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1. Introduction

Suppose F.x; „; z/ is a holomorphic, perhaps vector-valued, function of several
complex variables x and z and a small complex perturbation parameter „ constrained
to some sector at the origin in the „-plane where F admits an asymptotic expansion
yF .x;„; z/ as „! 0. This paper arose from the following question: what is the meaning

of a formal „-power series solution z D yf .x;„/ of the formal equation yF .x;„; z/D 0?
The answer we find is that, provided sufficient control on the asymptotics of F , the
formal solution yf is the asymptotic expansion of an actual solution z D f .x; „/ of
the analytic equation F.x; „; z/ D 0, and furthermore f is the Borel resummation
of yf . Thus, the purpose of this article is to prove the following version of the implicit
function theorem in the setting of Gevrey asymptotics.

Theorem 1.1 (Gevrey asymptotic implicit function theorem). Fix a point .x0; z0/ 2
Cd
x �CN

z with d � 0 andN � 1. Let X � Cd
x be a domain containing x0 and S � C„

a sectorial domain with vertex at the origin and opening arc ‚ with opening angle
j‚j D � . Suppose F is a holomorphic map X� S�CN

z !CN which admits a Gevrey

https://creativecommons.org/licenses/by/4.0/
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asymptotic expansion

(1.1) F.x; „; z/ ' yF .x; „; z/ D

1X
kD0

Fk.x; z/„
k as „ ! 0 along x‚;

uniformly for all x 2 X and locally uniformly for all z 2 CN
z . Suppose its leading-order

part in „ satisfies F0.x0; z0/ D 0 and the Jacobian @F0=@z is invertible at .x0; z0/.
Then there is a subdomain X0 � X containing x0 and a sectorial subdomain

S0 � S with the same opening ‚ such that there is a unique holomorphic map
f WX0 � S0 ! CN which admits a Gevrey asymptotic expansion

(1.2) f .x; „/ ' yf .x; „/ D

1X
nD0

fn.x/„
n as „ ! 0 along x‚;

uniformly for all x 2 X0, and such that

f0.x0/ D z0 and F
�
x; „; f .x; „/

�
D 0 8.x; „/ 2 X0 � S0:

Furthermore, f is the uniform Borel resummation of yf in the direction � that bisects
the arc ‚: for all .x; „/ 2 X0 � S0,

f .x; „/ D ��
�
yf
�
.x; „/:

This theorem provides a general answer in a large class of problems to the question
of developing a theory of asymptotic implicit function theorems. Such a question in
a specialised setting was posed by Gérard and Jurkat in [3, p. 45], but to the best of
our knowledge has not been addressed.1 In addition, our techniques give a much more
refined information about the implicit function f , chiefly its uniform Borel summability
properties.

Application: Linear algebra in Gevrey asymptotic families. As an application,
which serves as the main source of motivation for us, Theorem 1.1 can be used to
diagonalise holomorphic matrices A.x;„/ in uniform Gevrey asymptotic families; i.e.,
via transformations with the same regularity as A. This means that the eigenvalues and
the eigenspaces of A are guaranteed to have the same asymptotic behaviour as „ ! 0

as the matrix A itself. More precisely, we prove the following diagonalisation theorem
when the leading-order eigenvalues of A are all distinct, which follows from the more
general Jordan block decomposition Theorem 3.1.

1In particular, the promised second part of their 1992 paper [3] has not appeared.
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Theorem 1.2 (Diagonalisation in Gevrey asymptotic families). Fix a domain X � Cd
x

and a point x0 2 X. Let S � C„ be a sectorial domain at the origin and opening arc‚
with opening angle j‚j D � . Let AD A.x;„/ be a holomorphic n�n-matrix on X � S
which admits a uniform Gevrey asymptotic expansion

A.x; „/ ' yA.x; „/ D

1X
kD0

Ak.x/„
k as „ ! 0 along x‚; unif. 8x 2 X:

Suppose that the „-leading-order part A00 WD A0.x0/ at the point x0 has distinct
eigenvalues a1; : : : ; an 2C. LetP00 be an invertible n�n-matrix that diagonalisesA00:

P00A00P
�1
00 D diag.a1; : : : ; an/:

Then there is a subdomain X0 � X containing x0 and a sectorial subdomain S0 � S
with the same opening‚ such that there is a unique holomorphic invertible n�n-matrix
P D P.x; „/ on X0 � S0 that admits a uniform Gevrey asymptotic expansion

P.x; „/ ' yP .x; „/ D

1X
kD0

Pk.x/„
k as „ ! 0 along x‚; unif. 8x 2 X0;

such that P0.x0/ D P00 and which diagonalises A; i.e.,

PAP�1 D diag.�1; : : : ; �n/:

Furthermore, the transformation P is the uniform Borel resummation of its asymptotic
power series yP in the direction � that bisects the arc ‚: for all .x; „/ 2 X0 � S0,

P D ��
�
yP
�
:

In addition:

(1) The eigenvalues �i D �i .x; „/ of A are holomorphic functions on X0 � S0 that
admit uniform Gevrey asymptotic expansions

(1.3) �i .x;„/ ' y�i .x;„/ D
1X
kD0

�i;k.x/„
k as „ ! 0 along x‚; unif. 8x 2 X0;

with �i;0.x0/D ai . Moreover, each eigenvalue �i is the uniform Borel resummation
of its asymptotic series y�i in the direction � : for all .x; „/ 2 X0 � S0,

�i D ��
�
y�i
�
:
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(2) Given an eigenbasis v1; : : : ;vn 2Cn forA00, there is a unique eigenbasis e1; : : : ; en
forA consisting of holomorphic vectors ei D ei .x;„/ on X0 �S0 that admit uniform
Gevrey asymptotic expansions

ei .x; „/ ' yei .x; „/ D

1X
kD0

ei;k.x/„
k as „ ! 0 along x‚; unif. 8x 2 X0;

with ei;0.x0/D vi . Moreover, each eigenvector ei is the uniform Borel resummation
of its asymptotic series yei in the direction � : for all .x; „/ 2 X0 � S0,

ei D �� Œ yei �:

Such results are useful in the exact WKB analysis of singularly perturbed mero-
morphic differential systems and more generally singularly perturbed meromorphic
connections on holomorphic vector bundles over Riemann surfaces. There, the role of
A.x;„/ is played by the principal part of the differential system at a pole. For example,
see [9] for the analysis of rank-two systems near a logarithmic pole.

Scalar polynomial case. Particularly notable for its simplicity and utility is the special
case of Theorem 1.1 where N D 1 and F is a polynomial in the single variable z. We
restate it under these assumptions for ease of reference.

Corollary 1.3. Fix a domain X � Cd
x . Let S � C„ be a sectorial domain at the origin

and opening arc ‚ with opening angle j‚j D � . Consider a polynomial

F D a0 C a1z C � � � C anz
n

whose coefficients a0; : : : ; am are holomorphic functions of .x;„/ 2 X� S which admit
uniform Gevrey asymptotic expansions

ai .x; „/ ' yai .x; „/ D

1X
kD0

ai;k.x/„
k as „ ! 0 along x‚; unif. 8x 2 X:

Suppose that the leading-order discriminant

D0 D D0.x/ WD Discz.F0/ D Discz
�
a0;0 C a1;0z C � � � C an;0z

n
�

is nonvanishing on X. Let z D f0 be a leading-order solution on X; i.e., a holomorphic
function f0.x/ on X such that F0.x; f0.x// for all x 2 X0. Then for any compactly
contained subdomain X0 � X, there is a sectorial subdomain S0 � S with the
same opening ‚ such that the polynomial F has a unique root z D f .x; „/ which
is a holomorphic function on X0 � S0 and admits a uniform Gevrey asymptotic
expansion (1.2) with leading-order being the leading-order solution f0. Furthermore,
f is the uniform Borel resummation of yf in the direction � that bisects ‚.
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Borel summability. The asymptotic conditions (1.1) and (1.2) mean that both formal
power series yF and yf are Borel-summable series in the direction � , so Theorem 1.1
can be rephrased as an implicit function theorem in the setting of Borel-summable
series.

Corollary 1.4 (Implicit function theorem for Borel-summable series). Fix a point
.x0; z0/ 2 Cd

x �CN
z , a domain X � Cd

x containing x0, and a direction � . Let

yF D yF .x; „; z/ D

1X
kD0

Fk.x; z/„
k

be a formal power series in „ whose coefficients Fk are holomorphic maps X�CN
z !

CN such thatF0.x0; z0/D 0 and the Jacobian @F0=@z is invertible at .x0; z0/. Suppose
yF is Borel-summable in the direction � uniformly for all x 2 X and locally uniformly
for all z 2 CN

z . Then there is a subdomain X0 � X such that the unique formal series

yf D yf .x; „/ D

1X
nD0

fn.x/„
n;

with holomorphic coefficients fnWX0 ! CN , which satisfies f0.x0/ D z0 as well as
yF .x; „; yf .x; „// D 0, is Borel-summable in the direction � uniformly for all x 2 X0.

After the initial release of this manuscript on the arXiv, we were alerted that a
special case of this corollary (with d D 0;N D 1) was proved earlier by Kamimoto
and Koike in [5, Appendix A] using a somewhat different strategy.

Remarks and discussion. Our construction of the implicit function f employs
relatively basic and classical techniques from complex analysis which form the basis
for the more modern and sophisticated theory of resurgent asymptotic analysis à la
Écalle [2]; see also for instance [1, 6, 17]. Namely, we use the Borel–Laplace method,
also known as the theory of Borel–Laplace summability. We stress that the Borel–
Laplace method “is nothing other than the theory of Laplace transforms, written in
slightly different variables”, echoing the words of Alan Sokal [19]. As such, we have
tried to keep our presentation very hands-on and self-contained, so the knowledge of
basic complex analysis should be sufficient to follow.

We emphasise that the asymptotic condition (1.1) on the holomorphic map F is
required to hold over the closed arc x‚D Œ� � �

2
; � C �

2
�, which is stronger than ordinary

Gevrey asymptotics along an open arc ‚; see Section A.1. This type of condition is
exactly adapted to the Borel–Laplace method, see Section A.2. Similar methods are
also used in the construction of exact WKB solutions for singularly perturbed ODEs
such as the Schrödinger equation [11].
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What we call Gevrey asymptotics is often called 1-Gevrey asymptotics. It is part of
an entire hierarchy of asymptotic regularity classes, first introduced by Watson [21]
and further developed by Nevanlinna [8]. See [12, 13] as well as [6, Section 1.2]
and [4, Section XI-2]. However, arguments about other Gevrey classes can usually be
reduced to arguments about 1-Gevrey asymptotics via a simple fractional transformation
in the „-space. Therefore, we believe it is not difficult to extend our results to all other
Gevrey asymptotic classes. We leave this as a natural open problem.

Finally, let us stress that Gevrey asymptotics – albeit far less widely known than
the more classical theory in the sense of Poincaré – should not been seen as an esoteric
concept. Indeed, we reverberate the opinion of, for example, Ramis and Sibuya [14]
that in the theory of complex-analytic differential equations, Gevrey asymptotics is
the far more appropriate notion, because the vast majority of interesting problems fall
within the Gevrey regularity hierarchy.

Structure, notation, conventions. The proof of Theorem 1.1 makes up all of Section 2.
Then in Section 3, we prove Theorem 1.2 as well as its generalisation to Jordan blocks.
Our notation, conventions, and definitions from Gevrey asymptotics and Borel–Laplace
theory are consistent with those given in [10, Appendices A and B]. A brief summary
can be found in Section A.

Throughout, we fix integers d � 0 andN � 1, and we write the vector components
as x D .x1; : : : ; xd /, z D .z1; : : : ; zN /, F D .F 1; : : : ; FN /, f D .f 1; : : : ; f N /. The
symbol N stands for nonnegative integers 0; 1; 2; : : :. We use boldface letters to denote
index vectors; i.e.,m WD .m1; : : : ;mN / 2NN , etc., and we put jmj WDm1C � � � CmN .
Unless otherwise indicated, all sums over unbolded indices n; m; : : : are taken to
run over N, and all sums over boldface letters n;m; : : : are taken to run over NN .
Throughout this paper, we often suppress the explicit dependence on x in the notation
in the interest of brevity.

2. Proof of Theorem 1.1

This section is dedicated to proving our main result, the Gevrey asymptotic implicit
function theorem (Theorem 1.1). The overall strategy of the proof is to first construct a
formal solution z D yf of the equation F.x;„; z/ D 0 using the ordinary holomorphic
implicit function theorem at the leading-order in „ and then use a recursion to determine
all higher-order corrections. We then want to apply the Borel resummation to yf to get f .
To do so, we first make a convenient change of variables z 7! w in order to put our
equation into a certain standard form which is more amenable to the Borel transform.

Applying the Borel transform, we obtain a first-order ordinary differential equation
for � DBŒw�, albeit nonlinear and with convolution. Nevertheless, this ODE is easy to
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convert into an integral equation, which we then proceed to solve using the method of
successive approximations. To show that this sequence of approximations converges to
an actual solution � , we give an estimate on the terms of this sequence by employing in
an interesting way the ordinary holomorphic implicit function theorem. This estimate
also allows us to conclude that the Laplace transform g D LŒ�� of the obtained
solution � exists and defines a holomorphic solution of our equation in standard
form. Undoing the change of variables z 7! w sends g to the desired solution f .

The proof is split into several intermediate lemmas. All this work is finally put
together at the end of this section.

2.1. Formal perturbation theory. The starting point is the following classical result
whose proof is supplied below for completeness and in order to introduce some helpful
notation.

Proposition 2.1 (Formal implicit function theorem). Fix a domain X�Cd
x and a point

.x0; z0/ 2 X �CN
z . Let

yF D yF .x; „; z/ D

1X
kD0

Fk.x; z/„
k

be a formal power series in „ whose coefficients Fk are holomorphic maps X�CN
z !

CN such that F0.x0; z0/ D 0 and the Jacobian matrix @F0=@z is invertible at .x0; z0/.
Then there is subdomain X0 � X containing x0 such that there is a unique formal

power series

(2.1) yf D yf .x; „/ D

1X
nD0

fn.x/„
n

whose coefficients fn are holomorphic maps X0 ! CN , satisfying

f0.x0/ D z0 and yF
�
x; „; yf .x; „/

�
D 0 8x 2 X0:

In other words, the equation yF .x;„; z/ D 0 has a unique solution z D yf defined near
the point x0 such that f0.x0/ D z0. In fact, all the higher-order coefficients fk are
uniquely determined by f0.

In particular, if S� C„ is a sectorial domain at the origin, and F is a holomorphic
map X � S �CN

z ! CN which admits the power series yF as a uniform asymptotic
expansion as „ ! 0 in S, then the equation F.x;„; z/ D 0 has a unique formal power
series solution z D yf near x0 such that f0.x0/ D z0.

Proof. The proof amounts to plugging the solution ansatz (2.1) into the formal equation
yF .x; „; z/ D 0 and solving order-by-order in „. First, let us note down a few formulas
in order to proceed with the calculation. See also Structure, notation, conventions at
the end of Section 1.
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Step 0: Collect some formulas. Write the double power series expansion of each
component yF j as

(2.2) yF j .x; „; z/ D

1X
kD0

1X
mD0

X
jmjDm

F
j

km
.x/„kzm;

where F j
km
zm WD F

j

km1���mN
z
m1
1 � � � z

mN
N . In particular, the expansion of the leading-

order part F0 is

(2.3) F
j
0 .x; z/ D

1X
mD0

X
jmjDm

F
j
0m.x/z

m:

For everym 2 NN , we have @
@zi
zm D

mi
zi
zm, so the .i; j /-component of the Jacobian

matrix @F0=@z can be written ash@F0
@z

i
ij
D
@F

j
0

@zi
D

1X
mD0

X
jmjDm

F
j
0m.x/

@

@zi
zm
D

1X
mD0

X
jmjDm

mi

zi
F
j
0m.x/z

m:

Next, them-th power yf m of the power series ansatz (2.1) expands as follows:� 1X
nD0

fn„
n

�m

D

� 1X
n1D0

f 1n1„
n1

�m1
� � �

� 1X
nND0

f NnN „
nN

�mN
D

1X
nD0

X
jnjDn

� i12Nm1X
ji1jDn1

f 1i1;1 � � � f
1
i1;m1

�
� � �

� iN2NmNX
jiN jDnN

f NiN;1 � � � f
N
iN;mN

�
„
n:

In these formulas, we have denoted the components of each vector ik 2 Nmk by
.ik;1; : : : ; ik;mk /. Let us introduce the following shorthand notation:

f m
n WD

� i12Nm1X
ji1jDn1

f 1i1;1 � � � f
1
i1;m1

�
� � �

� iN2NmNX
jiN jDnN

f NiN;1 � � � f
N
iN;mN

�
:

We note the following simple but useful identities:

f 0
0 D 1I f m

0 D f
m
0 D .f

1
0 /
m1 � � � .f N0 /

mN I f 0
n D 0 whenever jnj > 0.

Using this notation, the formula for yf m can be written much more compactly:

(2.4) yf m
D

� 1X
nD0

fn„
n

�m

D

1X
nD0

X
jnjDn

f m
n „

n:
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Step 1: Expand order-by-order. Now, we plug the solution ansatz (2.1) into the equation
yF .x; „; z/ D 0. Using (2.2) and (2.4), we find:

(2.5)
1X
nD0

1X
mD0

nX
kD0

X
jnjDn�k

X
jmjDm

F
j

km
f m

n „
n
D 0 .j D 1; : : : ; N /:

We solve (2.5) for the coefficients fn order-by-order in „.

Step 2: Leading-order part. First, at order n D 0, equation (2.5) yields:
1X
mD0

X
jmjDm

F
j
0m.x/f

m
0 D 0 .j D 1; : : : ; N /:

Comparing with (2.3), these equations are simply the components of the equation
F0.x; f0/ D 0. By the holomorphic implicit function theorem, there is a domain
X0 � X containing x0 such that there is a unique holomorphic map f0WX0 ! CN that
satisfies F0.x; f0.x// D 0 and f0.x0/ D z0. In fact, the domain X0 can be chosen so
small that the Jacobian @F0=@z remains invertible at the point .x; f0.x// for all x 2 X0.
Thus, we can define a holomorphic invertible N�N -matrix J0 on X0 by

(2.6) J0.x/ WD
@F0

@z

ˇ̌̌
.x;f0.x//

:

The .i; j /-component of J0 is:

(2.7) ŒJ0�ij D
@F

j
0

@zi

ˇ̌̌̌
.x;f0.x//

D

1X
mD0

X
jmjDm

mi

f i0
F
j
0mf

m
0 :

Step 3: Inductive step. Suppose now that n � 1 and we have already solved equa-
tion (2.5) for holomorphic vectors f0; f1; : : : ; fn�1 on X0. First, note that if n D
.0; : : : ; n; : : : ; 0/ with the only nonzero entry in some position i , then

(2.8) f m
n D

�
f 10
�m1
� � �
�
mif

i
n

��
f i0
�mi�1

� � �
�
f N0

�mN
D
mi

f i0
f m

0 f in :

Then at order n in „, we separate out the k D 0 summand and simplify using the
identities (2.7) and (2.8):

1X
mD0

nX
kD0

X
jnjDn�k

X
jmjDm

F
j

km
f m

n D 0;

1X
mD0

� X
jnjDn

X
jmjDm

F
j
0mf

m
n C

nX
kD1

X
jnjDn�k

X
jmjDm

F
j

km
f m

n

�
D 0;

NX
iD1

ŒJ0�ijf
i
n C

1X
mD0

�n1;:::;nN¤nX
jnjDn

X
jmjDm

F
j
0mf

m
n C

nX
kD1

X
jnjDn�k

X
jmjDm

F
j

km
f m

n

�
D 0:
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The first sum is nothing but the j -th component of the vector J0fn. Observe that the
remaining part of this expression involves only the already-known components of the
lower-order vectors f0; : : : ; fn�1. Therefore, since J0 is invertible, multiplying this
system of N equations on the left by J�10 , we can solve uniquely for the holomorphic
vector fn on X0.

2.2. Transformation to the standard form. Next, we make a convenient change of
variables in order to bring the given equation F.x; „; z/ D 0 to a standard form that
is more easily handled using the Borel–Laplace method. This transformation and the
standard form are fully determined by the leading-order solution f0 of the equation
F0.x; z/ D 0 and can always be achieved under our hypotheses. Namely, we have the
following statement.

Lemma 2.2. Suppose F is a holomorphic map X � S � CN
z ! CN satisfying the

hypotheses of Proposition 2.1. Let f0 and f1 be the leading- and the next-to-leading-
order parts of the formal solution yf defined on X0 � X. Then the change of the unknown
variable z 7! w given by

z D f0 C „.f1 C w/

transforms the equation F.x; „; z/ D 0 into an equation in w of the form

w D „G.x; „; w/;

whereG is a holomorphic map X0 � S�CN
w !CN uniquely determined by f0 and F .

Furthermore, if F admits a Gevrey asymptotic expansion as „ ! 0 along x‚ uniformly
for all x 2 X and locally uniformly for all z 2 CN

z and the domain X0 is chosen so
small that all the eigenvalues of J0 (where J0 is the invertible holomorphic matrix
on X0 given by (2.6)) are bounded from below on X0, then G also admits a Gevrey
asymptotic expansion as „! 0 along x‚ uniformly for all x 2 X0 and locally uniformly
for all z 2 CN

z . Specifically, G is defined by

(2.9) G.x; „; w/ WD „�1
�
w � „�1J�10 .x/F

�
x; „; f0.x/C „f1.x/C „w

��
:

Proof. The only thing to check is that the right-hand side of (2.9) has no negative
powers in „. In particular, since each component of F is an entire function in the
variables z1; : : : ; zN , identity (2.9) makes it obvious that G admits a uniform Gevrey
asymptotic expansion yG as „! 0 along x‚whenever the eigenvalues of J0 are bounded
from below and F admits uniform Gevrey asymptotics.

Let us now verify that G has no negative powers in „. Clearly, the leading-order
part of F.„; f0 C „f1 C „w/ is simply F0.x; f0.x// which is zero because f0 is the
leading-order solution. Therefore, the right-hand side of (2.9) is at worst of order „�1.
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We argue that the next-to-leading-order part of F.„; f0 C „f1 C „w/ is equal to J0w.
Evidently,

(2.10)
�
F.„; f0 C „f1 C „w/

�O.„/
D F1.f0/C

�
F0.f0 C „f1 C „w/

�O.„/
:

The j -th component of F1.f0/ is easy to write down:

(2.11) F
j
1 .f0/ D

1X
mD0

X
jmjDm

F
j
1mf

m
0 :

To expand the term ŒF0.f0 C „f1 C „w/�
O.„/, consider first the following calculation:�

f0 C „.f1 C w/
�m
D
�
f 10 C „.f

1
1 C w1/

�m1
� � �
�
f N0 C „.f

N
1 C wN /

�mN
D

i ;j2NNX
i1Cj1Dm1
���

iNCjNDmN

�
m1

i1; j1

�
� � �

�
mN

iN ; jN

�
f i
0 .f1 C w/

j
„
jj j:

We are only interested in the jj j D 1 part of this sum. This means j D .0; : : : ; 1; : : : ; 0/;
i.e., for each k D 1; : : : ; N , we have jk D 1, ik D mk � 1, and jk0 D 0; ik0 D m1

for all k0 ¤ k. Since
�

mk
mk�1;1

�
D mk and

�
mk0

mk0 ;0

�
D 1, the coefficient of „ in the above

expression simplifies as follows:

NX
kD1

mk

f k0
f m

0

�
f k1 C wk

�
:

Therefore, continuing (2.10) and using the above calculation together with (2.7)
and (2.11), we find for every j D 1; : : : ; N :

�
F j .„;f0C„f1C„w/

�O.„/
D

1X
mD0

X
jmjDm

F
j
1mf

m
0

C

NX
kD1

1X
mD0

X
jmjDm

F
j
0m

mk

f k0
f m

0

�
f k1 Cwk

�
D

1X
mD0

X
jmjDm

F
j
1mf

m
0 C

NX
kD1

ŒJ0�kjf
k
1 C

NX
kD1

ŒJ0�kjwk :

Examining equation (2.5) at order n D 1, it is now clear that this expression equals the
j -th component of J0w.

The analogue of the formal implicit function theorem (Proposition 2.1) for equations
of the form (2.1) is especially easy to formulate.
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Lemma 2.3. Let
yG D yG.x; „; w/ WD

1X
kD0

Gk.x; w/„
k

be any formal power series in „ with holomorphic coefficients Gk WX0 �CN
w ! CN

for some domain X0 � Cd
x . Then there is a unique formal power series

yg D yg.x; „/ D

1X
nD0

gn.x/„
n

with holomorphic coefficients gk WX0!CN , which satisfies yg.x;„/D yG.x;„; yg.x;„//
for all x 2 X0. In other words, the equation w D „ yG.x; „; w/ has a unique formal
power series solution w D yg.x; „/.

In particular, if S � C„ is a sectorial domain at the origin and G is a holomorphic
map X0 � S � CN

w ! CN which admits the power series yG as a locally uniform
asymptotic expansion as „ ! 0 in S, then the equation w D G.x; „; w/ D 0 has a
unique formal power series solution w D yg.x; „/ as above.

Moreover, g0 � 0 and all the higher-order coefficients gn are given by the following
recursive formula: for every j D 1; : : : ; N ,

(2.12) g
j
nC1 D

nX
kD0

n�kX
mD0

X
jmjDm

X
jnjDn�k

G
j

km
gm

n ;

where

(2.13) gm
n WD

� i12Nm1X
ji1jDn1

g1i1;1 � � �g
1
i1;m1

�
� � �

� iN2NmNX
jiN jDnN

gNiN;1 � � �g
N
iN;mN

�
;

and Gj
km
D G

j

km
.x/ are the coefficients of the double power series expansion

yGj .x; „; w/ D

1X
kD0

1X
mD0

X
jmjDm

G
j

km
.x/„kwm:

Proof. The proof is a computation very similar to the one in the proof of Proposition 2.1.
We omit the details.

2.3. Gevrey regularity of the formal solution. Now we show that the formal Borel
transform of the formal solution yf is a convergent power series in the Borel variable �;
that is, the coefficients fn grow not faster than nŠ. More precisely, we prove the following
proposition.
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Proposition 2.4 (Gevrey formal implicit function theorem). Assume all the hypotheses
of Proposition 2.1 and suppose in addition that the power series yF is locally uniformly
Gevrey on X � CN

z . Then X0 � X can be chosen so small that the formal power
series yf is uniformly Gevrey on X0. In particular, the formal Borel transform
y�.x; �/ D yBŒ yf �.x; �/ is a uniformly convergent power series in �. Concretely, if
X0 � X is any subset where all eigenvalues of J0 are bounded from below and such
that there are A;B > 0 such that jFk.x; z/j � ABkkŠ for all k � 0, uniformly for all
x 2 X0 and for all z 2 CN

z with jzj < R for some R > 0, then there are constants
C;M > 0 such that

jfk.x/j � CM
kkŠ 8x 2 X0;8k:

Proof. Let X0 � X be such that all the eigenvalues of the invertible holomorphic matrix
J0 from (2.6) are bounded from below. Then, by Lemma 2.2, the proof boils down to
proving the following claim.

Claim. Assume all the hypotheses of Lemma 2.3 and suppose that the power series
yG is Gevrey uniformly for all x 2 X0 and locally uniformly for all w 2 CN

w . Then the
formal solution yg is also uniformly Gevrey on X0.

LetA;B > 0 be constants such that, for all j D 1; : : : ;N , all k;m 2N, allm 2NN

such that jmj D m, and all x 2 X0,ˇ̌
G
j

km
.x/
ˇ̌
� �mAB

kCmkŠ;

where �m is a normalisation constant defined as

(2.14)
1

�m
WD

X
jmjDm

1 D

�
mCN � 1

N � 1

�
:

We will show that there is a constant M > 0 such thatˇ̌
g
j
nC1.x/

ˇ̌
�M nC1nŠ 8x 2 X0; 8n 2 N:

This bound will be demonstrated in two main steps. First, we will recursively construct
a sequence ¹Mnº

1
nD0 of nonnegative real numbers such thatˇ̌
g
j
nC1.x/

ˇ̌
�MnC1nŠ 8x 2 X0; 8n 2 N:

Then we will show that there is a constant M > 0 such that Mn �M
n for all n.
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Step 1: Construction of ¹Mnº
1
nD0. Let M0 WD 0. We can take M1 WD A because

g
j
1 D G

j
00

. Now we use induction on n and formula (2.12), which is more convenient
to rewrite as follows:

(2.15) g
j
nC1 D

1X
mD0

nX
kD0

X
jmjDm

X
jnjDn�k

G
j

km
gm

n :

Notice that gm
n D 0 whenever m D jmj > jnj D n � k, so this expression really is

the same as (2.12). Assume that we have already constructed M0; : : : ;Mn such that
jgi j �Mi .i � 1/Š for all i D 0; : : : ; n and all x 2 X0.

Let us write down an estimate for gm
n using formula (2.13):

ˇ̌
gm

n

ˇ̌
�

� i12Nm1X
ji1jDn1

ˇ̌
g1i1;1

ˇ̌
� � �
ˇ̌
g1i1;m1

ˇ̌�
� � �

� iN2NmNX
jiN jDnN

ˇ̌
gNiN;1

ˇ̌
� � �
ˇ̌
gNiN;mN

ˇ̌�

�

� i12Nm1X
ji1jDn1

Mi1;1 � � �Mi1;m1

�
� � �

� iN2NmNX
jiN jDnN

MiN;1 � � �MiN;mN

�
.jnj � jmj/Š;

where we repeatedly used the inequality i Šj Š � .i C j /Š. Introduce the following
shorthand:

(2.16) Mm
n WD

� i12Nm1X
ji1jDn1

Mi1;1 � � �Mi1;m1

�
� � �

� iN2NmNX
jiN jDnN

MiN;1 � � �MiN;mN

�
:

Then the estimate for gm
n becomes simply jgm

n j � M
m
n .jnj � jmj/Š. Now we can

estimate gnC1 using formula (2.15):

jgnC1j �

nX
kD0

1X
mD0

X
jmjDm

X
jnjDn�k

�mAB
kCmkŠMm

n .n � k �m/Š

� A

nX
kD0

Bk
1X
mD0

X
jmjDm

X
jnjDn�k

�mB
mMm

n nŠ:

Thus, we can define

(2.17) MnC1 WD A

nX
kD0

Bk
1X
mD0

X
jmjDm

X
jnjDn�k

�mB
mMm

n :
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Step 2: Construction of M . To see that Mn � M
n for some M > 0, we argue as

follows. Consider the following pair of power series in an abstract variable t :

yp.t/ WD

1X
nD0

Mnt
n and Q.t/ WD

1X
mD0

Bmtm:

Notice that yp.0/ D M0 D 0 and that Q.t/ is convergent. We will show that yp.t/ is
also convergent. The key is the observation that they satisfy the following equation:

(2.18) yp.t/ D AtQ.t/Q. yp.t// D AtQ.t/

1X
mD0

Bm yp.t/m:

This equation was found by trial and error. In order to verify it, we rewrite the power
series Q.t/ in the following strange way:

Q.t/ D

1X
mD0

X
jmjDm

�mB
mtm;

where tm WD tm1 � � � tmN D tm. Then (2.18) is straightforward to verify directly by
substituting the power series yp.t/ and Q.t/, and comparing the coefficients of tnC1

using the defining formula (2.17) for MnC1. Indeed, using the notation introduced
in (2.16), we see that

yp.t/m D

� 1X
n1D0

Mn1 t
n1

�m1
� � �

� 1X
nND0

MnN t
nN

�mN
D

1X
nD0

X
jnjDn

� i12Nm1X
ji1jDn1

Mi1;1 � � �Mi1;m1

�
� � �

� iN2NmNX
jiN jDnN

MiN;1 � � �MiN;mN

�
tn

D

1X
nD0

X
jnjDn

Mm
n t

n:

Then the right-hand side of (2.18) expands as follows:

At

� 1X
kD0

Bktk
�� 1X

mD0

X
jmjDm

�mB
m. yp.t//m

�
D At

� 1X
kD0

Bktk
�� 1X

mD0

X
jmjDm

�mB
m

� 1X
nD0

X
jnjDn

Mm
n t

n

��
D At

� 1X
kD0

Bktk
�� 1X

nD0

Cnt
n

�
where Cn WD

1X
mD0

X
jmjDm

X
jnjDn

�mB
mMm

n t
n

D At

1X
nD0

nX
kD0

BkCn�kt
n
D

1X
nD0

�
A

nX
kD0

Bk
1X
mD0

X
jmjDm

X
jnjDn

�mB
mMm

n

�
tnC1;
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which matches with (2.17). Now, consider the following holomorphic function in two
variables .t; p/:

F.t; p/ WD �p C AtQ.t/Q.p/:

It has the following properties:

F.0; 0/ D 0 and
@F

@p

ˇ̌̌
.t;p/D.0;0/

D �1 ¤ 0:

By the holomorphic implicit function theorem, there exists a unique holomorphic
function p.t/ near t D 0 such that p.t/ D 0 and F.t; p.t// D 0. Thus, yp.t/ must be
the convergent Taylor series expansion at t D 0 for p.t/, so its coefficients grow at
most exponentially: i.e., there is a constant M > 0 such that Mn �M

n.

2.4. Exact perturbation theory. Now we show that the convergent Borel transform
y�.x; �/ of the formal solution admits an analytic continuation along a ray in the Borel
�-plane and furthermore its Laplace transform is well-defined. First, we prove the
following lemma.

Lemma 2.5. Let X0 � Cd
x be a domain. Let S WD ¹„ j Re.1=„/ > 1=Rº � C„ be the

Borel disc of some diameter R > 0. Recall that its opening is AC WD .��=2;C�=2/.
Let GWX0 � S �CN

w ! CN be a holomorphic map which admits a Gevrey asymptotic
expansion

(2.19) G.x; „; w/ ' yG.x; „; w/ as „ ! 0 along x‚C;

uniformly for all x 2 X0 and locally uniformly for all w 2 CN
w . Then there is a Borel

disc S0 WD ¹„ j Re.1=„/ > 1=R0º � S of possibly smaller diameter R0 2 .0;R� such
that there is a unique holomorphic map gWX0 � S0 ! CN which admits a uniform
Gevrey asymptotic expansion

(2.20) g.x; „/ ' yg.x; „/ as „ ! 0 along x‚C; unif. 8x 2 X0;

and such that g.x;„/ D „G.x;„; g.x;„// D 0 for all .x;„/ 2 X0 � S0. Furthermore,
g is the uniform Borel resummation of yg: for all .x; „/ 2 X0 � S0,

g.x; „/ D � Œ yg �.x; „/:

Proof. First, uniqueness of g follows from the asymptotic property (2.20). Indeed,
suppose g0 is another such map. Then g � g0 is a holomorphic map X0 � S0 ! CN

whose components are uniformly Gevrey asymptotic to 0 as „ ! 0 along the closed
arc x‚C of opening angle � . By Nevanlinna’s theorem ([8, pp. 44–45] and [19]; see
also [10, Theorem B.11]), there can only be one holomorphic function on S0 (namely,
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the constant function 0) which is Gevrey asymptotic to 0 as „ ! 0 along x‚C. Thus,
each component of g � g0 must be identically zero.

To construct g, we start by expanding G as a power series in w. Each component
Gj of G can be expressed as the following uniformly convergent multipower series in
the components w1; : : : ; wN of w:

Gj .x; „; w/ D

1X
mD0

X
jmjDm

Ajm.x; „/w
m .j D 1; : : : ; N /;

whereAjmwm WDA
j
m1���mNw

m1
1 � � �w

mN
N . Then the vectorial equationwD„G.x;„;w/

can be written as the following coupled system of N scalar equations:

wj D „

1X
mD0

X
jmjDm

Ajmw
m .j D 1; : : : ; N /:

It is convenient to separate the m D 1 term from the sum:

(2.21) wj D „A
j
0 C „

1X
mD1

X
jmjDm

Ajmw
m .j D 1; : : : ; N /:

Step 1: The Borel transform. Let ajm D a
j
m.x/ be the „-leading-order part of Ajm and

let ˛jm.x; �/ WD BŒA
j
m�.x; �/. By the assumption (2.19), there is some " > 0 such that

each ˛jm is a holomorphic function on X0 �„, where

„ WD ¹� j dist.�;RC/ < "º;

with uniformly at-most-exponential growth at infinity in � (cf. Section A.2.1), and

Ajm.x; „/ D a
j
m.x/C LŒ˛jm�.x; „/

for all .x; „/ 2 X0 � S provided that the diameter R is sufficiently small.
Dividing each equation (2.21) by „ and applying the analytic Borel transform, we

obtain the following system of N coupled nonlinear ordinary differential equations
with convolution:

(2.22) @��
j
D ˛

j
0 C

1X
mD1

X
jmjDm

�
ajm�

�m
C ˛jm � �

�m
�

.j D 1; : : : ; N /;

where ��m WD .�1/�m1 � � � � � .�N /�mN and the unknown variables wj and �j are
related by �j D BŒwj � and wj D LŒ�j �. A solution of the system (2.22) with initial
condition �.x; 0/ D a0.x/ is equivalently the solution of the following system of N
coupled integral equations:

(2.23) �j D aj0 C
Z �

0

�
˛
j
0 C

1X
mD1

X
jmjDm

�
ajm�

�m
C ˛jm � �

�m
��

dt .j D 1; : : : ;N /;

where the integral is taken along the straight line segment from 0 to � .
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Step 2: Method of successive approximations. We solve this integral equation using the
method of successive approximations. To this end, define a sequence of holomorphic
maps ¹�n D .�1n ; : : : ; �Nn /WX0 �„! CN º1nD0, as follows: for each j D 1; : : : ; N ,
let

(2.24) �
j
0 WD a

j
0 ; �

j
1 WD

Z �

0

�
˛
j
0 C

X
jmjD1

ajm�
m
0

�
dt

and for all n � 2,

(2.25) �jn WD

Z �

0

nX
mD1

X
jmjDm

�
ajm

X
jnjDn�m

�m
n C ˛

j
m �

X
jnjDn�m�1

�m
n

�
dt:

Here, for any n;m 2 NN , we have introduced the notation

(2.26) �m
n WD

� i12Nm1X
ji1jDn1

�1i1;1 � � � � � �
1
i1;m1

�
� � � � �

� iN2NmNX
jiN jDnN

�NiN;1 � � � � � �
N
iN;mN

�
:

Let us also note the following simple but useful identities:

� 0
0 D 1I � 0

n D 0 whenever jnj > 0;

�m
0 D

�
�10
��m1

� � � � �
�
�N0

��mN
D

1
.m�1/Š

�m
0 �

m�1:(2.27)

Main Lemma. The infinite series

�.x; �/ WD

1X
nD0

�n.x; �/

converges uniformly for all .x; �/ 2 X0 �„ and defines a holomorphic solution of
the integral equation (2.23) with uniformly at-most-exponential growth at infinity in �;
that is, there are constants D;K > 0 such that, for each j D 1; : : : ; N ,

(2.28) j�j .x; �/j � DeKj�j 8.x; �/ 2 X0 �„:

Furthermore, the convergent formal Borel transform

y�.x; �/ D yBŒyg�.x; �/ D

1X
nD0

1
nŠ
gnC1.x/�

n

of the unique formal solution yg is the Taylor series expansion of � at � D 0.

The assertions of Lemma 2.5 follow from this claim by defining

(2.29) g.x; „/ WD LŒ��.x; „/ D

Z C1
0

e��=„�.x; �/d�:

Indeed, the exponential estimate (2.28) implies that the Laplace transform (2.29) is
uniformly convergent for all .x; „/ 2 X0 � S0 where S0 D ¹„ j Re.1=„/ > 1=R0º as
long as R0 < K�1. We now turn to the proof of the main technical claim.
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Step 3: Solution check. First, assuming that the infinite series � is uniformly convergent
for all .x; �/ 2 X0 �„, we verify that it satisfies the integral equation (2.23) by direct
substitution. Thus, the right-hand side of (2.23) becomes:
(2.30)

a
j
0 C

Z �

0

�
˛
j
0 C

1X
mD1

X
jmjDm

ajm

� 1X
nD0

�n

��m

C

1X
mD1

X
jmjDm

˛jm �

� 1X
nD0

�n

��m�
dt:

Using the notation introduced in (2.26), them-fold convolution product of the infinite
series � expands as follows:� 1X

nD0

�n

��m

D

� 1X
n1D0

�1n1

��m1
� � � � �

� 1X
nND0

�NnN

��mN
D

1X
nD0

X
jnjDn

� i12Nm1X
ji1jDn1

�1i1;1 � � � � � �
1
i1;m1

�

� � � � �

� iN2NmNX
jiN jDnN

�NiN;1 � � � � � �
N
iN;mN

�
D

1X
nD0

X
jnjDn

�m
n :

Use this to rewrite the first sum over m in (2.30), separating out first the m D 1 part
and then the .m; n/ D .1; 1/ part using the identity (2.27):

1X
mD1

X
jmjDm

ajm

� 1X
nD0

�n

��m

D

X
jmjD1

ajm

1X
nD0

X
jnjDn

�m
n C

1X
mD2

X
jmjDm

ajm

1X
nD0

X
jnjDn

�m
n

D

X
jmjD1

ajm�
m
0 C

X
jmjD1

ajm

1X
nD1

X
jnjDn

�m
n C

1X
mD2

X
jmjDm

ajm

1X
nD0

X
jnjDn

�m
n :

Substituting this back into (2.30) and using (2.24), we find:

(2.31) �
j
0 C �

j
1 C

Z �

0

� X
jmjD1

ajm

1X
nD1

X
jnjDn

�m
n C

1X
mD2

X
jmjDm

ajm

1X
nD0

X
jnjDn

�m
n

C

1X
mD1

X
jmjDm

˛jm �

1X
nD0

X
jnjDn

�m
n

�
dt:
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The goal is to show that the integral in (2.31) is equal to
P
n�2 �

j
n . Focus on the

expression inside the integral. Shift the summation index n up by 1 in the first sum,
by m in the second sum, and by mC 1 in the third sum; we get:

X
jmjD1

ajm

1X
nD2

X
jnjDn�1

�m
n C

1X
mD2

X
jmjDm

ajm

1X
nDm

X
jnjDn�m

�m
n

C

1X
mD1

X
jmjDm

˛jm �

1X
nDmC1

X
jnjDn�m�1

�m
n :

Notice that all terms in the second sum with n < m are zero, so we can start the
summation over n from n D 2 (which is the lowest possible value of m) without
altering the result. Similarly, all terms in the third sum with n < mC 1 are zero, so we
may as well start from n D 2. The first sum is left unaltered. Thus, we get:

X
jmjD1

ajm

1X
nD2

X
jnjDn�1

�m
n C

1X
mD2

X
jmjDm

ajm

1X
nD2

X
jnjDn�m

�m
n

C

1X
mD1

X
jmjDm

˛jm �

1X
nD2

X
jnjDn�m�1

�m
n :

The advantage of this way of expressing the sums is that we can now interchange the
summations over m and n to obtain:

1X
nD2

² X
jmjD1

ajm

X
jnjDn�1

�m
n C

1X
mD2

X
jmjDm

ajm

X
jnjDn�m

�m
n C

1X
mD1

X
jmjDm

˛jm �
X

jnjDn�m�1

�m
n

³
:

Observe that the black sum fits well into the second sum over m to give the m D 1
term. So we get:

1X
nD2

1X
mD1

X
jmjDm

²
ajm

X
jnjDn�m

�m
n C ˛

j
m �

X
jnjDn�m�1

�m
n

³
:

Finally, notice that both sums are empty for m > n, so we get precisely the expression
inside the integral in (2.25) defining �jn . This shows that � satisfies the integral
equation (2.23).

Step 4: Convergence. Now we show that � is a uniformly convergent series on X0 �„
and therefore defines a holomorphic map X0 � „ ! CN . In the process, we also
establish the estimate (2.28).



Gevrey asymptotic implicit function theorem 271

Let B; C; L > 0 be such that for all .x; �/ 2 X0 �„, all j D 1; : : : ; N , and all
m 2 NN ,

jajm.x/j � �mCB
m and j˛jm.x; �/j � �mCB

meLj�j;

where m D jmj and �m is the normalisation constant (2.14). We claim that there are
constants D;M > 0 such that for all .x; �/ 2 X0 �„ and all n 2 N,

(2.32) j�jn .x; �/j � DM
n j�j

n

nŠ
eLj�j:

If we achieve (2.32), then the uniform convergence and the exponential estimate (2.28)
both follow at once because

j�j .x; �/j �

1X
nD0

j�jn .x; �/j �

1X
nD0

DM n j�j
n

nŠ
eLj�j � De.MCL/j�j:

To demonstrate (2.32), we proceed in two steps. First, we construct a sequence of
positive real numbers ¹Mnº

1
nD0 such that for all n 2 N and all .x; �/ 2 X0 �„,

j�jn .x; �/j �Mn

j�jn

nŠ
eLj�j:

We will then show that there are constants D;M such that Mn � DM
n for all n.

Step 4.1: Construction of ¹Mnº. We can take M0 WD C and M1 WD C.1 C BM0/

because �j0 D a
j
0

and

j�
j
1 j �

Z �

0

�
j˛
j
0
j C

X
jmjD1

jajmjj�
m
0 j

�
jdt j �

Z �

0

�
CeLjt j C C 2B�1

X
jmjD1

1

�
jdt j

� C.1C BM0/

Z j�j
0

eLsds � C.1C BM0/j�je
Lj�j;

where in the final step we used Lemma A.1. Now, let us assume that we have
already constructed the constants M0; : : : ; Mn�1 such that j�ji j � Mi

j�ji

iŠ
eLj�j for

all i D 0; : : : ; n � 1 and all j D 1; : : : ; N . Then we use formula (2.25) together with
Lemmas A.1 and A.2 in order to derive an estimate for �n.

First, let us write down an estimate for �m
n using formula (2.26). Thanks

to Lemma A.2, we have for each j D 1; : : : ; N and all nj ; mj :

ij2NmjX
jij jDnj

ˇ̌
�
j
ij;1
� � � � � �

j
ij;mj

ˇ̌
�

ij2NmjX
jij jDnj

Mij;1 � � �Mij;mj

j�jnjCmj�1

.nj Cmj � 1/Š
eLj�j:
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Then, for all n;m 2 NN ,

j�m
n j �M

m
n

j�jjnjCjmj�1

.jnj C jmj � 1/Š
eLj�j;

where Mm
n is the shorthand introduced in (2.16). Therefore, formula (2.25) gives the

following estimate:ˇ̌
�jn
ˇ̌
�

Z �

0

nX
mD1

X
jmjDm

²ˇ̌
ajm
ˇ̌ X
jnjDn�m

j�m
n j C

X
jnjDn�m�1

ˇ̌
˛jm � �

m
n

ˇ̌³
jdt j

�

nX
mD1

X
jmjDm

²
�mCB

m
X

jnjDn�m

Mm
n C �mCB

m
X

jnjDn�m�1

Mm
n

³Z �

0

jt jn�1

.n � 1/Š
eLjt jjdt j

�

nX
mD1

�mCB
m
X
jmjDm

² X
jnjDn�m

Mm
n C

X
jnjDn�m�1

Mm
n

³
j�jn

nŠ
eLj�j:

Thus, this expression allows us to define the constant Mn for n � 2. In fact, a quick
glance at this formula reveals that it can be extended to n D 0; 1 by defining

(2.33) Mn WD

nX
mD0

�mCB
m
X
jmjDm

² X
jnjDn�m

Mm
n C

X
jnjDn�m�1

Mm
n

³
8n 2 N:

Indeed, if m D 0, then the two sums inside the brackets can only possibly be nonzero
when nD 0, in which case the second sum is empty and the first sum is 1, so we recover
M0 D C . Likewise, if n D 1, then the m D 0 term is 0C C and the m D 1 term is
CBM0 C 0, so again we recover the constant M1 defined previously.

Step 4.2: Bounding Mn. To see that Mn � DM
n for some D;M > 0, consider the

following two power series in an abstract variable t :

yp.t/ WD

1X
nD0

Mnt
n and Q.t/ WD

1X
mD0

CBmtm:

Notice thatQ.t/ is convergent andQ.0/ D C DM0. We will show that yp.t/ is also a
convergent power series. The key observation is that yp satisfies the following functional
equation:

(2.34) yp.t/ D .1C t /Q.t yp.t//:

This equation was found by trial and error. In order to verify it, we rewrite the power
series Q.t/ in the following way:

Q.t/ D

1X
mD0

X
jmjDm

�mCB
mtm:
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Then (2.34) is straightforward to verify by direct substitution and comparing the
coefficients of tn using the defining formula (2.33) for Mn. Thus, the right-hand side
of (2.34) expands as follows:

.1C t /

1X
mD0

X
jmjDm

�mCB
m

�
t

1X
nD0

Mnt
n

�m

D .1C t /

1X
mD0

X
jmjDm

�mCB
m

1X
nD0

X
jnjDn�m

Mm
n t

n

D

1X
nD0

nX
mD0

�mCB
m
X
jmjDm

² X
jnjDn�m

Mm
n C

X
jnjDn�m�1

Mm
n

³
tn:

In the final equality, we once again noticed that both sums inside the curly brackets are
zero whenever m > n.

Now, consider the following holomorphic function in two variables .t; p/:

F.t; p/ WD �p C .1C t /Q.tp/:

It has the following properties:

F.0; C / D 0 and
@P

@p

ˇ̌̌
.t;p/D.0;C/

D �1 ¤ 0:

By the holomorphic implicit function theorem, there exists a unique holomorphic
function p.t/ near t D 0 such that p.0/D C and F.t;p.t//D 0. Therefore, yp.t/must
be the convergent Taylor series expansion of p.t/ at t D 0, so its coefficients grow at
most exponentially: i.e., there are constants D;M > 0 such that Mn � DM

n. This
completes the proof of the main technical claim and hence of Lemma 2.5.

At last, we are able to collect all our work in order to finish the proof of the Gevrey
asymptotic implicit function theorem (Theorem 1.1).

Proof of Theorem 1.1. By the formal implicit function theorem (Proposition 2.1), there
is a subdomain X0 � X containing x0 such that the equation F.x;„; z/D 0 has a unique
formal solution yf satisfying f0.x0/D z0. Let f0;f1 be its leading- and next-to-leading-
order parts in „. As in Lemma 2.2, we change variables as z D f0 C „f1 C „w to
transform the equation F.x; „; z/ D 0 into w D „G.x; „; w/. By Lemma 2.5, this
equation has a unique holomorphic solutionw D g.x;„/ on X0 � S0 for some sectorial
subdomain S0 � S still with opening ‚ and admitting a uniform Gevrey asymptotic
expansion as „ ! 0 along x‚. Finally, we define f WD f0 C „f1 C „g which is readily
seen to have all the desired properties.
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3. Linear algebra in Gevrey asymptotic families

In this section, we provide an application of our main theorem to the study of
asymptotic families of holomorphic matrices over a sector. Namely, we prove the
following theorem, from which Theorem 1.2 follows immediately as a special case.

Theorem 3.1 (Jordan decomposition in Gevrey asymptotic families). Fix a domain
X�Cd

x and a point x0 2 X. Let S�C„ be a sectorial domain at the origin and opening
arc ‚ with opening angle j‚j D � . Let A D A.x; „/ be a holomorphic n�n-matrix
on X � S which admits a uniform Gevrey asymptotic expansion

A.x; „/ ' yA.x; „/ as „ ! 0 along x‚; unif. 8x 2 X:

Suppose that the distinct eigenvalues of its „-leading-order part A00 WD A0.x0/ at the
point x0 are a1; : : : ; am 2 C with respective multiplicities n1; : : : ; nm. Let P00 be a
constant invertible n�n-matrix that puts A00 into a Jordan normal form:

P00A00P
�1
00 D ƒ00 WD diag.a1In1CN1; : : : ; amInmCNm/;

where Ini is the identity ni�ni -matrix and Ni is a nilpotent ni�ni -matrix containing
zeros in all positions except those in the first superdiagonal, which may contain either
zeros or ones.

Then there is a subdomain X0 � X containing x0 and a sectorial subdomain S0 � S
with the same opening ‚ such that there is an invertible n�n-matrix P D P.x; „/ on
X0 � S0 that admits a uniform Gevrey asymptotic expansion

P.x; „/ ' yP .x; „/ D

1X
kD0

Pk.x/„
k as „ ! 0 along x‚; unif. 8x 2 X0;

such that P0.x0/ D P00 and which block-diagonalises the matrix A:

(3.1) PAP�1 D ƒ D diag.ƒ1; : : : ; ƒm/;

where each ƒi D ƒi .x; „/ is an ni�ni -matrix which admits a uniform Gevrey
asymptotic expansion

ƒi .x; „/ ' yƒi .x; „/ D

1X
kD0

ƒi;k.x/„
k as „ ! 0 along x‚; unif. 8x 2 X0;

with ƒi;0.x0/ D aiIn1 CNi . Furthermore, the transformation P is the uniform Borel
resummation of its asymptotic power series yP in the direction � that bisects the arc ‚:
for all .x; „/ 2 X0 � S0,

P D ��
�
yP
�
:
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Proof. Using standard theory (see, e.g., [20, Section 25.2]), we can find a holomorphic
invertible matrix P0.x/ on a domain X0 � X such that

P0A0P
�1
0 D diag.ƒ1;0; : : : ; ƒm;0/

and P0.x0/ D P00 where each ƒi;0 D ƒi;0.x/ is a holomorphic ni�ni -matrix on X0
with the property thatƒi;0.x0/D aiIn1 CNi . To simplify notation, let us assume that
the leading-order matrix A0 has already been diagonalised over X0, so

P0 D I and A0 D diag.ƒ1;0; : : : ; ƒm;0/ D ƒ0:

Our goal is to find a holomorphic matrix P D P.x; „/ whose leading order is P0
and a holomorphic block-diagonal matrix ƒ D diag.ƒ1; : : : ; ƒm/, with blocks ƒi D
ƒi .x; „/ of size ni�ni , whose leading order is ƒ0, such that

(3.2) PA D ƒP:

Let us break up the eigenvalues a1; : : : ; am arbitrarily into two separate groups.
Pick any p 2 ¹1; : : : ; mº and let

ƒ00 WD diag.ƒ1;0; : : : ; ƒp;0/ and ƒ000 WD diag.ƒpC1;0; : : : ; ƒm;0/:

Note that ƒ00 and ƒ000 have no eigenvalues in common. Put n0 WD n1 C � � � C np and
n00 WD npC1 C � � � C nm. Then we block-partition the matrices ƒ and A accordingly:

(3.3) ƒ D

�
ƒ0 0

0 ƒ00

�
and A D

�
A11 A12

A21 A22

�
D

�
n0 � n0 n0 � n00

n00 � n0 n00 � n00

�
;

where we have indicated the sizes of the blocksAij . Inspired by techniques in [15,16,18],
we search for P in the following block-matrix form:

(3.4) P D

�
In0 S

T In00

�
D

�
n0 � n0 n0 � n00

n00 � n0 n00 � n00

�
;

where In0 ; In00 are respectively the identity n0�n0- and n00�n00-matrices. Substituting
the block-partitions (3.3) and the ansatz (3.4) into equation (3.2) yields four conditions:

(3.5)
A11 C SA21 D ƒ

0
I A12 C SA22 D ƒ

0S I

A22 C TA12 D ƒ
00
I A21 C TA11 D ƒ

00T:

Matrices ƒ0; ƒ00 can be eliminated from the two equations on the right. This leads to
two uncoupled matrix quadratic equations for S and T :

(3.6) A12CSA22�A11S �SA21S D 0 and A21CTA11�A22T �SA12T D 0:
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Let us focus on solving the equation for S . Observe that its leading-order in „ is simply

S0ƒ
00
0 �ƒ

0
0S0 D 0:

A simple but remarkable fact from linear algebra (see, e.g., [20, Theorem 4.1]) says
that this equation possess solutions other than S0 D 0 if and only ifƒ00 andƒ000 have at
least one eigenvalue in common, which is contrary to how the matrices ƒ00 and ƒ000
were defined. Thus, S0 D 0.

Now, put N WD n0n00, and let w D .w1; : : : ; wN / be the N -dimensional vector
whose components are the entries of S in some order. Then the quadratic equation (3.6)
for S can be written in the form

w D „G.x; „; w/

where G is a holomorphic map X0 � S � CN
w ! CN which is quadratic in the

components of w. By the Gevrey asymptotic implicit function theorem (Theorem 1.1)
(or more specifically by Lemma 2.5), there is a sectorial subdomain S0 � S with
the same opening ‚ such that there is a unique holomorphic map gWX0 � S0 ! CN

which admits a uniform Gevrey asymptotic expansion as „ ! 0 along x‚ and such
that g.x; „/ D „G.x; „; g.x; „// D 0. This implies the existence and uniqueness of a
holomorphic matrix S D S.x; „/ on X0 � S0 satisfying (3.6) and admitting a uniform
Gevrey asymptotic expansion as „ ! 0 along x‚.

Using exactly the same argument, we can derive a unique solution T D T .x; „/
of (3.6) on X0 � S0 at the expense of only possibly having to shrink the radial size
of S0 (but not the opening ‚). As a result, we have found a unique transformation P
on X0 � S0 defined by (3.4) and a unique block-diagonal matrix ƒ D diag.ƒ0; ƒ00/ on
X0 � S0 defined by the two equations on the left in (3.5), which satisfy (3.2) and have
the desired asymptotic properties.

If the total number of distinct eigenvalues m is 2, then we can proceed no further:
ƒ;P are the desired matrices for the assertions of the theorem. Otherwise, the procedure
outlined above should now be iterated to finally find the matrix P that brings A to
the desired form ƒ from (3.1). For example, in the next step after we have found
the matrices ƒ0; ƒ00 above, we may search for a transformation that further block-
diagonalises ƒ0 (that is, if ƒ00 has at least two distinct eigenvalues; otherwise, proceed
to block-diagonaliseƒ00). We may break the eigenvalues a1; : : : ; ap up further into two
groups and transform ƒ from (3.3) to a block-diagonal matrix zƒ D diag.zƒ0; zƒ00; ƒ00/
by searching for a transformation in the form2664 I S

T I

I

3775 :
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This completes the proof.

Remark 3.2. Under the assumptions of Theorem 1.2, we can use a slightly different
argument the used to prove Theorem 3.1 in order to show that the eigenvalues�1; : : : ;�n
of A are well-defined and have the asserted properties. Indeed, the characteristic
polynomial of A is a holomorphic function F D F.x;„; z/ on X � S �Cz , which is a
polynomial in z whose coefficients admit a uniform Gevrey asymptotic expansion as
„ ! 0 along x‚. Its leading-order part F0 D F0.x; z/ is the characteristic polynomial
of the leading-order part A0, so F0.x0; ai / D 0 for each i D 1; : : : ; n. By assumption,
the eigenvalues of A00 are distinct, which means the discriminant of the polynomial F0
at x D a is nonzero. As a result, the derivative @F0=@z is nonzero at each .x0; ai /. By
the Gevrey asymptotic implicit function theorem (Theorem 1.1), there is a subdomain
X0 � X containing x0 and a sectorial subdomain S0 � S with the same opening ‚
such that there are unique holomorphic functions �i D �i .x; „/ on X0 � S0 that
admit uniform Gevrey asymptotic expansions (1.3) with „-leading-orders satisfying
�i;0.x0/ D ai .

A. Background information

A.1. Gevrey asymptotics.

A.1.1. A sectorial domain at the origin in C„ is a simply connected domain
S � C�

„
D C„ n ¹0º whose closure xS in the real-oriented blowup ŒC„ W 0� intersects

the boundary circle S1 in a closed arc x‚ � S1 with nonzero length. The open arc ‚ is
called the opening of S, and its length j‚j is called the opening angle of S. A Borel disc
of diameter R > 0 is the sectorial domain SD ¹„ 2 C„ j Re.1=„/ > 1=Rº. Its opening
is‚D .��

2
;C�

2
/. Likewise, a Borel disc bisected by a direction � 2 S1 is the sectorial

domain S D ¹„ 2 C„ j Re.ei�=„/ > 1=Rº. Its opening is ‚ D .� � �
2
; � C �

2
/.

A.1.2. A holomorphic function f .„/ on a sectorial domain S is admits a power series
yf .„/ as its asymptotic expansion as „ ! 0 along ‚ (or as „ ! 0 in S) if, for every
n � 0 and every compactly contained subarc ‚0 b ‚, there is a sectorial subdomain
S0 � S with opening ‚0 and a real constant Cn;0 > 0 such that

(A.1)
ˇ̌̌̌
f .„/ �

n�1X
kD0

fk„
k

ˇ̌̌̌
� Cn;0j„j

n

for all „ 2 S0. The constants Cn;0 may depend on n and the opening ‚0. If this is the
case, we write

f .„/ � yf .„/ as „ ! 0 along ‚:
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If the constants Cn;0 in (A.1) can be chosen uniformly for all compactly contained
subarcs ‚0 b ‚ (i.e., independent of ‚0 so that Cn;0 D Cn for all n), then we write

f .„/ � yf .„/ as „ ! 0 along x‚:

A.1.3. We also say that the holomorphic function f admits yf as its Gevrey asymptotic
expansion as „ ! 0 along ‚ if the constants Cn;0 in (A.1) depend on n like C0M n

0 nŠ.
More explicitly, for every compactly contained subarc ‚0 b ‚, there is a sectorial
domain S0 � S with opening ‚0 b ‚ and real constants C0;M0 > 0 which give the
bounds

(A.2)
ˇ̌̌̌
f .„/ �

n�1X
kD0

fk„
k

ˇ̌̌̌
� C0M

n
0 nŠj„j

n

for all „ 2 S0 and all n � 0. In this case, we write

f .„/ ' yf .„/ as „ ! 0 along ‚:

If in addition to (A.2), the constants C0;M0 can be chosen uniformly for all ‚0 b ‚,
then we will write

(A.3) f .„/ ' yf .„/ as „ ! 0 along x‚:

A.1.4. A formal power series yf .„/ D
P
fn„

n is a Gevrey power series if there are
constants C;M > 0 such that for all n � 0,

jfnj � CM
nnŠ:

A.1.5. All the above definitions translate immediately to cover vector-valued holo-
morphic functions on S by using, say, the Euclidean norm in all the above estimates.

A.2. Borel–Laplace theory.

A.2.1. Let „� WD ¹� 2 C� j dist.�; ei�RC/ < "º, where ei�RC is the real ray in the
direction � . Let � D �.�/ be a holomorphic function on „� . Its Laplace transform in
the direction � is defined by the formula:

L� Œ � �.x; „/ WD

Z
ei�RC

�.x; �/e��=„d�:

When � D 0, we write simply L. Clearly, � is Laplace-transformable in the direction
� if � has at-most-exponential growth as j�j ! C1 along the ray ei�RC. Explicitly,
this means there are constants A;L > 0 such that for all � 2 „� ,

j�.�/j � AeLj�j:
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A.2.2. The convolution product of two holomorphic functions �; is defined by the
following formula:

� �  .�/ WD

Z �

0

�.� � y/ .y/dy;

where the path of integration is a straight line segment from 0 to � .

A.2.3. Let f be a holomorphic function on a Borel disc S D ¹„ 2 C„ j Re.ei�=„/ >
1=Rº. The (analytic) Borel transform (a.k.a., the inverse Laplace transform) of f in
the direction � is defined by the following formula:

B� Œf �.x; �/ WD
1

2�i

I
�

f .x; „/e�=„
d„
„2
;

where the integral is taken along the boundary of any Borel disc

S0 D ¹„ 2 C„ j Re.ei�=„/ > 1=R0º � S

of strictly smaller diameter R0 < R, traversed anticlockwise (i.e., emanating from the
singular point „ D 0 in the direction � � �=2 and re-entering in the direction � C �=2).
When � D 0, we write simply B.

The fundamental fact that connects Gevrey asymptotics and the Borel transform is
the following (cf. [10, Lemma B.5]). If f D f .„/ is a holomorphic function defined
on a sectorial domain S with opening angle j‚j D � and f admits Gevrey asymptotics
as „ ! 0 along the closed arc x‚, then the analytic Borel transform �.�/ D B� Œf �.�/

defines a holomorphic function on a tubular neighbourhood „� of some thickness
" > 0. Moreover, its Laplace transform in the direction � is well-defined and satisfies
L� Œ�� D f .

A.2.4. Similarly, for a power series yf .„/, the (formal) Borel transform is defined by

y�.�/ D yBŒ yf �.�/ WD

1X
kD0

�k�
k where �k WD

1
kŠ
fkC1:

The fundamental fact that connects Gevrey power series and the formal Borel transform
is the following (cf. [10, Lemma B.8]). If yf is a Gevrey power series, then its formal
Borel transform y� is a convergent power series in �. Furthermore, a Gevrey power
series yf .„/ is called a Borel summable series in the direction � if its convergent Borel
transform y�.�/ admits an analytic continuation �.�/ D AnCont� Œ y� �.�/ to a tubular
neighbourhood „� of the ray ei�RC with at-most-exponential growth in � at infinity
in „� . If this is the case, the Laplace transform L� Œ��.„/ is well-defined and defines a
holomorphic function f .„/ on some Borel disc S bisected by the direction � , and we
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say that f .„/ is the Borel resummation in direction � of the formal power series yf .„/,
and we write

f .„/ D ��
�
yf .„/

�
.„/:

If � D 0, we write simply � . Expressly, we have the following formulas:

��
�
yf .„/

�
.„/ D L� Œ��.„/ D L�

�
AnCont�

�
y�
��
.„/:

Thus, Borel resummation �� can be seen as a map from the set of (germs of)
holomorphic functions f on S with j‚j D � satisfying (A.3) to the set of Borel
summable power series. One of the most fundamental theorems in Gevrey asymptotics
and Borel–Laplace theory is a theorem of Nevanlinna [8, pp. 44–45],2 which says that
this map �� is invertible, and its inverse is the asymptotic expansion æ.

A.3. Some useful elementary estimates. Here, for reference, we collect some
elementary estimates used in this paper. Their proofs are straightforward (see [10,
Appendix C.4]).

Lemma A.1. For any R � 0, any L � 0, and any nonnegative integer n,Z R

0

rn

nŠ
eLrdr �

RnC1

.nC 1/Š
eLR:

Lemma A.2. Let i1; : : : ; im be nonnegative integers and put n WD i1 C � � � C im. Let
fi1 ; : : : ; fij be holomorphic functions on „ WD ¹� j dist.�;RC/ < "º for some " > 0.
If there are constants Mi1 ; : : : ;Mim ; L � 0 such thatˇ̌

fik .�/
ˇ̌
�Mik

j�jik

ikŠ
eLj�j 8� 2 „;

then their total convolution product satisfies the following bound:ˇ̌
fi1 � � � � � fim.�/

ˇ̌
�Mi1 � � �Mim

j�jiCm�1

.i Cm � 1/Š
eLj�j 8� 2 „:
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Gevrey asymptotic implicit function theorem 281

References

[1] O. Costin, Asymptotics and Borel summability. Chapman & Hall/CRC Monogr. Surv.
Pure Appl. Math. 141, CRC Press, Boca Raton, FL, 2009. MR 2474083

[2] J. Écalle, Les fonctions résurgentes. Tomes I–III. Publ. Math. Orsay 85, Université de
Paris-Sud, Département de Mathématiques, Orsay, 1985. Zbl 0602.30029 MR 852210

[3] R. Gérard and W. B. Jurkat, Asymptotic implicit function theorems. I. The preparation
theorem and division theorem. Asymptotic Anal. 6 (1992), no. 1, 45–71.
Zbl 0789.32005 MR 1188077

[4] P.-F. Hsieh and Y. Sibuya, Basic theory of ordinary differential equations. Universitext,
Springer, New York, 1999. Zbl 0924.34001 MR 1697415

[5] S. Kamimoto and T. Koike, On the Borel summability of WKB-theoretic transformation
series. Preprint (RIMS-1726), 2011.

[6] M. Loday-Richaud, Divergent series, summability and resurgence. II. Lecture Notes in
Math. 2154, Springer, Cham, 2016. Zbl 1348.34002 MR 3495546

[7] B. Malgrange, Sommation des séries divergentes. Exposition. Math. 13 (1995), no. 2–3,
163–222. Zbl 0836.40004 MR 1346201

[8] F. Nevanlinna, Zur Theorie der asymptotischen Potenzreihen. Vol. 1. Ann. Acad. Sci.
Fenn. Math. Ser. A 12–13, Alexander University of Finland, Helsinki, 1918.

[9] N. Nikolaev, Triangularisation of singularly perturbed logarithmic differential systems
of rank 2. [v1] 2019, [v2] 2021, arXiv:1909.04011v2

[10] N. Nikolaev, Exact solutions for the singularly perturbed Riccati equation and exact
WKB analysis. Nagoya Math. J. 250 (2023), 434–469. Zbl 1519.34100 MR 4583136

[11] N. Nikolaev, Existence and uniqueness of exact WKB solutions for second-order
singularly perturbed linear ODEs. Comm. Math. Phys. 400 (2023), no. 1, 463–517.
Zbl 07681358 MR 4581481

[12] J.-P. Ramis, Dévissage Gevrey. In Journées Singulières de Dijon (Univ. Dijon, Dijon,
1978), Astérisque 59–60, pp. 173–204, Société Mathématique de France, Paris, 1978.
Zbl 0409.34018 MR 542737

[13] J.-P. Ramis, Les séries k-sommables et leurs applications. In Complex Analysis, Micro-
local Calculus and Relativistic Quantum Theory (Proc. Internat. Colloq., Centre Phys.,
Les Houches, 1979), pp. 178–199, Lecture Notes in Phys. 126, Springer, Berlin–New York,
1980. Zbl 1251.32008 MR 579749

[14] J.-P. Ramis and Y. Sibuya, Hukuhara domains and fundamental existence and uniqueness
theorems for asymptotic solutions of Gevrey type. Asymptotic Anal. 2 (1989), no. 1, 39–94.
Zbl 0699.34058 MR 991416

[15] D. L. Russell and Y. Sibuya, The problem of singular perturbations of linear ordinary
differential equations at regular singular points. I. Funkcial. Ekvac. 9 (1966), 207–218.
Zbl 0166.07703 MR 214869

https://mathscinet.ams.org/mathscinet-getitem?mr=2474083
https://zbmath.org/?q=an:0602.30029
https://mathscinet.ams.org/mathscinet-getitem?mr=852210
https://doi.org/10.3233/asy-1992-6103
https://doi.org/10.3233/asy-1992-6103
https://zbmath.org/?q=an:0789.32005
https://mathscinet.ams.org/mathscinet-getitem?mr=1188077
https://doi.org/10.1007/978-1-4612-1506-6
https://zbmath.org/?q=an:0924.34001
https://mathscinet.ams.org/mathscinet-getitem?mr=1697415
https://doi.org/10.1007/978-3-319-29075-1
https://zbmath.org/?q=an:1348.34002
https://mathscinet.ams.org/mathscinet-getitem?mr=3495546
https://zbmath.org/?q=an:0836.40004
https://mathscinet.ams.org/mathscinet-getitem?mr=1346201
https://arxiv.org/abs/1909.04011v2
https://doi.org/10.1017/nmj.2022.38
https://doi.org/10.1017/nmj.2022.38
https://zbmath.org/?q=an:1519.34100
https://mathscinet.ams.org/mathscinet-getitem?mr=4583136
https://doi.org/10.1007/s00220-022-04603-7
https://doi.org/10.1007/s00220-022-04603-7
https://zbmath.org/?q=an:07681358
https://mathscinet.ams.org/mathscinet-getitem?mr=4581481
https://zbmath.org/?q=an:0409.34018
https://mathscinet.ams.org/mathscinet-getitem?mr=542737
https://doi.org/10.1007/3-540-09996-4_38
https://zbmath.org/?q=an:1251.32008
https://mathscinet.ams.org/mathscinet-getitem?mr=579749
https://doi.org/10.3233/asy-1989-2104
https://doi.org/10.3233/asy-1989-2104
https://zbmath.org/?q=an:0699.34058
https://mathscinet.ams.org/mathscinet-getitem?mr=991416
https://zbmath.org/?q=an:0166.07703
https://mathscinet.ams.org/mathscinet-getitem?mr=214869


N. Nikolaev 282

[16] D. L. Russell and Y. Sibuya, The problem of singular perturbations of linear ordinary
differential equations at regular singular points. II. Funkcial. Ekvac. 11 (1968), 175–184.
Zbl 0184.12203 MR 245929

[17] D. Sauzin, Introduction to 1-summability and resurgence. 2014, arXiv:1405.0356

[18] Y. Sibuya, Sur réduction analytique d’un système d’équations différentielles ordinaires
linéaires contenant un paramètre. J. Fac. Sci. Univ. Tokyo Sect. I 7 (1958), 527–540.
Zbl 0081.08103 MR 96016

[19] A. D. Sokal, An improvement of Watson’s theorem on Borel summability. J. Math. Phys.
21 (1980), no. 2, 261–263. Zbl 0441.40012 MR 558468

[20] W. Wasow, Asymptotic expansions for ordinary differential equations. Robert E. Krieger,
Huntington, NY, 1976. Zbl 0369.34023 MR 460820

[21] G. N. Watson, A theory of asymptotic series. Philos. Trans. R. Soc. Lond., Ser. A, Contain.
Pap. Math. Phys. Character 211 (1911), 279–313.

(Reçu le 30 mars 2022)

Nikita Nikolaev, School of Mathematics, University of Birmingham, Birmingham, UK;
e-mail: n.nikolaev@bham.ac.uk

https://zbmath.org/?q=an:0184.12203
https://mathscinet.ams.org/mathscinet-getitem?mr=245929
https://arxiv.org/abs/1405.0356
https://zbmath.org/?q=an:0081.08103
https://mathscinet.ams.org/mathscinet-getitem?mr=96016
https://doi.org/10.1063/1.524408
https://zbmath.org/?q=an:0441.40012
https://mathscinet.ams.org/mathscinet-getitem?mr=558468
https://zbmath.org/?q=an:0369.34023
https://mathscinet.ams.org/mathscinet-getitem?mr=460820
https://doi.org/10.1098/rsta.1912.0007
mailto:n.nikolaev@bham.ac.uk

	1. Introduction
	2. Proof of Theorem 1.1
	2.1. Formal perturbation theory
	2.2. Transformation to the standard form
	2.3. Gevrey regularity of the formal solution
	2.4. Exact perturbation theory

	3. Linear algebra in Gevrey asymptotic families
	A. Background information
	A.1. Gevrey asymptotics
	A.1.1. 
	A.1.2. 
	A.1.3. 
	A.1.4. 
	A.1.5. 

	A.2. Borel–Laplace theory
	A.2.1. 
	A.2.2. 
	A.2.3. 
	A.2.4. 

	A.3. Some useful elementary estimates

	References

