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A survey of congruences and quotients of
partially ordered sets

Nicholas J. Williams

Abstract. A quotient of a poset P is a partial order obtained on the equivalence classes of an equi-
valence relation 6 on P; 0 is then called a congruence if it satisfies certain conditions, which vary
according to different theories. The literature on congruences and quotients of partially ordered sets
contains a large and proliferating array of approaches, but little in the way of systematic exposi-
tion and examination of the subject. We seek to rectify this by surveying the different theories in
the literature and providing philosophical discussion on requirements for notions of congruences of
posets. We advocate a pluralist approach which recognises that different types of congruence arise
naturally in different mathematical situations. There are some notions of congruence which are very
general, whilst others capture specific structure which often appears in examples. Indeed, we finish
by giving several examples where quotients of posets appear naturally in mathematics.

1. Introduction

Quotients and partially ordered sets are among the most basic notions in mathematics, and
yet their interaction with each other has received little systematic study. Roughly speaking,
a quotient of a poset P is a poset Q whose elements are equivalence classes of an equival-
ence relation on P, and whose order relations are determined by those of P in a natural
way. Another way of viewing Q is as a certain poset with a surjective order-preserving
map P — Q; here the fibres of the map correspond to the equivalence relation. Given an
arbitrary equivalence relation on P, there is not always a natural way of constructing a
poset whose elements are the equivalence classes. Hence, one needs to restrict the class of
equivalence relations, or take a different approach to quotients. Such a restricted class of
equivalence relations is known as a class of congruences.

There is clear motivation for the notion of a quotient of a poset, and therefore of a
congruence. Given a set which is partially ordered and partitioned, it is natural to ask
whether the partial order can be used to give a natural partial order to the parts of the
partition. Furthermore, quotients allow one to construct new posets from old ones, and are
useful for describing the relation between existing posets.

Several different approaches to congruences of posets exist [1, 16,20, 38, 44, 46, 49,
62,87,98,103, 107, 125], while the subject of quotients of posets is not covered by many
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prominent texts on partial orders, such as [24, 47,94, 106]. General posets thus stand in
stark contrast to lattices, where there is a singular natural notion of a congruence, given
by preservation of the meet and join operations. Such equivalence relations are known as
‘lattice congruences’ and guarantee that the quotient is itself a lattice, and thus a fortiori,
a well-defined poset. Indeed, there is a natural notion of congruence for any universal
algebra, which specialises to the notion of a lattice congruence, as lattices are universal
algebras. Posets, however, are not universal algebras, as they are defined by relations rather
than operations.

In defining a class of poset congruences, there is a trade-off between how large the
class is, and how much structure the congruences preserve. It is on the one hand desirable
to be able to quotient posets by as large a class of equivalence relations as possible, but
on the other hand it is desirable for the quotients to preserve a good deal of structure. Nat-
urally, the more equivalence relations one wants to admit, the less structure is in general
preserved; and the more structure one wants to preserve, the fewer equivalence relations
one can admit.

Let us briefly describe the array of different approaches that exist. One natural app-
roach to take is to allow quotients by as large a class of equivalence relations as possible.
In fact, there is a canonical way of constructing a quotient of a poset by an arbitrary
equivalence relation [1], notwithstanding what was written earlier. However, in order to
make this possible one needs to sacrifice the feature that the elements of the quotient poset
should be the equivalence classes of the original poset. Hence, one may wish to restrict
to equivalence relations where the elements of the quotient are the equivalence classes of
the original poset. The resulting notion was introduced by Sturm [107-113], as well as
later independently studied in [12,13], and is also related to concepts from [104,120]. The
downside of this approach is that one is sometimes required to take the transitive closure of
the relation one obtains from the quotient. A more well-behaved class of equivalence rela-
tions, which do not require the transitive closure to be taken after quotienting is mentioned
in [98] and was independently introduced in [125]. But it is natural to desire congruences
of posets which preserve yet more structure, such as congruences which preserve upper
bounds, as considered in [20, 44,49, 89, 98]. There are other classes of poset congruences
which have particular structure-preserving properties [38], such as those that come from
lexicographic sums [53], or from a group of automorphisms [103, 105], those that relate
to direct product decompositions of posets [62], closures [12, 13], or the characteristic
polynomial of the poset [45,46]. Some types of congruence also relate to specific types of
posets [18,19,72,73].

In this survey, we take a pluralist view of congruences and quotients of posets. It is
useful to recognise several different types of congruences on posets. Whilst there are some
very general notions, many specific examples of congruences possess more structure than
is contained in these notions. Indeed, different examples of quotients of posets found in
mathematics fall nicely into different specific notions of congruence. Of course, not all
types of poset congruence that have appeared so far in the literature may prove equally
useful, and there may yet be undiscovered notions of congruence which are very fruitful.
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To summarise this survey in one sentence: one can quotient any poset by any equival-
ence relation one wants, but some equivalence relations will preserve more structure than
others.

The aims of this paper are thus

* to describe different approaches taken to quotients of posets in the literature;
* to give the motivation for the different approaches;
* to compare and contrast the different approaches: see Figure 1 and Table 1;

* to provide general philosophical discussion about how one ought to approach taking a
quotient of a poset;

* to survey important examples of quotients of particular posets that have appeared in
the literature.

The literature on quotients of posets is currently very dispersed, which makes it hard for
authors to be aware of what notions exist. Indeed, for many relevant papers, such as [33],
copies are hard to find. Moreover, most papers, understandably, present only their own
approach, which can prevent working mathematicians from finding notions of congru-
ences and quotients suited to their own problems.

We begin in Section 2 by giving background on partially ordered sets. In Section 3,
we introduce the problem of taking quotients of posets and discuss possible approaches to
this problem in broad terms. We then describe the several different approaches given in the
literature in Sections 4, 5, 6, and 7. The types of congruence in Section 4 are those which
aim to admit quotients by many different equivalence relations. In Section 5, we examine
types of congruence which aim to generalise lattice congruences in some way. Section 6
then considers congruences which do not fall into these other categories, whilst Section 7
considers congruences which require additional assumptions on the poset. Following this,
in Section 8, we survey important examples of quotients of posets that have appeared in
the literature. Finally, in Section 9, we compare the different approaches.

2. Background
We begin by giving basic definitions for partial orders.

2.1. Partially ordered sets

Given a set S, a relation R on S is a subset of the Cartesian product S x §. We will
also sometimes write that (S, R) is a relation, if we want to make both the symbol for the
relation and the symbol for the underlying set clear. Somewhat confusingly, it is usual also
to refer to the elements of R as relations. If (x, y) € R, then we write xRy. A relation R
is

* reflexive if xRx forall x € S,

» symmetric if xRy implies that yRx,
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* anti-symmetric if xRy and yRx together imply that x = y,
* transitive if xRy and yRz together imply that xRz.

A relation R on a set S is called a partial order if it is reflexive, anti-symmetric, and
transitive. Here we call S a partially ordered set, or poset. We usually write P instead
of S and < instead of R if we have a partially ordered set, rather than only a set with a
relation, so that we write that (P, <) is a poset. We will often simply write that P is a
poset, meaning that there is a partial order on P denoted <. As is very standard, given
p,q € P, we write

* p<gqifp<gandp#gq,

o p£qresp. p £q)if p < g (resp. p < g) is not the case, and

* p=q(tesp. p>gq)ifg < p (resp. g < p).

The transitive closure R of a relation R on S is the smallest transitive relation con-
taining R or, equivalently, the intersection of all of the transitive relations containing R.
Reflexive and symmetric closures are defined likewise. Given x,z € P such that x < z,
we say that z covers x if thereisno y € P such that x < y < z. In this case we write x < z
and refer to this as a covering relation. A finite poset is equal to the transitive closure of
its covering relations, but this is not always true for infinite posets.

Given a subset A C P, an upper bound of A is an element u € P such that a < u
whenever a € A. The notion of a lower bound is defined dually. We denote by

Lp(A)={peP|p<aforalac A}
Up(A)={peP|p=aforallac A}

the respective sets of lower and upper bounds of 4 in P. Given a subset A = {a;,as,...,
ar}, we may sometimes write Lp(ay, az,...,ar) and Up(ay,az,...,ay) for Lp(A)
and Up (A). A directed poset is a poset where any finite subset has an upper bound. The
supremum or least upper bound of A, if it exists, is defined to be an element s such that for
any upper bound u of A, we have that s < u. Itis easy to see that, if A has a supremum s,
then s is unique. We denote the supremum of A by sup A, if it exists. The infimum or
greatest lower bound inf A is defined dually. Given a poset P, a minimal element of P is
an element m such that p < m for all p € P. A maximal element of P is defined dually.

A subset I of P is an interval if itis of the form I = [p,r]:={q € P | p <q <r}.
A subset P’ C P is called convex if whenever p,r € P and p < g < r,thenqg € P’.

A poset P is a totally ordered set and < is a total order if for any p,q € P, we either
have p < g or p = gq. That is, in a totally ordered set, any two elements are comparable.
A chain C in P is a subset totally ordered by <. An antichain of P is a subset of P such
that no two distinct elements are comparable.

Given a poset (P, <), the dual poset is the poset (P, <) where P = P and p < q if
and only if g < p.
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2.1.1. Maps between posets. Given posets P and Q, amap f: P — Q is said to be
order-preserving if f(p) < f(q) whenever p < ¢. The map f is said to be order-reversing
if f(p)= f(q) whenever p < q. Order-preserving maps are also called isotone and order-
reversing maps are also called antitone.

An isomorphism of posets is an order-preserving bijection whose inverse is order-
preserving; an anti-isomorphism of posets is an order-reversing bijection whose inverse is
order-reversing. If there is an isomorphism of posets P — Q, we write P = Q. A poset
is self-dual if it is isomorphic to its dual. An automorphism of P is an isomorphism
P — P; an anti-automorphism is an anti-isomorphism P — P. Anti-isomorphisms and
anti-automorphisms are also called dual isomorphisms and dual automorphisms, respect-
ively.

A map f: P — Q is strong if it is order-preserving and if whenever f(p) < f(p’)
there exist p, p’ € P suchthat p < p’ and f(p) = f(p) and f(p’) = f(p’). Strong maps
can be thought of as being surjective on the relations. A poset P is a subposet of a poset O
if there is a strong injection P < Q.

2.1.2. Graded posets. A poset P is graded if there is a rank function p: P — Z ¢ such
thatif p < g in P then p(p) < p(g) and if p < g, then p(g) = p(p) + 1. The value of p(p)
is called the rank of p. We say that P has rank n if the largest value of p(p) is n and the
lowest value of p(p) is 0. The ranks of P are the subsets P; = {p € P | p(p) =i}.

2.2. Equivalence relations

A relation R on a set S is called an equivalence relation if it is reflexive, symmetric, and
transitive. In this paper, we usually denote equivalence relations by 6. A partition of S,
isaset {S; | i € I} of pairwise disjoint non-empty subsets of S such that § = | J;<; Si,
where [ is some indexing set. Partitions of S are equivalent to equivalence relations on S
Namely, given an equivalence relation 6 on a set S, there is a partition of S into sets S;,
where, if s € S;, then ¢ € S; if and only if s6z. In this case, S; is called the equivalence
class of s and is denoted [s] or [s]g. Hence, ¢ € [s] if and only if 0s. Conversely, given
a partition {S; | i € I} of S, where we write [s] = S; for the unique S; such that s € S;,
the corresponding equivalence relation is given by s61 if and only if [s] = [¢]. The set of
f-equivalence classes of S is denoted by S/0 = {S;}ier-

2.3. Pre-orders

A relation R on a set S which is reflexive and transitive is known as a pre-order. Pre-orders
are thus a simultaneous generalisation of partial orders and equivalence relations, with the
former being anti-symmetric pre-orders and the latter being symmetric pre-orders.

There is a canonical way of defining a partial order from a pre-order. Indeed, let (P, <)
be a pre-order. There is an equivalence relation 6 on P given by pfgq if and only if p < ¢
and p > q. Then one defines the collapse of the pre-order (P, <) to be the poset coll(P)
with underlying set the set of 6-equivalence classes P /6 and relation given by [p] < [¢]
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if and only if p’ < ¢’ for some p’ € [p] and g’ € [¢]. The following result is well known
and straightforward.

Proposition 2.1. The collapse coll(P) is a well-defined poset. Moreover, for [p], [q] €
coll(P), we have [p] < |q] if and only if p’ < q' for all p’ € [p] and q’ € [q].

Remark 2.2. The collapse operation gives a functor from the category Pre-ord of pre-
orders to the category Poset of posets, where the morphisms in each category are given
by order-preserving maps. In fact, it is the left adjoint in an adjunction with the forgetful
functor forget from Poset to Pre-ord. This means that for any pre-order P and poset Q,
there is a bijection

Hompeget (coll(P), Q) = Hompre.ora (P. forget(Q)).

which is natural in both P and Q. For more details on adjunctions, see [67, Chapter 2].

2.4. Lattices

A lattice is a poset with certain properties which give rise to additional algebraic struc-
ture. According to Birkhoff [7, p. 6], the concept of a lattice was first studied in depth by
Dedekind, under the name ‘Dualgruppe’ [25, pp. 113-4], see also [26, 31]. Partial orders
then arose from lattices, an early reference to partial orders being Hausdorff’s book on set
theory [48, Sechstes Kapitel, §1].

A lattice is a partially ordered set L such that for every pair of elements x,y € L,
{x, y} has both a supremum and an infimum. Here the supremum is called the join and
is denoted x V y, and the infimum is called the meet and is denoted x A y. A complete
lattice is a poset L such that any subset X C L has a infimum A X and a supremum \/ X .
A poset is a join-semilattice if every pair of elements has a join; dually, a poset is a meet-
semilattice if every pair of elements has a meet.

Note that meet and join are binary operations on a lattice. These lattice operations
actually suffice to define the partial order. Indeed, we have the following theorem.

Theorem 2.3 ([7, Theorem 8]). If L is a set with two binary operations A and V such that
(1) xAx=Xx, XVXx=xXx;
2) xAy=yAX, XVYy=yVXxS
B)xArArz)=xAy)Anz, xvyvz)y=xVvy vz
@ xA(xvy)=xV((xAy) =x
then L is a lattice with N\ and Vv the meet and join operations. The partial order on L is

defined by x < y ifand only if x Ay = x or, alternatively, x V' y = y.

2.4.1. The Dedekind-MacNeille completion. The Dedekind—MacNeille completion of
a poset will be important at various points in this survey. This is the smallest complete lat-
tice which contains a given poset. It was introduced in [71], inspired by, and generalising,
Dedekind’s construction of the real numbers from the rationals [27].
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The Dedekind—MacNeille completion of a poset P has underlying set
DM(P) ={A < P | Lp(Up(4)) = A},

with order relation given by inclusion. The natural embedding P — DM(P) is given
by p = Lp(p).

3. Quotients of posets

In this section we outline the general problem with taking the quotient of a poset by an
equivalence relation, and consider how one may deal with this problem. We contrast this
with the situation of lattices.

3.1. The essential problem

In general, if S is some mathematical structure, then the quotient of S by an equivalence
relation 6 has the set of 8-equivalence classes S /6 as its underlying set. If the equivalence
relation is well behaved, then the set S /6 will inherit the mathematical structure from S
in a natural way.

Given a poset (P, <) and an equivalence relation 6, the most natural way to define the
quotient poset (P /8, <g) is by defining <g such that, given [p], [¢] € P /0, we have that
[»] <g [gq] if and only if there exist p’ € [p] and ¢’ € [¢] such that p’ < ¢’. One way of
obtaining this definition of the quotient relation is to note that there is a natural map of
sets P — P /0 given by p — [p]. We refer to this as the quotient map. Requiring that the
quotient map be order-preserving then produces the definition of the quotient relation <g
given.

The quotient relation <g constructed in this way is in general only a reflexive relation
on P /6. 1t is not generally transitive or anti-symmetric, as can be seen from the follow-
ing examples. This is the key point which demands that we seek a class of equivalence
relations that give well-defined quotient posets, or take a different approach.

Example 3.1. We give an example to show that the relation <g is not generally anti-
symmetric. Consider the poset P = {p < ¢ < r} and the equivalence relation 6 given by
the partition { p, r}, {¢}. Here the quotient relation <g on P /6 is equal to the reflexive clos-
ure of the relation {([p], [¢]), (I¢], [r])}, which is not a partial order since [p] <g [¢q] <q [r],

when [p] = [r] # [q].

Example 3.2. We give an example to show that the relation <y is not generally transitive.
Consider the partial order < on the set P = {p, q, q’, r} given by the reflexive closure of
{(p,q),(¢q’,r)}. Let 6 be the equivalence relation given by the partition {p}, {¢,q’}, {r}.
Then the quotient relation <y on P/6 is equal to the reflexive closure of the relation
{(pl. gD, (¢'], [r])}. However, this is not a partial order, because [p] <g [¢] and [¢] =

[4'] <o [r], but [p] o [r].
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Hence, it is desirable to restrict the equivalence relations # which can be used to
take a quotient of the poset P. One may then call the members of this restricted class
of equivalence relations ‘congruences’. In the literature several different restrictions on
the equivalence relations are imposed. Another approach, of course, is to give a different
definition of the quotient of a poset by a particular equivalence relation. This approach is
taken in Section 4.1.

Remark 3.3. The definition of the quotient also applies to arbitrary relations and directed
graphs, as in [23].

3.1.1. Morphism perspective. Given an order-preserving map of posets f: P — Q, the
kernel of f is the equivalence relation 8 where pOp’ if and only if f(p) = f(p’). Another
perspective on congruences of posets is that all congruences on posets should be kernels
of some order-preserving map, namely the map P — P /0. Instead of characterising a
class of equivalence relations directly, one can look for a class of maps. One can then take
congruences to be the kernels of this particular class of maps. We often refer to this as the
‘morphism perspective’.

3.2. Lattice congruences

The situation for considering quotients of lattices is altogether better than that of quotients
of posets. This is because lattices possess not only the order relation, but also the meet
and join operations. The natural class of well-behaved equivalence relations are those that
respect the meet and join operations. Such equivalence relations produce well-defined
quotient lattices. More detail on lattice congruences can be found in [7,24,41,92].

Indeed, given a lattice L, a lattice congruence on L is an equivalence relation 6 such
that whenever x6y in L, we have (x V 2)0(y vV z) and (x A2)0(y Az) forallz € L.If L
is a complete lattice, then a complete lattice congruence on L is an equivalence relation 6
such that for any indexing set / and subsets {x;}ier,{yi}ier S L with x;0y; for all i,
then

NNixiliel} o Nviliery
and

Vixilienyo \/yiliel}

If these properties are only satisfied with respect to one of meet or join, then the equi-
valence relation is called a (complete) meet-semilattice congruence or a (complete) join-
semilattice congruence respectively.

Remark 3.4. Lattices are ‘universal algebras’, since they are defined by a set of elements
and operations. The definition of lattice congruence corresponds to the general definition
of congruence for universal algebras, which states that operations applied to equivalent
elements must give the same result. For more details, see [7, Chapter VI].

Posets, on the other hand, are not universal algebras, since they are not defined by
operations, but rather by a relation. Nevertheless, one could try to adapt the notion of a
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congruence for universal algebras to posets, by requiring that relations continue to hold if
one substitutes an element for an equivalent one; that is, if p < ¢ and p8p’, then p’ < g,
and that if p < ¢ and ¢6¢’, then p < ¢’. One can check that quotients of posets by such
congruences give well-defined posets. In fact, the resulting notion is that of an ‘order-
autonomous congruence’ discussed in Section 6.3. However, this notion of congruence is
much too restrictive to capture all interesting cases of quotient posets in mathematics.

The quotient of a lattice by a lattice congruence is always a lattice, and hence a partial
order.

Proposition 3.5 ([7]). If 0 is a lattice congruence on a lattice L, then the quotient L /0 is
a lattice and, a fortiori, a partial order.

One can then show that the partial order <4 on L/ for a lattice L given by applying
Theorem 2.3 to L /6 is the same as would be given by considering L /6 as the quotient of
the poset L.

Usually, the easiest way to verify whether a given equivalence relation on a lattice is a
lattice congruence is to apply the following lemma.

Lemma 3.6 ([42, Lemma 4]). An equivalence relation 6 on a lattice L is a lattice con-
gruence if and only if the following two properties are satisfied for all x, y,z € L:

(1) x0y ifand only if (x A y)O(x V y).
2) If x < yand x0y, then (x ANz)0(y Az)and (x V 2)0(y V 2).

Note that there are several other criteria for an equivalence relation to be a lattice
congruence [32,87].

3.3. Discussion

We seek a class of equivalence relations 6 on posets P which produce well-defined quo-
tients. Let us briefly consider the desiderata for such a class of equivalence relations.

Clearly, the principal requirement is that the quotient relation <y is a partial order.
One approach would be to take this as the only requirement, thereby obtaining the largest
class of equivalence relations producing well-defined quotient posets. This is the approach
taken in Section 4.3. One can, in fact, take an even weaker approach than this by requiring
only that the transitive closure of the quotient relation is a partial order, as in Section 4.2.

However, there are many reasons to study stronger notions of poset congruences. It is
reasonable to be interested in equivalence relations on posets which preserve more than
just the partial order structure, but which may also preserve upper and lower bounds, for
instance. Such approaches are considered in Section 5. The point is that congruences of
posets that arise in natural mathematical examples often have stronger properties than
simply producing a well-defined quotient, so it is important to have types of congruence
which take account of these stronger properties. Such types of congruence are also easier
to work with.
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A related desire concerns how a particular class of equivalence relations interacts with
lattices and lattice congruences. The idea is that lattice congruences are clearly the right
notion of congruence for lattices, so one ought to try to extend the notion of a lattice
congruence to all posets. Hence, one might require that the class of poset congruences
considered coincides with the class of lattice congruences when restricted to lattices. This
is the case for most of the notions of congruence studied in Section 5. However, one
might feel that, for a sufficiently general class of poset congruences, one ought to be
able to produce quotients of lattices which are not themselves lattices. Indeed, there are
interesting examples of this given in Section 8.

There are many other specific circumstances in which interesting classes of congru-
ences arise, such as those which result from closure operators or groups of automorphisms.
These sorts of congruences are considered in Section 6. Similarly, specific subclasses of
posets may possess classes of congruences which are particular to them, as considered in
Section 7. Indeed, lattices give such an example.

We end with a brief list of the different desiderata used to motivate various types of
poset congruence in the literature. It is impossible to simultaneously satisfy all of these
requirements.

* The notion includes as many equivalence relations as possible.

* Constructing the quotient poset does not require taking the transitive closure.

* The notion coincides with that of a lattice congruence in the case of lattices.

* The quotients preserve upper bounds, or other order-theoretic features of the poset.
* The definition is natural and not too complicated.

* The definition is relatively easy to check in practice.

» There exist examples occurring in nature.

* The intersection of two congruences should be a congruence.

* The set of all congruences on a poset should itself possess some nice structure, such
as being a lattice or a complete lattice.

We now survey the different notions of congruences of posets that have appeared in
the literature, grouping similar notions of congruence together.

4. General notions
We begin by considering notions of poset congruence from the literature which aim to

incorporate as large a class of equivalence relations as possible, perhaps subject to some
minimal restrictions.
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4.1. Universal property approach

The most general approach to taking quotients of posets allows quotients with respect to
any equivalence relation by defining the quotient using a universal property. This approach
can be found in [1].

Definition 4.1. Given a poset P and an equivalence relation 6, a universal quotient of P
by 6 is any pair (Q, f), where Q is a poset and f: P — Q an order-preserving map,
which satisfies the following universal property. If R is a poset and g: P — R is an order-
preserving map which is constant on the #-equivalence classes of P, then there is a unique
order-preserving map h: Q — R suchthatg =ho f.

One can construct a universal quotient for any equivalence relation, and such a univer-
sal quotient is unique up to unique isomorphism.

Proposition 4.2 ([1]). Let P be a poset with 6 an equivalence relation on P.

(1) There is a poset Q with an order-preserving map f: P — Q such that (Q, f) is
the universal quotient of P with respect to 6.

(2) Given another universal quotient (Q', ) of P by 0, there is a unique isomorph-
ismh: Q — Q' suchthat ' =ho f.

Here (2) is proven by a standard argument, whilst (1) uses the following construction.

Construction 4.3 ([1]). We construct the universal quotient of a poset P by an equival-
ence relation 0. We first let P /6 be the set of 8-equivalence classes of P, as ever. There is
an obvious map of sets f': P — P /6. We define a pre-order < on P /6 by specifying that
if p < g in P then [p] < [¢] in P /6, and taking the transitive closure =< of the resulting
relation. We then define Q = coll(P /6, 2), the collapse of the pre-order (P /6, 2) from
Section 2.3. The map f: P — Q is defined tobe f” o f’ where f” is the canonical map
f":P/6 — Q. We then have that f: P — Q is the universal quotient of P by 6.

Example 4.4. We return to the example given in Example 3.1, where we have the poset
P = {p < g < r} under the equivalence relation given by the partition {p, r}, {q}. The
pre-order on P /@ is given by {p, r} < {¢} < {p, r}, and the collapse of this pre-order is
the one-element poset Q = {P}.

4.2. Compatible congruences

The principal drawback of the universal property approach to quotients of posets is that
the kernel of the map f: P — Q does not always coincide with the original equivalence
relation 6, as in Example 4.4. Hence, really what we are doing when we take the universal
quotient by 6 is replacing the original equivalence relation 6 with some better behaved
equivalence relation 6. Tt makes sense to characterise these better behaved equivalence
relations. They are given by the following notion, first considered by Sturm [107-113].
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We use the definition from [64], which is in turn inspired by [22]. Here, and henceforth in
this paper, we use the notation [n] = {1,2,...,n}.

Definition 4.5 ([64, Definition 2.1]). Let P be a poset with 8 an equivalence relation.

(1) A sequence (po, p1,..., Pn) is called a 6-sequence if for each i € [n], either
pi—10p; or pi_1 < p;. If, additionally, pg = py, then (po, p1,..., pn) is called
a O-circle.

(2) We say that 6 is a compatible congruence if we have that [po] = [p1] =+ = [pa]
for any 6-circle (po, p1,--., Pn)-

Remark 4.6. This notion was also considered in [12, 13] and coincides with Trotter’s
notion of an order-preserving partition, which was introduced in a different context [120].
It is also the same as the notion of ‘compatibility’ used by Stanley in the context of order
polytopes [40, 104], hence the name we choose.

The papers [21,22] consider compatible congruences in the context of partially ordered
universal algebras. The relevant notion of a congruence on such algebras is that of a con-
gruence of the universal algebra which is compatible with the partial order in the sense of
Definition 4.5.

Compatible congruences have the following properties.

Proposition 4.7 ([64, Theorem 3.2], [22, 108, 112]). Let P be a poset.

(1) An equivalence relation 6 on P is compatible if and only if any of the following
hold:

(a) the transitive closure <g of the quotient relation <g on P /0 is anti-symmetric
and hence a partial order;

(b) < can be extended to a total order <; on P such that the 0-equivalence
classes are intervals with respect to <;; or

(¢) < canbe extended to a pre-order p on P such that 0 = p N 'p, where p denotes
the opposite pre-order.

(2) If{6; | i € I} is a set of compatible congruences on P, then 6 = (\;c; 0; is a
compatible congruence on P. Indeed, the set of compatible congruences on P
forms a complete lattice, where the meet is given by intersection.

(3) If 0 is a compatible congruence on P, then the 0-equivalence classes are convex
sets.

All of the types of congruence in the subsequent sections will also be compatible, and
so will have convex equivalence classes too. Note that having convex equivalence classes
is not in general sufficient for an equivalence relation to be a compatible congruence [104,
Fig. 1].

Remark 4.8. The complete lattice of compatible congruences does not in general form a
sublattice of the lattice of equivalence relations, despite Proposition 4.7 2, since the join
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of two compatible congruences is not usually simply their join as equivalence relations,
but rather the smallest compatible congruence containing this.

Compatible congruences are related to universal quotients as follows. Note that Pro-
position 4.7 2 gives a well-defined smallest compatible congruence ] containing a given
equivalence relation 6, obtained by taking the intersection of all compatible congruences
containing 6. There is always at least one compatible congruence containing 6, namely,
the equivalence relation with one equivalence class. Of course, when we talk about con-
tainment of equivalence relations on P, we mean containment as subsets of P x P.

Proposition 4.9. Let P be a poset.

(1) Let 6 be an equivalence relatlrm on P.If f: P — Q is the unzversal quotient
of P by 0, then Q = (P/@, <5 ) the quotient of P by 6, where 0 is the smallest
compatible congruence containing 6.

(2) Consequently, if 0 is a compatible congruence on P and f: P — Q is the uni-
versal quotient of P by 0, then 8 = ker f.

Proposition 4.9 establishes that one can restrict quotients of posets to quotients of
posets by compatible congruences, since quotienting by an arbitrary equivalence relation
is equivalent to quotienting by the smallest compatible congruence containing it.

Recall that one may also consider quotients of posets from the ‘morphism perspective’
discussed in Section 3. Here, one wants to characterise the set of maps which have the set
of congruences as their kernels. The morphism perspective on compatible congruences
simply gives them as the kernels of order-preserving maps.

Proposition 4.10 ([112]). An equivalence relation 6 on a poset P is a compatible con-
gruence if and only if it is the kernel of an order-preserving map f: P — Q.

In the literature, there has been interest in quotienting graded posets in such a way that
they remain graded, for instance [46, Lemma 7]. This can be ensured by requiring that the
rank function is constant on equivalence classes. All congruences for which this is true are
compatible, and the quotient poset is graded in the natural way.

Proposition 4.11. Let P be a graded poset with rank function p. Let further 6 be an
equivalence relation on P such that p(p) = p(q) whenever p0q.

(1) The equivalence relation 0 is a compatible congruence.

(2) Moreover, P /0 is a graded poset with rank function p where p([p]) = p(p) for
all p € P.

If one had to keep only one type of congruence on posets, it would be compatible
congruences, since by Proposition 4.9, they provide the largest possible class of quotients
of posets. However, the properties of compatible congruences are still quite weak, and, as
we shall see, it is natural to consider congruences which preserve more structure.
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Remark 4.12. In [57], the authors study the order complex of the lattice of compatible
congruences on a poset with n elements, where n = 3. They find that this complex is
homotopy equivalent to a wedge of (n — 3)-spheres and that, if P is connected, then the
number of spheres is equal to the number of linear extensions of P. A consequence of
this is that in [95], it is shown that the lattice of compatible congruences on a poset P is
always CL-shellable. Each of these results therefore entails that the lattice of compatible
congruences is Cohen—Macaulay [4, 9].

4.3. Weak order congruences

The shortcoming of compatible congruences is that, in general, one needs to take the
transitive closure of the quotient relation in order to obtain a well-defined quotient poset.
It is natural to consider the more well-behaved class of congruences for which this is not
necessary. This notion was first noted in [98] under the name ‘II-congruences’, and was
later independently rediscovered in [125].

Definition 4.13 ([125]). Let P be a poset with 8 an equivalence relation on P. Then we
say that 6 is a weak order congruence if

(1) given p,q, p’,q' € P suchthat p < ¢, q6q’,q' < p’, and p’'Op, then plq; and

(2) given p,q.q’,r € P suchthat p <gq,g0q’, and ¢’ < r, then there exist p’,r’ € P
such that pOp’, p’ <r’,and r'Or.

The defining conditions of a weak order congruence 6 thus simply amount to spe-
cifying that the quotient relation <g is a partial order. (1) holds if and only if <g is
anti-symmetric and (2) holds if and only if <y is transitive.

Proposition 4.14 ([98, 125]). The following statements hold.

(1) If 0 is an equivalence relation on a poset P, then the quotient relation <g on P /60
is a partial order if and only if 0 is a weak order congruence.

(2) An equivalence relation on a poset P is a weak order congruence if and only if it
is the kernel of a strong map f: P — Q.

Part (2) gives the morphism perspective on weak order congruences. One way of view-
ing this result is that weak order congruences correspond to maps which are surjective both
on the level of objects and on the level of relations. This is an intuitive notion of a quotient
of a poset.

5. Notions inspired by lattice congruences
A large class of types of poset congruence are based upon that of a lattice congruence. The

idea is that the notion of a lattice congruence is clearly the right one for lattices, and so
poset congruences should be defined by extending this notion to posets in a natural way.
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However, such an extension is clearly not unique, so there exist multiple different notions
which operate in this way, or in similar ways.

5.1. III-congruences

Shum, Zhu, and Kehayopulu introduce the notion of III-congruences and III-homomorph-
isms on posets in order to find a notion of somewhere in between the weak order congru-
ences of Section 4.3 and the order congruences of Section 5.3 [98]. One way of looking
at [II-congruences is that they preserve meet-semilattice structure rather than lattice struc-
ture, and consequently are a weaker notion than the later notions in this section.

Definition 5.1 ([98, Definition 2.5]). An equivalence relation 6 on a poset P is called a
[I-congruence if it is a weak order congruence and

(1) given p,q,r € P suchthat p A r exists, then p<q and g6 r implies that pO(p A r).
The following fact can then be seen from Proposition 4.14 (1).

Proposition 5.2. If 0 is a ll-congruence on a poset P, then the quotient relation <g
on P /0 is a partial order.

Definition 5.3 ([98, Definition 2.1]). A map f: P — Q is called a llI-homomorphism if
it is strong and satisfies the condition that

» forall p,q, p’,q' € P such that the meets

PAGP' NG pAGAD P NG NG pAGAP NG
exist, then we have f(p A q) = f(p’ A q’) whenever we have both f(p) = f(q) and
f(p" = 1.
In other words, III-homomorphisms are strong maps which preserve certain meets.

Proposition 5.4 ([98, Theorem 2.9 and Theorem 2.10]). An equivalence relation 6 on
a poset P is a ll-congruence if and only if it is the kernel of a Nl-homomorphism

f:P— 0.

The relation between this framework and meet-semilattices is given by the following
result.

Proposition 5.5 ([98, Theorem 3.3]). Let f: M — M’ be a surjective map between two
meet-semilattices. Then [ is a meet-semilattice homomorphism if and only if f is a 1II-
homomorphism.

5.2. w-stable congruences

Halas introduces the notion of a w-stable congruence motivated by the following desid-
erata [44]:

* There should be a well-defined notion of subobject.
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* The intersection of two congruences should be a congruence.
* The notion should coincide with lattice congruences for lattices.

w-stable congruences are only defined as the kernels of w-stable morphisms, rather
than also admitting a direct definition in terms of necessary and sufficient conditions on
the equivalence relation. Given a poset P, we denote by DMy (P) the sublattice of the
Dedekind-MacNeille completion DM(P) generated by the set {Lp(p) | p € P}. Whilst
this is a lattice, it is not always a complete lattice, and so is generally a proper subposet of
the Dedekind-MacNeille completion. There is a natural map tp: P — DMg(P) given by

tp(p) = Lp(p).

Definition 5.6 ([44]). A map f: P — Q is called w-stable if there is a lattice homo-
morphism f*:DMg(P) — DMg(Q) such that the diagram

P—L o

b
DMo(P) —— DMo(Q)

commutes. Thatis, f*tp = 1o f. A w-stable congruence is the kernel of a w-stable map.

Note that the definition implies that a w-stable map must be order-preserving. It is not
generally very easy to check whether a given equivalence relation is w-stable.

Proposition 5.7 ([44, Lemma 9]). If 0 is a w-stable congruence on a poset P, then the
transitive closure s_; of the quotient relation <g on P /0 is a well-defined partial order.

Proposition 5.8 ([44]). Let L be a lattice with 8 an equivalence relation on L. Then 6 is
a lattice congruence if and only if it is a w-stable congruence.

w-stable congruences on P are precisely the restrictions of lattice congruences on
DMg(P). In the following proposition we denote by 6*|p the relation

{(p.q) €0 | p.q € P}.

Proposition 5.9 ([44, Lemma 6, Lemma 7]). An equivalence relation 0 on P is a w-
stable congruence if and only if there is a lattice congruence 0* on DMy (P) such that

0*|p = 0.

However, the lattice congruence 8* on DMg(P) that restricts to a given w-stable con-
gruence 6 on P is not necessarily unique. The set of all w-stable congruences on a poset P
has good structural properties.

Proposition 5.10 ([44, Lemma 11]). The set of w-stable congruences on P forms a com-
plete lattice under inclusion.
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Remark 5.11. The notion of subobject of a poset mentioned in the desiderata is given
by subsets such that the natural inclusion is a w-stable map. Such subsets can also be
specified by order-theoretic conditions [44].

5.3. Order congruences

A stronger notion of poset congruence which also derives from lattice congruences is as
follows. These congruences possess a good deal of structure, certainly in the finite case
(Proposition 5.14).

Definition 5.12 ([20, Definition 2]). An equivalence 6 on a poset P is called an order

congruence if
(1) [p]is a convex subset of P for each p € P;
(2) foreach g, r € [p] there exist s, € [p] suchthats < g <tands <r <t;
(3) ifu < p,u < q and ufp there exists t € P with p <¢,q <t and ¢6¢;

(4) dually, if p < v, ¢ < v and vfq then there exists s € P with s < p, s < g and
pos.

Remark 5.13. The definition of a congruence in [20, Definition 2] includes the caveat that
P x P is a congruence for any poset P, but we exclude this. It is natural to believe that
one ought to be able to quotient a poset P by the equivalence relation P x P to obtain the
poset with one element. However, one can accommodate this is with a more permissive
notion of congruence altogether, such as those from Section 4.

In the case where P is a finite poset, order congruences admit the following neat
description due to Reading [87].

Proposition 5.14 ([87, Section 5]). Let P be a finite poset with an equivalence relation 6
defined on the elements of P. The equivalence relation 6 is an order congruence if and

only if
(1) every equivalence class is an interval;

(2) the projection w: P — P, mapping each element p of P to the minimal element
in [p), is order-preserving;

(3) the projection w": P — P, mapping each element p of P to the maximal element
in [p), is order-preserving.

This notion of congruence gives well-defined quotient posets.
Proposition 5.15. If 0 is an order congruence on a poset P, then P /0 is a poset.

The morphism perspective on order congruences is given as follows. The correspond-
ing morphisms are those that preserve upper and lower bounds.
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Definition 5.16 ([20,87]). Amap f: P — Q is an order morphism if, for all p, p’ € P,
we have that

S(Lp(p. ")) = Leey(f(p), (D)

and

fWe(p, p)) = Urp)(f(p), f(P)).

Proposition 5.17 ([20, Theorem 3]). Let 0 be an equivalence relation on a poset P. We
have that 0 is an order congruence if and only if it is the kernel of an order morphism

fiP— Q.

Remark 5.18. Chajda and Snasel define LU morphisms, whose kernels correspond to
their version of order congruences [20]. A map is automatically an LU morphism if its
image has size one, corresponding to the case where the congruence on the poset P is
given by P x P.LU morphisms are also required to be surjective, but this does not change
the class of congruences obtained.

Remark 5.19. In fact, upper bounds and lower bounds of finite sets of arbitrary size are
preserved by order morphisms, rather than only sets of size two, as in Definition 5.16.
This is shown in [44, Lemma 1]. One can envisage a ‘completed’ version of an order
congruence where upper and lower bounds are preserved for sets of arbitrary size, not
only finite ones. Indeed, it is shown in [28, Proposition 2.3] that an analogous description
to Proposition 5.14 holds for complete lattice congruences on a complete lattice.

Order congruences extend the notion of a lattice congruence.

Proposition 5.20. Let L be a lattice with 6 an equivalence relation on L. Then 0 is a
lattice congruence if and only if it is an order congruence.

Order congruences also have a nice interpretation in terms of the Dedekind—MacNeille
completion of P. Given a finite lattice L with a subposet P, a lattice congruence 6 on L
restricts exactly to P if for every congruence class [p, g] of 6, we either have p,q € P
or [p,q] N P = @ (see [87)).

Proposition 5.21 ([87, Theorem 8]). Let P be a finite poset with Dedekind—MacNeille
completion DM(P), and let 8 be an equivalence relation on P. Then 0 is an order con-
gruence on P if and only if there is a lattice congruence DM(0) on DM(P) which restricts
exactly to P such that DM(0)|p = 6, in which case we have that

(1) DM(O) is the unique congruence on DM(P) which restricts exactly to 0, and

(2) the completion DM(P /0) is naturally isomorphic to DM(P)/DM(6).

Compare this to the analogous result for w-stable congruences in Proposition 5.9. This
gives an idea of the difference between the two types of congruence. Another important

difference is that w-stable congruences are closed under intersections by Proposition 5.10,
while order congruences are not [44, p. 197].
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Figure 2. A quotient by a lattice congruence which is a subposet but not a sublattice

Remark 5.22. Given a finite poset P and an order congruence 6 on P, then it can be seen
that P /0 can be realised as a subposet of P, either by sending each equivalence class to
its minimal element, or by sending each equivalence class to its maximal element. That
this indeed is an embedding of P /6 in P follows from Proposition 5.14. This is one of
the features that makes order congruences particularly nice to work with in the finite case.

Example 5.23. It follows from Remark 5.22 that if L is a finite lattice with a lattice con-
gruence 6 then L /0 is a subposet of L. However, it may not be a sublattice, as remarked
in [89]. An example of this is shown in Figure 2. We illustrate the lattice L by its Hasse
diagram, which is the graph whose vertices are elements of L with arrows x — y for
covering relations x < y. Here 6 has only one equivalence class which is not a singleton,
namely {x11, Yoo }. Note first that this poset L is a lattice and that the equivalence relation 8
shown is a lattice congruence. There are two possible ways of embedding ¢: L/6 — L,
depending upon whether ¢([x11]) = x11 or ¢t([x11]) = Yoo Neither of these embeddings
realises L /6 as a sublattice of L. If t([x11]) = Xx11, then y10 A Yo1 = Yoo 7# X11. On the
other hand, if ¢([x11]) = Yoo, then x1¢ V Xo1 = X11 F# Yoo-

5.4. Haviar-Lihova congruences

Haviar and Lihova [49] introduce concepts of congruences and homomorphisms of posets
which try not only to be consistent with the corresponding notions for lattices, but also
those for multilattices, which were introduced in [5]. A poset P is a multilattice if for
all p,q € P,and u € Up(p, q), there exists an element ¥ € Up(p, q) such that u < u
and for any u’ € Up(p, q) with u’ < U, we have u’ = i, with the dual condition holding
for Lp(p, q). In other words, a poset is a multilattice if every upper bound of a pair of
elements is greater than a minimal upper bound for the pair of elements, with the dual
condition holding for lower bounds. Note that finite posets are automatically multilattices.
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In order to introduce the notion of a Haviar—Lihova congruence, we need the following
notions.

Definition 5.24 ([49, Definition 2.1]). Let P be a poset with p,q € P. A subset S C
Up (p, q) is called a supremum set or sup-set of p and ¢ if the following conditions hold:
(1) Foreachu € Up(p, q), there exists s € S with s < u.
2) fu e Up(p,q),s € S withu < s,thenu € S.
Infimum sets, or inf-sets are defined dually.
In other words, a sup-set is a set of minimal upper bounds for a and b.
Definition 5.25 ([49, Lemma 4.2]). Let P be a poset. An equivalence relation 6 on P is
a Haviar-Lihovd congruence if and only if it satisfies the following conditions:
(1) All 8-equivalence classes are convex subsets of P.

(2) If p, p’,q € P are such that p’8p and p < ¢, then Up(p’, q) # & and there exists
a sup-set S’ of p’ and ¢ such that S’ C [g].

(3) Dually, if p,q,q’ € P are such that p < g and g0q’, then Lp(p, q) # & and there
exists an inf-set I’ of p and ¢’ such that I’ C [p].

The intuition for this definition, in terms of (2), is that if p’fp and p < g, then the
sup-set of [p’] and [¢] in P /0 is [g], so there should be a sup-set S’ of p’ and ¢g in P
which is contained in [¢].

Theorem 5.26 ([49, Theorem 4.8]). Let P be a poset. The intersection of finitely many
Haviar-Lihovd congruences on P is also a Haviar-Lihovd congruence.

The morphism perspective on Haviar—Lihova congruences is given as follows.

Definition 5.27 ([49, Definition 3.1]). Let P and Q be posets with f: P — Q a map.
This is called a Haviar—Lihovd homomorphism if the following conditions are satisfied
foralla,b € P:

(1) For each sup-set S of p, g, there exists a sup-set T of f(p) and f(g) such that
T < f(S).

(2) For each sup-set T of f(p) and f(gq), there exists a sup-set S of p, g with
fS)cT.

(3) The dual conditions for inf-sets also hold.

Haviar—Lihovd homomorphisms are automatically order-preserving [49, Lemma 3.3].

Proposition 5.28 ([49, Theorem 4.7]). Let 0 be an equivalence relation on a poset P.
We have that 0 is a Haviar-Lihovd congruence if and only if it is the kernel of a Haviar—
Lihovd morphism f: P — Q.

The following theorem is the main motivation for Haviar-Lihov4 congruences.
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Theorem 5.29 ([49, Theorem 3.8]). If f: P — Q is a surjective Haviar-Lihovd homo-
morphism, then

(1) if P is a multilattice, then Q is a multilattice; and

(2) if P is a lattice, then Q is a lattice.

Proposition 5.30 ([49, Lemma 3.7, Theorem 4.7]). Let L be a lattice with 6 an equival-
ence relation on L. Then 0 is a lattice congruence if and only if it is a Haviar-Lihovd
congruence.

Remark 5.31. Haviar and Lihova4 also use their notion of homomorphism to define sub-
structures and varieties of posets. A variety of posets is a class of posets closed under
particular operations, such as taking certain homomorphic images and subposets, and
taking direct products. This is inspired by Birkhoff’s work on varieties of universal algeb-
ras [6]. Here a variety of universal algebras is a class of universal algebras possessing
certain operations which satisfy certain equations. Birkhoff’s Theorem says that a class
is a variety of universal algebras if and only if it is closed under homomorphic images,
subalgebras, and arbitrary products.

6. Further notions

In this section we consider types of poset congruence which do not fit into the groups from
Sections 4 and 5, but which instead have different motivation. These notions of congruence
arise naturally in examples.

6.1. GK congruences

The first three notions of congruence in this section all use the same property, which we
call being ‘upper regular’. It is also natural to consider the dual of this property, which we
refer to as being ‘lower regular’.

Definition 6.1 ([13, pp.48-9], [12]). Let P be a poset with 6 an equivalence relation
on P.

(1) We say that 0 is upper regular if, given p < g and p6@p’, then there exists ¢’ € [¢]
such that p’ < ¢’.

(2) We say that 0 is lower regular if, given p < g and g6¢q’, then there exists p’ € [p]
such that p’ < ¢’.

It is natural to consider these conditions, since they mean that it makes less differ-
ence which equivalence-class representatives one chooses when considering the quotient
relation.

Remark 6.2. Our terminology here differs from the original terminology used in [13,
pp- 48-9], [12]. What we call being ‘upper regular’, they call having the ‘link property’.
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What they call being ‘strongly upper regular’, we call being ‘upper regular’ and ‘compat-
ible’.

Remark 6.3. The condition of being upper regular is the same as the condition that
the Bourbaki group call being ‘weakly compatible’ in the context of quotients of pre-
orders [14, Exercise 2, §1, Chapter III]. The discussion of quotients of posets and pre-
orders in op. cit. is fairly brief.

Ganesamoorthy and Karpagaval introduce the following natural notion of congruence.
Definition 6.4 ([38]). Let P be a poset with 8 an equivalence relation on P. Then we say
that 6 is a GK congruence if

(1) 0 is upper regular;

(2) 0 is lower regular; and

(3) the f-equivalence classes are convex.

Proposition 6.5. If 0 is a GK congruence on a poset P, then (P[0, <y) is a well-defined
poset.

The authors also give a stronger notion for doubly directed posets, in which equivalent
pairs of elements have equivalent upper bounds and equivalent lower bounds.

6.2. Closure congruences

Closure operators on posets seem first to have been considered by Ore [80-82], in the
context of the poset of subsets of a given set. This originally had nothing to do with taking
quotients of posets, but was rather an abstraction of the operation of taking the closure of
a set in a topological space. It seems to have been first recognised by Blyth and Janowitz
that the kernels of such morphisms gave congruences on posets.

Definition 6.6 ([13, Theorem 6.9], [12]). An equivalence relation 6 on a poset P is a
closure congruence if and only if

(1) every -equivalence class has a unique maximal element, and

(2) 0 is upper regular.

The morphism perspective on closure congruences is given by closure operators. These

are now poset endomorphisms, rather than morphisms between two distinct posets, but we
still have that closure congruences are precisely the kernels of closure operators.

Definition 6.7 ([13, p. 9], [12]). Given a poset P, a closure operator is an order-preserv-
ing map f: P — P such that for all p € P, we have

S(f(p) = f(p) = p.

Proposition 6.8. Let 6 be an equivalence relation on a poset P. We have that 0 is a
closure congruence if and only if it is the kernel of a closure operator f: P — P.
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Closure operators are also known as ‘closure relations’, and ‘closure mappings’. The
motivating example for a closure operator is of course the poset of subsets of a topological
space, with the map f taking a subset to its closure. One may also, of course, study the
duals of closure operators and closure congruences.

For a general closure operator f on a poset P, we call an element p € P closed if
f(p) = p. We then have the following result.

Proposition 6.9. Let P be a poset with f: P — P a closure operator and 6 = ker f the
associated closure congruence. Then (P[0, <g) is isomorphic to the subposet of closed
elements of P.

Closure congruences can be characterised through their sets of closed elements.

Proposition 6.10 ([78]). Let P be a poset. Then, a subset S C P is the subset of closed
elements of a closure operator if and only if for any p € P, Up(p) N S is non-empty and
has a unique minimal element.

Theorem 6.11 ([51, Theorem 1, Corollary 6]). The poset of closure congruences on a
finite poset P is a join-sublattice of the lattice of equivalence relations on P.

Further properties of the lattice of closure congruences were proven in [51]. Indeed,
the literature on closure operators is extensive and a full treatment is beyond the scope of
this survey. A useful overview is given in [93].

6.3. Order-autonomous congruences

The notion of an order-autonomous congruence is motivated by that of a lexicographic
sum, which is the inverse construction of the quotient by an order-autonomous congru-
ence. These notions have not historically been viewed in terms of quotients and congru-
ences, but they nevertheless fit neatly into the framework.

Definition 6.12 ([60]). A non-empty subset A of a poset P is called order-autonomous if
forall p € P\ A, we have that

(1) if p

< < aforalla € A; and
(2) if p = aforsomea € A, then p > aforalla € A.

a for some a € A, then p

An order-autonomous congruence on P is one given by a partition of P into order-
autonomous subsets.

Proposition 6.13. If 0 is an order-autonomous congruence on a poset P, then P /60 is a
poset.

Order-autonomous congruences arise naturally from the lexicographic-sum construc-
tion, which was introduced in [53] to investigate fixed-point properties of posets.
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Definition 6.14 ([53, Section 3]). Let {P;}4c0 be a family of posets, where Q is itself a
poset. The lexicographic sum of the family of posets is the poset

lex({ Pg}qe0) :=1{(q.p) | q € O, p € Py}

with partial order given by

(¢.p)<(q.p) & q<q . org=¢q andp < p'.
Indeed, we have the following result.

Theorem 6.15. Given a family of posets {Pq}qe, we have that {{q} x Pqlgqeo is a
partition of lex({ Pg }ge @) into order-autonomous subsets. If 0 is the corresponding order-
autonomous congruence, then we have that P /0 = Q.

Conversely, suppose that { Pg}qcq is a partition of a poset P into order-autonomous
subsets giving a congruence 0. Endowing the set Q with the structure of a poset using the
quotient Q = P /0, one obtains that P = lex({ Py }qe0).

6.4. Orbits of automorphism groups

Stanley studies quotients of posets by groups of automorphisms. He in particular stud-
ies quotients of so-called Peck posets and shows that these quotients retain some nice
properties [ 103]. Other papers studying examples of quotients of posets by groups of auto-
morphisms include [58, 101].

Proposition 6.16. If P is a finite poset with 0 the equivalence relation given by the orbits
of a group G of automorphisms of P, then the quotient relation <g on P /0 is a poset. In
this case, we write P/G := P /6.

Note that if P is an infinite poset with 6 the equivalence relation given by the orbits
of a group of automorphisms, then the quotient relation <g on P /@ is not necessarily a
partial order.

Quotients by groups of automorphisms preserve structure which is not always pre-
served by quotients of posets. Here a poset is connected if its Hasse diagram is a connected
graph.

Proposition 6.17. Let P be a finite graded connected poset with rank function p and G

a group of automorphisms of P, with 0 the equivalence relation on P given by the orbits
of G.

(1) We have that p(p) = p(q) whenever pOq in P.

(2) Moreover, P/G is a graded poset.
Remark 6.18. Quotients of posets by group actions were studied from a different per-
spective in [3], conceiving posets as a type of loop-free category. The disadvantage of this

approach is that it sometimes produces quotients which are loop-free categories but not
posets, and so we omit it.
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Remark 6.19. It is worth briefly remarking on how the quotient of a poset by a group
of automorphisms can be conceived using category theory, as is done in [3]. Here one
conceives a group G as a category {*}g with one object and all morphisms isomorph-
isms. An action of a group G on a poset P is then a functor F: {x}g — Poset such that
F(x) = P. The quotient P/G is then the colimit of the functor F. The intuition here is
thatif f: P — P /G is the canonical map and g € G, so that F(g): P — P, then we must
have f o F(g) = f.

Note that this perspective also applies to infinite posets. In cases where the quotient
relation is not a partial order, the quotient is produced by finding the smallest compat-
ible congruence containing the equivalence relation given by the orbits, in the manner of
Section 4.2.

6.4.1. Quotients of Peck posets by groups of automorphisms. Stanley considers quo-
tients of Peck posets by groups of automorphisms in [103, 105] and proves a theorem on
properties preserved by these sorts of quotients. Let P be a finite graded poset of rank n
with ranks Py, P1, ..., Py, as per the notation in Section 2.1.2. If we let p; = | P;|, then P
is called rank-symmetric if p; = p,—; for all i and rank-unimodal if there is some j such
that py S pp <---< p; = pj+1 =+ = pn. The poset P is Sperner if there is no antichain
with more elements than the largest of the p;. More generally, the poset P is k-Sperner
if the union of k distinct antichains cannot have more elements than the sum of the k
largest p;. We have that P is strongly Sperner if it is k-Sperner for 1 <k <n + 1. The
poset P is a Peck poset if it is rank-symmetric, rank-unimodal, and strongly Sperner.

One can characterise Peck posets using linear algebra. Namely, if V; is the complex
vector space with basis P;, then we have the following result.

Proposition 6.20 ([102, Lemma 1.1]). The poset P is Peck if and only if there exist linear
transformations ¢;: V; — Vit1, for 0 < i < n, satisfying the following conditions:
() If p € Pj, then
$i(p) = Z Cqq
q€Pit1,9>p
for some ¢4 € C.
) Forall0 <i < %n, the linear transformation ¢n_ 41y ... Piv1¢i: Vi — Vui is
invertible.

A Peck poset P is called unitary if in the above linear transformations ¢; one can take
¢qg = lforall q.

Theorem 6.21 ([103, Theorem 1]). Let P be a unitary Peck poset with G a group of
automorphisms of P. Then the quotient poset P /G is Peck.

Note that Theorem 6.21 will not hold for other sorts of congruence, since other quo-
tients will not even preserve the property of being graded. Stanley remarks that one cannot
do better than Theorem 6.21: P/G may not be unitary Peck; and P/G may not be Peck
if P is Peck but not unitary Peck [103].
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6.5. Contraction congruences

Contractions seem to have been introduced in [121], although for finite posets their kernels
are the connected compatible partitions from [104], as observed in [118]. In [16], this
notion was independently rediscovered and applied in category theory, as well as related
to so-called ‘admissible’ maps of pre-orders [35].

Definition 6.22 ([121, Section 1]). Amap f: P — Q is a contraction if
(1) it is an order-preserving surjection,
(2) the fibre f~!(g) is connected for all g € Q, and

(3) for any covering relation g < ¢’ in Q, there exists a covering relation p < p’ in P
such that f(p) = ¢ and f(p') = ¢’
One can then define a contraction congruence to be the kernel of a contraction.

The intuition for this definition is that the Hasse diagram of Q is the result of con-
tracting convex connected subgraphs of the Hasse diagram of Q. Since (3) only concerns
covering relations, contractions are not in general strong, so we must take the transitive
closure of the quotient relation to obtain a well-defined poset.

Proposition 6.23. If 0 is a contraction congruence on a poset P, then (P /0, 25) is a
well-defined poset.

Indeed, for finite P, we have the following characterisation of contraction congru-
ences [118], coming from [104].

Proposition 6.24. If P is a finite poset with a relation 0, then 0 is a contraction congru-
ence if and only if it is a compatible congruence with connected equivalence classes.

7. Notions for specific types of posets

In this section we survey congruences that have been introduced for specific types of
posets.

7.1. Kolibiar congruences

Kolibiar introduces the following notion of congruence in order to describe direct product
decompositions of posets in terms of equivalence relations [62]. To use this notion of
congruence, it is required that the poset be directed. In [63], the framework is generalised
to connected ordered sets.

Definition 7.1 ([62, Definition 2.1]). Let P be a poset. An equivalence relation 6 on P
will be called a Kolibiar congruence on P if the following conditions are satisfied:
(1) For each p € P, we have that [p] is a convex subset of P.

) If p,q,r € P with p <r,q <r,and pfq, thenthereiss € P suchthat p <s <r,
q < s and p0s.
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3) If pg,r,s € P,r < p<s,r <q <s and rfp, then there is t € P such that
qg<t<s,p<t,andqbt.

(4) The duals of (2) and (3) also hold.

Remark 7.2. Note that [62, Definition 2.1] does not include the dual of (2). However, it
is clear from [62, §2.2] that the dual of (2) is intended to hold. Since it does not appear
that the dual of (2) follows from the remaining conditions, we include it explicitly.

It is not generally very easy to check whether a given equivalence relation is a Kolibiar
congruence. The defining properties of a Kolibiar congruence are chosen to make the
following result true.

Proposition 7.3. An equivalence relation 0 on a lattice L is a lattice congruence if and
only if it is a Kolibiar congruence.

Hence, the notion could also go in Section 5. However, we put it here since it has
Theorem 7.5 as a specific piece of motivation, which, along with the other key properties
of the notion, is only shown for directed posets in [62]. As ever, the easiest way to verify
the above proposition is by applying the criterion Lemma 3.6. Indeed, Definition 7.1 (2)
roughly corresponds to Lemma 3.6 (1), whilst Definition 7.1 (3) roughly corresponds to
Lemma 3.6 (2). The other key properties of Kolibiar congruences are as follows.

Proposition 7.4 ([62, §2.6, Theorems 2 and 3]). Let 6 be a Kolibiar congruence on a
directed poset P.

(1) We have that (P /0, <g) is a well-defined poset.

(2) The set of Kolibiar congruences on P forms a complete distributive lattice which
is a sublattice of the lattice of equivalence relations on P.

The principal motivation for Kolibiar congruences is the following theorem.

Theorem 7.5 ([62, Theorem 7]). Let P be a directed poset. Then there is a bijection
between direct product decompositions P = [[/_, P; and families {0; | i € [n]} of Kolibiar
congruences satisfying the following conditions:

() M=, 6 = id.
2) \/:-1:1 0; = P x P, where V denotes the smallest equivalence relation containing
a given set of equivalence relations.

(3) Givenaset{pi,...,pn} S P, there exists an element p € P such that p6; p; for
alli € [n].

In terms of the direct product decomposition, the equivalence relation 6; should be
thought of as identity in the i-th coordinate: p6;q if and only if the i-th coordinates of p
and g are the same. One can think of Kolibiar congruences as congruences that arise in
this way.
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The morphism perspective on Kolibiar congruences is given by the following defini-
tion and result.

Definition 7.6. A map f: P — Q between two directed posets is called a Kolibiar morph-
ism if
(1) f is order-preserving;
(2) if p,g,r € P with p <randqg <rand f(p) < f(q), then there is s € P such
that p < r,q <s <rand f(q) = f(5);
(3) the dual of (2) also holds.
Proposition 7.7 ([62, Theorem 1]). Let 8 be an equivalence relation on a directed poset P.

We have that 6 is a Kolibiar congruence if and only if it is the kernel of a Kolibiar morph-
ism f: P — Q.

7.2. Homogeneous congruences

Homogeneous quotients were introduced by Hallam and Sagan in [46] to study the char-
acteristic polynomials of posets. See also [45]. The definition requires that the poset has a
unique minimal element.

Definition 7.8 ([46, Definition 4]). Let P be a finite poset with a unique minimal ele-
ment 0, and let 6 be an equivalence relation on P. Then we say that 6 is a homogeneous
congruence if

1) {6} is a #-equivalence class, and
(2) O is upper regular.

Proposition 7.9 ([46]). If 0 is a homogeneous congruence on a finite poset P, then we
have that (P /0, <g) is a well-defined poset.

Note that here it is required that the poset be finite.

Remark 7.10. Note that property (1) is not required in the proof the quotient is well
defined in Proposition 7.9. The motivation for this property comes from the fact that char-
acteristic polynomials are only defined for posets with a unique minimal element.

7.2.1. Mobius functions and characteristic polynomials. We explain more detail on the
motivation for homogeneous congruences, which stems from characteristic polynomials
of posets. Given a poset P with a unique minimal element 0, recall that the (one-variable)
Mobius function of P is the function up: P — Z defined recursively by

D up(p) =8,

pP<q

where 56 p is the Kronecker delta.
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We now suppose that P is graded with rank function p: P — Z (. We denote the rank
of P by p(P). The characteristic polynomial of P is the generating function for y, that is,

ap() =Y pp(p)r)=rP),
peP

Hallam and Sagan investigate the characteristic polynomials of lattices using homogen-
eous quotients in [46]. If a homogeneous congruence satisfies certain conditions, then
quotienting does not affect the characteristic polynomial.

Proposition 7.11 ([46, Lemma 6, Corollary 8]). Let P be a graded poset with a unique
minimal element 0 with 0 a homogeneous congruence on P. Suppose that, for all [p] €
P /0 with 0 ¢ [p], we have
> ur(g) =0,
q€Lp(lpD

and that the rank function p is constant on equivalence classes. Then

wese(lpl) = Z wp(q)
q€[p]

and, consequently,
xp/o() = xp().

By applying Proposition 7.11, one can compute the characteristic polynomials of
posets by taking certain homogeneous quotients in order to simplify them.

Remark 7.12. There are other approaches one could take to quotienting posets in such
a way that preserves the characteristic polynomial. For instance, one could replace the
condition that, for all [p] € P /0 with 0 ¢ [p], we have that

Y wr(@) =0, (7.1)

geLp([p])

with the condition that for all [p] € P /60 we have

Yo D el =1 0). (7.2)

[gleL p/o(lp]) relq]

Here 1y (x) is the indicator function of X, which equals 1 if x € X and 0 otherwise.
This condition is equivalent to having wp/e([p]) = qu[ 1 4P (q). The constancy of the
rank function on equivalence classes then gives the desired result that y p/o(¢) = xp ().
Note that by Proposition 4.11, if the rank function p is constant on -equivalence classes,
then 6 is compatible and s_; is a well-defined partial order on P /6. Hence, by replacing
the assumption (7.1) with the assumption (7.2), while maintaining the assumption that the
rank function is constant on equivalence classes, no additional assumption is then needed
on the equivalence relation 6. This then gives a strictly larger set of congruences which
preserve the characteristic polynomial.
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In [45], Hallam uses homogeneous quotients to give proofs of classical results on
Mbobius functions by induction on the size of the poset.

7.3. Natural DCPO congruences

Mahmoudi, Moghbeli, and Pidro study congruences of posets which are directed com-
plete [72,73]. Here, a poset P is directed complete if every directed subposet D C P has
ajoin \/ D in P. ‘Directed complete partial order’ is abbreviated ‘DCPO’. DCPOs are
fundamental in Domain Theory, a mathematical foundation of the semantics of program-
ming languages introduced by Scott [96,97]. See [2] for an overview.

Definition 7.13 ([96]). Let P and Q be DCPOs. A DCPO map ¢: P — Q is a map such
that for each directed subposet D C P, we have that the subposet ¢ (D) of Q is directed,

and ¢(\/ D) = \/ ¢(D).

DCPO maps are also known as ‘continuous’ or ‘Scott-continuous’. Note that it follows
from the definition that DCPO maps are order-preserving, since a pair of comparable
elements in P forms a directed subposet. The fundamental theorem of domain theory is
that every DCPO map P — P has a least fixed point; this least fixed point is then the
mathematical counterpart of a recursive definition in a program.

Definition 7.14 ([72]). An equivalence relation 6 is a natural DCPO congruence if the
transitive closure <y of the quotient relation <y on P /6 is a DCPO, with the canonical
map P — P /6 a DCPO map.

This sort of definition follows a recipe that can be used to define a notion of congruence
for any type of poset with additional structure, such as a DCPO. Namely, a congruence
should be an equivalence relation 6 such that the canonical map P — P /6 preserves
the additional structure. It ought to be possible to define DCPO congruences in terms of
necessary and sufficient conditions on the equivalence relation, however. Note also that
for finite DCPOs, natural DCPO congruences coincide with compatible congruences.

Remark 7.15. In their work, Mahmoudi, Mohgbeli, and Pidro also consider ‘DCPO con-
gruences’, which are precisely the kernels of DCPO maps. However, given a DCPO
congruence 6 on a DCPO P, there is no canonically defined DCPO on P /6. Indeed,
the transitive closure s‘; of the quotient relation <g on P/6 may not be a DCPO, and
there may be several ways of extending this partial order to a DCPO. In general, therefore,
‘DCPO congruences’ are not always natural DCPO congruences, and so natural DCPO
congruences are not precisely the kernels of DCPO maps.

7.4. Posets with additional algebraic structure

We consider briefly a couple of types of posets with additional algebraic structure. Similar
to the case of lattices, congruences on such posets are also required to respect the algeb-
raic structure, in the sense from universal algebra. This situation is considered in general
in [65].
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7.4.1. Hilbert algebras. Hilbert algebras give another instance, analogous to lattices,
where a poset has additional algebraic structure, namely a binary operation * obeying
certain axioms. One can then consider congruences of Hilbert algebras according to the
universal algebra approach. However, unlike lattices, congruences of Hilbert algebras do
not always produce well-defined posets [18]. The framework of Hilbert algebras was used
to study congruences of relatively pseudocomplemented posets in [18], since relatively
pseudocomplemented posets form a subclass of the class of Hilbert algebras. Hilbert
algebras arise from the axiomatisation of propositional logic given by Hilbert in [52],
and it seems that they were first put into the framework of posets in [86].

7.4.2. Sectionally pseudocomplemented posets. Another type of posets with additional
algebraic structure are sectionally pseudocomplemented posets. The additional algebraic
structure determines the order if the poset has a unique maximal element [19]. For these
posets a congruence on the algebra does not necessarily guarantee that the quotient rela-
tion is a partial order. However, this is guaranteed when the poset has a unique maximal
element, satisfies the ascending chain condition, and is strongly sectionally pseudocom-
plemented [19, Theorem 3.2 and Theorem 3.5]. (Recall that the ascending chain condition
holds when there are no infinite strictly ascending chains.) Sectionally pseudocomple-
mented posets play a role in semantics in a similar way to DCPOs: see [17] and references
therein.

8. Examples

We now survey examples of quotient posets that have appeared in the literature. We focus
on giving nice examples, rather than representing all different types of congruences. Other
examples from the literature include [29, 54, 66].

8.1. Graphs

Our first example shows how the poset of graphs on a given set of vertices can be construc-
ted as a quotient by an automorphism group. Let n = (';’ ) for some positive integer m. We
consider the Boolean lattice B, of subsets of [1] as the set of labelled simple graphs on m
vertices, as we presently explain. Simple graph here means that there is at most one edge
between any two vertices. Identify each of the elements of [n] with a different unordered
pair {i, j} of two distinct elements from [m], corresponding to an edge from i to j. The
set B, then naturally corresponds to the set of labelled simple graphs on m vertices, with
the order relation given by edge inclusion.

Let (['; ]) denote the set of subsets of [m] of size 2, and let G be the symmetric
group S,,. This acts by permuting the m points, which induces an action on the set of
edges ([m]), and hence on the poset B,. This action on the poset B,, simply relabels the

2
vertices of the graph, and so orbits correspond to isomorphic graphs on the m vertices.
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Figure 3. The subgraph ordering on simple graphs on four vertices.

Hence, the quotient poset B,/ G is the subgraph order on the set of non-isomorphic simple
graphs on m vertices. Applying Theorem 6.21 gives the following result.

Theorem 8.1 ([103,105]). The poset of non-isomorphic simple graphs on m vertices with
respect to subgraph inclusion is Peck.

An example of such a poset is shown in Figure 3, cf. [105, Figure 4].

8.2. Young diagrams

We now similarly examine how the poset of Young diagrams contained in a given rectangle
may be constructed as a quotient by a group of automorphisms. We consider the Boolean
lattice B,,, and think of the underlying set of mn elements as a rectangular array of cells
with m rows and n columns. The wreath product G = S, 2 S, permutes the n cells within
each row independently, and permutes the m rows by interchanging them. The group G
thus has |G| = (n!)"m! elements.

Given a set of cells T € B,,, there is a canonical representative of its orbit under G,
which is obtained as follows. First, the cells of the rows of the array are permuted to move
the cells of 7" as far left as possible. The rows of the array are then interchanged so that
the number of cells in each row decreases as one goes down the array. A finite collection
of cells arranged in left-justified rows of decreasing length is called a Young diagram.
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Figure 4. The Young diagram in the orbit of a set of cells.

These correspond to integer partitions, with the entries of the partition corresponding to
the lengths of the rows. See Figure 4 for an example.

As before, we consider the quotient poset B,,,/G. Each orbit of the action of G
on B,,, contains precisely one Young diagram, so this poset is the poset L (m,n) of Young
diagrams contained in an m X n rectangle ordered by inclusion. The poset L(m, n) is in
fact a distributive lattice. An example of one of these posets is shown in Figure 5. By
applying Theorem 6.21, we obtain the following result.

Theorem 8.2 ([103,105]). The poset L(m,n) is Peck.

Note that, despite the fact that both B,,, and L(m, n) are lattices, the congruence
on the former which gives the latter is not a lattice congruence, due to Proposition 9.1.
Hence there are interesting quotients from lattices to lattices which are not given by lattice
congruences.

8.3. The poset of conjugacy classes of subgroups

A well-studied example of a quotient of a poset by a group of automorphisms is given
by the poset of conjugacy classes of subgroups of a particular group. Indeed, let G be a
finite group with A(G) its lattice of subgroups. There is a natural action of G on A(G) by
conjugacy. Indeed, given a subgroup H < G and an element g € G, the action of g on H
is given by

H® =g 'Hg.

The poset of conjugacy classes of subgroups of G is then the quotient poset
€(G) = AG)/G.

This poset is sometimes called the frame of G.

The frame of a group was first studied in [50], where the following theorem on the
Mobius functions of A(G) and €(G) was proven. Here [G, G] denotes the subgroup of
commutators of G.



N. J. Williams 188

r

=
e

Figure 5. The poset L(2, 3).

Theorem 8.3 ([50, Theorem 7.2]). If G is solvable, then

ua)(G) = wew.)(G)|G, G]|.

Another connection between the solvability of a group and its frame was shown in [36].
Recall here that if P is a poset with maximal element 1, then p € P is a coatom if p is
covered by 1. Recall also that a lattice L is modular if for every x, y,z € L such that
x < z, we have that

xVvy)Az=xV(yAzZ).

Theorem 8.4 ([36]). A finite group G is solvable if and only if every collection of coatoms
of €(G) has a well-defined meet and the poset consisting of all such meets is a modular
lattice.

There is a fair amount of literature on the frame of a group. The homotopy type of the
order complex of €(G) was studied in [123]. See also [15,75,116] for other results on this
poset. There are variations on the frame, such as looking at: the poset of conjugacy classes
of a restricted set of subgroups [122]; the quotient of the poset of subgroups by identifying
all isomorphic subgroups, rather than just conjugate ones [115]; and the quotient of the
subgroup lattice of G by a group other than G itself [74].
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Figure 6. Rotation of binary trees (cf. [100, Figure 1]).

8.4. Permutations to binary trees

There is a natural order on the set of binary trees with a given number of vertices known as
the Tamari lattice. This poset can be expressed as a quotient of the weak Bruhat order on
the symmetric group, giving a map from permutations to binary trees. This map appears
in many guises, including as a map from the permutohedron to the associahedron [119],
in the context of Hopf algebras [68—70], and in Coxeter theory [10, 11]. See also [106,
Section 1.3.13] and [117]. The map moreover appears as the prototype for the theory of
Cambrian lattices [89], as we explain in the next section.

Our framework for binary trees is based on [114, Section 1.5, Chapter 1]. A tree is
an undirected graph that is connected and acyclic. A rooted tree is a tree T with a distin-
guished vertex r, called the root. Given vertices v and w such that v is on the path from r
to w, then we say that v is an ancestor of w and w is a descendant of v. If additionally
v # w, then v is a proper ancestor of w and w is a proper descendant of v. If v is a proper
ancestor of w with the two vertices adjacent, then we say that v is the parent of w and w is
a child of v. A binary tree is a rooted tree in which each vertex v either has no children, or
has exactly two children, namely its left child [(v) and its right child r(v). A vertex with
two children is internal and a vertex with no children is external. A binary tree is said to
be of size n if it has n internal nodes. A tree of size n has n 4+ 1 external nodes. Given an
internal vertex v, its left subtree is the subtree rooted at its left child and its right subtree
is the subtree rooted at its right child.

Rotation of binary trees is the operation shown in Figure 6. Here X and Y are nodes
and A, B, and C represent subtrees. In the left-hand tree, A is the left subtree of X, B is
the right subtree of X, and C is the right subtree of Y'; in the right-hand tree, A is still the
left subtree of X and C is still the right subtree of Y, but B is now the left subtree of Y.
Note that the trees depicted in this figure might be subtrees of larger trees; that is, rotation
can be done as an operation on subtrees of larger trees.

Given the situation of Figure 6, noting that the trees may be subtrees of larger trees,
we call the rotation at X a forwards rotation and the rotation at Y a backwards rotation.
The Tamari lattice T, is the poset of binary trees of size n with covering relations given
by forwards rotation.
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Figure 7. The Tamari lattice T}4.

We now define the weak Bruhat order on the symmetric group S,. A more general
definition of the weak Bruhat order which applies to all Coxeter groups will be defined
in Section 8.5. Given a permutation o € S, an inversion of o is a pair {i, j} € ([;]) with
i < j,suchthat 0(j) < o(i). The set of all inversions of ¢ is denoted /(o). The weak
Bruhat order on the symmetric group is the partial order defined by o < t if and only if
I(o) C I(7).

The map v: S, — T, from the weak Bruhat order on permutations to the Tamari lattice
on binary trees is defined recursively. We follow the exposition in [117]. For a string of p
distinct numbers a; .. .ap, we write std(a .. .ap) for the string consisting of [p] written
in the same order as ay, . . ., a,. We use one-line notation for permutations o € Sy, so that
0 = wWiW; ... w, means that o (i) = w;. For n = 0, y applied to the empty permutation
gives the empty tree. Then, for n > 1, given a permutation 0 = ay ...apnby ... by, we
define ¥ (o) to be the binary tree where the root node has left subtree v (std(a; . . .ap)) and
right subtree ¥ (std(b; .. . by)). This map is order-preserving, since adding an inversion to
the permutation either corresponds to a forwards rotation of the tree, or has no effect. For
example, going from 12 to 21 gives a forwards rotation of the tree, whereas going from
132 to 231 has no effect.

Theorem 8.5 ([11,89]). The map ¥: S, — T, is a quotient map by a lattice congruence.
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8.5. Cambrian lattices

We now examine a generalisation of the map from Section 8.4 due to Reading [89]. A
Coxeter group is a group W defined by a set of generators S and relations (s¢)™®) = 1
fort,s € S, where m(s,t) = 1 fors =t and m(s, ) € [2, o0] otherwise. The elements of S
are called simple reflections and conjugates of simple reflections are called reflections.
Important examples of Coxeter groups include Weyl groups and finite reflection groups.
More details can be found in [8].

An element of W can be written in several different ways as a word with letters in S.
A word a for an element w € W is called reduced if it has a minimal number of let-
ters amongst all words representing w. The length of a reduced word for w is called the
length £(w) of w. A finite Coxeter group has a unique element of maximal length, which
is referred to as the longest element and denoted wy.

We consider a partial order on Coxeter groups, known as the weak Bruhat order, gen-
eralising the order on the symmetric group considered in Section 8.4. There is a family of
lattice quotients of this partial order known as Cambrian lattices [89]. The prototype for
this family of quotients is the map from permutations to binary trees given in Section 8.4.

We again let W be a Coxeter group with S the set of simple reflections. Letting
w € W, the left inversion set I(w) of w is defined to be the set of all reflections ¢ such
that £(fw) < £(w). We have that |I(w)| = £(w). The left descent set of w is I(w) N S.
There are an analogous right inversion set and right descent set: the right descents of w
are the simple reflections s € S such that £(ws) < £(w).

The right weak Bruhat order on W is the partial order on W where v < w if and only
if I(v) € I(w). Note that, unfortunately, the right weak Bruhat order is defined in terms
of left inversion sets. Equivalently, the right weak Bruhat order is the partial order with
covering relations ws < w for every right descent s of w. Again equivalently, v < w in
the right weak Bruhat order if and only if there is a reduced word for v which is a prefix of
a reduced word for w. There is an analogous left weak Bruhat order, which is isomorphic
to the right weak Bruhat order via the map w +— w~!. Henceforth, when we say ‘weak
Bruhat order’, we will mean the right weak Bruhat order.

The Coxeter diagram of W with respect to S is the graph whose vertex set is S and
whose edges {s, ¢} are given by the pairs such that m(s,t) = 3. The edges {s,} with
m(s,t) = 4 are labelled by the number m(s, t). An orientation of a Coxeter diagram G is
a directed graph G~ with the same vertex set as G with one directed edge for each edge
of G. The Coxeter diagram corresponding to the symmetric group S, 4+ is the A, Dynkin
diagram.

We are now in a position to define the Cambrian congruences from [89]. Let W now
be a finite Coxeter group with Coxeter diagram G. Further, let G~ be an orientation of G.
The Cambrian congruence ®(G ™) is the smallest lattice congruence on the weak Bruhat
order of W such that, for a directed edge s — ¢ in G~ with label m(s, t), t is equivalent
to

Ists ...

m(s,t)—1
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Figure 8. A Cambrian congruence on the weak Bruhat order on S5.

The associated Cambrian lattice is the quotient W/®(G ™). In the case of the example
from Section 8.4, the orientation of the A, Dynkin diagram giving the Tamari lattice is
the one where all arrows point in the same direction.

Example 8.6. We give an example of a Cambrian congruence and the resulting lattice.
Consider the orientation
1—>2

of the A, Dynkin diagram. If we let 57 and s, be the simple reflections corresponding
to the relevant vertices. We have that m(sq, s2) = 3, so under the Cambrian congruence
we have that s, is equivalent to s,5;. This congruence and resulting lattice is shown in
Figure 8. Note that the Cambrian lattice is the Tamari lattice from Figure 7.

Cambrian lattices are sublattices of the weak order, which is not generally true for
lattice quotients, as we know from Example 5.23.

Theorem 8.7 ([90, Theorem 1.1, Theorem 1.2]). Let G be a Coxeter diagram with W' the
Coxeter group of G. Let ©(G ™) be a Cambrian congruence on W for some orientation
G~ of G. Then the Cambrian congruence ®(G™) is a lattice congruence on W and the
Cambrian lattice W/ ©(G ™) is a sublattice of W.

See also the related paper [88]. Cambrian quotients of infinite Coxeter groups were
considered in [91].

Remark 8.8. Cambrian lattices and quotients can be interpreted in the representation
theory of algebras in [28, 39, 43,55, 56]. See also [77], which realises the weak Bruhat
order in terms of the representation theory of preprojective algebras.

8.6. Higher-dimensional Cambrian maps

The map ¥ from Section 8.4 also extends to higher dimensions. The higher Bruhat orders
B(n,d) are a family of partial orders such that B(n, 1) is the weak Bruhat order on S, .
These were introduced in [76]. Similarly, the higher Stasheff-Tamari orders § (n, d) are a
family of partial orders which coincide with the Tamari lattice T}, in the case d = 2. These
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orders were defined in [34,59] and a good introduction can be found in [84]. There were
originally two different descriptions of these orders, but these were shown to be the same
in [124]. In [59], Kapranov and Voevodsky defined an order-preserving map

fiBMm,d)—Sn+2,d+1),

which is a higher-dimensional version of the map i from Section 8.4; that is, f =
for d = 1. This map was studied in [83, 117]. The following conjecture is open.

Conjecture 8.9 ([59, Theorem 4.10]). The map f:B(n,d) — S(n+2,d + 1) is a quo-
tient by a weak order congruence.

Remark 8.10. The higher Bruhat orders B(n, d) and higher Stasheff-Tamari orders
S(n 4+ 2,d + 1) are not only posets but n — d categories, with the order relations giving
the one-dimensional morphisms. Being a quotient by a weak order congruence effect-
ively means that the map f is surjective on the order relations. But the map f should in
fact be surjective on morphisms of all dimensions in § (n + 2, d + 1). However, showing
surjectivity on the relations ought to suffice, since the higher-dimensional morphisms in
B(n,d)and S (n +2,d + 1) correspond to relations in these posets for larger values of d.

It is known that f cannot be a quotient by an order congruence due to the following
fact.

Proposition 8.11 ([117, Section 6]). The fibres of the map f are not always intervals.

There is also a map g: B(n,d + 1) — S(n, d) which factors through the dual of the
map f [117, Proposition 7.1], [125, Remark 34], for which the following result holds.

Theorem 8.12 ([125, Theorem 5.3]). The map g: B(n,d + 1) — S(n,d) is a quotient
by a weak order congruence.

The surjectivity of the map g is originally due to [85, Theorem 3.5]. This quotient map
also appears in the context of integrable systems in [30], who use it to give a definition of
the higher Stasheff-Tamari orders as a quotient of the higher Bruhat orders.

8.7. Type B weak order

In [99], Simion gives a quotient of the weak order in type B which is isomorphic to
the weak order in type A, which we now explain. Let Wp, be the Coxeter group with
Coxeter diagram B,,. This Coxeter group is the group of signed permutations, meaning
permutations X_, ... xX_1X1 ... X, of £[n] := {£1,..., £n} such that x_; = —x; for
every i € [n]. Signed permutations can therefore be represented in abbreviated one-line
notation by x1 ... x,. We write |x; | for the absolute value of x; in the natural way: |j| = j
and | — j| = j for j € [n].

Giveno =o01...0, € Wp,, let ot consist of the subword of o consisting of positive
entries and o~ consist of the subword of o consisting of negative entries. Furthermore,

weletay =ocTo~and By, =0 o™ .
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Lemma 8.13 ([99, Lemma 3]). The set of intervals {[os, Bs] | 0 € W, } forms a partition
of Wp,.

If 6 is the equivalence relation given by this partition, then we have the following
result.

Proposition 8.14 ([99, Proposition 4]). The equivalence relation 6 is an order congru-
ence on Wp, and the quotient poset Wg, /0 is isomorphic to Wy, the weak Bruhat order
on the symmetric group.

There is a nice description of the intervals in the partition.

Proposition 8.15 ([99, Observation 2]). Let o € Wp, be such that o has k letters. Then
[av ﬂ] = L(n - k$ k)

Here L(n — k, k) is the poset of Young diagrams from Section 8.2.

8.8. Strong Bruhat order

We now consider a family of quotients of the strong Bruhat order on a Coxeter group W'.
Given a Coxeter group W, the strong Bruhat order on W is defined as follows. We have
that ¥ < w if some reduced word of w contains a reduced word for u as a subword. In
fact, in this case, every reduced word for w will contain a reduced word for u. Unlike the
weak Bruhat order, the strong Bruhat order is not always a lattice, and even not always
either a meet-semilattice or a join-semilattice [8, Section 3.2].

For any subset J C S, the subgroup of W generated by J is another Coxeter group,
known as a parabolic subgroup and denoted W; . The following proposition shows that the
quotient of the strong Bruhat order on a finite Coxeter group using the two-sided cosets
from two parabolic subgroups is an order quotient.

Proposition 8.16 ([87, Proposition 31]). Forany w € W and J, K C S, the double cosets
WjywWk form an order congruence of the strong Bruhat order on W.

For finite Coxeter groups, quotients of the strong Bruhat order by parabolic subgroups
were classified in [79].
8.9. Bruhat interval polytopes

We finally consider another family of quotients of the weak Bruhat orders, which nev-
ertheless use the strong Bruhat order in their definition. For a permutation w € S, the
associated Bruhat interval polytope [61, Definition 6.9] is defined as the convex hull

Qy = conviu = (u 1(1),...,u"'(n)) | u < w} CR",

where here ¥ < w means with respect to the strong Bruhat order on S,. Recall that the
convex hull of a set of points is the smallest convex set containing them, where a set is
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convex if it contains the straight line segment between any two of its points; a convex
polytope is the convex hull of a finite set of points. By looking at the edges of the Bruhat
interval polytope, one obtains the following partial order on the set [e, w].

Definition 8.17 ([37, Definition 1.1]). The poset (Py,, <) has the interval [e, w] in the
strong Bruhat order as its underlying set, with covering relations u <,, v whenever Q.
has an edge between the vertices u and v and £(u) < £(v).

These posets are lattices.
Theorem 8.18 ([37, Theorem 4.5]). For all w € S,,, we have that Py, is a lattice.

One can realise Py, as a certain quotient poset of the weak Bruhat order on S,. In
order to do this, we will need the following notion. The normal fan N(Q) of a polytope
2 C R”, is the set of cones {C(F) | F aface of 2}, where

C(F):={xeR" | F C argmaxycq (x,X)},

and argmaxy g (X, X') 1= {x’ € Q | (x,X) is maximal} [126, Example 7.3].

Elements u of Py, correspond to vertices u of ,,, which correspond to maximal cones
C(u) in N(Q). We have that 9, is the permutohedron, whose normal fan N (2,,) is
the braid hyperplane arrangement, which has defining hyperplanes x; — x; = 0. In the
normal fan of Q,, each cone of N(,) is a union of cones of N(2,,). Hence, we obtain
an equivalence relation 6,, on the weak Bruhat order Py, in which the equivalence class
of u € Py, is the set of v € Py, whose corresponding cones C(v) lie in the same cone
of N(2y) as C(u). The elements of Py, are then in bijection with the 8,,-equivalence
classes of Py,.

Theorem 8.19 ([37, Theorems 4.3 and 4.5]). We have that Py, = P, /60,,. Moreover, for
u,v € Py,, we have

[ulg, V [v]s, = [uV vls,.

Hence 6, is a join-semilattice congruence, and so is a III-congruence on Py, .

9. Comparison

We finally compare the differing notions of poset congruence that we have surveyed. Dif-
ferent types of poset congruence have different properties, and some are stronger than
others.

In Table 1, we compare the different properties of the notions of congruence.

*  Self-dual? A tick indicates that 0 is a congruence on P if and only if it is a congruence
on P.

* Preserves grading? We have that P/6 is a graded poset if P is a connected graded
poset.
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*  Quotient map strong? The canonical map P — P /0 is strong. Equivalently, one does
not need to take the transitive closure <g of the quotient relation <g on P /6 to define
the quotient relation.

* Closed under N? The intersection 67 N 6, is a congruence if 8; and 6, are congru-
ences.

» Infinite posets? If 6 is a congruence on an infinite poset P, then P/ is still a well-
defined poset.

» Lattice congruences? If 6 is a congruence on a lattice L, then 6 is a lattice congruence
on L.

*  Other requirements. Other conditions needed on the poset P.

References for some of these facts are as follows, corresponding to the superscripts:

(1) [13, Theorem 6.3]; (4) [49, Theorem 4.8]; (7) [62, §2.1].
(2) [44, Lemma 11]; (5) [49, p.347];
3) [44, p.197]; (6) [62, §2.6];

For reasons of space, the remaining facts are left as exercises.

In Figure 1, we display the implications that hold between different notions of poset
congruence. Here ‘Haviar-Lihova congruence =—> Order congruence’ means that every
Haviar-Lihova congruence is an order congruence, and so on. We label the arrows with
the additional assumptions that are needed, if any.

» Strong: the implication holds if the quotient map P — P /@ is strong.

. {6}: the implication holds if the poset has a unique minimal element 0 which is in its
own equivalence class {6} Note that in the case of the orbits of a group of automorph-
ism, if there exists a unique minimal element 6, then it is automatic that it is in its own
equivalence class {6}.

* Finite: the implication holds if the poset is finite.

We provide a citation if the result can be found explicitly found in the literature. The
remaining implications are left as exercises.

A good illustration of the fact that several notions of congruence are needed is illus-
trated by the following proposition.

Proposition 9.1. Let P be a poset with 8 an order congruence which is also the set of
orbits of an automorphism group. Then 0 is the identity relation.

Order congruences and orbits of groups of automorphisms are both natural classes
of equivalence relations by which to quotient a poset, but the two only intersect in the
identity relation. Hence both notions are needed separately if the spectrum of different
types of congruence that arise in examples are to be captured.
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