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Zeros and roots of unity in character tables
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Abstract. For any finite group G, Thompson proved that, for each � 2 Irr.G/, �.g/ is either
zero or a root of unity for more than a third of the elements g 2 G, and Gallagher proved that,
for each larger than average class gG , �.g/ is either zero or a root of unity for more than a third
of the irreducible characters � 2 Irr.G/. We show that in many cases “more than a third” can
be replaced by “more than half”.
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1. Introduction

For any finite group G, let

�.G/ D min
�2Irr.G/

j¹g 2 G W �.g/ is zero or a root of unityºj
jGj

and let

� 0.G/ D min
jgG j�

jGj
jCl.G/j

j¹� 2 Irr.G/ W �.g/ is zero or a root of unityºj
j Irr.G/j

:

Burnside proved that each�2 Irr.G/with�.1/> 1 has at least one zero, P. X. Gallagher
proved that each g 2 G with jgG j > jGj=jCl.G/j is a zero of at least one � 2 Irr.G/,
J. G. Thompson proved that

�.G/ >
1

3
;

and Gallagher proved that

� 0.G/ >
1

3
:

https://creativecommons.org/licenses/by/4.0/
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The proofs run by taking the relationsX
g2G

j�.g/j2 D jGj .� 2 Irr.G// and
X

�2Irr.G/

j�.g/j2 D
jGj

jgG j
.g 2 G/;

applying the elements � of the Galois group

G D Gal
�
Q.e2�i=jGj/=Q

�
;

averaging over G , and using that the average over G of j�.˛/j2 is � 1 for any nonzero
algebraic integer ˛ 2Q.e2�i=jGj/, or using the fact, due to C. L. Siegel, that the average
over G of j�.˛/j2 is � 3=2 for any algebraic integer ˛ 2 Q.e2�i=jGj/ which is neither
a root of unity nor zero, cf. [1, 3, 4, 11]. For certain groups, there are also strong
asymptotic results about zeros due to Gallagher, M. Larsen, and the author [5, 8, 10].

Are the lower bounds of 1=3 for ¹�.G/ W jGj <1º and 1=3 for ¹� 0.G/ W jGj <1º
the best possible?

Question 1. What is the greatest lower bound of ¹�.G/ W jGj <1º?

Question 2. What is the greatest lower bound of ¹� 0.G/ W jGj <1º?

The author suspects that the answers to these questions are both 1=2. In particular,
we propose the following.

Conjecture 1. �.G/ and � 0.G/ are � 1
2

for every finite group G.

We establish the conjecture for all finite nilpotent groups by establishing a much
stronger result about zeros for this family of groups, which includes all p-groups. The
number of p-groups of order pn was shown by G. Higman [6] and C. C. Sims [12] to
equal p 2

27n
3CO.n8=3/ with n!1, and it is a folklore conjecture that almost all finite

groups are nilpotent in the sense that

the number of nilpotent groups of order at most n
the number of groups of order at most n

D 1C o.1/;

which, in view of our result, would mean that Conjecture 1 holds for almost all finite
groups.

Conjecture 1 is readily verified for rational groups, such as Weyl groups, and all
groups of order< 29, and although �.G/D 1=2 for certain dihedral groups, the second
inequality is strict in all known cases. The author suspects that both inequalities are
strict for all finite simple groups.

Conjecture 2. �.G/ and � 0.G/ are > 1
2

for every finite simple group G.
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We verify Conjecture 2 for An, L2.q/, Suz.22nC1/, Ree.32nC1/, all sporadic
groups, and all simple groups of order � 109. We also show that both �.Suz.22nC1//
and � 0.Suz.22nC1// tend to 1=2 as n!1. In particular, the answers to Questions 1
and 2 must lie between 1=3 and 1=2.

2. Nilpotent groups

We begin with our results on finite nilpotent groups.

Theorem 1. For each finite nilpotent group G, and each � 2 Irr.G/ with �.1/ > 1,
�.g/ D 0 for more than half of the elements g 2 G.

Theorem 2. Let G be a finite nilpotent group, and let g 2 G.
If jgG j > jGj

jCl.G/j , then �.g/ D 0 for more than half of the nonlinear � 2 Irr.G/.
If jgG j D jGj

jCl.G/j , then �.g/ D 0 for at least half of the nonlinear � 2 Irr.G/.

Corollary 3. �.G/ and � 0.G/ are > 1
2

for every finite nilpotent group G.

The key ingredient in the proofs of Theorems 1 and 2 is Theorem 8, which will
replace the result of Siegel used by Thompson and Gallagher. Its proof relies on some
auxiliary results of independent interest and is based on arithmetic in cyclotomic fields.

For each positive integer k, we denote by �k a primitive k-th root of unity. For any
algebraic integer ˛ contained in some cyclotomic field, we denote by l.˛/ the least
integer l such that ˛ is a sum of l roots of unity, by f.˛/ the least positive integer k
such that ˛ 2 Q.�k/, and by m.˛/ the normalized trace

1

ŒQ.j˛j2/ W Q�
TrQ.j˛j2/=Q

�
j˛j2

�
;

so for any cyclotomic field Q.�/ containing ˛,

m.˛/ D
1

jGal.Q.�/=Q/j

X
�2Gal.Q.�/=Q/

j�.˛/j2:

Lemma 4. Let a1;a2; : : : ;al and b1;b2; : : : ; bm be rational integers, and let ˛1;˛2; : : : ;
˛l and ˇ1; ˇ2; : : : ; ˇm be pn-th roots of unity with p prime and n nonnegative. If

lX
jD1

aj j̨ D

mX
kD1

bkˇk;

then
lX

jD1

aj �

mX
kD1

bk .mod p/:
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Proof of Lemma 4. If n D 0, then there is nothing to prove, so assume n � 1. Let �
be a primitive pn-th root of unity. For each j̨ and ˇk , let rj and sk be nonnegative
integers such that j̨ D �

rj and ˇk D �sk . Put

P.x/ D

lX
jD1

ajx
rj �

mX
kD1

bkx
sk :

Then P.�/ D 0, so P.x/ is divisible in ZŒx� by the cyclotomic polynomial

p̂n.x/ D p̂.x
pn�1

/:

Hence P.1/ � 0 .mod p/.

Proposition 5. LetG be a finite group, let � 2 Irr.G/, and let g be an element ofG with
order a power of a prime p. If p D 2 or �.1/ 6� ˙2 .mod p/, then either �.g/ D 0,
�.g/ is a root of unity, or m.�.g// � 2.

Proof of Proposition 5. Suppose that p D 2 or �.1/ 6� ˙2 .mod p/. Let pn be the
order of g, and let � be a primitive pn-th root of unity, so �.g/ 2Q.�/. Let ˛D �m�.g/
with m such that

(1) f.˛/ D min
k

f.�k�.g//:

We will show that either ˛ D 0, ˛ is a root of unity, or m.˛/ � 2.
Let P D f.˛/. Using Q.�k/ \Q.�l/ D Q.�.k;l//, then P divides pn. If P D 1,

then ˛ is rational and the conclusion follows. If P is divisible by p2, then for 
 a
primitive P -th root of unity, ˛ is uniquely of the shape

˛ D

p�1X
kD0

˛k

k; ˛k 2 Q.�P=p/;

the ˛k are algebraic integers, and a straightforward calculation [2, p. 115] shows
that m.˛/ is at least the number of nonzero ˛k . By (1), at least two of the ˛k are
nonzero. Hence m.˛/ � 2 if p2 divides P .

It remains to consider the case P D p. Since Q.�2/ D Q.�1/, we must have
p > 2. If l.˛/ D 0, then ˛ D 0; if l.˛/ D 1, then ˛ is a root of unity; and if l.˛/ > 2,
then m.˛/ � 2 by a result of Cassels [2, Lemma 3]. So assume l.˛/ D 2. Then
by [9, Theorem 1(i)], ˛ can be written in the shape

˛ D "1�1 C "2�2; "2k D 1;
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where �1 and �2 are p-th roots of unity. If �1 D �2, then either ˛ D 0 or m.˛/ D 4. So
assume

�1 ¤ �2:

By Lemma 4,

(2) "1 C "2 � �.1/ .mod p/:

By (2) and the fact that �.1/ 6� ˙2 .mod p/,

"1 C "2 D 0:

Hence, for some root of unity � and primitive p-th root of unity �,

˛ D .� � 1/�:

Hence

m.˛/ D m.� � 1/ D 2 �
1

p � 1

p�1X
kD1

.�k C ��k/ D 2C
2

p � 1
> 2:

Lemma 6. Let G be a finite group, let � 2 Irr.G/, and let g be an element of G with
order a power of a prime p. If �.1/ 6� ˙1 .mod p/, then �.g/ is not a root of unity.

Proof of Lemma 6. Let pn be the order of g, so �.g/ 2Q.�pn/, and suppose that �.g/
is a root of unity. Since the roots of unity in a given cyclotomic field Q.�k/ are the l-th
roots of unity for l the least common multiple of 2 and k, we then have

�.g/ D "�

for some " 2 ¹1;�1º and pn-th root of unity �. So by Lemma 4, either �.1/ � 1

.mod p/ or �.1/ � �1 .mod p/.

Lemma 7. LetG be a finite group of prime-power order, let g 2 G, and let � 2 Irr.G/.
If �.1/ > 1, then either �.g/ D 0 or m.�.g// � 2.

Proof of Lemma 7. If jGj D pn with p prime, then each g 2G has order a power of p,
and each � 2 Irr.G/ has degree a power of p. So if �.1/ > 1, then by Proposition 5
and Lemma 6, for each g 2 G, �.g/ D 0 or m.�.g// � 2.

For any character � of a finite group, let

!.�/ D j¹primes dividing �.1/ºj:
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Theorem 8. Let G be a finite nilpotent group, let � 2 Irr.G/, and let g 2 G. Then

�.g/ D 0 or m.�.g// � 2!.�/:

Proof of Theorem 8. If jGj D 1, then �.g/ D �.1/ D 1, so assume jGj > 1. Since G
is nilpotent, it is the direct product of its nontrivial Sylow subgroups P1; P2; : : : ; Pn.
Let g1; g2; : : : ; gn be the unique sequence with gk 2 Pk and

g D g1g2 : : : gn:

For each Pk , let �k 2 Irr.Pk/ be the unique irreducible constituent of the restriction
of � to Pk . Then

�.g/ D �1.g1/�2.g2/ : : : �n.gn/; �.1/ D �1.1/�2.1/ : : : �n.1/;(3)
�k.1/ divides jPkj;(4) �

jPj j; jPkj
�
D 1 for j ¤ k;(5)

�k.gk/ 2 Q.�jPk j
/:(6)

For any algebraic integers ˛ 2 Q.�l/ and ˇ 2 Q.�m/ with .l; m/ D 1, we have

Q.�lm/ D Q.�l/Q.�m/ and Q.�l/ \Q.�m/ D Q;

and hence

(7) m.˛ˇ/ D m.˛/m.ˇ/:

By (3), (5), (6), and (7),

(8) m.�.g// D m.�1.g1//m.�2.g2// : : :m.�n.gn//:

By (8) and Lemma 7,

�.g/ D 0 or m.�.g// � 2w ;

where w is the number of characters �k with �k.1/ > 1. From (3), (4), and (5), w is
equal to the number of prime divisors of �.1/.

Proposition 9. For each finite nilpotent group G, and each � 2 Irr.G/,

(9)
j¹g 2 G W �.g/ D 0ºj

jGj
� 1 �

1

2!.�/

�
jGj � �.1/2 C 2!.�/

jGj

�
:
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Proof of Proposition 9. Let G be a finite nilpotent group, and let � 2 Irr.G/. By The-
orem 8, for each g 2 G,

(10) �.g/ D 0 or m.�.g// � 2!.�/:

Now take the relation
jGj D

X
g2G

j�.g/j2;

apply the elements � of the Galois group G D Gal.Q.�jGj/=Q/, and average over G .
This gives

(11) jGj D
X
g2G

m.�.g//:

From (10) and (11),

(12) jGj � �.1/2 C 2!.�/j¹g 2 G W �.g/ ¤ 0ºj � 2!.�/:

By (12), we have (9).

Proof of Theorem 1. By Proposition 9.

Proof of Theorem 2. Taking the relation
jGj

jgG j
D

X
�2Irr.G/

j�.g/j2;

applying the elements � of the Galois group G D Gal.Q.�jGj/=Q/, and averaging
over G , we have

jGj

jgG j
D

X
�2Irr.G/

m.�.g//:

So for L D ¹� 2 Irr.G/ W �.1/ D 1º and N D Irr.G/ �L,

(13)
jGj

jgG j
D jLj C

X
�2N

m.�.g//:

By Theorem 8, for each � 2 N ,

(14) �.g/ D 0 or m.�.g// � 2:

From (13) and (14),

(15)
jGj

jgG j
� jLj C 2j¹� 2 N W �.g/ ¤ 0ºj:

By (15), if jCl.G/j D jGj=jgG j, then j¹� 2N W �.g/D 0ºj � jN j=2, and if jCl.G/j>
jGj=jgG j, then j¹� 2 N W �.g/ D 0ºj > jN j=2.

Proof of Corollary 3. By Theorem 1 and Theorem 2.
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3. Simple groups

We now establish Conjecture 2 for several families of simple groups.

Theorem 10. Let n > 0.
(I) For G D An, we have

�.G/; � 0.G/ >

´
1
2

if n < 9,
3
4

if n � 9.

(II) For G D Suz.q/ with q D 22nC1, we have

�.G/ D
1

2
C
.q C 1/.q2 C 2/

2q2.q2 C 1/
and � 0.G/ D

1

2
C

5

2.q C 3/
;

so �.G/; � 0.G/ > 1
2

and

�.G/; � 0.G/!
1

2
as q !1:

(III) For G D L2.q/ with q D pn a prime power, we have �.G/; � 0.G/ > 1
2
.

(IV) For G D Ree.32nC1/, we have �.G/; � 0.G/ > 1
2
.

(V) For each sporadic group G, we have �.G/; � 0.G/ > 1
2
.

(VI) For each finite simple group G of order � 109, we have �.G/; � 0.G/ > 1
2
.

Corollary 11. inf¹�.G/ W jGj <1º; inf¹� 0.G/ W jGj <1º 2
�
1
3
; 1
2

�
.

Proof of Corollary 11. Thompson and Gallagher give the lower bound of 1=3. The
upper bound of 1=2 follows from part (II) of Theorem 10.

Verification of (I). The claim holds up to n D 14, so assume n � 15. In the character
table of An, the values are rational integers, except some values �.g/ with

j�.g/j2 D
1C �1�2 : : :

4

for some partition � of n into distinct odd parts �1 > �2 > : : : . Since n� 15, it follows
that each pair .�; g/ 2 Irr.G/ �G satisfies

(16) �.g/ D 0; j�.g/j D 1; or j�.g/j2 � 4:

Using (16) and the fact that simple groups do not have irreducible characters of degree 2,
we get that each nonprincipal � 2 Irr.G/ satisfies

(17) jGj > j¹g 2 G W j�.g/j D 1ºj C 4j¹g 2 G W j�.g/j ¤ 0; 1ºj;
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and from (17) it follows that �.G/ > 3=4. Similarly, for any class gG with jgG j �
jGj=jCl.G/j, we have

jCl.G/j � j¹� 2 Irr.G/ W j�.g/j D 1ºj C 4j¹� 2 Irr.G/ W j�.g/j ¤ 0; 1ºj;

and hence � 0.G/ > 3=4.

Verification of (II). Let n � 2, r D 2n, q D 22n�1, and G D Suz.q/, so

jGj D q2.q � 1/.q2 C 1/ D q2.q � 1/.q � r C 1/.q C r C 1/:

Maintaining the notation of Suzuki [13], there are elements �; �; �0; �1; �2 such that
each element of G can be conjugated into exactly one of the sets

1G ; �G ; �G ; .��1/G ; A0 � ¹1º; A1 � ¹1º; A2 � ¹1º;

where Ai D h�i i (i D 1; 2; 3), and the irreducible characters of G are given by Table 1
([13, Theorem 13]).

1 � �, ��1 �t
0
¤ 1 �t

1
¤ 1 �t

2
¤ 1

1 1 1 1 1 1 1

X q2 0 0 1 �1 �1

Xi q2 C 1 1 1 "i
0
.�t

0
/ 0 0

Yj .q � r C 1/.q � 1/ r � 1 �1 0 �"
j

1
.�t

1
/ 0

Zk .q C r C 1/.q � 1/ �r � 1 �1 0 0 �"k
2
.�t

2
/

Wl r.q � 1/=2 �r=2 ˙r
p
�1=2 0 1 �1

Table 1

In Table 1, 1 � i � q=2 � 1, 1 � j � .q C r/=4, 1 � k � .q � r/=4, 1 � l � 2,

"i0.�
t
0/ D �

it
C ��it ; � D e2�

p
�1=.q�1/;

and "j1 and "k2 are certain characters on A1 and A2. The Ai ’s satisfy

(18) jA0j D q � 1; jA1j D q C r C 1; jA2j D q � r C 1;

and denoting by Gi (i D 0; 1; 2) the set of elements g 2 G that can be conjugated into
Ai � ¹1º, we have

(19) jGi j D
jAi j � 1

li

jGj

jAi j
;

where l0 D 2 and l1 D l2 D 4.
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Let 
s D �s C ��s with � D e2�
p
�1=.q�1/ and s 2 Z. Then

j
sj D 1, 6s ˙ .q � 1/ � 0 .mod 3.q � 1//;

s D 0, 4s ˙ .q � 1/ � 0 .mod 2.q � 1//:

Since q � 1 � 1 .mod 3/, and q � 1 � 1 .mod 2/, it follows that

j
sj 62 ¹0; 1º for all s 2 Z:

So for any Xi ,

(20) j¹g 2 G W Xi .g/ is zero or a root of unityºj D jGj � jG0j � 1;

and for any g 2 G0,

(21) j¹� 2 Irr.G/ W �.g/ is zero or a root of unityºj D
q

2
C 4:

By (20) and (18)–(19),

(22) �.G/ �
1

2
C
.q C 1/.q2 C 2/

2q2.q2 C 1/
:

Equality must hold in (22) because

j¹g 2 G W Wl.g/ 2 ¹0; 1;�1ºj D jG0j C jG1j C jG2j > jGj � jG0j � 1

and, for any � 2 Irr.G/ � ¹Xiº � ¹Wlº,

j¹g 2 G W �.g/ 2 ¹0; 1;�1ººj � 2j�G j C jG0j C jG2j > jGj � jG0j � 1:

By (21) and the fact that, for any g 2 G0, jCG.g/j D q � 1 < q C 3 D jCl.G/j,
we have

(23) � 0.G/ �
1

2
C

5

2.q C 3/
:

Equality must hold in (23) because 1G , �G , and �G have size < jGj=jCl.G/j, and for
any g 2 G1 [G2,

j¹� 2 Irr.G/ W �.g/ 2 ¹0; 1;�1ººj �
3q � r C 12

4
�
q

2
C 4:

Verification of (III). Let q D pn with p prime, G D L2.q/, let R and S be as in [7,
pp. 402–403], and let G0 (resp. G1) be the set of nonidentity elements g 2 G that can
be conjugated into hRi (resp. hSi).
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Assuming first p ¤ 2, then

jGj D
q.q2 � 1/

2
; jCl.G/j D

q C 5

2
;

jG0j D
q.q C 1/.q � 3/

4
; jG1j D jG0j C q D

q.q � 1/2

4
;

and G � G0 [ G1 consists of 3 classes: 1G , aG , bG , with jCG.a/j D jCG.b/j D q.
Inspecting Jordan’s table [7, p. 402], each � 2 Irr.G/ satisfies either

(i) �.g/ 2 ¹0; 1;�1º on G0 [G1, or

(ii) �.g/ 2 ¹1;�1º on aG [ bG and �.g/ D 0 on G0 or G1.

If q > 3, then

jG0j C jG1j >
jGj

2
and jaG j C jbG j C jG0j >

jGj

2
;

and if q D 3, then G Š A4. So �.G/ > 1=2. Similarly,

j¹� 2 Irr.G/ W �.a/; �.b/ 2 ¹0; 1;�1ººj D
q C 1

2
;

and for g 2G0 (resp. g 2G1) and � 2 Irr.G/, we have �.g/ 2 ¹0;1;�1º away from the
� .q � 3/=4 irreducible characters of degree q C 1 (resp. the � .q � 1/=4 characters
of degree q � 1), from which it follows that � 0.G/ > 1=2.

For p D 2, we have jGj D q.q2 � 1/, jCl.G/j D q C 1,

jG0j D
q.q C 1/.q � 2/

2
; jG1j D

q2.q � 1/

2
;

and G � G0 [ G1 consists of 2 classes: 1G and aG with jCG.a/j D q. The irredu-
cible characters of G are given by Jordan [7, p. 403]. There is the principal character,
1 character of degree q, q=2 characters of degree q � 1, and q=2 � 1 characters of
degree q C 1. All the characters satisfy �.g/ 2 ¹0; 1;�1º on aG , the character of
degree q is ˙1 on G0 and G1, the characters of degree q � 1 vanish on G0, and the
characters of degree q C 1 vanish on G1. From this, it follows that �.G/ and � 0.G/
are > 1=2.

Verification of (IV). Let n be a positive integer,mD 3n, q D 32nC1, andG D Ree.q/,
so

jGj D q3.q � 1/.q C 1/.q2 � q C 1/; jCl.G/j D q C 8:

The irreducible characters of G are given by Ward [14] in a 16-by-16 table, with the
last 6 rows being occupied by 6 families of exceptional characters, the sizes of which
are, from top to bottom,

q � 3

4
;
q � 3

4
;
q � 3

24
;
q � 3

8
;
q � 3m

6
;
q C 3m

6
:
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� � G j [g2G g�g�1j

¹1º 1

hRi � ¹1º q3.q � 3/.q3 C 1/=4

hSi � ¹1º q3.q � 1/.q � 3/.q2 � q C 1/=24

M� � ¹1º q3.q � 1/.q C 1/.q2 � 2q � 3m/=6

MC � ¹1º q3.q � 1/.q C 1/.q2 � 2q C 3m/=6

¹Xº jGj=q3

¹Y º jGj=3q

¹T º jGj=2q2

¹T�1º jGj=2q2

¹Y T º jGj=3q

¹Y T�1º jGj=3q

¹JT º jGj=2q

¹JT�1º jGj=2q

J hRi � ¹J º q3.q � 3/.q3 C 1/=4

J hSi � ¹J º q3.q � 1/.q � 3/.q2 � q C 1/=8

¹J º jGj=q.q2 � 1/

Table 2

From Ward’s table, we find that for any class gG 62 ¹1G ; XG ; JGº, �.g/ 2 ¹0; 1;�1º
for more than half of the irreducible characters � of G. Since the classes 1G ; XG ; JG

all have size < jGj=jCl.G/j, we conclude that

� 0.G/ > 1=2:

The first step in verifying �.G/ > 1=2 is to write down Table 2. Then with Table 2
and Ward’s table in hand, a straightforward check establishes that, for each � 2 Irr.G/,

j¹g 2 G W �.g/ 2 ¹0; 1;�1ººj >
jGj

2
:

Hence �.G/ > 1=2.

Verification of (V) and (VI). Here, in Tables 3 and 4, we report the values of � and � 0

for sporadic groups and simple groups of order � 109. All values are rounded to the
number of digits shown.
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G �.G/ � 0.G/

M11 0:7290 0:8000

M12 0:7955 0:8667

M22 0:7117 0:8333

M23 0:6827 0:7647

M24 0:6913 0:7692

J1 0:5583 0:6000

J2 0:6373 0:6190

J3 0:5840 0:7143

J4 0:6925 0:7903

Co1 0:8739 0:8515

Co2 0:8347 0:8333

Co3 0:7528 0:8333

Fi22 0:8029 0:8769

G �.G/ � 0.G/

Fi23 0:8328 0:8469

Fi024 0:8808 0:8056

HS 0:7853 0:8750

McL 0:6722 0:8333

He 0:7088 0:7576

Ru 0:8517 0:8333

Suz 0:8141 0:8372

O’N 0:6830 0:8667

HN 0:6362 0:7593

Ly 0:7879 0:8491

Th 0:7978 0:8750

B 0:8812 0:8587

M 0:8855 0:8711

Table 3
The sporadic groups.

G �.G/ � 0.G/

L3.3/ 0:6736 0:8333

U3.3/ 0:7049 0:8571

L3.4/ 0:6000 0:8000

S4.3/ 0:8713 0:9000

U3.4/ 0:6892 0:7273

U3.5/ 0:7103 0:8571

L3.5/ 0:6754 0:8667

S4.4/ 0:6433 0:7037

S6.2/ 0:8867 0:8333

L3.7/ 0:6235 0:7273

U4.3/ 0:7121 0:9000

G2.3/ 0:8321 0:9130

S4.5/ 0:6501 0:6471

U3.8/ 0:5701 0:6786

U3.7/ 0:6741 0:7586

L4.3/ 0:6911 0:8621

G �.G/ � 0.G/

L5.2/ 0:7038 0:7778

U5.2/ 0:8041 0:9149

L3.8/ 0:6650 0:7083
2F4.2/

0 0:7006 0:8182

L3.9/ 0:5488 0:6000

U3.9/ 0:6237 0:6739

U3.11/ 0:5494 0:6250

S4.7/ 0:7341 0:7308

OC
8
.2/ 0:8555 0:9245

O�
8
.2/ 0:7578 0:8462

3D4.2/ 0:6920 0:6571

L3.11/ 0:6660 0:6970

G2.4/ 0:6449 0:7500

L3.13/ 0:5354 0:5938

U3.13/ 0:6662 0:6957

L4.4/ 0:6020 0:5714

Table 4
The simple groups of order � 109 that are not cyclic, An, L2.q/, Suz.22nC1/, Ree.32nC1/,
or sporadic.
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