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1. Linear determinantal representations of smooth Hesse cubics and
statement of the results

1.1. LetK be a field and f 2S DKŒx0; : : : ;xn� a nonzero homogeneous polynomial of
degree d > 1. A matrixM D .mij /i;jD0;:::;d�1 2 Matd�d .S/ is linear if its entries are
linear homogeneous polynomials and it provides a linear determinantal representation
of f if detM :

D f , where :
D means that the two quantities are equal up to a nonzero

scalar fromK. More generally, ifM is a linear matrix for which there exists a matrixM 0

with M �M 0 D f idd D M 0 �M , then M is an Ulrich matrix and F D CokerM ,
necessarily annihilated by f , is an Ulrich module over R D S=.f /.

If V.f / D ¹f D 0º � Pn, the projective hypersurface defined by f , is smooth,
then the sheafification of F is a vector bundle, called an Ulrich bundle.

Our aim here is to give normal forms for all Ulrich bundles of rank 1 or 2 over a
plane elliptic curve in Hesse form.

Linear determinantal representations of hypersurfaces have been studied since, at
least, the middle of the 19th century and for a very recent comprehensive treatment for
curves and surfaces see Dolgachev’s monograph [5]. This reference contains as well a
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detailed study of the geometry of smooth cubic curves, especially of those in Hesse
form and we refer to it for background material.

For smooth plane projective curves, the state-of-the-art result is due to Beauville.

1.2 Theorem ([4, Proposition 3.1]). Let C D V.f / be a smooth plane projective curve
of degree d defined by an equation f D 0 in P2 over K. With g D 1

2
.d � 1/.d � 2/

the genus of C , one has the following:
(a) Let L be a line bundle of degree g � 1 on C with H 0.X; L/ D 0. Then there

exists a d � d linear matrix M such that f D detM and an exact sequence of
OP2-modules

0 // OP2.�2/d
M // OP2.�1/d // L // 0:

(b) Conversely, let M be a d � d linear matrix such that f :
D det M . Then the

cokernel ofM WOP2.�2/d ! OP2.�1/d is a line bundle L on C of degree g � 1
with H 0.X;L/ D 0.

In this result, the matrix M clearly determines L uniquely up to isomorphism,
but L determines M only up to equivalence of matrices in that the cokernel of every
matrix PMQ�1 for P;Q 2 GL.d;K/ yields a line bundle isomorphic to L. The so
obtained action on these matrices of the group Gd D GL.d;K/ � GL.d;K/=Gm.K/,
with Gm.K/ the diagonally embedded subgroup of nonzero multiples of the identity
matrix, is free and proper; see [4, Proposition 3.3]. The geometric quotient by this
group action identifies with the affine variety Jacg�1.C / n‚, the Jacobian of C of
line bundles of degree g � 1 minus the theta divisor ‚ of those line bundles of that
degree that have a nonzero section.

There is therefore the issue of finding useful representatives, or normal forms, for
such linear representations in a given orbit. Realizing hyperelliptic curves as double
covers of P1, Mumford [14, IIIa, Section 2] exhibited canonical presentations for
such line bundles, which motivated Beauville’s work [3], and Laza–Pfister–Popescu
in [11] found such representative matrices for the Fermat cubic, while for general
elliptic curves in Weierstraß form Galinat [9] determines normal forms of those linear
representations.

Our first result yields the following normal forms for plane elliptic curves in Hesse
form. Here, and in the sequel, we denote Œa0 W � � � W an� 2 Pn.K/ the K-rational point
with homogeneous coordinates ai 2 K, not all zero.

The name Moore matrix in the context of elliptic curves was introduced by K.
Ranestad [16] analogously to Moore matrix for abelian varieties.
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In the paper we assume that K is an algebraically closed field.1

1.3 Theorem A. If charK ¤ 2; 3, each linear determinantal representation of the
smooth plane projective curve E with equation

x30 C x
3
1 C x

3
2 C �x0x1x2 D 0; � 2 K; �3 C 27 ¤ 0;

is equivalent to a Moore matrix

M.a0;a1;a2/;x D .aiCjxi�j /i;j2Z=3Z D

0B@a0x0 a1x2 a2x1

a1x1 a2x0 a0x2

a2x2 a0x1 a1x0

1CA
with a D Œa0 W a1 W a2� 2 E and a0a1a2 ¤ 0.

Two such Moore matrices M.a0;a1;a2/;x and M.a0
0
;a0

1
;a0

2
/;x yield equivalent linear

determinantal representations of E if, and only if,

3 �E a D 3 �E a0;

where 3 �E a D aCE aCE a is calculated with respect to the group law CE on E
whose identity element is an inflection point of E.

1.4 Remarks. We make the following two remarks.

(a) Tripling a point a in the group law on E results in the same point, no matter
which inflection point is chosen as origin.

Furthermore, choosing an inflection point as origin for the group law, the exceptional
points a 2 E with a0a1a2 D 0 are precisely the 3-torsion points, equivalently, the
inflection points of E. They form the subgroup

EŒ3� D ¹Œ1 W �! W 0�; Œ0 W 1 W �!�; Œ�! W 0 W 1� j ! 2 K;!3 D 1º � E;

isomorphic to the elementary abelian 3-group Z=3Z � Z=3Z of rank 2.

(b) In geometric terms, the preceding result states that the map a 7! cokerMa;x

from E nEŒ3� to its punctured Jacobian Jac0.E/ n ¹ŒOE �º Š E nEŒ1� of line bundles
of degree 0without nonzero sections is well defined and is (isomorphic to the restriction
of) the isogeny2 of degree 9 that is given by multiplication by 3 on E.

Building on the previous result, our second contribution is as follows.

1Likely, it suffices thatK contains six distinct sixth roots of unity, which forces charK ¤ 2;3. However,
one key ingredient in the proof (see (2.19) below), is stated in the literature only over algebraically closed
fields, thus, we are compelled to make that assumption too.

2We thank Steve Kudla for suggesting this interpretation.
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1.5 Theorem B. Let E be the smooth plane cubic curve from above.
(a) Let F be an indecomposable vector bundle of rank 2 and degree 0 on E. If

H 0.E; F / D 0, then there exists a D .a0; a1; a2/ 2 K
3 representing a point

a 2 E with a0a1a2 ¤ 0 such that the sequence of OP2-modules

0 // OP2.�2/6

�
Ma;x Mb;x

0 Ma;x

�
// OP2.�1/6 // F // 0;

with b D .b0; b1; b2/ 2 K3 representing 2 �E a, is exact.
(b) Conversely, if a represents a 2 E with a0a1a2 ¤ 0 and b represents 2 �E a, then

the cokernel of the block matrix 
Ma;x Mb;x

0 Ma;x

!
WOP2.�2/6!OP2.�1/6

is an indecomposable vector bundle F of rank 2 and degree 0 on E that has no
nonzero sections, H 0.E; F / D 0.

(c) Replacing a by a0 results in a vector bundle isomorphic to F if, and only if,
3 �E a D 3 �E a0 on E.

In the next section we will review some known facts about elliptic curves in Hesse
form and will prove Theorem A. In Section 3 we will establish Theorem B.

2. Proof of Theorem A

To lead up to the proof of Theorem A, we first review some ingredients. To begin
with, we review how Moore matrices encode conveniently the group law on a smooth
Hesse cubic E. We set S D KŒx0; x1; x2�.

Moore matrices and their rank.

2.1 Definition. With a D .a0; a1; a2/ 2 K3, and x D .x0; x1; x2/ 2 S3 the vector of
coordinate linear forms, the Moore matrix defined by a is

Ma;x D .aiCjxi�j /i;j2Z=3Z D

0B@a0x0 a1x2 a2x1

a1x1 a2x0 a0x2

a2x2 a0x1 a1x0

1CA



Moore matrices and Ulrich bundles on an elliptic curve 5

with adjugate, or signed cofactor matrix

M adj
a;x D .aiCj�1aiCjC1x

2
j�i � a

2
iCjxj�i�1xj�iC1/i;j2Z=3Z

D

0B@a1a2x20 � a20x1x2 a0a2x
2
1 � a

2
1x0x2 a0a1x

2
2 � a

2
2x0x1

a0a2x
2
2 � a

2
1x0x1 a0a1x

2
0 � a

2
2x1x2 a1a2x

2
1 � a

2
0x0x2

a0a1x
2
1 � a

2
2x0x2 a1a2x

2
2 � a

2
0x0x1 a0a2x

2
0 � a

2
1x1x2

1CA ;
so that

detMa;x DMa;xM
adj
a;x DM

adj
a;xMa;x

D a0a1a2.x
3
0 C x

3
1 C x

3
2/ � .a

3
0 C a

3
1 C a

3
2/x0x1x2:

If now a0a1a2 ¤ 0, then set � D .a30 C a
3
1 C a

3
2/=a0a1a2 2 K to obtain

detMa;x
:
D f WD x30 C x

3
1 C x

3
2 � �x0x1x2;

whenceMa;x indeed yields a determinantal presentation of the cubic curve C D V.f /
and the point a D Œa0 W a1 W a2� in P2.K/ underlying a lies on C .

Note that C will be smooth if, and only if, �3 ¤ 27 in K. In the smooth case we
write E D V.f / to remind the reader that this curve is elliptic over K in that it is
smooth of genus 1 and contains at least one point, for example Œ0 W �1 W 1�, defined
over K.

The next result is well known and easily established through, say, explicit calculation
as in [8, Lemma 3].

2.2 Lemma. For E D V.f / a smooth cubic in Hesse form and every pair a; b with
a;b 2 E, the (specialized) Moore matrix Ma;b is of rank 2.

In the situation of the preceding lemma, basic linear algebra tells us that the one-
dimensional null space

M?a;b D ¹.c0; c1; c2/ 2 K
3
jMa;b � .c0; c1; c2/

T
D 0º

is spanned by the column vectors of M adj
a;b

. Following Dolgachev, we denote

l.Ma;b/ D c D Œc0 W c1 W c2� 2 P2.K/

the point underlying the one-dimensional space M?
a;b

in P2.
A less obvious result, part of [8, Theorem 4], is that c will again be a point of E

along with a;b.
Before we turn to the group structure, let us note that the transpose of a Moore

matrix is again a Moore matrix,

M T
a;b D .ajCibj�i /i;j2Z=3Z D .aiCj b�.i�j //i;j2Z=3Z DMa;�.b/;
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where � is the involution �.x0; x1; x2/ D .x0; x2; x1/, or, counting indices modulo 3,
�.xj / D x�j . For use below, we follow again Dolgachev and set

r.Ma;b/ D l.M T
a;b/ D l.Ma;�.b// 2 P2.K/:

The point r.Ma;b/ D d D Œd0 W d1 W d2� thus represents the (row) space ?Ma;x of
solutions to the linear system of equations d �Ma;b D 0.

2.3 Theorem (see [8, Theorem 4]). The assignment .a;b/ 7! cD l.Ma;b/ for a;b 2E
defines the group law on E by setting b �E a D c. The identity element is given by
o D Œ0 W �1 W 1� and the inverse of a is �Ea D �.a/ D Œa0 W a2 W a1�.

Before continuing towards the proof of Theorem A, we take the opportunity to
interpret Moore matrices geometrically in two ways, following Artin–Tate–van den
Bergh [1] in the first and Dolgachev [5] in the second.

Geometric interpretation à la Artin–Tate–Van den Bergh.

2.4. In the introduction to [1] the authors consider3 the trilinear forms

f D

0B@f0f1
f2

1CA D
0B@a0x0y0 C a1x2y1 C a2x1y2a1x1y0 C a2x0y1 C a0x2y2

a2x2y0 C a0x1y1 C a1x0y2

1CA
that can as well be interpreted as a system of three linear equations in, at least, two
ways:0B@a0x0 a1x2 a2x1

a1x1 a2x0 a0x2

a2x2 a0x1 a1x0

1CA
0B@y0y1
y2

1CA D
0B@f0f1
f2

1CA
D

264�x0 x1 x2
�0B@a0y0 a2y1 a1y2

a2y2 a1y0 a0y1

a1y1 a0y2 a2y0

1CA
375
T

;

or, shorter, in terms of Moore matrices,

Ma;x � y
T
D f D

�
x �M�.a/;�.y/

�T
DM�.a/;y � x

T :

3Their indexing of the ingredients is different, but that is just due to the fact that the authors of [1] chose
the point at infinity Œ1 W �1 W 0� as the origin for the group law onE .
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2.5. Viewing, for a fixed a 2 E, the fi as sections of O.1; 1/ on P2x � P2y , these
equations imply, by Lemma 2.2, that the subscheme

X D V.f0; f1; f2/ � P2x � P2y

is mapped isomorphically by each of the projections px; pyW P2x � P2y!P2 onto
E � P2, and, in light of the preceding theorem, the subscheme X constitutes the
graph of the translation by �a on the elliptic curve in that

t�a D py.pxjX /
�1
WE

Š
�! E; t�a.x/ D l.Ma;x/ D x �E a D y

when going from P2x to P2y , while it represents the graph of the translation by a,

ta D px.pyjX /
�1
WE

Š
�! E; ta.x/ D l.M�.a/;x/ D xCE a D y

when going in the opposite direction. In other words,

X D
®
.x; x �E a/ 2 P2x � P2y j x 2 E

¯
D
®
.yCE a; y/ 2 P2x � P2y j y 2 E

¯
:

Geometric interpretation à la Dolgachev.

2.6. Applying the treatment from [5, Section 4.1.2] to the special case of plane elliptic
curves gives a geometric interpretation of the adjugate of a Moore matrix as follows.

Fixing again a 2 E, consider the closed embedding

.l; r/aWE,!P2 � P2;

.l; r/a.x/ D .l.Ma;x/; r.Ma;x// D .x �E a;�Ex �E a/;

and follow it with the Segre embedding s2WP2 � P2,!P8 that sends .x; y/ to the class
of the 3 � 3 matrix ŒxT � y� viewed as a point in P8. The composition

 a D s2.l; r/aWE,!P8

then sends
x 7!

�
M adj

a;x
�
D .x �E a/T � .�Ex �E a/;

thus, E gets embedded into the Segre variety s2.P2 � P2/ � P8 through the adjugate
of the Moore matrix. As to the image of E in P2 � P2, if we set y D x �E a, then

x D yCE a and �E x �E a D �Ey �E 2 �E a

so that .l; r/a.E/ is the graph of the involution4 y 7! �Ey �E 2 �E a on E that one
may view as the “reflection” in �Ea.

4That Moore matrices define an involution on E in this way we learned from Kristian Ranestad who
kindly shared his notes [16] with us.
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Doubling and tripling points on E .

2.7. As an immediate application of Theorem 2.3 one can easily determine5 2 �E a and
3 �E a for a 2 E in that 2 �E aD l.M�.a/;a/ and 3 �E aD l.M�.a/;b/, where bD 2 �E a,
and explicit coordinates are obtained from the columns of the corresponding adjugate
matrices. Now

M�.a/;a D .a�i�jai�j /i;j2Z=3Z D

0B@ a20 a22 a21
a2a1 a1a0 a0a2

a1a2 a0a1 a2a0

1CA ;
and so

M
adj
�.a/;a D .a�i�jai�j /

adj
i;j2Z=3Z D

0B@a0.a32 � a31/a2.a
3
1 � a

3
0/

a1.a
3
0 � a

3
2/

1CA � .0;�1; 1/;
whence 2 �E a D Œa0.a32 � a31/ W a2.a31 � a30/ W a1.a30 � a32/�.

Next, set

.b0; b1; b2/ D .a0.a
3
2 � a

3
1/; a2.a

3
1 � a

3
0/; a1.a

3
0 � a

3
2//

and evaluate through a straightforward, though somewhat lengthy, expansion:

M
adj
�.a/;b

D .a�i�j bi�j /
adj
i;j2Z=3Z

D

0B@a1a2b20 � a20b1b2 a0a1b
2
1 � a

2
2b0b2 a0a2b

2
2 � a

2
1b0b1

a0a1b
2
2 � a

2
2b0b1 a0a2b

2
0 � a

2
1b1b2 a1a2b

2
1 � a

2
0b0b2

a0a2b
2
1 � a

2
1b0b2 a1a2b

2
2 � a

2
0b0b1 a0a1b

2
0 � a

2
2b1b2

1CA
D

0B@a0a1a2.a60 C a61 C a62 � a30a31 � a31a32 � a30a32/a60a
3
1 C a

6
1a
3
2 C a

6
2a
3
0 � 3.a0a1a2/

3

a60a
3
2 C a

6
1a
3
0 C a

6
2a
3
1 � 3.a0a1a2/

3

1CA � .a0; a2; a1/:
For an additional check, note that Œa0 W a2 W a1� D �Ea D �2EaCE a, so that indeed�

M
adj
�.a/;a

�
D .2EaCE a/T .�2EaCE a/ D .3Ea/T .�Ea/;

as it has to be.
When a0a1a2 ¤ 0, the case we are interested in, these results can be simplified a

bit.

5The formulas for 2 �E a are already contained in [8]. We recall them here for completeness and later
use.
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2.8 Corollary. For a D .a0; a1; a2/, as above, representing a point a 2 E with
a0a1a2 ¤ 0, doubling, respectively tripling a on E results in

2 �E a D
�
a32 � a

3
1

a1a2
W
a31 � a

3
0

a0a1
W
a30 � a

3
2

a0a2

�
;

3 �E a D
�
a60 C a

6
1 C a

6
2

.a0a1a2/2
�
a30a

3
1 C a

3
1a
3
2 C a

3
0a
3
2

.a0a1a2/2
W

a60a
3
1 C a

6
1a
3
2 C a

6
2a
3
0

.a0a1a2/3
� 3 W

a60a
3
2 C a

6
1a
3
0 C a

6
2a
3
1

.a0a1a2/3
� 3

�
:

2.9 Example. As an immediate application, one obtains the set of 6-torsion points
on E in that 2 �E a is a 3-torsion point if, and only if, a is a 6-torsion point. Now
EŒ3� D E \ V.x0x1x2/ as was noted above. The formulas for doubling a point thus
show that

EŒ6� D E \ V
�
x0x1x2.x

3
0 � x

3
2/.x

3
1 � x

3
3/.x

3
2 � x

3
1/
�

is the intersection ofE with the indicated 12 lines. As the four linesV.x0x1x2.x2�x1//
cut out the 3- and 2-torsion points, the remaining 8 lines cut out the 24 primitive 6-
torsion points as stated in [8].

It follows that EŒ6� Š Z=6Z � Z=6Z and that all 36 points of EŒ6� are defined
over K, as soon as charK ¤ 2; 3 and K contains three distinct third roots of unity.

The algebraic Heisenberg group. It is a classical result in the theory of elliptic curves
that translation by a 3-torsion point on a smooth cubic is afforded by a projective linear
transformation; see [12, Section 5, case (b)]. We first recall the precise result and then
show that the action of the relevant algebraic Heisenberg group lifts to a free action on
the Moore matrices.

2.10 Definition. Let K be a field that contains three distinct third roots of unity,
�3.K/ D ¹1; !; !

2º 6 K� with !3 D 1. In terms of the matrices

† D

0B@0 0 1

1 0 0

0 1 0

1CA ; T D

0B@1 0 0

0 ! 0

0 0 !2

1CA 2 SL.3;K/;

of order 3, the algebraic Heisenberg group is

Heis3.K/ D ¹�T
i†j j � 2 K�I i; j 2 Z=3Zº 6 GL.3;K/:

That this is indeed a subgroup is due to the equality †T D !T†. This same equality
also shows that H3, the subset of Heis3, where � is restricted to powers of !, is a finite
subgroup of SL.3;K/ of order 27.
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We begin the proof of Theorem A with the following crucial property of the
algebraic Heiseisenberg group.

2.11 Proposition. Let a D .a0; a1; a2/, as before, represent a point a 2 E with
a0a1a2 ¤ 0. For a0 D .a00; a01; a02/ 2 K3, the following are equivalent:
(1) a0 represents a point a0 2 E with 3 �E a0 D 3 �E a.
(2) a0 is in the Heis3-orbit of a, thus, a0 2 Heis3 � a.
(3) The Moore matrices Ma;x and Ma0;x are equivalent.
Moreover, the action of Heis3 on the Moore matrices is free.

Proof. The equivalence of (1) and (2) is, of course, classical. For (2)H) (3), it suffices
to show that the Moore matrices for a; T .a/; †.a/ and �a; � 2 K�, are equivalent.
This is obvious for �a as M�a;x D .� id3/Ma;x . For T .a/ D .a0; !a1; !2a2/, the
Moore matrix is

MT.a/;x D .!
iCjaiCjxi�j /i;j2Z=3Z D .!

iaiCjxi�j!
j /i;j2Z=3Z D T �Ma;x � T:

Thus, MT.a/;x is equivalent to Ma;x . For †.a/ D .a2; a0; a1/, one verifies

M.a2;a0;a1/;x D .aiCj�1xi�j /i;j2Z=3Z

D .a.iC1/C.jC1/x.iC1/�.jC1//i;j2Z=3Z D †
�1
�Ma;x �†;

whence M†.a/;x is indeed as well equivalent to Ma;x .
It remains to prove (3) H) (1). If Ma;x is equivalent to Ma0;x then these two

matrices have the same determinant up to a nonzero scalar. This shows that a0 represents
a point on E along with a and that a00a

0
1a
0
2 ¤ 0.

Now write
Ma;x DM0x0 CM1x1 CM2x2;

whereMi D @Ma;x=@xi 2 Mat3�3.K/. The matrixM0 D diag.a0; a2; a1/ is invertible
by assumption, and we set

Ni DM
�1
0 Mi 2 Mat3�3.K/ and N D

2X
iD0

Nixi DM
�1
0 Ma;x :

For a0 with a0 2 E and a00a
0
1a
0
2 ¤ 0, defineN 0i ;N

0 analogously with a0 replacing a.
Then the matrices Ma;x;Ma0;x are equivalent under the action of G3 if, and only if N
and N 0 are equivalent under that action. As N0 D N 00 D 13, the identity matrix, the
matricesN;N 0 are equivalent with respect to G3 if, and only if,N andN 0 are equivalent
under conjugation by a matrix P 2 GL.3;K/, that is, N 0 D PNP�1, equivalently,

N 01 D PN1P
�1 and N 02 D PN2P

�1:
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In other words, the pairs of 3 � 3 matrices .N1; N2/ and .N 01; N
0
2/ are related by

simultaneous conjugation. Clearly the trace functions tr.A1 � � �An/, for any n-tuple
Ai 2 ¹U; V º; i D 1; : : : ; n, are constant on the class of a pair .U; V / 2 Mat3�3.K/2

under simultaneous conjugation. Moreover, Teranishi [17] showed that 11 of these
traces suffice to generate the ring of invariants. See [7] for a survey of these results,
especially the list of the generating traces on the bottom of page 25.

We will not need any details of that invariant theory, but we easily extract from
those classical results the traces that are relevant here.

2.12 Lemma. With notation as just introduced, set further aij D ai=aj for i; j D 0;1;2.
(i) The matrices N1; N2 have the form

N1 D

0B@ 0 0 a20

a12 0 0

0 a01 0

1CA ; N2 D

0B@ 0 a10 0

0 0 a02

a21 0 0

1CA :
(ii) Taking traces yields

tr
�
.N1N2/

2
�
D
a60 C a

6
1 C a

6
2

a20a
2
1a
2
2

; tr.N 2
1N

2
2 / D

a30a
3
1 C a

3
0a
3
2 C a

3
1a
3
2

a20a
2
1a
2
2

;

tr.N1N2N 2
1N

2
2 / D

a60a
3
1 C a

6
1a
3
2 C a

6
2a
3
0

a30a
3
1a
3
2

:

Proof. Straightforward verification.

Combining item (ii) in this lemma with Corollary 2.8 shows that equivalence
of Ma;x and Ma0;x forces 3 �E a0 D 3 �E a.

As for the final claim, this follows from Beauville’s result that the action of G3 on
linear matrices is free.

2.13 Corollary. The subgroup of G3 that transforms Moore matrices into such is
isomorphic to the algebraic Heisenberg group Heis3.

2.14 Remark. In light of the preceding result, we sometimes writeMa;x to denote any
representative of the equivalence class of Ma;x under the action of Heis3, with a 2 E
as before representing the point underlying a 2 K3.

It is indeed the representation theory of the Heisenberg groups that allows us to
finish the proof of Theorem A. Instead of working with the algebraic Heisenberg
groups, it suffices to restrict to the finite Heisenberg groups and their representations.
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The Schrödinger representations of the finite Heisenberg groups.

2.15. To prove the main statement of Theorem A we need some observations on
Heisenberg groups. The general Heisenberg group H.R/ over a commutative ring R is
usually understood to be the subgroup of unipotent upper triangular 3 � 3 matrices
in GL.3; R/. For R D Z=nZ, n > 1 an integer, we call these the finite Heisenberg
groups and abbreviate Hn D H.Z=nZ/. The group Hn is of order n3 and admits the
presentation

Hn D h�; � j Œ�; Œ�; ��� D Œ�; Œ�; ��� D �
n
D �n D 1i:

Each element of Hn has a unique representation as Œ�; ��r� s� t with r; s; t 2 Z=nZ.
Note that H3 as defined here is indeed isomorphic to the group H3 that we exhibited

as a subgroup of Heis3 above.

2.16. Over a field K that contains a primitive nth root of unity � 2 K�, the group Hn
carries the K-linear Schrödinger representations �j WHn ! GL.n;K/, parametrized
by j 2 Z=nZ, that in a suitable Schrödinger basis vi ; i 2 Z=nZ; of a vector space V
of dimension n over K are given by

�j .�/.vi / D vi�1; �j .�/.vi / D �
ij vi ; i 2 Z=nZ;

and thus, for a general element,

�j
�
Œ�; ��r� s� t

�
.vi / D �

j.itCr/vi�s:

In particular, the character �j of the representation �j satisfies

�j
�
Œ�; ��r� s� t

�
D

´
0 if s 6� 0 mod n or jt 6� 0 mod n;
n�jr if s � jt � 0 mod n.

2.17. If d > 2 is a divisor of n, say n D dm, then the subgroup of Hn generated
by �m; �m is a homomorphic image of Hd , in that surely �m and �m are of order d , and
these elements commute with Œ�m; �m� D Œ�; ��m2 . If we restrict the Schrödinger rep-
resentation �j of Hn along the resulting homomorphism Hd ! Hn, then it decomposes
in that the actions of �m and �m, given by

�j .�
m/.vi / D vi�m; �j .�

m/.vi / D .�
m/ij vi for i 2 Z=nZ,

yield the Hd -subrepresentations

Wjk D
M

i�k mod m

Kvi � V for k 2 Z=mZ.
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For i D ˛mC k, in the basis w˛ D v˛mCk , for ˛ D 0; : : : ; d � 1, of Wjk the action
is given by

�j .�
m/.w˛/ D w˛�1; �j .�

m/.w˛/ D .�
m/j.˛mCk/w˛;

and, for a general element

�j :
�
Œ�m; �m�r.�m/s.�m/t

�
.w˛/ D �j

�
Œ�; ��m

2r�ms�mt /.w˛/

D .�m/j..˛mCk/tCmr/w˛�s:

The corresponding character is thus

�j
�
Œ�m; �m�r.�m/s.�m/t

�
D

´
0 if s 6� 0 mod d or jmt 6� 0 mod d;
d.�m/j.ktCmr/ if s � jmt � 0 mod d .

If gcd.d;m/ D 1, then jmt � 0 mod d if, and only if jt � 0 mod d and one recog-
nizes the Schrödinger representation �jm of Hd . Therefore, we have the following
result.

2.18 Lemma. For d a positive divisor of n with gcd.d; n=d/ D 1, under the group
homomorphism Hd ! Hn described above the Schrödinger representation �j of Hn
restricts to the direct sum of n=d copies of the Schrödinger representation �.jn=d/ mod d

of Hd .

2.19. Returning to elliptic curves, let, more generally, L be an ample line bundle on
an abelian variety defined over an algebraically closed field K whose characteristic
does not divide the degree n > 0 of L. It is a deep result from the theory of abelian
varieties; see [13, Proposition 3.6] for the general case or [10] for an explicit treatment
over the complex numbers; that then the vector space of sections of L comes naturally
equipped with the Schrödinger representation �1 of Hn – in fact, this is the restriction
of the Schrödinger representation of the larger algebraic Heisenberg group Heisn that
is defined in analogous fashion to Heis3.

In case L is a line bundle on an elliptic curve E over K this representation lifts
the translation by n-torsion points on E, thus, the action of EŒn� Š Z=nZ � Z=nZ

on P .H 0.E; L// to an action by linear automorphisms on V D H 0.E; L/. For an
elliptic curve E, embedded as a smooth projective plane cubic curve, the special case
L D OE .1/ with n D degL D 3 was discussed in detail above.

Using the preceding lemma, the following result is an easy consequence of the
fundamental fact just recalled.

2.20 Proposition. Let L;L0 be locally free sheaves of degree 3 and L00 a locally free
sheaf of degree 6 on an elliptic curve E over an algebraically closed field K whose
characteristic does not divide 6.
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(a) Restricting the translations by 6-torsion points to the 3-torsion points restricts
the representation �1 of H6 on H 0.E;L00/ to the direct sum of two copies of the
Schrödinger representation �2 of H3.

(b) The tensor product H 0.E;L/˝K H
0.E;L0/ of the Schrödinger representations

�1 of H3 on each of the two factors decomposes as the direct sum of three copies
of the Schrödinger representation �2 of H3.

(c) With L00DL˝OE
L0, the natural multiplication map on global sections represents

a surjective H3-equivariant homomorphism

H 0.E;L/˝K H
0.E;L0/! res

?yH6

H3
H 0.E;L00/:

In particular, the kernel of that homomorphism is a Schrödinger representation �2
of H3.

Proof. Part (a) is Lemma 2.18 applied to the case j D 1; nD 6; d D 3, thus n=d D 2.
For part (b), let .x0;x1;x2/ be a Schrödinger basis ofVDH 0.E;L/ and .y0;y1;y2/

be a Schrödinger basis of V 0 DH 0.E;L0/. With xiyj D xi ˝ yj and a0; a1; a2 2 K,
the tensor

f0 D a0x0y0 C a1x2y1 C a2x1y2

is a fixed vector for the action of � 0 D �1.�/˝ �1.�/ on V ˝K V 0. Abbreviating also
� 0 D �1.�/˝ �1.�/, with f�i D .� 0/i .f0/; i 2 Z=3Z, one has

f0 D a0x0y0 C a1x2y1 C a2x1y2; � 0.f0/ D f0;

f1 D a2x2y0 C a0x1y1 C a1x0y2; � 0.f1/ D !
2f1;

f2 D a1x1y0 C a2x0y1 C a0x2y2; � 0.f2/ D !f2:

Therefore, f0; f1; f2 form indeed a Schrödinger basis for a representation of H3
that is equivalent to �2 as soon as .a0; a1; a2/ ¤ .0; 0; 0/ 2 K3. Choosing in turn
.a0; a1; a2/ D ei , for i 2 Z=3Z and .ei /iD0;1;2 the standard basis of K3, it follows
that indeed �1 ˝K �1 Š �˚32 as H3-representations – which, in fact, could have been
established as well by just looking at the corresponding group characters. The reader
will note that viewed as trilinear forms, the fi are precisely the forms from Section 2.4
above.

In part (c), surjectivity of the multiplication map is well known and the H3-
equivariance follows as translation is compatible with tensor products,

ta.L/˝OE
ta.L

0/ Š ta.L˝OE
L0/

for any point a 2 E. Applied to 3-torsion or 6-torsion points and using that translations
by those points manifest themselves through the Schrödinger representation �1 of H3,
respectively H6, the proof of the proposition is complete.
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End of the proof of Theorem A.

2.21. The statement of the theorem about equivalence of Moore matrices is proved
in Proposition 2.11. We need to show that a determinantal presentation of a smooth
cubic is given by a Moore matrix. We can finish the proof of the theorem by choosing
the right basis in the vector spaces of global sections.

Let L be a line bundle of degree 0 on the smooth cubic curve E � P2 with
defining equation f D 0. According to Beauville’s result stated above in Theorem 1.2,
if H 0.E;L/ D 0 then there exists a 3 � 3 linear matrix M such that f D detM and
an exact sequence of OP2-modules

0 // OP2.�2/3
M // OP2.�1/3 // L // 0:

Twisting this sequence by OE .2/, and taking global sections, one can identify this
exact sequence as

0 // OP2.�2/˝K W
M // OP2.�1/˝K H

0.E;L.1// // L // 0;

where W is the kernel of the H3-equivariant multiplication map

H 0.E;OE .1//˝K H
0.E;L.1//! res

?yH6

H3
H 0.E;L.2//

as in Proposition 2.20 (c) above for L D OE .1/;L
0 D L.1/.

Choosing Schrödinger bases f0; f1; f2 for W , x0; x1; x2 for H 0.E; OE .1//,
and y0;y1;y2 forH 0.E;L.1// as in the proof of Proposition 2.20 (b),M becomes iden-
tified with a Moore matrixMa;x D .aiCjxi�j /i;j2Z=3Z for some aD .a0;a1;a2/2K3.
As detM :

D f by Beauville’s result, it follows that a 2 E with a0a1a2 ¤ 0. This com-
pletes the proof of Theorem A from the introduction.

3. Proof of Theorem B

The starting point is the following result from Atiyah’s seminal paper [2].

A result of Atiyah and Ulrich bundles.

3.1 Theorem (cf. Atiyah [2, Theorem 5 (ii)]). Let F be an indecomposable vector
bundle of rank 2 on an elliptic curve E over a field K. If degF D 0, then there exists
a unique line bundle L of degree 0 that fits into an exact sequence of vector bundles

0 // L // F // L // 0

Moreover, H 0.E; F / D 0 if, and only if, H 0.E;L/ D 0.
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Conversely, if L is a line bundle of degree 0 then there exists an indecomposable
vector bundle F , unique up to isomorphism and necessarily of rank 2 and degree 0,
that fits into such an exact sequence.

3.2. By our Theorem A we know that a line bundle of degree 0with no nonzero sections
is obtained as L D cokerMa;x , whereMa;x is a Moore matrix, a 2 K3 representing a
point a 2 E on the elliptic curve E � P2 with a0a1a2 ¤ 0. We fix these data in the
following.

Let S D KŒx0; x1; x2� be the homogeneous coordinate ring of P2.K/, with its
homogeneous components Sm D H 0.P2;OP2.m// the vector space over K of homo-
geneous polynomials of degree m 2 Z.

Applying the functor �� D ˚i2ZH
0.P2; . /.i// to the exact sequence of coherent

OP2-modules

0 // OP2.�2/3
Ma;x
// OP2.�1/3 // L // 0;

yields a short exact sequence of graded S -modules

0 // S.�2/3
Ma;x
// S.�1/3 // ��.L/ // 0:

The module L D ��.L/, cokernel of the map between graded free S-modules
represented byMa;x , is an Ulrich module of rank one over the homogeneous coordinate
ring R D S=.f / of E, and each Ulrich module over R of rank one (and generated in
degree 1) can be so realized by Theorem A.

Matrix factorizations and extensions. In view of Atiyah’s result cited above, our aim
here is to find a similar description for Ulrich modules over R of rank two, namely the
one stated in Theorem B. To simplify notation a bit, we fix for now the point a and set
ADMa;x , B DM adj

a;x , viewed as matrices over S . The pair .A;B/ represents a matrix
factorization of f D detA 2 S and so, by [6], L admits the graded R-free resolution

0 Loo R.�1/3oo R.�2/3
Aoo R.�4/3

Boo R.�5/3
Aoo � � �

Boo

that is 2-periodic up to the shift in degrees by � degf D �3.

3.3. Now consider an element6 of Extgr1R.L;L.m// for some m 2 Z. It can be repres-
ented by a homotopy class of morphisms between graded free resolutions and, invoking

6We write ExtgrR for the extensions in the category of graded R-modules with degree–preserving
R-linear maps.
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again [6], such morphisms and their homotopies can again be chosen to be 2-periodic
so that one has a diagram as follows:

L

��

0 R.�1/3oo

��

U

$$

R.�2/3
Aoo

C

��

V

%%

R.�4/3
Boo

D

��

U

%%

R.�5/3
Aoo

C

��
V

""

� � �
Boo

L.m/Œ1� 0 0oo R.m � 1/3oo R.m � 2/3
�A
oo R.m � 4/3

�B
oo � � �

�A
oo

Here,
� C 2 Mat3�3.SmC1/; D 2 Mat3�3.SmC2/ are 3 � 3 matrices whose entries are

homogeneous polynomials of the indicated degrees;
� the pair of matrices .C;D/ satisfies AD C CB D 0 D DAC BC over S , with 0

the zero matrix, and so defines a morphism of complexes over R;
� U; V 2 Mat3�3.Sm/ represent the possible homotopies, in that the morphisms of

complexes L! L.m/ induced by

C 0 D C C UA � AV; D0 D D C VB � BV

run through the homotopy class of .C;D/ for the various choices of U; V .

3.4. Given a pair of matrices .C;D/ with AD C CB D 0 D DACBC as above, the
block matrices  

A C

0 A

!
;

 
B D

0 B

!
constitute a matrix factorization of f and give rise to the commutative diagram of
graded S -modules with exact rows and columns

0

��

0

��

0

��

0 // S.m � 2/3

in1

��

A // S.m � 1/3 //

in1

��

L.m/ //

��

0

0 // S.m � 2/3 ˚ S.�2/3

pr2

��

�
A C
0 A

�
// S.m � 1/3 ˚ S.�1/3 //

pr2

��

F //

��

0

0 // S.�2/3

��

A // S.�1/3 //

��

L //

��

0

0 0 0

with the rightmost column representing the extension defined by .C;D/ over R.
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The following observation cuts down considerably on the work of finding solu-
tions to the equations AD C CB D 0 D DA C BC , whenever .A; B/ is a matrix
factorization of a non-zero-divisor f in a commutative ring S .

3.5 Lemma. AssumeA;B 2 Matn�n.S/ is a matrix factorization of a non-zero-divisor
f 2 S , in that AB D f idn D BA. For a matrix C 2 Matn�n.S/, the following are
equivalent:
(a) There exists a matrix D 2 Matn�n.S/ such that AD C CB D 0.
(b) There exists a matrix D0 2 Matn�n.S/ such that D0AC BC D 0.
(c) There exists a matrix D00 2 Matn�n.S/ such that fD00 C BCB D 0. Equivalently,

each entry of BCB 2 Matn�n.S/ is divisible by f .
If either equivalent condition holds, then D D D0 D D00 and that matrix is the unique
one satisfying fD D �BCB . Moreover, one can recover C from D in that C is the
unique matrix such that f C D �ADA.

Proof. If AD C CB D 0 then multiplying from the left with B yields

0 D BAD C BCB D fD C BCB;

whence BCB � 0 mod .f / and one can takeD00 DD. Conversely, if that congruence
holds then there exists a matrix D00 with fD00 D �BCB . Multiplying this equation
with A from the left results in

AfD00 C ABCB D f .AD00 C CB/ D 0:

As f is a non-zero-divisor, this impliesAD00CCB D 0, whence one can takeD D D00.
Thus, (a)” (c). The equivalence (b)” (c) is completely analogous. Uniqueness
ofD follows as AD1 C CB D AD2 C CB implies A.D1 �D2/ D 0. Now the linear
map represented by A is injective because f idn D BA and multiplication with f is
injective by assumption. Thus, D1 D D2 as claimed and, in particular, D D D00 must
hold. Analogously one must have D0 D D00.

Concerning the final assertion, multiply the equation fD D �BCB on both sides
withA to obtainADAf D�f Cf , and thus f C D�ADA, as f is a non-zero-divisor.
Uniqueness of C follows as above.

If A, as in our case of interest, is a determinantal representation of a reduced
polynomial, one can reduce the description of extensions further.

3.6 Lemma. If the determinant f D detA2 S , for a matrixA2Matn�n.S/, is reduced,
then with B D Aadj one has for any matrix C 2 Matn�n.S/ that

BCB � tr.BC/B mod .f /;

and BCB � 0 mod .f / if, and only if, tr.BC/ � 0 mod .f /.
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Proof. As f is reduced, it is generically regular. For a regular point x 2 V.f / this
implies that rankA.x/ D n� 1, thus, rankB.x/ D 1, as the cokernel of A is maximal
Cohen–Macaulay, hence is locally free of rank 1 at such point. Accordingly there are
vectors u; v 2 k.x/n such that B.x/ D uT � v. Therefore,

B.x/C.x/B.x/ D uT � v � C.x/ � uT � v:

Now v � C.x/ � uT is an element of the residue field k.x/ at x and so, considering it as
a 1 � 1 matrix,

v � C.x/ � uT D tr
�
v � C.x/ � uT

�
D tr

�
uT � v � C.x/

�
D tr

�
B.x/C.x/

�
:

Embedding this observation into the right-hand side of the previous equality, it follows
that

B.x/C.x/B.x/ D uT � v � C.x/ � uT � v

D tr
�
B.x/C.x/

�
uT � v D tr

�
B.x/C.x/

�
B.x/:

Therefore,BCB � tr.BC/B vanishes at each regular point of ¹f D 0º, thus, it vanishes
everywhere on that hypersurface. Moreover, B.x/ ¤ 0 at each regular point, whence
at such points BCB.x/ D 0 if, and only if, tr.B.x/C.x// D 0. The claim follows.

3.7. Putting these facts together, we get the following description of the extension
groups we are interested in here:

(�) Extgr1R.L;L.m// Š
¹C 2 Mat3�3.SmC1/ j tr.M

adj
a;x � C/ � 0 mod f º

¹UMa;x �Ma;xV j U; V 2 Mat3�3.Sm/º
:

This description shows immediately that Extgr1R.L;L.m// D 0 when m < �1,
because there is then no nonzero choice for C . It also shows that there are no nonzero
homotopies for m D �1, a fact we will exploit below. Concerning shifts by m > �1,
we determine the size of the extension group directly in terms of possible Yoneda
extensions, that is, short exact sequences, as follows. Given a short exact sequence

0 // L.m/ // M // L // 0

of graded R-modules, sheafifying it yields a short exact sequence of OE -modules,

0 // L.m/ // M // L // 0:

Conversely, applying �� to such a short exact sequence of OE -modules with m > �1
returns a short exact sequence of graded R-modules as above in that the connecting
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homomorphism in cohomologyH 0.E;L.i//!H 1.E;L.mC i// is 0 for each i 2Z.
Indeed, for i 6 0, one has

H 0.E;L.i// D 0;

while for i > 0 one has i Cm > 0, whence

H 1.E;L.mC i// D 0:

It follows that�� and sheafification yield inverse isomorphisms between Ext1E.L;L.m//
and Extgr1R.L;L.m// for m > �1.

Further, Ext1E .L;L.m//ŠH 1.E;OE .m// vanishes form> 0, while formD�1
that vector space is Serre-dual to

H 0.E;OE .1// Š S1;

and for m D 0, of course,
H 1.E;OE / Š K:

We thus have the following result.

3.8 Lemma. Let L be the Ulrich module that is the cokernel of the Moore matrixMa;x

as in Theorem A. The vector spaces of graded self-extensions of L over R satisfy

dimK Extgr1R.L;L.m// D

8̂̂<̂
:̂
3 for m D �1;
1 for m D 0;
0 else:

With these preparations we now determine Extgr1R.L;L.�1//.

3.9 Proposition. Let L be the cokernel of a Moore matrix Ma;x WS.�2/
3!S.�1/3

for a 2 K3 with a0a1a2 ¤ 0 representing a point a 2 E. The three-dimensional vector
space Extgr1R.L; L.�1// over K is isomorphic to the space of specialized Moore
matrices

M.a0.a
3
2
�a3

1
/;a2.a

3
1
�a3

0
/;a1.a

3
0
�a3

2
//;.s;t;u/; .s; t; u/ 2 K3:

Note that .a0.a32 � a31/; a2.a31 � a30/; a1.a30 � a32// represents the point 2 �E a 2 E,
whence this set of matrices consists of all K-rational specializations of M2�Ea;x .

Proof. Set b D .a0.a32 � a
3
1/; a2.a

3
1 � a

3
0/; a1.a

3
0 � a

3
2// and note that

Mb;.s;t;u/ DMb;.1;0;0/s CMb;.0;1;0/t CMb;.0;0;1/u:

Because b¤ .0;0;0/, the matricesM0DMb;.1;0;0/,M1DMb;.0;1;0/,M2DMb;.0;0;1/

are clearly linearly independent in the vector space Mat3�3.K/ in that their nonzero
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entries are located at different positions in these matrices. Further, as tr.B � �/ is an
S -linear function on Mat3�3.S/, and Extgr1R.L;L.�1// is known to be of dimension 3
over K, it suffices to show that for each of the three matrices Mi , one has

tr.BMi / � 0 mod .f /;

where B DM adj
a;x . In fact, as the entries of BMi are quadratic polynomials, but f is of

degree 3, the congruence is equivalent to tr.BMi / D 0.
One now verifies this easily directly for the three matrices in question.
For a more conceptual explanation of the identities tr.BMi / D 0, note that, say,

M0 DMb;.1;0;0/ D diag.b/ is a diagonal matrix with the coordinates b on the diagonal
representing 2 �E a. On the other hand, the diagonal elements inB DM adj

a;x involve only
the quadratic monomials x20 and x1x2, and the coefficients of x20 along the diagonal are
the entries from the third row, those of x1x2 the entries from the first row of M�.a/;a;
see Section 2.7. The column vector bT spans the kernel of that matrix by construction.
As the trace tr.BM0/ is the scalar product of the two diagonals, the vanishing of the
trace becomes obvious. The case of the remaining two matrices yields to analogous
arguments.

The selfextensions of an Ulrich line bundle. Next we turn to Extgr1R.L; L/, the
extension group we are really interested in.

3.10 Definition. With notation as in the preceding proof, set

Mb;y DMb;.1;0;0/y0 CMb;.0;1;0/y1 CMb;.0;0;1/y2;

for y D .y0; y1; y2/ 2 S31 , a vector of linear forms from S , and define the divergence
of Mb;y to be

div.Mb;y/ D
@y0

@x0
C
@y1

@x1
C
@y2

@x2
2 K:

Note in particular that div.Mb;x/ D 3 2 K, thus, is not zero when char.K/ ¤ 3. For a
characteristic-free statement, note that div.Mb;�.x// D 1 2 K.

3.11 Theorem. Let L be the cokernel of a Moore matrix Ma;x WS.�2/
3!S.�1/3 for

a 2 K3 representing a point a 2 E with a0a1a2 ¤ 0 and set

b D
�
a0.a

3
2 � a

3
1/; a2.a

3
1 � a

3
0/; a1.a

3
0 � a

3
2/
�
;

as before. The one-dimensional vector space Extgr1R.L;L/ over K can be realized as

Extgr1R.L;L/ Š
¹Mb;y 2 Mat3�3.S1/º

¹Mb;y 2 Mat3�3.S1/º \ ¹UMa;x �Ma;xV j U; V 2 Mat3�3.K/º

and the divergence Mb;y 7! div.Mb;y/ 2 K induces an isomorphism

Extgr1R.L;L/
div
�!
Š
K:
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Proof. As mentioned before, with B DM adj
a;x , the function tr.B � �/WMat3�3.S/! S

is S-linear, whence each matrix Mb;y satisfies tr.B �Mb;y/ D 0 as we know this for
the matrices M0 DMb;.1;0;0/, M1 DMb;.0;1;0/, M2 DMb;.0;0;1/ from above. Thus,
the vector space ¹Mb;y 2 Mat3�3.S1/º is contained in the numerator of the description
of Extgr1R.L;L/ in Section 3.7 (�). As we know from Lemma 3.8 that this extension
group is one-dimensional, and, say, divMb;�.x/ D 1 2K as noted above, it remains only
to show that the denominator in the description here lies in the kernel of the divergence.

To this end, assume Mb;y D UMa;x �Ma;xV for some linear forms yi and some
U; V 2 Mat3�3.K/. Differentiating both sides with respect to x0 and comparing the
diagonal entries yields the system of equations

a2i
�
a32i�1 � a

3
2iC1

�@y0
@x0
D a2i .ui i � vi i /; for i 2 Z=3Z.

Dividing by a2i , which is not zero by assumption, and then adding up shows that
necessarily X

i2Z=3Z

ui i D
X

i2Z=3Z

vi i :

Differentiating as well with respect to x1; x2, comparing entries on both sides of the
matrix equation and eliminating common factors of the form ai leads to the system of
equations

.a32 � a
3
1/
@y0

@x0
D u00 � v00; .a30 � a

3
2/
@y2

@x2
D u00 � v11;

.a31 � a
3
0/
@y1

@x1
D u00 � v22; .a30 � a

3
2/
@y1

@x1
D u11 � v00;

.a31 � a
3
0/
@y0

@x0
D u11 � v11; .a32 � a

3
1/
@y2

@x2
D u11 � v22;

.a31 � a
3
0/
@y2

@x2
D u22 � v00; .a32 � a

3
1/
@y1

@x1
D u22 � v11;

.a30 � a
3
2/
@y0

@x0
D u22 � v22:

Now at least one of the terms .a3i � a
3
i�1/, i 2 Z=3Z; that occur as coefficients on the

left-hand sides is nonzero, as not all entries of b are zero. Picking one such nonzero
term and using it to solve for @yi

@xi
, i D 0; 1; 2, shows immediately that

div.Mb;y/ D
@y0

@x0
C
@y1

@x1
C
@y0

@x1
D 0

is a necessary condition on Mb;y to be representable as UMa;x �Ma;xV . In fact, we
also know that this condition is sufficient.
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The proof of Theorem B. With F as in Theorem B (a), Atiyah’s result Theorem 3.1
shows thatF can be obtained as an extension of a line bundleL by itself, with degLD 0
andH 0.E;L/D 0. Applying �� to such extension and using 3.7 results in an extension
of L by itself. Those extensions were classified in 3.11, it yields a presentation of F as
claimed.

Part (b) of Theorem B follows as the cokernel F of the triangular block matrix
fits into a short exact sequence 0! L! F ! L! 0 with L D CokerMa;x , which
yields immediately that F is a vector bundle of rank 2 and degree 0 that has no
nonzero sections. Moreover, F is indecomposable as the extension is not split, due to
div.Ma;x/ D 3 ¤ 0 in K.

Part (c) of Theorem B follows from Atiyah’s result and from Theorem A, as
the line bundle L in the short sequence above is uniquely determined by F up to
isomorphism.

The case of Ulrich bundles of higher rank (and its relation to theta functions) is
treated over complex numbers in [15], but a purely algebraic description of canonical
forms of Ulrich bundles of ranks greater than two on elliptic curves is yet to be proved.

Funding. The work is supported by the state assignment of MIPT (project FSMG-
2023-0013).
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