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1 Introduction and main results

In the history of the negative solution of Hilbert’s tenth problem, one of the major steps
was made by Martin Davis, Hilary Putnam and Julia Robinson. They proved in [3] that
there is a polynomial P 2 ZŒy; x1; : : : ; x2n� such that the set of positive integers y for
which the equation

P.y; x1; : : : ; xn; 2
x1 ; : : : ; 2xn/ D 0

is solvable in positive integers is not recursive. Let E denote the smallest class of real func-
tions such that (i) E contains the constant functions 1, log 2, � , the functions x, sin x, ex ,
and (ii) E is closed under addition, subtraction, multiplication and composition. Based on
the Davis–Putnam–Robinson theorem, D. Richardson proved in [7] that it is recursively

Nach dem Satz von D. Richardson ist es rekursiv unentscheidbar, ob eine Elementar-
funktion eine reelle Nullstelle hat oder nicht. Genauer gesagt gilt: Ist E die kleinste
unter Addition, Subtraktion, Multiplikation und Komposition abgeschlossene Klasse
von reellen Funktionen, welche die konstanten Funktionen 1, log2, � und die Funktio-
nen x, sinx, ex enthält, dann ist es rekursiv unentscheidbar, ob ein gegebenes Element
von E eine reelle Nulstelle hat oder nicht. Es gibt Unterklassen von E mit der glei-
chen Eigenschaft. Die kleinste bekannte solche Klasse ist der Ring �1 erzeugt durch
die Funktionen 1, x, sin xn und sin.x � sin xn/ (n D 1; 2; : : :). Im vorliegenden Ar-
tikel wird gezeigt, dass die Funktionen sin.x � sin xn/ nicht aus �1 entfernt werden
können, ohne diese Eigenschaft zu verlieren. Unter der Annahme, dass die Vermutung
von Schanuel in der transzendenten Zahlentheorie richtig ist, wird ein Algorithmus
angegeben, der für jedes Element f des von 1, x, sin xn und cos xn (n D 1; 2; : : :)
erzeugten Ringes entscheidet, ob f eine reelle Nullstelle in einem gegebenen Intervall
hat. Dasselbe wird gemacht für den durch 1, sin xn und cos xn erzeugten Ring.
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undecidable if an element of E has a real root or has a positive value. When Matiyase-
vich completed the solution of Hilbert’s tenth problem in 1970, it became clear that the
functions log 2 and ex can be removed from the class E . Let � denote the smallest class
of real functions which contains the constant functions 1, � , the functions x, sin x, and
which is closed under addition, subtraction, multiplication and composition. It was proved
by P. S. Wang in [12] (based on the papers of D. Richardson and B. F. Caviness [1] as well)
that it is recursively undecidable if an element of � has a real root or has a positive value.

The class � was further reduced in the paper [5], where it was shown that the existence
of a zero or a positive value of a function is still recursively undecidable in the ring �1
generated by the identically 1 function and the functions x, sin xn and sin.x � sin xn/
(n D 1; 2; : : :) defined on R. That is, the constant function � can be removed from � ,
and the number of compositions used to form the elements of � can be restricted. Now
the class �1 is not very far from being optimal, that is, being smallest. Let �2 be the ring
generated by the identically 1 function and the functions sinxn and cosxn (n D 1; 2; : : :).
It was proved in [5] that there is an algorithm that decides if an element of �2 has a positive
value. The problem whether or not there is an algorithm that decides if an element of �2
has a real root remained open.

The following simple example shows that such an algorithm, if it exists, must rely on
some facts of number theory. Suppose we have to decide if the function 2C cosxC cosx2

has a real root. Clearly, ˛ is a real root if and only if cos˛D cos˛2 D�1. Therefore, a real
root exists if and only if there are integers k; n such that ..2k C 1/�/2 D .2nC 1/� , that
is, if � D .2n C 1/=.2k C 1/2. We know that no such integers exist, as � is irrational,
so there is no real root. Conversely, the fact that there is no real root implies that � is
irrational, or at least it is not a rational number with odd numerator and denominator.

Conjectures in number theory appear in several decision problems. Already Caviness
used a number theoretic conjecture to solve the identity problem to a certain class of expo-
nential expressions in [1]. The conjecture used most often in this context is Schanuel’s
conjecture, abbreviated as (SC). It states that if x1; : : : ; xn are Q-linearly independent
complex numbers, then the transcendence degree of the field Q.x1; : : : ; xn; ex1 ; : : : ; exn/
over Q is at least n. (See [9,11].) Out of the several applications of (SC), we only mention
here the decidability of the real exponential field proved by A. Macintyre and A. J. Wilkie
(see [6,13]), A. C. Shkop’s theorem on the algebraic roots of exponential polynomials [8],
and the proof of Shapiro’s conjecture by P. D’Aquino, A. Macintyre and G. Terzo [2].

In this note, we show that, assuming (SC), the existence of roots of the elements of �2
can be decided algorithmically.

Theorem 1.1. Assuming (SC), there is an algorithm that decides if an element of �2 has
a real root or not.

We also consider the larger ring R generated by the identically 1 function and the func-
tions x, sin xn and cos xn (n D 1; 2; : : :) defined on R. Unfortunately, in order to decide
whether or not an element of R has a root or has a positive value, even (SC) does not
seem to be strong enough. Suppose, e.g., that we want to decide whether or not the func-
tion .x2 C 1/ � .2C cos x C cos x2/ � 1 has a negative value. We know that the function
2C cos x C cos x2 takes arbitrarily small values, as the sequence of points .¹ k

2�
º; ¹ k

2

2�
º/

(k D 1; 2; : : :) is dense in Œ0; 1�2 (see the proof of Lemma 2.1 in the next section). But can
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2C cosx C cosx2 be smaller than 1=.x2 C 1/? In order to answer questions of this type,
we probably need very strong results on Diophantine approximations (see [10]).

Still, we can prove the following.

Theorem 1.2. Suppose (SC). Then there is an algorithm that decides for every f 2 R

and for every subinterval I of R with rational endpoints whether or not f has a root in I .

The proofs of Theorems 1.1 and 1.2 will be given in Section 4, using the results of the
next two sections.

2 Representations of the elements of R

The elements of the ring R are given in the form

f .x/ D p.x; sin x; : : : ; sin xn; cos x; : : : ; cos xn/; (1)

where p 2QŒx;y1; : : : ; yn; z1; : : : ; zn�. Replacing the powers .cosxj /2k by .1� sin2 xj /k

in the right-hand side of (1) if necessary, we may assume that the polynomial p is such
that the degree of each of the variables z1; : : : ; zn in p is at most 1. Polynomials with this
property will be called reduced. Our first aim is to prove the following.

Lemma 2.1. The representation of an element of R using a reduced polynomial is unique.

We put

Kn D ¹.y1; : : : ; yn; z1; : : : ; zn/ 2 R2n W y2j C z
2
j D 1 .j D 1; : : : ; n/º:

Lemma 2.2. If a reduced polynomial p 2QŒy1; : : : ; yn; z1; : : : ; zn� vanishes onKn, then
p D 0.

Proof. We prove the statement by induction. Suppose that either n D 1, or n > 1, and the
statement is true for n � 1. We have

p D q C r � zn; where q; r 2 QŒy1; : : : ; yn; z1; : : : ; zn�1�:

Note that both q and r are reduced. Since p vanishes on Kn, we have q D �r � zn and

q2 D r2 � z2n D r
2
� .1 � y2n/ (2)

onKn. If nD 1, then we obtain that q2 D r2 � .1� y21/ holds on Œ�1; 1�; therefore, it holds
everywhere on R. If q ¤ 0, then unique factorization in QŒy1� implies that .1 � y21/ is
a (constant multiple of a) square in QŒy1�, which is not the case. Thus q D 0, r D 0 and
p D 0.

Suppose that n > 1, and the statement is true for n � 1. Then (2) implies that

q2 � r2 � .1 � y2n/ D 0

onKn�1 � Œ�1; 1�. Fixing yn 2 Œ�1; 1� and applying the induction hypothesis, we find that
q2 � r2 � .1� y2n/D 0 holds on R2n�2 � Œ�1; 1�; therefore, it holds everywhere on R2n�1.
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If q ¤ 0, then unique factorization in QŒy1; : : : ; yn; z1; : : : ; zn�1� implies that .1 � y2n/
is a (constant multiple of a) square in QŒy1; : : : ; yn; z1; : : : ; zn�1�, which is not the case.
Thus q D 0, r D 0 and p D 0.

Proof of Lemma 2.1. We have to prove that if the function f in (1) is identically zero,
where p is reduced, then p D 0. First we show this in the case when p does not depend
on x. It is well known that the sequence�° k

2�

±
;
° k2
2�

±
; : : : ;

° kn
2�

±�
.k D 1; 2; : : :/

is uniformly distributed in Œ0; 1�n. (See [4, Theorem 6.3 on p. 48 and Theorem 3.2 on
p. 27]). In particular, this sequence is everywhere dense in Œ0; 1�n. Therefore, the set

¹.sin k; : : : ; sin kn; cos k; : : : ; cos kn/ W k D 1; 2; : : :º (3)

is everywhere dense inKn. Since f is identically zero, it follows that p vanishes on a dense
subset of Kn; hence it vanishes on Kn. Then, by Lemma 2.2, p D 0.

Now we turn to the general case. If p ¤ 0, then p D xm � pm C � � � C x � p1 C p0,
where pj 2 QŒy1; : : : ; yn; z1; : : : ; zn� (j D 0; : : : ;m) and pm ¤ 0. Then we have f .x/ D
xm � gm C � � � C x � g1 C g0, where

gj .x/ D pj .sin x; : : : ; sin xn; cos x; : : : ; cos xn/ .j D 0; : : : ; m/:

By Lemma 2.2, we have pmjKn ¤ 0. Let x 2 Kn be such that c D pm.x/ ¤ 0. Since the
set (3) is everywhere dense in Kn, we can find a sequence k� !1 such that

lim
�!1

.sin k� ; : : : ; sin kn� ; cos k� ; : : : ; cos kn� / D x

and gm.k�/! c as � !1. Then f .k�/ � k�m� ! c as � !1, which is impossible, as
f D 0 by assumption. This proves p D 0.

We also need a different representation of the elements of R. Let f 2 R be given
by (1). Applying the identities

sin x D
2 tan.x=2/

1C tan2.x=2/
; cos x D

1 � tan2.x=2/
1C tan2.x=2/

;

we get
f .x/ D r

�
x; tan.x=2/; : : : ; tan.xn=2/

�
;

where r 2 Q.x0; x1; : : : ; xn/, and the denominator of r is a product of factors of the form
1C x2j (j D 1; : : : ; n). Since 1C tan2.xj =2/ D 1= cos2.xj =2/, we obtain

f .x/ D q
�
x; tan.x=2/; : : : ; tan.xn=2/

�
�
�
cos.x=2/

�a1
� � �
�
cos.xn=2/

�an
; (4)

where q 2 QŒx0; x1; : : : ; xn� and a1; : : : ; an are nonnegative even integers.
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3 Lemmas on roots

Lemma 3.1. There is an algorithm that decides for every f 2 R whether or not f has
a real root that is algebraic over Q. There is also an algorithm that decides if f 2 R has
an algebraic root that belongs to a given subinterval of R with rational endpoints.

Proof. Let f be given by (1), where p 2 QŒx; y1; : : : ; yn; z1; : : : ; zn�. Applying Euler’s
identities, we find f D ei �S � F , where S 2 ZŒx� and F is a polynomial of x; eix ; : : : ; eix

n

with coefficients belonging to Q.i/. Clearly, the roots of f and F coincide. We can write
F in the form

PN
jD1 pj � e

i �sj , where pj 2Q.i/Œx� and sj 2 ZŒx� for every j D 1; : : : ;N .
We may assume that s1; : : : ; sN are different, and pj ¤ 0 for every j D 1; : : : ; N .

Suppose that ˛ is an algebraic root of f , and let g denote the minimal polynomial of ˛.
Since it is clear how to decide whether or not 0 is a root of f , we may assume that ˛ ¤ 0.
Let d denote the degree of g; then d � 1.

Let sj D qj � gC rj , where qj ; rj 2QŒx� and deg rj < d for every j D 1; : : : ;N . Then
sj .˛/ D sk.˛/ if and only if rj D rk . Rearranging the terms if necessary, we may assume
that r1; : : : ; rm are distinct, and rj equals one of r1; : : : ; rm for every j D mC 1; : : : ; N .
Let Pj denote the sum of those polynomials pk for which rk D rj . Then we have

mX
jD1

Pj .˛/ � e
i �rj .˛/ D F.˛/ D 0: (5)

We prove that each of the numbers Pj .˛/ (j D 1; : : : ; m) must be zero.
From the fact that deg g D d , it follows that the numbers i; i˛; : : : ; i˛d�1 are lin-

early independent over Q. By the Lindemann–Weierstrass theorem, this implies that the
numbers ei ; : : : ; ei˛

d�1
are algebraically independent over Q.

Let D denote the common denominator of the coefficients of r1; : : : ; rm, and put
ut D ei˛

t=D (t D 0; : : : ; d � 1). Then u0; : : : ; ud�1 are also algebraically independent
over Q. Each number ei �rj .˛/ (j D 1; : : : ; m) is a product Uj of powers of u0; : : : ; ud�1
with integer exponents. Since the values r1.˛/; : : : ; rm.˛/ are distinct, it follows that
the products Uj are formally different. Since u0; : : : ; ud�1 are algebraically independent
over Q, the numbers Pj .˛/ are algebraic, and

Pm
jD1 Pj .˛/ � Uj D 0 by (5), it follows that

Pj .˛/ D 0 for every .j D 1; : : : ; m/, as we stated.
Since Pj 2 Q.i/Œx�, it follows that g j Pj � Pj in QŒx�, where Pj is obtained from Pj

by taking the complex conjugates of its coefficients. The previous considerations imply
that if g 2 QŒx� is an irreducible polynomial such that f vanishes at a real root of g, then
f vanishes at each real root of g. We can also see that the number of these polynomials
is finite. Indeed, the number of possibilities in forming the polynomials P1; : : : ; Pm (by
partitioning p1; : : : ; pN and taking the sum of each group) is finite. Take any of these
systems P1; : : : ; Pm. If the polynomial P1 is nonzero, then g is a divisor of P1 � P1. The
number of possible polynomials g with this property is finite, and they can be found by
factorizing all the possible polynomials P1 � P1.

Next suppose that P1 is identically zero. Since pj ¤ 0 for every j D 1; : : : ;N , and P1
is the sum of those polynomials pj for which rj D r1, there must be at least one j > 1 such
that rj D r1. Then g divides sj � s1, which shows that the number of possible polynomials
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g with this property is finite again, and they can be found by factorizing the polynomials
sj � s1 (1 < j � N ).

If g 2 QŒx� is a given irreducible polynomial, then following the argument leading to
equation (5), we can decide whether or not the real roots of g are roots of f as well. Then,
using Sturm’s algorithm, we can decide if g has a real root or has a root in a given interval.
This completes the proof.

The proof above shows that the nonzero elements of R only have finitely many alge-
braic roots. Under (SC), this is true for a much larger class; see [8].

Lemma 3.2. Assume (SC). Suppose f is represented by (1), where p is reduced, and
let 1 � j � n. Then f and cos.xj =2/ have a common real root if and only if, substituting
yj D 0 and zj D �1 into p, it becomes identically zero.

Proof. If cos.˛j =2/D 0, then sin˛j D 0 and cos˛j D�1. It is clear that if the substitution
yj D 0, zj D�1makes p zero, then f .˛/D 0. This proves the “if” statement of the lemma.

Now suppose that f and cos.xj =2/ have a common real root ˛. In order to make the
notation simpler, we assume that j D n. (The proof is the same in the other cases.) Put

p1.x; y1; : : : ; yn�1; z1; : : : ; zn�1/ D p.x; y1; : : : ; yn�1; 0; z1; : : : ; zn�1;�1/:

Note that p1 is reduced. Since f .˛/ D 0, we have g.˛/ D 0, where

g.x/ D p1.x; sin x; : : : ; sin xn�1; cos x; : : : ; cos xn�1/:

In order to prove that p1 D 0, it is enough to show, by Lemma 2.1, that g is identically
zero. Using Euler’s identities, we can find polynomials

S 2 ZŒx� and p2 2 Q.i/Œx0; x1; : : : ; xn�1�

such that g.x/ D eiS.x/ � p2.x; eix ; : : : ; eix
n�1
/. Therefore, we have

p2.˛; e
i˛; : : : ; ei˛

n�1

/ D 0: (6)

Since cos.˛n=2/ D 0, we have ei˛
n
D �1, and then it follows from Lindemann’s theorem

that ˛ is transcendental. Then ˛; ˛2; : : : ; ˛n are linearly independent over Q. By (SC),
the transcendence degree of the field Q.i˛; : : : ; i˛n; ei˛; : : : ; ei˛

n
/ is at least n. Since

ei˛
n
D �1, we obtain that the numbers ˛; ei˛; : : : ; ei˛

n�1
are algebraically independent

over Q. Therefore, by (6), we have p2 D 0, and thus g is identically zero.

Let q 2 QŒx0; x1; : : : ; xn�, q ¤ 0, and let dj denote the degree of xj in q. It is clear
that

q
�
x; tan.x=2/; : : : ; tan.xn=2/

�
�
�
cos.x=2/

�d1
� � �
�
cos.xn=2/

�dn (7)

is a polynomial of the functions x, sin.xj =2/ and cos.xj =2/ (j D 1; : : : ; n), and thus it is
defined everywhere on R. Let f denote this function.

Lemma 3.3. Suppose (SC). Then f does not vanish at the roots of cos.xj =2/ for every
j D 1; : : : ; n.
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Proof. We only prove the statement for j D n; the proof of the other cases is the same.
We have

q D

dnX
jD0

xjn � qj ;

where qj 2 QŒx0; x1; : : : ; xn�1� for every j D 0; : : : ; dn and qdn ¤ 0. Put hj .x/ D
qj .x; tan.x=2/; : : : ; tan.xn�1=2// and

fj .x/ D hj .x/ �
�
cos.x=2/

�d1
� � �
�

cos.xn�1=2/
�dn�1

:

Then

f .x/ D

dnX
jD0

�
sin.xn=2/

�j
�
�
cos.xn=2/

�dn�j
� fj .x/:

If cos.˛n=2/ D 0, then sin.˛n=2/ D ˙1, and we have f .˛/ D ˙fdn.˛/. We show that
fdn.˛/ ¤ 0.

Since cos.˛n=2/ D 0, we have ei˛
n
D �1, and it follows from Lindemann’s theo-

rem that ˛ is transcendental. As we saw in the proof of Lemma 3.2, (SC) implies that
˛; ei˛; : : : ; ei˛

n�1
are algebraically independent over Q. Thus cos.˛j =2/ is transcenden-

tal, hence nonzero for every 1 � j � n � 1. Since

hdn.˛/ D qdn
�
˛; tan.˛=2/; : : : ; tan.˛n�1=2/

�
and qdn ¤ 0, it follows that hdn.˛/ is nonzero. Then fdn.˛/ is nonzero as well.

We put An D ¹x 2 C W x is algebraic over Q of degree less than nº.

Lemma 3.4. Assume (SC). Let p; q 2 QŒx0; x1; : : : ; xn�, and suppose that the functions

f .x/ D p
�
x; tan.x=2/; : : : ; tan.xn=2/

�
and g.x/ D q

�
x; tan.x=2/; : : : ; tan.xn=2/

�
have a common root ˛ … An such that cos.˛j =2/ ¤ 0 for every j D 1; : : : ; n. If p is
irreducible in QŒx0; x1; : : : ; xn�, then p j q.

Proof. We put t0 D ˛ and tj D tan.˛j =2/ for every j D 1; : : : ; n. Since ˛ … An, the
numbers i˛; : : : ; i˛n are Q-linearly independent. Therefore, by (SC), the transcendence
degree of the field Q.˛; ei˛; : : : ; ei˛

n
/ is at least n. Then the same is true for the field

Q.˛; tan.˛=2/; : : : ; tan.˛n=2// D Q.t0; : : : ; tn/. This means that there is an 0 � m � n
such that the numbers tj (0 � j � n, j ¤ m) are algebraically independent over Q.

Let R denote the polynomial ring QŒ¹x0; x1; : : : ; xnº n ¹xmº�, and write p and q as
elements of the polynomial ring RŒxm�. Let K denote the quotient field of R. Then there
are polynomials a;b;d 2KŒxm� such that apC bq D d , d ¤ 0, and d j p, d j q inKŒxm�.

Multiplying d by a suitable nonzero element of K, we may assume that d 2 RŒxm�
and that d is primitive, that is, every common divisor (in R) of the coefficients of d is
a nonzero rational number. Let r be a common denominator of the coefficients of a and b.
Then r is a nonzero element of R, and

.ar/ � p C .br/ � q D dr: (8)
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Here ar; br; p; q; d are elements of RŒxm�, that is, of QŒx0; : : : ; xn�, and r is a nonzero
element of R. Replacing xj by tj (j D 0; : : : ; n), the left-hand side of (8) becomes zero.
Then d � r D 0, where d and r are the values of d and r under the substitution. Since the
elements tj (j ¤ m) are algebraically independent over Q, we have r ¤ 0. Therefore, we
have d D 0. This implies that d is not constant.

By d j p in KŒxm�, we have p D e � d , where e 2 KŒxm�. Since d is primitive, it
follows from Gauss’ lemma and from the fact that unique factorization holds in R that
e 2 RŒxm�, and d j p in QŒx0; : : : ; xn�. Similarly, we have d j q in QŒx0; : : : ; xn�. Since
p is irreducible and d is not constant, we have e 2 Q, e ¤ 0, and thus p j d j q.

Lemma 3.5. Assume (SC). Let q 2 QŒx0; : : : ; xn� be an irreducible polynomial, and
put h.x/ D q.x; tan.x=2/; : : : ; tan.xn=2//. Suppose ˛ … An is a real root of h such that
cos.˛j =2/ ¤ 0 for every j D 1; : : : ; n. Then ˛ is a simple root of h.

Proof. Note that h is not identically zero by Lemma 3.3. Suppose that ˛ is a root of
multiplicity at least 2. Then ˛ is also a root of h0. Now we have

h0.x/ D
@q

@x0

�
x; tan.x=2/; : : : ; tan.xn=2/

�
C

nX
jD1

@q

@xj

�
x; tan.x=2/; : : : ; tan.xn=2/

�
� .jxj�1=2/ � cos�2.xj =2/

D s
�
x; tan.x=2/; : : : ; tan.xn=2/

�
;

where

s D
@q

@x0
.x0; ; : : : ; xn/C

nX
jD1

@q

@xj
.x0; ; : : : ; xn/ � .jx

j�1
0 =2/ � .1C x2j / 2 QŒx0; : : : ; xn�:

Since q is irreducible, it follows from Lemma 3.4 that q j s. Let s D r � q, where r 2
QŒx0; : : : ; xn�. Thus

h0.x/ D r
�
x; tan.x=2/; : : : ; tan.xn=2/

�
� h.x/ (9)

for every x such that cos.xj =2/ ¤ 0 (j D 1; : : : ; n). Now (9) implies that the multiplicity
of ˛ as a root of h0 is at least the multiplicity of ˛ as a root of h, which is clearly impossible,
since h is analytic in a neighbourhood of ˛. Therefore, ˛ must be a simple root of h.

4 Proof of Theorems 1.1 and 1.2

Recall that �2 is the ring generated by the identically 1 function and the functions sin.xn/
and cos.xn/ (n D 1; 2; : : :).

Lemma 4.1. Assume (SC). Then there is an algorithm that decides, for every irreducible
polynomial q 2 QŒx1; : : : ; xn� whether or not the function

h.x/ D q
�
tan.x=2/; : : : ; tan.xn=2/

�
has a real root.
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Proof. Let f .x/ D h.x/ � .cos.x=2//d1 � � � .cos.xn=2//dn , where dj denotes the degree of
xj in q for every j D 1; : : : ; n. By Lemma 3.3, f does not vanish at the roots of cos.xj =2/
for j D 1; : : : ;n. Therefore, the roots of f and h coincide, so it is enough to decide whether
or not the function f has a real root.

It is clear that f .2x/ 2 �2. By [5, Theorem 2], there is an algorithm that decides
whether or not f .2x/ has a positive value. Evidently, we can also decide if f .2x/ has
a negative value. If f .2x/ has both positive and negative values, then f has a real root,
and we are done.

Suppose we found that f does not have negative values, that is, f � 0 everywhere.
Then, applying Lemma 3.1, we check if f has a real algebraic root. If there is one, we
stop. If there is no such root, then f and, consequently, h only have transcendental real
roots. Then it follows from Lemma 3.5 that every real root of h is simple.

Let ˛ be such a root. Then it follows that h changes sign in a neighbourhood of ˛. Now
we have f D h � g, where g.˛/ ¤ 0. Then f also changes sign in a neighbourhood of ˛,
which contradicts f � 0. This proves that, in this case, h does not have a real root. We
proceed similarly if f � 0 everywhere.

Now we turn to the proof of Theorem 1.1. Let f 2 �2 be given. First we check, using
Lemma 3.2, if f has common roots with cos.xj =2/ (1 � j � n). If it has, then we are
done. Otherwise, we find q and representation (4). Then f has a real root if and only if
h.x/ D q.x; tan.x=2/; : : : ; tan.xn=2// has one.

We write q as the product of the irreducible polynomials qj 2 QŒx1; : : : ; xn�, where
j D 1; : : : ; k. For each j , we check, using Lemma 4.1, whether or not the function

hj .x/ D qj
�
x; tan.x=2/; : : : ; tan.xn=2/

�
has a real root. If any of them has one, then h D h1 � � � hk and f also have such a root;
otherwise, neither h nor f has one.

Lemma 4.2. Assume (SC). Then there is an algorithm that decides, for every irreducible
polynomial q 2 QŒx0; x1; : : : ; xn� whether or not the function

h.x/ D q
�
x; tan.x=2/; : : : ; tan.xn=2/

�
has a real root in a given interval Œa; b� with rational endpoints.

Proof. Let f be the function in (7), where dj denotes the degree of xj in q (j D 1; : : : ; n).
By Lemma 3.3, the real roots of f and h coincide. Clearly, f .2x/ 2 R.

Applying Lemma 3.1, we check if f .2x/ has a algebraic root in the interval Œ2a; 2b�.
If there is one, we stop. If there is no such root, then f and, consequently, h only have
transcendental roots in Œa; b�. Then it follows from Lemma 3.5 that every root of h in Œa; b�
is simple.

As we saw in the proof of Lemma 4.1, if h has a simple root in .a; b/, then f changes
sign in a neighbourhood of the root. Therefore, we only have three cases: (i) f > 0 in
Œa; b�, (ii) f < 0 in Œa; b�, (iii) f takes both positive and negative values in Œa; b�. We have
to decide which one of these cases is true.
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For every rational number r , we can compute f .r/with an error smaller than any given
positive number. Indeed, this follows from the fact that we can compute the terms of the
Taylor series of cos x and sin x, and can estimate the Lagrange remainders. Let r1; r2; : : :
be an enumeration of the rational numbers in Œa; b� listing every such number infinitely
many times. Compute f .rn/ with an error less than 1=n for every n D 1; 2; : : :. If f takes
both positive and negative values in Œa; b�, then this procedure will prove this in a finite
number of steps.

If f > 0 in Œa; b�, then this fact can also be proved in a finite number of steps. Indeed, if
f is represented as in (1), then we can easily find an integerK such that jf 0j<K in Œa; b�.
Then we check for every n D 1; 2; : : : if f .a/ > K=n, f .b/ > K=n and f .k=n/ > K=n
is true for every integer k with a � k=n � b. Suppose we find such an n. Then, for every
x 2 Œa; b�, there is a point c 2 Œa; b� such that jx � cj � 1=n and f .c/ > K=n, and thus

f .x/ � f .c/ � jf .x/ � f .c/j >
K

n
�K � jx � cj >

K

n
�
K

n
D 0:

On the other hand, if f > 0 in Œa; b�, then f > ı in Œa; b� with a suitable ı > 0. In this
case, if n > K=ı, then f .a/ > K=n, f .b/ > K=n and f .k=n/ > K=n will be true for
every integer k with a � k=n � b. This shows that the procedure above proves that f > 0
in Œa; b� in a finite number of steps.

A similar procedure can prove that f < 0 in Œa;b�, if this is the case. Therefore, running
these three procedures simultaneously, we can decide in a finite number of steps which one
of the cases (i), (ii), (iii) is true.

Now Theorem 1.2 follows from Lemma 4.2 the same way as Theorem 1.1 is deduced
from Lemma 4.1.

Funding. The author was supported by the Hungarian National Foundation for Scientific
Research, Grant No. K146922.
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