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Abstract. The goal of this paper is to establish Green function estimates for a class of purely dis-
continuous symmetric Markov processes with jump kernels degenerate at the boundary and critical
killing potentials. The jump kernel and the killing potential depend on several parameters. We estab-
lish sharp two-sided estimates on the Green functions of these processes for all admissible values of
the parameters involved. Depending on the regions where the parameters belong, the estimates on
the Green functions are different. In fact, the estimates have three different forms. As applications,
we prove that the boundary Harnack principle holds in certain region of the parameters and fails in
some other region of the parameters. Together with the main results of our previous paper [Poten-
tial Anal., online, 2021], we completely determine the region of the parameters where the boundary
Harnack principle holds.
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1. Introduction and main results

In the last few decades, many important results have been obtained in the study of
potential-theoretic properties for various types of jump processes in open subsets of Rd .
These include isotropic ˛-stable processes, more general symmetric Lévy and Lévy-type
processes and their censored versions. The main results include the boundary Harnack
principle [4,5,10,14,34,38,45], sharp two-sided Green function estimates [16,19,22,23,
37,42] and sharp two-sided Dirichlet heat kernel estimates [8,9,17–19,33,36]. In all these
results, the jump kernel JD.x; y/ of the process in the open set D is either the restriction
of the jump kernel of the original process in Rd or comparable to such a kernel and it
does not tend to zero as x or y tends to the boundary of D. In this sense, one can say that
the corresponding integro-differential operator is uniformly elliptic.
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Subordinate killed Brownian motions, and more generally, subordinate killed Lévy
processes, form another important class of Markov processes. In the case of a stable subor-
dinator, the generator of the subordinate killed Brownian motion is the spectral fractional
Laplacian. The spectral fractional Laplacian and, more generally, fractional powers of
elliptic differential operators in domains have been studied by many people in the PDE
community [11–13, 15, 32, 46]. In contrast with killed Lévy processes and censored pro-
cesses, the jump kernel of a subordinate killed Lévy process in an open subset D � Rd

tends to zero near the boundary of D [39, 40, 44]. In this sense, the Dirichlet forms of
subordinate killed Lévy processes are degenerate near the boundary. Partial differential
equations degenerate at the boundary have been studied intensively in the PDE literature;
see, for instance, [27, 29, 30, 35, 47] and the references therein.

In our recent paper [41], we introduced a class of symmetric Markov processes in
open subsets D � Rd whose Dirichlet forms are degenerate at the boundary of D. This
class of processes includes subordinate killed Lévy processes as special cases.

This paper is the second part of our investigation of the potential theory of Markov
processes with jump kernels degenerate at the boundary. In [41] we studied Markov pro-
cesses in open sets D � Rd defined via Dirichlet forms with jump kernels JD.x; y/ D
j.jx � yj/B.x; y/ (where j.jxj/ is the density of a pure jump isotropic Lévy process)
and critical killing potentials �. The function B.x; y/ is assumed to satisfy certain condi-
tions, and is allowed to decay at the boundary of the state spaceD. This is in contrast with
all the works mentioned in the first paragraph where B.x; y/ is assumed to be bounded
between two positive constants, which can be viewed as a uniform ellipticity condition for
non-local operators. In this sense, our paper [41] is the first systematic attempt to study
the potential theory of general degenerate non-local operators defined in terms of Dirich-
let forms. We proved in [41] that the Harnack inequality and Carleson’s estimate are valid
for non-negative harmonic functions with respect to these Markov processes.

When D D RdC WD ¹x D .zx; xd / W xd > 0º, j.jx � yj/ D jx � yj
�˛�d , 0 < ˛ < 2,

and �.x/ WD cx�˛
d

, we showed in [41] that for certain values of the parameters involved in
B.x;y/ the boundary Harnack principle holds, while for some other values of the parame-
ters the boundary Harnack principle fails (despite the fact that Carleson’s estimate holds).
The main goal of this paper is to establish sharp two-sided estimates on the Green func-
tions of the corresponding processes for all admissible values of the parameters involved
in B.x;y/. These estimates imply anomalous boundary behavior for certain Green poten-
tials (see Proposition 6.10), a feature recently studied both in the probabilistic and in the
PDE literature [1, 11, 40]. As an application of these Green function estimates, we give a
complete answer to the question for which values of the parameters the boundary Harnack
principle holds true.

We first repeat the assumptions on B that were introduced in [41]. Here and below,
a ^ b WD min ¹a; bº and a _ b WD max ¹a; bº.

(A1) B.x; y/ D B.y; x/ for all x; y 2 RdC.
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(A2) If ˛ � 1, then there exist � > ˛ � 1 and C1 > 0 such that

jB.x; x/ �B.x; y/j � C1

�
jx � yj

xd ^ yd

��
:

(A3) There exist C2 � 1 and parameters ˇ1; ˇ2; ˇ3; ˇ4 � 0, with ˇ1 > 0 if ˇ3 > 0, and
ˇ2 > 0 if ˇ4 > 0, such that

C�12
zB.x; y/ � B.x; y/ � C2 zB.x; y/; x; y 2 RdC; (1.1)

where

zB.x; y/ WD

�
xd ^yd

jx�yj
^1

�ˇ1�xd _yd
jx�yj

^1

�ˇ2�
log
�
1C

.xd _yd /^jx�yj

xd ^yd ^jx�yj

��ˇ3
�

�
log
�
1C

jx�yj

.xd _yd /^jx�yj

��ˇ4
: (1.2)

(A4) For all x;y 2RdC and a > 0, B.ax;ay/DB.x;y/. In case d � 2, for all x;y 2RdC
and zz 2 Rd�1, B.xC.zz; 0/; yC.zz; 0// D B.x; y/.

Other than the requirements that ˇ1 > 0 if ˇ3 > 0 and ˇ2 > 0 if ˇ4 > 0, the parameters
ˇ1;ˇ2;ˇ3 and ˇ4 are arbitrary. They control the rate at which B goes to 0 at the boundary.
Note that the term�

xd ^ yd

jx � yj
^ 1

�ˇ1�
log
�
1C

.xd _ yd / ^ jx � yj

xd ^ yd ^ jx � yj

��ˇ3
goes to 0 when one of x and y goes to the boundary, while the term�

xd _ yd

jx � yj
^ 1

�ˇ2�
log
�
1C

jx � yj

.xd _ yd / ^ jx � yj

��ˇ4
goes to 0 when both x and y go to the boundary. Note that if B.x; y/ � c zB.x; y/ for
some positive constant c, then (A1)–(A4) trivially hold.

In the remainder of this paper, we always assume that

d > .˛ C ˇ1 C ˇ2/ ^ 2; p 2 ..˛ � 1/C; ˛ C ˇ1/;

J.x; y/ D jx � yj�d�˛B.x; y/ on RdC �RdC with B satisfying (A1)–(A4):

To every parameter p 2 ..˛ � 1/C; ˛ C ˇ1/, we associate a constant C.˛; p;B/ 2
.0;1/ depending on ˛, p and B defined as

C.˛; p;B/ D

Z
Rd�1

1

.jzuj2 C 1/.dC˛/=2

Z 1

0

.sp � 1/.1 � s˛�p�1/

.1 � s/1C˛

�B..1 � s/zu; 1/; sed / ds d zu; (1.3)
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where ed D .Q0; 1/. In case d D 1, C.˛; p;B/ is defined as

C.˛; p;B/ D

Z 1

0

.sp � 1/.1 � s˛�p�1/

.1 � s/1C˛
B
�
1; s

�
ds:

Note that limp#.˛�1/C C.˛;p;B/D 0, limp"˛Cˇ1 C.˛;p;B/D1 and the function p 7!
C.˛;p;B/ is strictly increasing (see [41, Lemma 5.4 and Remark 5.5]). Thus, the interval
..˛ � 1/C; ˛ C ˇ1/ is the full admissible range for the parameter p.

Let

�.x/ D C.˛; p;B/x�˛d ; x 2 RdC; (1.4)

be the killing potential. Note that � depends on p, but we omit this dependence from the
notation for simplicity. We denote by Y the Hunt process with jump kernel J and killing
potential �.

To be more precise, let us define

ERd
C.u; v/ WD

1

2

Z
Rd
C

Z
Rd
C

.u.x/ � u.y//.v.x/ � v.y//J.x; y/ dy dx;

which is a symmetric form degenerate at the boundary due to (A1) and (A3). By Fatou’s
lemma, .ERd

C ;C1c .R
d
C// is closable inL2.RdC;dx/. Let F Rd

C be the closure ofC1c .R
d
C/

under E
Rd
C

1 WD ERd
C C .�; �/L2.Rd

C
;dx/. Then .ERd

C ;F Rd
C/ is a regular Dirichlet form on

L2.RdC; dx/. Set

E.u; v/ WD ERd
C.u; v/C

Z
Rd
C

u.x/v.x/�.x/ dx:

Since � is locally bounded, the measure �.x/dx is a positive Radon measure charging

no set of zero capacity. Let F WD
A
F Rd

C \ L2.RdC; �.x/ dx/, where
A
F Rd

C is the family

of all quasi-continuous functions in F Rd
C . By [31, Theorems 6.1.1 and 6.1.2], .E;F / is

a regular Dirichlet form on L2.RdC; dx/ with C1c .R
d
C/ as a special standard core. Let

..Yt /t�0; .Px/x2Rd
C
nN / be the associated Hunt process with lifetime �. By [41, Proposi-

tion 3.2], the exceptional set N can be taken as the empty set. We add a cemetery point @
to the state space RdC and define Yt D @ for t � �.

The process Y enjoys the following important scaling property shown in [41,
Lemma 5.1]: For any r > 0 define the process Y .r/ by Y .r/t WD rYr�˛ t . Then under (A1),
the boundedness of B and (A4), .Y .r/; Px=r / has the same law as .Y; Px/. The homo-
geneity property of B from (A4) is crucial to establish this fact.

Recall that a Borel function f W RdC ! Œ0;1/ is said to be harmonic in an open set
V � RdC with respect to Y if for every bounded open set U � xU � V ,

f .x/ D Ex Œf .Y�U /� for all x 2 U; (1.5)

where �U WD inf ¹t > 0 W Yt … U º is the first exit time of Y from U . We say f is regular
harmonic in V if (1.5) holds for V .



Sharp two-sided Green function estimates for Dirichlet forms degenerate at the boundary 2253

LetG.x;y/ denote the Green function of the process Y . The following theorem is our
main result on Green function estimates. For two functions f and g, we use the notation
f � g to denote that the quotient f=g stays bounded between two positive constants.

Theorem 1.1. Assume that (A1)–(A4) and (1.4) hold true. Suppose that d > .˛Cˇ1Cˇ2/
^2 and p 2 ..˛� 1/C;˛Cˇ1/. Then the process Y admits a Green functionG WRdC �RdC
! Œ0;1� such that G.x; �/ is continuous in RdC n ¹xº and regular harmonic with respect
to Y in RdC n B.x; "/ for any " > 0. Moreover, G.x; y/ has the following estimates:

(1) If p 2 ..˛ � 1/C; ˛ C 1
2
Œˇ1 C .ˇ1 ^ ˇ2/�/, then on RdC �RdC,

G.x; y/ �
1

jx � yjd�˛

�
xd

jx � yj
^ 1

�p�
yd

jx � yj
^ 1

�p
: (1.6)

(2) If p D ˛ C ˇ1Cˇ2
2

, then on RdC �RdC,

G.x; y/ �
1

jx � yjd�˛

�
xd

jx � yj
^ 1

�p�
yd

jx � yj
^ 1

�p
�

�
log
�
1C

jx � yj

.xd _ yd / ^ jx � yj

��ˇ4C1
:

(3) If p 2 .˛ C ˇ1Cˇ2
2

; ˛ C ˇ1/, then on RdC �RdC,

G.x; y/

�
1

jx � yjd�˛

�
xd ^ yd

jx � yj
^ 1

�p�
xd _ yd

jx � yj
^ 1

�2˛�pCˇ1Cˇ2
�

�
log
�
1C

jx � yj

.xd _ yd / ^ jx � yj

��ˇ4
D

1

jx � yjd�˛

�
xd

jx � yj
^ 1

�p�
yd

jx � yj
^ 1

�p�
xd _ yd

jx � yj
^ 1

��2.p�˛�.ˇ1Cˇ2/=2/
�

�
log
�
1C

jx � yj

.xd _ yd / ^ jx � yj

��ˇ4
:

Note that when ˇ1 � ˇ2, case (1) covers all possible values of the parameter p, while
when ˇ2 < ˇ1 the regimes of p in cases (1)–(3) are disjoint and exhaustive.

In fact, for lower bounds of Green functions, we have more general results (see
Theorems 5.1 and 6.6). In these theorems, we establish lower bounds on the Green func-
tion GB.w;R/\Rd

C.x; y/ for Y killed upon exiting B.w; R/ \ RdC (where w 2 @RdC) in
B.w; .1� "/R/\RdC. The lower bounds onG.x; y/ in the theorem above are corollaries
of these more general results.

Note that

p 7! 2˛ � p C ˇ1 C ˇ2 D .˛ C ˇ2/C .˛ C ˇ1 � p/

is decreasing on ˛ C ˇ1Cˇ2
2
� p < ˛ C ˇ1, which has a somewhat strange and inter-

esting consequence. Namely, the power of xd^yd
jx�yj

^ 1 is always p and we can increase



P. Kim, R. Song, Z. Vondraček 2254

the exponent p of xd^yd
jx�yj

^ 1 all the way up to (just below) ˛ C ˇ1. But the exponent

of xd_yd
jx�yj

^ 1 is p only up to ˛ C ˇ1CŒˇ1^ˇ2�
2

and one can increase the exponent only

up to ˛ C ˇ1CŒˇ1^ˇ2�
2

. In the case ˇ2 < ˇ1, once p reaches ˛ C ˇ1Cˇ2
2

, the exponent of
xd_yd
jx�yj

^ 1 starts decreasing.
Estimates (1.6) can be equivalently stated as

G.x; y/ �

�
xdyd

jx � yj2
^ 1

�p
1

jx � yjd�˛
on RdC �RdC: (1.7)

Note that, when d � 3 and p D .d � ˛/=.d � 2/ 2 .1; d=.d � 2//, the estimates in (1.7)
are those of a power of the Green function of killed Brownian motion in RdC (see [28]).

Moreover, we can rewrite the estimates in Theorem 1.1 in a unified way: Let ap WD
2.p � ˛ � ˇ1CŒˇ1^ˇ2�

2
/. Then on RdC �RdC,

G.x; y/ �
1

jx � yjd�˛

�
xd ^ yd

jx � yj
^ 1

�p�
xd _ yd

jx � yj
^ 1

�p�apC
� log

�
2C 1ap�0

jx � yj

.xd _ yd / ^ jx � yj

�ˇ4C1apD0
:

In [41, Theorem 1.3] we have proved that the boundary Harnack principle holds when
either (a) ˇ1 D ˇ2 and ˇ3 D ˇ4 D 0, or (b) p < ˛. In [41, Theorem 1.4] we have showed
that when ˛C ˇ2 < p < ˛C ˇ1 the boundary Harnack principle fails. However, we were
unable to determine what happens with the boundary Harnack principle in the remaining
regions of the admissible parameters. As applications of our Green function estimates, we
can completely resolve this issue and prove the following two results. In the remainder
of this paper, we will only give the statements and proofs of the results for d � 2. The
counterparts in the d D 1 case are similar and simpler.

For any a; b > 0 and zw 2 Rd�1, we define a box

D zw.a; b/ WD ¹x D .zx; xd / 2 Rd W jzx � zwj < a; 0 < xd < bº:

Theorem 1.2. Assume that (A1)–(A4) and (1.4) hold true. Suppose that d>.˛Cˇ1Cˇ2/
^2 and p 2 ..˛ � 1/C; ˛ C .ˇ1 ^ ˇ2//. Then there exists C3 � 1 such that for all r > 0,
zw 2Rd�1, and any non-negative function f in RdC which is harmonic inD zw.2r; 2r/ with
respect to Y and vanishes continuously on B.. zw; 0/; 2r/ \ @RdC, we have

f .x/

x
p

d

� C3
f .y/

y
p

d

; x; y 2 D zw.r=2; r=2/: (1.8)

Theorem 1.2 implies that if two functions f; g in RdC both satisfy the assumptions in
Theorem 1.2, then

f .x/

f .y/
� C 23

g.x/

g.y/
; x; y 2 D zw.r=2; r=2/:

We say that the non-scale-invariant boundary Harnack principle holds near the bound-
ary of RdC if there is a constant yR 2 .0; 1/ such that for any r 2 .0; yR �, there exists a
constant c D c.r/ � 1 such that for all zw 2 Rd�1 and non-negative functions f; g in RdC
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which are harmonic in RdC \ B.. zw; 0/; r/ with respect to Y and vanish continuously on
@RdC \ B.. zw; 0/; r/, we have

f .x/

f .y/
� c

g.x/

g.y/
for all x; y 2 B.. zw; 0/; r=2/ \RdC:

Theorem 1.3. Suppose d > ˛ C ˇ1 C ˇ2 and d � 2. Assume that (A1)–(A4) and (1.4)
hold true. If ˛C ˇ2 � p < ˛C ˇ1, then the non-scale-invariant boundary Harnack prin-
ciple is not valid for Y .

Thus, when ˛ C ˇ2 � p < ˛ C .ˇ1 C ˇ2/=2, the boundary Harnack principle is not
valid for Y even though we have the standard form of the Green function estimates (1.7).
This phenomenon has already been observed by the authors in [40] for subordinate killed
Lévy processes.

The following two results proved in [41] will be fundamental for this paper. Note
that, by the scaling property of Y (see [41, Lemma 5.1]), we can allow r > 0 instead of
r 2 .0; 1�.

Theorem 1.4 (Harnack inequality, [41, Theorem 1.1]). Assume that (A1)–(A4) and (1.4)
hold true and p 2 ..˛ � 1/C; ˛ C ˇ1/.

(a) There exists a constant C4 > 0 such that for any r > 0, any B.x0; r/ � RdC and any
non-negative function f in RdC which is harmonic in B.x0; r/ with respect to Y , we
have

f .x/ � C4f .y/ for all x; y 2 B.x0; r=2/:

(b) There exists a constant C5 > 0 such that for any L > 0, any r > 0, any x1; x2 2 RdC
with jx1 � x2j < Lr and B.x1; r/ [ B.x2; r/ � RdC and any non-negative function
f in RdC which is harmonic in B.x1; r/ [ B.x2; r/ with respect to Y , we have

f .x2/ � C5.LC 1/
ˇ1Cˇ2CdC˛f .x1/:

Since the half-space RdC is �-fat with characteristics .R; 1=2/ for any R > 0, we also
have

Theorem 1.5 (Carleson’s estimate, [41, Theorem 1.2]). Assume that (A1)–(A4) and (1.4)
hold true and p 2 ..˛ � 1/C; ˛ C ˇ1/. Then there exists a constant C6 > 0 such that
for any w 2 @RdC, r > 0, and any non-negative function f in RdC that is harmonic in
RdC \ B.w; r/ with respect to Y and vanishes continuously on @RdC \ B.w; r/, we have

f .x/ � C6f .yx/ for all x 2 RdC \ B.w; r=2/; (1.9)

where yx 2 RdC \ B.w; r/ with yxd � r=4.

Assumptions (A1), (A2), (A3) and (A4) in this paper are assumptions (B1), (B4), (B7)
and (B8) in [41], respectively. As a consequence of (A1)–(A4), B.x; y/ also satisfies
assumptions (B2), (B3), (B5) and (B6) in [41].

Now we explain the content of this paper and our strategy for proving the main results.
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In Section 2 we first show that the process Y is transient and admits a symmetric
Green function G.x; y/ (see Proposition 2.2). This is quite standard once we establish
that the occupation measure G.x; �/ of Y is absolutely continuous. We also show that
x 7! G.x; y/ is harmonic away from y. As a consequence of the scaling property of Y
and the invariance property of the half-space under scaling, one gets the following scaling
property of the Green function: For all x; y 2 RdC,

G.x; y/ D jx � yj˛�dG

�
x

jx � yj
;

y

jx � yj

�
:

In this paper, we use this property several times so that, to prove Theorem 1.1, we mainly
deal with the case of x; y 2 RdC satisfying jx � yj � 1.

In Section 3, we show that the Green functionG.x;y/ tends to 0 when x or y tends to
the boundary. The proof of this result depends in a fundamental way on several lemmas
from [41]. The decay of the Green function at the boundary allows us to apply Theo-
rem 1.5 in later sections.

Section 4 is devoted to proving interior estimates on the Green function G.x; y/.
Roughly, we show that if the points x; y 2 RdC are closer to each other than to the bound-
ary, then G.x; y/ � jx � yj�dC˛ . For the lower bound given in Proposition 4.1, we use a
capacity argument. The upper bound is more difficult and relies on the Hardy inequality
in [6, Corollary 3] and the heat kernel estimates of symmetric jump processes with large
jumps of lower intensity in [2]. This is where the assumption d > .˛ C ˇ1 C ˇ2/ ^ 2 is
needed. The key to obtaining the interior upper estimate is to get a uniform estimate on
theL2 norm of

R
B.z;4/

G.x;y/dy onB.z;4/ for all z sufficiently away from the boundary
(see Proposition 4.5).

In Section 5, we give a lower bound for the Green function of the process Y
killed upon exiting a half-ball centered at the boundary of RdC and a preliminary
upper bound for the Green function. The lower bound given in Theorem 5.1 is
proved for GB.w;R/\Rd

C.x; y/, the Green function of the process Y killed upon exiting
B.w;R/ \ RdC, w 2 @RdC, for x; y 2 B.w; .1 � "/R/ \ RdC. This gives the sharp lower
bound of the Green function for p 2 ..˛ � 1/C; ˛ C 1

2
Œˇ1 C .ˇ1 ^ ˇ2/�/. A preliminary

estimate of the upper bound is given in Lemma 5.5. Proofs of these estimates use the
already mentioned fundamental lemmas from [41] and Theorem 1.5.

Section 6 is central to the paper. We first prove a technical Lemma 6.1 modeled after
[1, Lemma 3.3] and its Corollary 6.3. They are both used throughout this section. In
proving Theorem 1.1, one is led to double integrals involving the Green function (or the
Green function of the killed process) twice and the jump kernel. The sharp bounds of these
double integrals are essential in the proof of Theorem 1.1. To obtain the correct bound, we
have to divide the region of integration into several parts and deal with them separately.
These estimates are quite difficult and delicate; see Remark 6.8 below. By using the pre-
liminary estimates of the Green function obtained in Section 5 and the explicit form of zB ,
those integrals are successfully estimated by means of Lemma 6.1 and Corollary 6.3. As
an application of the Green function estimates, we end the section with sharp two-sided
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estimates on some killed potentials of the process Y , or in analytical language, with esti-
mates of

R
D
GD.x; y/y

ˇ

d
dy where D is a box of arbitrary size and ˇ > �p � 1 (see

Proposition 6.10 below), as well as estimates of
R

Rd
C
G.x; y/y

ˇ

d
dy. The latter estimates

give precise information on the expected lifetime of the process Y .
In Section 7 we prove Theorems 1.2 and 1.3. Our Proposition 6.10 is powerful enough

for us to cover the full range of the parameters.
We end this introduction by discussing some examples of explicit processes satisfying

our assumptions, as well as a process which does not fall in the class considered here.
The first (motivating) example is a subordinate killed stable process Y whose infinites-

imal generator is �..��/ı=2
jRd
C

/
=2, where ı 2 .0; 2� and 
 2 .0; 2/. Its jump kernel is

J.x; y/ D jx � yj�d�˛B.x; y/ with ˛ D 
ı=2 and B.x; y/ satisfying (A3) with param-
eters as follows: If ı D 2 , then ˇ1 D ˇ2 D 1, ˇ3 D ˇ4 D 0. For ı 2 .0; 2/, (i) if

 2 .1; 2/, then ˇ1 D ı.1� 
=2/, ˇ2 D ˇ3 D ˇ4 D 0; (ii) if 
 D 1, then ˇ1 D ı=2, ˇ3 D 1,
ˇ2 D ˇ4 D 0, (iii) if 
 2 .0; 1/, then ˇ1 D ı=2, ˇ2 D .1� 
/ı=2, ˇ3 D ˇ4 D 0. For more
details see [41, (1.1), (1.2) and Section 2]. In all cases we have p D ı=2, which can be
deduced by comparing Green function estimates in Theorem 1.1 and [40, Theorem 6.4].

An example of a process with ˇ4 > 0 has been recently discovered in [25]. Let ı 2
.0; 2/, and let X be the reflected symmetric ı-stable process in xRdC WD ¹x D .zx; xd / W

xd � 0º killed upon leaving RdC, whose infinitesimal generator is the regional fractional
Laplacian

Lf .x/ D c.d; ı/ lim
"!0

Z
Rd
C
; jy�xj>"

.f .y/ � f .x//jx � yj�d�ı dyI

see [25, pp. 232–234] for details. Let q 2 Œı � 1; ı/ \ .0; ı/ and Z be the process corre-
sponding to the the Feynman–Kac semigroup via the multiplicative functional

exp
�
�C.d; ı; q/

Z t

0

.Xds /
�ı ds

�
;

where C.d; ı; q/ is the positive constant (involving parameter q) defined in [24, p. 233];
see also [24, (3.5)]. Let S be an independent 
=2-stable subordinator with 
 2 .0; 2/ and
set ˛ D ı
=2. Define a process Y by Yt D ZSt whose infinitesimal generator is �.�LC

C.d;ı;q/.xd /
�ı/
=2. The jump kernel of Y is of the form J.x;y/D jx � yj�d�˛B.x;y/

with B.x; y/ satisfying (A1)–(A4). Moreover, the parameter ˇ4 in (A3) is equal to 1 for
a certain value of q. For details, see [25, Example 7.3] and the paragraph above [41,
Lemma 2.2].

The jump kernels of this paper are degenerate since B approaches 0 at the boundary.
There exist processes in RdC whose jump kernels are of the form jx � yj�d�˛B.x; y/

with B blowing up at the boundary. Here is an example. Let X be an isotopic ˛-stable
process, and let Y be the process obtained from X by deleting the parts of the path out-
side RdC. More precisely, let

At D

Z t

0

1
¹Xs2Rd

C
º
ds;
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be the occupation time in RdC up to time t and let 
t D inf ¹s > 0 W As > tº. The process Y
defined by Yt DX
t is the trace ofX in RdC. It is called the path-censored ˛-stable process
in [43]. Using [7, Theorem 6.1], one can show that the jump kernel of Y is of the form
jx � yj�d�˛B.x; y/ with B blowing up at the boundary.

Notation. Throughout this paper, the positive constants ˇ1, ˇ2, ˇ3, ˇ4, � will remain the
same. We will use the following convention: Capital lettersC;Ci ; i D 1;2; : : : ;will denote
constants in the statements of results and assumptions. The labeling of these constants will
remain the same. Lower case letters c; ci ; i D 1; 2; : : : ; are used to denote constants in
the proofs and the labeling of these constants starts anew in each proof. The notation
ci D ci .a; b; c; : : :/, i D 0; 1; 2; : : : ; indicates constants depending on a; b; c; : : : : We
will use “WD” to mean “is defined to be”. For any x 2 Rd and r > 0, we use B.x; r/ to
denote the open ball of radius r centered at x. For a Borel subset V in Rd , jV j denotes
the Lebesgue measure of V in Rd , and ıV WD dist.V; @D/. We use superscripts instead of
subscripts for coordinates of processes, as in Y D .Y 1; : : : ; Y d /.

2. Existence of the Green function

Recall that � is the lifetime of Y . Let f W RdC ! Œ0;1/ be a Borel function and � � 0.
The �-potential of f is defined by

G�f .x/ WD Ex

Z �

0

e��tf .Yt / dt; x 2 RdC:

When � D 0, we write Gf instead of G0f and call Gf the Green potential of f . If
g W RdC ! Œ0;1/ is another Borel function, then by the symmetry of Y we haveZ

Rd
C

G�f .x/g.x/ dx D

Z
Rd
C

f .x/G�g.x/ dx: (2.1)

For A 2 B.RdC/, we let G�.x;A/ WD G�1A.x/ be the �-occupation measure of A. In this
section we show the existence of the Green function of the process Y , that is, the density
of the 0-occupation measure. We start by recalling some of the results of [41, Section 3.1].

Let U be a relatively compact C 1;1 open subset of RdC. For 
 > 0 small enough,
define a kernel J
 .x;y/ on Rd �Rd by J
 .x;y/D J.x;y/ for x;y 2 U , and J
 .x;y/D

 jx � yj�d�˛ otherwise. Then there exist c1 > 0 and c2 > 0 such that (see the first display
below [41, (3.3)])

c1jx � yj
�d�˛

� J
 .x; y/ � c2jx � yj
�d�˛; x; y 2 Rd :

For u 2 L2.Rd ; dx/, define

C.u; u/ WD
1

2

Z
Rd

Z
Rd
.u.x/ � u.y//2J
 .x; y/ dx dy;

D.C/ WD ¹u 2 L2.Rd / W C.u; u/ <1º:
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Then there exists a conservative Feller and strongly Feller process Z associated with
.C ;D.C// which has a continuous transition density (with respect to the Lebesgue
measure) (see [21]). Let ZU be the process Z killed upon exiting U and let At WDR t
0
z�.ZUs / ds where z� is a certain non-negative function defined in [41, Section 3.1] (z� is

non-negative when 
 > 0 is small enough). Let Y U be the process Y killed upon exit-
ing U , and let .QU

t /t�0 denote its semigroup: For f W U ! Œ0;1/,

QU
t f .x/ WD Ex Œf .Y

U
t /� D Ex Œf .Yt /; t < �U �;

where �U WD inf ¹t > 0 W Yt … U º is the first exit time from U . It is shown in [41, Sec-
tion 3.1] that

QU
t f .x/ D Ex Œexp.�At /f .ZUt /�; t > 0; x 2 U:

Moreover,QU
t has a transition density qU .t; x;y/ (with respect to the Lebesgue measure)

which is symmetric in x and y, and such that for all y 2 U , .t; x/ 7! qU .t; x; y/ is
continuous.

LetGU
�
f .x/ WD

R1
0
e��tQU

t f .x/dt D Ex
R �U
0
e��tf .Yt / dt denote the �-potential

of Y U and GU
�
.x; y/ WD

R1
0
e��tqU .t; x; y/ dt the �-potential density of Y U . We

will write GU for GU0 for simplicity. Then GU
�
.x; �/ is the density of the �-occupation

measure. In particular this shows that GU
�
.x; �/ is absolutely continuous with respect

to the Lebesgue measure. Moreover, since x 7! qU .t; x; y/ is continuous, we see that
x 7! GU

�
.x; y/ is lower semicontinuous. By Fatou’s lemma this implies that GU

�
f is also

lower semicontinuous.
Let .Un/n�1 be a sequence of bounded C 1;1 open sets such that Un � Un � UnC1

and [n�1Un D RdC. For any Borel f W RdC ! Œ0;1/,

G�f .x/ D Ex

Z �

0

e��tf .Yt / dt D" lim
n!1

Ex

Z �Un

0

e��tf .Yt / dt D" lim
n!1

G
Un
�
f .x/;

(2.2)

where "lim denotes an increasing limit. In particular, if A 2 B.RdC/ is of Lebesgue mea-
sure zero, then for every x 2 RdC,

G�.x; A/ D lim
n!1

G
Un
�
.x; A/ D lim

n!1
G
Un
�
.x; A \ Un/ D 0:

Thus, G�.x; �/ is absolutely continuous with respect to the Lebesgue measure for each
� � 0 and x 2 RdC. Together with (2.1) this shows that the conditions of [3, VI, Theorem
(1.4)] are satisfied, which implies that the resolvent .G�/�>0 is self-dual. In particular (see
[3, pp. 256–257]), there exists a symmetric function G.x; y/ excessive in both variables
such that

Gf .x/ D

Z
Rd
C

G.x; y/f .y/ dy; x 2 RdC:

We recall (see [3, II, Definition (2.1)]) that a measurable function f W RdC ! Œ0;1/ is
�-excessive, �� 0, with respect to the process Y if for every t � 0 we have Ex Œe��tYt ��
f .x/ and limt!0Ex Œe��tYt �D f .x/, for every x 2RdC; 0-excessive functions are simply
called excessive.
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We now show that Y is transient.

Lemma 2.1. The process Y is transient in the sense that there exists f W RdC ! .0;1/

such that Gf <1. More precisely, G� � 1.

Proof. Let .Qt /t�0 denote the semigroup of Y . For any A 2B.RdC/, we use [31, (4.5.6)]
with h D 1A, f D 1, and let t !1 to obtain

E1Adx.� <1/ � E1Adx.Y�� 2 RdC; � <1/ D

Z 1
0

Z
Rd
C

�.x/Qs1A.x/ dx dt:

This can be rewritten asZ
A

Px.� <1/ dx �

Z
Rd
C

�.x/G1A.x/ dx D
Z
A

G�.x/ dx:

Since this inequality holds for every A 2B.RdC/, we conclude that Px.� <1/ � G�.x/
for a.e. x 2 RdC. Both functions x 7! Px.� <1/ and G� are excessive. Since G.x; �/ is
absolutely continuous with respect to the Lebesgue measure (i.e., Hypothesis (L) holds,
see [26, p. 112]), by [26, Proposition 9, p. 113] we conclude thatG�.x/� Px.� <1/� 1
for all x 2 RdC.

As a consequence of Lemma 2.1, we haveG.x;y/ <1 for a.e. y 2RdC. Another con-
sequence is that, for every compact K � RdC, G1K is bounded. Indeed, by the definition
of �, we see that infK �.x/ DW cK > 0. Thus

G1K � c�1K G� � c�1K : (2.3)

Note that it follows from (2.2) that, for every non-negative Borel f , G�f is lower
semicontinuous, as an increasing limit of lower semicontinuous functions. Since every
�-excessive function is an increasing limit of �-potentials (see [3, II, Proposition (2.6)]),
we conclude that all �-excessive functions of Y are lower semicontinuous. In particular,
for every y 2 RdC, G�.�; y/ is lower semicontinuous. Since G.�; y/ is the increasing limit
of G�.�; y/ as �! 0, we see that G.�; y/ is also lower semicontinuous.

Fix an open set B in RdC and x 2 RdC and let f be a non-negative Borel function
on RdC. By Hunt’s switching identity [3, VI, Theorem (1.16)],

Ex ŒGf .Y�B /� D

Z
Rd
C

Ex ŒG.Y�B ; y/�f .y/ dy D

Z
Rd
C

Ey ŒG.x; Y�B /�f .y/ dy:

Suppose further that f D 0 on B . Then by the strong Markov property [3, I, Defini-
tion (8.1)], Z

Rd
C

G.x; y/f .y/ dy D Ex

Z 1
�B

f .Yt / dt D Ex ŒGf .Y�B /�

D

Z
Rd
C
nB

Ey ŒG.x; Y�B /�f .y/ dy;
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and hence G.x; y/ D Ey ŒG.x; Y�B /� for a.e. y 2 RdC n B . Since both sides are excessive

(and thus excessive for the killed process Y Rd
C
nB ), equality holds for every y 2 RdC n B .

By using Hunt’s switching identity one more time, we arrive at

G.x; y/ D Ex ŒG.Y�B ; y/� for all x 2 RdC; y 2 RdC n B:

In particular, if y 2 RdC n B is fixed, then the above equality says that x 7! G.x; y/ is
regular harmonic in B with respect to Y . By symmetry, y 7! G.x; y/ is regular harmonic
in B as well. By the Harnack inequality (Theorem 1.4), we conclude that G.x; y/ <1
for all y 2 Rd n ¹xº. This proves the following proposition on the existence of the Green
function.

Proposition 2.2. There exists a symmetric function G W RdC � RdC ! Œ0;1� which is
lower semicontinuous in each variable and finite outside the diagonal such that for every
non-negative Borel f ,

Gf .x/ D

Z
Rd
C

G.x; y/f .y/ dy:

Moreover, G.x; �/ is harmonic with respect to Y in RdC n ¹xº and regular harmonic with
respect to Y in RdC n B.x; "/ for any " > 0.

Remark 2.3. We note in passing that all the results established above are valid, with the
same proofs, for the process in any open set D (not necessarily RdC), under conditions
(1.3)–(1.6) and (B1)–(B3) from [41]. In particular, in the setup of [41], the process in any
open set D studied there has a symmetric Green function.

For further use, we recall now the formula for the Green function of the process Y
killed upon exiting an open set B � RdC. Let f W Rd ! Œ0;1� be a measurable function
vanishing on RdC n B . By the strong Markov property, for x 2 B ,Z

Rd
G.x; y/f .y/ dy D Ex

Z 1
0

f .Ys/ ds

D Ex

Z �B

0

f .Ys/ds C Ex

�
EY�B

Z 1
0

f .Ys/ ds

�
D Ex

Z 1
0

f .Y Bs / ds C ExGf .Y�B /

D Ex

Z 1
0

f .Y Bs / ds C

Z
Rd
C

Ex ŒG.Y�B ; y/�f .y/ dy:

By rearranging, we see that

GB.x; y/ WD G.x; y/ � Ex ŒG.Y�B ; y/� (2.4)

is the Green function of Y B .
We end this section with the scaling property of the Green function, which will be

used several times in this paper.
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Proposition 2.4. For all x; y 2 RdC, x ¤ y,

G.x; y/ D G

�
x

jx � yj
;

y

jx � yj

�
jx � yj˛�d : (2.5)

Proof. Let r > 0 and Y .r/t WD rYr�˛ t . Let .E.r/;D.E.r/// be the Dirichlet form of Y .r/. It
was shown in the proof of [41, Lemma 5.1] that E.r/.f;g/D E.f;g/ for f;g 2 C1c .R

d
C/.

Since E.Gf; g/ D
R

Rd
C
f .x/g.x/ dx, we see that Gf is the 0-potential operator of Y .r/.

In particular, G.r/.x; y/ WD G.x; y/ is the Green function of Y .r/.
Let .Qt / be the semigroup of Y and .Q.r/

t / the semigroup of Y .r/. For f W RdC !
Œ0;1/ define f .r/.x/ WD f .rx/. Then Q.r/

t f .x/ D Qr�˛ tf
.r/.x=r/, implying that

G.r/f .x/ D

Z 1
0

Q
.r/
t f .x/ dt D

Z 1
0

Qr�˛ tf
.r/.x=r/ dt D r˛

Z 1
0

Qsf
.r/.x=r/ ds

D r˛Gf .r/.x=r/:

ThenZ
Rd
C

G.x; y/f .y/ dy D Gf .x/ D r˛Gf .r/.x=r/ D r˛
Z

Rd
C

G.x=r; y/f .r/.y/ dy

D r˛�d
Z

Rd
C

G.x=r; z=r/f .r/.z=r/ dz D r˛�d
Z

Rd
C

G.x=r; y=r/f .y/ dy:

This implies that for every x 2 RdC, G.x; y/ D r˛�dG.x=r; y=r/ for a.e. y.

Note that since .Yt ; Px/
d
D .Y .r/; Px=r /, the processes Y and Y .r/ have the same

excessive functions. Thus, if f is excessive for Y , it is also excessive for Y .r/ and there-
foreQr�˛ tf .r/f .x=r/DQ

.r/
t f .x/ " f .x/ as t ! 0. Thus we also haveQtf

.r/f .y/ "

f .ry/ D f .r/.y/ as t ! 0, proving that f .r/ is also excessive for Y . In particular, for
every x 2 Rd , y 7! r˛�dG.x=r; y=r/ is excessive for Y . Since this function is for a.e. y
equal to the excessive function y 7! G.x; y/, it follows that they are equal everywhere.
Thus for all x; y 2 RdC,

G.x; y/ D r˛�dG.x=r; y=r/:

By taking r D jx � yj we obtain (2.5).

3. Decay of the Green function

The goal of this section is to show that the Green function G.x; y/ vanishes at the bound-
ary of RdC. Recall that for a; b > 0 and zw 2 Rd�1,

D zw.a; b/ D ¹x D .zx; xd / 2 Rd W jzx � zwj < a; 0 < xd < bº:

Due to (A4), without loss of generality, we mainly deal with the case zwDz0. We will write
D.a; b/ forDz0.a; b/ and, for r > 0, U.r/ DDz0.r=2; r=2/: Further we write U for U.1/.
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In several places below we will need the following upper bound for B.x; y/ proved in
[41, Lemma 5.2 (a)]: There exists a constant C > 0 such that for all x; y 2 RdC satisfying
jx � yj � xd ,

B.x; y/ � Cx
ˇ1
d
.jlog xd jˇ3 _ 1/

�
1C 1jyj�1.log jyj/ˇ3

�
jx � yj�ˇ1 : (3.1)

We now recall three key lemmas from [41]. Recall that Yt D .Y 1t ; : : : ; Y
d
t /.

Lemma 3.1 ([41, Lemma 5.7]). For all x 2 U ,

Ex

Z �U

0

.Y dt /
ˇ1 jlogY dt j

ˇ3 dt � x
p

d
:

In the next two lemmas, we have used the scaling property of Y .

Lemma 3.2 ([41, Lemma 5.10]). There exists C7 2 .0; 1/ such that for all r > 0 and all
x D .z0; xd / 2 D.r=8; r=8/,

Px
�
Y�D.r=4;r=4/ 2 D.r=4; r/ nD.r=4; 3r=4/

�
� C7.xd=r/

p:

Lemma 3.3 ([41, Lemma 6.2]). There exists C8 > 0 such that for all r > 0 and all x in
D.2�5r; 2�5r/,

Px.Y�U.r/ 2 D.r; r// � C8.xd=r/
p:

The Lévy system formula (see [31, Theorem 5.3.1] and the arguments in [20, p. 40])
states that for any non-negative Borel function F on RdC �RdC vanishing on the diagonal
and any stopping time T ,

Ex
X
s�T

F.Ys�; Ys/ D Ex

�Z T

0

Z
Rd
C

F.Ys; y/J.Ys; y/ dy ds

�
; x 2 RdC: (3.2)

Here Ys� D limt"s Yt denotes the left limit of the process Y at time s > 0. We will use
(3.2) in the following form: Let f WRdC! Œ0;1/ be a Borel function, and let V;W be two
Borel subsets of RdC with disjoint closures. If F.x; y/ WD 1V .x/1W .y/f .y/ and T D �V ,
then (3.2) reads

Ex Œf .Y�V /; Y�V 2 W � D Ex
X
s��V

1V .Ys�/1W .Ys/f .Ys/

D Ex

Z �V

0

Z
Rd
C

1V .Ys/1W .y/f .y/J.Ys; y/ dy ds D Ex

Z �V

0

Z
W

f .y/J.Ys; y/ dy ds

(3.3)

D

Z
V

GV .x; z/

Z
W

f .y/J.z; y/ dy dz: (3.4)

The last line follows from the formula for the Green potential already described in Sec-
tion 2.

The following lemma is an improvement of Lemma 3.3, since RdC is a larger set than
any D.r; r/.
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Lemma 3.4. There exists C9 > 0 such that for all r > 0 and x 2 D.2�5r; 2�5r/ we have

Px.Y�U.r/ 2 RdC/ � C9.xd=r/
p: (3.5)

Proof. By scaling, it suffices to prove (3.5) for r D 1. Let U D U.1/ and D D D.1; 1/.
By Lemma 3.3 we only need to show that Px.Y�U 2 RdC nD/ � c1x

p

d
for some c1 > 0.

By using (3.3) (with f � 1) in the second line and (3.1) in the third,

Px.Y�U 2 RdC nD/

D Ex

Z �U

0

Z
Rd
C
nD

J.w; Yt / dw dt

� c2Ex

Z �U

0

.Y dt /
ˇ1 jlogY dt j

ˇ3 dt

Z
Rd
C
nD

1C 1jwj>1.log jwj/ˇ3

jwjdC˛Cˇ1
dw:

Since Z
Rd
C
nD

1C 1jwj>1.log jwj/ˇ3

jwjdC˛Cˇ1
dw <1;

it follows from Lemma 3.1 that Px.Y�U 2 RdC nD/ � c3x
p

d
.

The next result allows us to apply Theorem 1.5 to get Proposition 4.7, which is a key
for us to get sharp two-sided Green function estimates.

Theorem 3.5. For each y 2 RdC, limxd!0G.x; y/ D 0.

Proof. By translation invariance it suffices to show that limjxj!0 G.x; y/ D 0. We fix
y 2 RdC and consider x 2 RdC with jxj < 2�10yd . Let B1 D B.y; yd=2/ and B2 D
B.y; yd=4/. For z 2 B1 we have zd � yd=2 so that jz � yj � yd=2 � zd . Moreover,
jz � xj � yd=2� xd � .7=16/yd . Thus, by the regular harmonicity ofG.�; y/ (see Propo-
sition 2.2),

G.x; y/ D Ex ŒG.YTB1 ; y/I YTB1 2 B1 n B2�C Ex ŒG.YTB1 ; y/I YTB1 2 B2�

DW I1 C I2; (3.6)

where, for any V � RdC, TV WD inf ¹t > 0 W Yt 2 V º. By the Harnack inequality and
Lemma 2.1,

sup
z2B1nB2

G.z; y/ �
c1

jB1 n B2j

Z
B1nB2

G.z; y/ dz � c2
y˛
d

yd
d

Z
B1nB2

G.y; z/�.z/ dz

� c2y
˛�d
d G�.y/ � c2y

˛�d
d :

In the second inequality we have used the definition of � in (1.4), the fact that zd � yd in
B1 n B2, and that jB1 n B2j � ydd . Now we have

I1 � sup
z2B1nB2

G.z; y/Px.YTB1 2 B1 n B2/ �
c2

yd�˛
Px.YTB1 2 B1 n B2/:
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Further, it is easy to check that J.w; z/ � J.w; y/ for all w 2 RdC n B1 and z 2 B2.
Moreover, by Lemma 2.1,Z

B2

G.y; z/ dz � c3y
˛
d

Z
B2

G.y; z/�.z/ dz � c3y
˛
dG�.y/ � c3y

˛
d :

Therefore, by (3.3) (with f D G.�; y/) in the first line,

I2 D Ex

Z TB1

0

Z
B2

J.Yt ; z/G.z; y/ dz dt

� c4Ex

Z TB1

0

J.Yt ; y/y
˛
d dt � c5y

˛
d Ex

Z TB1

0

�
1

jB2j

Z
B2

J.Yt ; z/ dz

�
dt

D
c6

yd�˛
d

Px.YTB1 2 B2/:

Inserting the estimates for I1 and I2 into (3.6) and using Lemma 3.4 we get

G.x; y/ �
c7

yd�˛
d

Px.YTB1 2 RdC/ �
c7

yd�˛
d

Px.Y�U.yd =4/ 2 RdC/ �
c8

y
d�˛�p

d

x
p

d
;

which implies the claim.

4. Interior estimate of Green functions

4.1. Lower bound

We first use a capacity argument to show that there exists c > 0 such that G.x; y/ � c for
all x;y 2RdC satisfying jx � yj D 1 and xd ^ yd � 10. For such x and y, letU DB.x;5/,
V D B.x; 3/ and Wy D B.y; 1=2/. Recall that, for any W � RdC, TW D inf ¹t > 0 W

Yt 2W º. By the Krylov–Safonov type estimate [41, Lemma 3.12], there exists a constant
c1 > 0 such that

Px.TWy < �U / � c1
jWy j

jU j
D c2 > 0: (4.1)

Recall that Y U is the process Y killed upon exiting U and GU .�; �/ is the Green function
of Y U . The Dirichlet form of Y U is .E;FU /, where

E.u; v/ WD
1

2

Z
U

Z
U

.u.x/ � u.y//.v.x/ � v.y//J.x; y/ dy dx C

Z
U

u.x/2�U .x/ dx;

�U .x/ WD

Z
Rd
C
nU

J.x; y/ dy C �.x/; x 2 U; (4.2)

and FU WD ¹u 2 F W u D 0 q.e. on RdC n U º. Here q.e. means quasi-everywhere, that is,
except on a set of capacity zero with respect to Y . Let � be the capacitary measure of Wy
with respect to Y U (i.e., with respect to the corresponding Dirichlet form). Then � is
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concentrated on Wy , �.U / D CapY
U

.Wy/ and Px.TWy < �U / D G
U�.x/. By (4.1) and

applying Theorem 1.4 (Harnack inequality) to the function G.x; �/, we get

c2 � Px.TWy < �U / D G
U�.x/ D

Z
U

GU .x; z/ �.dz/ �

Z
U

G.x; z/ �.dz/

� c3G.x; y/�.U / D c3G.x; y/CapY
U

.Wy/: (4.3)

Let X be the isotropic ˛-stable process in Rd with the jump kernel j.x; y/ WD
jx � yj�d�˛ . For u; v W Rd ! R, let

Q.u; v/ WD
1

2

Z
Rd

Z
Rd
.u.x/ � u.y//.v.x/ � v.y//j.jx � yj/ dy dx;

D.Q/ WD ¹u 2 L2.Rd ; dx/ W Q.u; u/ <1º:

Then .Q;D.Q// is the regular Dirichlet form corresponding to X . Let XU denote the
part of the process X in U . The Dirichlet form of XU is .Q;DU .Q//, where

QU .u; v/ WD
1

2

Z
U

Z
U

.u.x/ � u.y//.v.x/ � v.y//j.jx � yj/ dy dx

C

Z
U

u.x/2�XU .x/ dx;

�XU .x/ WD

Z
Rd nU

j.jx � yj/ dy; x 2 U;

and DU .Q/ WD ¹u 2 D.Q/ W u D 0 q.e. on Rd n U º. Using calculations similar to those
in [41, p. 13], one can show that �U .x/ � �XU .x/ for x 2 U . Thus, there exists c4 > 0

such that E.u; u/ � c4Q
U .u; u/ for all u 2 C1c .U / which is a core for both .Q;DU .Q//

and .E;FU /. This implies that

CapY
U

.Wy/ � c4 CapX
U

.Wy/ � c4 CapX
U

.V /:

The last term, CapX
U

.V /, the capacity of V with respect to XU , is just a number, say
c5, depending only on the radii of V and U . Hence, CapY

U

.Wy/ � c4c5. Inserting this in
(4.3), we get

G.x; y/ � c2c
�1
3 c�14 c�15 :

Combining this with the Harnack inequality (Theorem 1.4) and (2.5), we immediately get

Proposition 4.1. For any C10 > 0, there exists a constant C11 > 0 such that for all
x; y 2 RdC satisfying jx � yj � C10.xd ^ yd /,

G.x; y/ � C11jx � yj
�dC˛:

Proof. We have shown above that there is c1 > 0 such thatG.z;w/� c1 for all z;w 2RdC
with jz �wj D 1 and zd ^wd � 10. By the Harnack inequality (Theorem 1.4), there exists
c2 > 0 such that G.z;w/ � c2 for all z; w 2 RdC with jz � wj D 1 and zd ^ wd > C�110 .
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Now let x; y 2 RdC satisfy jx � yj � C10.xd ^ yd / and set

x.0/ D
x

jx � yj
; y.0/ D

y

jx � yj
:

Then jx.0/ � y.0/j D 1 and x.0/
d
^ y

.0/

d
> C�110 so that G.x.0/; y.0// � c2. By scaling

(Proposition 2.4),

G.x; y/ D G.x.0/; y.0//jx � yj˛�d �
c2

jx � yjd�˛
:

As a corollary of the lower bound above we see that for every x 2 RdC,

lim
y!x

G.x; y/ D C1:

4.2. Upper bound

The purpose of this subsection is to establish the interior upper bound on the Green func-
tion G (Proposition 4.6). By (2.5) and the Harnack inequality (Theorem 1.4), it suffices
to deal with x; y 2 RdC with jx � yj D 1 and xd D yd > 10.

We fix now two points x.0/ and y.0/ in RdC such that jx.0/ � y.0/j D 1, x.0/
d
D y

.0/

d

> 10 and ex.0/ D z0. Let E D B.x.0/; 1=4/, F D B.y.0/; 1=4/ and D D B.x.0/; 4/. Let
f D G1E and u D G1D . Since z 7! G.y.0/; z/ is harmonic in B.x.0/; 1=2/ with respect
to Y and f is harmonic in B.y.0/; 1=2/ with respect to Y , by applying the Harnack
inequality (Theorem 1.4) to f and z 7! G.y.0/; z/, we get

f .y.0// D

Z
E

G.y.0/; z/ dz � cjEjG.y.0/; x.0// and
Z
F

f .y/2 dy � cjF jf .y.0//2:

Thus, using the symmetry of G, we obtain

G.x.0/; y.0// �
c

jEj
f .y.0// �

c

jEj

�
c

jF j

Z
F

f .y/2 dy

�1=2
�

c3=2

jEj3=2
kukL2.D/; (4.4)

for some constant c > 0. The key is to get uniform estimate on the L2 norm of u D G1D
(see Proposition 4.5). To get the desired uniform estimate, we will use the Hardy inequal-
ity in [6, Corollary 3] and the heat kernel estimates of symmetric jump processes with
large jumps of lower intensity in [2].

By (A3), we have

B.x; y/ � c1

²
jx � yj�ˇ1�ˇ2 if jx � yj � 1 and xd ^ yd � 1;
1 if jx � yj < 1 and xd ^ yd � 1:

(4.5)

Define

�.r/ WD r˛1r<1 C r˛Cˇ1Cˇ21r�1 and ˆ.r/ WD
r2R r

0
s
�.s/

ds
:
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Let x̌ WD .˛ C ˇ1 C ˇ2/ ^ 2. Then

ˆ.r/ �

8̂̂<̂
:̂
r˛ if r � 1;

r
x̌ if r > 1 and ˛ C ˇ1 C ˇ2 ¤ 2;

r2=log.1C r/ if r > 1 and ˛ C ˇ1 C ˇ2 D 2;

which implies that

c2

�
R

r

�˛
�
ˆ.R/

ˆ.r/
� c3

�
R

r

� x̌
; 0 < r � R <1: (4.6)

For a > 0, let RdaC WD ¹x 2 RdC W xd � aº. Define

K.r/ WD

´
r�d�˛ if r � 1;

r�d�˛�ˇ1�ˇ2 if r > 1;
(4.7)

Q.u; u/ WD

Z
Rd
1C

Z
Rd
1C

.u.x/ � u.y//2K.jx � yj/ dx dy: (4.8)

Note that, by (4.5),

K.jx � yj/ � c4J.x; y/ � c5j.jx � yj/; .x; y/ 2 Rd1C �Rd1C; (4.9)

for some positive constants c4 and c5. Consider the Dirichlet form .Q;D.Q// on Rd1C,
where

D.Q/ WD ¹u 2 L2.Rd1C/ W Q.u; u/ <1º: (4.10)

Let

zQ.u; u/ WD

Z
Rd
1C

Z
Rd
1C

.u.x/ � u.y//2

jx � yjdC˛
dx dy

D. zQ/ WD ¹u 2 L2.Rd1C/ W zQ.u; u/ <1º:

It follows from [5, Remark 2.1 (1)] (more precisely the first sentence on [5, p. 98]) that
. zQ;D. zQ// is a regular Dirichlet form. Moreover, we have

zQ.u; u/ D

Z
Rd
1C
�Rd

1C

.u.x/ � u.y//2

jx � yjdC˛
dx dy

D

Z
Rd
1C
�Rd

1C

1jx�yj�1
.u.x/ � u.y//2

jx � yjdC˛
dx dy

C

Z
Rd
1C
�Rd

1C

1jx�yj>1
.u.x/ � u.y//2

jx � yjdC˛
dx dy

� Q.u; u/C 4kuk2
L2.Rd

1C
/

sup
y2Rd

1C

Z
Rd
1C

1jx�yj>1jx � yj�d�˛ dx

� Q.u; u/C 4kuk2
L2.Rd

1C
/

Z
Rd

1jzj>1jzj�d�˛ dz D Q.u; u/C c6kuk2L2.Rd
1C
/
:

This implies that the Dirichlet form .Q;D.Q// is also regular on L2.Rd1C; dx/.
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Let X .1/ D .X
.1/
t /t�0 be the symmetric Hunt process associated with .Q;D.Q//

and denote by p.1/.t; x; y/ the transition density of X .1/. Then [2, Theorem 4.6] says that
there exists c7 > 0 such that

p.1/.t; x; y/ � c7

�
1

ˆ�1.t/d
^

t

jx � yjdˆ.jx � yj/

�
; t > 0; x; y 2 Rd1C; (4.11)

and [2, Theorem 2.19 (i)] says that there exists c8 > 0 such that

p.1/.t; x; y/ �
c8

ˆ�1.t/d
; t > 0; x; y 2 Rd1C with jx � yj � ˆ�1.t/: (4.12)

Recall that we have assumed d > x̌. By using (4.6), (4.11) and (4.12), we can compute
(see [6, p. 241]) that for every 
 2 .0; .d= x̌ � 1/ ^ 2/,

h.x; y/ WD

Z 1
0

t
p.1/.t; x; y/ dt �
ˆ.jx � yj/
C1

jx � yjd
; x; y 2 Rd1C;

xh.x; y/ WD

Z 1
0

t
�1p.1/.t; x; y/ dt �
ˆ.jx � yj/


jx � yjd
; x; y 2 Rd1C:

This is the only place where the assumption d > x̌ is used. Set x� D .z0; 1/ and let

q.x/ WD
xh.x; x�/

h.x; x�/
�

1

ˆ.jx � x�j/
:

It follows from the Hardy inequality in [6, Theorem 2 and Corollary 3] that there exists
c9 > 0 such that

Q.u; u/ � c9

Z
Rd
1C

u.x/2
dx

ˆ.jx � x�j/
for all u 2 L2.Rd1C/: (4.13)

This estimate can be improved to obtain the following result.

Proposition 4.2. There exists a constant C12 > 0 such that for all u 2 D.Q/ and all
za D .z0; a/ with a � 0,

Q.u; u/ � C12

Z
Rd
1C

u.x C za/
2 dx

ˆ.jx � x�j/
:

Proof. Let za D .z0; a/, a � 0. ThenZ
Rd
1C

Z
Rd
1C

.u.x C za/ � u.y C za//
2K.jx � yj/ dx dy

D

Z
Rd
.1Ca/C

Z
Rd
.1Ca/C

.u.x/ � u.y//2K.jx � yj/ dx dy � Q.u; u/ <1:

Thus, u.� C za/ 2 D.Q/ by (4.10) and

Q.u.� C za/; u.� C za// D

Z
Rd
1C

Z
Rd
1C

.u.x C za/ � u.y C za//
2K.jx � yj/ dx dy

� Q.u; u/:

Since clearly u.� C za/ 2 L2.Rd1C/, the claim follows from (4.13).
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We have shown in Lemma 2.1 that .E;F / is transient. Let .E;Fe/ be its extended
Dirichlet space.

Lemma 4.3. There exists C13 > 0 such that for any h 2 Fe and any za D .z0; a/ with
a � 0, Z

Rd
1C

jh.x C za/j
2

ˆ.jx � x�j/
dx � C13E.h; h/:

Proof. Let h 2 Fe . There exists an approximating sequence .gn/n�1 in F such that
E.h; h/ D limn!1 E.gn; gn/ and h D limn!1 gn a.e. Since gn 2 L2.RdC; dx/, we have
gn1Rd

1C
2 L2.Rd1C; dx/. Further, by (4.9),

Q.gn1Rd
1C
; gn1Rd

1C
/ � c1E.gn; gn/ <1;

so that gn1Rd
1C
2 D.Q/ by (4.10).

Now, using Proposition 4.2 and the above inequality, we have

E.gn; gn/ � c
�1
1 Q.gn1Rd

1C
; gn1Rd

1C
/ � c2

Z
Rd
1C

gn.x C za/
2 dx

ˆ.jx � x�j/

for some constant c2 > 0. By Fatou’s lemma,

E.h; h/ D lim
n!1

E.gn; gn/ � c2

Z
Rd
1C

lim inf
n!1

gn.x C za/
2 dx

ˆ.jx � x�j/

D c2

Z
Rd
1C

h.x C za/
2 dx

ˆ.jx � x�j/
:

By [31, Theorem 1.5.4], for any non-negative Borel function f satisfying the condi-
tion

R
Rd
C
f .x/Gf .x/dx <1, we haveGf 2 Fe and E.Gf;Gf /D

R
Rd
C
f .x/Gf .x/dx.

Thus Lemma 4.3 yields

Corollary 4.4. There exists C14 > 0 such that for every non-negative Borel function f
satisfying

R
Rd
C
f .x/Gf .x/ dx <1 and every za D .z0; a/ with a � 0,Z

Rd
1C

jGf .x C za/j
2

ˆ.jx � x�j/
dx � C14

Z
Rd
C

f .x/Gf .x/ dx:

Proposition 4.5. There exists C15 > 0 such that for every x.0/ 2 RdC with x.0/
d
> 6,Z

B.x.0/;4/

.G1B.x.0/;4/.x//
2 dx � C15:

Proof. Without loss of generality we assume that x.0/ D .z0; x
.0/

d
/. Set B D B.x.0/; 4/

and let u D G1B . We first note that, by (2.3), G1B � c�1xB , and therefore kukL2.B/ <1.



Sharp two-sided Green function estimates for Dirichlet forms degenerate at the boundary 2271

Let z D .z0; x.0/
d
� 6/ and zB D B..z0; 6/; 4/ � Rd2C. By using the change of variables

w D x � z and the fact that ˆ.jw � x�j/ � 1 for w 2 zB in the first line, and then Corol-
lary 4.4 and the Cauchy inequality in the third line below, we have

kuk2
L2.B/

D

Z
zB

ju.w C z/j2 dw � c1

Z
zB

ju.w C z/j2
dw

ˆ.jw � x�j/

� c1

Z
Rd
1C

ju.w C z/j2
dw

ˆ.jw � x�j/
D c1

Z
Rd
1C

jG1B.w C z/j2
dw

ˆ.jw � x�j/

� c2

Z
Rd
C

1B.x/G1B.x/ dx � c2jBj1=2kukL2.B/:

Since kukL2.B/ <1, it follows that kukL2.B/ � c2jBj1=2. This completes the proof.

Coming back to (4.4), by Proposition 4.5, we see that the right-hand side is bounded
above by a constant, and therefore G.x.0/; y.0// � c.

Proposition 4.6. There exists a constant C16 > 0 such that for all x; y 2 RdC satisfying
jx � yj � 8.xd ^ yd /,

G.x; y/ � C16jx � yj
�dC˛:

Proof. This is analogous to the proof of Proposition 4.1. We omit the details.

Using Theorem 3.5, we can combine Proposition 4.6 with Theorem 1.5 to get the
following result, which is key for us to get sharp two-sided Green functions estimates.

Proposition 4.7. There exists a constant C17 > 0 such that for all x; y 2 RdC,

G.x; y/ � C17jx � yj
�dC˛: (4.14)

Proof. By Proposition 4.6, there exists c1 > 0 such that G.x; y/ � c1 for all x; y 2 RdC
with jx � yj D 1 and xd ^ yd � 1=8.

Suppose that x; y 2 RdC with jx � yj D 1 and xd � yd and xd < 1=8 < yd . Since
z 7!G.z;y/ is harmonic inB..zx;0/;1=4/with respect to Y and vanishes on the boundary
of RdC by Theorem 3.5, we can use Theorem 1.5 to find that there exists c2 > 0 such that

G.x; y/ � c2G.x C .z0; 1=8/; y/ � c2c1: (4.15)

Suppose that x; y 2 RdC with jx � yj D 1 and xd � yd and yd � 1=8. Then, since z 7!
G.z; y/ is harmonic in B..zx; 0/; 1=4/ with respect to Y and vanishes on the boundary
of RdC, by (4.15) and Theorem 1.5 we see that G.x; y/ � c2G.x C .z0; 1=8/; y/ � c22c1.
Thus for all x; y 2 RdC with jx � yj D 1, we have G.x; y/ � C . Therefore, by (2.5),

G.x; y/ � C jx � yj�dC˛; x; y 2 RdC:

5. Preliminary Green function estimates

The results of this section are valid for all p 2 ..˛ � 1/C; ˛ C ˇ1/.



P. Kim, R. Song, Z. Vondraček 2272

5.1. Lower bound

The goal of this subsection is to prove the following result, which is used later to prove
the sharp lower bound of the Green function for p 2 ..˛ � 1/C; ˛C 1

2
Œˇ1 C .ˇ1 ^ ˇ2/�/.

Theorem 5.1. Suppose p 2 ..˛ � 1/C; ˛ C ˇ1/. For any " 2 .0; 1=4/, there exists a con-
stant C18 > 0 such that for all w 2 @RdC, R > 0 and x; y 2 B.w; .1 � "/R/ \RdC,

GB.w;R/\Rd
C.x; y/ � C18

�
xd

jx � yj
^ 1

�p�
yd

jx � yj
^ 1

�p
1

jx � yjd�˛
:

The theorem will be proved through three lemmas. For any a > 0, let BCa WD B.0; a/
\RdC. Recall that RdaC D ¹x 2 RdC W xd � aº.

Lemma 5.2. For any " 2 .0; 1/ and M > 1, there exists a constant C19 > 0 such that for
all y; z 2 BC1�" with jy � zj �M.yd ^ zd /,

GB
C

1 .y; z/ � C19jy � zj
�dC˛:

Proof. By using (2.4) in the first equality below, it follows from Propositions 4.7 and 4.1
that there exists c1 > 1 such that for all y; z 2 BC1�" with jy � zj �M.yd ^ zd /,

GB
C

1 .y; z/ D G.y; z/ � Ey ŒG.Y�
B
C
1

; z/� � c�11 jy � zj
�dC˛

� c1"
�dC˛:

Now, choose ıD .2c21/
� 1
d�˛ . Then for all y;z 2BC1�" with jy � zj � .ı"/^M.yd ^ zd /,

GB
C

1 .y; z/ � c�11 jy � zj
�dC˛

� c1.ı
�1
jy � zj/�dC˛

� .c�11 � c1ı
d�˛/jy � zj�dC˛ D .2c1/

�1
jy � zj�dC˛: (5.1)

Assume that y; z 2 BC1�" with jy � zj �M.yd ^ zd / are such that also jy � zj � ı".
Then clearly jy � zj � .ı"/ ^M.yd ^ zd /, and (5.1) proves the lemma.

Now, we assume that y; z 2 BC1�" with jy � zj �M.yd ^ zd /, but jy � zj > ı"; see
Figure 1. Since yd ^ zd > ı"=M , we have

y; z 2 BC1�" \Rd.ı"=M/C: (5.2)

Rd
ı"
M C

1 � "0

�

�
�

y

w

ı"
M

�z

Fig. 1
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Therefore we can choose a point w 2 B.y; ı"=M/ such that jy � wj D ı"=.2M/ and
w 2 BC1�" \ Rd

.ı"=M/C
. Since M.yd ^ wd / > ı" > jy � wj, we can use (5.1) for the

points y and w to conclude that

GB
C

1 .y; w/ � .2c1/
�1
jy � wj�dC˛ D .2c1/

�1.ı"=.2M//�dC˛ DW c2:

Since GB
C

1 .y; �/ is harmonic in B.w; ı"=.4M// [ B.z; ı"=.4M// by (5.2), we can use
Theorem 1.4 (b) and the fact that jy � zj < ı" to get

GB
C

1 .y; z/ � c3G
B
C

1 .y; w/ � c4 � c5jy � zj
�dC˛:

Lemma 5.3. Suppose p 2 ..˛ � 1/C; ˛ C ˇ1/. For every " 2 .0; 1=4/ and M;N > 1,
there exists a constant C20 > 0 such that for all x; z 2 BC1�" with xd � zd satisfying
xd=N � jx � zj �Mzd ,

GB
C

1 .x; z/ � C20x
p

d
jx � zj�dC˛�p:

Proof. Without loss of generality, we assume M > 4=". If jx � zj �Mzd and jx � zj �
20Mxd , let r D jx�zj

10M
�

1
5M
�

"
20

. Since x 7!GB
C

1 .x; z/ is regular harmonic inDzx.r; r/,
and Dzx.r; 4r/ nDzx.r; 3r/ � BC1�"=4, by Lemmas 5.2 and 3.2 we have

GB
C

1 .x; z/ � Ex ŒG
B
C

1 .Y�Dzx.r;r/
; z/ W Y�Dzx.r;r/

2 Dzx.r; 4r/ nDzx.r; 3r/�

� c1jx � zj
�dC˛Px.Y�Dzx.r;r/ 2 Dzx.r; 4r/ nDzx.r; 3r// � c2x

p

d
jx � zj�dC˛�p;

since, for y 2 Dzx.r; 4r/ n Dzx.r; 3r/, jy � zj � jx � zj C jx � yj � 5.2M C 1/r �
2.2M C 1/.yd ^ zd /.

If jx � zj �Mzd and xd=N < jx � zj < 20Mxd , we simply use Lemma 5.2 (since
jx � zj < 12M.xd ^ zd /) to get

GB
C

1 .x; z/ � c3jx � zj
�dC˛

� c3N
�px

p

d
jx � zj�dC˛�p:

Lemma 5.4. Suppose p 2 ..˛ � 1/C; ˛ C ˇ1/. For every " 2 .0; 1=4/ and M � 40=",
there exists a constant C21 > 0 such that for all x; z 2 BC1�" with xd � zd satisfying
jx � zj �Mzd ,

GB
C

1 .x; z/ � C21x
p

d
z
p

d
jx � zj�dC˛�2p:

Proof. Let r D 2jx�zj
M
�

4
M
�

"
10

. Since x 7!GB
C

1 .x; z/ is regular harmonic inDzx.r; r/,
and Dzx.r; 4r/ nDzx.r; 3r/ � BC1�"=4, by Lemmas 5.3 and 3.2 we have

GB
C

1 .x; z/ � Ex ŒG
B
C

1 .Y�Dzx.r;r/
; z/ W Y�Dzx.r;r/

2 Dzx.r; 4r/ nDzx.r; 3r/�

� c1z
p

d
jx � zj�dC˛�pPx.Y�Dzx.r;r/ 2Dzx.r; 4r/ nDzx.r; 3r// � c2x

p

d
z
p

d
jx � zj�dC˛�2p

since, for y 2 Dzx.r; 4r/ n Dzx.r; 3r/, jy � zj � jx � zj C jx � yj � .M=2 C 5/r �
.M=2C 5/yd and jy � zj � jx � zj � jx � yj � 75r � 150zd .

Combining the above result with scaling, we get the result of Theorem 5.1.
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5.2. Upper bound

The goal of this subsection is to get the following preliminary upper bound on the Green
function.

Lemma 5.5. Suppose p 2 ..˛ � 1/C; ˛ C ˇ1/. There exists C22 > 0 such that

G.x; y/ � C22

�
xd ^ yd

jx � yj
^ 1

�p
1

jx � yjd�˛
; x; y 2 RdC: (5.3)

Proof. Suppose x; y 2 RdC satisfy zx D z0, xd � 2�9 and jx � yj D 1. Let r D 2�8. For
z 2 U.r/ and w 2 RdC nD.r; r/, we have jw � zj � jwj. Thus, by using (3.1) and Propo-
sition 4.7,Z

Rd
C
nD.r;r/

G.w; y/B.z; w/jz � wj�d�˛ dw

� c1z
ˇ1
d
.jlog zd jˇ3 _ 1/

Z
Rd
C
nD.r;r/

G.w; y/

jwjdC˛Cˇ1

�
1C 1jwj�1.log jwj/ˇ3

�
dw

� c2z
ˇ1
d
jlog zd jˇ3

Z
Rd
C
nD.r;r/

1C 1jwj�1.log jwj/ˇ3

jw � yjd�˛jwjdC˛Cˇ1
dw: (5.4)

Hence, by using (3.4) and (3.1) in the second line, and Lemma 3.1 in the third,

Ex ŒG.Y�U.r/ ; y/I Y�U.r/ … D.r; r/�

� c3Ex

Z �U.r/

0

.Y dt /
ˇ1 jlog.Y dt /j

ˇ3 dt

Z
Rd
C
nD.r;r/

1C 1jwj�1.log jwj/ˇ3

jw � yjd�˛jwjdC˛Cˇ1
dw

� c4x
p

d

Z
Rd
C
nD.r;r/

1C 1jwj�1.log jwj/ˇ3

jw � yjd�˛jwjdC˛Cˇ1
dw:

Let Z
Rd
C
nD.r;r/

1C 1jwj�1.log jwj/ˇ3

jw � yjd�˛jwjdC˛Cˇ1
dw D

Z
Rd
C
\B.y;r/

C

Z
Rd
C
n.D.r;r/[B.y;r//

DW I C II: (5.5)

It is easy to see

II � r�dC˛
Z

Rd
C
n.D.r;r/[B.y;r//

1C 1jwj�1.log jwj/ˇ3

jwjdC˛Cˇ1
dw <1; (5.6)

I � c5

Z
Rd
C
\B.y;r/

1

jw � yjd�˛
dw <1: (5.7)

Thus,
Ex ŒG.Y�U.r/ ; y/I Y�U.r/ … D.r; r/� � c6x

p

d
: (5.8)
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Let x0 WD .z0; r/. By Theorem 1.5, Proposition 4.7 and Lemma 3.3, we have

Ex ŒG.Y�U.r/ ; y/I Y�U.r/ 2 D.r; r/� � c7G.x0; y/Px.Y�U.r/ 2 D.r; r// � c8x
p

d
: (5.9)

Combining (5.8) and (5.9), we see that for x;y 2RdC satisfying xd � 2�9 and jx � yj D 1,

G.x;y/DEx ŒG.Y�U.r/ ; y/I Y�U.r/ …D.r; r/�CEx ŒG.Y�U.r/ ; y/I Y�U.r/ 2D.r; r/��c9x
p

d
:

Combining this with Proposition 4.7, (2.5) and symmetry, we immediately get the desired
conclusion.

6. Proof of Theorem 1.1

We begin this section by introducing an auxiliary function that will be needed later. For

 2 R and ˇ � 0, we define a function on .0; 1� by

F.xI 
; ˇ/ WD

Z 1

x

h

�

log
2

h

�ˇ
dh:

Note that F.�I 
; ˇ/ is a decreasing function on .0; 1� and that, when 
 > �1, F.0CI 
; ˇ/
is finite. It is obvious that

F.xI 
; 0/ D

´
1

C1

.1 � x
C1/; 
 ¤ �1;

� log x; 
 D �1

and

F.xI �1; ˇ/ D
1

1C ˇ

��
log

2

x

�1Cˇ
� .log 2/1Cˇ

�
: (6.1)

Note also that for any b 2 .0; 1/, on .0; b�, when 
 > �1,

F.0I 
; ˇ/ � F.xI 
; ˇ/ � x
C1
�

log
2

x

�ˇ
; (6.2)

and when 
 < �1,

F.xI 
; ˇ/ � x
C1
�

log
2

x

�ˇ
; (6.3)

with comparison constants depending on ˇ � 0 and 
 < �1.
We first present a technical lemma inspired by [1, Lemma 3.3]. This lemma will be

used several times in this section. For x D .z0; xd / 2 RdC and 
; q; ı 2 R, R > 0, ˇ � 0
and y 2 RdC with yd 2 .0; R/, we define

f .yI 
; ˇ; q; ı; x/

WD y



d
jx � yj�dC˛�q

�
log
�
1C

2R

yd

��ˇ�
log
�
1C

jx � yj

.xd _ yd / ^ jx � yj

��ı
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and

g.yIˇ; q; ı; x/

WD

�
xd

jx�yj
^ 1

�q
jx�yj�dC˛

�
log
�
1C

2R

yd

��ˇ�
log
�
1C

jx�yj

.xd _yd /^ jx�yj

��ı
:

Note that for 0 < yd < R we have log.1 C 2R=yd / � log.2R=yd /. In almost all our
applications of Lemma 6.1 and Corollary 6.3 below, the parameter ı will be 0. The only
exception is Proposition 6.10 where we will have ı equal to 0, ˇ4 or ˇ4 C 1.

Lemma 6.1. Let R 2 .0;1/ and x D .z0; xd / with xd � 2R=3. Fix 0 < a1 � xd=2 and
3xd=2 � a3 � a2 � R. We have the following comparison relations, with comparison
constants independent of R; a1; a2; a3 and xd 2 .0; 2R=3/:

(i) If 
 > �1 and q > ˛ � 1, then

I1 WD

Z
D.R;a1/

f .yI 
; ˇ; q; ı; x/ dy � x
˛�q�1

d
a

C1
1

�
log

2R

a1

�ˇ
:

(ii) If q > ˛ � 1, then

I2 WD

Z
D.R;a2/nD.R;a3/

f .yI 
; ˇ; q; ı; x/ dy

� R
C˛�q
�
F

�
a3

R
I 
 C ˛ � q � 1; ˇ

�
� F

�
a2

R
I 
 C ˛ � q � 1; ˇ

��
:

(iii) If q > ˛ � 1, then

I3 WD

Z
D.R;3xd =2/nD.R;xd =2/

g.yIˇ; q; ı; x/ dy � x˛d

�
log

2R

xd

�ˇ
:

Proof. (i) In D.R; a1/, yd < xd . Without loss of generality, we replace log.1C 2R=yd /
with log.2R=yd /. Thus, using the change of variables yd D xdh and r D xd s in the third
line below, we get

I1 �

Z R

0

rd�2
Z a1

0

y



d

..xd � yd /C r/d�˛Cq

�
log

2R

yd

�ˇ
�

�
log
�
1C

.xd � yd /C r

xd

��ı
dyd dr

D x
˛�qC


d

Z R=xd

0

sd�2
Z a1=xd

0

h


Œ.1 � h/C s�d�˛Cq

�

�
log

2R=xd

h

�ˇ
.log.2 � hC s//ı dh ds;

which, using 1 � h � 1 (because 0 < a1 � xd=2), is comparable to

x
˛�qC


d

Z R=xd

0

sd�2.log.2C s//ı

.1C s/d�˛Cq
ds

�Z a1=xd

0

h

�

log
2R=xd

h

�ˇ
dh

�
:
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Note that, since q > ˛ � 1,Z 3=2

1

.log.2C s//ı

s2�˛Cq
ds �

Z R=xd

1

.log.2C s//ı

s2�˛Cq
ds �

Z 1
1

.log.2C s//ı

s2�˛Cq
ds <1:

Therefore, using this inequality and (6.2), after a change of variables we get

I1 � x
˛�qC


d

�Z 1

0

sd�2.log.2C s//ı

.1C s/d�˛Cq
ds C

Z R=xd

1

.log.2C s//ı

s2�˛Cq
ds

�
�

�
R

xd

�
C1�
F.0I 
; ˇ/ � F

�
a1

R
I 
; ˇ

��
� x

˛�q�1

d
a

C1
1

�
log

2R

a1

�ˇ
:

(ii) InD.R; a2/ nD.R; a3/, yd > xd . Thus, using the change of variables yd D xdh
and r D xd s in the third line below, we get

I2 �

Z R

0

rd�2
Z a2

a3

y



d

..yd � xd /C r/d�˛Cq

�
log

2R

yd

�ˇ
�

�
log
�
1C

.yd � xd /C r

yd

��ı
dyd dr

D x
˛�qC


d

Z a2=xd

a3=xd

Z R=xd

0

sd�2h


Œ.h � 1/C s�d�˛Cq

�
log

2R=xd

h

�ˇ
�

�
log
�
1C

h � 1C s

h

��ı
ds dh;

which, by the change of variables s D .h � 1/t , is equal to

x
˛�qC


d

Z a2=xd

a3=xd

Z R
.h�1/xd

0

h
 td�2

.h � 1/1�˛Cq.1C t /d�˛Cq

�
log

2R=xd

h

�ˇ
�

�
log
�
1C

.h � 1/.1C t /

h

��ı
dt dh: (6.4)

Note that since 3xd=2 � a3 � hxd � a2 � R we have

R

.h � 1/xd
�

R

a2 � xd
� 1; a3=xd � h � a2=xd :

Thus, using q > ˛ � 1, we find that for a3=xd � h � a2=xd ,Z 1

1=2

.log.2C t //ı

.1C t /2�˛Cq
dt �

Z R
.h�1/xd

1=2

.log.2C t //ı

.1C t /2�˛Cq
dt

�

Z 1
1=2

.log.2C t //ı

.1C t /2�˛Cq
dt <1:



P. Kim, R. Song, Z. Vondraček 2278

Therefore, using .h � 1/=h � 1 and the display above, (6.4) is comparable to

x
˛�qC


d

Z a2=xd

a3=xd

h
C˛�q�1
�

log
2R=xd

h

�ˇ Z R
.h�1/xd

0

td�2

.1C t /d�˛Cq
.log.2C t //ıdt dh

� x
˛�qC


d

Z a2=xd

a3=xd

h
C˛�q�1
�

log
2R=xd

h

�ˇ
�

�Z 1=2

0

td�2 dt C

Z R
.h�1/xd

1=2

.log.2C t //ı

.1C t /2�˛Cq
dt

�
dh

� x
˛�qC


d

Z a2=xd

a3=xd

h
C˛�q�1
�

log
2R=xd

h

�ˇ
dh

� R
C˛�q
�
F

�
a3

R
I 
 C ˛ � q � 1; ˇ

�
� F

�
a2

R
I 
 C ˛ � q � 1; ˇ

��
:

(iii) Let B.x/ D ¹.zy; yd / W j zyj < xd=2; jyd � xd j < xd=2º. Note that

I3 D

Z
B.x/

g.yIˇ; q; ı; x/ dy

C

Z
.D.R;3xd =2/nD.R;xd =2//nB.x/

g.yIˇ; q; ı; x/ dy

DW I31 C I32:

Note that in both I31 and I32 we have log.2R=yd / � log.2R=xd / (since yd � xd ), and
therefore this term comes out of the integral. When y 2 B.x/, xd � yd � jx � yj so that�
log
�
1C jx�yj

.xd_yd /^jx�yj

��ı
� 1. Therefore

I31 �

�
log

2R

xd

�ˇ Z
B.x/

jx � yj�dC˛dy � x˛d

�
log

2R

xd

�ˇ
:

In .D.R; 3xd=2/ nD.R;xd=2// nB.x/, we have yd � xd and xd � 2jx � yj. Thus,
using the change of variables yd D rt C xd in the last line below, we get

I32 � x
q

d

�
log

2R

xd

�ˇ
�

Z
.D.R;3xd =2/nD.R;xd =2//nB.x/

jx�yj�dC˛�q
�

log
�
1C
jx�yj

xd

��ı
dy

� x
q

d

�
log

2R

xd

�ˇ
�

Z R

xd =2

rd�2
Z 3xd =2

xd =2

.jxd �yd jCr/
�dC˛�q

�
log
�
1C
jxd �yd jCr

xd

��ı
dyd dr

D x
q

d

�
log

2R

xd

�ˇ Z R

xd =2

r˛�q�1
Z xd

2r

�
xd
2r

.jt jC1/�dC˛�q
�

log
�
1C

r.jt jC1/

xd

��ı
dt dr;
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which, by the change of variables r D xd s, is comparable to

x˛d

�
log

2R

xd

�ˇ Z R=xd

1=2

s˛�q�1
Z 1=s

0

.log.1C s.t C 1///ı

.t C 1/d�˛Cq
dt ds: (6.5)

Note that, since q > ˛ � 1,Z 1=s

0

.log
�
1C s.t C 1/

�
/ı

.t C 1/d�˛Cq
dt � .log.1C s//ı

Z 1=s

0

dt

.t C 1/d�˛Cq

�
.log.1C s//ı

s
; s > 1=2;

andZ 3=2

1=2

.log.1C s//ı

sqC2�˛
ds �

Z R=xd

1=2

.log.1C s//ı

sqC2�˛
ds �

Z 1
1=2

.log.1C s//ı

sqC2�˛
ds <1:

Therefore, by the above inequalities, (6.5) is comparable to

x˛d

�
log

2R

xd

�ˇ Z R=xd

1=2

.log.1C s//ı

sqC2�˛
ds � x˛d

�
log

2R

xd

�ˇ
:

Remark 6.2. Note that it follows from the proof of Lemma 6.1 (i) that I1 D 1 for

 � �1.

Corollary 6.3. Let R > 0, q > ˛ � 1, ı 2 R, 
 > �1, ˇ � 0, and x D .z0; xd /.

(i) We have the following comparison result, with the comparison constant independent
of R and xd 2 .0; R=2/:Z

D.R;R/

�
xd

jx � yj
^ 1

�q
f .yI 
; ˇ; 0; ı; x/ dy

�

8̂̂<̂
:̂
R˛C
�qx

q

d
if ˛ � 1 < q < ˛ C 
;

x
q

d

�
log 2R

xd

�ˇC1 if q D ˛ C 
;

x
˛C


d

�
log 2R

xd

�ˇ if q > ˛ C 
:

(ii) Let a 2 .0; R� and ˛ � 1 < q < ˛ C 
 . Then there is a constant C23 independent of
R, a and xd 2 .0; R=2/ such thatZ

D.R;a/

�
xd

jx � yj
^ 1

�q
f .yI 
; ˇ; 0; ı; x/ dy � C23x

q

d
a˛C
�q

�
log

2R

a

�ˇ
: (6.6)

Proof. (i) Set a1 D xd=2, a2 D R and a3 D 3xd=2 in Lemma 6.1. In D.R; xd=2/ and
D.R;R/ nD.R; 3xd=2/, we have xd � cjx � yj. Therefore,Z

D.R;xd =2/

�
xd

jx � yj
^ 1

�q
f .yI 
; ˇ; 0; ı; x/ dy

� x
q

d

Z
D.R;xd =2/

f .yI 
; ˇ; q; ı; x/ dy � x
˛C


d

�
log

2R

xd

�ˇ
:
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Using 3xd=2 < 3R=4 (so that 3xd=2R � 3=4), (6.1) and (6.3), we getZ
D.R;R/nD.R;3xd =2/

�
xd

jx � yj
^ 1

�q
f .yI 
; ˇ; 0; ı; x/ dy

� x
q

d

Z
D.R;R/nD.R;3xd =2/

f .yI 
; ˇ; q; ı; x/ dy

� x
q

d
R
C˛�qF

�
3xd

2R
I 
 C ˛ � q � 1; ˇ

�

�

8̂̂<̂
:̂
x
q

d
R˛C
�q if ˛ � 1 < q < ˛ C 
;

x
q

d

�
log 2R

xd

�ˇC1 if q D ˛ C 
;

x
˛C


d

�
log 2R

xd

�ˇ if q > ˛ C 
:

In D.R; 3xd=2/ nD.R; xd=2/ we have yd � xd , soZ
D.R;3xd =2/nD.R;xd =2/

�
xd

jx � yj
^ 1

�q
f .yI 
; ˇ; 0; ı; x/ dy

� x



d

�
log

2R

xd

�ˇ Z
D.R;3xd =2/nD.R;xd =2/

g.yI q; ı; x/ dy � x
˛C


d

�
log

2R

xd

�ˇ
:

By adding up these three displays we get the claim.
(ii) If a � xd=2, then by Lemma 6.1 (i) (with a1 D a) and the assumption ˛ � q � 1

< 0, we find that the integral in (6.6) is less than cxq
d
.x
˛�q�1

d
a
C1.log.2R=a//ˇ / �

x
q

d
a˛C
�q.log.2R=a//ˇ . If xd=2 � a � 3xd=2, we split the integral into two parts –

over D.R; xd=2/ and D.R; a/ nD.R; xd=2/. The first one is by Lemma 6.1 (i) compa-
rable with xq

d
x
˛�qC


d
.log.4R=xd //ˇ � x

q

d
a˛C
�q.log.2R=a//ˇ , while the second one

is by Lemma 6.1 (iii) smaller than x

d
x˛
d
.log.2R=xd //ˇ D x

q

d
x
˛C
�q

d
.log.2R=xd //ˇ �

x
q

d
a˛C
�q.log.2R=a//ˇ . Finally, if a 2 .3xd=2; R�, then by using Lemma 6.1 (ii) (with

a2 D a, a3 D 3xd=2) and the assumption q < ˛ C 
 we deduce that the integral over
D.R; a/ nD.R; 3xd=2/ is bounded by above by cxq

d
a˛C
�q.log.2R=a//ˇ .

6.1. Green function upper bound for p 2 ..˛ � 1/C; ˛ C 1
2
Œˇ1 C .ˇ1 ^ ˇ2/�/

In this subsection we deal with the case

p 2 ..˛ � 1/C; ˛ C 2
�1Œˇ1 C .ˇ1 ^ ˇ2/�/: (6.7)

If ˇ2 > 0, then there exists 0 < ž2 < ˇ2 such that

p 2 ..˛ � 1/C; ˛ C 2
�1Œˇ1 C .ˇ1 ^ ž2/�/: (6.8)

Further, if ˇ4 > 0, there is c > 0 such that for all s 2 .0; 1/,

sˇ2.log.1C 8=s//ˇ4 � cs
ž
2 : (6.9)
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Let

"0 D

´
0 if ˇ3 D 0;

2�1.˛ C ˇ1 � p/ if ˇ3 > 0:

Note that

Œlog.1C s/�ˇ3 � cs"0 ; s � 1: (6.10)

Recall D zw.a; b/ D ¹x D .zx; xd / 2 Rd W jzx � zwj < a; 0 < xd < bº.

Lemma 6.4. Suppose that (6.7) holds. There exists C24 > 0 such that for all x; y 2 RdC
with jzx � zyj > 3 and 0 < xd ; yd < 1=4,Z
Dzx.1;1/

Z
Dzy.1;1/

�
xd

jw � xj
^ 1

�p�
yd

jz � yj
^ 1

�p
.wd ^ zd /

ˇ1.wd _ zd /
ˇ2

jx � wjd�˛jy � zjd�˛

�

�
log
�
1C

wd _ zd

wd ^ zd

��ˇ3�
log
�
1C

8

wd _ zd

��ˇ4
dz dw � C24x

p

d
y
p

d
: (6.11)

Proof. Define y̌1 D ˇ1 � "0, y̌2 D ž2C "0. Note that by the definition of "0, p < ˛C y̌1.
Note also that by (6.9) we can estimate .wd _ zd /ˇ2.log.1C 8=.wd _ zd ///ˇ4 by a con-
stant times .wd _ zd /

ž
2 . By (6.10) and Tonelli’s theorem, the left-hand side of (6.11) is

less than or equal to

c1

Z
Dzx.1;1/

Z
Dzy.1;1/

�
xd

jw � xj
^ 1

�p�
yd

jz � yj
^ 1

�p
.wd ^ zd /

y̌
1.wd _ zd /

y̌
2

jx � wjd�˛jy � zjd�˛
dz dw

D c1

�Z
¹.z;w/2Dzx.1;1/�Dzy.1;1/W zd<wd º

C

Z
¹.z;w/2Dzx.1;1/�Dzy.1;1/W zd�wd º

�
�

xd

jw� xj
^ 1

�p�
yd

jz�yj
^ 1

�p
.wd ^ zd /

y̌
1.wd _ zd /

y̌
2

jx�wjd�˛jy � zjd�˛
dz dw

D c1

Z
Dzx.1;1/

�
xd

jw� xj
^ 1

�p w
y̌
2

d

jx�wjd�˛

�Z
Dzy.1;wd /

�
yd

jz�yj
^ 1

�p z
y̌
1

d
dz

jy � zjd�˛

�
dw

C c1

Z
Dzy.1;1/

�
yd

jz�yj
^1

�p z
y̌
2

d

jy�zjd�˛

�Z
Dzx.1;zd /

�
xd

jw�xj
^1

�p w
y̌
1

d
dw

jx�wjd�˛

�
dz:

By symmetry, we only need to bound the last term above.
Since y̌1 C ˛ > p > ˛ � 1, we can apply Corollary 6.3 (ii) (with R D 1, a D zd ,

q D p, 
 D y̌1 and ˇ D ı D 0) to getZ
Dzy.1;1/

�
yd

jz � yj
^ 1

�p z
y̌
2

d

jy � zjd�˛

�Z
Dzx.1;zd /

�
xd

jw � xj
^ 1

�p w
y̌
1

d
dw

jx � wjd�˛

�
dz

� c4x
p

d

Z
Dzy.1;1/

�
yd

jz � yj
^ 1

�p z ž2C˛Cˇ1�p
d

jy � zjd�˛
dz:
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By (6.7) we have
. ž2 C ˛ C ˇ1 � p/C ˛ > p:

Thus, we can apply Corollary 6.3 (ii) again (with R D 1, a D 1, q D p, 
 D ž2 C ˛ C
ˇ1 � p and ˇ D ı D 0) and conclude thatZ
Dzy.1;1/

�
yd

jz � yj
^ 1

�p z
y̌
2

d

jy � zjd�˛

�Z
Dzx.1;zd /

�
xd

jw � xj
^ 1

�p w
y̌
1

d
dw

jx � wjd�˛

�
dz

� c5x
p

d
y
p

d
:

Lemma 6.5. Suppose (6.7) holds. There exists C25 > 0 such that for all x; y 2 RdC with
jzx � zyj > 4 and 0 < xd ; yd < 1=4,

G.x; y/ � C25x
p

d
y
p

d
:

Proof. Assume x D .z0; xd / with 0 < xd < 1=4, and letD DD.1; 1/ and V DDzy.1; 1/.
By Lemma 5.5,

G.w; y/ � c1

�
yd

jw � yj
^ 1

�p
� c2y

p

d
; w 2 Rd n V:

Thus by Lemma 3.4,

Ex ŒG.Y�D ; y/I Y�D … V � � c3y
p

d
Px.Y�D 2 RdC/ � c4y

p

d
x
p

d
:

On the other hand, since 2 < jz � wj < 8 for .w; z/ 2 D � V , it follows that
log.1C jz�wj

.wd_zd /^jz�wj
/ � log.1C 8

wd_zd
/, and thus

J.w; z/ � c5.wd ^zd /
ˇ1.wd _zd /

ˇ2

�
log
�
1C

wd _zd

wd ^zd

��ˇ3�
log
�
1C

8

wd _zd

��ˇ4
for .w; z/ 2 D � V . By using the Lévy system formula (3.4) (with f D G.�; y/) in the
first equality, and (5.3) in the third line, we conclude that

Ex ŒG.Y�D ; y/IY�D 2 V �

D

Z
D

GD.x; w/

Z
V

J.w; z/G.z; y/ dz dw �

Z
D

G.x;w/

Z
V

J.w; z/G.z; y/ dz dw

� c8

Z
D

�
xd

jw � xj
^ 1

�p
1

jx � wjd�˛

�

Z
V

.wd ^ zd /
ˇ1.wd _ zd /

ˇ2

�
log
�
1C

wd _ zd

wd ^ zd

��ˇ3
�

�
log
�
1C

8

wd _ zd

��ˇ4� yd

jz � yj
^ 1

�p
dz

jy � zjd�˛
dw;

which is less than or equal to c6x
p

d
y
p

d
by Lemma 6.4. Therefore

G.x; y/ D Ex ŒG.Y�D ; y/I Y�D … V �C Ex ŒG.Y�D ; y/I Y�D 2 V � � c7x
p

d
y
p

d
:
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6.2. Green function estimates for p 2 Œ˛ C ˇ1Cˇ2
2

; ˛ C ˇ1/

In this subsection we deal with the case

˛ C
ˇ1 C ˇ2

2
� p < ˛ C ˇ1: (6.12)

Note that (6.12) implies ˇ2 < ˇ1 and

˛ C ˇ2 < p; (6.13)

2˛ � 2p C ˇ1 C ˇ2 � 0: (6.14)

Recall that BCa WD B.0; a/ \ RdC, a > 0. The lower bound in the following theorem
sharpens the lower bound in Lemma 5.4 under the assumption (6.12).

Theorem 6.6. Suppose (6.12) holds. For every "2 .0;1=4/, there exists a constantC26>0
such that for all w 2 @RdC, R > 0 and x; y 2 B.w; .1 � "/R/ \RdC,

GB.w;R/\Rd
C.x; y/ �

C26

jx � yjd�˛

�
xd ^ yd

jx � yj
^ 1

�p
�

8<:
�
xd_yd
jx�yj

^1
�2˛�pCˇ1Cˇ2�log.1C jx�yj

.xd_yd /^jx�yj
/
�ˇ4 if ˛C ˇ1Cˇ2

2
< p < ˛Cˇ1;�

xd_yd
jx�yj

^1
�p�log

�
1C jx�yj

.xd_yd /^jx�yj

��ˇ4C1 if p D ˛C ˇ1Cˇ2
2

:

Proof. By scaling, translation and symmetry, without loss of generality, we assume that
w D 0, R D 1 and xd � yd . Moreover, by Theorem 5.1, we only need to show that
there exists a constant c1 > 0 such that for all x; y 2 BC1�" with xd � yd satisfying
jx � yj � .40="/yd ,

GB
C

1 .x; y/ �
c1x

p

d

jx � yjdC˛Cˇ1Cˇ2

8̂̂̂<̂
ˆ̂:
y
2˛�pCˇ1Cˇ2
d

.log.jx � yj=yd //ˇ4

if 2˛ � 2p C ˇ1 C ˇ2 < 0;

y
p

d
.log.jx � yj=yd //ˇ4C1

if 2˛ � 2p C ˇ1 C ˇ2 D 0:

(6.15)

We assume that x;y 2BC1�" with xd � yd satisfying jx � yj � .40="/yd . By the Harnack
inequality (Theorem 1.4), we can further assume that 4xd � yd . Let M D 40=" and
r D 4jx � yj=M .

By the Lévy system formula (3.4) (with f D GB
C

1 .�; y/) and regular harmonicity of
w 7! GB

C

1 .w; y/ on Dzx.2r; 2r/,

GB
C

1 .x; y/ � Ex ŒG
B
C

1 .Y�Dzx.2r;2r/
; y/I Y�Dzx.2;2/

2 Dzy.r; r/�

D

Z
Dzx.2r;2r/

GDzx.2r;2r/.x; w/

Z
Dzy.r;r/

J.w; z/GB
C

1 .z; y/ dz dw

�

Z
Dzx.r;r/

GDzx.2r;2r/.x; w/

Z
Dzy.r;r/

J.w; z/GB
C

1 .z; y/ dz dw

�

Z
Dzx.r;r/

GB..zx;0/;2r/\Rd
C.x; w/

Z
Dzy.r;r/

J.w; z/GB
C

1 .z; y/ dz dw: (6.16)
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Since Dzx.r; r/ � B..zx; 0/;
p
2 r/ \RdC and Dzy.r; r/ � BC1�"=4, by Theorem 5.1 we

have

GB..zx;0/;2r/\Rd
C.x; w/

� c2

�
xd

jw � xj
^ 1

�p�
wd

jw � xj
^ 1

�p
1

jx � wjd�˛
; w 2 Dzx.r; r/; (6.17)

and

GB
C

1 .z; y/ � c3

�
yd

jz � yj
^ 1

�p�
zd

jz � yj
^ 1

�p
1

jy � zjd�˛
; z 2 Dzy.r; r/: (6.18)

Moreover, since .wd _ zd / � jz � wj � r for .w; z/ 2 Dzx.r; r/ �Dzy.r; r/, we have

J.w; z/ � c4jw � zj
�d�˛

�
wd ^ zd

jw � zj
^ 1

�ˇ1�wd _ zd
jw � zj

^ 1

�ˇ2
�

�
log
�
1C

jw � zj

.wd _ zd / ^ jw � zj

��ˇ4
� c5

.wd ^ zd /
ˇ1.wd _ zd /

ˇ2

rdC˛Cˇ1Cˇ2

�
log

2r

wd _ zd

�ˇ4
; .w; z/ 2 Dzx.r; r/ �Dzy.r; r/:

(6.19)

Using (6.17)–(6.19), we obtainZ
Dzx.r;r/

GB..zx;0/;2r/\Rd
C.x; w/

Z
Dzy.r;r/

J.w; z/GB
C

1 .z; y/ dz dw

�
c6

rdC˛Cˇ1Cˇ2

Z
Dzx.r;r/

�
xd

jw � xj
^ 1

�p�
wd

jw � xj
^ 1

�p
1

jx � wjd�˛

�

Z
Dzy.r;r/

�
yd

jz � yj
^ 1

�p�
zd

jz � yj
^ 1

�p
�
.wd ^ zd /

ˇ1.wd _ zd /
ˇ2

jy � zjd�˛

�
log

2r

wd _ zd

�ˇ4
dz dw

�
c7

rdC˛Cˇ1Cˇ2

Z
Dzy.r;r/nDzy.r;3yd =2/

�
yd

jz � yj
^ 1

�p�
zd

jz � yj
^ 1

�p z
ˇ2
d

jy � zjd�˛

�

�
log

2r

zd

�ˇ4�Z
Dzx.r;zd /

�
xd

jw � xj
^ 1

�p�
wd

jw � xj
^ 1

�p w
ˇ1
d
dw

jx � wjd�˛

�
dz

�
c8x

p

d
y
p

d

rdC˛Cˇ1Cˇ2

Z
Dzy.r;r/nDzy.r;3yd =2/

z
pCˇ2
d

jy � zjdC2p�˛

�
log

2r

zd

�ˇ4
�

�Z
Dzx.r;zd /nDzx.r;3xd =2/

w
pCˇ1
d

dw

jx � wjdC2p�˛

�
dz:
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Now by applying Lemma 6.1 (ii) withRD r , a2 D zd , a3 D 3xd=2, 
 D pC ˇ1, q D 2p
and ˇ D ı D 0 in the inner integral, we find that for zd � 3yd=2,Z
Dzx.r;zd /nDzx.r;3xd =2/

w
pCˇ1
d

dw

jx � wjdC2p�˛
� c9.z

˛�pCˇ1
d

� .3xd=2/
˛�pCˇ1/� c10z

˛�pCˇ1
d

:

In the last inequality above, we have used the the assumption 4xd � yd so that for all
zd � 3yd=2 we have zd=4 � 3xd=2. Thus,Z
Dzx.r;r/

GB..zx;0/;2r/\Rd
C.x; w/

Z
Dzy.r;r/

J.w; z/GB
C

1 .z; y/ dz dw

�
c11x

p

d
y
p

d

rdC˛Cˇ1Cˇ2

Z
Dzy.r;r/nDzy.r;3yd =2/

z
ˇ1Cˇ2C˛

d

jy � zjdC2p�˛

�
log

2r

zd

�ˇ4
dz: (6.20)

Finally, applying Lemma 6.1 (ii) with R D r , a2 D r , a3 D 3yd=2, 
 D ˛ C ˇ1 C ˇ2,
q D 2p, ˇ D ˇ4 and ı D 0 and using the fact that yd < r=4, we conclude that the above
is greater than or equal to

c12x
p

d
y
p

d

rdC˛Cˇ1Cˇ2

´
y
2˛�2pCˇ1Cˇ2
d

�
log r

yd

�ˇ4 if 2˛ � 2p C ˇ1 C ˇ2 < 0;�
log r

yd

�ˇ4C1 if 2˛ � 2p C ˇ1 C ˇ2 D 0:
(6.21)

Recalling that r D 4jx � yj=M and combining (6.16), (6.20) and (6.21), we have proved
that (6.15) holds.

We now consider the upper bound of G.x; y/.

Lemma 6.7. Suppose (6.12) holds. There exists C27 > 0 such that for all x; y 2 RdC with
jzx � zyj > 3, and 0 < 4xd � yd < 1

4
or 0 < 4yd � xd < 1

4
,Z

Dzx.1;1/

dw

Z
Dzy.1;1/

dz

�
xd ^ wd

jw � xj
^ 1

�p
.wd ^ zd /

ˇ1.wd _ zd /
ˇ2

jx � wjd�˛jy � zjd�˛

�

�
log
�
1C

wd _ zd

wd ^ zd

��ˇ3�
log
�
1C

2

wd _ zd

��ˇ4�yd ^ zd
jz � yj

^ 1

�p

� C27.xd ^ yd /
p

8̂̂̂̂
<̂
ˆ̂̂:
.xd _ yd /

2˛�pCˇ1Cˇ2.log.1=.xd _ yd ///ˇ4

if 2˛ � 2p C ˇ1 C ˇ2 < 0;

.xd _ yd /
p.log.1=.xd _ yd ///ˇ4C1

if 2˛ � 2p C ˇ1 C ˇ2 D 0:

(6.22)

Proof. By symmetry, we only need to consider the case 0 � 4xd � yd � 1=4. Define

"0 WD 2
�11ˇ3>0Œ.˛ C ˇ1 � p/ ^ .p � ˛ � ˇ2/�; y̌

1 WD ˇ1 � "0; y̌
2 WD ˇ2 C "0:

Note that p < ˛ C y̌1 and p > ˛ C y̌2 by (6.13).
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By (6.10),Z
Dzx.1;1/

dw

Z
Dzy.1;1/

dz

�
xd ^ wd

jw � xj
^ 1

�p
.wd ^ zd /

ˇ1.wd _ zd /
ˇ2

jx � wjd�˛jy � zjd�˛

�

�
log
�
1C

wd _ zd

wd ^ zd

��ˇ3�
log

2

wd _ zd

�ˇ4�yd ^ zd
jz � yj

^ 1

�p
� c1

�Z
¹.z;w/2Dzx.1;1/�Dzy.1;1/W zd<wd º

C

Z
¹.z;w/2Dzx.1;1/�Dzy.1;1/W zd�wd º

�
�

�
xd^wd

jw�xj
^1

�p
.wd^zd /

y̌
1.wd_zd /

y̌
2

jx�wjd�˛jy�zjd�˛

�
log

2

wd_zd

�ˇ4�yd^zd
jz�yj

^1

�p
dz dw

� c1

Z
Dzy.1;1/

�
yd ^ zd

jz � yj
^ 1

�p z
y̌
1

d

jy � zjd�˛

�

Z
Dzx.1;1/nDzx.1;zd /

�
xd

jw � xj
^ 1

�p .log.2=wd //ˇ4w
y̌
2

d
dw

jx � wjd�˛
dz

C c1

Z
Dzy.1;1/

�
yd

jz�yj
^1

�p .log.2=zd //ˇ4z
y̌
2

d

jy�zjd�˛

�Z
Dzx.1;zd /

�
xd

jw�xj
^1

�p w
y̌
1

d
dw

jx�wjd�˛

�
dz

DW I1 C I2:

Since y̌1 > p � ˛ > ˇ2 � 0, we can apply Corollary 6.3 (ii) to estimate the inner integral
in I2 to get

I2 � c2x
p

d

Z
Dzy.1;1/

�
yd

jz � yj
^ 1

�p zˇ2C˛Cˇ1�p
d

jy � zjd�˛

�
log

2

zd

�ˇ4
dz: (6.23)

By (6.14),
0 < ˇ2 C ˛ C ˇ1 � p � p � ˛:

Thus we can apply Corollary 6.3 (i) to find that (and by using yd < 1=4 we may replace
2 with 1)

I2 � c3x
p

d

´
y
2˛�pCˇ1Cˇ2
d

.log.1=yd //ˇ4 if 2˛ � 2p C ˇ1 C ˇ2 < 0;

y
p

d
.log.1=yd //ˇ4C1 if 2˛ � 2p C ˇ1 C ˇ2 D 0:

(6.24)

We now consider

I1 � c1

Z
Dzy.1;2xd /

�
zd

jz � yj
^ 1

�p z
y̌
1

d

jy � zjd�˛

�

Z
Dzx.1;1/nDzx.1;zd /

�
xd

jw � xj
^ 1

�p .log.2=wd //ˇ4w
y̌
2

d
dw

jx � wjd�˛
dz

C c1

Z
Dzy.1;1/nDzy.1;2xd /

�
yd

jz � yj
^ 1

�p z
y̌
1

d

jy � zjd�˛

�

Z
Dzx.1;1/nDzx.1;zd /

�
xd

jw � xj
^ 1

�p .log.2=wd //ˇ4w
y̌
2

d
dw

jx � wjd�˛
dz
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� c1

Z
Dzy.1;2xd /

z
y̌
1Cp

d

jy � zjd�˛Cp
dz

Z
Dzx.1;1/

�
xd

jw � xj
^ 1

�p .log.2=wd //ˇ4w
y̌
2

d
dw

jx � wjd�˛

C c1x
p

d

Z
Dzy.1;1/

�
yd

jz�yj
^1

�p z
y̌
1

d

jy�zjd�˛

Z
Dzx.1;1/nDzx.1;zd /

.log.2=wd //ˇ4w
y̌
2

d
dw

jx�wjd�˛Cp
dz

DW I11 C x
p

d
I12:

Since p � ˛ and 4xd � yd , we can apply Lemma 6.1 (i) (with a1 D 2xd , 
 D p C y̌1,
q D p, ˇ D ı D 0) to getZ

Dzy.1;2xd /

z
y̌
1Cp

d

jy � zjd�˛Cp
dz � c4y

˛�p�1

d
x
pC y̌1C1

d
:

Since ˛ C y̌2 < p, by Corollary 6.3 (i) it follows thatZ
Dzx.1;1/

�
xd

jw � xj
^ 1

�p .log.2=wd //ˇ4w
y̌
2

d
dw

jx � wjd�˛
� c5x

˛C y̌2
d

�
log

2

xd

�ˇ4
:

Thus, we have

I11 � c6y
˛�p�1

d
x
pC y̌1C1

d
x
˛C y̌2
d

.log.2=xd //ˇ4

D c6x
p

d
x
˛Cˇ1Cˇ2C1

d
.log.2=xd //ˇ4y

˛�p�1

d

� c6x
p

d
y
˛Cˇ1Cˇ2C1

d
.log.2=yd //ˇ4y

˛�p�1

d

� zc6x
p

d
y
2˛�pCˇ1Cˇ2
d

.log.1=yd //ˇ4 : (6.25)

Here we have used the fact that t 7! t˛Cˇ1Cˇ2C1.log.2=t//ˇ4 is almost increasing on
.0; 1=4�.

Finally, we take care of I12. Note that for every z 2 Dzy.1; 1/ nDzy.1; 2xd /, we have
zd > 2xd and so, since ˛C y̌2 <p, by Lemma 6.1 (ii) withRD a2D 1, a3D zd ; 
 D y̌2,
q D p, ˇ D ˇ4, ı D 0,Z

Dzx.1;1/nDzx.1;zd /

.log.2=wd //ˇ4w
y̌
2

d
dw

jx � wjd�˛Cp
� cz

˛C y̌2�p

d

�
log

2

zd

�ˇ4
:

Thus,

I12 � c8

Z
Dzy.1;1/

�
yd

jz � yj
^ 1

�p zˇ2C˛Cˇ1�p
d

jy � zjd�˛

�
log

2

zd

�ˇ4
dz:

By the same argument as that in in (6.23) and (6.24), we now have

I12 � c9

´
y
2˛�pCˇ1Cˇ2
d

.log.1=yd //ˇ4 if 2˛ � 2p C ˇ1 C ˇ2 < 0;

y
p

d
.log.1=yd //ˇ4C1 if 2˛ � 2p C ˇ1 C ˇ2 D 0:

(6.26)

By combining (6.24)–(6.26) and symmetry, we have proved the lemma.
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Remark 6.8. In the proof of Lemma 6.7, if we used Tonelli’s theorem on I1 and estimated
it as I2 (instead of using the argument to bound I11 and I12 separately), we would not
obtain the sharp upper bound.

Proposition 6.9. Suppose (6.12) holds. There exists C28 > 0 such that for all x; y 2 RdC
with 0 < xd ; yd < 1=4 with jzx � zyj > 4,

G.x; y/ � C28.xd ^ yd /
p

8̂̂̂̂
<̂
ˆ̂̂:
.xd _ yd /

2˛�pCˇ1Cˇ2.log.1=.xd _ yd ///ˇ4

if 2˛ � 2p C ˇ1 C ˇ2 < 0;

.xd _ yd /
p.log.1=.xd _ yd ///ˇ4C1

if 2˛ � 2p C ˇ1 C ˇ2 D 0:

Proof. Without loss of generality, we assume zx D z0. By symmetry, we consider the case
0 < xd � yd < 1=4 only. By the Harnack inequality (Theorem 1.4), it suffices to deal with
the case 0 < 4xd � yd < 1=4. Let D D D.1; 1/ and V D Dzy.1; 1/. By the Lévy system
formula (3.4) (with f D G.�; y/), (5.3), Lemma 6.7, and the fact that 2 < jz � wj < 8

below (so that jz � wj � 2)

Ex ŒG.Y�D ; y/I Y�D 2 V �

D

Z
D

GD.x; w/

Z
V

J.w; z/G.z; y/ dz dw �

Z
D

G.x;w/

Z
V

J.w; z/G.z; y/ dz dw

� c1

Z
Dzx.1;1/

dw

Z
Dzy.1;1/

dz

�
xd ^ wd

jw � xj
^ 1

�p
.wd ^ zd /

ˇ1.wd _ zd /
ˇ2

jx � wjd�˛jy � zjd�˛

�

�
log
�
1C

wd _ zd

wd ^ zd

��ˇ3�
log
�
1C

2

wd _ zd

��ˇ4�yd ^ zd
jz � yj

^ 1

�p

� c2.xd ^ yd /
p

8̂̂<̂
:̂
.xd _ yd /

2˛�pCˇ1Cˇ2.log.1=.xd _ yd ///ˇ4

if 2˛ � 2p C ˇ1 C ˇ2 < 0;

.xd _ yd /
p log.1=.xd _ yd //ˇ4C1 if 2˛ � 2p C ˇ1 C ˇ2 D 0:

Moreover, by the same argument as in the proof of Lemma 6.5, we also have

Ex ŒG.Y�D ; y/I Y�D … V � � c3y
p

d
Px.Y�D 2 RdC/ � c4y

p

d
x
p

d
:

Therefore

G.x; y/ D Ex ŒG.Y�D ; y/I Y�D … V �C Ex ŒG.Y�D ; y/I Y�D 2 V �

� c5.xd ^ yd /
p

8̂̂̂̂
<̂
ˆ̂̂:
.xd _ yd /

2˛�pCˇ1Cˇ2.log.1=.xd _ yd ///ˇ4

if 2˛ � 2p C ˇ1 C ˇ2 < 0;

.xd _ yd /
p.log.1=.xd _ yd ///ˇ4C1

if 2˛ � 2p C ˇ1 C ˇ2 D 0:
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6.3. Proof of Theorem 1.1 and estimates of potentials

With the preparations in the previous two subsections, we are now ready to prove The-
orem 1.1. We recall [41, Theorem 3.14] on the Hölder continuity of bounded harmonic
functions: There exist constants c > 0 and 
 2 .0;1/ such that for every x0 2RdC, r 2 .0;1�
such that B.x0; 2r/ � RdC and every bounded f W RdC ! Œ0;1/ which is harmonic in
B.x0; 2r/, we have

jf .x/ � f .y/j � ckf k1.jx � yj=r/

 for all x; y 2 B.x0; r/: (6.27)

Proof of Theorem 1.1. The existence and regular harmonicity of the Green function D
were shown in Proposition 2.2. We now prove the continuity of G. We fix x0; y0 2 RdC
and choose a positive a small enough so that B.x0; 4a/\B.y0; 4a/D ; and B.x0; 4a/[
B.y0; 4a/ � RdC.

We recall that by [41, Proposition 3.11(b)], Ey�B.x0;2a/ � c1a
˛ for all y 2 B.x0; a/.

LetN � 1=a. By using (3.4) in the second line and Proposition 4.7 in the fourth, we have,
for every y 2 B.x0; a/,

Ey ŒG.Y�B.x0;2a/ ; y0/I Y�B.x0;2a/ 2 B.y0; 1=N /�

D Ey

�Z �B.x0;2a/

0

Z
B.y0;1=N/

G.w; y0/J.Ys; w/ dw ds

�
�

�
sup

y2B.x0;a/

Ey�B.x0;2a/
��

sup
z2B.x0;2a/

Z
B.y0;1=N/

J.z; w/G.w; y0/ dw

�
� c1a

˛.8a/�d�˛
Z
B.y0;1=N/

jw � y0j
�dC˛ dw D c2a

�d .1=N /˛:

Now choose N large enough so that c2a�d .1=N /˛ < "=4. Then

sup
y2B.x0;a/

Ey ŒG.Y�B.x0;2a/ ; y0/I Y�B.x0;2a/ 2 B.y0; 1=N /� < "=4:

Since by Proposition 4.7,

x 7! h.x/ WD Ex ŒG.Y�B.x0;2a/ ; y0/I Y�B.x0;2a/ 2 RdC n B.y0; 1=N /�

is a bounded function which is harmonic on B.x0; a/, it is continuous by (6.27) so we can
choose a ı 2 .0; a/ such that jh.x/� h.x0/j < "=2 for all x 2 B.x0; ı/. Therefore, for all
x 2 B.x0; ı/,

jG.x; y0/ �G.x0; y0/j

� jh.x/ � h.x0/j C 2 sup
y2B.x0;a/

Ey ŒG.Y�B.x0;2a/ ; y0/I Y�B.x0;2a/ 2 B.y0; 1=N /� < ":

Now combining Theorem 5.1 and Lemma 6.5 with (2.5), we arrive at Theorem 1.1 (1); and
combining Theorem 6.6, Proposition 6.9 and (2.5), we arrive at Theorem 1.1 (2, 3).
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As an application of Theorem 1.1, we get the following estimates on killed potentials
of Y .

Proposition 6.10. Suppose that p 2 ..˛ � 1/C; ˛ C ˇ1/. Then for any zw 2 Rd�1, any
Borel set D satisfying D zw.R=2; R=2/ � D � D zw.R; R/ and any x D . zw; xd / with
0 < xd � R=10,

Ex

Z �D

0

.Y dt /

 dt D

Z
D

GD.x; y/y



d
dy �

8̂̂<̂
:̂
R˛C
�px

p

d
; 
 > p � ˛;

x
p

d
log.R=xd /; 
 D p � ˛;

x
˛C


d
; �p � 1 < 
 < p � ˛;

(6.28)
where the comparison constant is independent of zw 2 Rd�1, D, R and x.

Proof. Without loss of generality, we assume zw D zx D z0.

(i) Upper bound: Note that, by Lemma 5.5,Z
D

GD.x; y/y



d
dy �

Z
D.R;R/

G.x; y/y



d
dy

� c0

�Z
D.R;xd =2/

y

Cp

d
jx � yj˛�d�pdy

C

Z
D.R;R/nD.R;xd =2/

y



d

�
xd

jx � yj
^ 1

�p
jx � yj˛�ddy

�
D c0

�Z
D.R;xd =2/

f .yI 
 C p; 0; p; 0; x/ dy

C x



d

Z
D.R;3xd =2/nD.R;xd =2/

g.yI 0; p; 0; x/ dy

C x
p

d

Z
D.R;R/nD.R;3xd =2/

f .yI 
; 0; p; 0; x/ dy

�
DW c0.I1 C I2 C I3/:

Suppose first �p � 1 < 
 < p � ˛. We apply Lemma 6.1 (i) to I1 (which is allowed since

 C p > �1) and Lemma 6.1 (iii) to I2. Then

I1 � x
˛�p�1

d
.xd=2/


CpC1
� x

˛C


d
and I2 � x




d
x˛d D x

˛C


d
:

Finally,

I3 � x
p

d
R
C˛�pF

�
3xd

2R
I 
 C ˛ � p � 1; 0

�
� x

p

d
R
C˛�p

�
3xd

2R

�
C˛�p
� x

˛C


d
:

Here the first asymptotic equality follows from Lemma 6.1 (ii) (with a2 D R and a3 D
3xd=2) and the second from the definition of F.� I �; 0/.

This completes the proof of the upper bound in the case �p � 1 < 
 < p � ˛. The
other two cases are similar, but simpler, since one can directly use Corollary 6.3 (i) with
Lemma 5.5. We omit the details.
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(ii) Lower bound: We first note that by Theorem 5.1,

Ex

Z �D

0

.Y dt /

 dt �

Z
B
C

R=2

y



d
G
B
C

R=2.x; y/ dy �

Z
D.R=5;R=5/

y



d
G
B
C

R=2.x; y/ dy

� cx
p

d

Z
D.R=5;R=5/nD.R=5;3xd =2/

y
pC


d
dy

jx � yjd�˛C2p

D cx
p

d

Z
D.R=5;R=5/nD.R=5;3xd =2/

f .yI 
 C p; 0; 2p; 0; x/ dy:

Since 3xd=2< 3R=20 (so that 3xd=.2R=5/� 3=4), using Lemma 6.1 (ii) (with a2DR=5
and a3 D 3xd=2) and applying (6.1) and (6.3), we immediately get the lower bound.

Remark 6.11. (a) It follows from the proof of Proposition 6.10 and Remark 6.2 thatZ
D

GD.x; y/y



d
dy D1 if 
 � �p � 1:

(b) By Proposition 6.10, for any ˇ1 � 0, and all r 2 .0; 1� and x 2 U.r/,

r˛Cˇ1�px
p

d
� Ex

Z �U.r/

0

.Y dt /
ˇ1 dt � Ex

Z �U.r/

0

.Y dt /
ˇ1 jlogY dt j

ˇ3 dt

� cEx

Z �U.r/

0

.Y dt /
.p�˛Cˇ1/=2 dt � r˛C.p�˛Cˇ1/=2�px

p

d
D r .˛Cˇ1�p/=2x

p

d
� x

p

d
:

Thus, Proposition 6.10 is a significant generalization of Lemma 3.1.

We end this section with the following corollary, which follows from Proposition 6.10
and Remark 6.11 by letting R!1. Recall that Y�� D limt"� Yt denotes the left limit of
the process Y at its lifetime.

Corollary 6.12. Suppose that p 2 ..˛ � 1/C; ˛ C ˇ1/. Then for all x 2 RdC,

Ex

Z �

0

.Y dt /

 dt D

Z
Rd
C

G.x; y/y



d
dy �

´
1; 
 � p � ˛ or 
 � �p � 1;

x
˛C


d
; �p � 1 < 
 < p � ˛:

In particular, for all x 2 RdC, we have Px.Y�� 2 RdC; � <1/ D G�.x/ � c > 0 and

Ex Œ�� �

´
1; p � ˛;

x˛
d
; p > ˛:

7. Boundary Harnack principle

In this section we give a proof of Theorem 1.2. We start with a lemma providing important
estimates of the jump kernel J needed in the proof. Recall that U D D.1=2; 1=2/:

Note the exponent ˇ1 � " in (7.3) below is not necessarily positive, but is always
strictly larger than �1.
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Lemma 7.1. Suppose p 2 ..˛ � 1/C; ˛ C .ˇ1 ^ ˇ2// and let

k.y/ D
.yd ^ 1/

ˇ1.yd _ 1/
ˇ2

jyjdC˛Cˇ1Cˇ2
.1C jlogyd j/ˇ3

�
log
�
1C

jyj

yd _ 1

��ˇ4
: (7.1)

(a) Let z.0/ D .z0; 2�2/. Then for any z 2 B.z.0/; 2�3/ and y 2 RdC nD.1; 1/,

J.z; y/ � ck.y/: (7.2)

(b) Let

" D ˇ1 C ˛ � p �
ˇ2 C ˛ � p

M
; where M D 1C

�
ˇ2 C ˛ � p

ˇ1 C ˛ � p
_ 1

�
:

Then for any z 2 U and y 2 RdC nD.1; 1/,

J.z; y/ � cz
ˇ1�"

d
k.y/: (7.3)

Proof. (a) For z 2 B.z.0/; 2�3/ and y 2 RdC nD.1; 1/, zd � z
.0/

d
D 2�2 and jz � yj �

jz.0/ � yj � jyj > c, which immediately implies (7.2).
(b) Let ı D .1 � 1=M/.ˇ2 C ˛ � p/ > 0. We first note that by the definitions of M ,

ı and ", we have

" > ˇ1C˛�p�
ˇ2C˛�p
ˇ2C˛�p
ˇ1C˛�p

_ 1
D ˇ1C˛�p� .ˇ1C˛�p/^ .ˇ2C˛�p/ � 0 (7.4)

and

ˇ2 C " D ˇ2 C ˇ1 C ˛ � p �
ˇ2 C ˛ � p

M
D ˇ1 C

�
1 �

1

M

�
.ˇ2 C ˛ � p/

D ˇ1 C ı > ˇ1: (7.5)

Assume that z 2 U and y 2 RdC nD.1; 1/. Since jz � yj � jyj � c.zd _ yd /,

J.z; y/ �
.zd ^ yd /

ˇ1.zd _ yd /
ˇ2

jyjdC˛Cˇ1Cˇ2

�
log
�
1C

zd _ yd

zd ^ yd

��ˇ3
�

�
log
�
1C

jyj

.yd _ zd / ^ jyj

��ˇ4
: (7.6)

Clearly, if yd � 3=4 > 1=2 � zd , then

jyj

.yd _ zd / ^ jyj
�

jyj

.yd _ 1/ ^ jyj
�
jyj

yd _ 1

and

log
�
1C

yd

zd

�
� 3 log

yd

zd
� 3

�
jlogyd j C log

1

zd

�
� 6jlogyd j log

1

zd
C 3 log

1

zd
� 6

�
log

1

zd

�
.1C jlogyd j/:
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Thus, for z 2 U and y 2 RdC nD.1; 1/ with yd � 3=4,

J.z; y/ �
z
ˇ1
d
y
ˇ2
d

jyjdC˛Cˇ1Cˇ2

�
log

yd

zd

�ˇ3�
log
�
1C

jyj

yd _ 1

��ˇ4
� cz

ˇ1
d

�
log

1

zd

�ˇ3
k.y/: (7.7)

It is easy to see from (7.6) that for .z; y/ 2 U � .RdC n D.1; 1// with yd < 3=4 and
zd > yd ,

J.z; y/ � c
y
ˇ1
d
z
ˇ2
d

jyjdC˛Cˇ1Cˇ2

�
log

1

yd

�ˇ3�
log
jyj

zd

�ˇ4
:

Since ı > 0, we have

zıd

�
log
jyj

zd

�ˇ4
D jyjı

�
zd

jyj

�ı�
log
jyj

zd

�ˇ4
� cjyjı

�
2�1

jyj

�ı�
log
jyj

2�1

�ˇ4
� c.log.2jyj//ˇ4 ; 0 < zd � 1=2 < 1 < jyj: (7.8)

Thus, using (7.5),

J.z; y/ � c
y
ˇ1
d
z
ˇ2
d

jyjdC˛Cˇ1Cˇ2

�
log

1

yd

�ˇ3�
log
jyj

zd

�ˇ4
� cz

ˇ2�ı

d
k.y/ D cz

ˇ1�"

d
k.y/:

(7.9)

Since " > 0 by (7.4), we have

z"d

�
log

1

zd

�ˇ3
� cy"d

�
log

1

yd

�ˇ3
; 0 < zd � yd < 3=2;

so that by using the same argument as in (7.8),

z"d

�
log

1

zd

�ˇ3�
log
jyj

yd

�ˇ4
� cy"�ıd

�
log

1

yd

�ˇ3
yıd

�
log
jyj

yd

�ˇ4
� cy"�ıd

�
log

1

yd

�ˇ3
.log.2jyj//ˇ4 ; 0 < zd � yd < 3=2 < 1 < jyj:

Thus using (7.5) in the last inequality below, we find that, for .z;y/ 2U � .RdC nD.1;1//
with yd < 3=4 and zd � yd ,

J.z; y/ � c
z
ˇ1
d
y
ˇ2
d

jyjdC˛Cˇ1Cˇ2

�
log

1

zd

�ˇ3�
log
jyj

yd

�ˇ4
D cz

ˇ1�"

d

y
ˇ2
d

jyjdC˛Cˇ1Cˇ2
z"d

�
log

1

zd

�ˇ3�
log
jyj

yd

�ˇ4
� cz

ˇ1�"

d

y
ˇ2C"�ı

d

jyjdC˛Cˇ1Cˇ2

�
log

1

yd

�ˇ3
.log.2jyj//ˇ4 � czˇ1�"

d
k.y/: (7.10)
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Combining (7.7), (7.9) and (7.10), and using the inequality

z
ˇ1�"

d
_ .z

ˇ1
d
.log.1=zd //ˇ3/ � cz

ˇ1�"

d
; z 2 U;

we get the upper bound (7.3) for J.z; y/.

Proof of Theorem 1.2. By scaling, we just need to consider the case r D 1. Moreover, by
Theorem 1.4 (b), it suffices to prove (1.8) for x; y 2 D zw.2�8; 2�8/.

Since f is harmonic inD zw.2; 2/ and vanishes continuously on B.. zw;0/; 2/\ @RdC, it
is regular harmonic inD zw.7=4;7=4/ and vanishes continuously onB.. zw;0/;7=4/\ @RdC.
Throughout the remainder of this proof, we assume that x 2 D zw.2�8; 2�8/. Without loss
of generality we take zw D 0.

Define z.0/ D .z0; 2�2/. By Theorem 1.4 (b) and Lemma 3.2, we have

f .x/ D Ex Œf .Y�U /� � Ex Œf .Y�U /I Y�U 2 D.1=2; 1/ nD.1=2; 3=4/�

� c1f .z
.0//Px

�
Y�Dzx.1=4;1=4/

2 Dzx.1=4; 1/ nDzx.1=4; 3=4/
�
� c2f .z

.0//x
p

d
:

(7.11)

Let k be the function defined in (7.1). Using (7.2), the harmonicity of f , the Lévy
system formula and [41, Proposition 3.11 (a)],

f .z.0// � Ez.0/ Œf .Y�U /IY�U … D.1; 1/�

� Ez.0/

Z �
B.z.0/;2�3/

0

Z
Rd
C
nD.1;1/

J.Yt ; y/f .y/ dy dt

� c10Ez.0/�B.z.0/;2�3/

Z
Rd
C
nD.1;1/

k.y/f .y/ dy � c11

Z
Rd
C
nD.1;1/

k.y/f .y/ dy:

(7.12)

Now we assume that z 2 U and y 2 RdC nD.1; 1/. Let " be defined as in Lemma 7.1.
Since ˇ1 � " > ˇ1 � .˛ C ˇ1 � p/ D p � ˛, by Proposition 6.10 and (7.3) we have

Ex Œf .Y�U /I Y�U … D.1; 1/� D Ex

Z �U

0

Z
Rd
C
nD.1;1/

J.Yt ; y/f .y/ dy dt

� cEx

Z �U

0

.Y dt /
ˇ1�" dt

Z
Rd
C
nD.1;1/

k.y/f .y/ dy � cx
p

d

Z
Rd
C
nD.1;1/

k.y/f .y/ dy:

(7.13)

Combining this with (7.12), we now have

Ex Œf .Y�U /I Y�U … D.1; 1/� � cx
p

d
f .z.0//: (7.14)

On the other hand, since f is a non-negative function in RdC which is harmonic in
D zw.2; 2/ with respect to Y and vanishes continuously on B.. zw; 0/; 2/ \ @RdC, by Theo-
rem 1.4 (b) and Carleson’s estimate (Theorem 1.5) we conclude that f .v/ � c16f .z.0//
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for all v 2 D.1; 1/. Therefore, by Lemma 3.3,

Ex Œf .Y�U /I Y�U 2 D.1; 1/� � c16f .z
.0//Px.Y�U 2 D.1; 1// � c17f .z

.0//x
p

d
: (7.15)

Combining (7.14), (7.15) and (7.11) we get f .x/ � xp
d
f .z.0// for all x 2 D.2�8; 2�8/,

which implies that for all x; y 2 D.2�8; 2�8/,

f .x/

f .y/
� c7

x
p

d

y
p

d

;

which is the conclusion of the theorem.

Proof of Theorem 1.3. The case ˛ C ˇ2 < p < ˛ C ˇ1 has been dealt with in [41, The-
orem 1.4.], so we only need to deal with p D ˛ C ˇ2. The proof is the same as that of
[41, Theorem 1.4.], except that we can now use Proposition 6.10 to get, for all r > 0 and
x D .z0; xd / with 0 < xd � r=10,

Ex

Z �U.r/

0

.Y dt /
ˇ2 dt � x

ˇ2C˛

d
log.r=xd / D x

p

d
log.r=xd /: (7.16)

Moreover, using (7.16), we also get, for every r > 0 and x 2 U.r/,

Ex

Z �U.r/

0

.Y dt /
ˇ2 dt � Ex

Z �Dzx.5r;5r/

0

.Y dt /
ˇ2 dt � c0x

p

d
log.r=xd /: (7.17)

The displays (7.16) and (7.17) will be used to replace [41, Lemmas 5.11 and 5.12]. We
provide the full proof for the convenience of the reader.

Suppose that the non-scale-invariant BHP holds near the boundary of RdC (see the
paragraph before Theorem 1.3).

Note that by taking g.x/D Px.Y�U 2D.1=2;1/ nD.1=2;3=4//, we see from Lemma
3.2 that there exists yR 2 .0; 1/ such that for any r 2 .0; yR � there exists c1 D c1.r/ > 0
such that for any non-negative function f in RdC which is harmonic in RdC \B.0; r/ with
respect to Y and vanishes continuously on @RdC \ B.0; r/,

f .x/

f .y/
� c1

x
p

d

y
p

d

for all x; y 2 RdC \ B.0; r=2/: (7.18)

Let r0 D yR=4 and choose a point z0 2 @RdC with jz0j D 4. For n 2 N, B.z0; 1=n/
does not intersect B.0; 2r0/. We define

Kn WD

Z
Rd
C
\B.z0;1=n/

jlogyd jˇ3Cˇ4 dy; fn.y/ WD K
�1
n y

�ˇ1
d

1Rd
C
\B.z0;1=n/

.y/;

and

gn.x/ WD Ex Œfn.Y�U.r0//�

D Ex

Z �U.r0/

0

Z
Rd
C
\B.z0;1=n/

J.Yt ; y/fn.y/ dy dt; x 2 U.r0/:
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We claim that there exists c2 > 0 such that

lim inf
n!1

gn.x/ � c2x
ˇ2C˛

d
log.r0=xd / D c2x

p

d
log.r0=xd / (7.19)

for all x D x.s/ D .z0; s/ 2 RdC with s 2 .0; r0=10/.
Here is a proof of the claim above. Since

6 > jz � yj > 2 > yd ^ zd for .y; z/ 2 .RdC \ B.z0; 1=n// � U.r0/;

using (A3) we have for .y; z/ 2 .RdC \ B.z0; 1=n// � U.r0/,

J.z; y/ � .zd ^ yd /
ˇ1.zd _ yd /

ˇ2

�
log
�
1C

zd _ yd

zd ^ yd

��ˇ3�
log

1

zd _ yd

�ˇ4
�

z
ˇ1
d
y
ˇ1
d

.zd _ yd /ˇ1�ˇ2

�
log
�
1C

zd _ yd

zd ^ yd

��ˇ3�
log

1

zd _ yd

�ˇ4
:

Therefore, for x 2 U.r0/,

gn.x/ � K
�1
n Ex

Z �U.r0/

0

.Y dt /
ˇ1

Z
Rd
C
\B.z0;1=n/

.Y dt _ yd /
�.ˇ1�ˇ2/

�

�
log
�
1C

Y dt _ yd

Y dt ^ yd

��ˇ3�
log

1

Y dt _ yd

�ˇ4
dy dt: (7.20)

Note that, using supt�1 t
�.ˇ1�ˇ2/.log.1C t //ˇ3 <1, for z 2 U.r0/,

K�1n

Z
Rd
C
\B.z0;1=n/

.zd _ yd /
�.ˇ1�ˇ2/

�
log
�
1C

zd _ yd

zd ^ yd

��ˇ3�
log
�

1

zd _ yd

��ˇ4
dy

�
K�1n

zd ˇ1�ˇ2

Z
Rd
C
\B.z0;1=n/\¹zd�yd º

.zd=yd /
ˇ1�ˇ2

�
log
�
1C

yd

zd

��ˇ3�
log

1

yd

�ˇ4
dy

C
K�1n

zd ˇ1�ˇ2

Z
Rd
C
\B.z0;1=n/\¹zd>yd º

�
log
�
1C

zd

yd

��ˇ3�
log

1

zd

�ˇ4
dy

� c3
K�1n

zd ˇ1�ˇ2

Z
Rd
C
\B.z0;1=n/

�
log

1

yd

�ˇ3Cˇ4
dy � c4z

�.ˇ1�ˇ2/

d
(7.21)

and

lim
n!1

K�1n

Z
Rd
C
\B.z0;1=n/

.zd _yd /
�.ˇ1�ˇ2/

�
log
�
1C

zd _yd

zd ^yd

��ˇ3�
log

1

zd _yd

�ˇ4
dy

D z
�.ˇ1�ˇ2/

d
:

Moreover, by (7.16), Ex
R �U.r0/
0 .Y dt /

ˇ2 dt <1 for all x 2 U.r0/. Thus we can use the
dominated convergence theorem to deduce that for all x 2 U.r0/,
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lim
n!1

K�1n Ex

Z �U.r0/

0

.Y dt /
ˇ1

Z
Rd
C
\B.z0;1=n/

.Y dt _ zd /
�.ˇ1�ˇ2/

�

�
log
�
1C

Y dt _ yd

Y dt ^ yd

��ˇ3�
log

1

Y dt _ yd

�ˇ4
dy dt

D Ex

Z �U.r0/

0

.Y dt /
ˇ1.Y dt /

�.ˇ1�ˇ2/ dt D Ex

Z �U.r0/

0

.Y dt /
ˇ2 dt: (7.22)

Combining (7.22) with (7.16) we conclude that (7.19) holds true.
From (7.20), (7.21) and (7.17) we see that for all x 2 U.r0/,

gn.x/ � c5K
�1
n Ex

Z �U.r0/

0

.Y dt /
ˇ1

Z
Rd
C
\B.z0;1=n/

.Y dt /
�.ˇ1�ˇ2/

�

�
log
�
1C

Y dt _ yd

Y dt ^ yd

��ˇ3�
log

1

Y dt _ yd

�ˇ4
dy dt

� c6Ex

Z �U.r0/

0

.Y dt /
ˇ2 dt � c7x

p

d
log.r0=xd /: (7.23)

Thus the gn’s are non-negative functions in RdC which are harmonic in RdC \B.0; 2
�2r0/

with respect to Y and vanish continuously on @RdC \ B.0; 2
�2r0/. Therefore, by (7.18),

gn.y/

gn.w/
� c1

y
p

d

w
p

d

for all y 2 D \ B.0; 2�3r0/;

wherew D .z0; 2�3r0/ and c1 D c1.2�2r0/. Thus by (7.23), for all y 2RdC \B.0; 2
�3r0/,

lim sup
n!1

gn.y/ � c1 lim sup
n!1

gn.w/
y
p

d

w
p

d

� c8y
p

d
:

This and (7.19) imply that for all x D x.s/ D .z0; s/ 2 RdC with s 2 .0; r0=10/, we have
x
p

d
log.r0=xd / � c9x

p

d
, which gives a contradiction.
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