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Stabilisation, scanning, and handle cancellation

Ryan Budney

Abstract. In this note, we describe a family of arguments that link the homotopy type of
(a) the diffeomorphism group of the disc Dn, (b) the space of co-dimension one embedded
spheres in Sn, and (c) the homotopy type of the space of co-dimension two trivial knots
in Sn. We also describe some natural extensions to these arguments. We begin with Cerf’s
“upgraded” proof of Smale’s theorem, showing that the diffeomorphism group of S2 has the
homotopy type of the isometry group. This entails a cancelling-handle construction, related
to recently studied “scanning” maps of spaces of embeddings Emb.Dn�1; S1 �Dn�1/!

�j Emb.Dn�1�j ; S1 �Dn�1/. We further give a Bott-style variation on Cerf’s construction
and a related embedding calculus framework for these constructions. We use these arguments to
prove that the monoid of Schönflies spheres �0 Emb.Sn�1; Sn/ is a group with respect to the
connected-sum operation for all n � 2. This last result is perhaps only interesting when n D 4,
as when n ¤ 4, it follows from the resolution of the various generalised Schönflies problems.

Mathematics Subject Classification 2020: 57M99 (primary); 57R52, 57R50,
57N50 (secondary).

Keywords: embeddings, diffeomorphisms.

1. Introduction

In Cerf’s landmark paper [9], somewhat overlooked is a novel proof of Smale’s
theorem, that the group of diffeomorphisms of the 2-sphere, Diff.S2/, has the homotopy
type of its linear subgroupO3. The core of Cerf’s argument is the proof that the Smale–
Hirsch map (pointwise derivative) Diff.D2/!�2GL2.R/ has a left homotopy inverse.
Cerf states his theorem in the language of homotopy groups; i.e., the homotopy groups
of Diff.D2/ inject into the homotopy groups of�2GL2.R/. Since the latter homotopy
groups are trivial and diffeomorphism groups of compact manifolds have the homotopy
type of countable CW complexes [27], this allows Cerf to conclude that Diff.D2/ is
contractible via the Whitehead theorem. In this paper, we use the notation that if N is
a manifold with boundary, Diff.N / denotes the group of diffeomorphisms of N that
restrict to the identity on @N . We will use the same conventions for embedding spaces;
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i.e., Emb.N;M/ denotes the space of smooth embeddings of N in M , and if N and
M have boundary, these maps will all restrict to one given map @N ! @M .

Smale’s proof that Diff.D2/ is contractible uses the Poincaré–Bendixson theorem
to guarantee the flow of the vector fields he uses terminate in finite time. As the
Poincaré–Bendixson theorem is only available in dimension two, it limits the applicab-
ility of Smale’s argument. We should note that there have been attempts to broaden
the applicability of a Smale-type argument by studying spaces of closed 1-forms. See,
for example, the two papers of Laudenbach and Blank [23, 24] for a sampling. Since
Cerf’s argument does not depend on Poincaré–Bendixson theorem, it allows for greater
applicability. The headline consequences of Cerf’s arguments are that the diffeomorph-
ism group Diff.Dn/ has the same homotopy type as �Emb.Dn�1;Dn/ and also that
the embedding space Emb.Dn�1; Dn/ is a homotopy retract of �Emb.Dn�2; Dn/.
Putting these two results together, the homotopy groups of Diff.Dn/ inject into the
homotopy groups of �2 Emb.Dn�2; Dn/ for all n. While Cerf states these as his
theorems, his techniques prove much more. It is the purpose of this paper to outline
the consequences of his techniques.

1.1. Cerf’s techniques. To give Cerf’s results some context, we first mention how the
spaces he studies are related to some more commonly discussed objects. A linearisation
argument [2] shows that the diffeomorphism group Diff.Sn/ has the homotopy type
of OnC1 � Diff.Dn/; indeed, the homotopy equivalence comes from considering
Diff.Dn/ as the subgroup of Diff.Sn/ that is the identity on a fixed hemi-sphere,
and the homotopy equivalence OnC1 � Diff.Dn/! Diff.Sn/ is given by the group
multiplication in Diff.Sn/. There is an analogous homotopy equivalence

Emb.Sj ; Sn/ ' SOnC1 �SOn�j
Emb.Dj ;Dn/

when n > j . If we let Emb.Dn�1; S1 �Dn�1/ denote the space of smooth embed-
dings of Dn�1 in S1 � Dn�1 which agree with the standard inclusion Dn�1 !

¹1º �Dn�1 on the boundary sphere, then there is a “handle-filling” homotopy equi-
valence Diff.S1 �Dn�1/ ' Diff.Dn/ � Emb.Dn�1; S1 �Dn�1/.

In Cerf’s paper [9], the main results we highlight concern three maps.

(1) Diff.Dn/! �Emb.Dn�1;Dn/.

(2) Emb.Dn�1;Dn/! Emb.Dn�1; S1 �Dn�1/: this is the map given by attaching a
1-handle toDn so that the attaching sphere links the standardSn�2 in @Dn� Sn�1;
i.e., we think of S1 �Dn�1 as Dn with a 1-handle attached; thus, the map comes
from simply changing the codomain of the embedding.

(3) Emb.Dn�1; S1 �Dn�1/! �Emb�.Dn�2;Dn/, where � indicates the embed-
dings that are required to have an everywhere non-zero normal vector field, and
the vector fields are some standard (constant) on the boundary.
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Cerf’s result is that the maps (1) and (3) are homotopy-equivalences, while (2) is
a homotopy retract, i.e., has a left homotopy inverse. The definitions of the maps (1)
and (3) are analogous and will be described precisely in Section 2. The rough idea
of these maps is to fibre the domain of the embedding by a 1-parameter family of
co-dimension one discs and restrict the map to these fibres, appropriately changing
the codomain of the family of embeddings, via a filling. In the case of (3), the
fibring construction would give a 1-parameter family of embeddings of Dn�2 in
S1 �Dn�1, but we carefully fill with a cancelling 2-handle to construct an element of
�Emb.Dn�2;Dn/.

1.2. Extrapolating from Cerf. In Section 2, we observe that Cerf’s argument, un-
changed, gives a homotopy equivalence

Emb.Dj ; Sn�j �Dj /! �Emb�.Dj�1;Dn/:

Cerf’s results (1) and (3) above correspond to the j D n and j D n � 1 cases of
this homotopy equivalence. If we think of Sn�j �Dj asDn union an .n� j /-handle,
then the domain of our map, Emb.Dj ; Sn�j �Dj /, is the space of all cocores, i.e.,
smooth embeddings of Dj in Sn�j �Dj that agree with a standard linear inclusion
Dj ! ¹�º � Dj on the boundary. The codomain is the loop space of the space
of smooth embeddings Dj�1 ! Dn that carry a nowhere-zero normal vector field;
moreover, the embedding and the vector field are standard linear embeddings on the
boundary. The base point of the embedding space Emb�.Dj�1;Dn/ is the linear (i.e.,
boundary parallel) embedding.

It is here where authors noticed a connection to recent “lightbulb theorems” in low-
dimensional topology [4,12,21]. The above equivalence can be recast slightly, using the
same argument but applying it to a strictly larger class of spaces. Let N be a compact
n-manifold with non-empty boundary, and let \ denote the boundary connected-sum
operation. Think of the boundary connected-sum N\.Sn�j �Dj / as N with a trivial
.n � j /-handle attached; then the space of cocores of this attached handle, which we
could denote by Emb.Dj ; N \.Sn�j �Dj //, has the same homotopy type as the loop
space �Emb�.Dj�1; N /, which is the loop space of the space of embedded Dj�1

discs with normal vector field in the manifold N – the space of embeddings we give
the base point of a boundary-parallel embedding. This version is emphasised in [21].

1.3. Related expositions. Another way to look at this paper is that it is both an
addendum to [2] and a paper that highlights methods from [4, 9] that deserve to be
singled out. Both [4, 9] are long papers with many results, so it is easy to overlook
this technique. We hope a shorter-format paper devoted to one tool does the ideas the
justice they deserve. In [2], an attempt was made to describe the most basic relations
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between the homotopy type of diffeomorphism groups and embedding spaces for the
smallest manifolds, such as spheres and discs. These Cerf techniques were known to
the author, but perhaps indicative of the techniques, the only consequences the author
knew at the time were already known, by other methods. So, they were removed from
the paper before publication.

For example, the connection between the homotopy type of the component of
the unknot Embu.S1; S3/ and the homotopy type of Diff.S3/, which is immediate
from Cerf’s perspective, is historically derived using Hatcher’s work on spaces of
incompressible surfaces [17] (see the final pages). In Section 3, we describe the relation
between Cerf’s half-disc fibrations and the more commonly used restriction fibration
Diff.Sn/! Emb.Sj ; Sn/.

1.4. Schönflies. An interesting observation in [4] is that the “stacking” operation, while
appearing to be just a monoid structure on the space Emb.Dn�1; S1 �Dn�1/, using
Cerf’s argument one can show that the space is group-like; i.e., the induced monoid
structure on �0 Emb.Dn�1; S1 �Dn�1/ is that of a group for all n � 2. One conse-
quence of this is an argument that the monoid of Schönflies spheres �0 Emb.Sn�1; Sn/
is a group using the relative connected-sum operation. There is a classical argument due
to Kervaire–Milnor that this monoid has inverses. Our argument is characteristically
different, in that we construct an onto homomorphism from a group; i.e., in a weak
sense, we give a presentation of the monoid of Schönflies spheres. This appears in
Section 4.

1.5. High co-dimension scanning. A scanning technique was proposed for studying
the homotopy type of Diff.S1 �Dn/, by considering the chain of maps

Diff.S1 �Dn�1/!Emb.Dn�1; S1 �Dn�1/! �Emb.Dn�2; S1 �Dn�1/!� � �

! �n�2 Emb.D1; S1 �Dn�1/

in the sequence [3,4]. Interestingly, an infinitely generated subgroup of �n�4Diff.S1 �
Dn�1/ survives to the end of the sequence

�n�4�
n�2 Emb.D1; S1 �Dn�1/ � �2n�6 Emb.D1; S1 �Dn�1/

for all n � 4. At present, little is known about Cerf’s scanning maps Diff.Dn/!

�j Emb.Dn�j ; Dn/ when j � 3, but these results suggest that such maps have the
potential to be homotopically non-trivial and could be used to deduce results even
about �0 Diff.Dn/ for n � 4. However, we now know the map

Diff.Dn/! �n�1 Emb.D1;Dn/
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is null-homotopic [3]. The transitional map

Emb.Dn�2;Dn/! �Emb.Dn�3;Dn/

is perhaps of greatest interest, as the target space can be studied with techniques
such as the embedding calculus, while we have little in the way of general theory to
study the homotopy type of Emb.Dn�2;Dn/. It would be more precise to say that we
have general theory when n < 4, but when n � 4, separating the path-components of
Emb.Dn�2;Dn/ is a difficult mathematical problem. Similarly, little is known about
�1 Emb.D2;D4/ at present. If one allows the embeddings to have trivialised normal
bundles (normal framings), one has scanning maps of the form

Diff.Dn/! �j Embfr.Dn�j ;Dn/! �n GLn.R/;

where the space on the right is the terminal j D n case. The map Diff.Dn/ !

�n GLn.R/ is known as the Smale–Hirsch map, i.e., the pointwise derivative map.
Whether or not this Smale–Hirsch map is homotopically non-trivial has been an open
problem for some time. Interestingly, it has recently been shown to be homotopically
non-trivial in the n D 11 case [10].

One other impetus for studying such scanning maps is that these embedding spaces
are highly structured objects. For example, Diff.Dn/ is homotopy equivalent to the
space EC.n;�/, called the “cubically supported embedding space”. If M is a compact
manifold, EC.j;M/ denotes the space of smooth embeddings f WRj �M !Rj �M ,
where the support supp.f / is constrained to be a subset of I j �M ; i.e.,

supp.f / D ¹p 2 Rj �M W f .p/ ¤ pº � I j �M:

The space EC.j;M/ admits an action of the operad of .j C 1/-cubes; thus, it is not
far away from being an .j C 1/-fold loop space. The way to think about this operad
action is that there is an action of the j -cubes operad on EC.j;M/ due to the affine
structure on the Rj factors of Rj �M . The space EC.j;M/ is also a monoid under
composition of functions, and these two operations can be promoted naturally to a
.j C 1/-cubes action, described in [2].

The space EC.j;Dn�j / fibres over Emb.Dj ;Dn/ with fibre �j SOn�j – indeed,
the spaces EC.j;Dn�j / are homotopy equivalent to Embfr.Dj ;Dn/. There are scan-
ning maps

EC.n;�/! �EC.n � 1;D1/! � � � ! �j EC.n � j;Dj /! � � �

! �n�1 EC.1;Dn�1/! �n GLn.R/

which commute with the action of the .nC 1/-cubes operad. While [2] allows one to
see these cubes’ actions explicitly, there are also ways of describing the iterated loop
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space structure using smoothing theory. Thus, the ability of scanning maps to detect
homotopy in diffeomorphism groups and embedding spaces is closely connected to the
question of to what extent the Smale–Hirsch map for Diff.Dn/ is non-trivial. To add
some additional context, iterated loop spaces are highly structured objects, and finding
maps between them is somewhat analogous to finding a homomorphism between other
highly structured objects like rings or modules: if the map is not zero, it is often highly
non-trivial.

In this paper, we outline what is known about such scanning maps and where some
potentially interesting future computations sit.

2. Canceling handles

The space Emb.Dj ; N / denotes the space of embeddings of Dj in N , where the
boundary of Dj is mapped to @N in some fixed, prescribed manner. In the case of
Emb.Dj ; Dn/, the embedding is required to restrict to the standard inclusion x 7!
.x; 0/ on the boundary.

Cerf constructs an isomorphism [9, Proposition 5, p. 128] for all i � 0 and n � 1
(see also [8, Theorem 4]):

�i Diff.Dn/ ' �iC1 Emb.Dn�1;Dn/;

which we promote to a homotopy equivalence

Diff.Dn/ ' �Emb.Dn�1;Dn/:

Equivalently, this homotopy equivalence can be stated as a description of the classifying
space of Diff.Dn/,

B Diff.Dn/ ' Embu.Dn�1;Dn/:

The subscript u indicates the component of the unknot in Emb.Dn�1; Dn/, i.e.,
the component of the linear embedding. The above results were stated at least as far
back as [2], but it would not be surprising if this observation had been written down
earlier.

The map Diff.Dn/! � Emb.Dn�1; Dn/ has a simple description thinking of
Diff.Dn/ as the diffeomorphisms of Rn with support contained in Dn. One then
considers Dn as a subset of I �Dn�1. Restriction to the fibres ¹tº �Dn�1 gives the
1-parameter family of embeddings of Dn�1 into Dn. After suitably translating and
scaling the embedding family to have fixed boundary conditions, this is an element of
�Emb.Dn�1;Dn/.
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f .HDn/

f .¹0º �Dn�1/

Dn

Figure 1
The half-disc fibration.

The map back�Emb.Dn�1;Dn/!Diff.Dn/ is defined by an elementary isotopy-
extension construction. Following Cerf, let HDj denote the j -dimensional half-disc;
i.e.,

HDj D
²
.x1; : : : ; xj / 2 Rj W

jX
iD1

x2i � 1; x1 � 0

³
:

The boundary @HDj consists of the two subspaces: the subspace (1) @Dj \ HDj ,
called the round face, and the subspace (2) satisfying x1 D 0 called the flat face.

Let Emb.HDn; Dn/ be the space of embeddings of HDn into Dn that restrict to
the identity map on HDn\@Dn, i.e., acting as the identity on the round face. The map
given by restriction to the flat face is a Serre fibration (see Figure 1) [7]:

Diff.HDn/! Emb.HDn;Dn/! Emb.Dn�1;Dn/:

Moreover, via an argument directly analogous to the homotopy classification of
collar neighbourhoods or tubular neighbourhoods, one can show that Emb.HDn;Dn/

is contractible [8]. The rough idea is that every such embedding is isotopic to its
restriction to a small neighbourhood of the round face, where you can approximate
the embedding by the standard linear inclusion – indeed, the straight-line homotopy
between the embedding and the standard linear inclusion is an isotopy, at least in a
sufficiently small neighbourhood of the round face.

The proof that the above map is a Serre fibration is a version of the isotopy-
extension theorem “with parameters”; i.e., the proof of isotopy extension given in
Hirsch’s text [18] suffices to also prove that such maps are Serre fibrations. We should
also mention that Palais also has shown [27] that a broad class of spaces of embeddings
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and diffeomorphism groups, including all the spaces discussed in this paper, have the
homotopy type of countable CW complexes. The rough idea of the proof is that such
embedding spaces are homeomorphic to open subsets of a Hilbert cube (consider, for
example, representing smooth functions via something like a Fourier expansion), and
open subsets of Hilbert cubes admit CW structures, in a manner analogous to open
subsets of Rn.

The total space Emb.HDn;Dn/ is contractible, as sketched above and proven by
Cerf [9]. This tells us that the connecting map

�Emb.Dn�1;Dn/! Diff.HDn/

is a homotopy equivalence. The inclusion Diff.HDn/ ! Diff.Dn/ is a homotopy
equivalence via a rounding-the-corners argument. The definition of the connecting
map � Emb.Dn�1; Dn/ ! Diff.HDn/ comes from observing that an element of
� Emb.Dn�1; Dn/ via currying can be thought of as a map Œ0; 1� �Dn�1 ! Dn

which is continuous globally but smooth on the ¹tº � Dn�1 fibres. A smoothing
construction [18] allows us to perturb this map to be globally smooth, not affecting the
restriction of the map to the boundary of Œ0; 1��Dn�1. It is with this smoothing that we
apply the isotopy-extension construction. Specifically, this smoothing argument tells us
the subspace of�Emb.Dn�1;Dn/ such that the associated map Œ0; 1��Dn�1!Dn

is smooth; this subspace has the same homotopy type as �Emb.Dn�1; Dn/. There
is an alternative approach that is formally analogous to the result that the loop space
of a manifold has the same homotopy type as its subspace of smooth loops. We view
Emb.Dn�1;Dn/ as a smooth Banach or Fréchet manifold (depending on the order of
differentiability of the embeddings, C k with k finite or infinite, respectively). From
this perspective, a smooth map Œ0; 1�! Emb.Dn�1; Dn/ via currying produces a
smooth map Œ0; 1� �Dn�1 ! Dn. This has been made precise in several places in the
literature; see [19] or [25].

We can justify why scanning Diff.Dn/! � Emb.Dn�1; Dn/ is the homotopy
inverse to the connecting map � Emb.Dn�1; Dn/ ! Diff.Dn/ via Figure 2. We
have a central square whose horizontal axis is labeled t and whose vertical axis is
labeled ˛. Given t 2 Œ0; 1�, let ft W HDn!Dn denote the embedding whose restriction
to ¹0º �Dn�1 is a given element of � Emb.Dn�1; Dn/. Let ' be the equivalence
relation on Œ0; 1� � Dn�1 generated by the equivalence classes Œ0; 1� � ¹pº for all
p 2 @Dn�1; thus, Œ0; 1� �Dn�1 can be identified with HDn; i.e., we collapse all the
edges Œ0; 1�� ¹pº for all p 2 @Dn�1. Under the identification of Œ0; 1��Dn�1=�with
HDn, the corner strata correspond to the collapsed edges, ¹0º �Dn�1 to the round
face, and ¹1º �Dn�1 to the flat face. In Figure 2, ft .¹˛º �Dn�1/ is denoted via a
thick red curve. The upper line of our square therefore denotes ft .¹0º �Dn�1/, our
element of �Emb.Dn�1; Dn/. This is homotopic to the concatenation of the other
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˛
t

Figure 2
Homotopy inverse of isotopy extension.

three boundary segments of the square. The rightmost segment of the square is the
“swept-out” portion of scanning, and the leftmost segment is the swept-out portion of
the standard inclusion. The lower edge is constant.

To extrapolate, let Emb�.Dj�1; N / denote the space of smooth embeddings of
Dj�1 in N such that the boundary is sent to the boundary in a prescribed manner, and
the embedding comes equipped with a normal vector field (standard on the boundary);
then. we have a restriction (Serre) fibration

Emb.Dj ; N n �Dj�1/! Emb.HDj ; N /! Emb�.Dj�1; N /:

The total space is the space of smooth embeddings of HDj inN such that the round
face is sent to @N in a prescribed manner. The space �Dj�1 indicates an open tubular
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DSn�j � ¹�º

¹�º�@Dj

Sn�j �Dj

f .Dj / N

Figure 3
Cocore embedding f 2 Emb.Dj ; .Sn�j �Dj /\N / in red. If one drills a tubular neighbour-
hood of a linearly embedded Dj�1 ! Dn, one has a manifold diffeomorphic to Sn�j �Dj ,
which gives the equivalence .Sn�j �Dj /\N ' N n �Dj�1.

neighbourhood in N corresponding to the base point element of Emb�.Dj�1; N /. We
keep track of the normal vector field in the base space, as otherwise the fibre would be
an embedding space where the discs are not neatly embedded. One can of course argue
that the above is not literally the fibre – it should be the subspace of Emb.HDj ; N /
that agrees with a fixed embedding on the flat boundary. That said, blowing up the flat
boundary or a tubular neighbourhood argument together with drilling the open tubular
neighbourhood completes the identification of the fibre.

This gives us an analogous homotopy equivalence

�Emb�.Dj�1; N / ' Emb.Dj ; N n �Dj�1/:

The space N n �Dj�1 is N with a .j � 1/-handle drilled out, and the embedding
ofDj is a cancelling handle for the .j � 1/-handle; thus, the .j � 1/-handle is parallel
to the boundary. As another model forN n �Dj�1, we turn the handle upside down and
think of this manifold as N [Hn�j , i.e., N union a .n � j /-handle. Since the handle
attachment is trivial, this manifold is diffeomorphic to .Sn�j �Dj /\N (see Figure 3).
From this perspective, the embeddings of Emb.Dj ; .Sn�j �Dj /\N / can be thought
of as a space of embeddings of cocores for the .n � j /-handle attachment of the
boundary connected-sum .Sn�j �Dj /\N ; i.e., these cocores are allowed to reach
into the N summand.

This last interpretation is perhaps the most convenient for stating the homotopy
equivalence

�Emb�.Dj�1; N / ' Emb.Dj ; .Sn�j �Dj /\N /;
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as the boundary condition on the latter embedding space sends @Dj to ¹pº � @Dj �

Sn�j �Dj . By design, the embeddings in Emb�.Dj�1; N / are isotopically trivial on
the boundary Sj�2 ! @N .

Theorem 2.1. There is a homotopy equivalence

�Emb�.Dj�1; N / ' Emb.Dj ; .Sn�j �Dj /\N /;

where Emb�.Dj�1; N / is the space of smooth embeddings of Dj�1 in N such that
the pre-image of the boundary of N is the boundary of Dj�1. The embedding of
@Dj�1 is required to be a fixed embedding and isotopically trivial, i.e., bounding an
embedded Dj�1 ! @N . The base point of Emb�.Dj�1; N / can be chosen to be any
embedding that is parallel to an embedding in @N (rel @), where � indicates that the
embedding comes equipped with a normal vector field, standard on the boundary. The
space Emb.Dj ; .Sn�j �Dj /\N / is a space of cocores for the handle attachment
.Sn�j �Dj /\N D N [Hn�j ; i.e., it is the space of smooth embeddings of Dj in
.Sn�j �Dj /\N such that the boundary ofDj is sent to ¹�º � @Dj , where � 2 Sn�j

is some point disjoint from the mid-ball of the boundary connected sum.

Alternatively, one could express the theorem in the “reductionist” form

Emb.Dj ;M/ ' �Emb�.Dj�1;M [Hn�jC1/;

i.e., by writing M D .Sn�j �Dj /\N , then N D M [Hn�jC1; i.e., we derive N
from M by adding a cancelling handle. Thus, for the homotopy equivalence to hold,
we need M to admit a cancelling handle; i.e., for an element f 2 Emb.Dj ;M/, the
restriction to the boundary is an embedding fj@Dj W Sj�1! @M and there must admit
an embedding Sn�j ! @M with a trivial normal bundle that transversely intersects
fj@Dj in a single point. In the recent “light-bulb theorem”, literature the embedded
Sn�j is simply called a transverse sphere [12]. This version of Theorem 2.1 appears
in [21].

A homotopy equivalence can be expressed as a map in either direction. The map
� Emb�.Dj�1; N /! Emb.Dj ; N n �Dj�1/ is induced by isotopy extension; i.e.,
one lifts the element of �Emb�.Dj�1; N / to a path in Emb.HDj ; N /, starting at the
base point of Emb.HDj ; N /. Drilling the flat face from the endpoint of this path gives
the element of Emb.Dj ; N n �Dj�1/.

The map back Emb.Dj ; N n �Dj�1/! �Emb�.Dj�1; N / involves thinking of
Dj as fibered by parallel copies of Dj�1 and taking those restrictions and compos-
ing with the inclusion N n �Dj�1 ! N . The paper [4] gives a detailed account in
the Emb.HDj ; Dn/ case, and [21] gives a detailed account using the “reductionist”
perspective for Emb.HDj ; N /.
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Proposition 2.2. The co-dimension 2 scanning map

Diff.Dn/! �2 Emb�.Dn�2;Dn/

induces a split injection on all homotopy and homology groups for n � 2. The map
admits a left homotopy inverse.

Proposition 2.2 is a space-level statement of [9, Proposition 6]. When n D 2, the
two-fold scanning map Diff.D2/! �2 Emb�.D0;D2/ � �2 GL2.R/ is the Smale–
Hirsch map. Since �2 GL2.R/ is contractible, this is Smale’s theorem that Diff.D2/

is contractible. Since Diff.S2/ ' O3 � Diff.D2/ (this is a standard linearisation argu-
ment; see [2]), this proves Smale’s theorem Diff.S2/ ' O3.

When n>3, the forgetful map Emb�.Dn�2;Dn/!Emb.Dn�2;Dn/ is a homotopy
equivalence, since the fibre has the homotopy type of �n�2S1. When n D 2 or n D 3,
the double looping of the map

�2 Emb�.Dn�2;Dn/! �2 Emb.Dn�2;Dn/

is a homotopy equivalence, as the fibre has the homotopy type of �2�n�2S1.

Corollary 2.3 (Smale). Diff.D2/ is contractible; i.e., Diff.S2/ has the homotopy type
of its linear subgroup O3.

Proof of Proposition 2.2. The proof follows from forming a composite of functions
involving the homotopy equivalence Diff.Dn/!�Emb.Dn�1;Dn/ (i.e., Theorem 2.1,
N D Dn, j D n) with the induced map on loop spaces from Theorem 2.1, where
N D Dn and j D n � 1,

Emb.Dn�1; S1 �Dn�1/! �Emb�.Dn�2;Dn/:

Given that the unit normal fibres are copies of S1, we can discard the normal
vector fields; i.e., the forgetful map�2 Emb�.Dn�2;Dn/! �2 Emb.Dn�2;Dn/ is a
homotopy equivalence. Thinking of S1 �Dn�1 as Dn union a 1-handle, this gives an
inclusion Emb.Dn�1;Dn/! Emb.Dn�1; S1 �Dn�1/. Thus, we have a composable
triple

Diff.Dn/!�Emb.Dn�1;Dn/!�Emb.Dn�1; S1�Dn�1/!�2Emb.Dn�2;Dn/:

The left homotopy inverse of the map in the middle comes from thinking of
the universal cover of S1 � Dn�1 as a copy of R � Dn�1 which could also be
thought of as Dn removing two points from its boundary; i.e., we have a map back
Emb.Dn�1; S1 �Dn�1/! Emb.Dn�1; Dn/. Since the two maps on the ends are
homotopy-equivalences, this gives us the result.
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Cerf’s proof of Smale’s theorem (Corollary 2.3) is also highlighted in [20, Section
6.2.4]. When the co-dimension of the embeddings is three or larger, sharp connectivity
estimates for the scanning map exist. See, for example, [5, pp. 23–25], and the initial
pages of Goodwillie’s Ph.D thesis [14]. The paper [13] also includes a detailed analysis
of scanning maps for spaces of concordance embeddings, when the co-dimension is at
least three.

The deloopings of the spaces Diff.Dn/ and Emb.Dj ;Dn/ are studied in [28, 29].
It would be interesting to see if there are analogous retraction results for the deloopings
of the scanning maps Diff.Dn/! �n�j Embfr.Dj ;Dn/. It is perhaps unlikely, but it
is a basic question that deserves investigation.

Theorem 2.4. The scanning map

Emb.Dn�1; S1 �Dn�1/! �Emb�.Dn�2; S1 �Dn�1/

is the inclusion portion of a homotopy-retraction; i.e., it induces split injections on all
homotopy-groups for all n � 2. When n > 2, � can be dropped from the target space;
i.e., the theorem remains true for embeddings without a normal vector field.

Proof. By Theorem 2.1, scanning gives us a homotopy equivalence

Emb.Dn�1; S1 �Dn�1/! �Emb�.Dn�2;Dn/:

We construct an inclusion map Emb�.Dn�2; Dn/! Emb�.Dn�2; S1 �Dn�1/ by
attaching a trivial 1-handle to Dn, i.e., thinking of S1 � Dn�1 as Dn union a 1-
handle. This inclusion is the inclusion portion of a homotopy-retract; i.e., it has a
left homotopy inverse. The left homotopy inverse comes from lifting an embedding
Dn�2! S1 �Dn�1 to the universal cover, which we identify with a copy ofDn with
two points removed from the boundary.

The proof of the above theorem is largely a duplicate of the proof of Proposition 2.2.
Similarly, this argument allows us to identify the map Emb.Dn�1; S1 �Dn�1/!

�Emb.Dn�2; S1 �Dn�1/ with the scanning map.
Notice when n D 2, the above scanning map is a homotopy equivalence by Gra-

main [16]. When n D 3, it follows from Hatcher’s work [17] that the scanning map is
a homotopy equivalence; indeed, both spaces are contractible.

When n � 4, far less is known about such scanning maps. In [3, 4], the mapping-
class group �0 Diff.S1 �D3/ was shown to be not finitely generated via the map
�0 Diff.S1 �D3/! �2 Emb.D1; S1 �D3/. Above, we see that the intermediate
map

�0 Diff.S1 �D3/! �1 Emb.D2; S1 �D3/
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has kernel isomorphic to �0Diff.D4/; this follows from “handle-attachment homotopy
equivalence” Diff.S1 � Dn�1/ ' Diff.Dn/ � Emb.Dn�1; S1 � Dn�1/ described
in [4]. The study of our scanning map �0Diff.S1 �D3/! �2 Emb.D1; S1 �D3/ is
thus reduced to the final step �1 Emb.D2; S1 �D3/! �2 Emb.D1; S1 �D3/, i.e.,
the loop space functor applied to the scanning map

Emb.D2; S1 �D3/! �Emb.D1; S1 �D3/:

One might attempt to apply the reductionist version of Theorem 2.1 to construct a
homotopy equivalence Emb.D2;S1 �D3/'�Emb�.D1;S1 �D3 [H 3/, but since
the boundary circle for the embeddings of Emb.D2; S1 �D3/ is homologically trivial,
it does not have the required 2-sphere intersecting the embedding transversely at a single
point. Alternatively, the embeddings in Emb.D2; S1 �D3/ are not the cocore of a
2-handle attachment, so we cannot appeal to the primary version of Theorem 2.1, either.
That said, we do know that the map Emb.D2; S1 �D3/! � Emb.D1; S1 �D3/

is homotopically non-trivial [3, 4] as the induced map on �1 maps onto an infinitely
generated subgroup, so further study of these scanning maps is warranted.

The work of Fresse–Turchin–Willwacher [11] describes the delooping of the homo-
topy fibre of the map from embeddings to immersions:

Emb.Dj ;Dn/! Imm.Dj ;Dn/ ' �jVn;j ;

description of its rational homotopy type in the language of graph complexes when n�
j > 2. In principle, this should give us some useful information on the co-dimension one
scanning map Emb.Dj ;Dn/! �Emb.Dj�1;Dn/ in rational homotopy, although
our lack of understanding of the induced map Emb.Dj ; Dn/! Imm.Dj ; Dn/ in
rational homotopy (when j > 1) may be a limiting factor at present. A related topic
is the “Freudenthal suspension map” Emb.D1;Dn/! �Emb.D1;DnC1/ [2] which
is defined via two canonical unknotting operations. This map is known to be zero on
rational homotopy (unpublished at this time), yet the map itself could potentially be
homotopically non-trivial.

3. Bott handles and miscellany

The homotopy equivalence Diff.Dn/'�Emb.Dn�1;Dn/ can be extrapolated to
a homotopy equivalence Diff.I �N/ ' �Emb.¹1

2
º �N; I �N/ and scanning maps

Diff.Dk
�N/!�Emb.Dk�1

�N;Dk
�N/! � � �!�j Emb.Dk�j

�N;Dk
�N/:

Whereas the scanning of Section 2 could be viewed as an argument where the
intermediate space is that of the space of cancelling handles, i.e., vanilla Morse theory,
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the scanning above has intermediate space the space Bott-style cancelling handles, i.e.,
the kinds of handles that occur with Bott-style Morse functions (functions on manifolds
where the critical point sets are manifolds and the Hessian is non-degenerate on these
critical submanifolds [1]). For Bott-style Morse functions, “handle” attachments are
disc bundles over manifolds, whereas in standard Morse theory one attaches disc
bundles over points, i.e., plain discs. Specifically, an adjunction where one attaches a
disc-bundle over M , M ËDk to another manifold N along an embedding

M Ë @Dk
! @N

is what is called a Bott-style handle attachment [1], as these sorts of attachments
occur for Bott-type Morse functions, i.e., functions W ! R whose critical points are
manifolds and the Hessian is non-degenerate on the normal bundle fibres. Bott-style
Morse functions typically occur when functions have symmetry; for example, the trace
of a matrix is a Bott-style Morse function on the orthogonal group On. The critical
points of this function are the square roots of the identity matrix I , thus copies of
Grassman manifolds. As a concrete example, the trace functional expresses SO3 as the
tautological line bundle over RP 2 union a 3-handle.

The analogue to Theorem 2.1 in the Bott case has the form of a homotopy equival-
ence

Emb.M ËDk; N n �.M ËDk�1// ' �Emb.M ËDk�1; N /:

Given that our scanning maps are highly structured, they would appear to be a
potentially useful device for exploring the homotopy-types of diffeomorphism groups
like Diff.Dn/, Diff.S1 � Dn/ and generally product manifolds Diff.N � Dk/, in
particular for studying spaces of pseudo-isotopies. From this perspective, there is
perhaps a similarly overlooked element of embedding calculus [26, 31] that is relevant.

For example, given a manifold M , let Ok.M/ be the category of open subsets
of M diffeomorphic to a disjoint union of at most k open balls, arrows given by
inclusion maps. GivenU 2Ok.M/, letF.U / be Emb.U �Dj ;M �Dj /, i.e., smooth
embeddings of U �Dj inM �Dj that restrict to the standard inclusion on U � @Dj .
The k-th stage of the Taylor tower could be taken to be TkF.U /D holimV 2Ok.U /F.V /.
From this perspective, the scanning map is the evaluation map to the first stage of the
Taylor tower. Higher stages of the Taylor tower are built from spaces of generalised
string links (in the sense that the Goodwillie–Weiss–Klein embedding calculus is built
from configuration spaces), and similarly, the layers will be a relative section space.
This Taylor tower maps to the GWK–Taylor tower, so it should converge when the
co-dimensions of the embeddings are sufficiently large. Minimally from the above it
will have embeddings as a homotopy retract. The rate of convergence of this Taylor
tower we suspect will often be greater – for example, by Cerf’s theorem,

Diff.Dn/ ' �Emb.Dn�1;Dn/;
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the first stage when M D I is homotopy equivalent to Diff.I �Dj�1/ ' Diff.Dj /.
The potential for this framework is that it may provide more manageable inductive
steps for practical computations of homotopy and homology groups of embedding
spaces, as one is no longer comparing an embedding space directly with configuration
spaces. Spaces of string links have been the subject of some recent investigations by
Koytcheff [22], Turchin, and Tsopméné [22, 30], including a description of some of
their low-dimensional homotopy groups [22] as well as an operad action [6], so we
may not be far removed from being able to analyze these string link Taylor towers.

String links appear in two essential ways in both [3, 4]. Specifically, barbell diffeo-
morphism families are the induced diffeomorphisms coming from the low-dimensional
homotopy groups of spaces of 2-component string links. Moreover, the map we use to
detect our diffeomorphisms of S1 �Dn�1 has the form

Diff.S1 �Dn�1/! �n�2 Emb.D1; S1 �Dn�1/:

If we take the lifts of an element of Emb.D1; S1 �Dn�1/ to the universal cover, we get
an equivariant, infinite-component string link in R �Dn�1. Thus, string links would
appear to be a relatively efficient machine for investigating embedding spaces and dif-
feomorphism groups. It would be very interesting to see the relative rate of convergence
of the above Taylor towers, compared to the standard embedding calculus [15].

There is a small comment on the relationship between the restriction maps

Diff.Sn/! Emb.Sj ; Sn/

and the Cerf half-disc fibrations. When j < n, these fibrations are null-homotopic via
a “shrinking support” argument [2]. This is closely related to the half-disc fibration.
Specifically, if we replace the above diffeomorphism group and embedding space with
their “long” version and require the embeddings to have trivialized normal bundles,
we have the fibration Diff.Dn/ ! Embfr.Dj ; Dn/. This fibration has fibre homo-
topy equivalent to Diff.Sn�j�1 � DjC1/. There is a cancelling-handle homotopy
equivalence

Diff.Sn�j�1 �DjC1/ ' Diff.Dn/ � Embfr.DjC1; Sn�j�1 �DjC1/:

Lastly, let Embfr.HDjC1; Dn/ be the half-disc embedding space where the half-
discs are equipped with trivialized normal bundles. Then, we have a fibre sequence

Embfr.DjC1; Sn�j�1 �DjC1/! Embfr.HDjC1;Dn/! Embfr.Dj ;Dn/:

Like in the unframed case, the space Embfr.HDjC1;Dn/ is contractible.
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This gives us a little commutative diagram of homotopy fibre sequences (three top
vertical maps are fibrations; three rightmost horizontal maps are also fibrations):

Embfr.DjC1; Sn�j�1 �DjC1/ // Embfr.HDjC1;Dn/ // Embfr.Dj ;Dn/

Diff.Sn�j�1 �DjC1/ //

OO

Diff.Dn/ //

OO

Embfr.Dj ;Dn/

OO

Diff.Dn/ //

OO

Diff.Dn/ //

OO

¹�º

OO

i.e., we are asserting that the fibration Diff.Dn/! Embfr.Dj ;Dn/ is simply the half-
disc fibration Embfr.HDjC1; Dn/! Embfr.Dj ; Dn/ but where we have inserted a
trivial Diff.Dn/ factor in the total space and fibre.

4. The Schönflies monoid

We end with the observation, implicit in [4], that the monoid �0 Emb.Sn�1; Sn/,
using the connected-sum operation, is a group for all n � 2, as it is unclear if a proof of
this statement exists in the literature. For n ¤ 4, this group is known to be isomorphic
to �0 Diff.Dn�1/. In dimension n D 4, the Schönflies problem is equivalent to stating
that this group is trivial.

The connected-sum operation on �0 Emb.Sn�1; Sn/ has a description as a relat-
ive surgery (i.e., performing surgery on both the ambient manifold and submanifold
at the same time). One embeds pairs .Dn; Dn�1/ in the pairs .Sn; f .Sn�1// and
.Sn; g.Sn�1//, respectively. Given that our embeddings are parametrised this requires
a linearisation operation relative to the functions f and g about the embeddings
Dn�1 ! f .Sn�1/ andDn�1 ! g.Sn�1/, respectively, as well as an identification of
Sn#Sn with Sn.

To minimise the overhead of formalism, we will assume the homotopy equivalence
[2]

Emb.Sn�1; Sn/ ' SOnC1 �Emb.Dn�1;Dn/;

which follows from a linearisation argument.
This homotopy equivalence tells us �0 Emb.Sn�1; Sn/ ' �0 Emb.Dn�1; Dn/,

allowing us to define the monoid structure on �0 Emb.Dn�1;Dn/.
The space Emb.Dn�1;Dn/ can be thought of as the smooth embeddings Rn�1!

Rn that agrees with the standard inclusion ¹0º � Rn�1 � Rn outside of Dn�1 and
maps Dn�1 into Dn. We endow Emb.Dn�1; Dn/ with a binary operation (indeed
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many such) by stacking embeddings. To stack two elements of Emb.Dn�1;Dn/, one
needs rescaling and translation to make the operation precise [2].

If one combines all such operations, one has an action of the operad of .n� 1/-discs
on Emb.Dn�1;Dn/. The connected-sum operation is the induced monoidal structure
on �0 Emb.Dn�1;Dn/. The neutral element is the linear embedding. This connected-
sum operation generalises directly to all embedding spaces �0 Emb.Sj ; Sn/. When
nD j C 2, it is the classical connected-sum operation on co-dimension two knots, and
when j D n, it is the composition operation on �0 Diff.Sn/.

The proof is a small variation on the proofs of Proposition 2.2 and Theorem 2.4.
The inclusion from Proposition 2.2

Emb.Dn�1;Dn/! Emb.Dn�1; S1 �Dn�1/

is compatible with stacking; i.e., it induces a map of monoids on path components.
The space Emb.Dn�1; S1 �Dn�1/ has the homotopy type of�Emb�.Dn�2;Dn/ by
Theorem 2.1. The space�Emb�.Dn�2;Dn/ has two stacking operations; i.e., one can
“stack” using the loop-space parameter or stack using the analogous stacking operation
on the space Emb�.Dn�2;Dn/. These two operations are homotopic. In introductory
algebraic topology courses, one uses this type of argument to show that the fundamental
group of a topological group must be abelian. It is often called an Eckmann–Hilton
argument. Another way to say this is that the space �Emb�.Dn�2;Dn/ has an action
of the operad of 2-cubes, where the action restricts to either concatenation construction,
depending on the position of the cubes.

Theorem 4.1. The monoid structure on �0 Emb.Sn�1; Sn/ comes from the connected-
sum operation; this is a group for all n � 2. Moreover, there is an onto-homomorphism

�1 Emb�.Dn�2;Dn/! �0 Emb.Dn�1;Dn/ ' �0 Emb.Sn�1; Sn/:

When n D 1, the set �0 Emb.S0; S1/ is also known to be a group, as it has only
a single element. The group �1 Emb�.Dn�2; Dn/ is known to be non-trivial when
n D 4 [4] although all presently known elements map to zero in �0 Emb.Dn�1;Dn/.

The homomorphism �1Emb�.Dn�2;Dn/! �0Emb.Dn�1;Dn/ has this descrip-
tion. Take a linearly embedded copy of HDn�1 inDn, i.e., the half-disc inDn�1 � ¹0º�

Dn. Given a loop of embeddings of Dn�2 (with normal vector field) in Dn, lift that
path of embeddings to a path in Emb.HDn�1; Dn/ that begins at the linear embed-
ding. At the end of this path, we have a smooth embedding HDn�1 ! Dn which
agrees with our standard inclusion on the boundary, including its normal derivat-
ive. Via a small isotopy, we can ensure that this embedding HDn�1 ! Dn agrees
with the standard inclusion in a neighbourhood of the boundary. Drill the flat face of
the embedded HDn�1 from Dn; this results in a copy of S1 �Dn�1 together with
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a smoothly embedded Dn�1 ! S1 �Dn�1 which agrees with the standard inclusion
¹1º �Dn�1 � S1 �Dn�1 on the boundary. Lift this embedding to the universal cover
of S1 �Dn�1 and identify the universal cover with a subspace of Dn (Dn with two
boundary points removed). This embedding Dn�1 ! Dn is the value of our map
�1 Emb�.Dn�2;Dn/! �0 Emb.Dn�1;Dn/.

There is a Kervaire–Milnor style argument that the monoid �0 Emb.Sn�1; Sn/ has
inverses. Given an embedding f W Sn�1 ! Sn drill a small open ball from Sn�1 and
consider a tubular neighbourhood of this manifold. It is diffeomorphic toDn�1 � I , and
so, the boundary of this manifold is diffeomorphic to the connected-sum of f .Sn�1/
with its mirror reverse. Since the embedding bounds a copy of Dn�1 � I ' Dn

(after rounding corners), we have that f .Sn�1/#f .�Sn�1/ is standard; thus, f and
its mirror reverse are inverses of each other. The relative advantage of Theorem 4.1
is that it provides a group �1 Emb�.Dn�2; Dn/ that maps onto the Schönflies mon-
oid �0 Emb.Sn�1; Sn/; i.e., it gives us a prescription for how one can construct all
Schönflies spheres.

The resolution of the Schönflies problem in dimension different from four gives
another argument that the monoid of Schönflies spheres �0 Emb.Sn�1; Sn/ is a
group, when n ¤ 4, as this tells us the reparametrisations of the linear embedding
gives an onto homomorphism �0 Diff.Sn�1/! �0 Emb.Sn�1; Sn/. The triviality of
�0 Emb.Sn�1; Sn/ when n D 4 is equivalent to the Schönflies problem, as Diff.D3/

is contractible [17].
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