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A diffuse interface model of tumour evolution
under a finite elastic confinement
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Abstract. Diffuse interface models have gained a growing interest in cancer research for their
ability to investigate the mechano-biological features during tumour progression and to provide
simulation tools for personalised anti-cancer strategies at an affordable computational cost. Here we
propose a diffuse interface model for tumour evolution which accounts for an interfacial structure
mimicking a finite elastic confinement at the tumour boundary, possibly due either to a localised
elastic stress induced by host tissue displacements, or collagen remodelling in the peritumoural
area. This model consists of a partial differential equation of the Cahn—Hilliard type, with degener-
ate mobility, single-well potential, and an elastic non-local term acting as the effect of a membrane
confinement in the chemical potential. Using mixture theory, we derive the corresponding governing
equations from thermodynamic principles based on realistic physical and biological assumptions.
First, we introduce a suitable regularised problem in order to deal with the degeneracy set of the
mobility and the singularity of the potential. For this problem we find a weak solution and provide a
regularity result. Then, we establish suitable a priori estimates which are uniform with respect to the
regularisation parameters. Passing to the limit in the regularised problem, we prove existence results
for different classes of weak solutions to the original problem. Finally, we propose a continuous
Galerkin Finite-Element discretisation of the problem, where the positivity of the discrete solution
is enforced through a variational inequality. Numerical simulations in a two-dimensional domain
are also discussed in three test cases for illustrative purposes.

1. Introduction

Cancer is a multi-factorial disease displaying not only a wide genotypic and phenotypic
variability but also a marked ability to sense and to respond to chemo-mechanical cues
during all its progression stages [53]. In the last few decades, mathematical modelling
has emerged as a useful tool to aid medical researchers in shedding light on the key
mechano-biological features underlying solid tumour dynamics [24, 59]. In particular,
diffuse interface approaches have attracted a growing interest for their ability to provide
multi-physics models that are robust and thermodynamically consistent and that allow spe-
cialists to deliver in-silico numerical simulations at an affordable computational cost [51].
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Such models are based on the so-called Cahn—Hilliard equation, which was first proposed
in 1958 by J. W. Cahn and J. E. Hilliard [14, 16] as a phenomenological model for phase
separation in binary solutions due to an interplay between the entropy mixing and demix-
ing effects due to aggregation, also observed in cell biology [27,40]) and in several other
contexts (see, e.g., [12,28]).

Here, we propose a novel solid tumour model in which the cancerous mass behaves
as a saturated mixture of a cancerous phase, made by cellular aggregates behaving as an
elastic fluid, and a healthy phase consisting of healthy cells, extracellular matrix (ECM),
and water. We assume that the interface separating the two phases is diffuse: each volu-
metric element of tissue picked up in the separating layer hosts a volumetric fraction of
both the solid and the liquid phase, simultaneously. The mass balance equation for the
solid phase can be written as a continuity equation with a flux J, namely

8—§1)+V-J=O (1.1a)
ot '
J=-b()VF'(p), (1.1b)

where ¢ = ¢(x,17) € [0, 1] represents the concentration (volume fraction) of the cancer cells
in the binary solution. Given the saturation assumption, the healthy phase concentration
is given by 1 — ¢. In this scenario, ¢ = 1 represents the pure tumour phase and ¢ = 0
represents the healthy tissue. Typically, the spacial variable x takes value in a bounded
domain Q C R3 with a sufficiently smooth boundary, while ¢ ranges in a given bounded
time interval 0 < t < T < co. In equation (1.1b), b(¢p) is a mobility coefficient that can
be constant but in general is a tensor-valued function of ¢. Moreover, F(¢) is the Landau
grand potential defined, for instance, by

Fp) = £ [ [21967 + yip)]ax, (12

where E is the elastic modulus of the cancerous phase (units Pa); y2 is a positive material
parameter related to the interface thickness separating the two phases (units m?); and v (¢)
is a homogeneous free energy density (per unit volume), representing the intermixing and
adhesion forces between the tumour and the host tissue. Following [1, 13], we will adopt
a single-well Lennard-Jones-type potential of the form

3 2
Y) = ~(1—¢") (1 —p) - = — (1 - "%

We refer to Section 2.1 for a complete description of this potential. In particular, see
Remark 2.1 for the definition of ¢*. The main novelty of the present work is accounting
for the presence of an interfacial elastic confinement, mimicking the presence of an elastic
membrane encapsulating the tumour boundary. The presence of such a finite elastic effect
has been observed experimentally both ex-vivo and in-vivo, either due to stress generation
induced by host tissue displaced during growth or due to collagen remodelling in the ECM
at the tumour periphery [64].

—(1—9¢%e.
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For this purpose, we complement the expression of the Landau grand potential in (1.2)
with a quadratic term accounting for such an elastic contribution. Under suitable physical
hypotheses that will be discussed in the next section, the Landau grand potential takes the
form

Fo = £ [ (vo) + 5 VoP)ax

5 ([ warax) [ [ime - m@ie]. ay

where k (units N/m) is the elastic constant of the cell membranes and H) is a regular-
ised Heaviside-type measure with respect to the scalar parameter A € (0, 1), that will be
detailed in what follows. Here ¢ is an arbitrary reference configuration which we take as
the initial configuration. Thus, the additional term accounts for the displacement of the
host tissue, so that Hy(¢) — H (@) is the signed characteristic function of the domain
subset involved in the displacement, taking value 1 where the cellular tissue is elongated
with respect to the initial configuration and value —1 where it is compressed. Moreover,
the term y [|V@ |2 dx is the surface area of the cell distribution in the initial configuration.
Hence, the quantity

%( /Q Vgl ax) /Q [H2(¢) — Hy(@)dx

represents the total normal displacement across the interface between the tumour and the
healthy tissue.

1.1. Contribution beyond the state-of-the-art

Aside from the original application to binary alloys introduced in [3, 5], diffuse interface
approaches have been extended, among the others, to ternary mixtures in [57], multi-
component polymeric systems in [54], mixtures with different heat conductivities in [56],
and phase separation in solder alloys in [25]; later applications concern lithium-ion bat-
teries [65], modelling nano-porosity during de-alloying [31], inpainting of binary im-
ages [9, 10], and even the formation of Saturn’s rings in [63].

Due to its Eulerian standpoint, the mixture approach is particularly suited to deal with
binary flows [38, 52], and multi-phase fluid flows, where a multi-phase Cahn—Hilliard
equation is coupled with a Navier—Stokes system [11,43-45]. Moreover, regarding fluid
flows, recent studies considered computational methods for the Cahn—Hilliard equation
applied to a Taylor flow in micro/macro-channels [32] and to two-layer flow in channels
with sharp topographical features, as in [66]. However, the diffuse interface approach has
been remarkably extended to include solid phases behaving as deformable elastic con-
tinua [37], and to describe pattern formation in biological and ecological systems, as
in [42, 50]. Notable contributions are [34], where the Cahn—Hilliard equation is coupled
with the system of linear elasticity, and [2,33], where it is coupled with visco-elastic sys-
tems with large deformations for describing phase separation in the presence of elastic
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A In(x,) B Ing(x,t) — Ing(x, o)

In(x,t0) (Inr(x, 1) = Ins(x, to))?

Figure 1. Representation of a translation with mass conservation for the tumour configuration.
Panel A (left column): indicator function Iz (X, zg) of the tumour at time 7 (bottom) and its transla-
tion Ipz(x,t) at time ¢ (top). Panel B (right column): difference of the indicator functions at time #¢
and ¢ (top), and difference of the same functions squared (bottom).

interactions between their constituents. An alternative approach along this direction is the
diffuse domain approach, introduced in [19, 20] to describe the dynamics of the elastic
membrane in tumour growth models, avoiding the need to introduce the vector displace-
ment and deformation tensor variables in the system dynamics. In the latter approach,
linear elasticity effects are described by the evolution of auxiliary scalar phase field vari-
ables associated to the indicator function of the membrane that satisfies the Cahn—Hilliard
equation. We point out that the approach introduced in [19, 20] provides an elastic energy
that is not translation invariant and does not use a coupled system of local Cahn—Hilliard
equations. In particular, a term of the form [ (Iar (X, 1) — Inr (X, 79))? dX, where Ipr (X, 1)
is the auxiliary variable associated to the indicator function of the membrane, is intro-
duced in the free energy of the system. Given a translation of the membrane from time ¢
to time 7, the latter term is not equal to zero, as depicted in Figure 1. Our framework fol-
lows the main ideas of the diffuse domain approach to describe linear elasticity through
the evolution of proper phase field variables: in particular, the function Hj () in (1.3) is
associated to the auxiliary variable I (X, ¢) in the diffuse domain approach. Since H) (¢)
depends on the phase field variable ¢ itself, we do not need to introduce auxiliary variables
to the system dynamics to describe elastic effects in the mixture. Moreover, the energy
contribution associated to the elastic displacement in (1.3) is invariant under translations,
as depicted in Figure 1. Indeed, for an overall translation (with mass conservation) of the
tumour configuration, the term Hj (¢) — H () gives a null contribution when integrated
over 2. We also note that in our approach, differently from the diffuse domain approach,
the free energy given by (1.3) leads to a non-local Cahn—Hilliard equation.

From a purely mathematical point of view, it is worth citing some pioneering contribu-
tions that have provided seminal results that we will adapt for the mathematical analysis
of our model. Theoretical aspects of equation (1.1), in the case where the mobility is a
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positive constant and v is a smooth double-well potential, have been investigated in [30],
while for the logarithmic potential we refer to [21]. If the mobility vanishes at the pure
phases and ¥ is of logarithmic type, existence of a weak solution (in a suitable sense)
to a boundary value problem including the Cahn—Hilliard equation has been established
in [29], with the interpretation of the sharp interface limit given in [15]. For further details
and other contributions, the interested reader is referred to the comprehensive review [55].

1.2. Outline

This article is structured as follows: the model is derived in Section 2 illustrating and
justifying the related assumptions and simplifications, after introducing the proper func-
tional and the numerical frameworks. Section 3 is devoted to the existence and regularity
of a weak solution to a suitably defined initial value boundary value problem for the
derived non-local equation of the Cahn-Hilliard type. In Section 4 we propose a con-
tinuous Galerkin Finite-Element discretisation of the above problem and we discuss the
results of numerical simulations of three different test cases to illustrate the effect of the
elastic confinement on tumour progression and pattern formation.

2. Preliminaries

In this section we describe the model derivation, providing the biological and physical
assumptions which allow us to derive a non-local variant of (1.1) through the application
of mixture theory. Moreover, we present the functional and the numerical frameworks of
our analysis.

2.1. Model derivation and assumptions on the mobility and on the potential

We first discuss a multi-phase diffuse-interface mechanical framework which will be the
constitutive background of the tumour growth model. The main idea is that tumour cell
aggregates can be modelled as ensembles of deformable balloons in contact with each
other, the extracellular space being filled by the organic liquid and by the ECM, as in [13].

The general structure of the mixture theory underlying our model can be found, for
instance, in [4,39]. We consider a binary, saturated, closed, and incompressible mixture,
composed by a tumour phase ¢, of proliferating cancerous cells and a healthy phase ¢;
of host cells, water, and ECM. The saturation constraint reads as ¢, + ¢; = 1. In what
follows, the equations will be written in terms of the tumour phase ¢ = ¢, and, thus,
¢; = 1 — ¢. Moreover, the mixture is closed, meaning that the mass transfer rates between
the phases are matched. In the end, the incompressibility constraint can be written, provid-
ed that the average velocity field to be divergence-free, that is,

Vo (@eve +@1vi) = V- [pve + (1 —@)vi] = 0.
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The resulting governing differential equation is a continuity equation that needs to
be closed providing a constitutive law for the phase velocities. The derivation can be
carried out following [18], but with modified parameters in accordance with the following
assumptions:

(1) Mass flux due to chemotactic movements is neglected and the cellular motility is
assumed to be isotropic.

(2) The main source of energy dissipation in the system is the viscous drag interac-
tion due to relative motion between the two phases. Such a friction parameter is

indicated by D and it is measured in Pa-s - m™2.

(3) The diffusion-reaction equation for the nutrient uptake is not incorporated.

(4) The mixture velocity v, that is, the average phase velocity weighted by the cor-
responding volumetric fractions, is considered equal to 0, since we investigate the
very viscous regime where the centre of mass of the mixture does not move.

(5) The Landau grand potential functional F includes a non-local term modelling the
elastic contribution due to tissue movements (see [61] for details on thermody-
namic potentials).

For thermodynamic compatibility, we use Onsager’s variational principle [26] to en-
force the principle of maximum dissipation rate of the free energy. Thus, we compute the
stationary points of the Rayleighian functional R, defined as

dF
R=W4+ —,
dt
with respect to the phase velocities, where W is the energy dissipation and F is the Landau
grand potential of the system. Thanks to assumption (2), the energy dissipation functional
is given by

W = l/ Do(ve —vi) - (Ve —V1)dx, @D
2 Ja

meaning that the dissipation is originated only by the relative velocity of the phases,
and the friction coefficient D represents a Stokes viscosity coefficient per unit surface.
Moreover, from hypothesis (4), we write the Landau grand potential functional as in (1.3).
By standard manipulations, we end up with the following Darcy’s law for the velocity of
the cellular phase [13]: ,
(I1-¢)
Ve = —Tw, 2.2)

where
w=F'(p)=v'(p)—y*Ap

2 ([ 1verax) i) [ 1m0 - Hi@lix
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The resulting continuity equation for our model reads as

ap _
5 [b(p)Vu] =0,

, 2k N2 _
n=v'@) - v*a0+ = ([ 1VoRax) ") [ (a0 - m@lax

where a 2
pil—9¢

b(p) = — D (2.3)
is the degenerate cell mobility. This expression of the mobility is consistent with the choice
in (2.1) of the energy dissipation functional W and the derivation of the law for phase velo-
city (2.2). For physical consistency and because of cell adhesion mediated by inter-cellular
proteins, cell-cell interactions should be attractive at a moderate cell volume fraction and
repulsive at higher densities. Hence, there exists a threshold value ¢* corresponding to
a homeostatic state, representing the volumetric fraction at which the local intercellular

forces vanish. This condition is modelled by assuming
¥'(e*) = 0.

For ¢ < ¢*, cells are attracted to each other and ¥/ (¢) < 0, while for ¢ > ¢*, forces are
repulsive and ¥'(¢) > 0. Above this threshold, repulsive forces tend to infinity as ¢ — 1,
when the cancerous cells fill the entire volume (see [13] for further details). In order to
account for these physical and biological constraints, we use the following phenomenolo-
gical form of ¥’(¢) based on biological observation as in [4, 13,17, 18]:

9> — ")

V' (p)=E I . 9>0.
-9

More precisely, setting £ = 1 without loss of generality, we take a Lennard-Jones-type
potential (see [18,22,46])
¥ (@) = ¥1(p) + v2(9). 24)

where
Yi(p) = —(1—¢")In(1 —9),
3 2
% @
Va(p) = - —(1-9¢") > — (1 -9 ).
3 2
Remark 2.1. Let E be the Young modulus of the cancerous phase. Then,
1-¢
P*e* =9’
where (@, Eqin) are the coordinates of the minimum of ¥/ (¢), with ¢* and @ connected
by the relation [13]

E = —FEni

(1-9)B3g—2¢") _
P(p* — @)

1.
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In summary, the resulting model consists of a fourth-order non-local Cahn—Hilliard-
type equation of the form

dp .
SAVI=0
J=-b(p)Vu
SF 2.5
n=so=v'g) - y*he @)
4
2k -2
+25( [ vakax) " Hy@) [ 10 - H@ldx,
4 Q Q

where
* @ €0, 1] is the volume fraction of cancerous cells in the mixture;
*  b(p) is the cellular mobility, given by (2.3);

* Y(gp) is the single-well potential chosen to model cell-cell attractive and repulsive
forces;

» the elastic non-local effects are incorporated into the Landau grand potential functional
(see (1.3)) as a global contribution driven by the boundary displacements of the tumour
cells. For Hy, we choose the following C °°-regularisation of the step function:

0 ¢ =0,
2tanh?¢  tanh* ¢

H)(p) = 0<gp <A, (2.6)
tanh? A tanh* A v=
1 Q> A
Consider now (2.5) and set
2k 2 -2
K = ﬁ(/s2 V| dx) : .7
440) = | [Halp) ~ Ha(@)lax 23)

for the sake of simplicity, and endow it with initial and no-flux boundary conditions. Thus,
the total mass is conserved. The resulting initial and boundary value problem is

E;—(f =V [b(p)Vu] inQr :=Qx(0,7),

1="v"(p) —y*A¢ + kA (9)H;(¢) inQr, 2.9)
¢(x.0) = @o(x) inQ,

Vo-v=b(@)Vu-v=20 on dQ2 x (0,7),

where Q C R, d =1,2,3isa given bounded domain with Lipschitz boundary 92, v
is the unit normal vector pointing outward 9€2, and ¢ is a given initial concentration.
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With a slight abuse of notation for the sake of compactness, we have indicated by H; (¢)
the functional derivative of H,(¢) with respect to ¢. Observe that the equation degen-
erates on the set {¢ = 0, ¢ = 1} but the (potential) singularity is concentrated on the
set {¢p = 1} only. This is a non-trivial difference with respect to the well-known Cahn—
Hilliard equation studied in literature (see [29, 60] for details). This was also pointed out
in [1] where (2.9) without the non-local term was analysed. More recently, a sort of relax-
ation of this problem has been considered in [58]. In what follows, the existence of a weak
solution will be proven as well as the convergence to a solution to the original problem
studied in [1]. In addition, the long-term convergence of a subsequence of solutions to a
stationary state will be also established.

2.2. Functional spaces and notation

For a given bounded domain Q C R4, d = 1,2, 3, we denote by L?(R2), W™P(Q),
H™(Q) = W™2(Q),and L? (0, T; V) the usual Lebesgue, Sobolev, and Bochner spaces,
respectively, with p € [1,00], m € N, and V being a suitable (separable) real Hilbert
space. Given a time interval [0, T], T > 0, we set Q7 = Q x (0, T).

Denoting by V* the topological dual of a given Banach (or Hilbert) space V, the inner
product in V and the duality pairing between V and V* will be indicated by the sym-
bols (-, )y and (-, -)yxy=, respectively. If V = H(R), then the duality pairing will be
denoted by (-, -}« for the ease of notation.

Symbols C"(€2) and C" (I, I5), n > 0 indicate the spaces of C"-functions from
to R and from intervals /1 C R to I, C R, respectively. Moreover, if d = 1, then we denote
by C*1-52(Q ) the space of Holder continuous functions from Q7 to R with exponents s,
and s, with respect to x and 7, respectively. Also, we make use of the notation

{0<u <1} ={x1)eQr:0<uxr1) <1}

for a given measurable function u : Q7 — R.

We shall use the standard notation when dealing with Bochner spaces. Thereby, a
function u = u(x, t) depending on space and time is considered as a function of time
alone with values in a Hilbert (or Sobolev) space V, that is,

u:[0,T]— V. (2.10)

With this convention, u(¢) and 1(¢) will be used instead of u(x, ) and u,(x,¢). Throughout
the discussion, C, Cy, ..., C, denote generic positive constants and when possible the
numeration will help to keep track of the changes. Eventual dependencies of the constants
on geometrical or physical parameters will be explicitly indicated.

2.3. Numerical setting

Let & > 0 be a discretisation parameter and 73, a quasi-uniform conforming decomposition
of the domain @ Cc R4, d = 1,2, 3 into d-simplices K, with hg = diam(K) and h =
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maxgeg;, hx. We introduce the following finite-element spaces:
Sp = {vy € C°(Q) : vslk € P1(K). VK € T} C H'(Q).
S}T = {Uh € Sy vy EOinQ},

where P (K) stands for the space of polynomials of total order 1 in K. Let J be the set
of nodes of 73, {Xj};es the set of their coordinates, and {¢; };es the Lagrangian basis
functions associated with each node j € J and such that

¢ (xi) = 8ij.
Denoting by IT, : C%(Q) — S, the standard Lagrangian interpolation operator such that
Mpu(x;) =u(x;), VYjelJ,
we define the lumped scalar product (or discrete semi-inner product) as
(u,v), = /Ql'lh[u(x)v(x)]dx = Z(l,¢j)L2(Q)U(XJ’)U(X]‘), 2.11)
jeJ

for all u, v € C°(Q). We also introduce the L2-projection operator Py, : L2(Q2) — Sy, and
its lumped version Py, : L2(R2) — S}, defined by

(Ppu,vn)r2) = (U, vn)2@), Yvn € Sh,
(Pru, vp)p = (u, vp)r2@). YUn € Sh. (2.12)
Remark 2.2. We observe that the projector Py preserves non-negativity, that is, if u > 0

almost everywhere in €2, then ﬁhu > 0. Indeed, taking vy, = ¢; in (2.12), forany j € J
we get, using definition (2.11), that

. d)r2@)
(L.¢j)rxe) —
since ¢; € S}, is non-negative, being a first-degree polynomial interpolating between the
values 0 and 1. Hence, Ppu = ZjeJ Pru(x;)¢; is non-negative.

Pru(x;) =

3

3. Existence of a weak solution

In this section we prove the existence of a weak solution to problem (2.9). First, we intro-
duce a suitable regularised problem in order to deal with the degeneracy set of the mobility
and the singularity of the potential. For this problem, we find a weak solution and provide
a regularity result. Then, we establish suitable a priori estimates which are uniform with
respect to the regularisation parameters. Such estimates are eventually used to pass to the
limit and establish the existence of a weak solution to problem (2.9). Moreover, we will
see that some additional regularity properties can be proven in the one-dimensional case.
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3.1. The regularised problem

The approach extends the strategy presented in [1] (see also [29]) to account for the
presence of the elastic non-local term. We refer to the quoted works for a complete char-
acterisation of the properties of the regularised functions. Given ¢, § € (0, 1), we introduce
a regularised mobility by setting

b(3) r <6,
bs.(r) = 3 b(r) S<r<l—eg Vr e R. 3.1
b(l—¢) r>1-—e¢,

On the other hand, to account for the singularity of the potential in ¢ = 1, we exploit the
convex splitting in (2.4) and define two extensions of the functions ¥; and v, such that

" i/(l_r) r>1-—e,
= vVreR
1r[f],s(r) { i/(r) F<l—e r e
and |
Ta(r) = va(D) + YD = 1) + 5%’(1)(? -1 r>1,
Va(r) r<l.
The regularised potential is thus defined as
Ve(r) = Yre(r) + V(). 3.2)

Summing up, on account of (3.1), (3.2), and (2.6), we introduce the following regularised
version of problem (2.9):

% =V - [bs,c(95,6)Vids.e] in Qr,

e = Vi(05.5) — V2 A5 + kH (ps.:)A*(¢5.,5) in Qr, (3.3)
@s5,6(x,0) = @o(x) inQ,

Vse v =bse(ps,e)ViLse v =0 on 32 x (0, T),

where A* (ps,) stands for

AMgs.) = / (Hy.(¢05.) — Hy,(@)]dx.
Q

Problem (3.3) admits a weak solution in the following sense:

Theorem 3.1. Suppose that ¢y € H'(Q). Then, for every T € (0, c0), there exists a
pair (@s ¢, s ¢) such that
5.e € L0, T; H' (), (3.4a)
@5.e € L2(0, T (H'(Q))"), (3.4b)
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nse € L*(0,T; H (Q)), (3.4¢)
95,6(0) = @o (3.4d)

and satisfying the mixed weak formulation
T T
/ (05,6(). 6 (1)) wdt + / /Qbs,s(fﬂs,a(t))vus,s - VE()dxdt =0,
0 0

/us,5¢dX=/w;(<ps,g)¢dx+y2/ Vs - Vopdx (3.5)
Q Q Q

+ kA (¢s.6) / H (ps.c)pdx, a.e. in[0,T]
Q
forevery £ € L*(0,T; HY(Q)) and ¢ € H(Q).

Proof. The proof is based on a Faedo—Galerkin approach and can be carried out fol-
lowing [29]. It is worth noting at this stage that the bounds of the Faedo—Galerkin se-
quence {¢;,} easily follow from the boundedness properties of (2.6). Therefore, since
standard compactness arguments entail that ¢, — ¢s . in C°([0, T]; L2(2)) and almost
everywhere in Q7, and, moreover, H, € C*(R) N WI’OO(R), we have that

A*(gm) / H} (pm)ydx — A*(03.0) / H} (03.0);dx
Q Q
as m — oo, where
A (gm) = / (i (o) — Hy (@)]dx.
Q

Thanks to this observation, we pass to the limit in the elastic contribution. Thus, we can
prove that the limit point actually satisfies weak formulation (3.5). ]

Remark 3.1. In the definition of the weak solution of the regularised problem it is essen-
tial to highlight that the total mass is conserved, allowing the use of Poincaré-type inequal-

ities. More precisely, we have
F )= £ oo,
Q Q

Remark 3.2. Assuming 0€2 is smooth enough and using standard elliptic regularity the-

forallt € [0, T1.

ory, on account of [1, Lemma 2], we can show that a weak solution to problem (3.3), in the
sense of (3.1), belongs to the space L2(0, T; H3(RQ)). This additional regularity entails
that the solution to the regularised problem satisfies the primal weak formulation

/ (G b)ede + / ' [ bratosV o)

—V*Ags.e + kA (p5.0) Hy (95,6)] - VEdxdt = 0 (3.6)

for every £ € L2(0,T; H'(Q)), with g5 . (0) = @9, where the equations for ¢s . and s ¢
are not decoupled.
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3.2. A priori energy and entropy estimates

Here we prove suitable a priori bounds on a solution to the approximate problem which are
uniform with respect to § and ¢. Such bounds will be essential to establish the existence
of a weak solution to the original problem. Following similar arguments as in [1,29], the
following lemma can be proved:

Lemma 3.1. Given ¢y € HY(Q),0< @0 < 1, there exists g9 < 1 such that for all 0 <
e <eggand$ € (0,1), the estimate

esssuppo ) { | (219082 + elos.Jdx + S14% s, 1)
[0,T] o ) ,€ 3 € ) ,E

T
+ / / bs.o(05.0)| Vg0 Pdxdi < C. 3.7)
0 Q

holds, with a constant C independent of § and ¢.

A further basic a priori bound is concerned with the entropy function @5 , defined by

Bs.0(r) = / W0 (5)ds.

R
where
W5, (r) /r ds
r) =
he & D5 e()
and @5 .(R) = W5 .(R) = 0 for some fixed R € (0, 1). Observe that
1
1 — ‘l”/ —
0= Y= 55
and
Ws.(r) <0 forr <R, (3.8a)
®5.(r) >0, VrekR. (3.8b)

Moreover, we set

P(r)= lim &s5,.(r), Y(r)= Ilim Ws.(r)
§—>0,6—0 §—>0,6—0

and observe that

Pse(r) =®(r), O0=r=1 (3.9)
A straightforward computation (see (2.3)) gives
1
W(r) = 1——1n(1—r)+1nr—C1, (3.10)
—r
®(r) =rInr —rIn(1 —r) — Cyr + C3, (3.1D)

where C;, C; are positive constants.
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On account of the above considerations, the following entropy estimate can be proved:

Lemma 3.2. If0 < ¢y < 1, there exists g9 > 0 such that, for all 0 < ¢ < gg and § > 0,
the following estimate holds with a constant C independent of § and ¢:

T
/S2 .o (05.0) dx + / /Q Ul o 05.0) Vs ol dxdt
0

T
+y2/ /IAws,glzdxdt <C, (3.12)
0 Q

for almost allt € [0, T).

This estimate can be formally obtained by noticing that Ws .(¢s ) is an admissible test
function for the primal weak formulation in (3.6). Treating the temporal derivative as in
the proof of (3.7) [1,29], integrating by parts the term containing the Laplacian, and using
(3.9)-(3.11), together with the terms estimated by (3.7), we obtain the desired result. As
in [1], in order to control the term with v, we employ a Sobolev inequality. Moreover,
uniform boundedness of (A% H )" comes into play.

In the next subsections we will use (3.7) and (3.12) to pass to the limit as §,& — 0 in
problem (3.3) and prove existence of a weak solution to problem (2.9). The case d = 1 is
treated separately from d = 2, 3, since in the latter cases we cannot establish the uniform
convergence of the regularised solutions. Moreover, if d = 1, then we can show that the
weak solution possesses further regularity properties.

3.3. Passage to the limit in the case d = 1

The proof follows [1] and [8], with suitable modifications due to the presence of the non-
local term and the use of a dual weak formulation for the original problem. As in the
regularised problem, the weak solution defined in Theorem 3.2 (and Theorem 3.3 for the
case d = 2, 3) fulfils the mass conservation (see Remark 3.1).

Theorem 3.2. Let d = 1 and o € H'(Q) with 0 < @o < 1. Then, there exist a sub-
sequence of (¢s¢, |15 ,¢) and functions

@ e L®0,T; H'(Q)) N C25(Qr) N L2(0, T; HA(Q)),
¢ € L*(0,T; (H (Q))%),
peLp({0<ep <1},

I

Ler?

ox loc({O <p< 1})

such that, as 8, & — 0 along a suitable subsequence,

%
g5 —@  inL®0,T:H (Q)). (3.132)
9s,. — ¢  uniformly on Qr, (3.13b)
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pse—p  in Ly ({0 <g <1}), (3.13¢)
9 )

Hoe OB L2 ((0<¢ < 1)). (3.13d)

0x ox

Moreover, 0 < ¢ < 1 almost everywhere in Qr and the limit point (¢, v) satisfies the weak
formulation of problem (2.9) in the following sense:

r g d
/ (6, €)udt + / @) % dar o,

0 {0<p<1} dx dx

dgp 0

/ wodxdt = / V' (@) dxdt + )/2/ 90 99 dxdt (3.14)

{0<p<1} {0<p<1} {0<p<1} ox ox

+ K / AM@)H (p)¢ dxdt
{0<p<1}

forallE, ¢ € L2(0,T; H(R)), with ¢(0) = gq.

Proof. The proof consists of four steps.

Step 1: Proof of (3.13a) and (3.13b). Weak-* convergence of ¢; . with respect to
the L2°(0, T; H'(£2))-norm follows directly from energy estimate (3.7), which entails a
bound for ||V@s (1) || 2(q)- Then, on account of the mass conservation, we get the desired
convergence. If d = 1, then we can use the embedding of H!(2) in L>°(2), together with
the Poincaré—Wirtinger inequality and (3.7), to obtain a uniform bound in Q, namely,

||¢5,s([)||iw(9) = C*”‘P&,s(t)”%-p(gz) =C*(1+ C}%)”V‘P&s(t)”iqg) =ccr(1+ CP%)

|05.6(x, )| < /CC*(1 + Cp),

where all constants are independent of § and ¢, thus showing that {¢s .} is uniformly
bounded on Q7. Following [8, Lemma 2.1], we can also prove that there exists an upper
bound of {gs .} in the C 2% (Q7)-norm, meaning that

Therefore, we have

1
|@s,6(x2,1) — @5.6(x1,1)| < Ki|x2 — x1|2,

1
lps.e(x,12) — @s.(x,t1)] < Kqlt2 — 113,

with K, K, > 0 uniform in the regularisation parameters. The first relation follows actu-
ally from Morrey’s inequality

”v”CO’“(S_Z) < Cu(Q.d, p)llvllwirq) forallve WI’P(Q),

with d = 1, p = 2 and, therefore, @ = % Thus, functions ¢s . are all Holder continuous
with the same constants so that {¢s .} is an equi-continuous bounded family of functions.
From the Arzela—Ascoli theorem, we obtain (3.13b).
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Step 2: Proof of 0 < ¢ < 1. The proof can be taken verbatim from [1].

Step 3: Proof of (3.13c) and (3.13d). This proof stems by the compactness result in
Banach spaces. The difficult part is to show the boundedness of 5 .
({0 < ¢ < 1}). For this purpose, for any n > 0, we set

loc

= {(x,t) eQr in<oxt) < 1},
D;r(t) = {x eQ :n<oelxt)< 1},

and we introduce a cutoff function 8, € C(‘)’O(D'%") such that 6, (-,¢) = 1 on Dg(t) and

0<6,(-,t) < 1.0Observe that ¢ = qug ¢ € H'(Q) is a valid test function to take in (3.5).
Recalling that 6, is compactly supported on S := =D} 1 we get

05,
//H%MdX—/wa(ms)ﬁ [s,e dx + y? S ‘” (9 Us.e) dx

‘ /S A (905,8)Hi(¢5,s)9§u5,e dx.

Let us consider the three terms on the right-hand side of the latter equation, separately.
The first and the second integrals can be bounded using (3.7) as in [1,29], obtaining

/S VL (080002150 dx < CrlByits.cllL2cs). (3.15)
e 0 (025 )dx < 20200 gtz sl + Co| 2] e
g Ox ax 1% - e ax lr2s)

For the third term, we proceed once again as in [1], exploiting the fact that the non-
locality is here uniformly bounded, thus obtaining

/ A (0s,6) Hj (95,607 115.6dx < C30n 5.6l 22(s)- (3.17)
N
Adding together (3.15)—(3.17), and renaming the constants to ease the notation, we get

a,u&e
dax

T
| [ 8303 = €O+ 2N 0ums liags) + €|

L2(S)

Following [1] once again, we end up with

lis.ell oo rimi oy =€ +Cn"
4

for every fixed n > 0. This bound holds for any compact subset of the set D(‘)F ={0<g
< 1} and implies the boundedness of {us} in L2 ({0 < ¢ < 1}). From standard com-
pactness results, (3.13c)—(3.13d) follow. Moreover, from boundedness of {¢s .} on Qr
and (3.7), we get that

8“8 €

b(gs.s) € L*(Qr)
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and this entails, by comparison in the first equation of (3.5), the weak convergence
@50 = ¢ in L2(0, T (H'(2))").

Step 4: The limit point satisfies the weak formulation and the initial condition. The
above ingredients allow us to show the existence of a suitable subsequence of the approx-
imating pair (@5 ¢, (5,c) converging to a solution of (3.14), up to a subsequence. Once
again, the proof can be adapted from [1]. |

3.4. Passage to the limit in the casesd=2and d =3

In this case we are unable to prove uniform convergence of the regularised solution. There-
fore, Vs . might not have a (weak) limit in L?(Q7). However, (3.12) helps us to identify
a class of approximating weak solutions for which we can take the limit as §, & — 0, up to
a suitable subsequence. This requires a convenient reformulation of the regularised prob-
lem. Recalling (2.5), we introduce the regularised flux function J; . (see (3.1)), that is,

Js.e = —Ds5.e(05,6)Vids e

= —bs,e(05,6) V[V, (95.6) — YA@s.c + K A* (‘PS,&)H,i (5,6)] (3.18)
and set N )
Zo.1) = 8[A (QDS)H,\(@].
%

The proof of the theorem essentially follows [29, Theorem 1] (see also [35, Theorem 1.2]
and [1, Theorem 3]), with all the necessary modifications.

Theorem 3.3. Letd = 2,3, Q € CY!, and ©o € HI(Q) with 0 < @o < 1 almost every-
where in Q. Then, there exist a subsequence of (¢s ¢, Js.¢) and functions

@ € L®(0,T: H'(Q)) N L*(0,T; H*(Q)),
¢ € L>(0:T: (HY(Q))*).
Je L2(Q7r,RY

such that, as 8, & — 0 along a suitable subsequence,

9s. = ¢  inL*0,T; H(Q)). (3.192)
G5~ in L0, T: H'(Q)). (3.19b)
gse—¢ inL*0,T;(H'(Q)%), (3.19¢)
Ags.e — Ap in L*(Qr). (3.19d)

Js.—J inL*Qr). (3.19¢)
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Moreover, 0 < ¢ < 1 almost everywhere in Qr and the limit point (¢, J) satisfies the
following weak formulation of problem (2.9):

/OT<¢,§>*dt =/0T /QJ-vgdxdz,
/OT /QJ-ndxdt :_/OT/QVZNPV-UJ((p)n]dxdz

T
- / / b(@)V" (¢)Ve - ndxdt
0 Q

T
- / / () Z(@) Vg - ndxdt
0 Q

forevery& € L2(0,T; H'(R)), n € L2(0,T; H'(Q,R?%)) N L®(Q7,RY) withy-v =0
almost everywhere on 022 x (0, T'), ¢(0) = @o almost everywhere in 2, and Vo -v =0
almost everywhere on 0SQ.

Proof. The proof consists of several steps.

Step 1: Proof of (3.192)—(3.19e). First of all we notice that (3.19d) follows from (3.12).
Standard elliptic regularity theory yields @5 . € L?(0, T; H?(2)). Moreover, on account
of (3.1), we have that (3.7) entails (3.19¢). This also implies (3.19c), thanks to weak
formulation (3.5). Eventually, since

L®0,T: H'(Q) N H'(0.T: (H'(2))*) N L*(0, T: H*(Q))
is compactly embedded in
CO(0, T]; LP(Q)) N L?>(0, T; HY(Q)) N L*(0,T; C%(Q)), (3.20)

with p < 6, we have (3.19a). In particular, the last space in (3.20) follows from the Rellich—
Kondrachov theorem, thanks to the H2-regularity, and interpolation in Bochner spaces
(see [62]). Moreover, this convergence also ensures that ¢(0) = ¢ almost everywhere,
since o € H'(Q).

Step 2: Proof of 0 < ¢ < 1. The proof can be taken from [1].

Step 3: The limit point satisfies the weak formulation. We now prove that the limit
point (¢, J) satisfies (3.3). The first equation can be easily identified passing to the limit
as §,& — 0 in the first equation of (3.5) and exploiting weak convergences (3.19c¢)
and (3.19¢). Moreover, the extra regularity ¢s . € L?(0,T; H3*(R)) holds. Hence, we can
multiply Js ¢ by a function y € L2(0, T; H'(Q,R9)) N L=®(Qr,R¥) satisfying - v = 0
almost everywhere on dQ2 x (0, T') and integrate over Q7. This gives

T
/ /Jﬁjg‘”dxdl
0 Q

0
- - /T /Q s o (5.0 VIV (95.0) — V> Ags.e + e A* (95,0 L (05.0)] - ndxdlr,
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and integrating by parts on the right-hand side, we obtain

T T
/ / Js. - ndxdi = — / / V2 Ags.eV - [bs.o (5. nldxdt
0 Q 0 Q

T
- / /Q Dy (05,00 (05.0) Vs e - ndxdt
0

T
| [ #bsct0s0 2.0 Vs ndxdr, 321
0
where Zs . (¢s.-) is given by
8[A* (ps.6) H} (95.6)]
Z(ps,e) = 8;5 ATTE (3.22)

The left-hand side of (3.21) converges to the first term in the second equation of (3.3),
thanks to weak convergence (3.19¢). The first and the second integral on the right-hand
side can be proved to converge to the corresponding terms in (3.3) using already estab-
lished results in [1, 29]. As for the third term on the right-hand side, we know that
bs.(¢s.e) = b(p) almost everywhere in Q, but since b(¢) is uniformly bounded thanks
to (3.20), we also have convergence in L2. Observe now that, calculating the functional
derivative (see (3.22))

Z(ps.e) = (AM) (05.6) H} (¢05.6) + A (05.6) H (¢5.6)

and recalling the regularity and boundedness properties of H), we can apply the domin-
ated convergence theorem and obtain

Z(95,6)bs e (9s.) = Z(p)b(p) in L*(Qr). (3.23)

Using (3.19a) once again, together with (3.23) and the fact that » belongs to the space
L®(Q7,R?), we can pass to the limit as §, ¢ — 0 in the third term on the right-hand
side of (3.21). This concludes the proof, having shown that the limit point is a solution
to (3.3). [

4. Continuous Galerkin Finite-Element approximation and
numerical simulations

We study now the finite element and time discretisation of problem (2.9). Entropy estim-
ate (3.12), which guarantees the positivity of the solution, is not straightforwardly avail-
able at the discrete level, therefore it will be imposed as a constraint through a variational
inequality [1,7].
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4.1. Discrete problem with explicit treatment of the non-local term

At the continuum level, the weak solution ¢ of problem (2.9) satisfies the positivity
property ¢ € [0, 1) almost everywhere in Q7, where ¢ > 0 follows from entropy estim-
ate (3.12), and ¢ < 1 follows from energy estimate (3.7). At the discrete level this is no
longer true; given vy € Sy, we have

VP (W ()] # %vh)wh,

because of the definition of function W given in (3.10) and the presence of the logarithmic
term (the logarithm of a IP; function is not a I’; function). In [36], a suitable approximation
of the mobility 5 has been introduced such that b(v;) V[P, (¥ (vy))] = Vv, which con-
sists of a harmonic average of the mobility on a structured mesh [1]. Due to the constraint
of working with structured meshes, the aforementioned approximation is not feasible in
applications. The positivity property is here imposed as a constraint through a variational
inequality. In order to show the potential of the model, we present here a simple numerical
scheme which relies on the convex splitting (see (2.4)) of the potential 1. We rename the
non-local term as
N (@) = k[A* (@))%,

where « and A% (¢) are defined in (2.7) and (2.8). We remark that it is difficult to impose
explicitly its convex splitting, which would depend on the a priori unknown sign of 4*(¢).
Therefore, for the sake of simplicity, we prefer to treat explicitly the non-local term, post-
poning the design of a more refined numerical method to a later work.

Denoting the time stepby At =T/N,foran N € N,andt, =nAt,n=1,...,N, we
consider the following fully discretised semi-implicit approximation scheme with explicit
treatment of the non-local term: for n = 1,..., N, given goz_l € S;, find ((p;l’, /,LZ) €
;" x Sy such that, for all (§,¢) € Sp x S;,

n—1

w}r: B (ph n—1 n —
(Fit—8), + G HVig Vo) 2@ = 0.
V2o Vo — oMoy + (W19, ¢ — e
> (h = V(o) = N (@™ ¢ = 9}n.
starting from a datum ¢y € H'(Q) and <p}(l’ = Iy (ifd = 1), 90}(: = ﬁhwo (ifd =2,3),
with 0 < gz)}(l) < 1. Defining the discrete energy functional Fy, : S, — R¥ as

4.1

J/2
Fulei] = [ [S 190 + vt + rme (o) Jax

where yg+(-) is the characteristic function of the closed and convex set R*, and endow-
ing S5 with the lumped scalar product (see (2.11)), the variational inequality can be
written as

(g =5 ) = N (@)™ — o + Fulep] < Faldl. Vo € S,5



A diffuse interface model of tumour evolution under a finite elastic confinement 21

which is equivalent to

wh—vh(ep~") — N (@) ~") € 0Fu[e}],

where dFj(¢y) is the subdifferential of the convex and lower-semi-continuous func-
tion Fy. This formulation represents the generalised discrete counterpart of the subdiffer-
ential approach to the standard Cahn—Hilliard equation with constraints introduced in [41].
The lack of uniqueness of the solution of the continuous problem may lead to non-physical
discrete solutions with fixed support, but can be addressed thanks to the introduction of
the discrete semi-inner product (see (2.11)) and a careful subdivision of the nodes of parti-
tion 77, [7]. In particular, 7 is subdivided into elements on which ‘/)Z_l
on which (p,’:_l #0.Givenry, € S}'l"' with fQ ry € (0, 1), we define the set of passive nodes
Jo(rp) C J by

= 0 and elements

Jj € Jo(rn) &= Purp(xj)) =0 <> (rh.¢)12¢0) = 0. 4.2)

The nodes in the set
J1(rp) = J \ Jo(rp)

are called active nodes and they can be partitioned into mutually disjoint and maximally
connected subsets 1, (r) such that

M
T (rn) = | Inrn),
m=1

for M > 1. See [7] for further details. Defining

Sm(ra) = > ¢

J€Im(ry)

we note that ¥,,(r,) = 1 on each element on which r, # 0, since all the vertices of this
element belong to the same 7, (ry,). Observe that there are also elements on which rj, = 0
but still X,,(r,) = 1. Hence, on each element K € 73, we have that r, =0 or X, (r,) = 1
for some m, except for those elements on which both r;, = 0 and X,,(r;) = 1. Moreover,
we define the sets

(1) = { U K: Sl = 1.Vx € K}

KeTy,

that are the union of the maximally connected elements on which r, # 0, or r = 0 and
the indexes of the vertices of the elements belong to I,,(r;) for a given m. The previous
assumptions, together with the arguments introduced in [1], allow us to prove the well-
posedness of (4.1). We summarise this result in the next lemma, reporting only a sketch
of the proof and referring to [1] for details.
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Lemma 4.1. Let (p;l’_l € S;‘, with q)}’l’_l < L. Then, there exists a solution (¢}, uy) €
S}j' x Sy to (4.1) satisfying the property that ¢ < 1. The concentration ¢y is unique

without restrictions on S;‘, while (v is unique on Qm(g);l’_l) form=1,...,M and
n=1...,N. Moreover, the following energy estimate holds:
2

2
Y _
TV @) + IV @, = o3 Dl + (W (gp), D
+ Ao NV} 72 )

2
4 _ -
= 7||V¢Z 1||22(Q) + (W(@Z 1), l)h +C. (4~3)

Proof. The proof can be adapted from [1, Theorem 4] and consists in the following steps:
we consider as a starting point a regularised version of (4.1) with parameter ¢ > 0, where
the regularised potential is defined as in (3.2). Then, the well-posedness for the regularised
problem can be proved adapting the arguments of [1, Lemma 5], treating ¥, + N expli-
citly. Similarly to [1, Lemma 6], we can further obtain uniform (in ¢) stability bounds for
the regularised solution, which let us pass to the limit as ¢ — 0 in the regularised problem
and get the well-posedness of (4.1). Calculations are the same as in [1, Lemma 6], except
for the basic energy estimate, which differs due to the presence of the non-local term.
Thus, we only report here the formal energy estimate associated to (4.1), which could
be rigorously obtained by passing to the limit in the energy estimate for the regularised

n—1

solution. Taking § = uj and ¢ = @3~ in (4.1), we obtain

v 2 y? 1h12
7||V¢Z||L2(Q) + 7||v(‘PZ _‘PZ_ )”LZ(Q)
+ (o), Da + ALl (b(oh ™ N2V ihl13 20

2
Y - - - -
= IV L) + W@ D+ (N (@) 0 =i Dne (44

Observing that (¢} — ¢} ~', ) = (¢ — ¢~ ' 1r2q) = 0, and using boundedness
of N'(-), the equivalence between the lumped and the L?-norm on S}, and the Poincaré—
Wirtinger inequality, we bound the last term in the previous inequality as follows:
2
_ —_ —_ Y _
N0k =i n = Cllgh =i @ = IV, = 03 D) + C-
Therefore, the above estimate and (4.4) entail (4.3). [

We observe that energy estimate (4.3) gives an unconditional stability bound for the
solution of (4.1), but the presence of the explicit in time non-local term in the discretisation
breaks the gradient-stability of the scheme.

4.2. Numerical algorithm

We now consider a procedure for solving the variational inequality at each time step in
problem (4.1). This is based on the general splitting algorithm proposed by Barrett et
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al. in [7] (see also [6,23,49] for further applications with different kinds of mobility). For
fixed n, we first multiply the variational inequality in (4.1) by a relaxation parameter p > 0
and we add the term

(@ —@p)n
to both sides, thus obtaining
@ ¢ —ofn + Py (Vo . V(d — i) L2 + PV 1(0F). & — 0 )
> (¢p- ¢ —opn + Py — V(@) = N (@p ™). b — o). (4.5)
Defining the function Z; in such a way that
(Zh = (0h- 0 + ol = V3(0h ™) = N (@p ™) )
—py* (V. V) 12(0)- (4.6)

inequality (4.5) becomes

(0h @ —op)n + p(W1(0p). ¢ —0p)n = (Z3 . — o). 4.7

Due to the presence of the lumped scalar product, and the fact that the elliptic terms are
contained in the vector Z Z, inequality (4.7) is scalar and must be satisfied on each node
separately. Moreover, from definition (4.6), it follows that

Qop = Z3 d)n = @) d)n — p(uf — ¥ (@p ) — N (o). )
+ pv> (Vo . Vo) 12 (). (4.8)

We now adopt an iterative procedure, in the index k, using (4.6)—(4.8) and providing an
analogue of the active nodes set J+ (goZ_l) of the computational mesh, where (p,’:_l >107°

is meant for 7'~ > 0. Starting from

n,0 —1
goh = (PZ 3
n,0 __ -1
Ky =Ky s

the algorithm consists of the following steps:
Step 1: Find ZZ’k € Sy, using (4.6) such that, for all ¢ € S,

(Z* o = @ o+ = V305 = N .
— pY2 (Vo) * V) 12 ()-

n,k+%

Step 2: As intermediate step, find ¢, € S; such that
k43 - . -
o ) =0T ) € ol (4.92)

Pt J+1 Jet+1
N A B B A (+:90)
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where the inequality, which is actually (4.7), is valid forall ¢ € S ;r and must be solved on
the set of active nodes J ((p,’l’_l). This scalar inequality is thereby a projection problem
on each active node and it can be solved through the Projected Gradient Descent (PGD)
Method, introducing a ﬁxed point 1terat10n of index [ and another relaxation parameter

1,0
® > 0 and starting from (ph KA = (ph . The parameter w is determined as follows:
nk+1
Yp ( X))

= Pye[gl ! (x,)— (gl <x,)+m/f1(<p2"+2’l( -))—Z,’:’k)]

=max{0,<ph +3 (xj)—a)(goz kot x;)—Z,’ }

J+1 n

> (XJ) + pv1 (),
so that the iterations converge using the Polyak Method [48].
Observe that the application of the PGD Method is possible, since the first operand in
the lumped scalar product of (4.9b) is monotone, given the convexity of the functions
involved. If the error term

|| nk+2, (pZ,k-i—%,l

{2
is below a certain tolerance, we stop the cycle and set

nk+t  nk+ii+1
Pn =@ :

Step 3: Find (go” k1 Wy krly ¢ S, x Sy by solving the following system:

(w" KL ey + (VupF T VE) 2o

1 — n— n,
= @O+ (1= bl V" V) ). @.10)
(@ o + oy (Ve T V) 12y — oy T o)

1 k — _
= Qg 2= Z = pyh (e — pN (@p ). P

for all (£, ¢) € Sp x S;". The splitting
blpp YV =1 = (1= b(ep NIV !

is not strictly necessary but enhances the convergence of the numerical method.
Step 4: Finally, if the error term

nk+1 k
“¢ h HLWGD
is below a given threshold, we set
k41
<ph = ¢Z i
k41,

otherwise, the k-iteration must restart.
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Parameter description Value
y Thickness of the diffuse interface 0.025 mm
v Tumour cells proliferation rate 2.5day”!
D Friction coefficient 20 Pa - day - mm 2
E  Young modulus of the cancerous phase 1Pa
A Threshold for the presence of the elastic contribution 0.1
¢*  Concentration value for mutual equilibrium of the cells 0.6
At Temporal discretisation parameter 0.000 625 day
o Relaxation parameter for the first step 0.046875
w Relaxation parameter for the second step 0.0646
tol  Tolerance for the fixed point iterations 5.107°

Table 1. Numerical model parameters and their values. The time step is chosen to be At = 0.5y2,
while between the two relaxation parameters the relation @ = 0.2/(3 + 2p) holds.

4.3. Numerical results

In the following, we discuss the numerical results of three test cases in a two-dimensional
domain, where, as stated in the introduction, the reference configuration is the initial con-
figuration.

In the first test case, we study the effects of elasticity on the spinodal decomposition
and coarsening dynamics adding a random perturbation on a uniform initial concentration
of tumour cells in the metastable regime.

In the second test case, we will consider the merging of isolated circular tumour sub-
domains immersed in a healthy tissue.

In the third test case, we consider the evolution of a circular tumour subdomain, with
initial concentration ¢o = 0.55, immersed in a healthy tissue. For this case, we assume
that the tumour cells can proliferate following a logistic growth law, to illustrate the effects
of the elastic non-linear term on the tumour expansion.

In all the test cases, we will show the numerical results obtained by setting k = 0 and
k = 0.1, with units N/m, in the domain = (=3, 3) x (-3, 3), with units mm?. Recall that
the parameter k, defined after (1.3), is the elastic constant of the cell membranes, and it
must not be confused with the index of the iterative solver. The mesh is created choosing
a uniform partition of 64 subintervals on each edge. The values of the parameters kept
fixed during the simulations are reported in Table 1 and they originate from biological
data settled in literature. We use the expression (2.6) for H). To check the validity of
the model, we make use of a FreeFEM++ code adapted from the one exploited in [1].
In particular, we added the handle functions to deal with the non-locality and, following
the numerical algorithm presented in Section 4.2, we implemented an additional integral
term in the definition of function ZZ’k. Moreover, an adaptive time step is implemented



A. Agosti, R. Bardin, P. Ciarletta, and M. Grasselli 26

IsoValue

t—O m—OO

Figure 2. Initial condition g9 = 0.05 & 0.0256 (left) and the underlying unstructured mesh (right)
for Test Case 1.

in order to avoid numerical errors due to an excessively long temporal pace. Since the
support of the discrete solution can move at most by a length / at each time step, we want
to guarantee that the solution in the passive nodes does not block the spreading of the
non-zero discrete solutions in the active nodes, meaning that

hmm

vmax

At <

where hp;, is the smallest edge length among the elements of the mesh, and vy« is the
maximum on €2 of the tumour expansion velocity, calculated from a Darcy-like law of the

form 5
b 1—
AR Gt
© D

where ¢ # 0, and set to zero where ¢ = 0. In particular, we set
Umax = n’}l(aX(|Ux(X])| + |vy(X])|)
J

and we impose
2

ho.
At = min(y—, mn )
2 2Umax

For the last test case, we introduce a source term of the form

v (1 — !

on the right-hand side of the first equation in (4.10) in order to illustrate the effects of the
elastic non-linear effects on the tumour expansion. The parameter v represents the tumour
cells’ proliferation rate.
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4.3.1. Test Case 1: Coarsening dynamics. In Figure 2 we report the initial condition
@o = 0.05 4 0.0256, where § is a random perturbation uniformly distributed in [—1, 1].
We also report the value of the mass of the solution,

1

m = — (g, Dp.
Q"

In Figure 3 we show the plots of ¢ at different time points during the phase separation
dynamics and the coarsening dynamics of the separated domain subregions. We compare
side by side the case setting k = 0, with no elasticity of the tumour tissue; and the case
setting k = 0.1, accounting for non-local elastic effects. In Figure 3, we remark that the
mass of the solution is conserved both for the cases with k = 0 and k = 0.1. As expected
(see, e.g., [1]), the phase separation dynamics in the case k = O consists in the formation
of circular clusters with ¢ ~ ¢* immersed in a bath with ¢ = 0. In the case k = 0.1,
we observe that the phase separation dynamics are slower and that the interface regions
between separated phases are wider than in the case without elasticity. Also, the non-local
elastic term increases the average length of the cluster domains and enforces a resistance
against relaxation to the background value ¢ = 0 during the whole phase separation. Note
that, since gy < A, no elastic effects are present at the initial stages of the phase separation
dynamics. Indeed, the initial configuration represents a random and homogeneous distri-
bution of cells over the domain, and elastic effects in the dynamics appear only after the
formation of cluster of cells and interfaces at later stages of the phase separation.

4.3.2. Test Case 2: Merging dynamics. The initial condition is given by @9 = 0.55(yp1
+ xB2), where yp1 and y g, are the characteristic functions of two circular regions placed
symmetrically along the x direction. In Figure 4 we show the plots of ¢y at different time
points throughout the merging dynamics, comparing the results obtained by setting k = 0
and k = 0.1. We observe from Figure 4 that the initial circular clusters for k = 0 evolve
with interacting tips initially oriented along the bisecting directions of the plane, finally
merging into the equilibrium shape of an ellipse with the major axis oriented along the x
axis. This merging dynamic is consistent with a minimisation of the tumour boundaries
driven by a non-local short-range intercellular potential only.

In the case k = 0.1, the circular clusters interact only weakly to the further elastic
confinement, not merging during the observed time interval considered. The numerical
results for the case with tissue elasticity share a similar physical interpretation with the
numerical results reported in [47] for interacting hard precipitates in a linear isotropic non-
homogeneous elastic medium, where the elastic modulus associated to the phase ¢ = 1 is
higher than the elastic modulus associated to the phase ¢ = 0. Indeed, the aforementioned
numerical results in [47] show a repulsion between the precipitates, with lack of mutual
interaction.

4.3.3. Test Case 3: Elastic effects on tumour expansion. The initial condition ¢g
= 0.55 is located on a circular shape of radius r = 0.4 centred in the square domain 2.
Outside of the circle, we initially set ¢9 = 0 uniformly. In Figure 6 we compare the
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Figure 3. Plot of <pl’1‘ at different time points for Test Case 1, in the cases k = 0 (first column) and
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numerical solutions at three different time instants to show the differences in the mov-
ing boundary and the fact that the tumour mass m continues to increase due to growth for
the cases k = 0and k = 0.1.

Setting k = 0, only the logistic proliferation rate, the cell-cell adhesion forces, and
the intermixing boundary forces between the tumour and the healthy tissue compete for
driving the expansion of the tumour boundary. Setting k = 0.1, we find that the support of
the solution is still expanding, but the added elastic contribution causes an inhibition of the
domain expansion where ¢ > @ (the core). This also results in an increase of the tumour
volume fraction in the core. From the legends, we observe that the maximum concentration
of cancerous cells is higher in the case k = 0.1 for any sampled time. For instance, in
the last row of Figure 6, the maximum concentration with elasticity is @p,x = 0.784202
against the value @, = 0.688042 of the case without elasticity. Thus, as the non-local
elastic contribution is added, the motion of the support is hindered. Finally, we plot in
Figure 5 the evolution of the concentration over time with respect to the radial coordinate,
comparing once again the cases k = 0 and k = 0.1, but also adding the two intermediate
values k = 0.001 and k = 0.01 for comparison. We take into consideration only the four
more advanced time instants of the simulation — namely, t = 0.625, ¢ = 0.937, ¢t = 1.250,
and ¢ = 1.562. It is worth noting that the trend of the concentration is smoother when
k = 0, whilst the elastic contribution causes the concentration to increase sharply close to
the boundary of the cancerous phase. Observing the tails of the plots in the second row of
Figure 5, corresponding to t = 1.250 and t = 1.562, we confirm that increasing the elastic
constant causes the concentration to be higher in the transition area between the cancerous
phase and the healthy phase.

5. Conclusion and future works

In this work we have considered a Cahn—Hilliard equation with degenerate mobility and
single-well potential, adding a membrane-like elastic effect due to tissue displacement
caused by the expansion of the tumour boundary. This phenomenon has been modelled by
introducing a non-local term, extended to the whole domain €2, in the expression of the
Landau grand potential. We used a standard mixture theory approach to derive a complete
model consisting of a continuity equation whose flux, multiplied by a mobility term, is the
gradient of a chemical potential accounting for the different kinds of energies involved. In
particular, we introduced a diffuse interface, instead of treating the boundary as a sharp
surface, so as to avoid the interface tracking in the numerical analysis. Completing the
model with initial and boundary conditions, we then proceeded to establish the existence
of weak solutions to the corresponding initial and boundary value problem. Starting from
the existence and H 3-regularity of a weak solution of a regularised problem, to handle the
sets of mobility degeneracy and potential singularity, we then proved two a priori estimates
uniform with respect to the regularisation parameters. The entropy estimate guaranteed the
preservation of the positivity of the initial datum, while the energy estimate ensured that
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Concentration along the radial coordinate in four different time instants
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Figure 5. The value of the concentration is plotted with respect to the radial coordinate, comparing
the cases k = 0, k = 1073, k = 1072, and k = 10~} in four different time steps: t = 0.625,

t =0.937,¢t = 1.250, and r = 0.1562.



A. Agosti, R. Bardin, P. Ciarletta, and M. Grasselli 32

the saturation level for the cells’ concentration is reached. Thanks to both the estimates,
we have been able to pass to the limit, for regularisation parameters going to zero, in the
regularised problem and obtain the existence of a weak solution to the original problem.
This step has been quite delicate: in the two- and three-dimensional cases, we could not
prove the Holder continuity of the regularised solution and, thus, the uniform convergence
of the regularised solution to a solution of the original problem could not be guaranteed.
For this reason, we introduced a different type of weak solution and proved the bounded-
ness of the entire flux function (see [29] for more details on this strategy).

As for the numerical part, we had to overcome some difficulties in the discretisation
of the problem. First of all, the positivity property that the continuous solution inherits
from the initial datum, guaranteed by the entropy estimate, is not preserved at the dis-
crete level, forcing the introduction of a variational inequality to impose the positivity as a
constraint. Furthermore, the non-uniqueness of the continuous solution may lead to a non-
physical discrete solution with fixed support; to circumvent this problem, we introduced
the discrete inner product and performed a partition of the nodes of the mesh into passive
and active nodes. We described a numerical algorithm to solve the variational inequality
at each time step, explicitly treating the non-locality. Finally, we have performed various
numerical simulations on a simplified square geometry to test the validity of the algorithm,
setting physically meaningful values for the model parameters from the literature. In par-
ticular, we showed the effects of elasticity on the spinodal decomposition, on the merging
of isolated subdomains of cancerous phase, and on the evolution of a circular region of
tumour under the effect of a logistic proliferation rate of the cancer cells. The results
are promising, but they suffer some limitations. First of all, the explicit treatment of the
non-local elastic term forces the time step of the numerical scheme to be very small, res-
ulting in long and heavy computations; the convergence of the fixed-point iterations is in
this case very difficult to achieve. Moreover, to get more accurate information about the
influence of the elasticity on the moving support of the cancerous phase, the concentra-
tion in the transition area, and the maximum concentration on the core of the tumour, we
should examine the behaviour on a longer time scale. For future developments, an impli-
cit treatment of the non-local term could be proposed to reduce the numerical complexity,
relaxing also the requirements on the time step. Moreover, since it is always possible to
decompose a function into its convex and concave parts, future studies will investigate the
optimality of such a splitting. From the modelling viewpoint, more refined elastic models
may be sought to describe other boundary elastic effects, for instance, depending on the
mean or Gaussian curvature of the boundary of the cancerous phase, and/or introducing
a penalisation on the first (or the second) fundamental form of the surface of the tumour.
Finally, a further development will concern the coupling of the non-local Cahn—Hilliard
equation studied in this work with other biologically relevant features of tumour growth,
such as the diffusion/uptake of a nutrient and/or the response to anti-cancer therapies.
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A. Agosti, R. Bardin, P. Ciarletta, and M. Grasselli 34

Acknowledgements. M. Grasselli and A. Agosti are members of Gruppo Nazionale per
I’ Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA), Istituto Nazionale
di Alta Matematica (INdAM). P. Ciarletta is member of Gruppo Nazionale per la Fisica
Matematica (GNFM), INAAM. The authors thank the referees for their careful review of
the work, which contributed to improving the readability of the manuscript.

Funding. R. Bardin acknowledges the support by NWO via Grant OCENW.KLEIN.183.
A. Agosti, P. Ciarletta, and M. Grasselli acknowledge the support of MIUR through the
PRIN Grant 2020F3NCPX “Mathematics for Industry 4.0 (Math414)”. P. Ciarletta and
M. Grasselli acknowledge the support by MUR, grant Dipartimento di Eccellenza 2023-
2027.

References

[1] A. Agosti, P. F. Antonietti, P. Ciarletta, M. Grasselli, and M. Verani, A Cahn-Hilliard-type
equation with application to tumor growth dynamics. Math. Methods Appl. Sci. 40 (2017),
no. 18, 7598-7626 Zbl 1387.35584 MR 3742150
[2] A. Agosti, P. Colli, H. Garcke, and E. Rocca, A Cahn-Hilliard model coupled to viscoelasticity
with large deformations. Commun. Math. Sci. 21 (2023), no. 8, 2083-2130 Zbl 07830571
MR 4671361
[3] S. M. Allen and J. W. Cahn, Ground state structures in ordered binary alloys with second
neighbor interactions. Acta Metall. 20 (1972), 423-433
[4] D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumor growth. Math.
Models Methods Appl. Sci. 12 (2002), no. 5, 737-754 Zbl 1016.92016 MR 1909425
[5] D. Anders and K. Weinberg, Numerical simulation of diffusion induced phase separation and
coarsening in binary alloys. Comput. Mater. Sci. 50 (2011), 1359-1364
[6] J. W. Barrett and J. F. Blowey, Finite element approximation of a model for phase separation
of a multi-component alloy with non-smooth free energy. Numer. Math. 77 (1997), no. 1, 1-34
Zbl 0882.65129 MR 1464653
[7] J. W. Barrett, J. F. Blowey, and H. Garcke, Finite element approximation of the Cahn-Hilliard
equation with degenerate mobility. STAM J. Numer. Anal. 37 (1999), no. 1, 286-318
Zbl 0947.65109 MR 1742748
[8] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations. J. Differ-
ential Equations 83 (1990), no. 1, 179-206 Zbl 0702.35143 MR 1031383
[9] A. Bertozzi, S. Esedoglu, and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for
binary image inpainting. Multiscale Model. Simul. 6 (2007), no. 3, 913-936 Zbl 1149.35309
MR 2368973
[10] A. L. Bertozzi, S. Esedoglu, and A. Gillette, Inpainting of binary images using the Cahn-
Hilliard equation. IEEE Trans. Image Process. 16 (2007), no. 1, 285-291 Zbl 1279.94008
MR 2460167
[11] F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows.
Comput. & Fluids 31 (2002), 41-68 Zbl 1057.76060
[12] C. Brangwynne, P. Tompa, and R. Pappu, Polymer physics of intracellular phase transitions.
Nat. Phys. 11 (2015), 899-904 Zbl 1253.81158


https://doi.org/10.1002/mma.4548
https://doi.org/10.1002/mma.4548
https://zbmath.org/?q=an:1387.35584
https://mathscinet.ams.org/mathscinet-getitem?mr=3742150
https://doi.org/10.4310/cms.2023.v21.n8.a2
https://doi.org/10.4310/cms.2023.v21.n8.a2
https://zbmath.org/?q=an:07830571
https://mathscinet.ams.org/mathscinet-getitem?mr=4671361
https://doi.org/10.1016/0001-6160(72)90037-5
https://doi.org/10.1016/0001-6160(72)90037-5
https://doi.org/10.1142/S0218202502001878
https://zbmath.org/?q=an:1016.92016
https://mathscinet.ams.org/mathscinet-getitem?mr=1909425
https://doi.org/10.1016/j.commatsci.2010.03.030
https://doi.org/10.1016/j.commatsci.2010.03.030
https://doi.org/10.1007/s002110050276
https://doi.org/10.1007/s002110050276
https://zbmath.org/?q=an:0882.65129
https://mathscinet.ams.org/mathscinet-getitem?mr=1464653
https://doi.org/10.1137/S0036142997331669
https://doi.org/10.1137/S0036142997331669
https://zbmath.org/?q=an:0947.65109
https://mathscinet.ams.org/mathscinet-getitem?mr=1742748
https://doi.org/10.1016/0022-0396(90)90074-Y
https://zbmath.org/?q=an:0702.35143
https://mathscinet.ams.org/mathscinet-getitem?mr=1031383
https://doi.org/10.1137/060660631
https://doi.org/10.1137/060660631
https://zbmath.org/?q=an:1149.35309
https://mathscinet.ams.org/mathscinet-getitem?mr=2368973
https://doi.org/10.1109/TIP.2006.887728
https://doi.org/10.1109/TIP.2006.887728
https://zbmath.org/?q=an:1279.94008
https://mathscinet.ams.org/mathscinet-getitem?mr=2460167
https://doi.org/10.1016/s0045-7930(00)00031-1
https://zbmath.org/?q=an:1057.76060
https://doi.org/10.1038/nphys3532
https://zbmath.org/?q=an:1253.81158

(13]

(14]
(15]
(16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

(24]
[25]
[26]
(27]
(28]
(29]
(30]
(31]

(32]

A diffuse interface model of tumour evolution under a finite elastic confinement 35

H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math-
ematical medicine and biology: a journal of the IMA 20 (2003), no. 4, 341-366

Zbl 1046.92023

J. W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961), 795-801

J. W. Cahn, C. M. Elliott, and A. Novick-Cohen, The Cahn-Hilliard equation with a concen-
tration dependent mobility: motion by minus the Laplacian of the mean curvature. European
J. Appl. Math. 7 (1996), no. 3, 287-301 Zbl 0861.35039 MR 1401172

J. W. Cahn and J. E. Hilliard, Free energy of nonuniform system I. Interfacial free energy. J.
Chem. Phys. 28 (1958), 258-267 Zbl 1431.35066

C. Chatelain, T. Balois, P. Ciarletta, and M. B. Amar, Emergence of microstructural patterns
in skin cancer: a phase separation analysis in a binary mixture. New J. Phys. 13 (2011), article
no. 115013

C. Chatelain, P. Ciarletta, and M. Ben Amar, Morphological changes in early melanoma devel-
opment: influence of nutrients, growth inhibitors and cell-adhesion mechanisms. J. Theoret.
Biol. 290 (2011), 46-59 Zbl 1397.92318 MR 2973936

Y. Chen and J. Lowengrub, Tumor growth in complex, evolving microenvironmental geomet-
ries: a diffuse domain approach. J. Theor. Biol. 361 (2014), 14-30 Zbl 1303.92042

Y. Chen, S. M. Wise, V. B. Shenoy, and J. S. Lowengrub, A stable scheme for a nonlinear,
multiphase tumor growth model with an elastic membrane. Int. J. Numer. Methods Biomed.
Eng. 30 (2014), no. 7, 726-754 Zbl 1395.65014 MR 3232055

L. Cherfils, A. Miranville, and S. Zelik, The Cahn-Hilliard equation with logarithmic poten-
tials. Milan J. Math. 79 (2011), no. 2, 561-596 Zbl 1250.35129 MR 2862028

M. Colombo, C. Giverso, E. Faggiano, C. Boffano, F. Acerbi, and P. Ciarletta, Towards the per-
sonalized treatment of glioblastoma: integrating patient-specific clinical data in a continuous
mechanical model. PLoS One 10 (2015), no. 11, article no. e0143032

M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a
logarithmic free energy. Numer. Math. 63 (1992), no. 1, 39-65 Zbl 0762.65074

MR 1182511

V. Cristini and J. Lowengrub, Multiscale modeling of cancer: an integrated experimental and
mathematical modeling approach. Cambridge University Press, Cambridge, 2010

A. Denis, C. Hesch, and K. Weinberg, Computational modeling of phase separation and
coarsening in solder alloys. Int. J. Solids Struct. 49 (2012), 1557-1572

M. Doi, Onsager’s variational principle in soft matter. J. Condens. Matter Phys. 23 (2011)
Zbl 1285.82001 Zbl 1285.82001

E. Dolgin, What lava lamps and vinaigrette can teach us about cell biology. Nat. 555 (2018),
300-302

R. Y. Dong and S. Granick, Reincarnations of the phase separation problem. Nat. Commun. 12
(2021), article no. 911

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility. STAM
J. Math. Anal. 27 (1996), no. 2, 404-423 Zbl 0856.35071 MR 1377481

C. M. Elliott and Z. Songmu, On the Cahn-Hilliard equation. Arch. Rational Mech. Anal. 96
(1986), no. 4, 339-357 Zbl 0624.35048 MR 855754

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity
in dealloying. Nat. 410 (2001), 450-453

H. Ganapathy, E. Al-Hajri, and M. Ohadi, Phase field modeling of Taylor flow in mini/macro-
channels, Part II: Hydrodynamics of Taylor flow. Chem. Eng. Sci. 94 (2013), 156165


https://doi.org/10.1093/imammb/20.4.341
https://zbmath.org/?q=an:1046.92023
https://doi.org/10.1016/0001-6160(61)90182-1
https://doi.org/10.1017/S0956792500002369
https://doi.org/10.1017/S0956792500002369
https://zbmath.org/?q=an:0861.35039
https://mathscinet.ams.org/mathscinet-getitem?mr=1401172
https://doi.org/10.1063/1.1744102
https://zbmath.org/?q=an:1431.35066
https://doi.org/10.1088/1367-2630/13/11/115013
https://doi.org/10.1088/1367-2630/13/11/115013
https://doi.org/10.1016/j.jtbi.2011.08.029
https://doi.org/10.1016/j.jtbi.2011.08.029
https://zbmath.org/?q=an:1397.92318
https://mathscinet.ams.org/mathscinet-getitem?mr=2973936
https://doi.org/10.1016/j.jtbi.2014.06.024
https://doi.org/10.1016/j.jtbi.2014.06.024
https://zbmath.org/?q=an:1303.92042
https://doi.org/10.1002/cnm.2624
https://doi.org/10.1002/cnm.2624
https://zbmath.org/?q=an:1395.65014
https://mathscinet.ams.org/mathscinet-getitem?mr=3232055
https://doi.org/10.1007/s00032-011-0165-4
https://doi.org/10.1007/s00032-011-0165-4
https://zbmath.org/?q=an:1250.35129
https://mathscinet.ams.org/mathscinet-getitem?mr=2862028
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132887
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132887
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132887
https://doi.org/10.1007/BF01385847
https://doi.org/10.1007/BF01385847
https://zbmath.org/?q=an:0762.65074
https://mathscinet.ams.org/mathscinet-getitem?mr=1182511
https://doi.org/10.1017/cbo9780511781452
https://doi.org/10.1017/cbo9780511781452
https://doi.org/10.1016/j.ijsolstr.2012.03.018
https://doi.org/10.1016/j.ijsolstr.2012.03.018
https://doi.org/10.1088/0953-8984/23/28/284118
https://zbmath.org/?q=an:1285.82001
https://zbmath.org/?q=an:1285.82001
https://doi.org/10.1038/d41586-018-03070-2
https://doi.org/10.1038/s41467-020-20360-4
https://doi.org/10.1137/S0036141094267662
https://zbmath.org/?q=an:0856.35071
https://mathscinet.ams.org/mathscinet-getitem?mr=1377481
https://doi.org/10.1007/BF00251803
https://zbmath.org/?q=an:0624.35048
https://mathscinet.ams.org/mathscinet-getitem?mr=855754
https://doi.org/10.1038/35068529
https://doi.org/10.1038/35068529
https://doi.org/10.1016/j.ces.2013.01.048
https://doi.org/10.1016/j.ces.2013.01.048

(33]

(34]

(35]

(36]
(37]
(38]
(39]
[40]

(41]

(42]
[43]
(44]
(45]
[46]
[47]
(48]
[49]

(501

[51]

A. Agosti, R. Bardin, P. Ciarletta, and M. Grasselli 36

H. Garcke, B. Kovics, and D. Trautwein, Viscoelastic Cahn-Hilliard models for tumor growth.
Math. Models Methods Appl. Sci. 32 (2022), no. 13, 2673-2758 Zbl 1524.35659

MR 4535547

H. Garcke, K. F. Lam, and A. Signori, On a phase field model of Cahn-Hilliard type for
tumour growth with mechanical effects. Nonlinear Anal. Real World Appl. 57 (2021), article
no. 103192 Zbl 1456.35091 MR 4126782

G. Griin, Degenerate parabolic differential equations of fourth order and a plasticity model
with non-local hardening. Z. Anal. Anwendungen 14 (1995), no. 3, 541-574 Zbl 0835.35061
MR 1362530

G. Griin and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equa-
tion. Numer. Math. 87 (2000), no. 1, 113-152 Zbl 0988.76056 MR 1800156

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a micro-
force balance. Phys. D 92 (1996), no. 3—4, 178-192 Zbl 0885.35121 MR 1387065

M. E. Gurtin, D. Polignone, and J. Vifials, Two-phase binary fluids and immiscible fluids
described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996), no. 6, 815-831
Zbl 0857.76008 MR 1404829

M. Holmes, Mixture theories for the mechanics of biological tissues. RPI Web Book, 1995

A. A. Hyman and K. Simon, Beyond oil and water-phase transitions in cells. Science 337
(2012), 1047-1049

N. Kenmochi, M. Niezgédka, and 1. Pawtow, Subdifferential operator approach to the Cahn-
Hilliard equation with constraint. J. Differential Equations 117 (1995), no. 2, 320-356

Zbl 0823.35073 MR 1325801

E. Khain and L. Sander, Generalized Cahn-Hilliard equation for biological applications. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys. 77 (2005), 51-129

V. V. Khatavkar, P. D. Anderson, and H. E. H. Meijer, On scaling of diffuse-interface models.
Chem. Eng. Sci. 61 (2006), 2364-2378 Zbl 1111.76016

J. Kim, A continuous surface tension force formulation for diffuse-interface models. J. Com-
put. Phys. 204 (2005), no. 2, 784-804 Zbl 1329.76103 MR 2131862

J. Kim, Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12
(2012), no. 3, 613-661 Zbl 1373.76030 MR 2903596

J. Lennard-Jones, On the determination of molecular fields. —II. from the equation of state of
a gas. Proc. Math. Phys. Eng. Sci. 106 (1924), 463-477

P. H. Leo, J. S. Lowengrub, and H. J. Jou, A diffuse interface model for microstructural evol-
ution in elastically stressed solids. Acta Mater. 46 (1998), no. 6, 2113-2130

E. S. Levitin and B. T. Polyak, Constrained minimization methods. USSR Comput. Math. and
Math. Phys. 6 (1966), 1-50 Zbl 0184.38902

P-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM
J. Numer. Anal. 16 (1979), no. 6, 964-979 Zbl 0426.65050 MR 551319

Q.-X. Liu, A. Doelman, V. Rottschifer, M. de Jager, P. M. J. Herman, M. Rietkerk, and
J. van de Koppel, Phase separation explains a new class of self-organized spatial patterns in
ecological systems. Proc. Natl. Acad. Sci. USA 110 (2013), no. 29, 11905-11910

MR 3104979

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise, and
V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Non-
linearity 23 (2010), no. 1, RI-R91 Zbl 1181.92046 MR 2576370


https://doi.org/10.1142/S0218202522500634
https://zbmath.org/?q=an:1524.35659
https://mathscinet.ams.org/mathscinet-getitem?mr=4535547
https://doi.org/10.1016/j.nonrwa.2020.103192
https://doi.org/10.1016/j.nonrwa.2020.103192
https://zbmath.org/?q=an:1456.35091
https://mathscinet.ams.org/mathscinet-getitem?mr=4126782
https://doi.org/10.4171/ZAA/639
https://doi.org/10.4171/ZAA/639
https://zbmath.org/?q=an:0835.35061
https://mathscinet.ams.org/mathscinet-getitem?mr=1362530
https://doi.org/10.1007/s002110000197
https://doi.org/10.1007/s002110000197
https://zbmath.org/?q=an:0988.76056
https://mathscinet.ams.org/mathscinet-getitem?mr=1800156
https://doi.org/10.1016/0167-2789(95)00173-5
https://doi.org/10.1016/0167-2789(95)00173-5
https://zbmath.org/?q=an:0885.35121
https://mathscinet.ams.org/mathscinet-getitem?mr=1387065
https://doi.org/10.1142/S0218202596000341
https://doi.org/10.1142/S0218202596000341
https://zbmath.org/?q=an:0857.76008
https://mathscinet.ams.org/mathscinet-getitem?mr=1404829
https://doi.org/10.1126/science.1223728
https://doi.org/10.1006/jdeq.1995.1056
https://doi.org/10.1006/jdeq.1995.1056
https://zbmath.org/?q=an:0823.35073
https://mathscinet.ams.org/mathscinet-getitem?mr=1325801
https://doi.org/10.1103/physreve.77.051129
https://doi.org/10.1016/j.ces.2005.10.035
https://doi.org/10.1016/j.ces.2005.10.035
https://zbmath.org/?q=an:1111.76016
https://doi.org/10.1016/j.jcp.2004.10.032
https://zbmath.org/?q=an:1329.76103
https://mathscinet.ams.org/mathscinet-getitem?mr=2131862
https://doi.org/10.4208/cicp.301110.040811a
https://zbmath.org/?q=an:1373.76030
https://mathscinet.ams.org/mathscinet-getitem?mr=2903596
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/https://doi.org/10.1016/S1359-6454(97)00377-7
https://doi.org/https://doi.org/10.1016/S1359-6454(97)00377-7
https://doi.org/10.1016/0041-5553(66)90114-5
https://zbmath.org/?q=an:0184.38902
https://doi.org/10.1137/0716071
https://zbmath.org/?q=an:0426.65050
https://mathscinet.ams.org/mathscinet-getitem?mr=551319
https://doi.org/10.1073/pnas.1222339110
https://doi.org/10.1073/pnas.1222339110
https://mathscinet.ams.org/mathscinet-getitem?mr=3104979
https://doi.org/10.1088/0951-7715/23/1/001
https://zbmath.org/?q=an:1181.92046
https://mathscinet.ams.org/mathscinet-getitem?mr=2576370

(52]

(53]
[54]

[55]

(561
[57]

(58]

[59]

[60]

[61]
[62]
[63]

[64]

[65]

[66]

A diffuse interface model of tumour evolution under a finite elastic confinement 37

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological
transitions. R. Soc. Lond. Proc. Ser: A Math. Phys. Eng. Sci. 454 (1998), no. 1978, 2617-2654
Zbl 0927.76007 MR 1650795

P. Lu, V. M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer pro-
gression. J. Cell. Biol. 196 (2012), no. 4, 395-406 Zbl 1366.91012

L. McMaster, Aspects of liquid-liquid phase transition phenomena in multicomponent poly-
meric systems. Adv. Chem. 142 (1975), 4365

A. Miranville, The Cahn-Hilliard equation. CBMS-NSF Regional Conf. Ser. in Appl. Math.
95, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019

Zbl 1446.35001 MR 4001523

D. Molin and R. Mauri, Spinodal decomposition of binary mixtures with composition-
dependent heat conductivities. Chem. Eng. Sci. 63 (2008), 2402-2407

J. Park, R. Mauri, and P. Anderson, Phase separation of viscous ternary liquid mixtures. Chem.
Eng. Sci. 80 (2012), 270-278

B. Perthame and A. Poulain, Relaxation of the Cahn-Hilliard equation with singular single-
well potential and degenerate mobility. European J. Appl. Math. 32 (2021), no. 1, 89-112
Zbl 1504.35076 MR 4199231

L. Preziosi (ed.), Cancer modelling and simulation. Chapman & Hall/CRC Math. Biol. Med.
Ser., Chapman & Hall/CRC, Boca Raton, FL, 2003 Zbl 1039.92022 MR 2005054

G. Schimperna and S. Zelik, Existence of solutions and separation from singularities for a
class of fourth order degenerate parabolic equations. Trans. Amer. Math. Soc. 365 (2013),
no. 7, 3799-3829 Zbl 1278.35052 MR 3042604

S. Schulz, Phase-field simulations of multi-component solidification and coarsening based on
thermodynamic datasets. KIT Scientific Publishing, 2017

J. Simon, Compact sets in the space L7 (0, T'; B). Ann. Mat. Pura Appl. (4) 146 (1987), 65-96
Zbl 0629.46031 MR 916688

S. Tremaine, On the origin of irregular structure in Saturn’s rings. Astron. J. 125 (2002), 894—
901

P. A. Wijeratne, J. H. Hipwell, D. J. Hawkes, T. Stylianopoulos, and V. Vavourakis, Multiscale
biphasic modelling of peritumoural collagen microstructure: The effect of tumour growth on
permeability and fluid flow. PloS One 12 (2017), no. 9, article no. e0184511

Y. Zeng and M. Z. Bazant, Phase separation dynamics in isotropic ion-intercalation particles.
SIAM J. Appl. Math. 74 (2014), no. 4, 980-1004 Zbl 1308.35308 MR 3231992

C. Zhou and S. Kumar, Two-dimensional two-layer channel flow near a step. Chem. Eng. Sci.
81 (2012), 38-45 Zbl 0713.17008 Zbl 1182.76448

Received 18 October 2023; revised 5 March 2024.

Abramo Agosti
Dipartimento di Matematica ‘F. Casorati’, Universita degli Studi di Pavia, Via Ferrata 5,
27100 Pavia, Italy; abramo.agosti @unipv.it

Riccardo Bardin
Department of Applied Mathematics, MACS Group, University of Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands; r.bardin @utwente.nl


https://doi.org/10.1098/rspa.1998.0273
https://doi.org/10.1098/rspa.1998.0273
https://zbmath.org/?q=an:0927.76007
https://mathscinet.ams.org/mathscinet-getitem?mr=1650795
https://doi.org/10.1083/jcb.201102147
https://doi.org/10.1083/jcb.201102147
https://zbmath.org/?q=an:1366.91012
https://doi.org/10.1021/ba-1975-0142.ch005
https://doi.org/10.1021/ba-1975-0142.ch005
https://doi.org/10.1137/1.9781611975925
https://zbmath.org/?q=an:1446.35001
https://mathscinet.ams.org/mathscinet-getitem?mr=4001523
https://doi.org/10.1016/j.ces.2008.01.028
https://doi.org/10.1016/j.ces.2008.01.028
https://doi.org/10.1016/j.ces.2012.06.017
https://doi.org/10.1017/s0956792520000054
https://doi.org/10.1017/s0956792520000054
https://zbmath.org/?q=an:1504.35076
https://mathscinet.ams.org/mathscinet-getitem?mr=4199231
https://doi.org/10.1201/9780203494899
https://zbmath.org/?q=an:1039.92022
https://mathscinet.ams.org/mathscinet-getitem?mr=2005054
https://doi.org/10.1090/S0002-9947-2012-05824-7
https://doi.org/10.1090/S0002-9947-2012-05824-7
https://zbmath.org/?q=an:1278.35052
https://mathscinet.ams.org/mathscinet-getitem?mr=3042604
https://doi.org/https://doi.org/10.5445/KSP/1000063920
https://doi.org/https://doi.org/10.5445/KSP/1000063920
https://doi.org/10.1007/BF01762360
https://zbmath.org/?q=an:0629.46031
https://mathscinet.ams.org/mathscinet-getitem?mr=916688
https://doi.org/10.1086/345963
https://doi.org/10.1371/journal.pone.0184511
https://doi.org/10.1371/journal.pone.0184511
https://doi.org/10.1371/journal.pone.0184511
https://doi.org/10.1137/130937548
https://zbmath.org/?q=an:1308.35308
https://mathscinet.ams.org/mathscinet-getitem?mr=3231992
https://doi.org/10.1016/j.ces.2012.06.053
https://zbmath.org/?q=an:0713.17008
https://zbmath.org/?q=an:1182.76448
mailto:abramo.agosti@unipv.it
mailto:r.bardin@utwente.nl

A. Agosti, R. Bardin, P. Ciarletta, and M. Grasselli 38

Pasquale Ciarletta
MOX Laboratory, Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi 9,
20133 Milano, Italy; pasquale.ciarletta@polimi.it

Maurizio Grasselli
Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi 9, 20133 Milano, Italy;
maurizio.grasselli @polimi.it


mailto:pasquale.ciarletta@polimi.it
mailto:maurizio.grasselli@polimi.it

	1. Introduction
	1.1. Contribution beyond the state-of-the-art
	1.2. Outline

	2. Preliminaries
	2.1. Model derivation and assumptions on the mobility and on the potential
	2.2. Functional spaces and notation
	2.3. Numerical setting

	3. Existence of a weak solution
	3.1. The regularised problem
	3.2. A priori energy and entropy estimates
	3.3. Passage to the limit in the case d = 1
	3.4. Passage to the limit in the cases d = 2 and d = 3

	4. Continuous Galerkin Finite-Element approximation and numerical simulations
	4.1. Discrete problem with explicit treatment of the non-local term
	4.2. Numerical algorithm
	4.3. Numerical results
	4.3.1 Test Case 1: Coarsening dynamics
	4.3.2 Test Case 2: Merging dynamics
	4.3.3 Test Case 3: Elastic effects on tumour expansion


	5. Conclusion and future works
	References

