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Divisibility of spheres with measurable pieces
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Abstract. For an r-tuple .
1; : : : ; 
r / of special orthogonal d � d matrices, we say that
the Euclidean .d � 1/-dimensional sphere Sd�1 is .
1; : : : ; 
r /-divisible if there is a subset
A � Sd�1 such that its translations by the rotations 
1; : : : ; 
r partition the sphere. Motivated
by some old open questions of Mycielski and Wagon, we investigate the version of this notion
where the set A has to be measurable with respect to the spherical measure. Our main result
shows that measurable divisibility is impossible for a “generic” (in various meanings) r-tuple
of rotations. This is in stark contrast to the recent result of Conley, Marks and Unger which
implies that, for every “generic” r-tuple, divisibility is possible with parts that have the property
of Baire.
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1. Introduction

Let SO.d/ denote the group of special orthogonal d � d matrices, that is, real
d � d matrices M such that the determinant of M is 1 and M TM D Id , where Id
denotes the identity d � d matrix. The elements of this group are naturally identified
with orientation-preserving isometries of the Euclidean unit sphere

Sd�1 WD ¹x 2 Rd j kxk2 D 1º;

and we will often refer to them as rotations.
For an r-tuple 
 D .
1; : : : ; 
r/ 2 SO.d/r , we say that Sd�1 is 
-divisible (or

admits a 
-division) if there is A � Sd�1 such that its translates 
1:A; : : : ; 
r :A
partition Sd�1 (that is, for every x 2 Sd�1 there are unique y 2 A and i 2 Œr� such
that x D 
i :y , where we denote Œr� WD ¹1; : : : ; rº). Of course, a set A works for 

if and only if 
r :A works for ˇ WD .
1
�1r ; : : : ; 
r�1


�1
r ; Id /. However, we do not

https://creativecommons.org/licenses/by/4.0/


C. T. Conley, J. Grebík and O. Pikhurko 26

normally assume that any particular rotation is the identity, mostly for the notational
convenience so that all indices can be treated uniformly.

We say that Sd�1 is r-divisible if there is an r-tuple 
 2 SO.d/r such that Sd�1 is

-divisible (or, in other words, if we can partition Sd�1 into r congruent pieces). The
integer pairs d; r > 2 such that Sd�1 is r-divisible have been completely classified
(see, e.g., the book by Tomkowicz and Wagon [23, Theorem 6.6]). Namely, the only
pairs when the answer is in the negative are when r D 2 and d is odd. In this case, the
impossibility of any .
1; 
2/-division follows from considering a fixed point x 2 Sd�1

of 
�11 
2 which exists as the dimension d � 1 of the sphere is even. (Indeed, no set A
can work here: the translates 
1:A and 
2:A intersect if x 2 A and do not cover 
1:x
if x 62 A.) On the other hand, the case of d D 2 is trivial (e.g., one can take the r
rotations of the circle S1 by multiples of the angle 2�=r) while the first published
solution for S2 seems to be by Robinson [22, p. 254]. Furthermore, the r-divisibility for
Sd�1 easily implies the r-divisibility of SdC1; see, e.g., the proof of [23, Theorem 6.6]
or Lemma 5.1 here.

Mycielski [18] showed that there is a subset A � S2 such that for every integer
r > 3 there are 
1; : : : ; 
r with 
1:A; : : : ; 
r :A partitioning the sphere. This should be
compared with the classical paradox of Hausdorff [13] who produced such a set A that
works, apart from a countable subset of S2 of errors, for every r > 2. (Note that we
cannot take r D 2 in Mycielski’s result because S2 is not 2-divisible.)

Let � be the spherical measure on Sd�1, which can be defined as the .d � 1/-
dimensional Hausdorff measure with respect to the standard arc-length distance on the
sphere (where the distance between x;y 2 Sd�1 is the angle between the vectors x
and y). We call a subset of Sd�1 measurable if it belongs to the �-completion of the
Borel �-algebra. Note that the paradoxical set A in the results of Hausdorff [13] and
Mycielski [18] cannot be measurable with respect to the (rotation-invariant) measure �
on S2, for otherwise the existence of a partition 
1:A; : : : ; 
r :A of Sd�1 up to a
countable (and thus �-null) set implies that �.A/ D �.Sd�1/=r , a contradiction to r
assuming different values. Mycielski [19,20] asked if one can show that S2 is r-divisible
without using the Axiom of Choice. Wagon [24, Question 4.15] (or [23, Question 5.15])
asked if the 3-divisibility of S2 can be shown with measurable sets (thus the Axiom of
Choice can be applied on a �-null set). Measurable divisibility for higher-dimensional
spheres is easier because of a constructive way of lifting up a division from Sd�1

to SdC1. It is known that Sd�1 is r-divisible with measurable pieces for r > 3 and odd
d > 5 (which follows from the proof of [23, Theorem 6.6 (b)], see Lemma 5.1 here)
and with Borel pieces for r > 2 and even d > 2 (see, e.g., [23, Theorem 6.6 (a)]).

The above questions by Mycielski and Wagon are still open, although some related
progress was obtained by Conley, Marks and Unger [4] whose general results imply
that, unless r D 2 and d is odd, the sphere Sd�1 is r-divisible so that each piece has
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the property of Baire (that is, under one of equivalent definitions, each piece can be
represented as the symmetric difference of a Borel set and a meager set; for more
details see, e.g., the textbook on descriptive set theory by Kechris [15, Section 8.F]).
The derivation of this result is given in Proposition 1.2 here.

Here we propose to study the more general question of describing the set of those
r-tuples 
 2 SO.d/r such that Sd�1 is 
-divisible with measurable pieces.

First, we consider the case when the rotations are “generic”. More precisely, let us
call an r-tuple of matrices
D .
1; : : : ;
r/2 SO.d/r generic if, for every polynomialp
with rational coefficients in d2r variables, p.
/ D 0 implies that p.ˇ/ D 0 for every
ˇ 2 SO.d/r , where, e.g., p.
/ denotes the value of p on the d2r individual entries
of the matrices corresponding to 
1; : : : ; 
r under the standard basis of Rd . In other
words, this property states that if a polynomial with rational (equivalently, integer)
coefficients vanishes on (the matrix entries of)
 then it necessarily vanishes everywhere
on SO.d/r .

Our main result shows that no generic 
 works in the measurable setting, even in a
rather relaxed fractional version.

Theorem 1.1. Let d > 2 and r > 2 be integers. Let .
1; : : : ; 
r/ 2 SO.d/r be generic.
Then every f 2 L2.Sd�1; �/ with

Pr
iD1 
i :f D 1 �-almost everywhere is the con-

stant function 1=r �-almost everywhere, where 
i :f denotes the function that maps
x 2 Sd�1 to f .
�1i :x/.

In sharp contrast, we can derive with some extra work from the results in [4] that
every generic 
 works with pieces that have the property of Baire.

Proposition 1.2. Let r > 2 and d > 2 be arbitrary integers, except if d is odd then
we require that r > 3. Let .
1; : : : ; 
r/ 2 SO.d/r be generic. Then there is a subset A
of Sd�1 with the property of Baire such that 
1:A; : : : ; 
r :A partition Sd�1.

Theorem 1.1 and Proposition 1.2 add to a growing body of results in measurable
combinatorics (see, e.g., the recent survey by Kechris and Marks [16]), where the
requirements that the pieces are measurable and have the property of Baire respectively
lead to different answers.

The following lemma shows that, in various meanings, “most” elements of SO.d/r

are generic.

Lemma 1.3. Let r > 1, d > 2 and N be the set of r-tuples in SO.d/r that are not
generic. Then the following statements hold:
(i) The set N has measure 0 with respect to the Haar measure on the group SO.d/r .
(ii) The set N is a meager subset of SO.d/r with respect to the topology induced by

the Euclidean topology on Rd
2r � SO.d/r .
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Also, by using some algebraic geometry, we can give a more concrete characterisa-
tion of generic r-tuples of rotations. In particular, the following lemma allows us to
write an “explicit” generic point: just let the entries above the diagonals be sufficiently
small reals that are algebraically independent over Q and extend this to an element
of SO.d/r by Claim 8.3 here.

Lemma 1.4. Let r > 1, d > 2, and 
 2 SO.d/r . Then 
 is generic if and only if
the

�
d
2

�
r-tuple of the matrix entries of 
 strictly above the diagonals is algebraically

independent over Q.

In the extreme opposite case, we show that, for odd d > 3, 
-divisibility cannot be
attained when 
 generates a finite subgroup of SO.d/.

Proposition 1.5. Let d > 3 be odd. Suppose that 
1; : : : ; 
r 2 SO.d/, r > 3, generate
a finite subgroup � � SO.d/. Then Sd�1 is not .
1; : : : ; 
r/-divisible.

Some standard general results of Borel combinatorics (e.g., [21, Lemma 5.12 and
Theorem 5.23]) imply that if Sd�1 is 
-divisible and every orbit of the subgroup
of SO.d/ generated by 
1; : : : ; 
r is finite, then there is a Borel 
-division. The
following result gives that just one finite orbit is enough to convert a 
-division into a
measurable one.

Proposition 1.6. Let d > 2 and 
 D .
1; : : : ; 
r/ 2 SO.d/r . Let � be the subgroup
of SO.d/ generated by 
1; : : : ; 
r . Suppose that there is z 2 Sd�1 such that its �-orbit
�:z is finite. Then Sd�1 is 
-divisible if and only if Sd�1 is 
-divisible with measurable
pieces.

Of course, this leaves a wide range of unresolved cases. As an initial partial step, we
completely characterise those r-tuples of rotations for which the circle S1 is divisible
with measurable pieces for r 6 3.

This paper is organised as follows. In Section 2 we give a quick overview of basic
definitions and facts about spherical harmonics and use these to prove Theorem 1.1,
which is the main result of this paper. Proposition 1.5 is proved in Section 3 using Euler’s
characteristic. Propositions 1.6 and 1.2 are proved in Sections 4 and 7 respectively. In
Section 5 we describe the standard construction of how an r-division of Sd�1 can be
lifted to SdC1 and observe that this gives measurable pieces (Lemma 5.1). In Section 6
we study various versions of measurable divisibility when d D 2; in particular, we
characterise r-tuples 
 2 SO.2/r for which the circle S1 is 
-divisible with measurable
pieces for r 6 3. The rather technical Section 8 is dedicated to proving Lemmas 1.3
and 1.4. Section 8.1 presents some basics of algebraic geometry. In Section 8.2 we
prove some results about SO.d/r and use them to prove Lemma 1.3. In particular, we
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show that the variety SO.d/r �Rd
2r is irreducible and the entries above the diagonals

form a transcendence basis for its function field. While these results are fairly standard,
we present their proofs since we could not find any published statements that suffice
for our purposes. In Section 8.3 we prove an auxiliary lemma from algebraic geometry
and use it to derive Lemma 1.4.

2. Spherical harmonics

Let an integer d > 2 be fixed throughout this section.
For an introduction to spherical harmonics on Sd�1 we refer to the book by

Groemer [10] whose notation we generally follow. Recall that

�d WD �.S
d�1/ D

2�d=2

�.d=2/
:

As d is fixed, the dependence on d is usually not mentioned except for �d (since �d�1
will also appear in some formulas). Also, the shorthand a.e. stands for �-almost
everywhere.

By [10, Lemma 1.3.1], the density of the push-forward of � under the projection
to any coordinate axis is

(2.1) �.t/ WD

´
�d�1 .1 � t

2/.d�3/=2; �1 < t < 1;

0; otherwise.

A polynomial p 2 RŒx�, x D .x1; : : : ; xd /, is called harmonic if �p D 0, where

� WD
@2

@x21
C � � � C

@2

@x2
d

is the Laplace operator. A spherical harmonic is a function from Sd�1 to the reals
which is the restriction to Sd�1 of a harmonic polynomial on Rd . Let H be the
vector space of all spherical harmonics. For an integer n > 0, let Hn � H be the
linear subspace consisting of all functions f W Sd�1 ! R that are the restrictions
to Sd�1 of some harmonic polynomial p which is homogeneous of degree n, where
we regard the zero polynomial as homogeneous of any degree. By [10, Lemma 3.1.3],
the polynomial p is uniquely determined by f 2 Hn, so we may switch between these
two representations without mention. It can be derived from this ([10, Theorem 3.1.4])
that the dimension of Hn is

Nn WD

�
d C n � 1

n

�
�

�
d C n � 3

n � 2

�
;

where we agree that
�
dCn�3
n�2

�
D 0 for n D 0 or 1.
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Let h� ; �i denote the scalar product on L2.Sd�1; �/ (while x � y WD
Pd
iD1 xiyi

denotes the scalar product of x;y 2 Rd ). It is known ([10, Theorem 3.2.1]) that

(2.2) hf; gi D 0 for all f 2 Hi and g 2 Hj with i ¤ j ;

that is, H0;H1; : : : are pairwise orthogonal subspaces of H � L2.Sd�1; �/. Note that
the group SO.d/ acts naturally on L2.Sd�1; �/ via the shift action

(2.3) .
:f /.v/ WD f .
�1:v/ for 
 2 SO.d/, f 2 L2.Sd�1; �/, v 2 Sd�1:

Each space Hn is invariant under this action ([10, Proposition 3.2.4]) since, on Rd ,
rotations preserve both the Laplace operator as well as the set of homogeneous degree-n
polynomials.

An important role is played by the Gegenbauer polynomials .P0; P1; : : :/ which
are obtained from .1; t; t2; : : :/ by the Gram–Schmidt orthonormalization process on
L2.Œ�1; 1�; �.t/ dt /, except they are normalised to assume value 1 at t D 1 (instead of
being unit vectors in the L2-norm). In the special case d D 3 (when � is the constant
function), we get the Legendre polynomials. Of course, the degree of Pn is exactly n.
Let us collect some of their standard properties that we will use.

Lemma 2.1. For every integer n > 0, the following hold:
(i) The polynomial Pn has rational coefficients.
(ii) For every v 2 Sd�1, the function P vn WSn�1 ! R, defined by

P vn .x/ WD Pn.v � x/ for x 2 Sd�1;

belongs to Hn.
(iii) There is a choice of v1; : : : ; vNn

2 Sd�1 such that the functions P vi
n , i 2 ŒNn�,

form a basis of the vector space Hn.
(iv) For every u; v 2 Sd�1, we have hP un ; P vn i D

�d

Nn
Pn.u � v/.

Proof. Part (i) follows from the formula of Rodrigues ([10, Proposition 3.3.7]) that
provides an explicit expression for Pn, or from the standard recurrence relation that
writes PnC1 in terms of Pn and Pn�1 for n > 0 ([10, Proposition 3.3.11]) together
with the initial values P�1.t/ WD 0 and P0.t/ D 1.

Part (ii), namely the claim that each P vn is in Hn, is one of the statements of [10,
Theorem 3.3.3].

Part (iii) is the content of [10, Theorem 3.3.14]. Alternatively, notice that under
the action in (2.3), we have for every u; v 2 Sd�1 and 
 2 SO.d/ that

.
:P vn /.u/ D Pn.v � .

�1:u// D Pn..
:v/ � u/;
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that is,

(2.4) 
:P vn D P

:v
n :

Thus the linear span of P vn , v 2 Sd�1, is a non-zero SO.d/-invariant subspace of Hn.
By [10, Theorem 3.3.4], the only such subspace is Hn itself, giving the required result.

Part (iv) follows from

hP un ; P
v
n i D

�Z 1

�1

.Pn.t//
2�.t/ dt

�
Pn.u � v/ D

�d

Nn
Pn.u � v/;

where the first equality is a special case of the Funk–Hecke formula ([10, Theorem 3.4.1])
and the second equality (which by (2.1) amounts to computing the L2-norm of any
P un 2 L

2.Sd�1; �/) is proved in [10, Proposition 3.3.6].

We need the following strengthening of Lemma 2.1 (iii), where we additionally
require that the vectors vi are rational.

Lemma 2.2. For every integer n > 0, there is a choice of v1; : : : ; vNn
2 Sd�1 \Qd

such that the functions P vi
n , i 2 ŒNn�, form a basis of the vector space Hn.

Proof. We pick vi in Sd�1 \Qd one by one as long as possible so that the corres-
ponding functions P vi

n are linearly independent as elements of Hn. Let this procedure
produce v1; : : : ;v`. Suppose that ` < Nn as otherwise we are done. Let v`C1 D x, with
x D .x1; : : : ; xd / 2 Sd�1 being viewed as a vector of unknown variables. Consider
the .`C 1/ � .`C 1/ matrix M DM.x/ with entries

(2.5) Mij WD
1

�d
hP vi
n ; P

vj
n i for i; j 2 Œ`C 1�:

In other words, �dM is the Gram matrix of the vectorsP v1
n ; : : : ;P

v`C1
n 2L2.Sd�1;�/.

In particular, the determinant det.M/ of M is 0 if and only if P v`C1
n is in the span of

the (linearly independent) vectors P v1
n ; : : : ; P

v`
n (by, e.g., [14, Theorem 7.2.10]).

By Lemma 2.1 (iv), we have thatMij D
1
Nn
Pn.vi � vj /. Thus the determinant ofM

is a polynomial function of x.
By Lemma 2.1 (iii) and ` < Nd (and the linear independence of P v1

n ; : : : ; P
v`
n ),

there is some choice of v`C1 2 Sd�1 with det.M/¤ 0. That is, the polynomial det.M/

is not identically zero on Sd�1.
We need the following easy claim that can be proved, for example, by induction on

d > 2 with the base case d D 2 following from S1 containing all points of the form

1

m2 C n2
.m2 � n2; 2mn/

for .m; n/ 2 Z2 n ¹.0; 0/º.
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Claim 2.3. For every d > 1, the set Sd�1 \Qd of the points on the sphere with all
coordinates rational is dense in Sd�1 with respect to the standard topology on the
sphere (i.e., the one inherited from the Euclidean space Rd � Sd�1).

Since det.M/, as a polynomial function of x 2 Sd�1, is continuous and not identic-
ally zero, it has to be non-zero on some point x of the dense subset Sd�1 \Qd . Thus,
if we let v`C1 to be such a vector x, then the functions

P v1
n ; : : : ; P

v`C1
n 2 L2.Sd�1; �/

are linearly independent. This contradiction to the maximality of v1; : : : ; v` proves the
lemma.

For an integer n > 0, an r-tuple 
 D .
1; : : : ; 
r/ 2 SO.d/r and a unit vector
v 2 Sd�1 define

(2.6) Gvn;
 WD

rX
iD1

P

�1

i
:v

n :

By Lemma 2.1 (ii), each function Gvn;
 WSd�1 ! R, as a linear combination of some
spherical harmonics P 


�1
i
:v

n 2 Hn, is itself in Hn.

Lemma 2.4. If 
 2 SO.d/r is generic then, for every integer n > 0, the linear span
of ¹Gvn;
 j v 2 Sd�1º is the whole space Hn.

Proof. By Lemma 2.2, we can fix some vectors v1; : : : ; vNn
2 Sd�1 \Qd such that

P
v1
n ; : : : ; P

vNn
n form a basis for Hn. Let ˇ D .ˇ1; : : : ; ˇr/ be an arbitrary element

of SO.d/r (not necessarily generic). Consider the Nn � Nn matrix L D L.ˇ/ with
entries

Lij WD
1

�d
hG

vi

n;ˇ; P
vj
n i for i; j 2 ŒNn�:

Recall that the vectors P vi
n , i 2 ŒNn�, form a (not necessarily orthonormal) basis

of the linear space Hn. Write the vectors Gvi

n;ˇ in this basis:

.G
v1

n;ˇ; : : : ; G
vNn

n;ˇ /
T
D A.P v1

n ; : : : ; P
vNn
n /T ;

for some Nn � Nn matrix A. Then L is the matrix product AM , where M is the
Gram matrix of the vectors P vi

n multiplied by the constant ��1
d

(that is, the entries
of M are defined by the formula in (2.5)). The matrix M is non-singular by the linear
independence of P vi

n , i 2 ŒNn�. Thus, det.L/ ¤ 0 if and only if Gv1

n;ˇ; : : : ; G
vNn

n;ˇ are
linearly independent as vectors in Hn.
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By Lemma 2.1 (iv), we have for every i; j 2 ŒNd � that

Lij WD
1

�d

rX
sD1

hP
ˇ�1

s :vi
n ; P

vj
n i D

1

Nn

rX
sD1

Pn..ˇ
�1
s :vi / � vj /

D
1

Nn

rX
sD1

Pn.vi � .ˇs:vj //:

Since v1; : : : ;vNn
are fixed, this writes each Lij as a polynomial in the d2r entries

of the matrices ˇ1; : : : ; ˇr . Moreover, all coefficients of this polynomial are rational
since each vi belongs to Qd and all coefficients of Pn are rational by Lemma 2.1 (i).
Thus the determinant of L is equal to p.ˇ/ for some polynomial p with coefficients
in Q.

Note that if we let each ˇi be the identity matrix Id , then Gvn;ˇ becomes rP vn for
every v 2 Sd�1, and we have Lij D r

�d
hP

vi
n ; P

vj
n i for i; j 2 ŒNn� and det.L/ ¤ 0

(since P v1
n ; : : : ; P

vNn
n are linearly independent). Thus, p.Id ; : : : ; Id / ¤ 0. Since


 2 SO.d/r is generic, we have that p.
/ ¤ 0, that is, the matrix L for ˇ WD 
 is
non-singular. This means that the functions Gvi

n;
 , i 2 ŒNn�, are linearly independent.
Since they all lie in Hn and their number equals the dimension of this linear space,
they span Hn. The lemma is proved.

Given the above auxiliary results, we can derive Theorem 1.1 rather easily.

Proof of Theorem 1.1. Recall that 
 D .
1; : : : ; 
r/ 2 SO.d/r , r > 2, is generic and
we have to show that Sd�1 is not “fractionally” 
-divisible.

So take any f 2 L2.Sd�1; �/ such that
rX
iD1


i :f D 1 a.e.

Since spherical harmonics are dense in L2.Sd�1; �/ ([10, Corollary 3.2.7]), and we
have the direct sum H D ˚1nD0Hn, whose components are orthogonal to each other
by (2.2), we can uniquely write

f D

1X
nD0

Fn

in L2.Sd�1; �/ with Fn 2 Hn for every n > 0. Since the action of SO.d/ preserves
each space Hn as well as the scalar product on L2.Sd�1; �/, we have that


:f D

1X
nD0


:Fn

is the harmonic expansion of 
:f 2 L2.Sd�1; �/.



C. T. Conley, J. Grebík and O. Pikhurko 34

Take any integer n > 1. Recall that the sum
Pr
iD1 
i :f is a constant function 1 a.e.

By (2.2), the invariance of the scalar product under SO.d/ and by (2.4), we have that,
for every v 2 Sd�1,

0 D hP vn ; 1i D hP
v
n ; 
1:f C � � � C 
r :f i D hP

v
n ; 
1:Fn C � � � C 
r :Fni

D h
�11 :P vn C � � � C 

�1
r :P vn ; Fni D hG

v
n;
 ; Fni;

where Gvn;
 was defined by (2.6). Since the functions Gvn;
 , v 2 Sd�1, span the whole
space Hn by Lemma 2.4, we must have that Fn D 0.

As n > 1 was arbitrary, we have that f is a constant function a.e. (whose value
must be 1=r). This finishes the proof of Theorem 1.1.

Remark 2.5. The statement of Theorem 1.1 remains true also when 
r D Id and
.
1; : : : ; 
r�1/ is a generic point of SO.d/r�1. One way to see this is to run the same
proof except the r-th component of each encountered r-tuple of matrices is always set
to be the identity matrix Id .

3. Rotations generating a finite subgroup

Proof of Proposition 1.5. We have to show that an even-dimensional sphere Sd�1

is not .
1; : : : ; 
r/-divisible if the subgroup � of SO.d/ generated by the rotations

1; : : : ; 
r is finite.

Since d is odd, the 2-divisibility of Sd�1 is impossible because of a fixed point
of 
�11 
2. So assume that r > 3. Let

V WD �:¹˙e1; : : : ;˙ed º;

that is, we take all possible images of the standard basis vectors and their negations
when moved by � . Clearly, the set V is a finite. Let P be the convex hull of V . Then P
is a full-dimensional polytope containing 0 in its interior (as already the convex hull
of ¹˙e1; : : : ;˙ed º � V has these properties). Its boundary @P is homeomorphic
to Sd�1 by the map that sends x 2 @P to x=kxk2 2 Sd�1.

Let a hyperplane mean a .d � 1/-dimensional affine subspace of Rd . Identify each
oriented hyperplane H � Rd with the pair .n; a/ 2 Sd�1 �R so that

H D ¹x 2 Rd j n � x D aº:

Its open half-spaces areHC WD ¹x 2Rd j n � x > aº andH� WD ¹x 2Rd j n � x < aº.
Call H supporting if H \ P ¤ ; and H� \ P D ;. Call H a facet hyperplane if it
is supporting and dimaff.H \ P / D d � 1, where dimaff.X/ denotes the dimension
of the affine subspace of Rd spanned by X .
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The intersections of supporting hyperplanes with @P represent the boundary of the
polytope P as a CW-complex. Namely, for i 2 ¹0; : : : ; d � 1º, its i -dimensional cells
are precisely the i -dimensional faces of P , that is, the convex hulls of the sets in

Ci WD ¹X � V j dimaff.X/ D i and 9 supporting hyperplane H with H \ V D Xº:

For a finite non-empty set X � Rd , let

mX WD
1

jX j

X
x2X

x

be the centre of mass of X .
Let i 2 ¹0; : : : ;d � 1º andX 2Ci . Observe thatmX ¤ 0 sinceP is full-dimensional.

So we can define nX WD mX=kmXk2 to be the normalised version of mX . Let us
show that for every Y 2 Ci different from X , we have nX ¤ nY . As it is well known
(see, e.g., [11, Theorem 3.1.7]), we can pick facet hyperplanes H1; : : : ;Hk such that
V \ .\kjD1Hj /D X . SinceX ¤ Y , the affine subspaces that these two sets span differ.
Since these subspaces have the same dimension, there is y 2 Y not in the affine span
of X . Since y 2 V and each Hj is supporting, there is j 2 Œk� such that y belongs
to the open half-space HCj . By Y � Hj [HCj , we have thatmY belongs to HCj . It
follows frommY ; 0 2 HCj andmX 2 Hj that if nX D nY , thenmY D cmX for some
scalar c with 0 < c < 1. By swapping X and Y in the above argument, we see that
nX D nY is impossible, as claimed.

Thus jMi j D jCi j, where Mi WD ¹mX=kmXk2 j X 2 Ciº � Sd�1 denotes the set
of the normalised centres of mass of the vertex sets of i-dimensional faces. Clearly,
the set family Ci is invariant under the natural action of � on finite subsets of Sd�1.
Thus the set Mi � Sd�1 is also �-invariant.

Since d is odd, the Euler characteristic �.Sd�1/ of the .d � 1/-dimensional sphere
is 2; see, e.g., [25, Remark 4.2.21]. Since the faces of @P give a representation of the
sphere as a CW-complex, we have (by, e.g., [25, Theorem 4.2.20]) that

2 D �.Sd�1/ D
d�1X
iD0

.�1/i jCi j:

Thus, for at least one i 2 ¹0; : : : ; d � 1º, it holds that r > 3 does not divide jCi j D jMi j.
By the �-invariance of Mi , there is no choice of A \Mi such that its translates by

1; : : : ; 
r partition Mi . Thus Sd�1 is not .
1; : : : ; 
r/-divisible.

Remark 3.1. Under the assumptions of Proposition 1.5, its proof gives that if there
are d linearly independent vectors on Sd�1 such that each has a finite orbit under �
(where some of these orbits may coincide) then Sd�1 is not 
-divisible. However, this
seemingly weaker assumption is equivalent to the assumption that � is finite (e.g., via
a version of Claim 4.2 below).
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4. Actions with a finite orbit

Here we prove Proposition 1.6 that, in the presence of at least one finite orbit,

-divisibility is equivalent to measurable 
-divisibility.

Proof of Proposition 1.6. Recall that� is the subgroup of SO.d/ generated by 
1; : : : ;
r.
For x 2 Sd�1, let Lx be the linear subspace of Rd spanned by �:x � Rd .

Claim 4.1. For every x 2 Sd , bothLx �Rd and its orthogonal complementL?x �Rd

are invariant under the action of � on Rd .

Proof of the claim. Any 
 2 � permutes the set �:x. Since 
 is a linear map, it pre-
serves the linear subspace Lx spanned by �:x. Thus, Lx is �-invariant.

Since � consists of orthogonal matrices, its action preserves the scalar product
on Rd . Thus if y 2 Rd is orthogonal to Lx then, for every 
 2 � , we have that 
:y is
orthogonal to 
:Lx D Lx . It follows that L?x is �-invariant.

Recall that z 2 Sd�1 is a vector such that its orbit �:z is finite. Let z1; : : : ; zn be
the elements of �:z.

Claim 4.2. If x 2 Lz \ Sd�1 then j�:xj 6 nŠ.

Proof of the claim. Write x 2 Lz as
Pn
iD1 cizi for some reals c1; : : : ; cn. For every

˛ 2 � , we have by linearity that ˛:x D
Pn
iD1 ci .˛:zi /. Since z1; : : : ; zn enumerate

a whole orbit of � , the element ˛ 2 � permutes these vectors. Thus every element
of �:x is of the form

Pn
iD1 ciz�.i/ for some permutation � of Œn�. Thus �:x indeed

has at most nŠ elements.

Now we are ready to prove the (non-trivial) forward direction of Proposition 1.6. By
rotating the sphere (and moving z and conjugating 
i ’s accordingly), we can assume that
Lz D Rm � 0 and L?z D 0 �Rd�m for somem 2 Œd �. By Claim 4.1, every matrix 
i ,
i 2 Œr�, consists now of two diagonal blocks that correspond to some ˛i 2 O.m/ and
ˇi 2 O.d �m/. (Note that these matrices may have determinant �1.) When we write
a vector in Rd as .x;y/, we mean that x 2 Rm and y 2 Rd�m; thus,


i :.x;y/ D .˛i :x; ˇi :y/:

Fix C � Sd�1 such that 
1:C; : : : ; 
r :C partition Sd�1. By the invariance of Lz
and L?z , the translates of the set C \ .Rm � 0/ (resp. C \ .0 �Rm�d /) by 
1; : : : ; 
r
partition Sm�1 � 0 (resp. 0 � Sd�m�1). By Claim 4.2, every orbit of the action of �
on the invariant subset X WD Sm�1 � 0 has at most nŠ elements. Obviously, the same
holds for the action on Sm�1 of the subgroup � 0 � O.m/ generated by ˛1; : : : ; ˛r . Fix
a Borel total order on Sm�1 (e.g., the restriction of the lexicographic order on Rm) and
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let A0 � X be obtained by picking from every orbit � 0:x � Sm�1 the lexicographically
smallest subset such that its translates by ˛1; : : : ; ˛r partition � 0:x. Such a set always
exists since ¹y 2 � 0:x j .y; 0/ 2 C º is one possible choice. In the terminology of [21],
the setA0 can be computed by a local rule of radius nŠ on the coloured Schreier digraph
of � 0ÕSm�1 (where the vertex set is Sd�1 and we put a directed colour-i arc from y

to ˛i :y for all y 2 Sm�1 and i 2 Œr�). As the action is Borel, this is known to imply
(see, e.g., [21, Lemma 5.17]) that the constructed set A0 � Sm�1 is Borel. Define

A WD
[

�2Œ0;1/

�p
1 � �2A0 � �Sd�m�1

�
D

[
�2Œ0;1/

®�p
1 � �2 x; �y

�
j x 2 A0;y 2 Sd�m�1

¯
and

B WD C \ .0 �Rm�d /:

Then 
1:A; : : : ; 
r :A partition Sd�1 n .0 � Sd�m�1/ and, as we observed earlier,

1:B; : : : ;
r :B partition 0�Sd�m�1. ThusA[B witnesses the
-divisibility of Sd�1.
Note that the set B , which lies inside the intersection of Sd�1 with the linear sub-
space L?z of dimension less than d , has measure zero. On the other hand, the set A
can be equivalently defined as the pre-image of the Borel set A0 � Rd�m under the
natural homeomorphism between Sd�1 n .0 � Sd�m�1/ and Sm�1 �Rd�m that maps
.x;y/ to .x=kxk2;y=kxk2/. Thus, A is Borel and A [ B is measurable, proving the
proposition.

Remark 4.3. One can show via Claims 4.1 and 4.2 that if d D 3 and a subgroup
� � SO.d/ has a finite orbit of size at least 3, then � is finite (and thus Proposition 1.5
applies). However, this implication is not true in general for d > 4. For example, we
can take the subgroup of SO.d/ generated by a diagonal block matrix M whose first
(resp. second) block is a 2 � 2 special orthogonal matrix of order 3 (resp. of infinite
order), while all remaining blocks are the 1 � 1 identity matrices. Then M has an
infinite order (coming from the second block) but its action on Sd�1 has an orbit with
exactly 3 elements (e.g., the orbit of the first standard basis vector .1; 0; : : : ; 0/).

5. Measurable divisibility of higher-dimensional spheres

As we mentioned in the Introduction, Sd�1 is r-divisible with Borel pieces for
every r > 2 and even d > 2 ([23, Theorem 6.6 (a)]). The proof of [23, Theorem 6.6 (b)]
for any r > 3 and odd d > 5 gives measurable pieces. Since this conclusion does not
seem to be explicitly stated anywhere in [23], we provide the simple proof from [23].
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Lemma 5.1. For any d > 5 and r > 3, Sd�1 is r-divisible with measurable pieces.

Proof. Informally speaking, we will use the Borel r-divisibility of S1 in the last two
coordinates of Sd�1 � Rd , resorting to the r-divisibility of Sd�3 only on the null set
of points where the last two coordinates are zero.

Namely, choose rotations ˛1; : : : ; ˛r 2 SO.d � 2/ and a (not necessarily measur-
able) subset A � Sd�3 such that ˛1:A; : : : ; ˛r :A partition Sd�3, which is possible
by, e.g., [23, Theorem 6.6]. Let ˇ 2 SO.2/ be the rotation of the circle S1 by the
angle 2�=r . (Thus the order of ˇ, as an element of the group SO.2/, is r .) For i 2 Œr�,
let 
i send .x;y/ 2 Rd�2 �R2 to .˛i :x; ˇi :y/, where we view SO.m/ as also acting
on Rm. Clearly, 
i preserves both the scalar product on Rd and the orientation; thus it
is an element of SO.d/.

LetB WD¹.cos�;sin�/ j 06�<2�=rº�S1. Then the half-open arcsˇ:B; : : : ;ˇr :B
partition S1. Let C WD A0 [ B 0, where A0 WD A � ¹.0; 0/º and

B 0 WD
[

�2Œ0;1/

�
�Sd�3 �

p
1 � �2 B

�
:

Clearly, A0 is a �-null subset of Sd�1 and B 0 is a Borel subset of Sd�1. Thus, C is
measurable. Also, 
1:C; : : : ; 
r :C partition Sd�1. Indeed,


i :A
0
D ˛i :A � ¹.0; 0/º; i 2 Œr�;

partition Sd�3 � ¹.0; 0/º, while


i :B
0
D [�2Œ0;1/

�
�Sd�3 �

p
1 � �2 .ˇi :B/

�
; i 2 Œr�;

partition the rest of Sd�1.

6. Measurable divisibility for d D 2 and r 6 4

We parametrise S1 D ¹.cos t; sin t / j t 2 Œ0; 2�/º and use the parameter t instead
of the Cartesian coordinates. Thus we have the interval Œ0; 2�/ with � being the
Lebesgue measure on it. The space Hn for n > 1 becomes the span of cos nt and
sin nt (while, of course, H0 consists of all constant functions). Here, the harmonic
expansion is nothing else as the Fourier series. We identify SO.2/ with the additive
group T WD R=2�Z of reals taken modulo 2� . Thus the action of 
 2 T on Œ0; 2�/ is
to send t 2 Œ0; 2�/ to t C 
 .mod 2�/. We also identity Œ0; 2�/ with T ; thus we have
the natural action TÕT .

Let us investigate various possible versions of “measurable” divisibility, stated in
terms of the action TÕT . Let Br (resp. Mr ) consist of those r-tuples .t1; : : : ; tr/ 2T r
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for which there is a Borel (resp. measurable) subsetA�T such that t1CA; : : : ; tr CA
partition T , where we denote t C A WD ¹t C a j a 2 Aº. Also, let M0r consist of those
.t1; : : : ; tr/ 2 T r for which there is a measurable (equivalently, Borel)A� T such that
the translates t1 CA; : : : ; tr CA are pairwise disjoint and the set of elements of T not
covered by them has measure zero. Finally, let Fr consist of those .t1; : : : ; tr/ 2 T r

for which there is f 2 L2.Œ0; 2�/; �/ such that t1:f C � � � C tr :f D 1 a.e., while
f ¤ 1=r on a set of positive measure. As it is easy to see, the definition of Fr does not
change if we require t1:f C � � � C tr :f D 1 to hold everywhere. Trivially, it holds that

Br �Mr �M0r � Fr :

First, we investigate Fr . Suppose that we have some f 2 L2.Œ0; 2�/; �/ such that
t1:f C � � � C tr :f D 1 a.e. Take the Fourier series,

f .t/ D c0 C

1X
nD1

.cn cosnt C sn sin nt/ for a.e. t 2 Œ0; 2�/:

Clearly, c0 D 1=r . For i 2 Œr�, by translating everything by ti , we get that

.ti :f /.t/ D
1

r
C

1X
nD1

�
cn cosn.t � ti /C sn sin n.t � ti /

�
for a.e. t 2 Œ0; 2�/:

Summing this up for all i 2 Œr� and using the formula for the sine and the cosine of a
difference of two angles, we get that for a.e. t 2 Œ0; 2�/,

1 D 1C

rX
iD1

� 1X
nD1

cn.cosnt cosnti C sin nt sin nti /

C sn.sin nt cosnti � cosnt sin nti /
�

D 1C

1X
nD1

� rX
iD1

.cn cosnti � sn sin nti / cosnt

C

rX
iD1

.cn sin nti C sn cosnti / sin nt
�
:

(Recall that
Pr
iD1 ti :f D 1 a.e.)

Let n > 1. By the uniqueness of the Fourier coefficients, we have that

rX
iD1

.cn cosnti � sn sin nti / D 0 and
rX
iD1

.cn sin nti C sn cosnti / D 0:
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Suppose that .cn; sn/ ¤ .0; 0/. If we multiply the above equations by cn and sn (resp.
by �sn and cn) and add up, we get after dividing by c2n C s2n that

(6.1)
rX
iD1

cosnti D 0 and
rX
iD1

sin nti D 0;

that is, the vectors .cosnti ; sin nti / 2 R2, i 2 Œr�, sum up to zero.
If f differs from 1=r on a set of positive measure then, for at least one integer

n > 1, we have .cn; sn/ ¤ .0; 0/, and thus (6.1) holds. Conversely, if (6.1) holds for
some n > 1, then we can take, for example,

f .t/ WD .1C cosnt/=r

for t 2 Œ0; 2�/. This completely describes the set of r-tuples in SO.2/ for which the
circle S1 is “fractionally” divisible.

Proposition 6.1. An r-tuple .t1; : : : ; tr/ 2 T r belongs to Fr if and only if (6.1) holds
for at least one integer n > 1.

Let us investigate the sets Br and M0r for r 6 4. As we will see, it holds for each
r 6 4 that Br DM0r (and, in particular, this set is also equal to Mr ).

Let .t1; : : : ; tr/ 2 T r . By replacing .t1; : : : ; tr/ by .t1 � tr ; : : : ; tr � tr/, which
does not affect divisibility, we can assume for convenience that tr D 0. Since M0r � Fr ,
assume that (6.1) holds for some n > 1. Let n > 1 be the smallest integer with this
property.

Suppose first that r D 2. By (6.1) we have nt1 D .2k C 1/� for some integer
k > 0. Note that n and 2k C 1 are coprime: if an integer q > 1 divides both n and
2k C 1 then, for n0 WD n=q, we have n0t1 D .2k C 1/�=q, and thus (6.1) holds for
n0 < n, contradicting the minimality of n. Therefore, the subgroup of T generated
by t1 D .2k C 1/�=n is ¹�m=n j m 2 ¹0; : : : ; 2n � 1ºº, which is the additive cyclic
group of order 2nwith t1 corresponding to an odd multiple of the generator �=n. Since
the addition of t1 swaps odd and even multiples of �=n, we have that

A WD
°�m
n
j m 2 ¹0; 2; : : : ; 2n � 2º

±
C

h
0;
�

n

�
satisfies t1 C A D Œ0; 2�/ n A and shows that .r1; 0/ 2 B2, where for B;C � T we
denote

B C C WD ¹b C c j b 2 B; c 2 C º:

Thus B2 DM2 DM02 D F2, and this set can be equivalently described as consisting
of precisely those .t1; t2/ 2 T2 such that t2 � t1 2 T generates a finite subgroup of
even order.
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Suppose that r D 3. Three vectors on the unit circle sum to 0 if and only if they
form an equilateral triangle. (Indeed, the sum of any two unit vectors has norm 1 if
and only if the angle between the vectors is 2�=3.) Thus, up to swapping t1 and t2, we
can assume that nt1 � 2�=3 and nt2 � 4�=3 modulo 2� . Each of t1; t2 2 Œ0; 2�/ is a
(non-zero) integer multiple of 2�=.3n/. Let k1; k2 2 Œ3n � 1� satisfy ti D 2�ki=.3n/.
By the minimality of n, the greatest common divisor gcd.k1; k2; n/ D 1. Furthermore,
it is impossible that 3 divides both k1 and k2, for otherwise by, e.g., 2�k1=.3n/ �
2�=3 .mod 2�/ we have that 3 also divides n, a contradiction to gcd.k1; k2; n/ D 1.
Therefore, the subgroup generated by t1; t2 2 T is ¹2�k

3n
j k 2 ¹0; : : : ; 3n� 1ºº, which

is the cyclic group of order 3n. For i D 1; 2, we have kin � in .mod 3n/ and thus
ki � i .mod 3/. Thus if we take

A WD
°2�m
3n
j m 2 ¹0; 3; : : : ; 3n � 3º

±
C

h
0;
2�

3n

�
;

then t1 CA, t2 CA and t3 CA D A partition Œ0; 2�/. We conclude that B3 DM3 D

M03 D F3 and this set can be alternatively described as consisting, up to a permutation
of indices, precisely of the triples�2�k1

3n
C t;

4�k2

3n
C t; t

�
with n > 1, k1; k2 2 Œ3n � 1� and t 2 T such that ¹k1; k2º � ¹1; 2º .mod 3/ and the
greatest common divisor of k1, k2 and n is 1.

Suppose that r D 4. We need the following geometric claim.

Claim 6.2. Four vectors .xi ; yi / 2 S1, i 2 Œ4�, have sum 0 if and only if they can be
split into two pairs of opposite vectors.

Proof of the claim. The non-trivial direction of the claim can be derived by observing
that, up to a permutation of indices, we can assume that v WD .x1; y1/C .x2; y2/ is a
non-zero vector while, in general, there is at most one way to write �v 2 R2 n ¹0º as
the unordered sum of two unit vectors. Thus the other two vectors must be .�x1;�y1/
and .�x2;�y2/, as desired.

Recall that n > 1 is the smallest integer satisfying (6.1). Claim 6.2 applied to
xi WD cos.nti / and yi WD sin.nti / for i 2 Œ4� gives that, up to a permutation of indices,
.x1; y1/ D �.x2; y2/ and .x3; y3/ D �.x4; y4/. Thus, by Proposition 6.1, the set F4

consists precisely of those .t1; : : : ; t4/ such that, for some integer n > 1 and up to a
permutation of indices, we have that

(6.2) n.t1 � t2/ � n.t3 � t4/ � � .mod 2�/:
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Again, let us assume that t4 D 0.
First, let us show that if t1=� is irrational then .t1; : : : ; t4/ 62M04. By (6.2), we

can assume that t2 D t1 C k2�=n and t3 D k3�=n for some odd integers k2 and k3.
Suppose for a sake of contradiction that for some measurable subset A � T we have
that

P4
iD1 ti :1A D 1 a.e. Take the Fourier expansion

1A.t/ D
1

4
C

1X
mD1

.cm cosmt C sm sinmt/:

By the argument leading to (6.1) and Claim 6.2, we see that .cm; sm/ can be non-zero
only if we can split .mt1; : : : ; mt4/ 2 T4 into two pairs, each pair having differ-
ence � . Since t1=� is irrational, these pairs must be .t1; t2/ and .t3; t4/ by (6.2). Thus
mki�=n � � .mod 2�/ for i D 2; 3. Clearly, the validity of these two equations is
determined by the residue of m modulo n. Since n is minimal, these equations cannot
both hold for any m 2 Œn � 1�. Thus they can hold only if m is a multiple of n. This
means that all non-zero Fourier terms of 1A have period 2�=n as functions T ! R. It
follows thatAD .2�k=n/CA a.e. for every integer k and 1A D

1
n

Pn�1
kD0.2�k=n/:1A.

Thus,

t1:1A C 1A D
1

n

n�1X
kD0

�
.t1 C 2�k=n/:1A C .2�k=n/:1A

�
D

1

2n

n�1X
kD0

.2�k=n/:
�
t1:1A C t2:1A C t3:1A C t4:1A

�
D
1

2
a.e.,

where we used that t1:1A C t2:1A C t3:1A C t4:1A D 1 a.e. by the choice of A. We
conclude that the function 2 1A demonstrates that .t1; 0/ 2 F2. By the case r D 2 that
was solved earlier, this contradicts the irrationality of t1=� .

This gives that M04 is strictly smaller than F4: for example, .a; aC �;�; 0/ belongs
to F4 nM04 if a=� is irrational.

Now, suppose that t1=� is rational. Let � be the subgroup of T that is generated
by t1, t2 and t3. (There is no need to add t4 as it is 0.) By (6.2) and the rational-
ity of t1=� , the group � is finite. Of course, if 4 does not divide its order j�j then
there is no t-division even if a null set can be removed. So suppose that j�j D 4m
for some integer m, i.e., that � is the cyclic group of order 4m. For i 2 Œ4�, let
ki 2 ¹0; : : : ; 4m � 1º satisfy that ti D �ki

2m
. Let k WD .k1; : : : ; k4/. Let us say that

the cyclic group Z4m, that consists of integer residues modulo 4m, is k-divisible if
there is a subset A � Z4m such that the sets ki C A, i 2 Œ4�, partition Z4m. Of course,
such a set A must have exactly m elements.

The following claim implies in particular that B4 DM4 DM04.
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Claim 6.3. If Z4m is k-divisible then t 2 B4; otherwise, t 62M04.

Proof of the claim. Suppose first that a subset A � Z4m witnesses the .k1; : : : ; k4/-
divisibility of Z4m. It corresponds to an m-subset B � Œ0; 2�/ such that its translates
by t1; : : : ; t4 partition the subgroup � � T . Now the Borel set C WD B C Œ0; �

2m
/

exhibits the t-divisibility of T .
Conversely, suppose that Z4m is not k-divisible. Take any measurable set C �

Œ0; 2�/ such that its translates by t1; : : : ; t4 are pairwise disjoint. Take any coset
X WD t C � � T of � . Define A to consist of those k 2 Z4m such that t C �k

2m
2 C

(that is, A encodes the intersection of C with the �-coset X). The translates of A by
k1; : : : ; k4 in Z4m (which correspond to the intersections .ti C C/ \X , i 2 Œ4�) are
pairwise disjoint and, by our assumption, omit at least one element of Z4m. Thus every
coset of � in T contains at least one element ofB WD T n .¹t1; : : : ; t4º CC/. It follows
that B has measure at least 2�=.4m/ (as its translates by �k

2m
for k 2 ¹0; : : : ; 4m � 1º

cover T ). This implies that t 62M04.

Unfortunately, an explicit characterization of the set B4 DM4 DM04 for general n
seems to be rather messy, although it reduces to a finite case analysis for any given
t 2 T4 by Claim 6.3. So we will restrict ourselves to the special cases nD 1 and nD 2,
just to illustrate that the measurable t-divisibility is not determined by the order 4m of
the group � alone (which happens already for n D 2).

First, assume that n D 1. By (6.2), we have up to a permutation that

.t1; t2; t3/ � .a; aC �; �/ .mod 2�/

with a 62 ¹0; �º. Thus, working inside Z4m (that is, modulo 4m), we have that k2 D
k1C 2m and k3 D 2m. Since k1; k1C 2m;2m generate Z4m, we have that k1 and 2m
are coprime; in particular k1 is odd. As it is easy to see A WD ¹2i j i 2 ¹0; : : : ;m� 1ºº
witnesses the k-divisibility of Z4m. Thus t 2 B4 by Claim 6.3.

Now, assume that nD 2. By (6.2), we have that each of the differences k1 � k2 and
k3 � k4 modulo 4m is either m or 3m. We can assume that k3 D m (by negating all
ki ’s if necessary) and that k2 D k1 Cm (by swapping k1 and k2 if necessary). Note
that these operations do not affect the k-divisibility of Z4m and thus the conclusion of
Claim 6.3 is also unaffected. Let k WD k1. Thus,

k D .k; k Cm;m; 0/:

First, let us show that ifmD 2s is even then Z4m is k-divisible (and thus t 2B4 by
Claim 6.3). It is enough to find an s-set S � ¹0; : : : ; m � 1º such that, modulo m, the
sets S and k C S partition Zm (because then A WD S [ .2mC S/ as a subset of Z4m
witnesses the k-divisibility of Z4m). Note that S WD ¹2ik j i 2 ¹0; : : : ; s � 1ºº works.



C. T. Conley, J. Grebík and O. Pikhurko 44

(Indeed, by gcd.k; m/ D 1 each residue modulo m appears exactly once as ik with
i 2 ¹0; : : : ; m � 1º and we have included every second multiple of k into the set S .)

Finally, suppose that m is odd. Recall that gcd.k;m/ D 1. We claim that Z4m is
k-divisible if and only if k � 2 .mod 4/.

First, suppose that an m-set A � Z4m witnesses the k-divisibility. Since m is odd,
some residue i modulo m appears an odd number of times in A. This multiplicity
cannot be larger than 2 since otherwise the translates k1 CA; : : : ; k4 CA would cover
the four points

i; i Cm; i C 2m; i C 3m 2 Z4m

at least six times. Thus the multiplicity of i inAmodulom is exactly 1. By the commut-
ativity of Z4m, we can replace A by any its translate. Thus assume that A contains 0
but none of m, 2m and 3m. Thus, by .k3; k4/ D .m; 0/, the set .k3 C A/ [ .k4 C A/
covers 0 and m but not 2m nor 3m. Since 2m 62 A, the only way to consistently cover
2m and 3m is that 2m � k 2 A. Now, ¹k1; : : : ; k4º C ¹0; 2m � kº contains 2m � k
and 3m � k but not �k nor m � k. None of the last two elements can be covered by
k3 C A or k4 C A (as then A modulo m would contain �k .mod m/ at least twice
but then the four elements 0, m, 2m, 3m would be covered at least six times, with the
extra multiplicity coming from 0 and m being covered by 0 2 A when translated by
k3 and k4). Thus the only way to consistently cover �k and m � k is that �2k 2 A.
One can continue to argue in this manner, showing that for each i 2 ¹0; 1; : : :º we
have �2ik 2 A and �.2i C 1/k C 2m 2 A. As the first m of these elements of A are
pairwise distinct (in fact, they have pairwise distinct residues modulo m) and m is
odd, it must hold that the m-th element, �mk C 2m, belongs to A. Since A does not
contain any of m, 2m and 3m, we necessarily have that �mk C 2m � 0 .mod 4m/.
This equation has m solutions, namely, all k 2 Z4m with k � 2 .mod 4/, giving the
claim.

Conversely, if k � 2 .mod 4/, then the set A consisting of elements �2ik for
i 2 ¹0; : : : ; .m � 1/=2º and �.2i C 1/k C 2m for i 2 ¹0; : : : ; .m � 3/=2º shows the
k-divisibility of Z4m. Indeed, note that jAj Dm (as its elements have different residues
modulo m by gcd.k;m/ D 1) and that if we keep increasing the index i beyond the
stated ranges then we just repeat the elements of A since �mk C 2m � 0 .mod 4m/.
By “reverse engineering” the proof of the forward implication, we see that the translates
of A by k1; : : : ; k4 are pairwise disjoint and thus partition Z4m, as required.

In the initial version of the manuscript, we conjectured that if .t1; : : : ; tr/ 2M0r then
.ti � tj /=� is rational for every i; j 2 Œr�. This conjecture was subsequently proved by
Grebík, Greenfeld, Rozhoň and Tao [9]. This implies that Br DMr DM0r for every r
(by an argument similar to that of Proposition 1.6) and reduces the question if any
given t 2 T r belongs to this set to some finite case analysis.
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7. Proof of Proposition 1.2

In order to prove Proposition 1.2, we need some auxiliary results first.

Lemma 7.1. The kernels of real ni � n matrices Ai , i 2 Œk�, contain a common non-
zero vector x 2 Rn n ¹0º if and only if the n � n matrix M WD

Pk
iD1A

T
i Ai has zero

determinant.

Proof. If some non-zero x 2 Rn satisfies Aix D 0 for every i 2 Œk�, then

Mx D

kX
iD1

ATi .Aix/ D 0;

so the determinant of M is zero.
Conversely, suppose that M is singular. Choose a non-zero vector x 2 Rn with

Mx D 0. Then

0 D x �Mx D

kX
iD1

x � .ATi Aix/ D

kX
iD1

.Aix/ � .Aix/ D

kX
iD1

kAixk
2
2

and each Aix must be the zero vector, giving the required.

The results of Dekker [6], Deligne and Sullivan [8], and Borel [3] (see [23, The-
orem 6.4] and the historical discussion preceding it) give the following.

Lemma 7.2. For every d > 2 and r > 2 there is a choice of rotations ˇ1; : : : ; ˇr 2
SO.d/ that generate the free rank-r group Fr such that its action on Sd�1 is free for
even d and locally commutative for odd d (meaning that every two elements of Fr
that have a common fixed element on Sd�1 commute).

Note that the above result is usually stated in the special case r D 2 as the general
case easily follows by taking any subgroup of F2 isomorphic to Fr .

Lemma 7.3. If 
 D .
1; : : : ; 
r/ 2 SO.d/r is generic, then the rotations 
1; : : : ; 
r
generate the free rank-r group Fr and the corresponding action of Fr on Sd�1 is free
for even d and locally commutative for odd d .

Proof. For a non-trivial reduced word w in Fr and ˇ D .ˇ1; : : : ; ˇr/ 2 SO.d/r , the
relation w.ˇ/ D Id amounts to d2 polynomial equations, with pij .ˇ/ D 0 stating
that the .i; j /-th entry of the corresponding product of the matrices of ˇi ’s and their
transposes (which are equal to their inverses) is 1iDj , where 1iDj is 1 if i D j , and 0
otherwise. Each of these polynomialspij has rational coefficients. Moreover, the r-tuple
of matrices ˇ returned by Lemma 7.2 (which, in particular, generates the free subgroup)



C. T. Conley, J. Grebík and O. Pikhurko 46

gives a point where at least one of these polynomials is non-zero, say pij .ˇ/ ¤ 0.
The polynomial pij has to be non-zero also at the generic point 
 2 SO.d/r , and so
w.
/ ¤ Id . Since w was an arbitrary non-trivial word, the rotations 
1; : : : ; 
r indeed
generate the free group.

Let us show the second part in the case of odd d (with the case of even d being
similar). Suppose on the contrary that we have two reduced non-commuting words w1
and w2 in Fr such that the corresponding elements w1.
/ and w2.
/ have a common
fixed point x 2 Sd�1. Thus the matrices

A1 WD w1.
/ � Id and A2 WD w2.
/ � Id

have x¤ 0 as a common zero eigenvector. By Lemma 7.1, this property is equivalent to
det.AT1 A1CA

T
2 A2/D 0, which is a polynomial equation in
 with rational coefficients.

For the special r-tuple of matrices ˇ returned by Lemma 7.2, the matrices

B1 WD w1.ˇ/ � Id and B2 WD w2.ˇ/ � Id

cannot have a common zero eigenvector as it would give a common fixed point for the
non-commuting elements w1.ˇ/ and w2.ˇ/. Thus, we have by Lemma 7.1 that

det.BT1 B1 C B
T
2 B2/ ¤ 0:

We have found a polynomial equality with rational coefficients that holds for 
 but not
for ˇ 2 SO.d/r . This contradicts our assumptions that 
 2 SO.d/r is generic.

Also, we will need the following result of Conley, Marks and Unger that directly
follows (as a rather special case) from [4, Lemmas 3.4 and 3.6].

Theorem 7.4 (Conley, Marks and Unger [4]). Let Fr be the free group of rank r with
generators 
1; : : : ; 
r and let aWFrÕX be a free Borel action on a Polish spaceX . Then
there is a Borel subset A � X such that 
1:A; : : : ; 
r :A are disjoint andX n [riD1
i :A
is meager.

Proof of Proposition 1.2. We have to show that if an r-tuple
D.
1; : : : ; 
r/2SO.d/r

is generic then there is a 
-division of Sd�1 with pieces that have the property of
Baire.

By Lemma 7.3, the elements 
1; : : : ; 
r 2 SO.d/ generate a free (resp. locally
commutative) action a of the free group Fr on the sphere Sd�1 when d is even
(resp. odd). The more general [23, Corollary 5.12] (which is attributed in [23] to
Dekker [6,7]) directly gives that Sd�1 is 
-divisible, that is, there is a subsetB � Sd�1

with 
1:B; : : : ; 
r :B partitioning the sphere.
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For every 
 2 SO.d/ n ¹Id º, the set of its fixed points on Sd�1 is closed (as the
pre-image of 0 under the continuous map that sends x 2 Sd�1 to 
:x � x 2 Rd ) and
has empty relative interior (for otherwise one can choose d linearly independent vectors
fixed by 
 , contradicting 
 ¤ Id ). In particular, this set is meager. Since the group Fr
is countable, the free part X of the action a (which consists of x 2 Sd�1 such that
w:x ¤ x for each non-trivial w 2 Fr ) is co-meager. Also, it is easy to show that the
free part X is a Borel subset of the sphere (see, e.g., [21, Lemma 4.4]).

Theorem 7.4, when applied to the free action of Fr on X , gives a Borel set A � X
with its translates 
1:A; : : : ; 
r :A being disjoint andZ WD Sd�1 n[riD1
i :A being mea-
ger. We can additionally assume thatZ is a-invariant: its saturation ŒZ� WD [w2Fr

w:Z

is still meager (since the countable group Fr acts by homeomorphisms) so we can
replace A by A n ŒZ� without violating the conclusion of Theorem 7.4.

Now, we can combine the Borel 
-division of Sd�1 nZ given by Conley, Marks
and Unger [4] with the 
-division of Dekker [6, 7] restricted to Z. Formally, take
C WD A [ .B \Z/. The set C , as the union of a Borel set and a meager set, has the
property of Baire while its translates 
1:C; : : : ; 
r :C partition Sd�1 by the invariance
of Z.

8. Proof of Lemmas 1.3 and 1.4

This section is dedicated to proving Lemmas 1.3 and 1.4. Their proofs are rather
technical; this is why we postponed them until the very end.

8.1. Some definitions and results from algebraic geometry. In this section we
present some definitions and results from algebraic geometry that we need. We will
follow the notation from the book by Hassett [12] to which we refer for missing details
(and for a nice concrete introduction to most results needed here).

A field extensionK ,!L is called algebraic if every x 2L is algebraic overK, that
is, satisfies a non-trivial polynomial equation with coefficients inK. Some easy but very
useful facts ([12, Proposition A.16]) are that, for an arbitrary field extension K ,! L,

(8.1) the elements of L that are algebraic over K form a field

and, for another field extension L ,!M ,

(8.2) if K ,! L and L ,!M are both algebraic then K ,!M is algebraic.

Let us fix a field K.
By a variety we mean a subset X of some affine space Kn which is closed in the

Zariski topology, that is, X is equal to

VK.F / WD ¹x 2 K
n
j 8f 2 F ; f .x/ D 0º
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for some family F �KŒx� of polynomials where x WD .x1; : : : ; xn/. Then the coordin-
ate ring of X is KŒX� WD KŒx�=I.X/, where

I.X/ WD ¹f 2 KŒx� j 8x 2 X; f .x/ D 0º

denotes the ideal of the variety X � Kn.
We call a variety X � Kn irreducible if we cannot write X D X1 [X2 for some

varieties X1; X2 ¨ X . This is equivalent to the statement that the ideal I.X/ � KŒx�
is prime ([12, Theorem 6.5]). ThenKŒX� is a domain so we can define its fraction field,
which is called the function field of X and is denoted by K.X/. Elements of KŒX�
(resp. K.X/) can be viewed as the restrictions of polynomial (resp. rational) functions
to X modulo identifying functions that coincide on X .

The dimension dimX of an irreducible variety X is the cardinality of a transcend-
ence basis for the field extension K ,! K.X/, which is a collection of algebraically
independent (over K) elements z1; : : : ; zk 2 K.X/ such that K.X/ is algebraic over
K.z1; : : : ; zk/, the smallest subfield ofK.X/ containingK [ ¹z1; : : : ; zkº. By [12, Pro-
position 7.15], a transcendence basis exists and every two transcendence bases have
the same cardinality.

Every variety X can be written as a finite union X1 [ : : : [ Xm of irreducible
varieties ([12, Theorem 6.4]). (In fact, this decomposition, if irredundant, is unique
up to a permutation of indices.) Then the dimension of X is defined as dimX WD

max¹dimXi j i 2 Œm�º. By [5, Corollary 2.68], one can equivalently define

dimX WD max¹k j 9 irreducible varieties Y1; : : : ; Yk(8.3)
with ; ¨ Y1 ¨ : : : ¨ Yk � Xº:

We will also need the following easy result.

Lemma 8.1. If X1; : : : ; Xn are infinite subsets of a field K and a polynomial f 2
KŒx1; : : : ; xn� vanishes on each element of X1 � � � � �Xn, then f is the zero polyno-
mial.

Proof. We use induction on n. The base case n D 1 can be proved by induction on the
degree of the univariate polynomial f .x1/ by factoring out a linear factor corresponding
to a root of f .

Let n > 2. Expand

f .x1; : : : ; xn/ D

mX
iD0

cix
i
n;

with ci 2 KŒx1; : : : ; xn�1� and cm ¤ 0. By induction, there is .a1; : : : ; an�1/ in
X1 � � � � � Xn�1 with cm.a1; : : : ; an�1/ ¤ 0. Thus, f .a1; : : : ; an�1; xn/ is a non-
zero polynomial of xn so it cannot vanish on Xn by the base case n D 1.



Divisibility of spheres with measurable pieces 49

8.2. Variety SO.dIK/r . In this section we show in particular that SO.d/r , as a
variety in Rd

2r , is irreducible and that the set of entries above the diagonals forms a
transcendence basis; in particular, the dimension of SO.d/r is

�
d
2

�
r . In fact, we will

need an extension of this result, where the underlying field can be different from R, for
the proof of Lemma 1.4 (even though the statement of Lemma 1.4 deals only with the
real case).

Let d > 1 be an integer and K be a field. Consider the affine space Kd�d of
all d � d matrices with entries in K, writing its elements as 
 D .
i;j /i;j2Œd�. Let
the special orthogonal variety over K be the variety SO.d IK/ WD VK.ISO/ � K

d�d

defined by the ideal

(8.4) ISO WD h.ui /i2Œd�; .fij /16i<j6d ; det.
/ � 1i � KŒ
�;

where ui WD 
2i;1 C � � � C 

2
i;d
� 1 encodes the fact that each row is a unit vector (when

K � R), fi;j WD 
i;1
j;1 C � � � C 
i;d
j;d encodes the orthogonality of the i-th and
j -th rows while the last constraint states that the determinant of 
 is 1. Note that the
“orthonormality” constraints force 
 to have determinant �1 or 1, which follows from

(8.5) .det.
//2 D det.
T 
/ � det.Id / D 1 .mod h.ui /i2Œd�; .fij /16i<j6d i/:

The matrix multiplication makes SO.d IK/ a group. IfK D R then we get the familiar
group SO.d/ of special orthogonal real d � d matrices (and the shorthand SO.d/ will
always be reserved for the real variety SO.d IR/).

Take any integer r > 1. The r-th power SO.d IK/r D SO.d IK/� � � � � SO.d IK/
is a variety in Kd2r since a product of Zariski closed sets is Zariski closed (or since
one can write the explicit equations defining SO.d IK/r ).

For .
1; : : : ; 
r/ 2 SO.d IK/r , let


U WD
�
.
s/i;j j s 2 Œr�; 1 6 i < j 6 d

�
;

be the sequence of the
�
d
2

�
r entries strictly above the diagonals. We call these entries

upper. For notational convenience, we fix an ordering of the coordinates of Kd2r so
that all non-upper entries (that is, those on or below the diagonals) come before all
upper ones; thus when we write a vector of length d2r as .x;y/ then we mean that y
is the upper part.

Lemma 8.2. For every subfield K � C, the variety X WD .SO.d IK//r � Krd2 is
irreducible, has dimension

�
d
2

�
r and the set of upper coordinates forms a transcendence

basis of the function field K.X/ over K.

Proof. First, let us show that X is irreducible. The proof of this in the case r D 1 (for
an arbitrary field with 2 ¤ 0) can be found in [2, Proposition 5-2.3]. We adapt the
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argument from [2] to work for any r > 1. (Note that products need not preserve the
irreducibility when the underlying field is not algebraically closed.)

For x 2 Kd with x � x WD
Pd
iD1 x

2
i non-zero, the map �xWKd ! Kd that is

defined by
�x.y/ WD y � 2

y � x

x � x
x for y 2 Kd ;

can be thought of as the reflection of Kd around the hyperplane orthogonal to x, so
we call �x a reflection. Each 
 2 SO.d IK/ can be written as a product of an even
number of reflections, see [2, Proposition 1-9.4] (and, conversely, every such product is
in SO.d IK/). In fact, the proof in [2], which proceeds by induction on d , shows that at
most m WD 2d reflections are needed. By inserting the trivial composition �x�x D Id
for some x 2 Kd with x � x ¤ 0 we can write each 
 2 SO.d IK/ as the product of
exactly m reflections.

Let U WD ¹z 2 Kd j z � z ¤ 0º and define f WUm ! SO.d IK/ by

f .z1; : : : ; zm/ WD �z1
: : : �zm

2 SO.d IK/ for .z1; : : : ; zm/ 2 Um:

Consider the product map f r W .Um/r ! SO.d IK/r that applies f in each of the
r coordinates. As the complement V WD Kdm n Um is Zariski closed (as the finite
union over i 2 Œm� of the sets of .z1; : : : ; zm/ 2 Kdm satisfying the polynomial equa-
tion zi � zi D 0), the complement W WD Kdmr n Umr is also Zariski closed as the
finite union over i 2 Œr� of the closed sets Kdm.i�1/ � V � Kdm.r�i/. Clearly, f r

is a rational map defined everywhere on Umr and thus continuous in the Zariski
topology on Umr � Kdmr . Also, the image of f r is exactly X D SO.d IK/r with
the surjectivity following from the choice of m. It follows from [2, Lemma 5-2.1]
that X is irreducible. (In brief, if X can be written as a union of two proper closed
subsets X1 [ X2, then Kdmr is a union of two proper closed sets f �1.X1/ [ W
and f �1.X2/ [W , contradicting the irreducibility of Kdmr since its ideal I.Kdmr/,
which is ¹0º by, e.g., Lemma 8.1, is trivially prime.) Thus X is indeed irreducible.

It remains to show that the set of upper coordinates 
U (that is, all entries above
the diagonals) is a transcendence basis for the function field K.X/ over K. This claim
is made of the following two parts.

First, let us show that the field extension K.
U / ,! K.X/ is algebraic. By (8.1)
and (8.2), it is enough to represent this field extension as a composition of field
extensions where, at each step, every added non-upper coordinate is algebraic over
the previously added coordinates and the upper coordinates in the same matrix. Thus
we consider just one matrix in SO.d IK/, which we denote as 
 D .
i;j /i;j2Œd�. We
add the non-upper coordinates by whole rows in the natural order (with Row 1 added
first, then Row 2, and so on). Take any Row m and a non-upper pair .m; j / (i.e., with
j 6 m). The following argument works for every index j 2 Œm� so we pick j D m for
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notational convenience. Thus we have to show that z WD 
m;m, as an element ofK.X/,
is algebraic over

K
�
¹
i;j W i 2 Œm � 1�; j 2 Œd �º [ ¹
m;j j j 2 ¹mC 1; : : : ; dºº

�
:

Let the vector x WD .
m;1; : : : ; 
m;m�1/ consist of the other non-upper entries of Rowm
and let M WD .
i;j /i;j2Œm�1� be the square submatrix of 
 which lies above x. The
orthogonality of Row m to the previous rows gives a system of m � 1 linear equations,
namely,

MxT D f T ;

where f WD .f1; : : : ; fm�1/ with

fi WD �
i;mz �

dX
jDmC1


i;j 
m;j for i 2 Œm � 1�:

By Cramer’s rule, we have det.M/xT DAd.M/f T , where Ad.M/ denotes the adjoint
matrix ofM (whose .i; j /-th entry is .�1/iCj times the determinant ofM with Row j
and Column i removed). Take the unit “norm” relation

Pd
iD1 


2
m;i D 1 for Row m,

multiply it by .det.M//2 and replace each .det.M//2x2i by its value from Cramer’s
rule. We get a polynomial equation having no x, namely,

.det.M//2z2 C

m�1X
iD1

�m�1X
jD1

Ad.M/ijfj

�2
(8.6)

C .det.M//2
dX

iDmC1


2m;i D .det.M//2:

Let us show that the coefficient at z2 in this equation is non-zero. This coefficient is
some polynomial in the upper entries and the previous entries. If we take the identity
matrix Id for 
 , then the column above z is all zero and the matrix M is invertible
(namely, it is the .m� 1/� .m� 1/ identity matrix Im�1). Thenf does not depend on z
at all and the coefficient at z2 is .det.M//2 D 1, which is non-zero. So the coefficient
at z2 in (8.6) is a non-zero polynomial, that is, z is algebraic over all previous entries, as
desired. We conclude (by (8.1) and (8.2)) that all entries on or below the diagonals are
algebraic overK.
U / and thus the field extensionK.
U / ,!K.X/ is indeed algebraic.

Thus in order to show that the coordinates 
U form a transcendence basis, it
remains to prove that these

�
d
2

�
r coordinates, as elements of the function field K.X/,

are algebraically independent over K. It is enough to prove this for K D C. Indeed,
we assumed that K � C. A non-trivial algebraic relation over K between the upper
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coordinates means that the ideal that defines SO.d IK/r (which, in the case r D 1,
is the ideal ISO in (8.4)) contains a non-zero polynomial g that does not depend on
non-upper coordinates. The same polynomial g, when viewed as a polynomial in CŒ
�,
then witnesses that the upper coordinates are algebraically dependent over C.

Thus let us assume that K D C. We need an easy auxiliary claim first from which
we will derive that every choice of sufficiently small in absolute value upper entries
can be extended to a matrix in SO.d IC/. Form 2 Œd � and anm� d matrix 
 D .
i;j /,
let the property Pm state that for all i 2 Œm�, we have

dX
jD1


i;j 
m;j D 1iDm:

(Recall that 1iDm is 1 if i Dm, and 0 otherwise.) In other words, Pm states that Rowm
has unit “norm” and is orthogonal to all previous rows.

Claim 8.3. For everym 2 Œd � and ı > 0 there is "D "m.ı/ > 0 such that the following
holds. Take any complex numbers .
i;j /.i;j /2S , where

S WD
�
Œm � 1� � Œd �

�
[ ¹.m; j / j m < j 6 dº;

such that P1; : : : ;Pm�1 hold and j
i;j � 1iDj j 6 " for any .i; j / 2 S . Then there is a
choice of 
m;1; : : : ; 
m;m 2 C such that j
m;j � 1mDj j 6 ı for each j 2 Œm� and Pm

holds. Moreover, if 
i;j for each .i; j / 2 S is real then 
m;1; : : : ; 
m;m can additionally
be chosen to be real.

Proof of the claim. Suppose that the claim fails for somem 2 Œd � and ı > 0. Let real "
tend to 0 from above and let 
 2 CS be a partial assignment violating the claim. Let
us use the notation that was introduced around (8.6). By our choice of 
 , we have
that each entry of M is within additive " D o.1/ from the corresponding entry of
the identity matrix and thus det.M/ D 1C o.1/ is non-zero. Of the two roots of the
quadratic equation (8.6), which now reads z2 � 1D o.1C jzj2/, choose z D 1C o.1/.
In fact, (8.6) gives not only the entry z D 
m;m but the consistent remainder of Rowm
by xT WD .det.M//�1Ad.M/f T , satisfying Pm. By the continuity of the all involved
functions (and det.M/ D 1C o.1/), we have kxk1 D o.1/, a contradiction to ı > 0
being fixed.

Let us show how to adapt this argument to establish the second part of the claim.
Suppose additionally that the given 
i;j ’s are reals. In the above notation, the quadratic
equation (8.6) has all real coefficients and, as before, states that z2 � 1D o.1C jz2j/. Its
left-hand side as a function of z 2 R changes sign at z D 1 with its derivative 2z being
bounded away from 0 around z D 1. Hence, we can choose a real root z D 1C o.1/.
ThenM is a real matrix and the rest of Rowm, namely xT WD .det.M//�1Ad.M/f T

is also real.
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Consider the projection � WSO.d IC/r ! Cm on them WD
�
d
2

�
r upper coordinates,

which maps .x;y/ to y . In particular, the r-tuple of the identity matrices projects to
the zero vector 0 2 Cm. The image of � contains some Euclidean open ball

Ball".0/ WD ¹z 2 Cm
j kzk1 < "º

of radius " > 0 around the origin. Namely, we can take its radius to be

(8.7) " WD "d ."d�1.: : : "1.1=.2
d dŠ// : : :// > 0;

where "1; : : : ; "d are the functions returned by Claim 8.3. Indeed, by the choice of
the constants we know that for every y 2 Ball".0/, we can construct a d � d matrix 

row by row so that 
 projects to y and satisfies all properties P1; : : : ;Pd while it also
holds that

k
 � Idk1 < 1=.2d dŠ/:

The last inequality gives, rather roughly, that j det.
/ � 1j < 1. Thus, det.
/ D 1

because det.
/ is either �1 or 1 by (8.5). So indeed �.SO.d IC// contains �.
/ D y .
Now, suppose on the contrary that there is a non-trivial polynomial relation between

the upper coordinates. Thus there is a non-zero polynomial g which does not depend
on the non-upper coordinates and belongs to the ideal generated by the polynomials
that define SO.d IC/r (with those for r D 1 being listed in (8.4)). The polynomial g,
as a function of the m upper coordinates, vanishes on �.X/ � Cm. This contradicts
Lemma 8.1 as �.X/ contains a non-empty open set, namely the open ball of radius "
around the origin, and thus �.X/ contains a product of m infinite sets.

Now we are ready to show that the set N of non-generic points in SO.d/r is “small”.

Proof of Lemma 1.3. As before, when we identify an r-tuple of d � d matrices over a
fieldK with an element ofKd2r , let us order the d2r coordinates so that them WD

�
d
2

�
r

upper entries (i.e., those above the diagonals) come at the end. Thus if we write an
element ofKd2r as .x;y/ then y corresponds to them upper entries. Also, we use the
standard topology on Sd�1 (the one which is inherited from the Euclidean space Rd ).

There are countably many polynomials in QŒx; y� so enumerate those that are
non-zero on at least one element of SO.d/r as f1; f2; : : : . By definition, if a point
.a;b/ 2 SO.d IR/r is not generic then some fi vanishes on .a;b/. Thus N is a subset
of the countable union [1iD1Zi , where

(8.8) Zi WD ¹.a;b/ 2 SO.d/r j fi .a;b/ D 0º:

Since each polynomial fi is continuous as a function Rd
2r ! R, each setZi is closed.
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Let us turn to part (i) where we have to show that the Haar measure � assigns
measure 0 to N . By the countable additivity, it is enough to show that each set Zi ,
defined by (8.8), has �-measure zero.

First, let us recall how the Haar measure can be constructed for the group � WD
SO.n/r (and, in fact, for any real Lie group), following the presentation in [17, Sec-
tions VIII.1–2]. Namely, choose some linear basis for the Lie algebra .so.d//r viewed
as the tangent space T.Id ;:::;Id / at the identity .Id ; : : : ; Id / 2 SO.d/r and, using the
translations of these vectors, turn them into left-invariant vector fields X1; : : : ; Xm.
(Note the Lie algebra .so.d//r , that consists of all r-tuples of skew-symmetric matrices,
has dimensionmD

�
d
2

�
r as a vector space.) For each 
 2 � , let e1.
/; : : : ; em.
/ 2 T �


be the dual basis to .X1.
/; : : : ;Xm.
//. Then!D e1 ^ : : :^ em (the skew-symmetric
product) is a smoothm-form on � , which is positive and left-invariant and thus defines
a Borel left-invariant non-zero measure on � ([17, Theorem 8.21]). By the uniqueness,
this has to be a multiple of the Haar measure �. In particular, any smooth submanifold
of � of dimension (as a manifold) less than m has zero Haar measure ([17, Equa-
tion (8.25)]).

The set Zi ¨ SO.d/r , as an algebraic variety, has dimension smaller than m
which follows from the definition of the dimension via nested chains of irreducible
varieties (that is, by (8.3)) and from the irreducibility of the variety SO.d/r (that is,
by Lemma 8.2). Some standard results in the theory of (semi-)algebraic sets give that
every bounded variety in some Rn admits a triangulation into simplices each of which
is a smooth submanifold of Rn; see, e.g., [1, Theorem 5.43]. Apply this result to every
irreducible component Z � Zi . The dimension k of each obtained simplex S (as a
manifold) is at most dimZ. Indeed, pick a point s 2 S and the projection from S

on some k coordinates which is a homeomorphism around s. Observe that these
k coordinates are algebraically independent in the function field R.Z/ because no
non-zero polynomial on Rk can vanish on a non-empty open set by Lemma 8.1.

Thus we covered Zi by finitely many manifolds of dimension less than m, each
having zero Haar measure as it was observed earlier (by [17, Equation (8.25)]). We
conclude that the Haar measure of Zi is indeed zero.

Let us show part (ii). Recall that the sets Z1; Z2; : : : were defined in (8.8). Clearly,
each set Zi is closed. Thus it is enough to show that the relative interior of each
Zi � SO.d/r is empty. Suppose on the contrary that the relative interiorU of someZi
is non-empty. Since the compact group SO.d/r acts transitively on itself by homeo-
morphisms, finitely many translates of U cover the whole group. As the Haar measure
is � is invariant under this action, we have that �.U / > 0. However, this contradicts
part (i) that we have already proved.

This finishes the proof of Lemma 1.3.
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8.3. Proof of Lemma 1.4. Our proof of the reverse (harder) implication of Lemma 1.4
needs Lemma 8.4 below. Since we could not find this rather natural statement anywhere
in the literature we present a proof whose main idea (to use dimension) was suggested
to us by Miles Reid. In fact, Miles Reid came up with a full proof of some initial version
of the lemma. Since his proof relies on the so-called universal domain of K while we
would like to have this paper as elementary as possible, we present a proof that avoids
universal domains.

Given a field extension K ,! L and a variety X � Ln (over the field L), we say
that an element a 2 X isK-generic for X if every polynomial p 2 KŒx1; : : : ; xn� with
p.a/ D 0 vanishes on every element of X . (Here as well as in the rest of this paper,
each evaluation mixing elements of some two fields K ,! L is done in the larger
field L.) In the special case when K WD Q, L WD R, X WD SO.d/r we get exactly the
definition of a generic r-tuple of rotations from the introduction.

Lemma 8.4. Let K ,! L be a field extension, with L being algebraically closed.
Let P � KŒx;y� be some family of polynomials over K, where we abbreviate x WD
.x1; : : : ; xm/ and y WD .y1; : : : ; yn/. Suppose that

X WD ¹.x;y/ 2 LmCn j 8 f 2 P ; f .x;y/ D 0º;

as a variety over L, is irreducible and has dimension n with y1; : : : ; yn forming a
transcendence basis for the function field L.X/ over L.

Then everypD .a;b/2X with the n-tuple b2Ln being algebraically independent
over K is a K-generic point of X .

Proof. Let the ideal Ip � KŒx; y� consist of those polynomials over K that vanish
on p. Let

Z WD VL.Ip/ D ¹.x;y/ 2 L
mCn
j 8f 2 Ip; f .x;y/ D 0º:

As P � Ip, we trivially have that Z � X . We have to show that Z D X , which by
the definition of Z D VL.Ip/ will give the required result (namely, that every f 2 Ip
vanishes on X ).

Let Z D Z1 [ : : : [Zt be a decomposition of Z into irreducible varieties ([12,
Theorem 6.4]).

Suppose first that there is i 2 Œt � such that the n-tuple y , with each yj viewed
as an element of the function field L.Zi /, is algebraically independent over L. This
means that the dimension of the irreducible variety Zi � LmCn is at least n. Recall
that Zi � Z � X . By the definition of the dimension via nested chains of irreducible
subvarieties (that is, by (8.3)), we cannot have Zi ¨ X for otherwise any chain for Zi
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extends to a strictly larger chain for X which gives that dimX � 1 > dimZi > n,
contradicting our assumption. Thus, Zi D Z D X , as desired.

Thus we can assume that for every i 2 Œt � there is a non-zero gi 2 LŒy� \ I.Zi /.
SinceZD[tiD1Zi , we have by [12, Proposition 3.12] that I.Z/D\tiD1I.Zi /. (Recall
that, for example, the ideal I.Z/ of Z � LmCn consists of those p 2 LŒx; y� that
vanish onZ.) Thus the product g1 : : : gt 2 LŒy�, which trivially belongs to each I.Zi /,
also belongs to I.Z/.

Let ILp be the ideal in LŒx; y� generated by Ip � KŒx; y� � LŒx; y�. In other
words,

ILp WD

² mX
iD1

hi .x;y/fi .x;y/ j m > 0; h1; : : : ; hm 2 LŒx;y�; f1; : : : ; fm 2 Ip

³
;

from which it easily follows that VL.ILp / D VL.Ip/ D Z. Since L is algebraically
closed, we have by Hilbert’s Nullstellensatz ([12, Theorem 7.3]) that I.Z/ is equal toq

ILp WD ¹f 2 LŒx;y� j 9N f N 2 ILp º;

the radical of ILp . Thus there is some integer N > 1 such that g WD .g1 : : : gt /
N

belongs to ILp .
In other words, we have shown that ILp contains a non-zero polynomial g that does

not depend on x, that is,

(8.9) ILp \ LŒy� ¤ ¹0º:

We claim that, in fact, Ip \KŒy�¤ ¹0º. In order to show this, we analyse how a known
algorithm for eliminating variables works, arguing that we can run two instances of
the algorithm, one for ILp \ LŒy� and the other for Ip \KŒy�, to produce the same
generating set of polynomials in each case.

Since all following steps are fairly standard, we will be rather brief, referring
the reader to [12] for a detailed exposition. First, by the Hilbert Basis theorem ([12,
Corollary 2.22]), there is a finite set F �KŒx;y� that generates Ip . Of course, the same
set F , as a subset of LŒx;y�, generates ILp . We fix any monomial order � for .x;y/
which is an elimination order for x ([12, Definition 4.6]) and apply Buchberger’s
algorithm ([12, Corollary 2.29]) to find a �-Gröbner basis G for ILp using F as its
input. At a very low level, each step of the algorithm is to pick some two previous non-
zero polynomials h1 and h2, take the coefficients c1 and c2 at their�-highest monomials
and add h1 � .c1=c2/hh2 for some monomial h to the current pool of polynomials.
Thus all encountered polynomials have coefficients in K; in particular, the obtained
Gröbner basis G is a subset ofKŒx;y�. By the Elimination theorem ([12, Theorem 4.8])



Divisibility of spheres with measurable pieces 57

and our choice of the monomial order�, the ideal ILp \LŒy� is generated by G \LŒy�,
that is, by those polynomials in G that do not depend on x. Moreover, if we apply
Buchberger’s algorithm to find the intersection of Ip D hF i � KŒx;y� and KŒy�, we
obtain the very same generating set G \KŒy� (because the choice of h1, h2 and h at
each low-level step of the algorithm depends only on the �-highest monomials of the
previous polynomials).

However, we know that Ip \KŒy�D ¹0º because no non-zero polynomial inKŒy�
can vanish on p by our assumption that y is algebraically independent over K. Thus,

G \ LŒy� D G \KŒy�

can contain only the zero polynomial. This means that ILp \ LŒy� D ¹0º, contradict-
ing (8.9) and proving the lemma.

Now we are ready to prove Lemma 1.4 that gives an alternative characterisation of
Q-generic points of SO.d/r .

Proof of Lemma 1.4. As before, them WD
�
d
2

�
r upper entries of SO.d/r �Rd

2r come
at the end and if we write an element of Kd2r as .x;y/ then y corresponds to the m
upper entries.

The forward implication of the lemma is easy. Take any .a;b/ 2 SO.d IR/r such
that f .b/ D 0 for some non-zero polynomial f with rational coefficients. Take any
vector b0 2 Rm whose L1-norm is at most the expression in (8.7) with entries algeb-
raically independent over Q. By Claim 8.3, there is a choice of a real vector a0 with
.a0; b0/ 2 SO.d/r , that is, we can extent the vector b0 of upper entries to an r-tuple
of real special orthogonal matrices. Since the polynomial f with rational coefficients
cannot vanish on b0, the polynomial map .x; y/ 7! f .y/ shows that .a; b/ is not a
generic point.

Let us show the converse implication. Let .a;b/ 2 SO.d IR/r be any point with
the m-tuple b 2 Rm of reals being algebraically independent over Q.

By Lemma 8.2, the complex variety X WD SO.d IC/r � Cd2r is irreducible and
the upper coordinates y form a transcendence basis for the function field C.X/. Now,
Lemma 8.4 (which requires that the field L is algebraically closed) applies with
K WD Q, L WD C and P � QŒx; y� consisting of the polynomials that define the
variety SO.d IR/r (with the ones in (8.4) corresponding to the case r D 1). The lemma
gives that .a; b/ 2 SO.d IR/r � SO.d IC/r is a Q-generic point of SO.d IC/r . Of
course, this trivially implies that .a; b/ is a Q-generic point also of SO.d IR/r (as
every polynomial p 2 QŒx;y� that vanishes on .a;b/ has to vanish on SO.d IC/r �
SO.d IR/r ), as desired.

This finishes the proof of Lemma 1.4.
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