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Extending and improving conical bicombings
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Abstract. We study metric spaces that admit a conical bicombing and thus obey a weak form of
non-positive curvature. Prime examples of such spaces are injective metric spaces. In this article,
we give a complete characterization of complete metric spaces admitting a conical bicombing by
showing that every such space is isometric to a o-convex subset of some injective metric space.
In addition, we show that every proper metric space that admits a conical bicombing also admits
a consistent bicombing that satisfies certain convexity conditions. This can be seen as a strong
indication that a question from Descombes and Lang about improving conical bicombings might
have a positive answer. As an application, we prove that any group acting geometrically on a
proper metric space with a conical bicombing admits a Z-structure.
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1. Introduction

1.1. Extending conical bicombings. A metric space X is called injective if it is an
injective object in the category of metric spaces with 1-Lipschitz maps as morphisms.
More concretely, X is said to be injective if for any metric space B, every 1-Lipschitz
map f:A — X, A C B, can be extended to a 1-Lipschitz map f :B — X. Injective
metric spaces, also called hyperconvex metric spaces by some authors, were first studied
by Aronszajn and Panitchpakdi in [2] and have since been applied in fields as diverse as
functional analysis, geometric group theory, metric fixed point theory and phylogentic
analysis. Particular examples of injective spaces are the real line, metric R-trees and
finite CAT(0) cube complexes endowed with the length metric which is induced by
choosing the {,-norm on each cube (see [43] and also [8, 55] for related results).
Further examples are the Banach space £, of bounded sequences equipped with the
supremum norm, closed geodesically convex subsets of £, and, as shown in [16],
certain subsets of £, that lie between graphs of 1-Lipschitz functions. In contrast to
these examples, however, a smooth Riemannian manifold is injective if and only if it is
isometric to the real line.
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As observed by Lang in [41], injective metric spaces have striking properties
reminiscent of non-positive curvature. In particular, on every injective metric space X
there exist certain distinguished geodesics which satisfy a weak global non-positive
curvature condition. More precisely, there existsamap o: X x X x [0, 1] — X subject
to the following conditions. The curve o,y := o(x, y,-) is a constant speed geodesic
from x to y and

(1.1) d(Oxy(t), 00y (1)) < (1 —t)d(x,x") +1d(y, )

forall x,y,x’,y’ € X andall¢ € [0, 1]. Following Lang, we call such a map o a conical
bicombing. Recently, conical bicombings have become a useful tool in geometric group
theory in connection with Helly groups (see [10,11,26,27,33]) and in metric fixed
point theory where various fixed point results which hold for convex subsets in Banach
spaces have been transferred to spaces admitting a conical bicombing (see [36,40,52]).
In the present article we continue with the study of conical bicombings which was
initiated in [5, 14, 15,45].

The class Con of all metric spaces admitting a conical bicombing enjoys many
desirable structural properties. For example, it is closed under ultralimits, £,-products,
for p € [1, o0], and 1-Lipschitz retractions. Let X be a member of Con. We say that
A C X is o-convex if there exists a conical bicombing o on X such that forall x,y € A
the geodesic oy (+) is contained in A. Clearly, every o-convex subset of X also belongs
to Con. As alluded to above, injective space admit a conical bicombing, and thus
o-convex subsets of injective metric spaces are examples of metric spaces admitting a
conical bicombing. Our first result shows that these examples completely characterize
the class of complete metric spaces that admit a conical bicombing.

Theorem 1.1. Let X be a complete metric space. Then the following statements are
equivalent:

(1) X admits a conical bicombing.

(2) X is isometric to a o-convex subset of an injective metric space.

The main tools used to prove Theorem 1.1 are the 1-Wasserstein distances from
optimal transport theory and metric injective hulls (also known as tight-spans). All
relevant material concerning 1-Wasserstein distances can be found in Section 2. We
continue with a short discussion of injective hulls. We follow [1, Definition 9.12]
and call an isometric embedding i: X — Y essential provided that a 1-Lipschitz map
Jj:Y — Z to any metric space Z is an isometric embedding, whenever j o is an
isometric embedding. A remarkable result of Isbell [35] states that every metric space X
has an essentially unique injective hull (E(X), 7). By definition, £ (X) is an injective
metric space and i: X — E(X) an essential isometric embedding. For other equivalent
descriptions of the injective hull we refer to [, Proposition 9.20]. The existence of
injective hulls has been rediscovered several times (see [12, 18, 30]).
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We refer to [18, pp. 334-339] for some pictures of the injective hulls of n-point
metric spaces for small #. It turns out that the injective hull of a finite metric space
is always isometric to a finite polyhedral complex whose cells are subsets of Ego =
(R?, ||-ls0), where d is the greatest integer such that 2d < #X . Moreover, injective
hulls of 0-hyperbolic spaces are metric R-trees (see [18, Theorem 8]) and in [41] it
is shown that the injective hulls of many interesting locally finite graphs are locally
finite polyhedral complexes which have only finitely many isometry types of cells. We
also note that injective hulls are increasingly used as a tool in geometric group theory.
For example, they are used by Chalopin, Chepoi, Genevois, Hirai and Osajda, to show
that every Helly group admits a geometric group action on an injective metric space
(see [11, Theorem 1.5]).

By construction, the injective hull £(X) is the ‘smallest’ injective metric space
containing X . Indeed, if Y is an injective metric space and j: X — Y an isometric
embedding, then as i: X — E(X) is essential, there exists an isometric embedding
k: E(X)— Y suchthat j = k oi.In what follows, we will often tacitly identify X with
its isometric copy i (X) C E(X). Due to the following extension result, the injective
space appearing in Theorem 1.1 can be taken to be the injective hull of X.

Theorem 1.2. Suppose that o is a reversible conical bicombing on a metric space X.
Then there exists a conical bicombing ¢ on E(X) such that 6 and o coincide on X,
that is, Gxy = Oxy forall x,y € X. In particular, X is a o-convex subset of E(X).

Here, a bicombing o is reversible if 0xy(t) = 0yx(1 —t) forall x, y € X and all
t € [0, 1]. In [5], it is shown that every complete metric space with a conical bicombing
also admits a reversible conical bicombing. Hence, Theorem 1.1 follows readily from
Theorem 1.2.

Theorem 1.2 is applicable to problems of the following form. Let (P) denote a
statement about conical bicombings on a metric space X . Then, by Theorem 1.2, if (P)
is true for E(X), then (P) is also true for X . For instance, by [5, Theorem 1.4] if X is
an injective Banach space and ¢ a conical bicombing on the closed ball B(x,2r) C X,
then on B(x, r) the bicombing o is given by linear segments. As a result, every
injective Banach space admits only one conical bicombing. If X is a Banach space
then E(X) admits a Banach space structure whose norm induces the metric of E(X)
(see [35, Theorem 1]). Hence, by Theorem 1.2 we obtain the following corollary.

Corollary 1.3. A Banach space admits only one reversible conical bicombing. This
unique reversible conical bicombing is given by linear segments.

This may also be established by invoking a result of Gdhler and Murphy (see [23]).
As it turns out, Corollary 1.3 remains valid if the reversibility assumption is dropped.
This is worked out in detail in Section 3.4. We remark that the classical Mazur-Ulam
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theorem is a direct consequence of Corollary 1.3. Indeed, suppose that f:V — W is
a surjective isometry. The map o defined by

(e, 3, 0) > fTHA =0 f () +1f(0))

is a reversible conical bicombing on V. Hence, by Corollary 1.3, o is given by linear
segments, thus f is affine.

Schechtman [53] has recently constructed a non-affine self-isometry f: C — C,
where C C L]0, 1] is closed, convex and has empty interior. It follows immediately
from the above argument that such a set C must necessarily admit more than one conical
bicombing. On the other hand, it follows from a theorem of Mankiewicz (see [44]) that
any self-isometry of C is affine if the interior of C is non-empty. This now gives rise
to the natural question whether every closed convex sets whose interior is non-empty
admits a unique conical bicombing (see [5, Question 1.6]). However, it turns out that
already the closed upper half-plane H C Kgo admits two distinct conical bicombings.
This is discussed further in Example 3.6.

1.2. Improving conical bicombings. It is often desirable to work with bicombings
that satisfy properties which are more restrictive than (1.1). A bicombing o is said to
be convex if t > d(0xy(t),0x,(t)) is convex on [0, 1] for all x, y,x’, " € X. There
are many examples of conical bicombings that are not convex (see [14, Example 2.2]).
However, every consistent conical bicombing is convex. We say that a bicombing o is
consistent if it is reversible and

o(x,y,st) = o(x, axy(t),s)

forall x,y € X and all 5,¢ € [0, 1]. In [38], Kleiner introduced often convex metric
spaces which in our terminology are metric spaces with a consistent convex bicombing.
We refer to [11,32,39] for some recent applications of consistent convex bicombings.

Every Gromov hyperbolic group I' acts properly and cocompactly on the proper
metric space E(I"), provided we endow I' with the word metric with respect to any
finite generating set (see [4 1] for more details). In [14], Descombes and Lang discovered
strong non-positive curvature properties of E(I"). A geodesic 0: [0, 1] — X is straight
if t = d(a(t), x) is convex on [0, 1] for all x € X. Descombes and Lang showed
that £(I") has unique straight geodesics and the bicombing on E(I") given by straight
geodesics is the only consistent convex bicombing on E(I"). In general, it is an open
question whether every proper metric space with a conical bicombing also admits a
consistent convex bicombing; see [14, p.368] and also [50, p. 385]. The following
result can be regarded as a first step towards solving this difficult problem.
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Theorem 1.4. Let X be a proper metric space admitting a conical bicombing. Then
there exists a consistent bicombing y on X such that the following holds. Each
curve yxy(-) is a straight geodesic and t — d(yxy(t), yx'y (t)) is convex on [0, 1]
whenever d(x,y) = d(x’, y"). If X is compact or injective, then y is furthermore
equivariant with respect to the isometry group of X.

It seems likely that the bicombing y of Theorem 1.4 is in fact convex. However,
we do not know how to prove this. A key component in the proof of Theorem 1.4
is a sequence (y™) of bicombings satisfying a discrete consistency condition. Hav-
ing (y™) at hand, y is obtained via a straightforward ultrafilter argument. We con-
struct (y ) by means of a fixed point argument on the moduli space CB(X) of all
conical bicombings on X . The moduli space CB(X) is introduced and discussed in
detail in Section 4. We hope that CB(X) may prove useful for further study of metric
spaces with a conical bicombing.

Theorem 1.4 can be used to construct a visual boundary for every proper metric
space admitting a conical bicombing. Let X be such a space and let y denote a consistent
bicombing on X satisfying the properties stated in Theorem 1.4. A geodesic ray
&Ry — X, where Ry := [0, 00), is said to be a y-ray provided that

E((1=2)s + A1) = y(E(9).6(t). 1)

forall0 <s <t andall A € [0, 1]. The visual boundary 0X,, is the set of equivalence
classes of mutually asymptotic y-rays. As usual, two geodesic rays &, &’ are called
asymptotic if the function ¢ — d (E (@), & (t)) is bounded.

In what follows, we construct for any 0 € X a natural metric d, on X y =X U0dX.
In Lemma 6.2 we prove the following. For every o € X and every X € d, X, there exists
a unique y-ray gox such that 0,5(0) = o and [g,x] = X. To simplify the notation, for
each x € X we define gox: R4+ — X as follows: 0,x(¢) = x for all > d(0, x) and
Oox (t) = yox(t/d(0, x)) otherwise. In Lemma 6.3, we show that

To(x.x') = /0 0 (0or(0). 00w (1)) €~ d

defines a metric on X. y and the topology on X y induced by d, is independent of the
basepoint o.

A subset A of a topological space X is called Z-set if it is closed and there exists a
homotopy /4: X x [0,1] — X suchthati;(X) C X \ Aforallt € (0,1] and ho(x) = x
for all x € X. For example, the boundary of a topological manifold is a Z-set in that
manifold. A celebrated result of Bestvina and Mess (see [7, Theorem 1.2]) states
that the Gromov closure P (T") of an appropriately chosen Rips complex P(T") of a

word hyperbolic group I' has the following properties. P(I") is an absolute retract and
P(T)\ P(T') is a Z-setin P(I"). We have the following analogous result for )?,,.
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Theorem 1.5. Let X be a proper metric space admitting a conical bicombing. Then X. y
is an absolute retract and 3, X is a Z-set in X,.

In [14], Descombes and Lang established Theorem 1.5 for general complete metric
spaces in the case when y is a consistent conical bicombing. To prove Theorem 1.5
we closely follow their proof strategy, which is modeled on the boundary construction
for Busemann spaces introduced in [31]. The main difference between the proofs is
that we cannot use the conical inequality (1.1) in our proof, since we are working with
the bicombing y from Theorem 1.4 and do not know whether y is conical or not. This
leads to slightly different arguments in several places.

Theorem 1.5 has an interesting application in geometric group theory. Let G denote
a group. A pair of compact topological spaces (X, Z) is called Z-structure of G if the
following hold:

(1) X is an absolute retract and Z is a Z-set in X;
(2) X = X \ Z is a proper metric space on which G acts geometrically;

(3) for every open cover U of X and every compact subset C C X all but finitely
many G-translates of C are contained in some element of U.

The notion of a Z-structure was coined by Bestvina in [6] to formalize the notion
of boundary of a group. The above definition is a generalization of Bestvina’s original
definition and goes back to Dranishnikov [17]. The existence of a Z-structure (X, Z)
of a group G has many interesting consequences, since several homological invariants
of Z are related to cohomological invariants of G. We refer the reader to [24] for a
recent survey of Z-structures. Following Farrell and Lafont (see [21]), we say that
a Z-structure is an E Z-structure if the action G ~ X can be extended to an action
G ~ X by homeomorphisms.

Corollary 1.6. Let G be a group which acts geometrically on a proper metric space X
admitting a conical bicombing. Then G admits a Z-structure. If X is an injective
metric space, then G also admits an E Z-structure.

There is a wide variety of groups which act geometrically on proper injective
metric spaces. Examples include Gromov hyperbolic groups and, more generally, Helly
groups, which encompass among others weak Garside groups of finite type and Artin
groups of type FC (see [33] and also [11] for additional examples). The fact that every
Helly group admits an E Z-structure has already been proved by Huang and Osajda [33].
We remark that not every group which acts geometrically on an injective metric space
is necessarily a Helly group (see [34, Corollary D]).
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2. 1-Wasserstein distances and barycentric metric spaces

2.1. The 1-Wasserstein distance. We recall the basic properties of the 1-Wasserstein
distance. Let X be a metric space and let P(X) denote the set of all Radon probability
measures on X . For u, v € P(X), we introduce the 1-Wasserstein distance
Wi, v) = inf/ dx,y)dn(x,y) (u,v e P(X)),
T JXxX

where the infimum is taken over all couplings of the pair (u, v). Here, 7 € P(X x X)
(we equip X x X with the 1-product metric) is a coupling of (u,v) if m(B x X) =
w(B) and (X x B) = v(B) for all Borel subsets B C X. Let P;(X) denote the
set of all u© € P(X) such that W;(u, 8x,) < oo for some xo € X. The celebrated
Kantorovich—Rubinstein duality theorem states that

@ Wi, v) = sup{/X fau- [ ravise Liplm}

for all u, v € P1(X). We use Lip; (X) to denote the set of all 1-Lispchitz functions
f:X — R. We remark that if the supports of i and v are finite, then (2.1) follows easily
from the strong duality theorem of linear programming. For a thorough discussion
of the Kantorovich—Rubinstein theorem we refer the reader to the excellent survey
article [19].

As a direct consequence of (2.1), the pair (P1(X), W1) is a metric space. Moreover,
for every L-Lipschitz map f: X — Y the push-forward map fu: P1(X) — P1(Y)is
L-Lipschitz as well; see [49, Lemma 2.1].

Lemma 2.1. Let X and Y denote metric spaces. Ifi: X — Y is an isometric embedding,
then iy: P1(X) — P1(Y) is an isometric embedding as well.

Proof. Tt suffices to prove that the map Lip, (¥Y) — Lip,(X) defined by g — g oi is
surjective. To this end, let f* € Lip;(X) and let g: Y — R be defined by

y i inf [£() +d(.i(0)].

We remark that such functions g occur naturally in the context of the McShane extension
theorem (see [25, Remark 2.4] for more information). Notice that

fO) +di(x),i(x) = f) +[f(x) = f(D] = f(x)
for all x, x” € X. Consequently, since f(x) > g(i(x)), it follows that f = goi.In
addition, for all y,y’ € Y,
[inf [ /() + d (i) = inf [£(x) +d 01 )]

sup ld(i(x).y) —d(i(x),y)| <d(y.y).

Hence, g is a 1-Lipschitz function on Y such that f = g o, as desired. |

lg(») — gl

IA
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In this article, we will mainly work with measures which are supported at finitely
many points. For such measures, the following formula for the 1-Wasserstein distance
is well known.

Proposition 2.2. Assume that x1, y1,...,Xn, Yn € X are (not necessarily distinct)
points of a metric space X. Then

1 & 1 ¢
Wl(; Z(Sxpgzgyi) = n ;21;1 Zd(x”y”(’))

i=1 i=1
where Sy, denotes the symmetric group of degree n.

Proof. We sketch the proof indicated in [56, p. 5]. Another proof using Hall’s marriage
theorem can be found in [13, p. 953]. We abbreviate

1 o 1 <
=;Z(Sxi and U::;ZSJ)['

i=1 i=1
Clearly,

1 n
Wi(u,v) = min{— Z pijd(x;,y;) : P = (pij) is doubly stochastic}.
n
i,j=1
A non-negative n x n matrix P is doubly stochastic if Pj = P’j = j for the all-ones
vector j € R”. The Birkhoff-von Neumann theorem states that each doubly stochastic
matrix is equal to a finite convex combination of permutation matrices. Hence, by the
above,
1 n
Wi = mind -3 dmrd i) 7 S
i=
as desired. ]

Our next lemma computes Wy (i, v) in the special case when the supports of 1 and v
consist of at most two points. The proof is straightforward and follows from solving a
certain system of linear equations. Alternatively, we could also invoke Proposition 2.2
and a simple limit argument. In the following, we use the notation a Vv b := max{a, b}
and a A b := min{a, b}.

Lemma 2.3. Let x1, X2, y1, 2 € X and s,t € [0, 1]. Then
Wi ((1 = $)8x, + 85y, (1 — 18y, + 18y,)
— min [(1 — (s 4 1) + N)d(x1, y1) + (s — V)d(x2, y1)

A.els![
+ (t = A)d(x1, y2) + Ad(x2, yz)],

where I, = [0V (s +t—1),5 At].
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Proof. We abbreviate = (1 — 5)0x, + s8x, and v := (1 —1)d,, + 18,,. Notice
that m € P;(X x X) is a coupling of (i, v) if and only if 7 = Zi,j 7ij8(x;,y;) With
0< i = 1 and

M1 +7m2=1—58, 7wy +mpm=s, w1+ =1—t, w1+ 7020 =1.
The solution set of this system of linear equations equals
v(s, 1) + {(/X, —A,—AA) A€ R},
where v(s,?) = (1 — (s +1),¢,5,0). Since 0 < m;; < 1, letting
Ly =[0V(s+1—1)snt],
we get that Wy (u, v) is equal to
Jmin [(1= (s 4 0) 4+ Dd(xr, 1) + (0= Do, )

+ (s = M (31, %2) + 2d (2. 32) .
as was to be shown. [

2.2. Barycentric metric spaces. In what follows, we introduce barycentric metric
spaces and recall their close connection to conical bicombings. The following definition
is due to Sturm (see [54, Remark 6.4]).

Definition 2.4. Let X denote a metric space. A 1-Lipschitz map 8: P1(X) —> X isa
contracting barycenter map if f(8x) = x for all x € X. A metric space is said to be a
barycentric metric space if it admits a contracting barycenter map.

There are many examples of barycentric metric spaces. In particular, every injective
metric space is barycentric. This can be seen by considering the isometric embedding
X — P1(X) defined by x — §,. Moreover, every Banach space admits a unique
contracting barycenter map. Indeed, one can show that if £ denotes a real Banach
space, then B: P;(E) — E defined by

ﬂwr=Lxmmx

where the integral on the right hand side is the strong Bochner integral, is the only
contracting barycenter map on E (see [3, Proposition 3.6]). It is well known that
the Cartan barycenter map on a complete CAT(0) spaces is contracting (see [54,
Theorem 6.3] or [42, Lemma 4.2]), and so every complete CAT(0) space is barycentric.
More generally, Navas [48] established that in fact every complete Busemann space is
a barycentric metric space.

In the following lemma we show by standard arguments that every barycentric
metric space admits a conical bicombing.
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Lemma 2.5. Suppose that §: P1(X) — X is a contracting barycenter map on a metric
space X. Then og: X x X x [0,1] — X defined by

(x,y.1) > B((1 —1)8x + 13y)

is a reversible conical bicombing on X.

Proof. Fix x,y € X and s,t € [0, 1] such that s < t. We abbreviate 0 := 0g. Using
that B is a contracting barycenter map, we obtain

d(0xy(8), 0xy (1)) < Wi((1 = 5)8x + 58y, (1 —1)8x +18,) = (t —s)d(x,y).
where the equality is due to Lemma 2.3. Since

d(x,y) < d(x,ny(s)) + d(ny(s)’ny(l)) + d(oxy(t)vJ’) <d(x.,y),

it follows that d(oxy(5), 0xy(t)) = (t — s)d(x.y), and so oy, is a geodesic from x
to y. Next, we prove (1.1). Let ¢ € [0, 1]. Using Lemma 2.3, we obtain

(22)  d(ory(0).0xy (1)) < Wi((1 = D)8y + 18y, (1 = )85 +182) = 1d(y.2)
for all x, y, z € X. Since o is reversible,

d(0xy(t),0x1y (1)) < d(0xy (1), 0xy (1)) + d(0yx(1 —1),0y7x (1 = 1)),
and thus by using (2.2), we obtain (1.1), as desired. [ ]
Conversely, every complete metric space with a conical bicombing is barycentric:

Theorem 2.6. Let X denote a complete metric space. Then the following statements
are equivalent:

(1) X admits a conical bicombing.

(2) X is a barycentric metric space.

Theorem 2.6 is essentially known. The key idea leading to Theorem 2.6 is a 1-
Lipschitz barycenter construction first described by Es-Sahib and Heinich [20]. This
barycenter construction has been improved by Navas in [48]. A streamlined proof of
Navas’s construction using elementary statistics can be found in [13]. The implication
(2) = (1) is a direct consequence of Lemma 2.5. The other direction follows from
the following result, which is essentially due to Descombes (see [13]).

Theorem 2.7. Let X denote a complete metric space admitting a conical bicombing o.
Then there exists a contracting barycenter map Bs: P1(X) — X such that B5(1) €
convg (spt(w)) for all u € P1(X).
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The support spt(u) is the set of all points x € X such that u(U) > 0 for all open
subsets U C X containing x. For A C X the closed o-convex hull of A, denoted
by convy (A), is the closure of the smallest o-convex set that contains A.

Proof of Theorem 2.1. We give only the main ideas of the proof. By virtue of [5,
Proposition 1.3], we obtain a reversible conical bicombing 7 on X such that conv;(A) C
convy (A) forall A C X. We set by (x) := x and by(x, y) := rxy(%) forall x,y € X.
Using [3, Proposition 3.4], we obtain a sequence of maps (b,: X" — X),>3 satisfying

1 n
23) d(bn(x).ba(y)) = — min Y d(xi, yri))
"i=1

foralln > 3and all x, y € X". Given x € X", for each k > 1 we write Q¥ (x) € X*»
to denote (x, ..., x). Descombes [13, Theorem 2.5 (1)] proved that the limit

b(x) = lim bu(Q*(x))
k—+o0
exists for all x € X". Moreover, if x = (x1,...,Xy), then
(2.4) b(x) € conve ({x1,....xn}).

By (2.3), (2.4), and Proposition 2.2, the map B: Po(X) — X given by

w= %(SXI 4ot 8, ) > B(W) = b(x1, ..., xp)

is well defined, B(u) € conv,(spt(n)), and d(B(n), B(v)) < Wi(w,v) forall u,v €
Pg(X), where Pg(X) C Pi(X) denotes the set of all Radon probability measures
on X with finite support and rational weights. The map f: Pg(X) — X extends to
a contracting barycenter map 8 on X, for X is complete and Pg(X) is W;-dense
in P1(X) (see [3, Proposition 3.2]). Now, it is easy to check that 8, := B has the
desired properties. The theorem follows. |

We remark that in view of Theorem 1.2, to prove Theorem 2.7 it would suffice to
consider the special case when X is an injective metric space. However, to prove this
special case seems to be as difficult as proving the general case.

3. Extending conical bicombings

3.1. Consequences of the conical inequality. The following lemma shows that every
reversible conical bicombing satisfies an inequality which is slightly stronger than (1.1).
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Lemma 3.1. Let X be a metric space, A C X, and {ox,(-) : x,y € A} a collection of
geodesics 0xy: [0, 1] — X such that

0y (0) =x, 0y () =y, and 0xy(t) = oyx(1—1)
forallt € [0,1]andall x,y € A. If
(B.D d(0xy(1),0xz(1)) =1d(y.z)
forallx,y,z € Aandallt € [0, 1], then
d(Ox x5 (1), Oyy 5, (1)) < Wi ((1 = 1)8x, + 185y, (1 — )8, + 18y,)
forallt € [0,1] and all x1, x2, y1, y2 € A.
Proof. Without loss of generality, we may suppose that ¢ € [1/2, 1]. We retain the

notation from Lemma 2.3. For s = ¢, one has I;; = [2¢ — 1, ¢]. Thus, by substituting
g:=1 — AinLemma 2.3, we obtain

(3.2) Wi((1 = 1)y, + 18x,, (1 = 1)8, + 16,,)

= min [e(d(x1,72) + d(1.x2)) + (1 = £)d(x2,2)
e€[0,1—¢]

+ (1= —e)d(x1. )]
On the one hand, we compute

d(0x,x, (1), 0y, (1)) = d(0x,x, (1), Ox, 3, (1)) + d(Oy,x, (1 = 1), 0y, y, (1 — 1)),
and so, by the use of (3.1), we get
(3.3) d(0x,x, (1), 0y, (1)) < (1 —1)d(x1, y1) + 1d(x2, y2),
but on the other hand,
d(0x 3, (1), Oy, (1)) < d(0xyx, (1 = 1), 0x,y, (1 — 1))
+ d(0xyy, (1 = 1), 0x,7, (1)) + d(0x,5y,(1), 0y, 3, (1))
and therefore
(3.4) d(0x,x, (1), 0y,y, () < (1 —1)d(x1, y2)
+ (21 — Dd(x2, y2) + (1 = 1)d(x2, y1).
By combining (3.2) with (3.3) and (3.4), we find that
d(0x,x, (1), 0y, (1)) < Wl((l —1)0x; + 185, (1 —1)8y, + tgyz)’
as desired. ]
Lemma 3.1 tells us that if ¢ is a reversible conical bicombing on X, then the map

(1 —1)8x + 18, > o0xy(t) is 1-Lipschitz with respect to the 1-Wasserstein distance.
This observation is the key idea behind the proof of Theorem 1.2.
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3.2. Partially defined barycenter maps. In the following we will prove that any
partially defined barycenter map f: M — X, where M C P;(X), can be extended to
a contracting barycenter map ,5 : P1(E(X)) = E(X). The proof crucially relies on the
following well-known property of the injective hull.

Lemma 3.2. Let X denote a metric space and (E(X), 1) its injective hull. If z,z' €
E(X) satisfy d(z,i(x)) = d(z,i(x)) forall x € X, thenz = z'.

Proof. Consider the metric space
A (X) = {f €Lipy(X): f(x) + f(x') = d(x,x) forall x,x" € X}
equipped with the supremum metric doo, that is,

doo(f,8) = IIf —8llec = suglf(x) —g(x)|

forall f, g € Aj(X). It is straightforward to show that A;(X) is an injective metric
space (see, for example, [41, Proposition 3.2]). Moreover, for any f € A;(X), one has
that

I f —dxllooc = f(x)

for all x € X, where d, € A1(X) denotes the distance function from x. Clearly,
Jj: X — A1(X) defined by x — d is an isometric embedding. Hence, by the definition
of the injective hull, there exists an isometric embedding k: E(X) — A;(X) such that
i(x) + dy. By construction,

k(z2)(x) = [[k(z) =k (x))]loo = d(z,i(x))

for all x € X. Therefore, by our assumptions on z and z’, it follows that k(z) = k(z’),
but this is only possible if z = z’, for k is an isometric embedding. This completes the
proof. ]

We say that 8: M — X is a partially defined barycenter map it M C P1(X)
contains {§x : x € X} and B is 1-Lipschitz.

Lemma 3.3. Let X be a metric space and denote by (E(X), i) its injective hull.
Then for any pamally defined barycenter map B: M — X there exists a contracting
barycenter map ,3 P1(E(X)) — E(X) which extends B, that is, ﬂ(l#(,u)) =i(B(n))
forallp e M.

Proof. The composition i o f is a 1-Lipschitz map and the push-forward map
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is an isometric embedding; see Lemma 2.1. Therefore, as E(X) is an injective metric
space, there exists a 1-Lipschitz map

B: PI(E(X)) — E(X)

such that i (B(n)) = E(i#(u)) forall u € M.
To finish the proof it remains to show that §(8;) = z for all z € E(X). To this end,

let f: E(X) — E(X) be defined by z — B (6;). By construction, f is 1-Lipschitz and
f(i(x)) =i(x)forall x € X and thus f oi is an isometric embedding. Consequently,
by the definition of the injective hull, f is an isometric embedding as well. In particular,

d(f(2),i(x)) = d(z,i(x))

for all x € X. Hence, Lemma 3.2 implies that f(z) = z for all z € E(X). Since
f(z) = B(6;) this gives the desired result. =

3.3. Extensions to the injective hull. Next, we prove Theorem 1.2 from the introduc-
tion, which states that any reversible conical bicombing on a metric space X can be
extended to a conical bicombing on E(X). The proof is a straightforward application
of Lemmas 2.5, 3.1 and 3.3.

Proof of Theorem 1.2. We put
M = {(1—1)8x +18,:x,y € X, t €[0,1]}.

Due to Lemma 3.1, it follows that : M — X defined by (1 — )8y + 18y > 0y, (1)
is 1-Lipschitz and thus it is a partially defined barycenter map. Therefore, by virtue
of Lemma 3.3 there exists a contracting barycenter map E :P1(E(X)) - E(X) such
that B(i#(u)) =i(B(wn)) for all ©w € M. Hence,

5:E(X) x E(X) x [0,1] = E(X)

defined by (x, y,?) — E((l —t)8x + t8y) is a reversible conical bicombing; see
Lemma 2.5. By construction, 6;(x)i(y) = 0 0xy forall x,y € X. ]

3.4. Doss expectation. In what follows, we prove the following generalization of
Corollary 1.3.

Proposition 3.4. Any normed real vector space admits only one conical bicombing.
This unique conical bicombing is given by linear segments.
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To establish Proposition 3.4 we consider the Doss expectation of a measure. Let X
be a metric space. For each u € P1(X), the set

Eplu] == {z € X :d(z,x) < Wi(u,d) forall x € X}

is called the Doss expectation of . See [47, Section 2.3.] for other notions of expecta-
tion in metric spaces. Notice that 0y, () € Ep[(1 — )8, + t6,] forall x, y € X and
all ¢ € [0, 1] whenever o is a conical bicombing on X . Conversely, if X is an injective
metric space, then the map o — 0y, (t) € Ep[(1 — )85 + 16,] is surjective.

Lemma 3.5. Let X be an injective metric space. Then forall x,y € X and allt € [0, 1]
the following holds. For every z € Ep[(1 —t)8x 4 t8,] there exists a reversible conical
bicombing o on X such that 0xy(t) = z. In particular, if X admits only one reversible
conical bicombing, then Ep[(1 — t)8x + t8y] is a singleton.

Proof. Fix z € Ep[(1 —1)dx + t8,], abbreviate p := (1 —#)6x + ¢, and put M =
{6x :x € X}U{u}. The map f: M — X defined by 6, —> x and u > z is a partially
defined barycenter map. Thus, as X is injective, there exists a contracting barycenter
map B: P1(X) — X such that B(u) = f(u) for all u € M. Let og be defined as
in Lemma 2.5. By construction, og (x,y,t) = z. Since og is a reversible conical
bicombing, the lemma follows. |

We proceed by proving Proposition 3.4.

Proof of Proposition 3.4. Let V be a normed vector space over R. It suffices to show
that Ep[(1 — )8 + t8,] is asingleton for all (x, y,t) € V x V x [0,1]. Let (E(V),i)
denote the injective hull of V and fix (x, y,?) € V x V x [0, 1]. By the use of Lemma 3.3,
it is not hard to check that

(3.5) i(Ep[(1 —1)8x +18y]) CEp[(1 —1)8i(x) + 18iy)]-

Since V is a normed real vector space, a result due to Isbell [35, Theorem 1] (see
also [51, Theorem 2.1]), tells us that there exists a Banach space structure on £ (V') such
that its norm induces the metric of £(V'). Hence, from Corollary 1.3 and Lemma 3.5,
it follows that Ep[(1 —1)d;(x) + 10i(y)] is a singleton. By (3.5), Ep[(1 —)dx + 6]
is a singleton as well, as desired. [

It seems natural to ask if Proposition 3.4 can be generalized. For example, one may
ask if any closed convex subset of a Banach space admits a unique conical bicombing.
However, we show in the following example that already certain convex subsets of £5°
admit two distinct conical bicombings (and thus infinitely many). This gives a negative
answer to [5, Question 1.6].
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Example 3.6. We consider the Banach space £2_ := (R?, || o), Where ||-|| s denotes
the supremum norm. We put H := {(s, ) € R?:¢ > 0} C Kgo. In what follows, we
show that H admits two distinct conical bicombings. Let 7;: H — R, fori =1, 2,
denote the projection onto the ith coordinate axis. A straightforward computation
shows that 8: Py(H) — H defined by u — (B1(n), B2(1)), where

Bi(p) = ,}22(7” (p) + Wi(8p, 1)),

is a contracting barycenter map. We set p; := (—1,0), p> := (1,0), and

1 1
Mn = 581?1 + 58172'

We claim that S(u) = (0, 1). Clearly,
dy = min W1(8p, ) < B2(p).
peEH

Notice that if p € H satisfies Wi (p, u)=d,, then W, (r(p), u)=d,,, wherer: H — H
is the reflection about the y-axis. Thus, every point g on the linear segment [p, 7 (p)]
satisfies

Wi(q, ) =dy.

Hence, there exists ¥ € H such that 7 (u) = 0 and W (8, ) = d,,.. Consequently,

1 < Wiy, ) = du < Ba(w).

Since

1B() = pilloo = 1B(1) = P2lloc = %Ilpl — P2lloos

we obtain B>(u) = 1 and thus B(u) = (0, 1), as claimed.

The map o: H x H x [0,1] — H defined by (p,q.t) = B((1 —1)d, + t8y) is
a reversible conical bicombing on H; see Lemma 2.5. Let A denote the conical
bicombing on H given by linear segments. By construction, o (p1, p2, %) = (0,1) and
A(p1, P2, %) = (0, 0). Hence, we infer 0 # A and thus H admits two distinct conical
bicombings, as desired.

4. Conical bicombings as fixed points

4.1. Conical bicombings on CB(X). Let X be a metric space and let CB(X) denote
the set of all conical bicombings on X . In the following, we show that CB(X) can be
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endowed with a metric such that the resulting metric space admits a conical bicombing
whenever X does. Given o € X let D,: CB(X) x CB(X) — R be defined by

Dy (0, ) i= sup{37¥d (04 (1), Txy () 1 k = 0,x,y € By (0),1 €[0,1]}.

Clearly, D, is a metric on CB(X). We have defined D, in such a way that for proper
metric spaces X the induced topology on CB(X) coincides with the topology Tx of
uniform convergence on compact sets; see Lemma 4.2. This will be important in Sec-
tion 5, where fixed point arguments on CB(X) are employed to construct bicombings
which satisfy certain consistency conditions.

The following lemma shows that each conical bicombing on X induces a conical
bicombing on (CB(X), D,).

Lemma 4.1. Let X be a metric space and fix o € X. If ¢ is a conical bicombing on X,
then for all o, T € CB(X), the map ®g,: [0, 1] - CB(X) defined by

Do (1): X x X x[0,1] = X,
m{ (5,35 1 9(02y(5). Ty (5).1)
is a geodesic in (CB(X), D,) connecting o to t. Moreover,
®:CB(X)xCB(X) x[0,1] - CB(X)
defined by (0, 1,t) = ®y. (1) is a conical bicombing on (CB(X), D,).

Proof. Fixo,7 € CB(X) andt € [0, 1]. Letting v := ®4.(¢) and using that ¢ satis-
fies (1.1), we obtain

4.1)  d(uxy(s), Uxy(s) < (1 = 1)d(0xy(5), 0xy/(s")) + 1d (Txy (5), Ty (57))
forall x,y,x’,y’ € X and all s, s’ € [0, 1]. In particular,
d(ny(S)a ny(sl)) <|s _5/|d(va’)-

Now, exactly the same argument as in the proof of Lemma 2.5 shows that v defines
a bicombing on X. Moreover, since the bicombings ¢ and t are conical, it follows
immediately from (4.1) that v is conical was well. As a result, ®,,: [0, 1] = CB(X)
is well defined. Next, we show that it is a geodesic. Since ¢ is a bicombing, we have

d(@oc(t)(x,y.5), Poc(t')(x,y.5)) = [t —1|d(0xy (s), Txy (5))
forall x,y € X and all s € [0, 1]. Hence,
Do(®g(2), q)ar(t/)) =|r— tllDo(U’ 7)

forallz, ¢’ € [0, 1], as desired.
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To finish the proof we need to show that ® is conical. Notice that
d(Qor(1)(x,y.5), Pore (t)(x.y.5)) < (1 = 1)d (0xy (), 0%, (5)) + 1d (Txy (), Ty, (5))
forall x,y € X and all s € [0, 1]. Consequently,

Do(Po:(1). Porv (1)) = (1 =1)Do(0.0") + 1Dy (7. T'),
as was to be shown. ]

Clearly, CB(X) also admits conical bicombings for other choices of metrics. We do
not know if there exists a conical bicombing on (CB(X), D,) which is not equal to ®
for any bicombing ¢ on X. In other words, we do not know whether ¢ — @ defines
a surjective map from CB(X) to CB(CB(X)). We conclude this subsection with the
following straightforward result which states that CB(X) is compact whenever X is
proper.

Lemma 4.2. Let X be a proper metric space. Then D, induces the topology of uniform
convergence on compact sets. In particular, (CB(X), D,) is a compact metric space
forallo € X.

Proof. Let K C X be a compact subset, 0 € CB(X) and ¢ > 0. We put

U(K,0,€) = {t € CB(X) : sup [[oxy — Taylloo < €}

x,yeK

There exists k > 0 such that K C B,« (0), and so Up, (o, 37k ¢) CU(K,o,¢), where
Up, (o, 37k &) denotes the open ball with respect to D,, with center o and radius 37ke.
The sets U(K, o, ) form a basis of the topology 7x. Hence, by the above 7p, C Tk.
Next, we show the other direction. Let 0 € CB(X) and ¢ > 0 be given. Choose kg > 0
such that (%)ko < e. We put K := B, (0). Notice that for all k > ko,

sup 37K loxy = txylloc <  sup 37k ok <6
x,y€B, (0) x,y€B,y (0)

Hence, U(K,0,¢) C Up,(0,¢), and as aresult, Tx C Tp,,, as desired. Since Tp, = Tk,
it follows immediately from the Arzela—Ascoli theorem that (CB(X), D,) is compact
metric space for all 0 € X. |

4.2. A fixed point result and its applications. The following proposition is due
Kijima [37]. It can be proved by slightly adapting the proof of a well-known result
from the fixed point theory of Banach spaces by Mitchell [46].
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Proposition 4.3 ([37, Theorem 1]). Let X be a compact metric space admitting a
conical bicombing. If S is a left reversible semigroup consisting of 1-Lipschitz self-
maps of X, then S has a common fixed point in X, that is, there is x« € X such that
f(x«) = x« forall f € S.

Here, a semigroup S is left reversible if for all a,b € S, there exist ¢,d € S such
that ac = bd. For instance, every group and every abelian semigroup is left reversible.
By the use of Lemmas 4.1 and 4.2, and Proposition 4.3, certain results of [13,41]
may be derived via straightforward fixed points arguments. For example, we have the
following lemma.

Lemma 4.4. Let X be a proper metric space admitting a conical bicombing ¢. Then X
also admits a reversible conical bicombing. Moreover, the subset RCB(X) C CB(X)
of all reversible conical bicombings on X is closed and ®-convex.

Proof. We define r: CB(X) — CB(X) by

r(): X x X x[0,1] - X,
o - 1
(. 3.0) = 9 (0ny (0,032 (1= 1), 3).

Fix 0 € X. Itis easily seen that r is 1-Lipschitz with respect to D,. Since (CB(X), D,)
is a compact metric space with a conical bicombing, see Lemmas 4.1 and 4.2, it
follows from Proposition 4.3 that there exists 0« € CB(X) such that r(0x) = 0«. By
construction, o is reversible. Next, we show that RCB(X) is ®-convex, where ® is
defined as in Lemma 4.1. If o, T € RCB(X), then

(p(o'xy(s)’ ‘L’xy(S), 1) = q)(ayx(l —5), Tyx(l —5),1),

and thus
Qoo (t)(x,y,8) = Por()(y, x,1—5)

forall (x, y,s) € X x X x [0, 1]. Hence, RCB(X) is ®-convex. To finish the proof we
need to show that RCB(X) is closed. Let (0™) be a sequence of reversible conical
bicombings converging to 0 € CB(X) asn — oo. Fix (x, y,t) € X x X x [0, 1]. Since
each o™ is reversible, it follows that

d(0xy (1), 0yx (1 = 1)) < d(0xy(t), 0D (1)) + d(a (1 — 1), 0y (1 — 1)).
Choose ko > 1 such that x, y € Bk, (0). By the above,
d(0xy(t), 0y (1 = 1)) <2-3%0 . Dy(0,0™)

for all n» > 1. This implies that o is reversible, as desired. [
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A bicombing o is called Isom (X )-equivariant if f(o(x,y,t)) =oa(f(x), f(y).t)
for every isometry f: X — X,all x,y € X and all ¢ € [0, 1]. In [41, Proposition 3.8],
Lang proved that every injective metric space X admits an Isom(X)-equivariant
reversible conical bicombing. Using the moduli space CB(X) and Proposition 4.3, we
can show that the analogous result also holds for every compact metric space which
admits a conical bicombing. This seems to be of independent interest and does not
follow from Lang’s result.

Lemma 4.5. Let X be a compact metric space. If X admits a conical bicombing,
then X also admits an Isom(X)-equivariant reversible conical bicombing.

Proof. Due to Proposition 4.3 there exists 0 € X such that f(0) = o for every isom-
etry f of X. For each isometry f: X — X the map F:CB(X) — CB(X) defined
by

(. y. 1) = fTHO(f(x), f(9).1))

is an isometric embedding with respect to D, and RCB(X) is F-invariant. Since
(CB(X), Do) and (RCB(X), D,) are compact metric spaces, see Lemma 4.2 and 4.4,
a classical result [22] tells us that the maps F' and F|gcp(x) are isometries. Because

{F(a):XxXx[O,l]—>X,
s

of Lemma 4.4, the compact metric space (RCB(X), D,) admits a conical bicombing.
Hence, by virtue of Proposition 4.3 there exists 0« € RCB(X) such that F(0«) = 0«
for every map F defined as above. By construction, oy is an Isom(X )-equivariant
reversible conical bicombing on X . |

5. Constructing new conical bicombings from old ones

5.1. Preparatory lemmas. Let X denote a metric space admitting a conical bicomb-
ing 0. In what follows, we develop tools that allow us to construct new bicombings
starting from 0. Fix n > 1 and 7 € CB(X). For all x, y € X we set vy, (n;0) = x,
Uxy(n;n) ==y, and

(5.1) Uy (n11) = “(fxy(i ; 1)”xy(i : 1)%)

foralli =1,...,n — 1. Let vy (n; T) denote the map X x X x [0, 1] — X defined by

i+1

(5.2) (x,y,(l—/\);——i—/\ )l—)o(vxy(n;i),vxy(n;i +1),0)

foralli =1,...,n—1andall A € [0, 1].
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Lemma 5.1. The map v, (n; t) is a conical bicombing, and if o is consistent, then
ve(n;o) =o.

Proof. We abbreviate v := v, (n; t) and ¢; := ,’l— fori =0,...,n. Using (5.1), we
obtain
ti— t;
d(x,vxy(n:1)) < T2 d(x,y) + = d(x, ),
2 2
(5-3) 1 -1 —lit1
d(y, vxy(n:i)) = ——d(x.y) + ———d(x.y).

As d(x,y) <d(x,vxy(n:;1)) + d(vxy(n;i), y) = d(x, y), the inequalities in (5.3)
are equalities. Since

1
d(ny(nii)’ny(”;i + 1) < Zd(xvy)’

we obtain
d(vxy(n;i), vxy(n; j)) = [t — t;|d(x, y)

foralli, j =0,...,n. Thus, v is a bicombing.
We proceed to show that v satisfies (1.1). Let ¢ € [t;, ¢;4+1]. Clearly,

t=00-Mt + Ati41
for some A € [0, 1]. Let x, y,z € X. We estimate

(5.4) d(ny(t), Uxz (1)) < (1 — A)d(vxy(n; i), Uxz(n;0))
+ Ad(vxy(nii + 1), vxz(n;i + 1)).

By virtue of (5.1), it follows that

(5.5) d(Vsy(n; j), vxz(n; j)) < % d(txy(tj-1), txz (tj-1))

1
+ 3 d(txy(tj+1), Txz (tj+1))
< t]d(y1 Z)

forall j =0,...,n. By combining (5.4) and (5.5), we find that v satisfies (1.1), as
desired. For the moreover part, it suffices to note that if o is consistent, then vy, (n;i) =
oxy(ti) foralli =0,...,n. ]

Now we are in a position to prove Lemma 5.2, which is the main component of the
proof of Theorem 1.4.
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Lemma 5.2. Let X be a proper metric space and suppose o is a conical bicombing
on X. Let x,y € X. Then for each integer n > 1 there exist unique points oxy(n;i),
fori =0,...,n, suchthat ox,(n;0) = x, 0x,(n;n) =y, and

(5.6) Oxy(n;i) = a(oxy(n;i —1),0xy(n;i + 1), %)

foralli =1,...,n — 1. Moreover, c™: X x X x [0,1] — X defined by
i+1
n

0(")(x,y, (1- X);— +A ) =0 (0xy(n:0), 0xy(n3i + 1), 1)

forallx,y € X,all A €[0,1],and alli =0,...,n— 1, is a conical bicombing.

Proof. First, we prove that the points o, (n;7) are unique. Suppose that py,..., p, € X
satisfy po = x, p, = y and p; = o(pi—1, Pi+1, %) foralli =1,...,n —1. We
abbreviate d; := d(oxy(n;i), p;) and d := max{d; :i =0, ...,n}. Plainly,

1 1 1 1 1 1 1

d; < zdi—l + Edi—l—l < Zdi—z + Zdi + Edi—l—l <. < Edo + (1 - 2—1)61
foralli =1,...,n — 1. Hence, d = 0, as desired.

In the following, we show that the points oy (n;7) with the desired properties
exist. For t € CB(X) let vy (n; 7) be defined as in (5.2). By Lemma 5.1, it follows
that v, (; 7) is a conical bicombing. Fix 0 € X. By construction, t — vs(n; 7) is
1-Lipschitz with respect to D,. Indeed,

Do(vy(n; 1), v5(n; 7))
& N (YY), .
< sup{3 d(rxy(n),rxy(n)) tk>0,x,y € By(o),i € [n]}
where [n] := {0, ...,n}, and therefore
Dy (vg(n; 1), vs(n; T,)) < Doz, T/)

for all 7, 7" € CB(X). Since (CB(X), D,) is compact (see Lemma 4.2), Proposi-
tion 4.3 now gives us some 0« € CB(X) for which v, (n; 0%) = 0«. Hence, the points
Oxy(n;i) == 0x(x,y, ,’1;) have the desired properties. [

Rather than using the tools of Section 4, Lemma 5.2 can also be established by
direct computations. Indeed, straightforward (but tedious) estimates show that the
sequence (x;) C X" with xo € X"*! arbitrary,

. PN
x,(co) = x,x,i") =y and x,(c’) = o(x,(cl_ll),x,(c’jll), 5)

is convergent. Its limit fulfils (5.6) by construction.
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5.2. Proof of Theorem 1.4. Now, we have everything at hand to prove Theorem 1.4.

Proof of Theorem 1.4. Fix a reversible conical bicombing o on X. The existence of
such a bicombing is guaranteed by Lemma 4.4. For each n > 1, let

o™ X x X x[0,1] > X

denote the conical bicombing constructed in Lemma 5.2. Notice that o) = o. Since

the points oy (n;i),i = 0,...,n, are unique, we find that
) Eoaltky _ jwo(pm (L) otk
7 o (M=h- +a——) =P (6W(=).0f) (—).A

forall0 <i <i+k <nandall A € [0,1]. We define y™: X x X x[0,1] = X by
setting y ™ (x, x,1) ;= x forall x € X and all # € [0, 1], and

. , i—1 i
YOy =Py ifdey) e (—. x|

Clearly, ™ is a bicombing. We remark that y ™ is not necessarily continuous with
respect to the product topology on X x X x [0, 1].

Fix a free ultrafilter U on the positive integers (we refer to [9, p. 78] for the definition
and basic properties of ultrafilters). Now, let y: X x X x [0, 1] — X be defined by

y(x,y,1) :=lim y®(x, y,0).

By construction, y is a reversible bicombing. In the following, we show that y has the
desired properties. First, we prove that y is consistent. To this end, let x, y € X with
x #y,and p = yx,(s) and g := yx,(t) for 0 < s <t < 1 be given. By construction,

d(yxy (1= 25 + A1), ypg () = limd (v} (1 = D)5 + A1), 75 (3).

Letting p,, == yg) (s) and g, := y)(c';,) (), we obtain that

d(7xy (1= 25 + A1), ypg (V) < limd (y3) (1= D)5 + A1), v, (A)

i d (150, 00, 5 ().

Notice that d(py, gn) = d(pm,qm) foralln,m > 1, and so d(p,q) = d(pn, g») for
all n > 1. Hence, using the definition of y(”), we obtain

timd (y5}, (1), 75! (V) = (1= A)lim d(pa. p) + Alim d(gn.q) < 0.
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Thus, to prove that y is consistent, it suffices to show that
(5.8) lim d (YD = Ds + A0y (L) =

Fix n > 1 and denote by m, k > 1 the unique integers such that

d(x,y>e(mn_1,§], doman € (1]

We set A .= {a(m)( ): ,...,m}.Choose p, = axy)( ) € A such that

d(x,y)

1
d(pn. py) +d(qn.q,) < =

where g, = axy)(’+k) We estimate

a0, 3.0 ) = d (0%, (1.0, M) = .

PnCIn n
and therefore
d(y8(( =25+ 40,75, (V) < d (@8 ((1=W)s + An),0'), () +

By virtue of (5.7), we arrive at

SRS

d (Y (1= X)s + ),y (1) <

hence, (5.8) follows. Thus, y is a consistent bicombing, as claimed. Since every
geodesic of y™ is a 0¥-geodesic for some i > 1, each map Yxy(+) is a straight
geodesic. Similarly, since y is consistent and by the definition of ¥, we find that
t > d(yxy(t), yxy (1)) is convex on [0, 1] whenever x, y, x", y" € X satisfy d(x,y) =
d(x’, y'). Notice that if o is Isom(X)-equivariant, then each o™ is Isom(X)-equi-
variant, and it follows that y is Isom(X)-equivariant as well. Due to Lemma 4.5
and [41, Proposition 3.8], we may suppose that o is [som(X)-equivariant whenever X
is compact or injective. This completes the proof. ]

Remark 5.3. Let (6() be the sequence of conical bicombings as in the proof of
Theorem 1.4. If (¢™) converges, then it is immediate that the limit is a consistent
conical bicombing on X . Unfortunately, standard estimates only show that

1
Do(c™, o)) < .
o )= n+1

We do not know if the sequence (o) is convergent.



Extending and improving conical bicombings 189

6. Boundary constructions

6.1. Boundaries at infinity. Throughout this subsection, let X be a complete metric
space and y a consistent bicombing on X such that ¢ > d(yxy(?), yx/y (1)) is convex
on [0, 1] for all x, y, x’, y’ € X withd(x, y) = d(x’,y’). If X is proper and admits a
conical bicombing then the existence of such a bicombing y is guaranteed by Theo-
rem 1.4. Moreover, every Busemann space clearly admits such a bicombing. The aim
of this section is the adapt the boundary construction for Busemann spaces which is
given in [31] to this more general setting. For consistent conical bicombings this has
already been carried out in [14]. We caution the reader that it is not known whether y
satisfies the conical inequality (1.1). Hence, in the following arguments we do not
have (1.1) at our disposal.

Given o0, x € X we define g,: R4+ — X as follows. If t > d (o, x), then we set
Oox(t) = x and 0o () = Yox(t/d(0, x)) otherwise. We will often use the following
elementary estimate as a substitute for (1.1).

Lemma 6.1. Let o, x,y € X be distinct. Then

. d(x,y)
min{d (o, x),d(0, y)}

d(0ox (1), Qoy(l)) <2t

forallt € Ry satisfying t < min{d(o, x), d(0, y)}.

Proof. We may suppose that d(o, x) < d(o, y). We put y’ := g,,(d(0, x)). Since
0oy (t) = 00y (1), it follows that

t
d(0ox(1), 00y (1)) < md(x» ).
By construction, d(y, y’) = |d(y,0) —d(x,0)| < d(x, y), and so the desired result
follows by the triangle inequality. ]

Recall that aray £: Ry — X iscalled y-ray if E((1 — A)s + At) = y(E(5),E(¢), L)
forall0 <s <t andall A € [0, 1]. For each o € X we let (0, X), denote the set of
all y-rays issuing from o. The following lemma shows that (9, X'), and (9, X ), are
bijectively equivalent. Having Lemma 6.1 at hand, it can be proven by slightly adapting
the arguments from [31].

Lemma 6.2. Let p, 0 € X. Then for every & € (0, X ), there exists a unique &' € (3, X ),
such that & and &' are asymptotic.

Proof. The uniqueness part follows directly from the fact that ¢ — d(£(¢), £'(¢)) is
convex for all y-rays § and §'. Let £ € (9, X), and define x,, := £(n) forall n > 1.
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Fix t € R4. We claim that the sequence (Qox, (t)) converges. Suppose that N >
t 4+ 3d(o, p) and letn > m > N. Notice that x,,, = 0x,, p(d(xs,x,,)) and

d(xp,0) > d(x,, p) —d(o, p) > d(xn,xm) + N —d(o, p) = d(xn, xm).

Hence, z := 0x,0(d (X, Xm)) is well defined. Using Lemma 6.1, we obtain d (x,,, z) <
2d(o, p), and so

d(z,0) > d(o,xm) —d(xm,z) > N —3d(o, p) > t.

This implies that 0o, (f) = 00 (¢) and thus by applying Lemma 6.1,

d(xm7z) <4t d(o’p)

(OD) d(@oen (1) 0o (1)) = 20 - s e d0.2)) = N = 3d(o.p)’

Therefore, (0ox,, (t)) is a Cauchy sequence, as desired. Letting

£ (1) = lim ooy, (1),

n—>oo
it follows that & is a y-ray emanating from o. It remains to show that § and £’ are
asymptotic. Fix t € Ry. For n > 1 sufficiently large, £(t) = 0px, (t) and ¢’ > 0, where
t = min{d(p,xn),d(o,xn)} —1.
Clearly,
d(§(t), 0ox, (1)) < d(0px, (1), anp(t/)) + d(anp(t/), ano(t/))
+ d(ano(t/)» Qox, (1))

and thus, d(£(1), 0ox, (1)) < d(0. p) + d(0x,p(t"). 0x,0(t")). Hence, by invoking
Lemma 6.1, it follows that

d(§(1), Cox, (1)) = 3d(o0, p)
for n > 1 sufficiently large. This gives d (£ (¢),&'(¢)) < 3d (o, p), as was to be shown. m

Let d,, X denote the set of equivalence classes of mutually asymptotlc y-rays and
set X, := X U, X. Now, we are ready to define a family of metrics (dy)oecx ON X,.
By Lemma 6.2, it follows that for every pair (0, X) € X x 0,, X there exists a unique
0ox € (0yX), such that [Qox] = X. By the triangle 1nequa11ty, d(0ox(), 005(t)) <2t
forallx, y € X Hence, d,: y X X — R given by

a,(%.7) = /0 d(00x(0). 0oy(1))e™ di

satisfies d_o (X,y) < 2 and defines a metric on X. v
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Lemma 6.3. Leto, p € X. Then d, and 671, induce the same topology on X. V-

Proof. For every x € X there exists some £, > 0 such that the open ball
(¥ € X, :dp(x,X) < ex)

is contained in X . In particular, X is an open subset of X » with respect to any metric d, .
One can easily show that the induced topology of X C X. y is equal to the metric topology
of X.

Suppose now that x € BVX and X, € )?,,, n > 1, are such that gp(fn, x)—0
as n — oo. To conclude the proof, we need to show that d, (Xn,X) > 0asn — oo.
Fix ¢ > 0. Clearly, there exists Ny € N sufficiently large such that for all N > Nj,

4d (o, o0
N —3d(o, p) > 0, _4d.p) <eg, and / 2t dt < e,
N —3d(o, p) N
We define N := Ny + 3d(0, p) and put z := 0,3 (N) and z,, := 0px, (N) foralln > N.
Since X € d, X and d,(X,,X) — 0 as n — oo, there exists K > N sufficiently large
such that for all n > K, one has d(p, z,) = N and d(z,,z) < e. Now, (6.1) tells us
that for all ¢ € [0, Ny,
d(o, p)

d(Qozn(t),ngn(l)) <4r. m <te

for all n > K, and the analogous estimate also holds for d (0, (%), 0ox(?)). As a result,

o0

_ No
Ty, ) < f d(0os, (1), 00x ()" di + / 2te di
0 No

No No
< 28/ te”tdt + / d(0oz, (1), 00z(t))e™ " dt + ¢,
0 0

which implies d, (X, X) < 2d(zp, z) + 3¢. In particular, d,(X,,X) < 5¢ foralln > K.
Since ¢ > 0 was arbitrary, we find that d, (X, X) — 0 as n — co. This completes the
proof. |

6.2. Z-compactifications and proof of Theorem 1.5. Let X be a proper metric space
and X a compactification of X . We follow [24] and say that X is a Z-compactification
of X if X \ X is a Z-set in X. We will need the following general fact about Z-
compactifications.

Lemma 6.4. Let X be a proper metric space. If X is an absolute retract, then any
Z-compactification of X is an absolute retract.
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Recall that a metrizable topological X space is an absolute retract if whenever
X C X’ is aclosed subspace of a metrizable topological space X', then X is a retract
of X', that is, there exists a continuous map 7: X’ — X such thatr(x) = x forallx € X.

Proof of Lemma 6.4. This follows from a classical theorem of Hanner [28, Theo-
rem 7.2]. We refer to the discussion surrounding Lemma 3.3 in [24] for more informa-
tion. We remark that in [24] and [28] the authors work within the category of metrizable
separable spaces. Thus, strictly speaking, it only follows that Z-compactifications of X
are absolute retracts in this category. However, it is well known that any absolute retract
in this category is also an absolute retract in the category of metrizable topological
spaces. Indeed, this is a direct consequence of Tietze’s extension theorem and the fact
that every metrizable separable space can be realized as a closed subset of R, |

We conclude this section with the proofs of Theorem 1.5 and Corollary 1.6.

Proof of Theorem 1.5. Fixo € X andleth: X, x [0, 1] — X,, be defined by h(X,0) =X
and h(x,1) = Qog(¥) for t € (0, 1]. Clearly, ht()?y) C X whenever ¢t € (0, 1] and
using the metric d, it is easy to check that / is continuous. Hence, it follows that 0, X
is a Z-set in X. y- By invoking the Arzela—Ascoli theorem, we find that X y is compact
and thus X. y is a Z-compactification of X. Now, since X admits a conical bicombing,
it is strictly equiconnected, and thus by a classical result due to Himmelberg (see [29,
Theorem 41]), it follows that X is an absolute retract. Therefore, by Lemma 6.4 we
obtain that X, is an absolute retract as well. n

Proof of Corollary 1.6. Let G denote a group which acts geometrically an a proper
metric space X admitting a conical bicombing. Let y be a consistent bicombing on X
satisfying the properties stated in Theorem 1.4. Fix 0 € X. Let X. y be constructed as
in Section 6.1 and equip it with the topology induced by d,. We claim that (X v, 0y X)
defines a Z-structure of G. Clearly, X. y is compact and (2) holds. By invoking Theo-
rem 1.5, we obtain (1). In the following, we show (3). Let C C X be a compact subset
and Ry > 0 a real number such that C C Bpg for all R > Ry, where Bg C X denotes
the closed ball of radius R centered at 0. By the use of Lemma 6.1, it follows that

- 2diam C (R o
d,(gx,gy) < 1—/ te tdt —1—2/ te7'dt (x,yeC)
R 0 R
for all R > Ry and all g € G which satisfy gBr N Bg = &. Let U be an open cover
of ()7,,, d,) and fix a Lebesgue number § € (0, 1—10) of U. Fix
4

R > maX{Ro, 3 - diam C,log((;iz)}.
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By the above, if g € G satisfies gBg N Bgr = &, then the diameter of gC with respect
to d, is smaller than § and thus gC is contained in some member of U. Hence, (3)
follows, as gBr N Br = @ for all but finitely many g € G. This proves that (X, 9, X)
is a Z-structure of G. Finally, if X is injective then y is equivariant with respect to the
isometry group of X, and thus the action of G on X can be extended to X y- Notice that

do(gX,8¥) = dgo(X.y)

forallx,y € X. y- Hence, because of Lemma 6.3 it follows that G acts by homeomor-
phisms on X y» and so ()? y» 0y X) is an E Z-structure of G, as desired. ]
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