (4.46), it
suffices to prove

sup ) Ulns| ~ Nahnizs) ™ na) P Hlg —m| < 1) £ {n12) 7"

meZ
n3ez3

By inserting an additional dyadic localization, we obtain

D7 Wins| ~ N3}nizs) " (n3) e —m| < 1)
n3€Z3

< N2 >0 NG YT Hiniasl ~ Nuas}{lns| ~ N3b{le —m| <1}, (A2)

Ni23>1 n3€ez3

To simplify the notation, we write Ny, for the dyadic scale of n1, € Z3. Using Lemma
4.17, we have

NRAN32 D Hlnias| ~ NiasH{na| ~ N3}1{lp —m| < 1}
}‘lg,GZ3

S NQI3N§2 min(Ni23, N12, N3) "' min(Ny23, N3)>.

We now separate the contributions of the three cases N123 << N3, N123 ~ N3, N123 > Nj.
In the following, we implicitly restrict the sum over Nj,3 to values which are consistent
with |n123| ~ N123, |n12| ~ ]\[127 and |I’l3| ~ N3 for some ni,np,Nn3 € Z3.

If N1p3 < N3, then Ny, ~ N3. Thus,

Z N5 N2 min(Nia3, N1, N3) ™' min(Nq23, N3)?
Ni23<KN3
SHNi~Ns} Y. NisN;2 S N

N123<KN3
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If N123 ~ N3, then N12 5 N123 ~ N3. ThIlS,

Z N1_213N3_2 min(N123, N12, N3)_1 min(N123, N3)3 ~ N1_21
Ni23~N3
Finally, if N123 > N3, then Nyz3 ~ N1z > Nj. Thus,
> NRAN3Zmin(Nigs. Nia, N3) ™' min(Ni23. N3)® = N3 N5 2N NG ~ N
N123>N3

This completes the proof. u

The resonant quartic sum estimate (Lemma 4.26) is now an easy consequence of the
basic resonance estimate (Lemma 4.25).

Proof of Lemma 4.26. Using Lemma 4.25, we have

2
S [Tt ~ N o)™ ) ()2
ni,na€Z3  j=1
T (T 0 sl ~ Mo~ )1 —ml < 13 ]

meZ n3eZ3 2

Stog2+No? Y [(TT Hinl ~ Nj3 ) nia)> 2 (1) 2 (n2) 2
ni.na€Z3  j=1

< log(2 + N3)? max(Ny, N»)*5. "

A.5. Quintic counting estimates

Before we turn to the proof of the nonresonant quintic counting estimate, we isolate a
helpful auxiliary lemma.

Lemma A.1 (Frequency scale estimate). Let Ny, Na, N1345, N12345 be frequency scales
which can be achieved by frequencies ny, ...,ns € 73, ie., satisfying
Wln1| ~ N1} - {|na| ~ Na} - 1{|n13as| ~ N1zas} - I{|n12345] ~ Ni23as} # 0.

Then . .
min(N2, N12345)% min(Ny, Ny3as)

min(N12345, N1345, N2)

S Na - Ni23ss.

Proof. By using the properties of min and max, we have

min(Nz, Ni2345) min(Ny, Ny34s) < min(N2, N12345)N134s
min(N12345, N134s, N2) ~ min(N12345, N1345, N2)
< max(min(N2, N12345), N13as).

Since Ni345 < max(Nz, N12345), this yields

min(N2, N12345)* min(Ny, N134s)

min(N12345, N1345, N2)

A

min(N3, Ni2345) - max (N2, N12345)

= N3 Ni2345. m
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Proof of Lemma 4.27. Let m,m’ € Z be arbitrary. We introduce Niz345 and Nyzas to
further decompose according to the size of n12345 and n1345. Using the two-ball basic
counting lemma (Lemma 4.17) for the sum over n, € Z3 and summing over n; € Z3
directly, we obtain

5
Z [(H Klnj| ~ Nj})1{|n12345| ~ Ni23as}I{|n1345] ~ Ni3as}
Y yenny nseZ3 Jj=1 5
% (n12345)2C D (n1345) "% (n345) 2 (”34)_2ﬁ(l_[<”j>_2)
j=1
X Uy —m| = 1} (g —m'| < 1)+ LG —m'| < 1)
5
S N122(§4_51)N1_3i€ min(N12345, N13a5, N2) ™' min(Ny, N12345)° H Nfz
j=1

x> (CTT timil~ Nid) Himses| ~ Nises)

nl,n3,n4,n5€Z3 Jj=13,4,5 _ _
X (n345) > (n3a) P Uy —m| < 1}
5
2(s—1) ;=28 . 1. i _
< N12‘§45)N134‘§ min(N12345, N13as, N2) ™' min(Na, N12345)° min(N1, Ni3as)? l_[ N; 2
j=1

5
< Y (TT sl ~ N3 nsas) > (nsa 2 110 —m| < 13,
n3,ng,ns€Z3 j=3
Using Proposition 4.20 with s = 0 and y = § to bound the remaining sum over n3, n4,

and n5, we obtain a bound of the total contribution by

N0y, Ny)~2 min(Nz, N12345)® min(Ny, Ny3as)?

- (N1345 max(Ns, Ny, N5))~2#.
12345 min(N12345, N1345, N2)

As long as the contribution is nontrivial, we find that Ny345 max(N3, N4, N5) =
max(Ny, N3, N4, N5). Thus, it remains to prove that

_,min(N2, Ni2345)% min(Ny, Ni3as)?

min(Ny2345, N134s, N2)

N122(§4_51)(N1N2) < N2—2n,

which follows from a short calculation. Indeed, using Lemma A.1, we can estimate the
left-hand side by

5 min(Na, N12345)3 min(Ny, N1345)3
min(Ny2345, N134s, N2)

2s5—1 : : 2a7—2a7—1 25—142n r7—21n
< Niy345 min(Na, Niz3gs) min(Ni, Ni3as) Ny "Ny S Nijas Ny 7.

N122(54_51)(N1 N>)

Due to our condition on s, this is acceptable. [

We now prove the double-resonance quintic counting estimate.
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Proof of Lemma 4.29. We also apply a dyadic localization to |n345| ~ N3gs and
|n4s| ~ N4s. By paying a factor of log(2 + max (N4, Ns))?, it suffices to estimate the
maximum over N345, N4s instead of the sum. We do not require a logarithmic loss in N3,
since N3 3> N4, N5 implies that there are only ~ 1 nontrivial choices for N345. We first
sum over n3 € Z?> using the two-ball basic counting lemma (Lemma 4.17). We then sum
over ny € 73 using only the dyadic constraint. This yields

4
N3—2N4—2 sup  sup Z [(1_[ H{|nj| ~ Nj})1{|l’l345| ~ N345}
meZ3 |ns5|~Ns nana€Z3  Jj=3
X U[nas| ~ Nas}(1345) ™ (n4s) ™ 1{{nsas) 3 (13) £4 (n4) 5 (15) € [m,m + D}]
< min(Nass, Nas, N3) ™' min(N3, Nas) N5 N Ny2 N2
X Z H|na| ~ NajU{|nzas| ~ N3as}

n4€z3

< min(N3ss. Nas, N3) ™' min(N3, Nass)® min(Ns, N45)3N§1§N4;5ﬁ N72N2
Using a minor variant of Lemma A.1, this contribution is bounded by

NP NTINT? min(Ns, Nags) min(Na, Nas)? < max(Ng, Nas) *
S max(N4, Ns)_ﬂ. |

A.6. Septic counting estimates

Proof of Lemma 4.31. Using the decay of V, it suffices to prove

*
Z (nm)z(s_l)< Z 1{n1234567| ~ N1234s67}1{|n567| ~ Nse7}1{|na| ~ Na}
;) eo n;)jer _ 2
x ®(ny,np,n3){n4) 1q>(”57n6,n7))
2(s—1/2) A,—2(B— —2(1—s+
< log(2 + N4)2(N12(;456/7)N567(ﬂ " + N123(456S7 n))‘ (A.3)

The argument relies on two of our previous estimates. Using the cubic sum estimate
(Proposition 4.20), we deduce that for all Nip3 > 1,

3
> Himiasl ~ Noal([T0)"?) @@ nans)* s NP (ad)

ny,no,n3€Z3 Jj=1
Using the basic resonance estimate (Lemma 4.25), we find for all N3 > 1 that
> Wins| ~ N3}{nz) ' @(n1.nz.n3) $log(2 + N3)(ni2) " (1) (n2) ™' (AS)
n3€Z3

Using the symmetry of @, it remains to consider the following three cases.
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Case 1: j = 4 is unpaired. By first using Cauchy—Schwarz, summing over 74, and then
using (A.4), we obtain

*
Z (nnr)z(s_l)( Z 1{|n1234567] ~ N1234567}1{|n567] ~ Nse7}1{|n4| ~ N4}

n;)j g (nj)jeo _
X O(11,n2,13)(n4) ™ (s, e, n7))

Y [1{|nnr| ~ N1234567}(nnr>2(s_1)(n4)_2( Z* cI’(711,712,113)2)

(nj)jgo n)jeo

x ( Z* Hnse7 ~ N567}q>(n5»n6»n7)2>:|

nj)jes

S Nissases) > ( > q’(nl,nz,’u)z)

) jgpnj£4 (nj)jco

x ( Z* Knse7 ~ N567}q>(n57n6»n7)2)]

nj)jes
-1
= N122(§456/72)( Z q)(nlﬁnz,m)z)( Z 1{”567~N567}‘D(’15,"67717)2)]
nl,nz,n3€Z3 n5,n(),n7€Z3
2(s—1/2) nr—2(B—n)
5 N1234567 N567 :

This contribution is acceptable.

Case 2: (3,4) € 9. We let P’ be the pairing on {1, 2, 5, 6, 7} obtained by removing the
pair (3, 4) from %. We also understand the condition j & ' as a subset of {1,2,5,6,7}.
By first using (A.5) and then Cauchy—Schwarz, we have that

3
Z (nm)z(s_l)( Z I{|n1234567] ~ N1234567}1{|n567| ~ Nse7}1{|[na| ~ Na}
;) ;g nj)jes _ 2
’ X ®(ny,nz,n3)(na) 1CI’(VlleGJM))

2(s—1+
< log(2 + N4)2N12(§4567n)

* 2
x D2 (2" Uinserl ~ Nserdna) ™ ) ™ (n2) T b(ns. e ) )
(n)j g9 (nj)jeg’

< log(2 + N> N5t

30 [0 (T Ytz ) 4020 )

nj)jggr  (n))jeg jes’
*
x ( Y. Uinser| ~ N567}(1_[ (”_i)"/6)¢(ns,n6,n7)2>]-
(n; ),ieFN JEF’

We then use a direct calculation to bound the first inner factor and to estimate the sum over

ns,ng, and n7. The total contribution is bounded by log(2 + N4)2N122(§4_5164;")N5_627(ﬂ_") <

log(2 + N4)2N122(§4_;64;"), which is acceptable.
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Case 3: (4,5) € P. We let P’ be the pairing on {1, 2, 3, 6, 7} obtained by removing the
pair (4, 5) from 2. We also understand the condition j ¢ P’ as a subset of {1,2, 3,6, 7}.
By first using (A.5) and then Cauchy—Schwarz, we have

*
Z (nnr)z(s_l)( Z 1{|n1234567| ~ N123as567}1{|n567] ~ Nse7}1{[na| ~ Na}
n;)jeo (nj)jeo _ 2
X ®(ny,na,n3)(ng) 1‘19(115,”6,’17))
S 1082+ N> Nigiss” D {na) ™
() jggr
X 2
(X @@nnan)ng) " ne) " n) )
("j)je?ﬁ’

Arguing similarly to Case 2, we obtain an upper bound by log(2 + N4)2N 25247 While
this bound does not contain the gain in Nsg¢7, it is still acceptable. [
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